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Abstract

The recent introduction of high-speed networks, faster processors, and the rapid growth of heteroge-

neous large-scale distributed systems has enabled the development of distributed applications that move

beyond the client-server model to truly harness the computational potential of distributed systems. These

new applications will be structured around groups of agentsthat communicate using messages as well as

files. Some of these emerging applications will be critical enough to life or business to warrant explicit

process replication to achieve high availability. Often, however, explicit replication will be too costly to

implement, or, simply, high availability will not be necessary. In these circumstances, the availability of

low-overhead fault-tolerance techniques will be crucial to achieving reliability. To address these needs,

we are developing lightweight fault-tolerance (LFT), a newlow-overhead approach to fault-tolerance for

highly cooperative distributed applications.

In the first part of this paper, we describe how LFT extends to file communication the causal logging

techniques used in message passing. We show how in our approach all the synchronous operations that are

currently performed by log-based protocols during file I/O are either eliminated or made asynchronous,

therefore removing the opportunities for blocking. Furthermore, we argue that our approach has the

potential to enhance the effectiveness of existing rollback recovery techniques for software fault-tolerance.

In the second part of the paper, we validate LFT through extensive simulation. Our results indicate that

LFT brings the cost of file communication down to the level of message passing, drastically reducing the

overhead incurred by fault-tolerant applications in performing file I/O.1



1 Introduction

High-speed networks, faster processors, and the rapid growth of heterogeneous large-scale distributed

systems are enabling a new class of highly cooperative distributed applications that move beyond the client-

server model to harness the computing potential of distributed systems. These applications will be structured

around groups of agents that, depending on the nature of their interaction, will communicate in different

ways. For instance, tightly-coupled agents will use message passing—either directly or through distributed

shared memory—to achieve low-latency and high bandwidth. However, message passing can be inefficient

when agents are loosely-coupled, or when the precise identity of the intended receiver is unknown to the

sender. For loosely-coupled agents communication throughfiles will be more appropriate.

Some of these emerging applications will be critical enoughto life or business to warrant explicit

process replication to achieve high availability. Often, however, explicit replication will be too costly to

implement, or high availability will simply not be necessary. In these circumstances, the availability of

low-overhead fault-tolerance techniques will be crucial to achieving reliability.

To address these needs, we are developinglightweight fault-tolerance(LFT), a new low-overhead

approach to fault-tolerance for highly cooperative distributed applications. Lightweight fault-tolerance has

the following goals:� To require few additional resources and have a negligible impact on performance during failure-free

executions.� To integrate with applications in a way that is transparent to the application programmer.� To scale the cost of providing fault-tolerance depending onthe severity and number of failures that

need to be tolerated.� To support and enable applications in which communication occurs through both messages and files.

Many of these goals are shared by other low-overhead fault-tolerance techniques and have already been

addressed with considerable success. In designing our solution, we build on some of these techniques. In

particular, LFT uses rollback-recovery to minimize dedicated resources, and causal logging [1, 2, 3, 10] to

minimize the impact on application performance and to scalecost with the number of failures that need to

be tolerated. Furthermore, transparency is achieved by implementing LFT as a middleware.

LFT is unique in its focus on efficient support of fault-tolerance for applications in which communication

occurs through both messages and files. Other techniques based on rollback recovery—such as primary-

backup, checkpointing, and message logging—may become expensive when performing file I/O. Since the

file system is considered to be a component of the external environment, the application may have to block

for every file I/O operation while data critical to recovery are logged to stable storage. For their part, toolkits

such as Isis [6], Horus [20] and Transis [9] assume that all communications occurs through message passing

and treat the file systems as a potentially dangeroushidden channelof communication through which causal

dependencies are not tracked. In contrast, LFT presents thefile system to the application as an integrated2



partner that can be trusted to provide the data needed duringrecovery and not as a detached component of

the external environment.

In the first part of this paper, we describe how LFT extends thecausal logging techniques used in

message passin to file communication. We show how in our approach all the synchronous operations that

are currently performed by log-based protocols during file I/O are either eliminated or made asynchronous,

therefore removing the opportunities for blocking. Furthermore, we argue that our approach has the potential

to enhance the effectiveness of existing rollback recoverytechniques for software fault-tolerance.

In the second part of the paper, we validate LFT through extensive simulation. Our results indicate that

LFT brings the cost of file communication down to the level of message passing, drastically reducing the

overhead incurred by fault-tolerant applications in performing file I/O.

The remainder of the paper is organized as follows. Section 2describes our system model. The ideas

and methodologies at the basis of lightweight fault-tolerance are presented in Section 3. Section 4 describes

our simulation, and contains an analysis of its results. Section 5 concludes the paper.

2 System Model

We assume an asynchronous distributed system, in which there exist no global time source, no bound on the

relative execution speed of agents, and no bound on transmission delays. We model agents as processes, and

in the rest of the paper we use the two terms interchangeably.Processes communicate using both messages

and files. The execution of a process is represented as a sequence of send, receive, read, write, and local

events. For each processp, a special class of events local top are calleddeliver events. These events

correspond to the delivery of a message to the application thatp is part of. For any messagem from processp1 to processp2, we assume thatp2 deliversm only if it has receivedm and thatp2 deliversm at most once.

Furthermore, we assume that a correct process will eventually deliver all messages it has received.

At any point in time, thestateof a process is a mapping of program variables and implicit variables

(such as program counters) to their current values. We assume that the state of the process does not include

the state of the underlying communication system, such as the queue of messages that have been received

but not yet delivered to the process.

Execution of a process ispiecewise deterministic[26]: It consists of a sequence of deterministic

intervals of execution, joined by non-deterministic events. For each process, the first interval of execution

begins with the process’ initial state; subsequent intervals begin with each non-deterministic event. Hence,

execution of a process consists of a sequence of intervals, the beginning of each interval being defined by

the initial state of the process and by the non-deterministic event. Such intervals are called astate intervals.

Given the first state of a state interval and the deterministic event that defines the beginning of the interval,

the remaining states in the interval are uniquely determined. We assume only two kinds of non-deterministic

events:deliver events: when an agent delivers a message, it chooses the message nondeterministically among

those received by the communication sub-system but not yet presented to the application.3



read events: when an agent reads a file, the version of the file read by the process is non-deterministic.

Processes exchange messages over point-to-point and FIFO channels that can fail by transiently losing

messages. Finally, processes themselves can fail according to the fail-stop model [22]. Hence, we assume

that processes fail independently, only by halting, and that a faulty process is eventually detected by all

correct processes.

2.1 Consistency

Since we are interested in addressing applications that communicate through both messages and files, our

notion of consistency must capture both styles of communication.

For message-based communication, given the statessp and sq of two processesp and q, p 6= q
respectively, we say thatsp andsq (or, more simply,p andq) aremutually message-consistentif all of the

messages fromq thatp has delivered during its execution up tosp were sent byq during its execution up tosq, and vice versa.

To define a similar notion for file-based communication, we first observe that, since the content of a

file may change as a result of a write event, at any point after its creation a file has a uniqueversionv.

Given a filef , we denote its version byf:v. Then, given the statessp andsq of two processesp andq,p 6= q respectively, we say thatsp andsq (or, more simply,p andq) aremutually file-consistentwhen, for

all versionsv and filesf , if p has read during its execution up tosp file f:v written byq, thenq has writtenf:v during its execution up tosq.
If two processesp andq are both mutually message-consistent and mutually file-consistent, then we

say thatp andq aremutually consistent. Finally, a collection of states, one from each process, is aconsistent

global stateif all pairs of states are mutually consistent [8]; otherwise it is inconsistent.

3 Lightweight Fault-Tolerance

To minimize explicit process replication, fault-tolerance in LFT is achieved through log-based rollback

recovery. Each processp periodically records its local state on stable storage in a checkpoint. Furthermore,p saves enough information about each non-deterministic event e executed since the last checkpoint to

guarantee that, after executinge during recovery,pwill again enter the same state entered during the original

execution. We call such information thedeterminantof e, and we say that a determinant isstableif it can

not be lost as a result of a failure. Ifp crashes, recovery involves (1) creating a new instance of processp, (2) initializing p to the latest checkpointed state, and (3) restartingp, making sure to repeat each non-

deterministic event according to the information saved in the corresponding determinant. The policy used

in determining when and where determinants are to be logged coordinates with the recovery protocol to

guarantee that upon recovery the global state of the system is consistent. Such consistency is often expressed

in terms oforphan processes—surviving processes whose state is inconsistent with the recovered state of

a crashed process. Consistency for log-based protocols translates into the guarantee that upon recovery no

process is an orphan. 4



The performance of a logging-based protocol depends heavily on how the protocol enforces the no-

orphans guarantee. For instance, pessimistic protocols (for example, [7, 19, 13, 26]) never create orphans

by logging determinants on stable storage synchronously. Unfortunately, these protocols exhibit relatively

poor performance during failure-free runs, since they prevent processes from communicating until logging is

complete. In contrast, optimistic protocols protocols [25, 23, 14, 27]) log determinants asynchronously and

do not delay communication, thus achieving good failure-free performance. Unfortunately, these protocols

may create orphans, and hence may force correct processes toroll back in order to reconstitute a consistent

global state.

LFT is based on a third logging technique calledcausal logging[2]. Causal logging protocols

implement the no-orphans guarantee by enforcing the following CL property: if the state of a processp
causally depends [15] on a non-deterministic evente, then either the determinant ofe is stable, orp has a

copy ofe’s determinant in its volatile memory. In either case, all determinants needed during recovery to

restore the system in a global state consistent withp’s state are available. Hence,p will never become an

orphan.

Causal logging protocols [1, 10, 2, 3] combine the positive aspects of pessimistic and optimistic

protocols. Causal protocols do not log determinants synchronously, and thus achieve the performance

advantages of optimistic protocols. At the same time, causal protocols never create orphans, and thus

achieve the fault-containment advantages of pessimistic protocols.

In the next section, we briefly describe family-based logging, the causal logging implementation used

by LFT for applications that communicate through message passing. We then present the limitations of

log-based techniques in general, and family based logging in particular, when applied directly to applications

in which processes communicate both through files and messages. Finally, we discuss how family-based

logging can be extended to achieve lightweight fault-tolerance for such applications.

3.1 Family-Based Logging

Family-based logging (FBL) [1, 3] is a low-overhead implementationof causal logging. As a causal protocol,

FBL never delays communication (except when communicatingwith the external environment), and at the

same time never creates orphans. Furthermore, FBL allows determinants to be maintained in the processes’

volatile memory, and does not require processes to send any additional message over those needed to mask

transient link failures. Finally, FBL protocols can be tuned so that their overhead (1) depends on the number

of failures that an application is willing to tolerate, and (2) can be minimized by exploiting the pattern of

inter-process communication exhibited by a specific application [3].

Family-based logging protocols exploit the observation that, given a maximum numberf of concurrent

failures that are to be tolerated, a determinant is stable once it is replicated in the volatile memory off + 1 processes that fail independently. Hence, in FBL the CL property is implemented by having each

processp piggyback on its messages all non-stable determinantsp previously generated, plus all non-stable

determinants that had been piggybacked on messages previously received byp.

Central to FBL’s performance is limiting the size of the piggybacked information. Fortunately, em-

pirical evidence shows that the number of determinants piggybacked does not grow uncontrollably [10, 1].5



Furthermore, since we assume that the only non-deterministic events in the system are delivery events,

determinants are small. The determinant associated with the delivery of a messagem is the tuple:hm:source;m:ssn;m:dest;m:rsni, wherem:source andm:dest denote, respectively, the identity of the

sender process and of the destination process;m:ssn—messagem’s send sequence number—is a unique

identifier assigned tom by the senderm:source; andm:rsn—messagem’s receive sequence number—

represents the order in whichm was delivered:m:rsn = ` if m is the `th message delivered bym’s

destination process.[25].

Note that the textm:data of m is not part of the determinant. Replicatingm:data is not necessary

because if the determinants of all the messages delivered during an execution are available then it is always

possible during recovery to regenerate any messagem that was sent and delivered during the original

execution. As we discuss next, the structure and managementof determinants becomes more complex when

we move from messages to files.

3.2 The gap between applications and file-system

Techniques that introduce little overhead when applied to message passing applications become considerably

more costly when communication also involves file I/O. In particular, logging-based techniques may delay

processes for every file I/O operation while data critical torecovery are logged on stable storage. This is

true even for techniques such as family-based logging, thatsuccessfully avoid delays when applied to pure

message-based communication.

We believe that the main cause for this lack of performance isthe gap that currently exists between

applications and the file system when it comes to fault-tolerance. This gap causes fault-tolerance techniques

designed for message passing applications to exhibit a somewhat schizophrenic pattern in their interactions

with the file system. On the one hand, these techniques treat the file system as a partner on which they

rely to provide stable storage for checkpoints and other information used during recovery. On the other

hand, when reading or writing other kinds of files, the file system is treated as a generic component of the

external environment that cannot be trusted to support recovery after a failure. Specifically, applications do

not assume that input provided by the environment will be reproducible by the environment during recovery,

and furthermore do not assume that, if a failure occurs in thesystem, the external environment can roll back

to a previous state in order to become consistent with the recoverable state of the application.

This attitude towards the file system has multiple serious negative consequences for the log-based

fault-tolerance techniques that are the focus of our attention.

A first negative consequence is loss of performance, as interaction with the external environment is a

major source of overhead for log-based protocols [11]. In particular, treating the file system as a component

of the external environment requires applications to take the following steps whenever reading or writing a

file.On reads: File read events are non-deterministic events (see Section2). Hence, to guarantee recovery

file read events must be logged in stable storage. The determinant of a read event has the following6



form: hname; v; reader; datai, wherenameis the file’s name,v is the file’s version,reader is the

identity of the reader process anddata is the file’s data.

As opposed to message determinants, file determinants include explicitly the file’s content, which is

not assumed to be reproducible. Hence, since determinants can be large, it becomes impractical to

use piggybacking schemes, such as those employed in FBL, that implement stable storage through

replication in volatile memory. In practice, determinantsare instead logged using a version of

stable storage implemented by the file system. Furthermore,read determinants must be logged

synchronously. In particular, the reader must delay sending messages or writing files until logging of

any read determinant has completed. This delay is necessary, since the file system does not guarantee

that any given file version will be available for replay if thereader fails.On writes: Since the file system in general cannot roll back, output mustbe delayed until the state in

which the write is generated is guaranteed to be recoverable. This guarantee is achieved by executing

anoutput commitprotocol, which synchronously writes on stable storage theinformation needed to

recover. In causal logging protocols, the output commit consists of synchronously flushing to stable

storage the non-stable determinants kept in the volatile memory of the process communicating with

the external environment—in this case, the writer process.

A second less obvious negative consequence is that tolerating software generated failures becomes

more problematic. Most of the software bugs that survive through design reviews, quality assurance, and

beta testing manifest themselves under transient system conditions that are very difficult to reproduce—the

elusiveness of these bugs has gained them the name ofHeisenbugs[12]. Experience shows that a very

effective way to handle Heisenbugs is to roll back the faultyprocess to an earlier state and then to restart

execution. The earlier the state a process is rolled back to,the more likely the process is to follow an

execution that is sufficiently different from the original one to avoid the Heisenbug. Unfortunately, since the

file system is considered part of the external environment, aprocess can never roll back past the last state in

which it performed a write operation. Hence, frequent writes to the file system can limit the effectiveness

of these rollback-based techniques, since they limit the extent by which a process can roll back.

Finally, another negative consequence of the gap between applications and the file system is that, as

much as applications do not rely on the file system as a fully trusted partner in their recovery, distributed

file systems do not rely on the clients’ ability to tolerate failures to improve their own reliability and

performance. For instance, several distributed file systems [5, 28, 16, 17, 18, 24] rely on recovery protocols

that use information provided by clients to restore the state of a faulty server’s cache. These protocols for

server recovery, however, are not designed for environments in which (1) clients cooperate in distributed

applications and (2) clients attempt to recover to a consistent state after a system failure. It is easy to show

that in such an environment, if just one client fails concurrently with the server, then the protocols for server

recovery may recover the server in an inconsistent state, potentially requiring all clients to reboot.

As another example, consider the policy that is currently enforced by most distributed file systems in

order to regulate file sharing. Suppose processp creates a new versionv of file f . If p delays writingf:v7



to the file server and another processq requests to readf , then the server requiresp to synchronously write

backf:v beforeq is allowed to read it. Although these synchronous writes areexpensive, the file system

enforces them to keepq from reading inconsistent data. In fact, ifpwere to transferf:v directly toq without

first writing the file back and thenp crashes, then the file system would not be able to guarantee that f:v
would be regenerated.

3.3 Lightweight fault-tolerance for file-based communicat ion

The goal of LFT for file-based communication is to bridge the gap between application-level fault-tolerance

software and the file system and, in so doing, to address the negative effects that we have described in the

previous section. In particular, LFT is designed to achievethe following results.

1. To bring the cost of communicating through files to the samelow level as the cost of communicating

through messages.

2. To enhance the effectiveness of existing rollback recovery techniques for software fault-tolerance.

3. To free file systems from the fault-tolerance-driven considerations that have so far prevented the

implementation of a high performance, truly server-less file system.

Clearly, to achieve these results LFT must eliminate the synchronous actions that are currently executed

for each file I/O operation, i.e. (1) the synchronous loggingof a file content that occurs when a file is read

and (2) the synchronous execution of an output commit protocol that occurs when a file is written. We first

focus on eliminating the synchronous logging that occurs onreads.

The reason for logging the content of the files read by the application is to guarantee that these files

will be available for replay in case of a system failure. In particular, a process that issues a read operation

cannot distinguish during recovery if the file being read comes from the file system or from the log kept by

the fault-tolerance software. In effect, through file logging and replay, current fault-tolerance techniques

replicate some of the functionalities of the file system.

A central thrust of LFT is to avoid such duplication of functionality. To achieve this result, LFT extend

the file system to supportfile versioning. In LFT, the file system keeps (at least conceptually) all versions

of the files created during an application’s execution. Fileversioning is transparent to the application,

which continues to interact with the file system in the usual way. After a system failure, our fault-tolerance

middleware cooperates with the file system to guarantee thata recovering process read the same file versions

the process read before crashing.

An obvious advantage of file versioning is that it eliminatesthe need for synchronously logging file

contents to stable storage for each read operation. A second, perhaps less obvious, advantage of file

versioning is that it removesf:data from the determinant of a read event for filef . The importance of this

second advantage becomes clear when we consider that maintaining the file versions is useless unless the

determinants of the read events are available during recovery. Determinants must be stored on stable storage,

since they contains the information necessary to decide during recovery which process read a specific version8



of a given file. Fortunately, since now the file’s data is not part of a read determinant, the sizes of read

determinants and message delivery determinants are comparable. Hence, we can provide stable storage

for read determinants by using the same piggybacking techniques that we used in family-based logging

to replicate message determinants in volatile memory. Since these techniques do not introduce blocking,

versioning effectively eliminates all potentially blocking actions that are currently performed on a file read.

We now consider how to eliminate the execution of a synchronous output commit protocol whenever

writing a file. We observe that in most cases there is no reasonfor the output commit associated with a

write operation to be synchronous. Writes to the file system are often delayed and batched to achieve better

performance. Hence, unless file sharing or other considerations force the write to the file-system to be

synchronous, the output commit protocol can be performed inthe background. The only requirement then

becomes that output commit should complete before the corresponding write.1
This observation eliminates in many cases the performance cost of executing synchronous output

commit protocols for writes. However, it does not address the issue of enhancing the effectiveness of

rollback techniques for transient software failures. In fact, output commitsare still performed, although often

asynchronously. Hence, if writes are frequent, applying rollback recovery techniques to mask Heisenbugs

is still problematic.

To address this concern, we need to completely eliminate output commits associated with write events,

allowing the file system to roll back past its last write to thefile system. Fortunately, in LFT it is fairly

easy to allow the file system to roll back. For instance, LFT could associate with each versionv of a filef the notion of acreatorprocess, whose identity can be for instance encoded in the version fieldv of the

determinants corresponding to read events for filef:v. When a processp requests to read a filef , the file

system would inform the LFT layer, which would contact the creatorc of the last versionf:v of f . If it had

not done so before, processc would synchronously writef:v to the file server. Processc would then send

to p those determinants thatc had in its volatile memory when it createdf:v Concurrently, either the file

server orc itself would sendf:v to p. Processp would be allowed to readf:v only after having received the

determinants fromc.
The scheme that we have just outlined eliminates output commits for write operations and makes it

easier to mask transient software failures. However, it is not fully satisfactory. First, while the scheme

eliminates output commit at the writer side, it requires thereader to wait for the delivery of the determinants

from c before accessingf:v. Second, whenf:v is shared, processc is forced to synchronously writef:v to

the file server.

We focus our attention to the second of these problems, sinceby solving the second problem the first

would disappear too: ifcwere allowed to send directlyf:v top without first writing it back to the file server,

thenc could just piggyback the determinants ontof:v, andp would not have to wait.

Note that the policy of writing back dirty data to the file server before it can be shared is not an artifact

of the use of LFT, but rather it is commonly adopted in currentfile systems. In these systems, data is stable1Although this optimization is not speci�c to LFT, and for instance can be applied to any log-based fault-tolerancetechniques we are unaware of any technique that takes advantage of it.9



only when it is written to the file server. Hence, processc is not allowed to transferf:v directly to processp
because, ifc were to crash before having madef:v stable by writing it to the file server, thenf:v would be

lost. Fault-tolerance then becomes a bottleneck in the development of the truly server-less high performance

file systems of the future [4].

We believe that LFT can result in a significant step towards the elimination of this bottleneck. As we

argue below, with LFTf:v does not need to be written to the file server in order to be stable. Hence,c can

directly pass the data top without having to incur the cost of a synchronous write to theserver and can

later writef to the file server asynchronously. Thus, LFT effectively makes communicating through files

as cheap as communicating through messages.

This result is possible because, by using family-based logging for the determinants of both read and

deliver events, LFT guarantees that no orphan processes arecreated as long as the number of concurrent

failures is within the limit allowed by the FBL protocol. Hence, under the assumption that processes are

piecewise deterministic, LFT can regenerate during recovery the content of any version of a file that was

read by a correct process, in a way similar to what we discussed for message contents in Section 3.1.

LFT trades-off performance during failure-free performance for fast recovery. If a versionf:v is not

synchronously written to the file server, ifc andp concurrently fail afterp has readf , then during recoveryp has to wait forc to regeneratef . However, if failures are rare, we feel that allowingc to write f:v
asynchronously is highly preferable. Furthermore, if fastrecovery ofp is a concern, LFT can be instructed

to logf:v in p’s local disk. Note however that this logging is once again performed asynchronously.

4 Experimental Evaluation

To quantify the cost of achieving fault-tolerance using existing approaches as well as to demonstrate the

efficacy of LFT, we have carried out extensive simulations. In what follows, we describe our simulation

environment and the results of our simulations.

4.1 Simulation Environment

We consider a distributed application consisting ofN processes that interact with each other by exchanging

messages as well as through a file server (i.e., by sharing files). Each instruction executed by a process is either

acomputational(i.e., arithmetic or control flow instruction), amessage passing(i.e.,Send andReceive), or

afile I/O (i.e.,Read andWrite) instruction. For simplicity, we assume that all the computational instructions

execute in the same amount of time and do not impose any fault-tolerance overhead. The execution time

for message passing and the file I/O instructions, on the other hand, consists of two components: (1) the

time to execute the operation in a fault-free environment (e.g., the time to read a file from an NFS server,

the blocking delay incurred while waiting for a message, etc.), and (2) the overhead (yielded by logging,

output commit, etc.) for achieving fault-tolerance. Thus,a program’s execution time is dependent both on

the instruction mix as well as the time required to execute each instruction.

To compute the effect of various fault-tolerance techniques on the execution times, we have developed

an event-driven simulator. In our simulator, the instructions executed by each process are governed by10



three parameters:Pc, Pm, andPf , which denote the fractions of computational, message passing, and

file I/O instructions constituting a program, respectively. Observe thatPc + Pm + Pf = 1, and that the

ratio PmPf determines the extent to which the program is message passing or file I/O oriented. For each

process, the next instruction to be executed is determined by the simulator in accordance with the values

of Pc, Pm, andPf using an independently seeded random number generator. If the next instruction is a

computational instruction, then the total execution time for the process is appropriately incremented, and

the execution continues. If the next instruction is a message passing instruction, then the simulator first

determines whether the instruction is aSend or aReceive (for simplicity, we assume thatSend andReceive
instructions are equally likely). For aSend instruction, the simulator selects a process at random and then

sends a message. On the other hand, when a process (sayr) executes aReceive instruction, the simulator

selects a process (says) at random, and determines if waiting for a message froms will result in a deadlock.

If a deadlock is detected, then the simulator selects another process at random, and the procedure repeats. If

waiting for a message froms does not result in a deadlock, then the simulator sends a request for a message

to s (containingr:inst, the number of instructions executed by processr prior to executing theReceive
operation) and blocks processr. To ensure that processr receives a response froms within a finite amount

of time, we assume, without loss of any generality, that processs responds to processr’s request as soon as

the number of instructions executed by processs exceeds that ofr (i.e., whens:inst � r:inst).
Finally, to support file I/O operations, we simulate a file server that enforces asingle writerpolicy,

whereby, at any given instant, at most one client is allowed to write to a file. Multiple clients are allowed to

read a file concurrently and each read sees the effects of all the previous writes. The server supports client

caching of data and a delayed write-back policy (i.e., the data is written to the server only when a process

explicitly flushes its cache or when some other process requests the information), and uses callbacks to

inform clients when their cached data is to be invalidated.

For purposes of message logging, we assume that the processes employ the family-based message

logging protocol. Moreover, to ensure that failure recovery information is available even in the presence

of processor failure, we assume that the fault-tolerance information that must be stored on stable storage is

logged at the file server2.

4.2 Performance Measurements and Metric

To quantify the reduction in the fault-tolerance overhead yielded by various techniques presented in Section

3, we have simulated the following three fault-tolerance schemes:� existing: This scheme reflects the state-of-the-art of logging-based techniques, in which applications

treat the file system as a generic component of the external environment. As per this scheme:2Observe that a log can also be maintained on the local disks at a client site. Although potentially more e�cient,such a the log may be unavailable for an extended period of time during processor failures and therefore may precludere-starting the process on another machine. Hence, for the remainder of this section, we will only present the resultsfor the scenario in which the �le server is used as the stable storage.11



1. A Send operation results in logging to stable storage: (1) the non-stable determinants resulting

from prior message passing operations, and (2) all the file information read since the previousSend or Write.
2. A Write operation results in the invocation of the synchronous output commit to the file server.

This involves writing to the file server: (1) any of the non-stable determinants (yielded by

message passing operations) being maintained in volatile memory of the writer, and (2) all the

file information read since the previousSend orWrite. The data, on the other hand, is written to

the server using the delayed write-back policy.

3. TheRead andReceive operations block the process until the requested information is received.� versioning: In this scheme, theRead andReceive operations are exactly the same as in theexisting
approach. The fault-tolerance overhead yielded by theSend andWrite operations, however, is reduced

using the following techniques:

1. The file server maintains multipleversionsof each file, and hence, can be trusted to provide

clients with the correct version of the data during recovery. Consequently, theSend operation is

not required to log any of the file data read since the previousSend or Write operations.

2. For theWrite operation, the output commit is performedasynchronously. That is, the process

executing theWrite operation initiates a thread to perform the output commit operation, and

then continues execution. The data is written to the disk using the delayed write-back policy.

Thus, when a processp executes aRead or aWrite operation of filef , and if processq currently

holds the most recent version of filef , then processp must wait until: (1) the asynchronous

output commit initiated byq as a result of its most recentWrite to file f completes, and (2) the

content of filef at the server becomes consistent with processq.� LFT: This scheme implementsall of the optimizationsdescribed in Section 3. Specifically, it improves

upon theversioning scheme by completely eliminating the output commitand by enabling processes

to pass around dirty data along with the file determinants. This optimization is implemented as follows:

When a processp requests the content of a filef , the file server forwards the request to the process

(sayq) that is currently holding the most recent version of filef . Processq thendirectly passes the

data from its cache along with the determinants to processp.

To separate the overhead of fault-tolerance incurred by these schemes from the normal execution time of

a process, we have also simulated a fault-free environment (referred to as thebase case). In this environment,

processes do not perform any message or file logging and output commit. Moreover, they directly exchange

file data from their caches (rather than through the file server). Theexisting, versioning, and LFT

schemes were evaluated in terms of the increase in the execution times of a message send or a file I/O

instruction as compared to the base case.

To precisely define the evaluation metric, letNread,Nwrite,Nsend andNreceive, respectively, denote the

number ofRead, Write, Send, andReceive instructions executed by a process. Similarly, letEread, Ewrite,12



Esend, andEreceive, respectively, denote the contribution of theRead, Write, Send, andReceive instructions

to the total execution time of the process. Thus, ifPf = Pread + Pwrite andPm = Psend + Preceive ,
respectively, denote the probabilities of executing a file I/O or a message passing instruction in a program,

the expected execution time of these instructions (collectively referred to as IO instructions)can be computed

as:bEio = 1Pm + Pf �Pread ��EreadNread�+ Pwrite � �EwriteNwrite�+ Psend � �EsendNsend�+ Preceive ��EreceiveNreceive��
Thus, if bEbio denotes the expected execution time of IO instructions in base case, then the overhead per IO

instruction imposed by a fault-tolerance scheme can be defined as:bO = bEio � bEbiobEbio
Observe that the value ofbO is a function of theN , the number of processes in the system;Pc, Pm, andPf , the fraction of computational, message passing, and file I/O instructions executed by a process;Ps,
the probability that the file accessed by a process is being shared concurrently with other processes;B,

the number of bytes read and written from the file server during eachRead andWrite operation; and the

processor speed. Using our simulator, we are carrying out extensive set of experiments to characterize the

dependence ofbO on these parameters, the results of some of our initial experiments are presented in the

next section.

4.3 Experimental Results

The overhead imposed by a fault-tolerance scheme is dependent on the time required to write data onto

stable storage (i.e., at a file server). To estimate this, we measured the time to performRead andWrite
operations on our departmental NFS server. Since these measurements are dependent on the load at the

server, we carried out two sets of experiments - one during a heavy load scenario (at 11 AM) and the other

during a low load scenario (at 2 AM). The average time observed for reading and writing files of varying

sizes for both of these scenarios are shown in Figure 1.

Assuming that the overhead of writing data to stable storageis equal to the time to read/write files

to the NFS server under the low load scenario, we have measured the overhead imposed by each of the

three fault-tolerance schemes using our simulator3. For all of these experiments, we have assumed thatPc = 0:999999. That is, one in a million instructions is either a message passing or a file I/O instruction

(i.e.,Pm + Pf = 10�6) [21]. The ratioPmPf is varied from 0.05 to 20, to capture the range of applications

in which the non-computational instructions are dominatedby file I/O or message passing instructions. We

have varied the number of processesN involved in a distributed application from 3 to 12; the number of

bytesB read and written from the file server during eachRead andWrite operation from 4KB to 32KB; and

processor speed from 100MIPS to 750MIPS. Finally, we have chosenPs = 0:3 as a representative value for

the degree of file sharing. The results of these experiments are described below.3Note that since we have chosen the overhead of writing data to stable storage is equal to the time to read/write�les to the NFS server under the low load scenario, the values of bO presented in this section are likely to be smallerthan what would be observed in practice. 13
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Figure 1 : Experimentally observed time required to write or transfer blocks of various sizes

4.3.1 Effect of Varying PmPf on bO
Figure 2 depicts the variation inbOwith increase inPmPf for a distributed application consisting of 6 cooperative

processes. It demonstrates that: (1) asPmPf increases (i.e., as the fraction of file I/O operations decreases),

the value of bO decreases for all the fault-tolerance schemes; (2) theversioning scheme incurs smaller

overhead as compared to theexisting scheme; and (3) the overhead of LFT is negligible. A closer analysis

of the results reveals that:

1. The overhead of logging and output commit incurred as a result of executing aSend or aWrite is

dependent on the amount of file information read between successiveSend and/orWrite instructions.

As PmPf increases, the frequency ofRead decreases, and hence, the cumulative overhead of output

commit prior to aSend or aWrite decreases.

2. Increasing thePmPf increases the frequency ofSend/Receive instructions, and decreases the frequency

of Read/Write instructions. WhenPmPf is increased starting from a very small value, the number of

the number ofReads executed between aSend and a priorSend or aWrite increases. Consequently,

the logging overhead incurred bySend instructions increase. However, as the value ofPmPf continues

to increase, the frequency of fileRead decreases, which, in turn, reduces the amount of information

that needs to be logged on stable storage (and hence, decreases the overhead of output commit prior

to aSend). Hence, the logging overhead forSend instructions first increases and then decreases with

increase inPmPf .

3. For a given value ofPs, the higher the frequency of file I/O operations (i.e., the smaller the value ofPmPf ), the greater is the probability that the file being requested by a process is being held by some

other process, and hence, greater is the overhead in obtaining the file data. Hence, the overhead of

obtaining file data for aRead or aWrite operation decreases with increase inPmPf .

For theversioning scheme, the delay observed by a processp executing aRead or a Write
is dependent on the probability that the asynchronous output commit initiated by process (sayq)14
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Figure 2 : Variation in bO with increase inPmPi=o for N = 6, B = 4KB, andPs = 0:3
currently holding the file has terminated prior top’s request. Hence, for a give value ofPs, the higher

the frequency of file I/O operations, the greater is the probability that the asynchronous output commit

initiated by processq has not completed whenp issued a request forf . Hence, the waiting times

for Read andWrite operations are greater for theversioning scheme as compared to theexisting
scheme. Increase in thePmPf reduces the frequency ofRead andWrite operations, and thereby increases

the probability that the asynchronous output commit initiated by processq has terminated prior to the

access byp. Hence, the difference in the fileRead andWrite waiting times between theversioning
andexisting schemes reduce with increase inPmPf .

4. For a fixed value ofPf , the higher the frequency ofReceive operations (i.e., the higher is the value

of Pm), the greater is the probability of requesting a message from a process that is blocked for file

I/O. Similarly, for a fixed value ofPm, the lower is the the frequency of file I/O operations (i.e., the

smaller is the value ofPf ), the smaller is the probability of requesting a message from a process that

is blocked for file I/O. The combined effect of these factors is that, with increase inPmPf (i.e., with

simultaneous increase inPm and decrease inPf ), the value of the messageReceive overhead first

increases and then decreases.

4.3.2 Varying Number of Processes

Figure 3 illustrates that increasing the number of processes in the system increases the value ofbO for theexisting andversioning schemes, but has negligible impact on the performance of LFT. The increase

in bO for theexisting andversioning schemes can be attributed to the following two reasons:

1. Increasing the number of processes in the system increases the number of accesses to the file server.

For a given value ofPs, this increases the possibilityof contention for shared files (i.e., the probability

that a requested file is being held by some other process), andhence, increases file read and write

waiting times. 15
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Figure 3 : Effect of variation in the number of processes onbO for Ps = 0:3
2. Increasing the number of processes in the system increases the probability of creating long chains ofReceive dependencies (i.e., processp may be waiting for a message from processq, which in turn

may be waiting for a message from processr, and so on). As the number of processes in the system

increase, the length of such a chain increases, thereby increasing the overhead of aReceive instruction.

4.3.3 Effect of Varying Processor Speed on bO
As processor speeds increase, the ratio of file I/O time to an instruction execution time increases. Conse-

quently, the overheadbO observed for theexisting and theversioning schemes increase with increase

in the processor speed. Once again, the impact of increased processor speed on the the overhead imposed

by LFT is negligible. Figure 4 demonstrates this effect.

4.3.4 Effect of Varying File I/O Size on bO
For theexisting scheme, increasing the size of file I/O has two effects:

1. Increasing the amount of information read during aRead increases the amount of information that

needs to be logged on stable storage prior to aSend or aWrite. Hence, the overhead of output commit

increases.

2. Since increase in the size of file I/O increases the overhead ofSend, it indirectly increases the overhead

of Receive.
Since theversioning scheme eliminates the file logging required prior toSend instructions, and

executes the output commit forWrite instructions asynchronously, increasing the file I/O size has a much16
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Figure 4 : Effect of variation in processor speed onbO
smaller effect onbO. The small increase in the overhead observed for theversioning scheme can be

attributed to the increase in file read and write waiting times.

Variation in the file I/O size has negligible effect on the value of bO for LFT. Figure 5 depicts these

effects.

5 Concluding Remarks

Recent advances in computing and communication technologies have enabled a new class of highly coop-

erative distributed applications. For many of these applications, explicit replication will be too costly to

implement, or, simply, high availability will not be necessary. For these applications, the availability of

low-overhead fault-tolerance techniques will be crucial to achieving reliability. To address these needs, we

are developinglightweight fault-tolerance(LFT), a new low-overhead approach to fault-tolerance for highly

cooperative distributed applications.

Many of the goals of LFT are shared by shared by other low-overhead fault-tolerance techniques. LFT,

however, is unique in its focus on efficient support of fault-tolerance for applications in which communication

occurs through both messages and files. Unlike most existingtechniques which consider a file system as

a detached component of the external environment, LFT presents the file system to the application as an

integrated partner that can be trusted to provide the data needed during recovery.

In this paper, we described how LFT extends to file communication the causal logging techniques

used in message passing. We demonstrated that in LFT, all thesynchronous operations that are currently

performed by log-based protocols during file I/O are either eliminated or made asynchronous. Through

simulations, we demonstrated that LFT brings the cost of filecommunication down to the level of message

passing, drastically reducing the overhead incurred by fault-tolerant applications in performing file I/O. In

addition to achieving these performance gains, we argued that our approach has the potential to enhance the17
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Figure 5 : Effect of variation inB on bO for N = 6, PmPf = 4:0, andPs = 0:3
effectiveness of existing rollback recovery techniques for software fault-tolerance. LFT is currently being

implemented as a middleware at the Department of Computer Sciences at UT Austin.
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