Lightweight Fault-tolerance for
Highly Cooperative Distributed Applications

Lorenzo Alvisi , Sriram Rao , andHarrick M. Vin

Department of Computer Sciences
The University of Texas at Austin
Taylor Hall 2.124
Austin, Texas 78712-1188, USA
E-mail: {lorenzo,sriram,vin }@cs.utexas.edu, Telephone: (512) 471-9792, Fax: (512) 471-8885
URL: http://www.cs.utexas.edu/useflirenzo,sriram,vin }

Abstract

The recent introduction of high-speed networks, fastecggsors, and the rapid growth of heteroge-
neous large-scale distributed systems has enabled thiopeent of distributed applications that move
beyond the client-server model to truly harness the contijpuia potential of distributed systems. These
new applications will be structured around groups of agévatiscommunicate using messages as well as
files. Some of these emerging applications will be criticedwgh to life or business to warrant explicit
process replication to achieve high availability. Ofteowiever, explicit replication will be too costly to
implement, or, simply, high availability will not be necasg In these circumstances, the availability of
low-overhead fault-tolerance techniques will be cruasehithieving reliability. To address these needs,
we are developing lightweight fault-tolerance (LFT), a few-overhead approach to fault-tolerance for
highly cooperative distributed applications.

In the first part of this paper, we describe how LFT extenddéatimmunication the causal logging
techniques used in message passing. We show how in our apaibthe synchronous operations that are
currently performed by log-based protocols during file 1/@ either eliminated or made asynchronous,
therefore removing the opportunities for blocking. Furthere, we argue that our approach has the
potential to enhance the effectiveness of existing rokibacovery techniques for software fault-tolerance.
In the second part of the paper, we validate LFT through extersimulation. Our results indicate that
LFT brings the cost of file communication down to the level @&ssage passing, drastically reducing the

overhead incurred by fault-tolerant applications in perfimg file 1/0.

1 Introduction

High-speed networks, faster processors, and the rapidtigrofvheterogeneous large-scale distributed
systems are enabling a new class of highly cooperativelaliséd applications that move beyond the client-
server model to harness the computing potential of digethslystems. These applications will be structured
around groups of agents that, depending on the nature ofititeraction, will communicate in different
ways. For instance, tightly-coupled agents will use mesgagsing—either directly or through distributed
shared memory—to achieve low-latency and high bandwidtdwéver, message passing can be inefficient
when agents are loosely-coupled, or when the precise tgaftthe intended receiver is unknown to the
sender. For loosely-coupled agents communication thréileghwill be more appropriate.

Some of these emerging applications will be critical enotmhfe or business to warrant explicit
process replication to achieve high availability. Oftenwlver, explicit replication will be too costly to
implement, or high availability will simply not be necesgarin these circumstances, the availability of
low-overhead fault-tolerance techniques will be cruaec¢hieving reliability.

To address these needs, we are developgigweight fault-tolerancgLFT), a new low-overhead
approach to fault-tolerance for highly cooperative distted applications. Lightweight fault-tolerance has
the following goals:

e To require few additional resources and have a negligibfgchon performance during failure-free
executions.

¢ To integrate with applications in a way that is transparerthe application programmer.

e To scale the cost of providing fault-tolerance dependinghenseverity and number of failures that
need to be tolerated.

e To support and enable applications in which communicatamus through both messages and files.

Many of these goals are shared by other low-overhead fal@tance techniques and have already been
addressed with considerable success. In designing ouigulwe build on some of these techniques. In
particular, LFT uses rollback-recovery to minimize dethceresources, and causal logging [1, 2, 3, 10] to
minimize the impact on application performance and to scast with the number of failures that need to
be tolerated. Furthermore, transparency is achieved bleimmgnting LFT as a middleware.

LFTisuniqueinitsfocus on efficient support of fault-t@ace for applications in which communication
occurs through both messages and files. Other techniqued basrollback recovery—such as primary-
backup, checkpointing, and message logging—may beconensie when performing file I/O. Since the
file system is considered to be a component of the externaloemaent, the application may have to block
for every file /0O operation while data critical to recoverng éogged to stable storage. For their part, toolkits
such as Isis [6], Horus [20] and Transis [9] assume that atiroanications occurs through message passing
and treat the file systems as a potentially dangehalden channabf communication through which causal
dependencies are not tracked. In contrast, LFT presentgelsystem to the application as an integrated

partner that can be trusted to provide the data needed dwtogery and not as a detached component of
the external environment.

In the first part of this paper, we describe how LFT extendsctnesal logging techniques used in
message passin to file communication. We show how in our apprall the synchronous operations that
are currently performed by log-based protocols during filedre either eliminated or made asynchronous,
therefore removing the opportunities for blocking. Furthere, we argue that our approach has the potential
to enhance the effectiveness of existing rollback recotexiiniques for software fault-tolerance.

In the second part of the paper, we validate LFT through extersimulation. Our results indicate that
LFT brings the cost of file communication down to the level afssage passing, drastically reducing the
overhead incurred by fault-tolerant applications in perfimg file 1/0.

The remainder of the paper is organized as follows. Sectides2ribes our system model. The ideas
and methodologies at the basis of lightweight fault-talesare presented in Section 3. Section 4 describes
our simulation, and contains an analysis of its resultsti@eé concludes the paper.

2 System Model

We assume an asynchronous distributed system, in whioh &xest no global time source, no bound on the
relative execution speed of agents, and no bound on trasgmidelays. We model agents as processes, and
in the rest of the paper we use the two terms interchangeBbigesses communicate using both messages
and files. The execution of a process is represented as ansegoisend, receive, read, write, and local
events. For each procegsa special class of events local fcare calleddeliver events These events
correspond to the delivery of a message to the applicatatpiis part of. For any message from process

py to proces®,, we assume that, deliversm only if it has receivedn and thatp, deliversm at most once.
Furthermore, we assume that a correct process will evaytleliver all messages it has received.

At any point in time, thestateof a process is a mapping of program variables and impliciaiées
(such as program counters) to their current values. We asthemthe state of the process does not include
the state of the underlying communication system, sucheagulkue of messages that have been received
but not yet delivered to the process.

Execution of a process igiecewise deterministif26]: It consists of a sequence of deterministic
intervals of execution, joined by non-deterministic egerftor each process, the first interval of execution
begins with the process’ initial state; subsequent intsitvegin with each non-deterministic event. Hence,
execution of a process consists of a sequence of interi@dedginning of each interval being defined by
the initial state of the process and by the non-determaestent. Such intervals are calledtate intervals
Given the first state of a state interval and the determiéstént that defines the beginning of the interval,
the remaining states in the interval are uniquely deterthiiée assume only two kinds of non-deterministic
events:

deliver events: when an agent delivers a message, it chooses the messageanondistically among
those received by the communication sub-system but notrgeepted to the application.

read events: when an agent reads a file, the version of the file read by theepsds non-deterministic.

Processes exchange messages over point-to-point and RHfDels that can fail by transiently losing
messages. Finally, processes themselves can fail acgdadthe fail-stop model [22]. Hence, we assume
that processes fail independently, only by halting, and @h&aulty process is eventually detected by all
correct processes.

2.1 Consistency

Since we are interested in addressing applications thatmeontate through both messages and files, our
notion of consistency must capture both styles of commtioica

For message-based communication, given the statesd s, of two processep andq, p # ¢
respectively, we say that, ands, (or, more simplyp andgq) aremutually message-consistéhall of the
messages fromthatp has delivered during its execution upspwere sent by, during its execution up to
s4, and vice versa.

To define a similar notion for file-based communication, wst fibserve that, since the content of a
file may change as a result of a write event, at any point aféecreation a file has a uniquersionwv.
Given a file f, we denote its version by.v. Then, given the states, ands, of two processep andg,

p # q respectively, we say that, ands, (or, more simplyp andg) aremutually file-consisterwhen, for
all versionsv and filesf, if p has read during its execution up4pfile f.v written byg, theng has written
f.v during its execution up ts,.

If two processe® andq are both mutually message-consistent and mutually fileistent, then we
say thaip andq aremutually consistentFinally, a collection of states, one from each process¢c@aistent
global statef all pairs of states are mutually consistent [8]; othemitsis inconsistent

3 Lightweight Fault-Tolerance

To minimize explicit process replication, fault-toleraninn LFT is achieved through log-based rollback
recovery. Each proceggeriodically records its local state on stable storage imeckpoint. Furthermore,

p saves enough information about each non-deterministiotevexecuted since the last checkpoint to
guarantee that, after executiaguring recoveryp will again enter the same state entered during the original
execution. We call such information tideterminanof ¢, and we say that a determinansigbleif it can

not be lost as a result of a failure. gfcrashes, recovery involves (1) creating a new instanceadfgsis

p, (2) initializing p to the latest checkpointed state, and (3) restaniingaking sure to repeat each non-
deterministic event according to the information savechadorresponding determinant. The policy used
in determining when and where determinants are to be loggedimates with the recovery protocol to
guarantee that upon recovery the global state of the systeomsistent. Such consistency is often expressed
in terms oforphan processessurviving processes whose state is inconsistent witheébevered state of

a crashed process. Consistency for log-based protocalddtas into the guarantee that upon recovery no
process is an orphan.

The performance of a logging-based protocol depends lyeanihow the protocol enforces the no-
orphans guarantee. For instance, pessimistic protoangxbmple, [7, 19, 13, 26]) never create orphans
by logging determinants on stable storage synchronousijortuinately, these protocols exhibit relatively
poor performance during failure-free runs, since theygméprocesses from communicating until logging is
complete. In contrast, optimistic protocols protocols,[25, 14, 27]) log determinants asynchronously and
do not delay communication, thus achieving good failuez-fperformance. Unfortunately, these protocols
may create orphans, and hence may force correct processdidiack in order to reconstitute a consistent
global state.

LFT is based on a third logging technique callegusal logging[2]. Causal logging protocols
implement the no-orphans guarantee by enforcing the falgWCL property if the state of a process
causally depends [15] on a non-deterministic everthen either the determinant ofis stable, op has a
copy ofe’s determinant in its volatile memory. In either case, alietlminants needed during recovery to
restore the system in a global state consistent wiitstate are available. Hengewill never become an
orphan.

Causal logging protocols [1, 10, 2, 3] combine the positispe&ts of pessimistic and optimistic
protocols. Causal protocols do not log determinants symahusly, and thus achieve the performance
advantages of optimistic protocols. At the same time, dapisaocols never create orphans, and thus
achieve the fault-containment advantages of pessimisiiogols.

In the next section, we briefly describe family-based loggthe causal logging implementation used
by LFT for applications that communicate through messagsipg. We then present the limitations of
log-based techniques in general, and family based loggipgriticular, when applied directly to applications
in which processes communicate both through files and messdgnally, we discuss how family-based
logging can be extended to achieve lightweight fault-tee for such applications.

3.1 Family-Based Logging

Family-based logging (FBL) [1, 3] is alow-overhead implenation of causal logging. As a causal protocol,
FBL never delays communication (except when communicatitiy the external environment), and at the
same time never creates orphans. Furthermore, FBL allosdi@ants to be maintained in the processes’
volatile memory, and does not require processes to senddatitjoanal message over those needed to mask
transient link failures. Finally, FBL protocols can be tdrs® that their overhead (1) depends on the number
of failures that an application is willing to tolerate, ar) €an be minimized by exploiting the pattern of
inter-process communication exhibited by a specific appbn [3].

Family-based logging protocols exploit the observatiat,tiven a maximum numberof concurrent
failures that are to be tolerated, a determinant is stabte d@nis replicated in the volatile memory of
f + 1 processes that fail independently. Hence, in FBL the CL @rypis implemented by having each
proces® piggyback on its messages all non-stable determingptsviously generated, plus all non-stable
determinants that had been piggybacked on messages migvieceived byp.

Central to FBL's performance is limiting the size of the prbgcked information. Fortunately, em-
pirical evidence shows that the number of determinantsytiggked does not grow uncontrollably [10, 1].

5

Furthermore, since we assume that the only non-deternciggénts in the system are delivery events,
determinants are small. The determinant associated wéhd#livery of a message: is the tuple:
(m.source, m.ssn, m.dest, m.rsn), wherem.source andm.dest denote, respectively, the identity of the
sender process and of the destination processsn—messagen’s send sequence numbers a unique
identifier assigned ton by the sendefn.source; andm.rsn—messagen’s receive sequence number
represents the order in which was delivered:m.rsn = £ if m is the (" message delivered by.'s
destination process.[25].

Note that the texin.data of m is not part of the determinant. Replicatingdata is not necessary
because if the determinants of all the messages deliveratcan execution are available then it is always
possible during recovery to regenerate any messagbat was sent and delivered during the original
execution. As we discuss next, the structure and managerhaetierminants becomes more complex when
we move from messages to files.

3.2 The gap between applications and file-system

Techniques that introduce little overhead when applieddssage passing applications become considerably
more costly when communication also involves file I/O. Intjgatar, logging-based techniques may delay
processes for every file /0O operation while data criticaldoovery are logged on stable storage. This is
true even for techniques such as family-based logging sinatessfully avoid delays when applied to pure
message-based communication.

We believe that the main cause for this lack of performandhagyap that currently exists between
applications and the file system when it comes to fault-&wlee. This gap causes fault-tolerance techniques
designed for message passing applications to exhibit awbatechizophrenic pattern in their interactions
with the file system. On the one hand, these techniques tredtl¢ system as a partner on which they
rely to provide stable storage for checkpoints and othesrin&tion used during recovery. On the other
hand, when reading or writing other kinds of files, the filetsgsis treated as a generic component of the
external environment that cannot be trusted to supporvesgafter a failure. Specifically, applications do
not assume that input provided by the environment will beadypcible by the environment during recovery,
and furthermore do not assume that, if a failure occurs isylséem, the external environment can roll back
to a previous state in order to become consistent with the/ezable state of the application.

This attitude towards the file system has multiple seriougatiee consequences for the log-based
fault-tolerance techniques that are the focus of our atent

A first negative consequence is loss of performance, asattien with the external environment is a
major source of overhead for log-based protocols [11]. higdar, treating the file system as a component
of the external environment requires applications to takddllowing steps whenever reading or writing a
file.

On reads: File read events are non-deterministic events (see Se2}ioHence, to guarantee recovery
file read events must be logged in stable storage. The detantndf a read event has the following

form: (name, v, reader,data), wherenameis the file's nameyp is the file’s versionreaderis the
identity of the reader process additais the file’s data.

As opposed to message determinants, file determinantslmelkplicitly the file’s content, which is
not assumed to be reproducible. Hence, since determinantbeclarge, it becomes impractical to
use piggybacking schemes, such as those employed in FBLinthfement stable storage through
replication in volatile memory. In practice, determinaare instead logged using a version of
stable storage implemented by the file system. Furthermress] determinants must be logged
synchronously. In particular, the reader must delay senatiessages or writing files until logging of
any read determinant has completed. This delay is necesgary the file system does not guarantee
that any given file version will be available for replay if tteader fails.

On writes: Since the file system in general cannot roll back, output roestelayed until the state in
which the write is generated is guaranteed to be recoverdbie guarantee is achieved by executing
anoutput commiprotocol, which synchronously writes on stable storaganf@mation needed to
recover. In causal logging protocols, the output committgts of synchronously flushing to stable
storage the non-stable determinants kept in the volatilmong of the process communicating with
the external environment—in this case, the writer process.

A second less obvious negative consequence is that tolgrstiftware generated failures becomes
more problematic. Most of the software bugs that surviveugh design reviews, quality assurance, and
beta testing manifest themselves under transient systedit@mms that are very difficult to reproduce—the
elusiveness of these bugs has gained them the narlleisénbugg12]. Experience shows that a very
effective way to handle Heisenbugs is to roll back the faplycess to an earlier state and then to restart
execution. The earlier the state a process is rolled bactheomore likely the process is to follow an
execution that is sufficiently different from the originaleto avoid the Heisenbug. Unfortunately, since the
file system is considered part of the external environmemtoeess can never roll back past the last state in
which it performed a write operation. Hence, frequent verite the file system can limit the effectiveness
of these rollback-based techniques, since they limit thergy which a process can roll back.

Finally, another negative consequence of the gap betweditajons and the file system is that, as
much as applications do not rely on the file system as a fulistéd partner in their recovery, distributed
file systems do not rely on the clients’ ability to toleratduiges to improve their own reliability and
performance. For instance, several distributed file sys{éen?8, 16, 17, 18, 24] rely on recovery protocols
that use information provided by clients to restore theestdita faulty server’s cache. These protocols for
server recovery, however, are not designed for environsnanivhich (1) clients cooperate in distributed
applications and (2) clients attempt to recover to a coesisitate after a system failure. It is easy to show
that in such an environment, if just one client fails conently with the server, then the protocols for server
recovery may recover the server in an inconsistent statenpally requiring all clients to reboot.

As another example, consider the policy that is currentfpreed by most distributed file systems in
order to regulate file sharing. Suppose progeseeates a new versianof file f. If p delays writingf.v

to the file server and another procgsgquests to readl, then the server requirgsto synchronously write
back f.v beforeq is allowed to read it. Although these synchronous writeseagensive, the file system
enforces them to keepfrom reading inconsistent data. In factpifvere to transfey.v directly toq without
first writing the file back and thep crashes, then the file system would not be able to guarardieg.th
would be regenerated.

3.3 Lightweight fault-tolerance for file-based communicat ion

The goal of LFT for file-based communication is to bridge thp getween application-level fault-tolerance
software and the file system and, in so doing, to address teine effects that we have described in the
previous section. In particular, LFT is designed to achi&esfollowing results.

1. To bring the cost of communicating through files to the slomdevel as the cost of communicating
through messages.

2. To enhance the effectiveness of existing rollback regotexhniques for software fault-tolerance.

3. To free file systems from the fault-tolerance-driven dader@tions that have so far prevented the
implementation of a high performance, truly server-legsdjlstem.

Clearly, to achieve these results LFT must eliminate thelssonous actions that are currently executed
for each file I/O operation, i.e. (1) the synchronous loggihg file content that occurs when a file is read
and (2) the synchronous execution of an output commit podtb@t occurs when a file is written. We first
focus on eliminating the synchronous logging that occurseans.

The reason for logging the content of the files read by theiegipdn is to guarantee that these files
will be available for replay in case of a system failure. Imtjgalar, a process that issues a read operation
cannot distinguish during recovery if the file being read esrftom the file system or from the log kept by
the fault-tolerance software. In effect, through file laggiand replay, current fault-tolerance techniques
replicate some of the functionalities of the file system.

A central thrust of LFT is to avoid such duplication of furasiality. To achieve this result, LFT extend
the file system to suppofile versioning In LFT, the file system keeps (at least conceptually) alsioers
of the files created during an application’s execution. K#éesioning is transparent to the application,
which continues to interact with the file system in the usuaywAfter a system failure, our fault-tolerance
middleware cooperates with the file system to guarante@atieovering process read the same file versions
the process read before crashing.

An obvious advantage of file versioning is that it eliminaties need for synchronously logging file
contents to stable storage for each read operation. A se@mibaps less obvious, advantage of file
versioning is that it removeg data from the determinant of a read event for fle The importance of this
second advantage becomes clear when we consider that mizigténe file versions is useless unless the
determinants of the read events are available during regoeterminants must be stored on stable storage,
since they contains the information necessary to decidaegltegcovery which process read a specific version

of a given file. Fortunately, since now the file’s data is nat jph a read determinant, the sizes of read
determinants and message delivery determinants are cabiparHence, we can provide stable storage
for read determinants by using the same piggybacking tgalesithat we used in family-based logging
to replicate message determinants in volatile memory. eSihese techniques do not introduce blocking,
versioning effectively eliminates all potentially blookj actions that are currently performed on a file read.

We now consider how to eliminate the execution of a synchuerautput commit protocol whenever
writing a file. We observe that in most cases there is no refmotie output commit associated with a
write operation to be synchronous. Writes to the file systenoéien delayed and batched to achieve better
performance. Hence, unless file sharing or other considasforce the write to the file-system to be
synchronous, the output commit protocol can be performeldrbackground. The only requirement then
becomes that output commit should complete before thesmorading writé'

This observation eliminates in many cases the performaose af executing synchronous output
commit protocols for writes. However, it does not addressiisue of enhancing the effectiveness of
rollback techniques for transient software failures. bt fautputcommits are still performed, although often
asynchronously. Hence, if writes are frequent, applyinpack recovery techniques to mask Heisenbugs
is still problematic.

To address this concern, we need to completely eliminafgdabmmits associated with write events,
allowing the file system to roll back past its last write to file system. Fortunately, in LFT it is fairly
easy to allow the file system to roll back. For instance, LFUlld@ssociate with each versierof a file
f the notion of acreator process, whose identity can be for instance encoded in tiseowefield v of the
determinants corresponding to read events forffile When a procesg requests to read a filg, the file
system would inform the LFT layer, which would contact theatorc of the last versiory.v of f. If it had
not done so before, processvould synchronously writ¢.v to the file server. Procegswvould then send
to p those determinants thathad in its volatile memory when it creatgdv Concurrently, either the file
server ore itself would sendf.v to p. Proces® would be allowed to readl.v only after having received the
determinants froma.

The scheme that we have just outlined eliminates output desfor write operations and makes it
easier to mask transient software failures. However, itoisfally satisfactory. First, while the scheme
eliminates output commit at the writer side, it requiresréder to wait for the delivery of the determinants
from ¢ before accessing.v. Second, whelrf.v is shared, processis forced to synchronously writév to
the file server.

We focus our attention to the second of these problems, syiselving the second problem the first
would disappear too: if were allowed to send directlfv to p without first writing it back to the file server,
thenc could just piggyback the determinants orfto, andp would not have to wait.

Note that the policy of writing back dirty data to the file sembefore it can be shared is not an artifact
of the use of LFT, but rather itis commonly adopted in curféatsystems. In these systems, data is stable

! Although this optimization is not specific to LE'T, and for instance can be applied to any log-based fault-tolerance
techniques we are unaware of any technique that takes advantage of it.

only when it is written to the file server. Hence, procegsnot allowed to transfef.v directly to procesg
because, it were to crash before having magle stable by writing it to the file server, thefxw would be
lost. Fault-tolerance then becomes a bottleneck in thd@vesnt of the truly server-less high performance
file systems of the future [4].

We believe that LFT can result in a significant step towar@sefimination of this bottleneck. As we
argue below, with LFTf.v does not need to be written to the file server in order to bdest<ence can
directly pass the data te@ without having to incur the cost of a synchronous write to $bever and can
later write f to the file server asynchronously. Thus, LFT effectively smkommunicating through files
as cheap as communicating through messages.

This result is possible because, by using family-basedihagfpr the determinants of both read and
deliver events, LFT guarantees that no orphan processeseated as long as the number of concurrent
failures is within the limit allowed by the FBL protocol. Hes under the assumption that processes are
piecewise deterministic, LFT can regenerate during regotlee content of any version of a file that was
read by a correct process, in a way similar to what we disclfgsenessage contents in Section 3.1.

LFT trades-off performance during failure-free perforroarfior fast recovery. If a versiofiv is not
synchronously written to the file serverciindp concurrently fail aftep has readf, then during recovery
p has to wait forec to regeneratef. However, if failures are rare, we feel that allowindo write f.v
asynchronously is highly preferable. Furthermore, if fasbvery ofp is a concern, LFT can be instructed
tolog f.v in p’s local disk. Note however that this logging is once agairiggened asynchronously.

4 Experimental Evaluation

To quantify the cost of achieving fault-tolerance usingsérg approaches as well as to demonstrate the
efficacy of LFT, we have carried out extensive simulatiomswhat follows, we describe our simulation
environment and the results of our simulations.

4.1 Simulation Environment

We consider a distributed application consisting\oprocesses that interact with each other by exchanging
messages as well as through afile server (i.e., by sharisy fifach instruction executed by a processiis either
acomputationa(i.e., arithmetic or control flow instruction),raessage passir(ge., Send andReceive), or
afile I/O (i.e.,Read andWrite) instruction. For simplicity, we assume that all the congpioinal instructions
execute in the same amount of time and do not impose anytfaalance overhead. The execution time
for message passing and the file /O instructions, on ther didwed, consists of two components: (1) the
time to execute the operation in a fault-free environmert. (¢he time to read a file from an NFS server,
the blocking delay incurred while waiting for a message,)etnd (2) the overhead (yielded by logging,
output commit, etc.) for achieving fault-tolerance. Thagrogram’s execution time is dependent both on
the instruction mix as well as the time required to executd @astruction.

To compute the effect of various fault-tolerance technsquethe execution times, we have developed
an event-driven simulator. In our simulator, the instroics executed by each process are governed by

10

three parameters?., F,,, and P;, which denote the fractions of computational, messageimgsand

file I/0 instructions constituting a program, respectiveybserve that’. + F,, + Py = 1, and that the
ratio };—’; determines the extent to which the program is message passifile /O oriented. For each
process, the next instruction to be executed is determigetdysimulator in accordance with the values
of P., P,,, and P; using an independently seeded random number generatdre tfeixt instruction is a
computational instruction, then the total execution tirmethe process is appropriately incremented, and
the execution continues. If the next instruction is a mesgapsing instruction, then the simulator first
determines whether the instruction iSend or aReceive (for simplicity, we assume th&end andReceive
instructions are equally likely). For%end instruction, the simulator selects a process at randomteserd t
sends a message. On the other hand, when a process) @acutes &eceive instruction, the simulator
selects a process (sayat random, and determines if waiting for a message fsoviil result in a deadlock.

If a deadlock is detected, then the simulator selects anptbeess at random, and the procedure repeats. If
waiting for a message fromdoes not result in a deadlock, then the simulator sends aseépr a message
to s (containingr.inst, the number of instructions executed by procegsior to executing thdeceive
operation) and blocks processTo ensure that procesgeceives a response froswithin a finite amount

of time, we assume, without loss of any generality, that @sse responds to process request as soon as
the number of instructions executed by procesgceeds that of (i.e., whens.inst > r.inst).

Finally, to support file /O operations, we simulate a fileveerthat enforces aingle writerpolicy,
whereby, at any given instant, at most one client is allowedrite to a file. Multiple clients are allowed to
read a file concurrently and each read sees the effects tieglirevious writes. The server supports client
caching of data and a delayed write-back policy (i.e., thte dawritten to the server only when a process
explicitly flushes its cache or when some other process stglee information), and uses callbacks to
inform clients when their cached data is to be invalidated.

For purposes of message logging, we assume that the precasggoy the family-based message
logging protocol. Moreover, to ensure that failure recgvieformation is available even in the presence
of processor failure, we assume that the fault-toleranicerimation that must be stored on stable storage is
logged at the file servér

4.2 Performance Measurements and Metric

To quantify the reduction in the fault-tolerance overhegdided by various techniques presented in Section
3, we have simulated the following three fault-tolerandeesces:

e EXISTING: This scheme reflects the state-of-the-art of logging-theesehniques, in which applications
treat the file system as a generic component of the exteraabament. As per this scheme:

20bserve that a log can also be maintained on the local disks at a client site. Although potentially more efficient,
such a the log may be unavailable for an extended period of time during processor failures and therefore may preclude
re-starting the process on another machine. Hence, for the remainder of this section, we will only present the results
for the scenario in which the file server is used as the stable storage.

11

1. A Send operation results in logging to stable storage: (1) the stairle determinants resulting
from prior message passing operations, and (2) all the fiterimation read since the previous
Send or Write.

2. A Write operation results in the invocation of the synchronousaLgpmmit to the file server.
This involves writing to the file server: (1) any of the noadsle determinants (yielded by
message passing operations) being maintained in volaétaary of the writer, and (2) all the
file information read since the previofiend or Write. The data, on the other hand, is written to
the server using the delayed write-back policy.

3. TheRead andReceive operations block the process until the requested infoomasi received.

e VERSIONING: Inthis scheme, thRead andReceive operations are exactly the same as irthesTING
approach. The fault-tolerance overhead yielded bjéhe andWrite operations, however, is reduced
using the following techniques:

1. The file server maintains multipleersionsof each file, and hence, can be trusted to provide
clients with the correct version of the data during recov@€lgnsequently, thend operation is
not required to log any of the file data read since the prevsensd or Write operations.

2. For theWrite operation, the output commit is performadynchronously That is, the process
executing thé/Nrite operation initiates a thread to perform the output commérapon, and
then continues execution. The data is written to the diskguthie delayed write-back policy.
Thus, when a procegsexecutes &ead or aWrite operation of filef, and if procesg currently
holds the most recent version of fife then procesg must wait until: (1) the asynchronous
output commit initiated by as a result of its most receitrite to file f completes, and (2) the
content of filef at the server becomes consistent with progess

e LFT: This scheme implements all of the optimizations ddxiin Section 3. Specifically, itimproves
upon thevErstoNING scheme by completely eliminating the output commitand labéng processes
to pass around dirty data along with the file determinantss dptimization is implemented as follows:
When a process requests the content of a fife the file server forwards the request to the process
(sayq) that is currently holding the most recent version of fileProcess; thendirectly passes the
data from its cache along with the determinants to progess

To separate the overhead of fault-tolerance incurred seteehemes from the normal execution time of
a process, we have also simulated a fault-free environmefiet ed to as thiase casge In this environment,
processes do not perform any message or file logging andtmdgpumit. Moreover, they directly exchange
file data from their caches (rather than through the file sgrv€he ExisTING, VERSIONING, and LFT
schemes were evaluated in terms of the increase in the exeduhes of a message send or a file I/O
instruction as compared to the base case.

To precisely define the evaluation metric,Mt. .4, Noyriter Nsend @NAN,.cci00, FESPECtively, denote the
number ofRead, Write, Send, andReceive instructions executed by a process. SimilarlyAet, s, F.rite,

12

Fieng, andF,...;ve, respectively, denote the contribution of Read, Write, Send, andReceive instructions

to the total execution time of the process. ThusPif = P,..q + Purite aNd P, = Pscng + Preceive,
respectively, denote the probabilities of executing a filedr a message passing instruction in a program,
the expected execution time of these instructions (callelgtreferred to as 1O instructions) can be computed
as:

= 1 Erea Ewri e Esen Ereceive
Eio = = 5 [Pread * <—d) + Pwrite * <—t) + Psend * <—d) + Preceive * (7)]
Pm + Pf Nread Nwrite Nsend Nreceive
Thus, ifEf?O denotes the expected execution time of IO instructions selzase, then the overhead per 10
instruction imposed by a fault-tolerance scheme can beeatbés:

0 1b
0= g
Observe that the value @ is a function of theV, the number of processes in the system; F,,, and
Py, the fraction of computational, message passing, and @eristructions executed by a process,
the probability that the file accessed by a process is beiagedhconcurrently with other processés,
the number of bytes read and written from the file server dueachRead andWrite operation; and the
processor speed. Using our simulator, we are carrying dahsive set of experiments to characterize the
dependence af) on these parameters, the results of some of our initial @xeets are presented in the

next section.

4.3 Experimental Results

The overhead imposed by a fault-tolerance scheme is depeodehe time required to write data onto
stable storage (i.e., at a file server). To estimate this, wasored the time to perforRead andWrite
operations on our departmental NFS server. Since theseuns@asnts are dependent on the load at the
server, we carried out two sets of experiments - one durirgpanhload scenario (at 11 AM) and the other
during a low load scenario (at 2 AM). The average time obgkfeereading and writing files of varying
sizes for both of these scenarios are shown in Figure 1.

Assuming that the overhead of writing data to stable storsggual to the time to read/write files
to the NFS server under the low load scenario, we have meh#ueeoverhead imposed by each of the
three fault-tolerance schemes using our simufatdior all of these experiments, we have assumed that
P. = 0.999999. That is, one in a million instructions is either a messagssip@ or a file /O instruction
(i.e., P + Py = 107°) [21]. The ratiof;—’;l is varied from 0.05 to 20, to capture the range of application
in which the non-computational instructions are domin&tgéle I/O or message passing instructions. We
have varied the number of process€édnvolved in a distributed application from 3 to 12; the numbé
bytesB read and written from the file server during e&tfad andWrite operation from 4KB to 32KB; and
processor speed from 100MIPS to 750MIPS. Finally, we haws@&h?; = 0.3 as a representative value for
the degree of file sharing. The results of these experimeatdescribed below.

®Note that since we have chosen the overhead of writing data to stable storage is equal to the time to read/write
files to the NF'S server under the low load scenario, the values of O presented in this section are likely to be smaller
than what would be observed in practice.

13

150

100 —— NFS at high load

------ NFS at low load

Writetime (in ms)

50

T
0 20 40 60
Block size (in KB)

Figure 1 : Experimentally observed time required to write or translecks of various sizes

4.3.1 Effect of Varying %on@

Figure 2 depicts the variation i with increase in]";—’;l for a distributed application consisting of 6 cooperative
processes. It demonstrates that: (1)%5increases (i.e., as the fraction of file I/O operations deses),
the value of© decreases for all the fault-tolerance schemes; (2)tfresioNING scheme incurs smaller
overhead as compared to tlveisTiNG scheme; and (3) the overhead of LFT is negligible. A closatyesis

of the results reveals that:

1. The overhead of logging and output commit incurred as altre$ executing &end or a Write is

dependent on the amount of file information read betweeressoeSend and/orWrite instructions.
As }]';—’: increases, the frequency Bead decreases, and hence, the cumulative overhead of output
commit prior to &end or aWrite decreases.

. Increasing the’;% increases the frequency $&nd/Receive instructions, and decreases the frequency
of Read/Write instructions. When]";—’;l is increased starting from a very small value, the number of
the number oReads executed betweenSand and a priofSend or aWrite increases. Consequently,
the logging overhead incurred B¢nd instructions increase. However, as the valuég?fcontinues

to increase, the frequency of fiRead decreases, which, in turn, reduces the amount of informatio
that needs to be logged on stable storage (and hence, dethasoverhead of output commit prior
to aSend). Hence, the logging overhead fe¢nd instructions first increases and then decreases with
increase in’;—’;.

. For a given value of, the higher the frequency of file I/O operations (i.e., thelen the value of
1;—7), the greater is the probability that the file being reque$te a process is being held by some
other process, and hence, greater is the overhead in olgdhme file data. Hence, the overhead of
obtaining file data for &ead or aWrite operation decreases with increaséﬁ;n.

For the versioNING scheme, the delay observed by a processxecuting aRead or a Write
is dependent on the probability that the asynchronous owpmmit initiated by process (say)

14

Fault-tolerance Over head (Per centage)

\
15004 |

1000

500

"
|
2000
'

Jexstne
ERSIONING
ExisTING

EXISTING

2000

1500
—=— EXISTING
-4 VERSIONING
—e— LFT

1000

Fault-tolerance Overhead (Per centage)

a
8

S

T * T T * T T T T d 0
2 4 6 8 10 12 14 16 18 20 0.05 05 10 40 10.0 20.0

Message to File accessratio Message to File accessratio
Shared File Prob = 0.300, Block size = 4 KB Shared File Prob = 0.300, Block size = 4 KB

(@) (b)

Figure 2 : Variation inO with increase in]f—’;l for N =6, B = 4K B, andP, = 0.3

currently holding the file has terminated prionte request. Hence, for a give value Bf, the higher
the frequency of file /0 operations, the greater is the poditpthat the asynchronous output commit
initiated by procesg has not completed whemissued a request fof. Hence, the waiting times
for Read andWrite operations are greater for th@rstoNniNnGg scheme as compared to thersTiNG
scheme. Increase in tlﬁ)%& reduces the frequency Béad andWrite operations, and thereby increases
the probability that the asynchronous output commit itetisby process has terminated prior to the
access by. Hence, the difference in the fiRead andWrite waiting times between theersioNING
andexisTING schemes reduce with increase%}ra.

For a fixed value of’;, the higher the frequency ®&eceive operations (i.e., the higher is the value
of P,,), the greater is the probability of requesting a message &@rocess that is blocked for file
I/O. Similarly, for a fixed value of’,,, the lower is the the frequency of file /O operations (i.eg t
smaller is the value of;), the smaller is the probability of requesting a messag®a firocess that
is blocked for file 1/0. The combined effect of these factarghat, with increase il% (i.e., with
simultaneous increase if,, and decrease i#;), the value of the messadieceive overhead first
increases and then decreases.

4.3.2 Varying Number of Processes

Figure 3 illustrates that increasing the number of processéhe system increases the valug’dfor the
EXISTING andvERSIONING schemes, but has negligible impact on the performance of TR& increase
in O for the ExIsTING andVERSIONING schemes can be attributed to the following two reasons:

1. Increasing the number of processes in the system insré@as@umber of accesses to the file server.

For a given value of;, this increases the possibility of contention for sharegfl.e., the probability
that a requested file is being held by some other process)hamek, increases file read and write
waiting times.

15

1000
1000

. Send: output commit
[write: output commit
[wrie: waiting

[Read: waiting

. Receive: waiting

—=— EXISTING
-4 VERSIONING
—e— LFT

500

Fault-tolerance Over head (Per centage)
@
8
T
X

Fault-tolerance Overhead (Percentage)

* * *
6 9 12 3

6 9 12
Number of Processes Number of Processes
Message/File = 4.000, Shared File Prob = 0.300, Block size = 4 KB Message/File = 4.000, Shared File Prob = 0.300, Block size = 4 KB

(@) (b)

Figure 3 : Effect of variation in the number of processes@rﬂor P, =103

2. Increasing the number of processes in the system insréas@robability of creating long chains of
Receive dependencies (i.e., procgssnay be waiting for a message from processvhich in turn
may be waiting for a message from procesand so on). As the number of processes in the system
increase, the length of such a chain increases, therelBasiag the overhead oRaceive instruction.

4.3.3 Effect of Varying Processor Speed on O

As processor speeds increase, the ratio of file 1/0 time tmstnuction execution time increases. Conse-
quently, the overhead observed for thexisTING and thevERsIONING schemes increase with increase
in the processor speed. Once again, the impact of increasedgsor speed on the the overhead imposed
by LFT is negligible. Figure 4 demonstrates this effect.

4.3.4 Effect of Varying File /O Sizeon O

For theexisTiNnG scheme, increasing the size of file I/O has two effects:

1. Increasing the amount of information read durinBead increases the amount of information that
needs to be logged on stable storage priorSena or aWrite. Hence, the overhead of output commit
increases.

2. Since increase in the size offile /0 increases the ovdrbE#end, it indirectly increases the overhead

of Receive.

Since theversioNING scheme eliminates the file logging required priorStmd instructions, and
executes the output commit fi¥rite instructions asynchronously, increasing the file 1/O sias & much

16

1500
1500

. Send: output commit
[write: output commit
[wrie: waiting
[Read:

e wa

—=— EXISTING 1000
~4- VERSIONING

—e— LFT

1000

__a

Fault-tolerance Overhead (Percentage)

a

<

3
I

Fault-tolerance Over head (Per centage)
@
8
;

2‘00 4‘00 éUU 100.0 250.0 500.0 750.0
MIPS MIPS
Message/File = 4.000, Shared File Prob = 0.300, Block size = 4 KB Message/File = 4.000, Shared File Prob = 0.300, Block size = 4 KB

(@) (b)

Figure 4 : Effect of variation in processor speed 6n

smaller effect on?. The small increase in the overhead observed fonthesioninG scheme can be
attributed to the increase in file read and write waiting 8me

Variation in the file I/O size has negligible effect on theualof O for LFT. Figure 5 depicts these
effects.

5 Concluding Remarks

Recent advances in computing and communication techresddgive enabled a new class of highly coop-
erative distributed applications. For many of these apfibois, explicit replication will be too costly to
implement, or, simply, high availability will not be necasg For these applications, the availability of
low-overhead fault-tolerance techniques will be cruasehthieving reliability. To address these needs, we
are developingjghtweight fault-tolerancéLFT), a new low-overhead approach to fault-tolerance fghly
cooperative distributed applications.

Many of the goals of LFT are shared by shared by other lowtmamt fault-tolerance techniques. LFT,
however, is unique in its focus on efficient support of faolerance for applications in which communication
occurs through both messages and files. Unlike most existizigniques which consider a file system as
a detached component of the external environment, LFT pteske file system to the application as an
integrated partner that can be trusted to provide the da&deueduring recovery.

In this paper, we described how LFT extends to file commuinahe causal logging techniques
used in message passing. We demonstrated that in LFT, altighronous operations that are currently
performed by log-based protocols during file 1/O are eitHenieated or made asynchronous. Through
simulations, we demonstrated that LFT brings the cost otGlmmunication down to the level of message
passing, drastically reducing the overhead incurred bly-falerant applications in performing file I/O. In
addition to achieving these performance gains, we argugatir approach has the potential to enhance the

17

1500
1500

. Send: output commit
[write: output commit
[wrie: waiting
[Read: waiting

. Receive: waiting

1000
10004 —=— EXISTING
-4 VERSIONING
—e— LFT

Y

Fault-tolerance Overhead (Percentage)

@

3

3
I

Fault-tolerance Over head (Per centage)
@
8
b

4 E 1‘2 IS ‘ZD ‘24 ‘28 Y32 4 8 16 32
Block size (KB) Block size (KB)
Message/File = 4.000, Shared File Prob = 0.300, Message/File = 4.000, Shared File Prob = 0.300,

(@) (b)

Figure 5 : Effect of variation inB onO for N = 6, }]';—’: =4.0,andP, = 0.3

effectiveness of existing rollback recovery techniquesstiftware fault-tolerance. LFT is currently being
implemented as a middleware at the Department of Compuien&es at UT Austin.

References

[1] L. Alvisi, B. Hoppe, and K. Marzullo. Nonblocking and Grpn-Free Message Logging Protocols. In
Proceedings of the 23rd Fault-Tolerant Computing Sympogsaages 145-154, June 1993.

[2] L. Alvisi and K. Marzullo. Message Logging: Pessimisi@ptimistic, and Causal. IRroceedings of
the 15th International Conference on Distributed Compyitystemspages 229-236. IEEE Computer
Society, June 1995.

[3] L. Alvisi and K. Marzullo. Tradeoffs in Implementing Optal Message Logging Protocols. In
Proceedings of the Fifteenth Symposium on Principles dfibiged Computingpages 58-67. ACM,
June 1996.

[4] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Rosalhd R.Wang. Serverless Network File
Systems ACM Transactions on Computer Systefsbruary 1996.

[5] Mary Louise Gray BakerFast Crash Recovery in Distributed File SysteABD thesis, University of
California, Berkeley, 1994.

[6] Kenneth Birman and Tommy Joseph. Reliable communigaitiothe presence of failuresACM
Transactions on Computer Systesi):47—-76, February 1987.

[7] Anita Borg, J. Baumbach, and S. Glazer. A message sysippuosting fault tolerance. IRroceedings
of the Symposium on Operating Systems Princjjplages 90-99. ACM SIGOPS, October 1983.

[8] K. M. Chandy and L. Lamport. Distributed snapshots: deiaing global states of distributed systems.
ACM Transactions on Computer Syste8(d):63—75, February 1985.

18

[9] D. Dolev and D. Malki. The Transis Approach to High Avdilkty Cluster CommunicationCommu-
nications of the ACM39(4), April 1996.

[10] E. N. ElInozahy and W. Zwaenepoel. Manetho: Transpamittack-recovery with low overhead,
limited rollback and fast output commitlEEE Transactions on Computerg1(5):526-531, May
1992.

[11] E.N. Elnozahy and W. Zwaenepoel. On the use and impléatien of message logging. Iigest
of Papers: 24 Annual International Symposium on Fault-feoie Computing pages 298-307. IEEE
Computer Society, June 1994.

[12] J. Gray. Why do computer stop and what can be done atsbuihiProceedings of the 5th Symposium
on Reliability in Distributed Software and Database Sysigdttober 1993.

[13] D.B. Johnson and W. Zwaenepoel. Sender-Based Messaggrlg. InDigest of Papers: 17 Annual
International Symposium on Fault-Tolerant Compufipgges 14-19. IEEE Computer Society, June
1987.

[14] D.B. Johnson and W. Zwaenepoel. Recovery in Distridusgstems Using Optimistic Message
Logging and Checkpointinglournal of Algorithms11:462—491, 1990.

[15] L. Lamport. Time, Clocks, and the Ordering of Events iDiatributed SystemCommunications of
the ACM 21(7):558-565, July 1978.

[16] M.Kazar, B.Leverett, O.Anderson, V.Apostolides, vtBs, S.Chutani, C.Everhart, W.Mason, S.Tu,
and E.Zayas. Decorum File System Architectural OverviewPioceedings of the Summer 1990
USENIX Conferenggages 151-163, June 1990.

[17] J.C. Mogul. A Recovery Protocol for Spritely NFS. USENIX File Systems Workshop Proceedjngs
pages 93-109, May 1992.

[18] J.C. Mogul. Recovery in Spritely NFS. Technical Re@812, Digital Western Research Laboratory
Rerearch Report, June 1993.

[19] M.L. Powell and D.L. Presotto. Publishing: A reliableoadcast communication mechanism. In
Proceedings of the Ninth Symposium on Operating Systemiples pages 100-109. ACM SIGOPS,
October 1983.

[20] R. Van Renesse, T. Hickey, and K. Birman. Design anddpPerdnce of Horus: A Lightweight
Group Communications System. Technical Report TR94-1@4®ell University Computer Science
Department, August 1994.

[21] M. Rosenblum, E. Bugnion, S.A. Herrod, E. Witchel, and@upta. The Impact of Architectural
Trends on Operating Systems Performancelrsceedings of 15th Symposium on Operating Systems
Principles pages 285-298, December 1995.

[22] Fred B. Schneider. Byzantine Generals in Action: Impéating Fail-Stop ProcessorACM Trans-
actions on Computer Systen2¢2):145-154, May 1984.

[23] A.P. Sistla and J.L. Welch. Efficient Distributed Reeoy Using Message Logging. IRro-
ceedings of the Eighth Symposium on Principles of DisteduComputingpages 223-238. ACM
SIGACT/SIGOPS, August 1989.

19

[24] V. Srinivasan and J.C. Mogul. Spritely NFS: Experingentith Cache-Consistency Protocols. In
Proceedings of the 12th Symposium on Operating Systemiplaagages 45-57, December 1989.

[25] R. B. Strom and S. Yemeni. Optimistic recovery in distiied systems.ACM Transactions on
Computer System3(3):204—-226, April 1985.

[26] R. E. Strom, D. F. Bacon, and S. A. Yemini. Volatile Loggiin n-Fault-Tolerant Distributed Systems.

In Proceedings of the Eighteenth Annual International Symymosn Fault-Tolerant Computingages
44-49, 1988.

[27] S. Venkatesan and T.Y. Juang. Efficient Algorithms fagtidnistic Crash Recovery.Distributed
Computing 8(2):105-114, June 1994.

[28] B.B. Welch and J.K. Ousterhout. Pseudo-Devices: Wsegel Extensions to the Sprite File System.
In Proceedings of the Summer 1988 USENIX Confergrages 37—-49, June 1988.

20

