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1 IntroductionIn [Mis94], Misra introduced the powerlist data structure and powerlist algebra,which is particularly well-suited to express and reason about recursive parallelalgorithms. Of particular interest to Misra is the expressiveness of powerlistalgebra and its utility as a logic in which to prove correctness results; muchof [Mis94] is devoted to the development of practical examples using powerlists,including Batcher sorting, FFT networks, and pre�x sums, as well as the rele-vant correctness results. In the same spirit, other researchers have used pow-erlists to �nd elegant proofs of parallel algorithms, for example odd-even sortingin [Kor96].In this paper, we focus not on the discovery or expression of correctnessresults, but on their mechanical veri�cation. Speci�cally, we wish to show howa library of provably correct functions on powerlists can be developed. Weconsider it important, therefore, that the correctness results be in such a formthat they can be used in subsequent (mechanical) proofs. This is a departurefrom [Mis94], where intuition is often used as a guide to transform the orig-inal speci�cations into more tractable forms, in order to simplify the formalproof based on the powerlist algebra. These transformations are justi�ed whenthe proofs are being generated by hand, since the intuitive arguments can beformalized inside or outside of powerlist algebra.We will formalize powerlists using the ACL2 theorem prover. ACL2 wasdesigned to be an \industrial-strength" theorem prover, supporting equalityrewriting and induction, as well as more esoteric techniques such as equiva-lence rewriting, congruence reasoning, and reasoning about theorem schemasvia functional instantiation. In addition to its reasoning engine, ACL2 providesmany amenities to its user. An important one is the abstraction of \books,"which allow the user to construct theories in a modular fashion. For example,we will construct a powerlist \book" which will contain all the commonly usedde�nitions and theorems about powerlists, i.e., the requisite powerlist algebra.Other researchers have also attempted to use automated theorem provers toreason about powerlists, notably [Kap96], [KS94] and [KS95]. While there aresome similarities in our respective approaches, there are signi�cant di�erences aswell. In [Kap96], Kapur is interested in extending a theorem prover to facilitatereasoning about regular data structures, such as powerlists. [KS94] uses thisstructure to prove some of the theorems from [Mis94], but the emphasis againis on the theorem prover, and how it can �nd proofs that rival in elegancethose generated by hand. However, the theorems themselves, as in [Mis94], aredesigned to simplify the powerlist proofs, rather than to certify an algorithm'scorrectness with respect to an absolute speci�cation. In spirit, we have more incommon with [KS95], where adder circuits speci�ed using powerlists are provedcorrect with respect to addition on the natural numbers.Readers interested in using ACL2 to prove theorems about powerlists, or inlearning how to write ACL2 books to de�ne a new theory, should peruse sec-tion 2, which describes the powerlist axiomatization we use, and read sections 3,which shows some simple examples, and either of sections 4 or 5, which show3



more signi�cant examples. Readers interested in powerlists but not necessarilyon using ACL2 to verify theorems about them should instead read section 2.2,which shows the basic powerlist axioms; and browse sections 3. All readersshould read section 6, which summarizes the results and gives some pointers forthe future.2 Booking Powerlists2.1 Regular PowerlistsMisra de�nes powerlists as follows. For any scalar x, the object hxi is a singletonpowerlist. If x and y are similar powerlists, we can construct the new powerlistsx j y and x 1 y, called the tie and zip of x and y, respectively. The powerlistx j y consists of all elements of x followed by the elements of y. In contrast, x 1 ycontains the elements of x interleaved with the elements of y. The similaritycondition on x and y restricts j and 1 to operate only on lists of the same length;hence, all powerlists are of length 2n for some integer n. We call these \regular"powerlists.So for example, h1i,h1; 2i, h3; 4i, h1; 2; 3; 4i and h1; 3; 2; 4i are all powerlists.Moreover, h1; 2i j h3; 4i = h1; 2; 3; 4i and h1; 2i 1 h3; 4i = h1; 3; 2; 4i.The theory of powerlists depends on the following axioms (laws in [Mis94]):L0. For singleton powerlists hxi and hyi, hxi j hyi = hxi 1 hyi.L1a. For any non-singleton powerlist X , there are similar powerlists L, R sothat X = L j R.L1b. For any non-singleton powerlist X , there are similar powerlists O, E sothat X = O 1 E.L2a. For singleton powerlists hxi and hyi, hxi = hyi i� x = y.L2b. For powerlists X1 j X2 and Y1 j Y2, X1 j X2 = Y1 j Y2 i� X1 = Y1 andX2 = Y2.L2c. For powerlists X1 1 X2 and Y1 1 Y2, X1 1 X2 = Y1 1 Y2 i� X1 = Y1 andX2 = Y2.L3. For powerlists X1, X2, Y1, and Y2, (X1 j X2) 1 (Y1 j Y2) = (X1 1 Y1) j(X2 1 Y2).2.2 De�ning Powerlists in ACL22.2.1 A Naive Representation of PowerlistsChoosing the right representation of powerlists in ACL2 is not trivial. Oneimmediate stumbling block is that ACL2 does not support partial functions, sothe de�nitions of j and 1 must do something for non-similar powerlists, and in4



fact for non-powerlist operands. A �rst approach might represent powerlists inACL2 as lists and of length 2n. The function tie would take two powerlists and,if they are of equal length, return their concatenation, otherwise a special errorpowerlist (e.g., nil). Similarly, we could de�ne the function zip. A similarapproach is taken in [KS94], though partial constructors are used in that paper.There are a few problems with taking this approach in ACL2. First of all,each time we make a tie or zip, we would have to prove that the argumentsare of equal length. These proof obligations can become expensive, especiallyif they prevent term simpli�cation. Moreover, the proof obligations propagateinto all theorems concerning tie and zip, and this will place a large burden onthe ACL2 rewriter. The second problem is that since ACL2 does not supportfunction de�nitions over terms, powerlist functions such asrev(hxi) = xrev(x j y) = rev(y) j rev(x)need to be turned into the formrev(X) = � X if X is a singletonrev(right(X)) j rev(left(X)) otherwisewhere the functions left and right are de�ned so that left(X) j right(X) =X . But de�ning these functions in ACL2 | more germanely, reasoning aboutthem | is not simple. Intuitively, the problem is that to compute left(X),we must �rst count the elements of X , divide by two, then walk back throughthe elements of X and return half of them. Reasoning about all these steps isnecessary in every function invocation. Needless to say, the overhead quicklyoverwhelms the prover.2.2.2 A Better Representation of PowerlistsThe observations above led us1 to pursue an alternative approach. Instead ofrepresenting powerlists as lists, we chose to represent them as binary trees, e.g.,cons trees. Moreover, we remove the restriction that tie and zip only apply tosimilar powerlists. The operation tie is now replaced by a simple cons and leftand right can be de�ned in terms of car and cdr. The de�nition of zip requiresa recursive function, but this is no worse than when representing powerlists aslists. The result of this representation is that reasoning about powerlists requiresmuch less overhead than before; however, the representation allows objects thatwere previously not recognized as powerlists, for example h1:h2:3ii, where weuse dotted notation to emphasize the structural nature of the representation.We must be careful here that the resulting theory is nevertheless faithful to theoriginal theory due to Misra. In the sequel, we will use the term \powerlists"to refer to arbitrary \dotted-pair" powerlists as above. When we must refer tothe original powerlists explicitly, we will use the term \regular powerlists."1Actually, they led RSB; we simply followed.5



Observe, since the scalar powerlist hxi is simply represented as x in ourscheme, law L0 is trivially true. A drawback of this approach is that we donot allow nested powerlists, e.g., hh1 2i h3 4ii is indistinguishable from h1 2 3 4iin our representation. Where nested powerlists are needed, e.g., for matrices,we suggest adding an explicit nest operator, e.g., hnest(h1 2i)nest(h3 4i)i. Suchan approach is used in section 3.2.2.2.3 The Tie ConstructorWe begin the actual implementation with the de�nition of the data type pow-erlists. For stylistic (and as will be seen in section 3.2 subsequently technical)reasons, we de�ne powerlists not directly as cons's, but as dotted structures:(defstructure powerlist car cdr)The defstructure event is similar to Common LISP's defstruct, but thereare some key di�erences. It de�nes the functions powerlist, powerlist-p,powerlist-car, and powerlist-cdr. It also proves the relevant \functor" the-orems about them, which correspond to Misra's laws L1a and L2b. However,it does not introduce a new data type. This is unfortunate; we will see somesurprising results in section 3.2.For style, we rename the functions powerlist-car and powerlist-cdr intop-untie-l and p-untie-r, respectively. This will serve to provide more sym-metry with p-zip below. In the sequel, we will refer to (p-untie-l x) as the\left half" or \left untie" of x. Similarly, we will say the \right half" or the\right untie" when referring to (p-untie-r x).The next step is to de�ne the function p-zip, by using the laws L0 andL3. Before doing so, however, we have to prove that induction schemes basedon p-untie-l and p-untie-r are valid2. We can do this with the followingtheorem:(defthm untie-reduces-count(implies (powerlist-p x)(and (< (acl2-count (p-untie-l x))(acl2-count x))(< (acl2-count (p-untie-r x))(acl2-count x)))))Since we expect to use this theorem often, speci�cally in the proof obligationsof all defuns recursing with p-untie, we suggest adding this as a built-in ruleof ACL2. We can do that with the following ACL2 event:(defthm untie-reduces-count-fast(implies (powerlist-p x)(and (e0-ord-< (acl2-count (p-untie-l x))(acl2-count x))2Surprisingly, this is not done by defstructure.6



(e0-ord-< (acl2-count (p-untie-r x))(acl2-count x)))):rule-classes :built-in-clause)Notice that we must be careful to use exactly the same terms that ACL2 willgenerate when admitting defuns. A good way to do this is to run a sample defunwithout the event above, then copying the induction goal printed by ACL2.From this point on, ACL2 will simply accept all defuns based on p-untie-land p-untie-r as quickly as it does functions de�ned in terms of car and cdr.This is especially nice when constructing the ACL2 books in the �rst place,where interactivity is at a premium.2.2.4 The Zip \Constructor"We can now de�ne the function p-zip which implements the zip \constructor":(defun p-zip (x y)(if (and (powerlist-p x) (powerlist-p y))(p-tie (p-zip (p-untie-l x) (p-untie-l y))(p-zip (p-untie-r x) (p-untie-r y)))(p-tie x y)))Note how the de�nition of p-zip mirrors L0 and L3, hence these axioms aresatis�ed by our de�nition of p-tie and p-zip. In order to accept de�nitionsbased on p-zip, we have to de�ne the functions p-unzip-l and p-unzip-r,analogous to p-untie-l and p-untie-r. We can do so as follows:(defun p-unzip-l (x)(if (powerlist-p x)(if (powerlist-p (p-untie-l x))(if (powerlist-p (p-untie-r x))(p-tie (p-unzip-l (p-untie-l x))(p-unzip-l (p-untie-r x)))(p-untie-l x))(p-untie-l x))x))(defun p-unzip-r (x)(if (powerlist-p x)(if (powerlist-p (p-untie-l x))(if (powerlist-p (p-untie-r x))(p-tie (p-unzip-r (p-untie-l x))(p-unzip-r (p-untie-r x)))(p-untie-r x))(p-untie-r x))nil))At this state, it is worthwhile to prove the validity of recursion based on p-zip,just as we did for p-tie. 7



Notice that p-unzip-l and p-unzip-r return every other element of a pow-erlist x. If we index the elements of x from 1, (p-unzip-l x) returns theodd-indexed elements, and (p-unzip-r x) the even-indexed ones. Hence, inthe sequel we will refer to p-unzip-l and p-unzip-r as the odd- and even-indexed elements of x, respectively. Similarly to p-untie, we will also refer tothese lists as the \left unzip" and \right unzip" of x.The de�nitions of p-unzip-l and p-unzip-r were carefully constructed sothat the following theorems are all true:(defthm zip-unzip(implies (powerlist-p x)(equal (p-zip (p-unzip-l x) (p-unzip-r x)) x)))(defthm unzip-l-zip(equal (p-unzip-l (p-zip x y)) x))(defthm unzip-r-zip(equal (p-unzip-r (p-zip x y)) y))These three theorems prove the equivalent of law L2c for our powerlists. On animplementation node, we make zip-unzip an :elim rule so that ACL2 can useit to eliminate the destructors p-unzip-l and p-unzip-r in favor of p-zip, inmuch the same way it removes car and cdr and replaces them with cons.2.3 Similar PowerlistsThis leaves only the issue of similarity. Laws L1a and L1b claim that p-untie-land p-untie-r are similar, i.e. of the same length, and so are p-unzip-l andp-unzip-r. This is certainly not the case with our powerlists, since we do notrequire that powerlists be of length 2n. We will now add conditions that makethese theorems true. Later, these conditions will surface as hypothesis in someof the example theorems proved.In accordance with [Mis94], we de�ne two powerlists as similar if they havethe same tie-tree structure. We can do so with the following ACL2 event:(defun p-similar-p (x y)(if (powerlist-p x)(and (powerlist-p y)(p-similar-p (p-untie-l x) (p-untie-l y))(p-similar-p (p-untie-r x) (p-untie-r y)))(not (powerlist-p y))))We can immediately prove that p-similar-p is an equivalence relation. This isusually useful, because ACL2 can use this fact in its generic \equality" reasoning,though occasionally ACL2's rewriting of a p-similar-p hypothesis with anequivalent one has hindered rather than helped a proof | equality/equivalencereasoning is tricky. 8



Our next task is to show how p-similar-p powerlists behave in conjunctionwith the constructors and destructors based on p-tie and p-zip. These theo-rems are trivial for regular powerlists, since powerlists are similar if and only ifthey have the same length. Moreover, both zip and tie double the length of apowerlist, and unzip and untie halve it.We have to work a little harder in the case of general powerlists; this lostsimplicity is the price we pay for not using a regular data structure as suggestedby Misra. For starters, we can prove theorems about the destructors, such asthe following:(defthm unzip-l-similar(implies (p-similar-p x y)(p-similar-p (p-unzip-l x) (p-unzip-l y))))We also prove the analogous theorems for p-unzip-r as well as for p-untie.These theorems will be used most often in proving the antecedent of an inductivehypothesis. For example, with the theorem(implies (p-similar-p x y)(P x y))where property P is de�ned in terms of p-zip, the following subgoal is likely tobe generated by induction:(implies (and (powerlist-p x)(p-similar-p x y)(implies (p-similar-p (p-unzip-l x)(p-unzip-l y))(P (p-unzip-l x) (p-unzip-l y)))(implies (p-similar-p (p-unzip-r x)(p-unzip-r y))(P (p-unzip-r x) (p-unzip-r y))))(P x y))At this point, unzip-l-similar can be used to establish that (P (p-unzip-lx) (p-unzip-l y)) and the proof can proceed. Since this is the intended use,we turned these theorems into :forward-chaining rules. This seems to havethe desired e�ect of removing the inner implications quickly, but in many proofswe still saw ACL2 spending a bit of e�ort in doing so. It is unclear at this pointwhether the problem is with the ACL2 heuristics or with the rules themselves.Remaining are the constructors p-tie and p-zip. We would like to say thatwhen a powerlist is zipped (tied) to one of two similar powerlists, the resultis similar to when it is zipped (tied) to the other. ACL2 provides a generalway to reason about this type of theorem, namely congruence rewriting. Withcongruence rewriting, ACL2 will deduce (p-zip x1 y) is similar to (p-zip x2y) when x1 is similar to x2. We can de�ne the appropriate congruence rules asfollows:(defcong p-similar-p p-similar-p (p-zip x y) 1)(defcong p-similar-p p-similar-p (p-zip x y) 2)9



2.4 Regular PowerlistsAnother useful property of powerlists is p-balanced-p which is true of a per-fectly balanced powerlist, that is, a regular powerlist3. This condition is moreexpensive than p-similar-p, because it requires passing information from onehalf of the powerlist to the other, i.e., not only must the left and right halvesof the powerlist be balanced, their depth must be the same. Rather than ex-plicitly reasoning about depth, we chose to use p-similar-p, since we alreadyhave several theorems about it. The result is the following de�nition:(defun p-balanced-p (x)(if (powerlist-p x)(and (p-similar-p (p-untie-l x) (p-untie-r x))(p-balanced-p (p-untie-l x))(p-balanced-p (p-untie-r x)))t))Note that both the similarity and balanced conditions of the de�nition are re-quired. For example, if the similarity condition were left out, h1:hh2:3i:h4:5iiiwould be considered balanced. Likewise, if the balanced conditions were leftout, the powerlist hh1:h2:3ii:h4:h5:6ii would be considered balanced. We shallsee later that we do not need to have both balanced conditions in the de�nition.As was the case with p-similar-p, we must show how p-balanced-p inter-acts with the constructors and destructors of p-tie and p-zip. This results inthe following type of theorem:(defthm unzip-balanced(implies (p-balanced-p x)(and (p-balanced-p (p-unzip-l x))(p-balanced-p (p-unzip-r x)))))These theorems provide the missing similarity assertion of laws L1a and L1b.The converse theorem, about the constructor functions requires an extrahypothesis, namely that the powerlists to be tied or zipped be similar. This isthe formal equivalent of the restriction that j and 1 only apply to powerlists ofthe same length. The theorem can be stated as follows:(defthm zip-balanced(implies (and (p-balanced-p x)(p-similar-p x y))(p-balanced-p (p-zip x y))))Another group of theorems explore the interaction between p-balanced-pand p-similar-p powerlists. For example, we have that the unzips and untiesof balanced powerlists are similar with the following event:3The name p-balanced-p emerged from the ACL2 viewpoint of powerlists as binary trees.A better name may have been p-regular-p which would make the connection with Misra'spowerlists more obvious. The former name is retained for historical reasons.10



(defthm balanced-similar-unzip-untie(implies (and (powerlist-p x)(p-balanced-p x))(and (p-similar-p (p-unzip-l x) (p-unzip-r x))(p-similar-p (p-unzip-l x) (p-untie-l x))(p-similar-p (p-unzip-r x) (p-untie-r x)))))We can also prove similar theorems, such as a powerlist similar to a balancedpowerlist is also balanced. This is why we could remove one of the recursivep-balanced-p instances in the de�nition of p-balanced-p. We choose not tobecause of symmetry, and also because having the extra condition immediatelyavailable may be useful when p-balanced-p is found as a hypothesis in a the-orem.In our experience, p-similar-p is a much more important property thanp-balanced-p, since similarity ensures that a function taking more than oneargument can recurse on one of the arguments and still visit all the nodes ofthe other argument, e.g., for pairwise addition of powerlists. In fact, the mainuse of p-balanced-p is to show that two powerlists are similar. This occurswhen a single powerlist is split and a function applied to the two halves. Italso occurs when two powerlists are traversed in a non-standard ordering, e.g.,by splitting them into left and right halves and then combining the left half ofone with the right half of the other or by splitting with unzip and combiningwith tie. In these cases, we use the p-balanced-p condition to ensure that allof the pieces that can be split are p-similar-p to each other, and we can usewhatever function of two lists we wish to process them.2.5 Functions on PowerlistsWhen working with powerlists, many similar functions, usually small and inci-dental to the main theorem, are encountered. For example, we may have to addall the elements of a powerlist, or �nd their minimum or maximum, etc. Wemay also have to take two powerlists and return their pairwise sum, product,etc. Moreover, we often wish to prove similar theorems about these functions,such as the sum (maximum, minimum) of the sum (maximum, minimum) of twopowerlists is the same as the sum (maximum, minimum) of their zip. This is aperfect opportunity to use ACL2's encapsulation primitive to prove the appro-priate theorem schemas, which can later be instantiated with speci�c functionsin mind.To illustrate our approach, consider the following encapsulation:(encapsulate((fn1 (x) t)(fn2-accum (x y) t)(equiv (x y) t))(local (defun fn1 (x) (fix x)))(local (defun fn2-accum (x y) (+ (fix x) (fix y))))11



(local (defun equiv (x y) (equal x y)))(defthm fn1-scalar(implies (not (powerlist-p x))(not (powerlist-p (fn1 x)))))(defthm fn2-accum-commutative(equiv (fn2-accum x y) (fn2-accum y x)))(defthm fn2-accum-associative(equiv (fn2-accum (fn2-accum x y) z)(fn2-accum x (fn2-accum y z))))(defcong equiv equiv (fn2-accum x y) 1)(defcong equiv equiv (fn2-accum x y) 2)(defequiv equiv))This de�nes fn1 as a scalar function, fn2-accum as an associative-commutativebinary function, and equiv as an equivalence relation. Nothing else is knownor assumed about these functions outside of the encapsulation. One possibleapplication is to apply fn1 to all the elements of a powerlist, e.g., to squareall values in a powerlist. Another is to use fn2-accum to accumulate all thevalues in the powerlist into an aggregate. We can do this in two obvious ways,recursing in terms of either p-tie or p-zip. Naturally, we expect the result tobe the same, regardless of which way the function is de�ned. So for example,we would expect to prove the following:(defun a-zip-fn2-accum-fn1 (x)(if (powerlist-p x)(fn2-accum (a-zip-fn2-accum-fn1 (p-unzip-l x))(a-zip-fn2-accum-fn1 (p-unzip-r x)))(fn1 x)))(defun b-tie-fn2-accum-fn1 (x)(if (powerlist-p x)(fn2-accum (b-tie-fn2-accum-fn1 (p-untie-l x))(b-tie-fn2-accum-fn1 (p-untie-r x)))(fn1 x)))(defthm a-zip-fn2-accum-fn1-same-as-b-tie-fn2-accum-fn1(equiv (b-tie-fn2-accum-fn1 x)(a-zip-fn2-accum-fn1 x)))At this point, it is not clear that we have done anything important. After all,we have proved an abstract theorem which seems a bit contrived. How often,we can ask, will one de�ne a function �rst in terms of p-zip, then in terms of12



p-tie? And if we do not de�ne such functions, say by arbitrarily choosing tode�ne them in terms of p-tie always, the above is wasted e�ort.It is di�cult at this time to adequately address this issue, though it willbecome clearer when we look at the examples. For now, the following intu-ition may su�ce. While simple functions, such as the above, are just as easilyde�ned in terms of p-tie as p-zip, this is not the case for more complex func-tions. For example, consider the function p-ascending-p which is true for anascending powerlist. This is much more easily expressed in terms of p-tie,since it is simpler to decide when the p-tie of two ascending powerlists is as-cending than to decide when their p-zip is ascending. On the other hand thefunction p-batcher-merge is naturally expressed in terms of p-zip, since itworks by successively merging the odd- and even-indexed elements of a pow-erlist. Naturally, when proving theorems about p-ascending-p, we will wish touse functions de�ned in terms of p-tie. Such a function may �nd the minimumof a powerlist. But when reasoning about p-batcher-merge, we will need thesame function, only this time we may prefer to write it in terms of p-zip, sothat it \opens up" the same way in an inductive proof. What is left then isthe glue to tie these two de�nitions of the function together. This is an explicitinstance of the theorem schema above.In fact, it should be pointed out that the creation of these theorem schemascame as a direct result of having proved a seemingly endless stream of similarsmall theorems. It is these theorems that formed the basis of the theoremschema above; i.e., all these abstract theorems were constructed by \unifying"needed lemmas in one speci�c proof of another. To reinforce this, consider theaccumulators above. The scalar function fn1 seems unnecessary, as does theequivalence relation equiv. It would be simpler to state the theorems purelyin terms of fn2-accum which is the binary operator we're trying to abstractand equal. However, the forms above were suggested by the speci�c instanceswe wished to create. One such instance is minimum where the accumulator isthe min function and equiv and fn1 are the equality and identity functions,respectively. Another instance is list-of-type where the accumulator is theand function, equiv the iff function, and fn1 a scalar type-p function.Accepting for now that this e�ort is not wasted, we can consider some of thetheorems we found useful. As expected by now, a key series of lemmas shows howthe functions a-zip-fn2-accum-fn1 and b-tie-fn2-accum-fn1 behave withrespect to the constructors and destructors of p-tie and p-zip, for examplethe following theorem relating b-tie-fn2-accum-fn1 to p-zip:(defthm zip-b-tie-fn2-accum-fn1(equiv (b-tie-fn2-accum-fn1 (p-zip x y))(fn2-accum (b-tie-fn2-accum-fn1 x)(b-tie-fn2-accum-fn1 y))))(defthm unzip-b-tie-fn2-accum-fn1(implies (powerlist-p x)(equiv(fn2-accum (b-tie-fn2-accum-fn1 (p-unzip-l x))13



(b-tie-fn2-accum-fn1 (p-unzip-r x)))(b-tie-fn2-accum-fn1 x))))Both of these theorems are useful in establishing the antecedent of inductionhypotheses.3 Simple ExamplesIn this section, we take various examples from [Mis94] and prove them in ACL2.Our goal is to show how the primitives de�ned in section 2 are su�cient for ACL2to prove theorems about powerlists.3.1 PermutationsWe start with the p-reverse function, which reverses a powerlist. The de�ni-tion, a straight transliteration from [Mis94], is as follows:(defun p-reverse (p)(if (powerlist-p p)(p-tie (p-reverse (p-untie-r p))(p-reverse (p-untie-l p)))p))Similarly, we can de�ne p-reverse-zip, which reverses in terms of p-zip in-stead of p-tie. ACL2 can immediately verify that p-reverse is its own inverse.That is, it trivially accepts the following theorem:(defthm reverse-reverse(equal (p-reverse (p-reverse x)) x))Before proving that p-reverse and p-reverse-zip are equal, however, we needthe following lemma:(defthm reverse-zip(equal (p-zip (p-reverse x) (p-reverse y))(p-reverse (p-zip y x))))This lemma, typical of both Nqthm and ACL2 lemmas, tells ACL2 how to\push" p-zip into a p-reverse. Given this lemma, ACL2 can now easily verifythe following:(defthm reverse-reverse-zip(equal (p-reverse-zip x) (p-reverse x)))It is interesting to note that the theorem above does not depend on the structureof the powerlist x. Speci�cally, there is no requirement that x is regular.The functions p-rotate-right and p-rotate-left are easily de�ned interms of p-zip; indeed their simplicity is a tribute to the p-zip constructor:14



(defun p-rotate-right (x)(if (powerlist-p x)(p-zip (p-rotate-right (p-unzip-r x)) (p-unzip-l x))x))(defun p-rotate-left (x)(if (powerlist-p x)(p-zip (p-unzip-r x) (p-rotate-left (p-unzip-l x)))x))Again, ACL2 can prove a number of theorems unassisted. For example, it canshow that p-rotate-right and p-rotate-left are inverses with the followingtheorem:(defthm rotate-left-right(equal (p-rotate-left (p-rotate-right x)) x))Notice, again, that the theorem remains true even for arbitrary powerlists, notjust regular powerlists. ACL2 can also prove the analogous theorem where werotate to the left �rst.In addition, ACL2 proves the following surprising identity:(defthm rotate-reverse-rotate(equal (p-rotate-right (p-reverse-zip (p-rotate-right x)))(p-reverse-zip x)))This theorem can be used to prove the following \amusing identity" due toMisra:(defthm reverse-rotate-reverse-rotate(equal (p-reverse-zip(p-rotate-right(p-reverse-zip(p-rotate-right x))))x))Next, we consider repeated shifts. The function p-rotate-right-k loopsover p-rotate-right k times:(defun p-rotate-right-k (x k)(if (zp k)x(p-rotate-right (p-rotate-right-k x (1- k)))))A subtler de�nition shifts the odd-indexed and even-indexed elements by abouthalf of k, then joins the result. This is given below:(defun p-rotate-right-k-fast (x k)(if (powerlist-p x)(if (integerp (/ k 2))15



(p-zip (p-rotate-right-k-fast (p-unzip-l x)(/ k 2))(p-rotate-right-k-fast (p-unzip-r x)(/ k 2)))(p-zip (p-rotate-right-k-fast (p-unzip-r x)(1+ (/ (1- k) 2)))(p-rotate-right-k-fast (p-unzip-l x)(/ (1- k) 2))))x))ACL2 can prove the equality of these two functions, but only with a certainamount of help, partly because ACL2 has a hard time reasoning about thevalues in k above.Another function suggested by Misra is the shu�e function, which rotatesnot the elements of a powerlist, but their index, based on zero-indexing. Forexample, the low-order bit of the index becomes the high-order bit, and hencethe even-indexed elements will appear at the front of the result. This functioncan be de�ned as follows:(defun p-right-shuffle (x)(if (powerlist-p x)(p-tie (p-unzip-l x) (p-unzip-r x))x))It is especially interesting, because it mixes the p-zip destructors with thep-tie constructor. Once more, ACL2 is able to prove without assistance thatp-left-shuffle and p-right-shuffle are inverses:(defthm left-right-shuffle(equal (p-left-shuffle (p-right-shuffle x)) x))Notice again that the theorem is true regardless of whether the powerlist x isregular. This is slightly surprising when we consider that the functions werede�ned precisely with a regular powerlist in mind.Another interesting permutation function is p-invert which inverts the in-dex of a powerlist. This function is used, for example, in the Fast FourierTransform algorithm. It can be de�ned as follows:(defun p-invert (x)(if (powerlist-p x)(p-zip (p-invert (p-untie-l x))(p-invert (p-untie-r x)))x))Following [Mis94], we can prove the following lemma:(defthm invert-zip(equal (p-invert (p-zip x y))(p-tie (p-invert x) (p-invert y))))16



It is interesting that this lemma, although typical of ACL2 lemmas, was actuallyneeded in Misra's original hand proof. As in [Mis94], ACL2 can now prove,without user intervention, that p-invert is its own inverse. Moreover, it canprove that p-invert and p-reverse commute:(defthm invert-invert(equal (p-invert (p-invert x)) x))(defthm invert-reverse(equal (p-invert (p-reverse x))(p-reverse (p-invert x))))Finally, we can show that for an arbitrary binary function fn2 (similar to theone encapsulated in section 2.5) applied pairwise to the elements of two lists,p-invert and fn2 commute:(defthm invert-zip-fn2(implies (p-similar-p x y)(equal (p-invert (a-zip-fn2 x y))(a-zip-fn2 (p-invert x) (p-invert y)))))3.2 Gray CodeIn this section, we present a more substantial example. A gray code for n bitsis a sequence of 2n n-bit vectors so that no two adjacent vectors di�er by morethan one bit. In [Mis94], Misra de�nes a function which returns a gray codeas a powerlist of 2n n-element lists. It is signi�cant the the function uses listsinstead of powerlists to store the n-bit vectors, since n is an arbitrary integer,not necessarily a power of two. Moreover, in [Mis94], no proof is given that thefunction behaves correctly. This is not surprising, since most of the reasoningwould have to be done not with powerlist theory, but with linear list theoryinstead.In this section, we present an equivalent development using powerlists tostore the n-bit vectors and also provide a partial proof of correctness. The�rst problem that needs to be resolved is that of using nested powerlists. The�nal result will be a powerlist of 2n n-element nested powerlists, but since weuse a tree representation, there is no immediate way to know when the nestedpowerlists begin | this is the price we pay for not having an explicit distinctionbetween powerlists of one element and the element itself. As mentioned earlier,the solution is to use an explicit nest operator, and an attractive possibility isto use Common LISP's list function. In this fashion, the gray code sequencefor n = 2 is as follows: h(h0 0i) (h0 1i) (h1 1i) (h1 0i)iWe can do this because we chose not to represent powerlists as cons-trees, butas structures. 17



In reality, however, there is a little magic going on. Recall, the defstructureevent in ACL2 does not de�ne a new data type; instead, it implements thisdata type in terms of the primitive tree structures. It turns out that the onlyACL2 nested structure is the cons-tree, which suggests the following surprisingtheorem:(consp (p-tie 1 2))In fact, by default defstructure uses \typed" lists to implement the structures.The actual structure can be exposed with the following theorem:(equal (p-tie 1 2) '(powerlist 1 2))All this is important, since we have to use an explicit nest operator, e.g. list,and we have to ensure that we can recognize an instance of a nesting operatorinside a powerlist. The solution is suggested by the equality above. The nestingoperator is a singleton list, i.e., a list containing a single powerlist. Powerlists,on the other hand, are always either scalars or lists of three elements. In ourapplication, scalars will be either 0 or 1, so there will be no confusion. Ingeneral, however, it is sad that the scalar list of three element '(powerlist 12) cannot be reasoned about in our implementation of the powerlist axioms.Keeping this in mind, we can de�ne the function computing gray code se-quences as follows:(defun p-gray-code (n)(if (or (zp n) (equal n 1))(p-tie (list 0) (list 1))(p-tie (p-map-tie 0 (p-gray-code (1- n)))(p-map-tie 1 (p-reverse (p-gray-code (1- n)))))))Notice how p-gray-code returns a powerlist of lists in the base case; that is,a powerlist of two nested (scalar) powerlists. This uses the auxiliary functionp-map-tie which applies p-tie to each element of its second argument:(defun p-map-tie (x y)(if (powerlist-p y)(p-tie (p-map-tie x (p-untie-l y))(p-map-tie x (p-untie-r y)))(list (p-tie x (car y)))))Again, notice the use of list and car to process the nested powerlists4.To prove that the function above is correct, we de�ne a predicate whichaccepts proper gray code sequences. We start with a function to recognizewhen two n-bit vectors can be adjacent in a sequence; that is, when they di�erby precisely one bit:4Style points would be awarded for using defmacro to hide the representation of nesting.18



(defun p-gray-p (x y)(if (and (powerlist-p x) (powerlist-p y))(or (and (equal (p-untie-l x) (p-untie-l y))(p-gray-p (p-untie-r x) (p-untie-r y)))(and (p-gray-p (p-untie-l x) (p-untie-l y))(equal (p-untie-r x) (p-untie-r y))))(or (and (equal x 0) (equal y 1))(and (equal x 1) (equal y 0)))))We can understand the function by recognizing that two non-trivial powerlistsdi�er by exactly one bit if and only if one of their respective halves di�ers byexactly one bit and the other halves are identical. With this function, we canvalidate a gray code sequence with the following function:(defun p-gray-seq-p (x)(if (powerlist-p x)(and (p-gray-seq-p (p-untie-l x))(p-gray-seq-p (p-untie-r x))(p-gray-p (car (p-last-elem (p-untie-l x)))(car (p-first-elem (p-untie-r x)))))t))where the functions p-first-elem and p-last-elem return the �rst and lastelement of a powerlist, respectively.We would like to prove the correctness of p-gray-seq. That is, we aredriving towards the following theorem:(defthm gray-seq-p-gray-code(p-gray-seq-p (p-gray-code n)))Getting there is typical of ACL2 proof e�orts. The inductive step takes a validgray code sequence and prepends 0 or 1 to all elements of the sequence. Wemust show that the resulting sequence remains valid:(defthm gray-seq-p-gray-code-lemma(implies (and (p-gray-seq-p y)(or (equal x 0) (equal x 1)))(p-gray-seq-p (p-map-tie x y))))Moreover, we de�ned p-gray-seq-p using the p-first-elem and p-last-elemfunctions. So we prove the following theorem, to \teach" ACL2 how to evaluateterms involving these functions:(defthm first-elem-map-tie(equal (p-first-elem (p-map-tie x y))(list (p-tie x (car (p-first-elem y))))))Another non-trivial function used to de�ne p-gray-seq is p-reverse. Thissuggests the following theorem: 19



(defthm gray-seq-p-reverse(equal (p-gray-seq-p (p-reverse x))(p-gray-seq-p x)))Moreover, the de�nition of p-reverse suggests that we need commutativity ofp-gray-p, since p-reverse will swap the left and right halves of the powerlist:(defthm gray-p-commutes(equal (p-gray-p x y)(p-gray-p y x)))And �nally, in establishing (p-gray-seq-p (p-reverse x)), we will encounterterms involving p-first-elem, p-last-elem, and p-reverse, which suggeststhe two theorems below:(defthm first-elem-reverse(equal (p-first-elem (p-reverse x))(p-last-elem x)))(defthm last-elem-reverse(equal (p-last-elem (p-reverse x))(p-first-elem x)))Finding these intermediate lemmas is the \art" of proving theorems withACL2, and also with Nqthm. Much has been written on the process of �ndingthese key lemmas. Besides [BM88] and [BM79], the reader interested in usingACL2 is especially encouraged to read [KP94].While the development above is illustrative of how ACL2 can be used toprove program correctness, it tells only part of the story. In particular, ourcorrectness result would still hold if p-gray-seq were replaced with the zerofunction! What is missing are the assertions that p-gray-seq produces 2n n-bitvectors, that it does not produce the same n-bit vector more than once, etc. Thereader is encouraged to develop these proofs.4 Sorting PowerlistsWe turn our attention to the problem of sorting a powerlist, speci�cally sortinga powerlist of rationals into ascending order. Our speci�cation is as follows:(defun p-sorted-p (x)(if (powerlist-p x)(and (p-sorted-p (p-untie-l x))(p-sorted-p (p-untie-r x))(<= (p-max-elem (p-untie-l x))(p-min-elem (p-untie-r x))))t))where the functions p-min-elem and p-max-elem return the minimum and max-imum elements of a list respectively. We show how p-min-elem is de�ned.20



(defun p-min-elem (x)(if (powerlist-p x)(if (<= (p-min-elem (p-untie-l x))(p-min-elem (p-untie-r x)))(p-min-elem (p-untie-l x))(p-min-elem (p-untie-r x)))(rfix x)))Notice how p-sorted-p is most naturally expressed in terms of p-tie; in fact, itis not immediately obvious how an equivalent de�nition can be written in termsof p-zip. For this reason, we choose to de�ne p-min-elem in terms of p-tie,though it could just as easily have been de�ned in terms of p-zip. However,since it is likely that we will want to reason about p-zip in the future, we canprepare by proving theorems such as the following:(defthm min-elem-zip(equal (p-min-elem (p-zip x y))(if (<= (p-min-elem x) (p-min-elem y))(p-min-elem x)(p-min-elem y))))(defthm min-elem-unzip(implies (powerlist-p x)(and (>= (p-min-elem (p-unzip-l x))(p-min-elem x))(>= (p-min-elem (p-unzip-r x))(p-min-elem x)))))Both of these theorems are instances of generic theorems proved in section 2.5,so ACL2 does not need to perform added work in proving them (given an ap-propriate hint to instantiate the generic theorems). Moreover, since di�erentsorting algorithms are likely to require similar theorems about p-min-elem,p-sorted-p, and so on, it pays to prove these up front. For example, we canestablish once and for all that the minimum of a powerlist is no larger than itsmaximum. We can also prove how p-sorted behaves in the presence p-zip,etc.An oft forgotten requirement of sorting is that it not only return a sorted list,but that it return a permutation of its argument. To ensure this, we can de�nethe following function, which returns the number of times a given argumentappears in a powerlist:(defun p-member-count (x m)(if (powerlist-p x)(+ (p-member-count (p-untie-l x) m)(p-member-count (p-untie-r x) m))(if (equal x m) 1 0))) 21



Again, we can prove basic theorems about p-member-count, such as how itbehaves with p-zip, since these lemmas will likely prove useful to any sortingalgorithm.In summary, we will require that a proposed sorting algorithm p-sort satisfythe following theorems:(p-sorted-p (p-sort x))(equal (p-member-count (p-sort x) m) (p-member-count x m))Of course, we may allow speci�c sorting routines to impose restrictions on theoriginal powerlist x, e.g., a routine may only work with numeric lists.4.1 Merge SortingMerge sort is the most natural parallel sorting algorithm. We can write anabstract merge sort over powerlists as follows:(defun my-merge-sort (x)(if (powerlist-p x)(p-merge (my-merge-sort (p-split-1 x))(my-merge-sort (p-split-2 x)))x))The functions p-merge, and p-split-1 and p-split-2 instantiate speci�cmerge sort algorithms. Classically, p-merge will be a complicated functionand the split functions will be trivial. What we would like to do is to encapsu-late these functions and their relevant theorems and then prove the correctnessof this generic merge sort. In particular, we wish to establish the followingtheorems:(defthm merge-sort-is-permutation(implies (p-sortable-p x)(equal (p-member-count (p-merge-sort x) m)(p-member-count x m))))(defthm merge-sort-sorts-input(implies (p-sortable-p x)(p-sorted-p (p-merge-sort x))))The p-sortable goal lets us specify merge algorithms that only work for asubclass of powerlists; the forthcoming Batcher merge, which only works forregular powerlists, is an example of such an algorithm.In order to prove the theorems above, we need the following assumptionsabout the generic merge functions:(encapsulate((p-sortable-p (x) t)(p-mergeable-p (x y) t) 22



(p-split-1 (x) t)(p-split-2 (x) t)(p-merge (x y) t)(p-merge-sort (x) x))(defthm *obligation*-split-reduces-count(implies (powerlist-p x)(and (e0-ord-< (acl2-count (p-split-1 x))(acl2-count x))(e0-ord-< (acl2-count (p-split-2 x))(acl2-count x)))))(defthm *obligation*-member-count-of-splits(implies (powerlist-p x)(equal (+ (p-member-count (p-split-1 x) m)(p-member-count (p-split-2 x) m))(p-member-count x m))))(defthm *obligation*-member-count-of-merge(implies (p-mergeable-p x y)(equal (p-member-count (p-merge x y) m)(+ (p-member-count x m)(p-member-count y m)))))(defthm *obligation*-sorted-merge(implies (and (p-mergeable-p x y)(p-sorted-p x)(p-sorted-p y))(p-sorted-p (p-merge x y))))(defthm *obligation*-merge-sort(equal (p-merge-sort x)(if (powerlist-p x)(p-merge (p-merge-sort (p-split-1 x))(p-merge-sort (p-split-2 x)))x)))(defthm *obligation*-sortable-split(implies (and (powerlist-p x)(p-sortable-p x))(and (p-sortable-p (p-split-1 x))(p-sortable-p (p-split-2 x)))))(defthm *obligation*-sortable-mergeable(implies (and (powerlist-p x)(p-sortable-p x))23



(p-mergeable-p (p-merge-sort (p-split-1 x))(p-merge-sort (p-split-2 x))))))Recall, however, that before ACL2 accepts such an encapsulate event, it mustbe given a witness function; that is, an implementation of such a mergingscheme. The easiest route is to use a vacuous merger, by locally de�ningp-sortable-p to be nil. An alternative approach is to use an actual sort-ing algorithm. We chose to do the latter, and we picked an insertion sort as our\merge" algorithm; that is, the \merge" step consists of repeatedly insertingthe elements of one powerlist into the other. The reader interested in such anapproach can browse through the source code available from the companion webpage. We will not mention it further, since it does not enhance the discussionof either powerlists or ACL2.4.2 Batcher SortingThe Batcher merging algorithm can be de�ned as follows:(defun p-batcher-merge (x y)(if (powerlist-p x)(p-zip (p-min (p-batcher-merge (p-unzip-l x)(p-unzip-r y))(p-batcher-merge (p-unzip-r x)(p-unzip-l y)))(p-max (p-batcher-merge (p-unzip-l x)(p-unzip-r y))(p-batcher-merge (p-unzip-r x)(p-unzip-l y))))(p-zip (p-min x y) (p-max x y))))The functions p-min and p-max return respectively the pairwise minimum andmaximum or two powerlists. Since p-zip features prominently in the de�nitionof p-batcher-merge, we expect to �nd p-min and p-max similarly de�ned.At �rst glance, the de�nition of p-batcher-merge looks straight-forward.Certainly, it seems that a straight-forward structural induction should be suf-�cient to prove all the properties about it one would wish. Such a blissfulperspective will most likely be short-lived. There are two imposing challengesahead. The �rst is that p-batcher-merge is de�ned in terms of p-zip, whereasour target predicate p-sorted-p is de�ned in terms of p-tie. This is usu-ally enough to make even a simple proof a little challenging. But in this caseit is especially troublesome, because p-batcher-merge does not recurse evenlythrough its arguments. Notice in particular how the the left unzip of x is mergedwith the right unzip of y, and vice versa.Upon further consideration, the de�nition of p-batcher-merge seems topose an unsurmountable challenge to veri�cation. An induction scheme basedon p-batcher-merge will provide assertions about the left half of x mixed withthe right half of y. But to complete the proof, we will also need assertions about24



corresponding halves of x and y. One readily envisions nests of left unties ofright unzips of left unties. . . .Clearly, more caution than usual is required to verify this function.Consider �rst the proof of the following goal:(equal (p-member-count (p-batcher-merge x y) m)(+ (p-member-count x m)(p-member-count y m)))Since p-min and p-max operate on the pairwise points of x and y, it is reason-able to require that x and y be similar. Moreover, since p-batcher-merge isrecursing on opposite halves of x and y, we can expect that the powerlists mustalso be regular. It turns out that we will also need to constrain the powerlist tobe numeric. This is because the ordering imposed by p-max is only well-de�nedover this domain. Of course, we will have to prove the theorems that all in-termediate results satisfy the structural requirements of the hypothesis; i.e., wemust establish that for similar x and y their p-min and p-max are also similar,etc.Our goal becomes the following:(defthm member-count-of-merge(implies (and (p-balanced-p x)(p-similar-p x y)(p-number-list x)(p-number-list y))(equal (p-member-count (p-batcher-merge x y) m)(+ (p-member-count x m)(p-member-count y m)))))To prove the above claim, we must �rst establish that all the values of x and ycan be found somewhere in their p-min and p-max. We can prove this generi-cally; that is, we can prove that the sum of any scalar function over x and y isuna�ected by p-min and p-max:(defthm a-zip-plus-fn1-of-min-max(implies (and (p-similar-p x y)(p-number-list x)(p-number-list y))(equal (+ (a-zip-plus-fn1 (p-max x y))(a-zip-plus-fn1 (p-min x y)))(+ (a-zip-plus-fn1 x)(a-zip-plus-fn1 y)))))Notice how we're extending the generic theorems de�ned in section 2.5 to includespeci�c functions, such as p-min and p-max. With this lemma, we can provethe similar result for p-batcher-merge:25



(defthm a-zip-plus-fn1-of-merge(implies (and (p-balanced-p x)(p-similar-p x y)(p-number-list x)(p-number-list y))(equal (a-zip-plus-fn1 (p-batcher-merge x y))(+ (a-zip-plus-fn1 x)(a-zip-plus-fn1 y)))))Instantiating fn1 with the pseudo-function (lambda (x) (if (= x m) 1 0))and using the equivalence of a-zip-plus-fn1 and b-tie-plus-fn1, we canprove our original goal.Notice above how all the reasoning was done with respect to p-zip, and onlyin the last step do we appeal to the equivalence of p-member-count as de�nedin terms of p-zip and p-tie to complete the proof.We must now tackle the question of when p-batcher-merge returns a sortedpowerlist. The recursive step returns a powerlist of the form(p-zip (p-min (p-batcher-merge X1 Y2)(p-batcher-merge X2 Y1))(p-max (p-batcher-merge X1 Y2)(p-batcher-merge X2 Y1)))We know that from the inductive hypothesis it will be easy to establish thatboth (p-batcher-merge X1 Y2) and (p-batcher-merge X2 Y1) are sorted.It is natural to ask, therefore, whether (p-zip (p-min X Y) (p-max X Y)) issorted, given sorted X and Y. Unfortunately, this is not the case, as the powerlistsh1 2i and h3 4i demonstrate. The problem is that the p-min of 2 and 4 is 2,which is smaller than the p-max of 1 and 3. What we need is to ensure that theelements of the lists are not only sorted independently, but that one lists doesnot \grow" too much faster than the other.Consider X = hx1 x2 x3 x4i and Y = hy1 y2 y3 y4i. Our condition amountsto the following: xi; yi � xj ; yjfor all indices i < j. This condition automatically implies that X and Y aresorted. We can write this in ACL2 as follows:(defun p-interleaved-p (x y)(if (powerlist-p x)(and (powerlist-p y)(p-interleaved-p (p-untie-l x) (p-untie-l y))(p-interleaved-p (p-untie-r x) (p-untie-r y))(<= (p-max-elem (p-untie-l x))(p-min-elem (p-untie-r x)))(<= (p-max-elem (p-untie-l x))(p-min-elem (p-untie-r y)))(<= (p-max-elem (p-untie-l y))26



(p-min-elem (p-untie-r x)))(<= (p-max-elem (p-untie-l y))(p-min-elem (p-untie-r y))))(not (powerlist-p y))))So now, if (p-interleaved-p x y) is true, we would like to show that (p-zip(p-min x y) (p-max x y)) is sorted. Intuitively, this is a simple result. Inour example above, the �rst two elements of Z will be x1 and y1, in ascendingorder. Moreover, the hypothesis assures us these two numbers are the smallestof the xj and yj for j � 2. Similarly, we can reason about x2 and y2, and so on.To prove the claim in ACL2, we have to reason about the interaction of p-minand p-min-elem, as well as their max counterparts. Since p-min is de�ned interms of p-zip and p-min-elem in terms of p-tie, it is easier to prove thistheorems in terms of a single recursive scheme, say p-tie and then use thebridging lemmas to prove the result:(defthm zip-min-max-sorted-if-interleaved(implies (and (p-interleaved-p x y)(p-similar-p x y)(p-number-list x)(p-number-list y))(p-sorted-p (p-zip (p-min x y) (p-max x y)))))Again, it is easier at �rst to prove this for p-min-tie and p-max-tie, sincep-sorted-p is de�ned in terms of p-tie.We have only to show that the recursive calls to p-batcher-merge returnp-interleaved-p lists. That is, given sorted X and Y,L1 = (p-batcher-merge (p-unzip-l X) (p-unzip-r Y))L2 = (p-batcher-merge (p-unzip-r X) (p-unzip-l Y))are p-interleaved-p. We can use our intuition to see why this must be thecase. We can assume that both L1 and L2 are sorted, since this fact will followfrom the induction hypothesis. Any pre�x of L1 will have some values from Xand some from Y, say i and j values respectively. Moreover, since L1 has onlyodd-indexed elements of X and L2 only the even-indexed elements of X, no pre�xof L1 can have more elements from X than the corresponding pre�x of L2, andsimilarly for the elements from Y. For example, suppose that L1 starts with x1and x3, but the corresponding pre�x of L2 does not contain x2. In this case, L2must start with y1 and y3, which means that y3 < x2, since L2 is sorted and itspre�x does not contain x2. But, we can conclude from L1 that x3 � y2, sinceL1 is also sorted. We have then that x3 � y2 � y3 < x2 and so x3 < x2. Butthis is a contradiction, since X is sorted.Formalizing the argument given above places a severe challenge on the pow-erlist paradigm, since the reasoning involves indices so explicitly, whereas pow-erlists do away with the index concept. In fact, the whole concept of \pre�x"is strange, since these pre�xes will by de�nition be irregular, and we've alreadyobserved how p-batcher-merge requires regular arguments. This calls for a27



little subtlety in our approach. We can replace the \pre�x" concept with thefollowing:(defun p-member-count-<= (x m)(if (powerlist-p x)(+ (p-member-count-<= (p-untie-l x) m)(p-member-count-<= (p-untie-r x) m))(if (<= (rfix x) m) 1 0)))This returns the number of elements in x which are less than or equal to m; thatis, for an element m in x, it returns its (largest) index in x. With this notion,we can formalize our argument involving the \pre�x" of a powerlist.We are interested in expressions of the formM1 = (p-member-count-<= (p-batcher-merge (p-unzip-l x)(p-unzip-r y))m)M2 = (p-member-count-<= (p-batcher-merge (p-unzip-r x)(p-unzip-l y))m)so we begin with the following theorem:(defthm member-count-<=-of-merge(implies (and (p-balanced-p x)(p-similar-p x y)(p-number-list x)(p-number-list y))(equal (p-member-count-<= (p-batcher-merge x y) m)(+ (p-member-count-<= x m)(p-member-count-<= y m)))))This theorem allows us to remove p-batcher-merge from the computation ofp-member-count. We are left with the following:M1 = (+ (p-member-count-<= (p-unzip-l x) m)(p-member-count-<= (p-unzip-r y) m))M2 = (+ (p-member-count-<= (p-unzip-r x) m)(p-member-count-<= (p-unzip-l y) m))So the next step will be to compare the p-member-count-<= of the p-unzip-land p-unzip-r of a powerlist, speci�cally a sorted powerlist. Intuitively, weexpect these to di�er by no more than 1; moreover, since the p-unzip-r startscounting from the second position, we expect its p-member-count-<= to besmaller than that of the p-unzip-l. In fact, we can prove the following theo-rems:(defthm member-count-<=-of-sorted-unzips-1(implies (and (powerlist-p x)28



(p-balanced-p x)(p-sorted-p x))(<= (p-member-count-<= (p-unzip-r x) m)(p-member-count-<= (p-unzip-l x) m))))(defthm member-count-<=-of-sorted-unzips-2(implies (and (powerlist-p x)(p-balanced-p x)(p-sorted-p x))(<= (p-member-count-<= (p-unzip-l x) m)(1+ (p-member-count-<= (p-unzip-r x) m)))))Putting it all together, we end up with the following syntactically imposingtheorem, which states M1 and M2 di�er by no more than 1:(defthm member-count-<=-of-merge-unzips(implies (and (powerlist-p x)(p-balanced-p x)(p-similar-p x y)(p-number-list x)(p-number-list y)(p-sorted-p x)(p-sorted-p y))(or (equal (p-member-count-<= (p-batcher-merge(p-unzip-l x)(p-unzip-r y))m)(p-member-count-<= (p-batcher-merge(p-unzip-r x)(p-unzip-l y))m))(equal (1+ (p-member-count-<= (p-batcher-merge(p-unzip-l x)(p-unzip-r y))m))(p-member-count-<= (p-batcher-merge(p-unzip-r x)(p-unzip-l y))m))(equal (1+ (p-member-count-<= (p-batcher-merge(p-unzip-r x)(p-unzip-l y))m))(p-member-count-<= (p-batcher-merge(p-unzip-l x)(p-unzip-r y))m)))))29



The next step is to show that for non p-interleaved-p lists, there is some mso that the respective p-member-count-<= di�er by more than 1. We can �ndthis m by making a \cut" through the two lists at the precise spot where theyfail the p-interleaved-p test. The following function performs such a \cut":(defun interleaved-p-cutoff (x y)(if (and (powerlist-p x) (powerlist-p y))(cond ((< (p-min-elem (p-untie-r x))(p-max-elem (p-untie-l x)))(p-min-elem (p-untie-r x)))((< (p-min-elem (p-untie-r x))(p-max-elem (p-untie-l y)))(p-min-elem (p-untie-r x)))((interleaved-p-cutoff (p-untie-l x)(p-untie-l y))(interleaved-p-cutoff (p-untie-l x)(p-untie-l y)))((interleaved-p-cutoff (p-untie-r x)(p-untie-r y))(interleaved-p-cutoff (p-untie-r x)(p-untie-r y))))nil))When x and y are p-interleaved-p, the function interleaved-p-cutoff willreturn nil. In all other cases, it returns a valid choice of m as a counterex-ample to member-count-<=-of-merge-unzips. We can trivially show the �rstobservation as follows:(defthm interleaved-p-if-nil-cutoff(implies (and (p-similar-p x y)(p-number-list x)(p-number-list y)(not (numericp (interleaved-p-cutoff x y)))(not (numericp (interleaved-p-cutoff y x))))(p-interleaved-p x y)))In order to establish that interleaved-p-cutoff �nds a valid counterexamplewhen x and y are not p-interleaved-p, notice that interleaved-p-cutoffalways returns an element of x, and furthermore for sorted x this value m is suchthat its \index" in x is at least one more than its \index" in y, since it mustsatisfy(< (p-min-elem (p-untie-r x)) (p-max-elem (p-untie-l y)))for some corresponding subtree of x and y. In ACL2, we can prove the followingtheorem:(defthm member-count-diff-2-if-interleaved-cutoff-sorted30



(implies (and (p-similar-p x y)(p-number-list x)(p-number-list y)(p-sorted-p x)(p-sorted-p y)(interleaved-p-cutoff x y))(< (1+ (p-member-count-<=y(interleaved-p-cutoff x y)))(p-member-count-<=x(interleaved-p-cutoff x y)))))This theorem serves to �nd the counterexample needed by the two lemmasmember-count-<=-of-merge-unzips and interleaved-p-if-nil-cutoff, sowe can now establish the following key theorem:(defthm inner-batcher-merge-call-is-interleaved-p(implies (and (powerlist-p x)(p-balanced-p x)(p-similar-p x y)(p-number-list x)(p-number-list y)(p-sorted-p x)(p-sorted-p y)(p-sorted-p (p-batcher-merge (p-unzip-l x)(p-unzip-r y)))(p-sorted-p (p-batcher-merge (p-unzip-r x)(p-unzip-l y))))(p-interleaved-p (p-batcher-merge (p-unzip-l x)(p-unzip-r y))(p-batcher-merge (p-unzip-r x)(p-unzip-l y)))))From this point, the remainder of the proof is almost propositional. We can useinner-batcher-merge-call-is-interleaved-p to prove the inductive case ofthe correctness of batcher-merge. It is no accident that the inductive hypoth-esis shares the antecedent of inner-batcher-merge-call-is-interleaved-p.(defthm recursive-batcher-merge-is-sorted(implies (and (powerlist-p x)(p-balanced-p x)(p-similar-p x y)(p-number-list x)(p-number-list y)(p-sorted-p x)(p-sorted-p y)31



(p-sorted-p (p-batcher-merge (p-unzip-l x)(p-unzip-r y)))(p-sorted-p (p-batcher-merge (p-unzip-r x)(p-unzip-l y))))(p-sorted-p (p-batcher-merge x y))))Almost anticlimatically, we can now prove the main result, which establishesthe correctness of Batcher merging:(defthm sorted-merge(implies (and (p-balanced-p x)(p-similar-p x y)(p-number-list x)(p-number-list y)(p-sorted-p x)(p-sorted-p y))(p-sorted-p (p-batcher-merge x y))))With the theorem above and the meta-theorems proved in section 4.1, wecan prove the correctness of Batcher sorting:(defthm batcher-sort-is-permutation(implies (and (p-balanced-p x)(p-number-list x))(equal (p-member-count (p-batcher-sort x) m)(p-member-count x m))))(defthm batcher-sort-sorts-inputs(implies (and (p-balanced-p x)(p-number-list x))(p-sorted-p (p-batcher-sort x))))4.3 A Comparison with the Hand-ProofIt is instructive to compare the machine-veri�ed proof of section 4.2 with thehand-proof provided in [Mis94] and veri�ed in [KS94].The proof starts by de�ning the function z as follows:z(hxi) = 1 if x = 0, 0 otherwisez(p 1 q) = z(p) + z(q)That is, z(x) counts the number of zeros in x. Assuming that all powerlists rangeonly over 0's and 1's, we use the following characterization of sorted powerlists:sorted(hxi)sorted(p 1 q) = sorted(p) ^ sorted(q) ^ 0 � z(p)� z(q) � 1The 0-1 assumption also allows us to completely characterize the pairwise min-imum and maximum of two sorted lists as follows:min(x; y) = x, if sorted(x), sorted(y), and z(x) � z(y)max(x; y) = y, if sorted(x), sorted(y), and z(x) � z(y)32



Moreover, we can prove the following key lemma:sorted(min(x; y) 1 max(x; y)) if sorted(x), sorted(y), and jz(x)� z(y)j � 1With some algebraic reasoning, this yields the main correctness result:sorted(pbm(x; y)) if sorted(x) and sorted(y)where pbm is the Batcher merge function on powerlists.This proof is much simpler than that given in section 4.2, and that may betaken as an indication that ACL2 is ine�ective in reasoning about powerlists.However, such a conclusion is premature. In fact, ACL2 can verify the reasoninggiven above without too much di�culty. But the end result would not be assatisfying as the main theorems proven in 4.2 for a number of reasons. First, thehand proof relies on the 0/1 principle, which states that any comparison basedsorting which correctly sorts all lists consisting exclusively of zeros and ones willsort correctly an arbitrary list. The formal proof in the powerlist logic provesthe correctness only for lists of zeros and ones, and then uses the 0/1 principleto \lift" this proof to the arbitrary case. But the 0/1 principle is certainly notobvious; if anything, it is more surprising than the proof of Batcher merge itself.A second reason is that the de�nition of sorted used is not the same asthe \standard" de�nition of a sorted list. It is only true for lists of 0's and1's, and it is not immediately clear how this property compares to our usualnotion of sorted lists. The de�nition supplied, however, is extremely useful,since it is based on zip instead of tie, and so it works more naturally withthe de�nition of Batcher merge. However, the proof of the equivalence of thetwo de�nitions is missing, and that serves to reinforce the feeling of unease andsense of incompleteness in the �nal proof. This is especially important if wewere to use Batcher sorting as part of a more complex function, since the keyproperty we require in the complex function | i.e., that Batcher sort correctlysorts its input | has not been established yet.In fact, it is fair to say that the proofs as given are a mixture of formalreasoning and informal arguments. Such a mixture is extremely convenientwhen generating the proof by hand, but it can also be the source of subtleerrors, such as the failure to identify needed hypothesis.4.4 Bitonic SortingA bitonic list is one which can be split into two monotonic (i.e., ascending ordescending) parts. A bitonic sort is a sorting routine which is guaranteed towork only for bitonic lists. We can de�ne a bitonic merge as follows:(defun p-bitonic-merge (x)(if (powerlist-p x)(p-zip (p-min (p-bitonic-merge (p-unzip-l x))(p-bitonic-merge (p-unzip-r x)))(p-max (p-bitonic-merge (p-unzip-l x))33



(p-bitonic-merge (p-unzip-r x))))x))We can use this function in a merge sort style to create a complete sort functionas follows:(defun p-bitonic-sort (x)(if (powerlist-p x)(p-bitonic-merge (p-tie (p-bitonic-sort (p-untie-l x))(p-reverse(p-bitonic-sort(p-untie-r x)))))x))There is a close correspondence between this routine and the Batcher sortingroutine. In fact, we can prove the following theorem:(defthm bitonic-batcher-merge(implies (and (p-balanced-p x)(p-similar-p x y))(equal (p-bitonic-merge (p-tie x (p-reverse y)))(p-batcher-merge x y))))From this, it is trivial to prove that bitonic sorting is equivalent to Batchersorting as follows:(defthm bitonic-batcher-sort(implies (p-balanced-p x)(equal (p-bitonic-sort x)(p-batcher-sort x))))Naturally, this implies all the correctness results for p-bitonic-sort.This proof is fairly nice; however, it does not directly prove the correctness ofp-bitonic-merge, only its use in the speci�c sorting function p-bitonic-sort.Note, for example, how the hypothesis of the input being bitonic never comesinto play.This is actually a key point. De�ning \bitonic" in the powerlist logic innon-trivial. The usual de�nition takes the list X composed of x1; x2; : : : ; xn.X is bitonic if there is some 1 � i � n so that Xl = x1; x2; : : : ; xi and Xr =xi+1; xi+2; : : : ; xn are both monotonic. However, notice that neither Xl norXr is necessarily a powerlist according to the de�nitions in [Mis94], since i isnot required to be a power of two. Moreover, even with a more liberal modelof powerlists, it is not necessarily the case that X = Xl j Xr. So what wemust do is a di�cult case analysis based on the two left and right halves of X .A representative condition would be that if the left half is ascending and thendescending, then the right half is descending and moreover that the �rst elementof the right half is not greater than the last element of the left. This de�nitionmakes it di�cult to reason about bitonic lists, since it requires an immediate(and signi�cant) case split. 34



[Mis94] avoids this problem by using a more tractable characterization ofbitonic lists. However, this characterization only holds for powerlists composedof 0's and 1's, and its correctness is not formally established.5 Pre�x Sums of PowerlistsPre�x sums appear in many applications, e.g., arithmetic circuit design. Fora powerlist X = hx1; x2; : : : ; xni, its pre�x sum is given by ps(X) = hx1; x1 �x2; : : : ; x1 � x2 � : : :� xni. The operator � is an arbitrary binary operator; forour purposes, we will assume it to be associative, and to have a left-identity 0.There is a natural de�nition of pre�x sums in terms of indices. That is, entryyj in the pre�x sum of X is equal to the sum of all the xi up to xj . However, thisde�nition does not extend nicely to powerlists, since the two halves of a pre�xsum are not themselves pre�x sums. The trick is to generalize pre�x sums toallow an arbitrary value to be added to the �rst element, in a manner analogousto a carry-in bit. This leads to the following de�nitions:(defun p-prefix-sum-aux (prefix x)(if (powerlist-p x)(p-tie (p-prefix-sum-aux prefix (p-untie-l x))(p-prefix-sum-aux (p-last (p-prefix-sum-auxprefix(p-untie-l x)))(p-untie-r x)))(bin-op prefix x)))(defmacro p-prefix-sum (x)`(p-prefix-sum-aux (left-zero) ,x))where p-last returns the last element of a powerlist. In the sequel, mostof the theorems will be about p-prefix-sum-aux, though a few will have tobe proved exclusively for p-prefix-sum. Alternatively, we could have de�nedp-prefix-sum-aux to pass the sum of the left half of x instead of the last el-ement of the left pre�x sum. We chose the current de�nition, simply becauseit is closer to the usual way we compute powerlists. However, ACL2 can easilyestablish the following theorem, which will be frequently used in the sequel:(defthm last-prefix-sum-aux(implies (and (p-domain-list x) (domain-p val))(equal (p-last (p-prefix-sum-aux val x))(bin-op val (p-elem-sum x)))))The functions bin-op and left-zero encapsulate the binary operator� andits left identity, respectively. We use ACL2's encapsulate so that the followingtheorems are all theorem schemas which can be instantiated with any suitableoperator, e.g, plus, and, min, etc. The required axioms are as follows:(encapsulate 35



((domain-p (x) t)(bin-op (x y) t)(left-zero () t))(defthm booleanp-domain-p(booleanp (domain-p x)))(defthm scalar-left-zero(domain-p (left-zero)))(defthm domain-powerlist(implies (domain-p x)(not (powerlist-p x))))(defthm left-zero-identity(implies (domain-p x)(equal (bin-op (left-zero) x) x)))(defthm bin-op-assoc(equal (bin-op (bin-op x y) z)(bin-op x (bin-op y z))))(defthm scalar-bin-op(domain-p (bin-op x y))))The function domain-p recognizes our intended domain, which is required tobe scalar, i.e. non-powerlist. Note that we require the second argument to bedomain-p in left-zero-identity, but that domain-p is not a requirement ofbin-op-assoc, and furthermore that domain-p is always true of the result ofbin-op. This turns out to be important, in that ACL2 de�nes many binaryoperators that meet these requirements precisely. Moreover, we need at leastone of these theorems to have domain-p as a hypothesis. For example, if weremove the hypothesis from left-zero-identity, then for a powerlist x, wewould have that 0� x = x and so � would not always return a scalar.5.1 Simple Pre�x SumsThe de�nition of p-prefix-sum is inherently sequential. Our �rst goal will beto prove that the following, more parallel, de�nition is equivalent:(defun p-star (x)(if (powerlist-p x)(p-zip (p-star (p-unzip-r x)) (p-unzip-l x))(left-zero)))(defun p-add (x y)(if (powerlist-p x) 36



(p-zip (p-add (p-unzip-l x) (p-unzip-l y))(p-add (p-unzip-r x) (p-unzip-r y)))(bin-op x y)))(defun p-simple-prefix-sum (x)(if (powerlist-p x)(let ((y (p-add (p-star x) x)))(p-zip (p-simple-prefix-sum (p-unzip-l y))(p-simple-prefix-sum (p-unzip-r y))))x))The function p-add returns the sum of two powerlists; p-star shifts a powerlistto the right, pre�xing the result with left-zero.The �rst problem is that ACL2 does not accept the de�nition given abovefor p-simple-prefix-sum. The di�culty is that the de�nition recurses withx changing to (p-unzip-l (p-add (p-star x) x)) and the latter term is notobviously \smaller" than x. Therefore, ACL2 can not prove that the recursivede�nition is well-founded. To circumvent this, we de�ne the following \measure"on powerlists:(defun p-measure (x)(if (powerlist-p x)(+ (p-measure (p-unzip-l x))(p-measure (p-unzip-r x)))1))We next prove theorems showing how p-star and p-add preserve measures:(defthm measure-star(equal (p-measure (p-star x)) (p-measure x)))(defthm measure-add(<= (p-measure (p-add x y)) (p-measure x)))Finally, we provide ACL2 with the hint to use p-measure when proving thede�nition of p-simple-prefix-sum is well-founded.We can now concentrate on the correctness of p-simple-prefix-sum. Thede�nition of this function suggests two approaches: we can explore the powerlistgiven by (p-add (p-star x) x), or we can consider what happens when weunzip the pre�x sum of x. We will take the �rst approach. Recall that p-starshifts its argument to the right, and that p-add returns a pairwise sum. Thus,for x given by X = hx1; x2; x3; : : : ; xni(p-add (p-star x) x) isY = X� �X = hx1; x1 � x2; x2 � x3; : : : ; xn�1 � xni37



Taking the p-unzip of this powerlist, gives the following:Y1 = hx1; x2 � x3; : : : ; xn�2 � xn�1iY2 = hx1 � x2; x3 � x4; : : : ; xn�1 � xniIt is clear now that indeed the pre�x sum of Y1 yields precisely the odd-indexedelements of the pre�x sum of X and, similarly, the pre�x sum of Y2 yields theeven-indexed elements. Thus we can, intuitively at least, verify the correctnessof p-simple-prefix-sum. To formalize this, it will be convenient to think ofY1 and Y2 not as components of Y , but as two separate lists in their own right.This removes the awkward reference to p-unzip and allows us to rederive Y1and Y2 in a way more amenable to reasoning about p-prefix-sum. We beginwith a new characterization of Y2:(defun add-right-pairs (x)(if (powerlist-p x)(if (powerlist-p (p-untie-l x))(p-tie (add-right-pairs (p-untie-l x))(add-right-pairs (p-untie-r x)))(bin-op (p-untie-l x) (p-untie-r x)))x))Since add-right-pairs accounts for all the elements of x, we can conclude thefollowing important lemma:(defthm elem-sum-add-right-pairs(implies (p-balanced-p x)(equal (p-elem-sum (add-right-pairs x))(p-elem-sum x))))It is then straight-forward to prove how the pre�x sum of add-right-pairsrelates to the pre�x sum of x:(defthm prefix-sum-add-right-pairs(implies (and (domain-p val)(p-balanced-p x)(p-domain-list x)(powerlist-p x))(equal (p-prefix-sum-aux val (add-right-pairs x))(p-unzip-r (p-prefix-sum-aux val x)))))Notice that this proof uses the characterization of the last element of a pre�xsum with the sum of the original list.We have now completely characterized the pre�x sum of Y2, so we're half-way there to a correctness of p-simple-prefix-sum. However, the second halfis not quite so easy. The �rst di�culty is that in order to de�ne Y1, we mustpass some values from the left half of x to the right half. This is very much likethe problem de�ning p-prefix-sum, and we use a similar strategy:38



(defun add-left-pairs (val x)(if (powerlist-p x)(if (powerlist-p (p-untie-l x))(p-tie (add-left-pairs val (p-untie-l x))(add-left-pairs (p-last (p-untie-l x))(p-untie-r x)))(bin-op val (p-untie-l x)))(bin-op val x)))Compounding the di�culties, we see that elem-sum-add-right-pairs does nothave a nice equivalent with add-left-pairs. The problem is that the functionadd-left-pairs introduces a new value to the front of x and \drops" the lastvalue of x. The resulting lemma becomes(defthm bin-op-elem-sum-add-left-last(implies (and (powerlist-p x)(p-balanced-p x))(equal (bin-op (p-elem-sum (add-left-pairs val1x))(p-last x))(bin-op val1 (p-elem-sum x)))))The situation becomes more complicated when we consider add-left-pairsand p-prefix-sum-aux together. Particularly troublesome is that both of thesefunctions introduce an auxiliary value to pass information from the left side oftheir argument to the right side. We will have to show how these values can besimpli�ed. In particular, the following is an important rewrite rule:(defthm prefix-sum-add-left(implies (and (powerlist-p x)(p-balanced-p x)(p-balanced-p y)(not (powerlist-p val1))(not (powerlist-p val2)))(equal (p-prefix-sum-aux (bin-op val1(p-elem-sum(add-left-pairsval2x)))(add-left-pairs(p-last x)y))(p-prefix-sum-aux val1(add-left-pairs(bin-op val2(p-elem-sum x))y)))))39



This surprising rule was discovered, as are many others, by scrutinizing ACL2'soutput from a failed proof attempt. In fact, at �rst we did not recognize theabove as a theorem; it was only after working out some examples that we beganto suspect it was universal.Using this rule, it is now simple to prove the �nal theorem:(defthm prefix-sum-add-left-pairs(implies (and (p-balanced-p x)(p-domain-list x)(powerlist-p x)(domain-p val1)(domain-p val2))(equal (p-prefix-sum-aux val1(add-left-pairs val2 x))(p-unzip-l(p-prefix-sum-aux (bin-op val1 val2)x)))))This is an important moment, because taking prefix-sum-add-left-pairsand prefix-sum-add-right-pairs together, we have a characterization of theunzips of p-prefix-sum. That is, we have taken the original de�nition ofp-prefix-sum, which was inherently sequential, and we have replaced it withan independent characterization of its unzips, which will make it much easier toprove the correctness of p-simple-prefix-sum.However, p-simple-prefix-sum is de�ned in terms of p-star and p-add,and our new characterization uses add-left-pairs and add-right-pairs. Thenext step is to show how these are related. To start with, we give alternativede�nitions of p-star and p-add which use tie instead of zip; this will make iteasier to reason about then and add-left-pairs/add-right-pairs together.Recall that p-star performs a shift operation and p-add a pairwise addition.This suggests that we can replace them with the following:(defun p-shift (val x)(if (powerlist-p x)(p-tie (p-shift val (p-untie-l x))(p-shift (p-last (p-untie-l x)) (p-untie-r x)))val))(defun p-add-tie (x y)(if (powerlist-p x)(p-tie (p-add-tie (p-untie-l x) (p-untie-l y))(p-add-tie (p-untie-r x) (p-untie-r y)))(bin-op x y)))ACL2 can easily prove the equivalence of these de�nitions with the original ones.For our purposes, we only need the following theorem:(defthm add-star-add-tie-shift(implies (p-balanced-p x) 40



(equal (p-add (p-star x) x)(p-add-tie (p-shift (left-zero) x) x))))Using p-shift and p-add-tie, we can now prove how add-left-pairs andadd-right-pairs are constructed in p-simple-prefix-sum:(defthm add-tie-shift-add-left-right(implies (and (powerlist-p x)(p-balanced-p x)(p-domain-list x))(equal (p-add-tie (p-shift (left-zero) x) x)(p-zip (add-left-pairs (left-zero) x)(add-right-pairs x)))))At this point, the proof is almost complete. We know that the term(p-add (p-star x) x)can be rewritten as(p-add-tie (p-shift (left-zero) x) x)Moreover, we know how this term is unzipped into the two terms(add-left-pairs (left-zero) x)(add-right-pairs x)And, �nally, we know that the pre�x sum of these terms can be zipped backtogether to get the pre�x sum of x. Putting all this together, we can prove thecorrectness of p-simple-prefix-sum:(defthm simple-prefix-sum-prefix-sum(implies (and (p-balanced-p x)(p-domain-list x))(equal (p-simple-prefix-sum x)(p-prefix-sum x))))5.2 Ladner-Fischer Pre�x Sums[Mis94] gives another algorithm for computing pre�x sums, this one due toLadner and Fischer:(defun p-ladner-fischer-prefix-sum (x)(if (powerlist-p x)(let ((y (p-ladner-fischer-prefix-sum(p-add (p-unzip-l x) (p-unzip-r x)))))(p-zip (p-add (p-star y) (p-unzip-l x)) y))x)) 41



The complexity of this algorithm is what justi�es the previous usage of the namep-simple-prefix-sum!A �rst glance suggests that proving p-ladner-fischer-prefix-sum correctwill be a major task. However, we have enough results to derive the actual proofwithout too much e�ort. First, we notice that p-ladner-fischer-prefix-sumreturns the answer as the zip of two powerlists:(p-add (p-star (p-unzip-r (p-prefix-sum x))) (p-unzip-l x))(p-prefix-sum (p-add (p-unzip-l x) (p-unzip-r x)))where we have replaced p-ladner-fischer-prefix-sumwith p-prefix-sum inanticipation of the induction hypothesis. The second term seems simpler, so webegin with it. We already know it should be identical to the following:(p-prefix-sum (add-right-pairs x))It is obvious that (add-right-pairs x) must be equal to (p-add (p-unzip-lx) (p-unzip-r x)) in order for p-ladner-fischer-prefix-sum to be correct.This suggests the following lemma:(defthm add-unzip-l-unzip-r(implies (and (powerlist-p x)(p-balanced-p x))(equal (p-add (p-unzip-l x) (p-unzip-r x))(add-right-pairs x))))And now the �rst half of the correctness result can be easily established.It only remains to look at the left unzip of p-ladner-fischer-prefix-sum.We need to show that the following are equivalent:(p-add (p-star (p-unzip-r (p-prefix-sum x))) (p-unzip-l x))(p-unzip-l (p-prefix-sum x))This appears to be an awkward lemma, since it refers to both p-unzip-l andp-unzip-r in a unsymmetrical fashion. However, we can remove p-unzip-rusing the following theorem:(defthm unzip-l-star(equal (p-unzip-l (p-star x)) (p-star (p-unzip-r x))))Thus, we need only consider the following terms:(p-add (p-unzip-l (p-star (p-prefix-sum x))) (p-unzip-l x))(p-unzip-l (p-prefix-sum x))But now, since all the terms refer exclusively to p-unzip-l and p-add is de�nedin terms of p-zip, we can factor the p-unzip-l calls as follows:(p-unzip-l (p-add (p-star (p-prefix-sum x)) x))(p-unzip-l (p-prefix-sum x))42



At this point, one can conjecture that the calls to p-unzip-l are unnecessary,and in fact ACL2 can prove the following stronger theorem:(defthm add-star-prefix-sum(implies (and (p-balanced-p x)(p-domain-list x))(equal (p-add (p-star (p-prefix-sum x)) x)(p-prefix-sum x))))In section 5.3, we will see how this theorem, called the \De�ning Equation"in [Mis94], plays a key role in the hand proof.The two results above establish that p-ladner-fischer-prefix-sum equalsp-prefix-sum, and thus we have demonstrated its correctness:(defthm ladner-fischer-prefix-sum-prefix-sum(implies (and (p-balanced-p x)(p-domain-list x))(equal (p-ladner-fischer-prefix-sum x)(p-prefix-sum x))))5.3 Comparing with the Hand-Proof AgainAs was the case with Batcher sorting, the hand proof given in [Mis94] is muchsimpler than the machine-veri�ed proof given above for the correctness of thepre�x sum algorithms. Part of the reason is that in [Mis94] the proof begins inmedia res, as it were. Instead of providing a constructive de�nition, the pre�xsum ps(x) of a powerlist x is de�ned as the solution to the following \de�ningequation": z = z� � LThe perceptive reader will recognize this equation as add-star-prefix-sum.The proof then proceeds by applying the de�ning equation to derive formulasfor the left and right unzip of a pre�x sum. Speci�cally, the derivation yieldsthe Ladner-Fischer scheme. From there, it is shown how this scheme can bealgebraically simpli�ed to yield the simple pre�x sum algorithm.However, as we saw in section 5.2, establishing the correctness of the de�ningequation requires a fair amount of e�ort, and once it is established the remainderof the Ladner-Fischer proof is relatively simple.The extra di�culty observed in the previous sections is a direct result ofinsisting the speci�cations, i.e., de�ning axioms, be constructive and readilyaccepted. In the interest of rigor, we believe this insistence is justi�ed, so thatour faith in a mechanically veri�ed proof is not undermined by the necessity fora large unstated theory which has only been veri�ed by human hands.
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6 ConclusionsIn this paper, we set out to formalize powerlists in ACL2. Although powerlistsare designed as regular data structures, we found it advantageous to generalizethem in ACL2 to encompass non-regular powerlists. This is more in keepingwith ACL2's style, where even arithmetic and boolean operators can apply toall ACL2 objects.An unexpected contribution was the complete formalization of algorithmsusing powerlists. Previously, it had been shown how powerlists could be usedto reason informally about software, but the reasoning was performed with amixture of arguments inside as well as outside of powerlist algebra. In thispaper, we showed the completion, using powerlists, of many of the exampletheorems in [Mis94].The more signi�cant portion of this research was devoted to working withACL2. In particular, we have shown how a complex theory can be developed inACL2 by someone who is outside of the ACL2 development e�ort. We believethis shows a deal of maturity in ACL2 and illustrates how it can be used toprove large theories. More importantly, we showed how many of ACL2's \new"features | e.g., books, congruence rules, equivalence rewriting, encapsulations,forward chaining | can be successfully combined in a large project. Other,more obscure, features also played a role, though they were unmentioned inthis paper. Readers interested in using ACL2 can �nd these instances in theavailable source code.We also found some short-comings in ACL2 that suggest further improve-ments. For example, the arithmetic reasoning was a major stumbling block inproving the correctness of the gray code example in section 3.2. We identi�edsome potential di�culties when using structures, since ACL2 does not provide amechanism to add new data types. Encapsulation also presented us with someminor problems. For example, a great convenience of ACL2 is that its logicis computational. Thus, when \debugging" a new function, it is possible toexecute it and see the results. However, this is not possible when using encap-sulated functions. It would be useful if such functions could be used, perhapsby allowing the user to provide \sample" de�nitions for printing, or by simplyprinting them as called, e.g. (bin-op 2 4).A �nal observation concerns the development of large ACL2 theories. Whileit would be nice if they were developed fully grown, most of these theories aredeveloped through a process of iterative re�nement. So, for example, whiledeep in the middle of a proof concerning Batcher merge, we may discover animportant lemma about powerlists that should have been proved in the powerlistbook. However, theories that arise in this fashion can produce disaster, muchthe same way that a program that is hacked over a long period of time canbecome unmaintainable. Among the pitfalls are circular rewrite rules, whichdrive the theorem prover into in�nite loops. More subtle problems involve ruleswhich prematurely rewrite a term, preventing another rule from �ring and thus\breaking" a previously proved theorem. It would be nice if a tool were availablewhich could predict the rami�cations of such a \small" change.44



Moreover, even when a change is logically harmless, that is all the previoustheorems are still provable by ACL2, it may have drastic consequences on theperformance of the proof. For example, adding a rewrite rule can \hide" aformer rule, and thus a proof that was previously a few lines long now involvesa nested recursive proof, perhaps with a large number of cases. This suggeststhe opportunity for another type of tool. This tool would take a theory andreturn an \optimized" version, perhaps one including a few \Knuth-Bendix"style rewrite rules, or one in which the rewrite rules are reordered. Such a toolcould use a mixture of automated and interactive processing; e.g., \why wasthis rule used here?" or \why didn't you use this theorem here?" While writingthis tool would be a signi�cant task, we believe it would greatly enhance the useof ACL2. After all, most portions of an ACL2 theory are devoted to guidingACL2 towards a certain proof. This tool, then, would be roughly analogousto a program debugger in interactive mode, and to an optimizer when usednon-interactively.Source CodeThe source code for all the ACL2 examples listed here can be found from our webpage at the URL http://www.lim.com/~ruben/research/acl2/powerlists.This code was processed with ACL2 version 1.8. When new versions of ACL2become available | as of this writing, rumors of a forthcoming version 1.9 havebeen heard | we intend to port the books to them.AcknowledgmentsWe would like to extend our immense gratitude to Robert S. Boyer for suggestingthe key data structures and de�nitions which made this work possible. Wewould also like to thank him for reviewing early drafts of this paper and o�eringmany insightful comments. Our thanks also go to Jay Misra for suggesting themechanical veri�cation of Batcher sort as a worthy challenge; we did not fullyappreciate at the time how worthy the challenge would turn out to be.References[BM79] Robert S. Boyer and J Strother Moore. A Computational Logic. Aca-demic Press, Orlando, 1979.[BM88] Robert S. Boyer and J Strother Moore. A Computational Logic Hand-book. Academic Press, San Diego, 1988.[CLR90] Thomas H. Corman, Charles E. Leiserson, and Ronald L. Rivest. In-troduction to Algorithms, chapter 32. McGraw-Hill, New York, 1990.45
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