Defthms About Zip and Tie:
Reasoning About Powerlists in ACL2

Ruben A. Gamboa*
Computer Sciences Department
The University of Texas at Austin
Taylor Hall 2.124
Austin, TX 78712-1188

ruben@lim.com, ruben@cs.utexas.edu

http://www.lim.com/~ruben/research/acl2/powerlists/

January 22, 1997

Abstract

In [Mis94], Misra introduced the powerlist data structure, which is
well suited to express recursive, data-parallel algorithms. Moreover, Misra
and other researchers have shown how powerlists can be used to prove the
correctness of several algorithms. This success has encouraged some re-
searchers to pursue automated proofs of theorems about powerlists[Kap96,
KS94, KS95].

In this paper, we show how ACL2 can be used to verify theorems about
powerlists. We depart from previous approaches in two significant ways.
First, the powerlists we use are not the regular structures defined by Misra;
that is, we do not require powerlists to be balanced trees. As we will see,
this complicates some of the proofs, but on the other hand it allows us
to state theorems that are otherwise beyond the language of powerlists.
Second, we wish to prove the correctness of powerlist algorithms as much
as possible within the logic of powerlists. Previous approaches have relied
on intermediate lemmas which are unproven (indeed unstated) within the
powerlist logic. However, we believe these lemmas must be formalized if
the final theorems are to be used as a foundation for subsequent work, e.g.,
in the verification of system libraries. In our experience, some of these
unproven lemmas presented the biggest obstacle to finding an automated
proof.

*Author is supported by a salary from LIM International, Inc.

Contents
1 Introduction

2 Booking Powerlists
2.1 Regular Powerlists
2.2 Defining Powerlists in ACL2
2.2.1 A Naive Representation of Powerlists
2.2.2 A Better Representation of Powerlists
2.2.3 The Tie Constructor
2.2.4 The Zip “Constructor”
2.3 Similar Powerlists Lo
24 Regular Powerlists
2.5 Functions on Powerlists 0. ..

3 Simple Examples
3.1 Permutations
3.2 Gray Code

4 Sorting Powerlists
4.1 Merge Sorting
4.2 Batcher Sorting oL
4.3 A Comparison with the Hand-Proof
4.4 Bitonic Sorting Lo

5 Prefix Sums of Powerlists
5.1 Simple Prefix Sums o000
5.2 Ladner-Fischer Prefix Sums
5.3 Comparing with the Hand-Proof Again.

6 Conclusions

14
14
17

20
22
24
32
33

35
36
41
43

44

1 Introduction

In [Mis94], Misra introduced the powerlist data structure and powerlist algebra,
which is particularly well-suited to express and reason about recursive parallel
algorithms. Of particular interest to Misra is the expressiveness of powerlist
algebra and its utility as a logic in which to prove correctness results; much
of [Mis94] is devoted to the development of practical examples using powerlists,
including Batcher sorting, FFT networks, and prefix sums, as well as the rele-
vant correctness results. In the same spirit, other researchers have used pow-
erlists to find elegant proofs of parallel algorithms, for example odd-even sorting
in [Kor96].

In this paper, we focus not on the discovery or expression of correctness
results, but on their mechanical verification. Specifically, we wish to show how
a library of provably correct functions on powerlists can be developed. We
consider it important, therefore, that the correctness results be in such a form
that they can be used in subsequent (mechanical) proofs. This is a departure
from [Mis94], where intuition is often used as a guide to transform the orig-
inal specifications into more tractable forms, in order to simplify the formal
proof based on the powerlist algebra. These transformations are justified when
the proofs are being generated by hand, since the intuitive arguments can be
formalized inside or outside of powerlist algebra.

We will formalize powerlists using the ACL2 theorem prover. ACL2 was
designed to be an “industrial-strength” theorem prover, supporting equality
rewriting and induction, as well as more esoteric techniques such as equiva-
lence rewriting, congruence reasoning, and reasoning about theorem schemas
via functional instantiation. In addition to its reasoning engine, ACL2 provides
many amenities to its user. An important one is the abstraction of “books,”
which allow the user to construct theories in a modular fashion. For example,
we will construct a powerlist “book” which will contain all the commonly used
definitions and theorems about powerlists, i.e., the requisite powerlist algebra.

Other researchers have also attempted to use automated theorem provers to
reason about powerlists, notably [Kap96], [KS94] and [KS95]. While there are
some similarities in our respective approaches, there are significant differences as
well. In [Kap96], Kapur is interested in extending a theorem prover to facilitate
reasoning about regular data structures, such as powerlists. [KS94] uses this
structure to prove some of the theorems from [Mis94], but the emphasis again
is on the theorem prover, and how it can find proofs that rival in elegance
those generated by hand. However, the theorems themselves, as in [Mis94], are
designed to simplify the powerlist proofs, rather than to certify an algorithm’s
correctness with respect to an absolute specification. In spirit, we have more in
common with [KS95], where adder circuits specified using powerlists are proved
correct with respect to addition on the natural numbers.

Readers interested in using ACL2 to prove theorems about powerlists, or in
learning how to write ACL2 books to define a new theory, should peruse sec-
tion 2, which describes the powerlist axiomatization we use, and read sections 3,
which shows some simple examples, and either of sections 4 or 5, which show

more significant examples. Readers interested in powerlists but not necessarily
on using ACL2 to verify theorems about them should instead read section 2.2,
which shows the basic powerlist axioms; and browse sections 3. All readers
should read section 6, which summarizes the results and gives some pointers for
the future.

2 Booking Powerlists

2.1 Regular Powerlists

Misra defines powerlists as follows. For any scalar z, the object () is a singleton
powerlist. If z and y are similar powerlists, we can construct the new powerlists
z | y and = M y, called the tie and zip of z and y, respectively. The powerlist
x | y consists of all elements of = followed by the elements of y. In contrast, z X y
contains the elements of x interleaved with the elements of y. The similarity
condition on x and y restricts | and X to operate only on lists of the same length;
hence, all powerlists are of length 2" for some integer n. We call these “regular”
powerlists.

So for example, (1),(1,2), (3,4), (1,2,3,4) and (1, 3,2,4) are all powerlists.
Moreover, (1,2) | (3,4) = (1,2,3,4) and (1,2) X (3,4) = (1,3,2,4).

The theory of powerlists depends on the following axioms (laws in [Mis94]):

L0. For singleton powerlists (z) and (y), (z) | (y) = (z) X (y).

L1a. For any non-singleton powerlist X, there are similar powerlists L, R so
that X = L | R.

L1b. For any non-singleton powerlist X, there are similar powerlists O, E so
that X = O X E.

L2a. For singleton powerlists (z) and (y), (z) = (y) iff x = y.

L2b. For pOWGI‘liStS X1 | X2 and Y1 | }fg, X1 | X2 = Yi | Y2 iff X1 = Yi and
X, =Y.

L2c. For powerlists X1 X Xy and Y7 X Y5, Xy XX, =Y, XY, iff X; =Y and
X, =Ys.

L3. For powerlists X7, X, Y7, and Y5, (X7 | Xo) X (V7 | ¥2) = (X1 X YY) |
(X2 X Y5).

2.2 Defining Powerlists in ACL2
2.2.1 A Naive Representation of Powerlists

Choosing the right representation of powerlists in ACL2 is not trivial. One
immediate stumbling block is that ACL2 does not support partial functions, so
the definitions of | and X must do something for non-similar powerlists, and in

fact for non-powerlist operands. A first approach might represent powerlists in
ACL2 as lists and of length 2". The function tie would take two powerlists and,
if they are of equal length, return their concatenation, otherwise a special error
powerlist (e.g., nil). Similarly, we could define the function zip. A similar
approach is taken in [KS94], though partial constructors are used in that paper.

There are a few problems with taking this approach in ACL2. First of all,
each time we make a tie or zip, we would have to prove that the arguments
are of equal length. These proof obligations can become expensive, especially
if they prevent term simplification. Moreover, the proof obligations propagate
into all theorems concerning tie and zip, and this will place a large burden on
the ACL2 rewriter. The second problem is that since ACL2 does not support
function definitions over terms, powerlist functions such as

rev({z)) =

rev(z |y) = rev(y) | rev(z)
need to be turned into the form

(X) = X if X is a singleton
rev | rev(right(X)) | rev(left(X)) otherwise

where the functions left and right are defined so that left(X) | right(X) =
X. But defining these functions in ACL2 — more germanely, reasoning about
them — is not simple. Intuitively, the problem is that to compute left(X),
we must first count the elements of X, divide by two, then walk back through
the elements of X and return half of them. Reasoning about all these steps is
necessary in every function invocation. Needless to say, the overhead quickly
overwhelms the prover.

2.2.2 A Better Representation of Powerlists

The observations above led us! to pursue an alternative approach. Instead of
representing powerlists as lists, we chose to represent them as binary trees, e.g.,
cons trees. Moreover, we remove the restriction that tie and zip only apply to
similar powerlists. The operation tie is now replaced by a simple cons and left
and right can be defined in terms of car and cdr. The definition of zip requires
a recursive function, but this is no worse than when representing powerlists as
lists. The result of this representation is that reasoning about powerlists requires
much less overhead than before; however, the representation allows objects that
were previously not recognized as powerlists, for example (1.(2.3)), where we
use dotted notation to emphasize the structural nature of the representation.
We must be careful here that the resulting theory is nevertheless faithful to the
original theory due to Misra. In the sequel, we will use the term “powerlists”
to refer to arbitrary “dotted-pair” powerlists as above. When we must refer to
the original powerlists explicitly, we will use the term “regular powerlists.”

L Actually, they led RSB; we simply followed.

Observe, since the scalar powerlist (z) is simply represented as z in our
scheme, law L@ is trivially true. A drawback of this approach is that we do
not allow nested powerlists, e.g., ((12) (34)) is indistinguishable from (12 34)
in our representation. Where nested powerlists are needed, e.g., for matrices,
we suggest adding an explicit nest operator, e.g., (nest({12)) nest((34))). Such
an approach is used in section 3.2.

2.2.3 The Tie Constructor

We begin the actual implementation with the definition of the data type pow-
erlists. For stylistic (and as will be seen in section 3.2 subsequently technical)
reasons, we define powerlists not directly as cons’s, but as dotted structures:

(defstructure powerlist car cdr)

The defstructure event is similar to Common LISP’s defstruct, but there
are some key differences. It defines the functions powerlist, powerlist-p,
powerlist-car, and powerlist-cdr. It also proves the relevant “functor” the-
orems about them, which correspond to Misra’s laws L1a and L2b. However,
it does not introduce a new data type. This is unfortunate; we will see some
surprising results in section 3.2.

For style, we rename the functions powerlist-car and powerlist-cdr into
p-untie-1 and p-untie-r, respectively. This will serve to provide more sym-
metry with p-zip below. In the sequel, we will refer to (p-untie-1 x) as the
“left half” or “left untie” of x. Similarly, we will say the “right half” or the
“right untie” when referring to (p-untie-r x).

The next step is to define the function p-zip, by using the laws L0 and
L3. Before doing so, however, we have to prove that induction schemes based
on p-untie-1 and p-untie-r are valid?. We can do this with the following
theorem:

(defthm untie-reduces-count
(implies (powerlist-p x)
(and (< (acl2-count (p-untie-1 x))
(acl2-count x))
(< (acl2-count (p-untie-r x))
(acl2-count x)))))

Since we expect to use this theorem often, specifically in the proof obligations
of all defuns recursing with p-untie, we suggest adding this as a built-in rule
of ACL2. We can do that with the following ACL2 event:

(defthm untie-reduces-count-fast
(implies (powerlist-p x)
(and (e0-ord-< (acl2-count (p-untie-1 x))
(acl2-count x))

2Surprisingly, this is not done by defstructure.

(e0-ord-< (acl2-count (p-untie-r x))
(acl2-count x))))
:rule-classes :built-in-clause)

Notice that we must be careful to use ezactly the same terms that ACL2 will
generate when admitting defuns. A good way to do this is to run a sample defun
without the event above, then copying the induction goal printed by ACL2.
From this point on, ACL2 will simply accept all defuns based on p-untie-1
and p-untie-r as quickly as it does functions defined in terms of car and cdr.
This is especially nice when constructing the ACL2 books in the first place,
where interactivity is at a premium.

2.2.4 The Zip “Constructor”
We can now define the function p-zip which implements the zip “constructor”:

(defun p-zip (x y)
(if (and (powerlist-p x) (powerlist-p y))
(p-tie (p-zip (p-untie-1 x) (p-untie-1 y))
(p-zip (p-untie-r x) (p-untie-r y)))
(p-tie x y)))

Note how the definition of p-zip mirrors L0 and L3, hence these axioms are
satisfied by our definition of p-tie and p-zip. In order to accept definitions
based on p-zip, we have to define the functions p-unzip-1 and p-unzip-r,
analogous to p-untie-1 and p-untie-r. We can do so as follows:

(defun p-unzip-1 (x)
(if (powerlist-p x)
(if (powerlist-p (p-untie-1 x))
(if (powerlist-p (p-untie-r x))
(p-tie (p-unzip-1 (p-untie-1 x))
(p~unzip-1 (p-untie-r x)))
(p~untie-1 x))
(p~untie-1 x))
x))

(defun p-unzip-r (x)
(if (powerlist-p x)
(if (powerlist-p (p-untie-1 x))
(if (powerlist-p (p-untie-r x))
(p-tie (p-unzip-r (p-untie-1 x))
(p~unzip-r (p-untie-r x)))
(p~untie-r x))
(p~untie-r x))
nil))

At this state, it is worthwhile to prove the validity of recursion based on p-zip,
just as we did for p-tie.

Notice that p-unzip-1 and p—unzip-r return every other element of a pow-
erlist x. If we index the elements of x from 1, (p-unzip-1 x) returns the
odd-indexed elements, and (p-unzip-r x) the even-indexed ones. Hence, in
the sequel we will refer to p-unzip-1 and p-unzip-r as the odd- and even-
indexed elements of x, respectively. Similarly to p-untie, we will also refer to
these lists as the “left unzip” and “right unzip” of x.

The definitions of p—unzip-1 and p-unzip-r were carefully constructed so
that the following theorems are all true:

(defthm zip-unzip
(implies (powerlist-p x)
(equal (p-zip (p-unzip-1 x) (p-unzip-r x)) x)))

(defthm unzip-1l-zip
(equal (p-unzip-1l (p-zip x y)) x))

(defthm unzip-r-zip
(equal (p-unzip-r (p-zip x y)) y))

These three theorems prove the equivalent of law L2c¢ for our powerlists. On an
implementation node, we make zip-unzip an :elim rule so that ACL2 can use
it to eliminate the destructors p-unzip-1 and p-unzip-r in favor of p-zip, in
much the same way it removes car and cdr and replaces them with cons.

2.3 Similar Powerlists

This leaves only the issue of similarity. Laws L1a and L1b claim that p-untie-1
and p-untie-r are similar, i.e. of the same length, and so are p-unzip-1 and
p-unzip-r. This is certainly not the case with our powerlists, since we do not
require that powerlists be of length 2. We will now add conditions that make
these theorems true. Later, these conditions will surface as hypothesis in some
of the example theorems proved.

In accordance with [Mis94], we define two powerlists as similar if they have
the same tie-tree structure. We can do so with the following ACL2 event:

(defun p-similar-p (x y)
(if (powerlist-p x)
(and (powerlist-p y)
(p-similar-p (p-untie-1 x) (p-untie-1 y))
(p-similar-p (p-untie-r x) (p-untie-r y)))
(not (powerlist-p y))))

We can immediately prove that p-similar-p is an equivalence relation. This is
usually useful, because ACL2 can use this fact in its generic “equality” reasoning,
though occasionally ACL2’s rewriting of a p-similar-p hypothesis with an
equivalent one has hindered rather than helped a proof — equality/equivalence
reasoning is tricky.

Our next task is to show how p-similar-p powerlists behave in conjunction
with the constructors and destructors based on p-tie and p-zip. These theo-
rems are trivial for regular powerlists, since powerlists are similar if and only if
they have the same length. Moreover, both zip and tie double the length of a
powerlist, and unzip and untie halve it.

We have to work a little harder in the case of general powerlists; this lost
simplicity is the price we pay for not using a regular data structure as suggested
by Misra. For starters, we can prove theorems about the destructors, such as
the following:

(defthm unzip-l-similar
(implies (p-similar-p x y)
(p-similar-p (p-unzip-1 x) (p-unzip-1 y))))

We also prove the analogous theorems for p—unzip-r as well as for p-untie.
These theorems will be used most often in proving the antecedent of an inductive
hypothesis. For example, with the theorem

(implies (p-similar-p x y)
(P xy))

where property P is defined in terms of p-zip, the following subgoal is likely to
be generated by induction:

(implies (and (powerlist-p x)
(p-similar-p x y)
(implies (p-similar-p (p-unzip-1 x)
(p~unzip-1 y))
(P (p~unzip-1 x) (p-unzip-1 y)))
(implies (p-similar-p (p-unzip-r x)
(p—unzip-r y))
(P (p~unzip-r x) (p-unzip-r y))))
(P xy))

At this point, unzip-1l-similar can be used to establish that (P (p-unzip-1
x) (p-unzip-1 y)) and the proof can proceed. Since this is the intended use,
we turned these theorems into :forward-chaining rules. This seems to have
the desired effect of removing the inner implications quickly, but in many proofs
we still saw ACL2 spending a bit of effort in doing so. It is unclear at this point
whether the problem is with the ACL2 heuristics or with the rules themselves.

Remaining are the constructors p-tie and p-zip. We would like to say that
when a powerlist is zipped (tied) to one of two similar powerlists, the result
is similar to when it is zipped (tied) to the other. ACL2 provides a general
way to reason about this type of theorem, namely congruence rewriting. With
congruence rewriting, ACL2 will deduce (p-zip x1 y) is similar to (p-zip x2
y) when x1 is similar to x2. We can define the appropriate congruence rules as
follows:

(defcong p-similar-p p-similar-p (p-zip x y) 1)
(defcong p-similar-p p-similar-p (p-zip x y) 2)

2.4 Regular Powerlists

Another useful property of powerlists is p-balanced-p which is true of a per-
fectly balanced powerlist, that is, a regular powerlist®. This condition is more
expensive than p-similar-p, because it requires passing information from one
half of the powerlist to the other, i.e., not only must the left and right halves
of the powerlist be balanced, their depth must be the same. Rather than ex-
plicitly reasoning about depth, we chose to use p-similar-p, since we already
have several theorems about it. The result is the following definition:

(defun p-balanced-p (x)
(if (powerlist-p x)

(and (p-similar-p (p-untie-1 x) (p-untie-r x))
(p-balanced-p (p-untie-1 x))
(p-balanced-p (p-untie-r x)))

t))

Note that both the similarity and balanced conditions of the definition are re-
quired. For example, if the similarity condition were left out, (1.((2.3).(4.5)))
would be considered balanced. Likewise, if the balanced conditions were left
out, the powerlist ((1.(2.3)).(4.(5.6)) would be considered balanced. We shall
see later that we do not need to have both balanced conditions in the definition.

As was the case with p-similar-p, we must show how p-balanced-p inter-
acts with the constructors and destructors of p-tie and p-zip. This results in
the following type of theorem:

(defthm unzip-balanced
(implies (p-balanced-p x)
(and (p-balanced-p (p-unzip-1 x))
(p-balanced-p (p-unzip-r x)))))

These theorems provide the missing similarity assertion of laws L1a and L1b.

The converse theorem, about the constructor functions requires an extra
hypothesis, namely that the powerlists to be tied or zipped be similar. This is
the formal equivalent of the restriction that | and M only apply to powerlists of
the same length. The theorem can be stated as follows:

(defthm zip-balanced
(implies (and (p-balanced-p x)
(p-similar-p x y))
(p-balanced-p (p-zip x y))))
Another group of theorems explore the interaction between p-balanced-p

and p-similar-p powerlists. For example, we have that the unzips and unties
of balanced powerlists are similar with the following event:

3The name p-balanced-p emerged from the ACL2 viewpoint of powerlists as binary trees.
A better name may have been p-regular-p which would make the connection with Misra’s
powerlists more obvious. The former name is retained for historical reasons.

10

(defthm balanced-similar-unzip-untie
(implies (and (powerlist-p x)
(p-balanced-p x))
(and (p-similar-p (p-unzip-1 x) (p-unzip-r x))
(p-similar-p (p-unzip-1 x) (p-untie-1 x))
(p-similar-p (p-unzip-r x) (p-untie-r x)))))

We can also prove similar theorems, such as a powerlist similar to a balanced
powerlist is also balanced. This is why we could remove one of the recursive
p-balanced-p instances in the definition of p-balanced-p. We choose not to
because of symmetry, and also because having the extra condition immediately
available may be useful when p-balanced-p is found as a hypothesis in a the-
orem.

In our experience, p-similar-p is a much more important property than
p-balanced-p, since similarity ensures that a function taking more than one
argument can recurse on one of the arguments and still visit all the nodes of
the other argument, e.g., for pairwise addition of powerlists. In fact, the main
use of p-balanced-p is to show that two powerlists are similar. This occurs
when a single powerlist is split and a function applied to the two halves. It
also occurs when two powerlists are traversed in a non-standard ordering, e.g.,
by splitting them into left and right halves and then combining the left half of
one with the right half of the other or by splitting with unzip and combining
with tie. In these cases, we use the p-balanced-p condition to ensure that all
of the pieces that can be split are p-similar-p to each other, and we can use
whatever function of two lists we wish to process them.

2.5 Functions on Powerlists

When working with powerlists, many similar functions, usually small and inci-
dental to the main theorem, are encountered. For example, we may have to add
all the elements of a powerlist, or find their minimum or maximum, etc. We
may also have to take two powerlists and return their pairwise sum, product,
etc. Moreover, we often wish to prove similar theorems about these functions,
such as the sum (maximum, minimum) of the sum (maximum, minimum) of two
powerlists is the same as the sum (maximum, minimum) of their zip. This is a
perfect opportunity to use ACL2’s encapsulation primitive to prove the appro-
priate theorem schemas, which can later be instantiated with specific functions
in mind.
To illustrate our approach, consider the following encapsulation:

(encapsulate

((fn1 (x) t)
(fn2-accum (x y) t)
(equiv (x y) t))

(local (defun fnl (x) (fix x)))
(local (defun fn2-accum (x y) (+ (fix x) (fix y))))

11

(local (defun equiv (x y) (equal x y)))

(defthm fnl-scalar
(implies (not (powerlist-p x))
(not (powerlist-p (fnl x)))))

(defthm fn2-accum-commutative
(equiv (fn2-accum x y) (fn2-accum y x)))

(defthm fn2-accum-associative
(equiv (fn2-accum (fn2-accum x y) z)
(fn2-accum x (fn2-accum y z))))

(defcong equiv equiv (fn2-accum x y) 1)
(defcong equiv equiv (fn2-accum x y) 2)

(defequiv equiv))

This defines £n1 as a scalar function, fn2-accum as an associative-commutative
binary function, and equiv as an equivalence relation. Nothing else is known
or assumed about these functions outside of the encapsulation. One possible
application is to apply fnl to all the elements of a powerlist, e.g., to square
all values in a powerlist. Another is to use fn2-accum to accumulate all the
values in the powerlist into an aggregate. We can do this in two obvious ways,
recursing in terms of either p-tie or p-zip. Naturally, we expect the result to
be the same, regardless of which way the function is defined. So for example,
we would expect to prove the following:

(defun a-zip-fn2-accum-fnl (x)
(if (powerlist-p x)
(fn2-accum (a-zip-fn2-accum-fnl (p-unzip-1 x))
(a-zip-fn2-accum-fnl (p-unzip-r x)))
(fnl x)))

(defun b-tie-fn2-accum-fnl (x)
(if (powerlist-p x)
(fn2-accum (b-tie-fn2-accum-fnl (p-untie-1 x))
(b-tie-fn2-accum-fnl (p-untie-r x)))
(fn1 x)))

(defthm a-zip-fn2-accum-fnl-same-as-b-tie-fn2-accum-fnl
(equiv (b-tie-fn2-accum-fnl x)
(a-zip-fn2-accum-fnl x)))

At this point, it is not clear that we have done anything important. After all,
we have proved an abstract theorem which seems a bit contrived. How often,
we can ask, will one define a function first in terms of p-zip, then in terms of

12

p-tie? And if we do not define such functions, say by arbitrarily choosing to
define them in terms of p-tie always, the above is wasted effort.

It is difficult at this time to adequately address this issue, though it will
become clearer when we look at the examples. For now, the following intu-
ition may suffice. While simple functions, such as the above, are just as easily
defined in terms of p-tie as p-zip, this is not the case for more complex func-
tions. For example, consider the function p-ascending-p which is true for an
ascending powerlist. This is much more easily expressed in terms of p-tie,
since it is simpler to decide when the p-tie of two ascending powerlists is as-
cending than to decide when their p-zip is ascending. On the other hand the
function p-batcher-merge is naturally expressed in terms of p-zip, since it
works by successively merging the odd- and even-indexed elements of a pow-
erlist. Naturally, when proving theorems about p-ascending-p, we will wish to
use functions defined in terms of p-tie. Such a function may find the minimum
of a powerlist. But when reasoning about p-batcher-merge, we will need the
same function, only this time we may prefer to write it in terms of p-zip, so
that it “opens up” the same way in an inductive proof. What is left then is
the glue to tie these two definitions of the function together. This is an explicit
instance of the theorem schema above.

In fact, it should be pointed out that the creation of these theorem schemas
came as a direct result of having proved a seemingly endless stream of similar
small theorems. It is these theorems that formed the basis of the theorem
schema above; i.e., all these abstract theorems were constructed by “unifying”
needed lemmas in one specific proof of another. To reinforce this, consider the
accumulators above. The scalar function fnl seems unnecessary, as does the
equivalence relation equiv. It would be simpler to state the theorems purely
in terms of fn2-accum which is the binary operator we’re trying to abstract
and equal. However, the forms above were suggested by the specific instances
we wished to create. One such instance is minimum where the accumulator is
the min function and equiv and fnl are the equality and identity functions,
respectively. Another instance is list-of-type where the accumulator is the
and function, equiv the iff function, and fn1 a scalar type-p function.

Accepting for now that this effort is not wasted, we can consider some of the
theorems we found useful. As expected by now, a key series of lemmas shows how
the functions a-zip-fn2-accum-fnl and b-tie-fn2-accum-fnl behave with
respect to the constructors and destructors of p-tie and p-zip, for example
the following theorem relating b-tie-fn2-accum-fni to p-zip:

(defthm zip-b-tie-fn2-accum-fnl
(equiv (b-tie-fn2-accum-fnl (p-zip x y))
(fn2-accum (b-tie-fn2-accum-fnil x)
(b-tie-fn2-accum-fnl y))))
(defthm unzip-b-tie-fn2-accum-fnl
(implies (powerlist-p x)
(equiv
(fn2-accum (b-tie-fn2-accum-fnl (p-unzip-1 x))

13

(b-tie-fn2-accum-fnl (p-unzip-r x)))
(b-tie-fn2-accum-fnl x))))

Both of these theorems are useful in establishing the antecedent of induction
hypotheses.

3 Simple Examples

In this section, we take various examples from [Mis94] and prove them in ACL2.
Our goal is to show how the primitives defined in section 2 are sufficient for ACL2
to prove theorems about powerlists.

3.1 Permutations

We start with the p-reverse function, which reverses a powerlist. The defini-
tion, a straight transliteration from [Mis94], is as follows:

(defun p-reverse (p)
(if (powerlist-p p)
(p-tie (p-reverse (p-untie-r p))
(p-reverse (p-untie-1 p)))
p))

Similarly, we can define p-reverse-zip, which reverses in terms of p-zip in-
stead of p-tie. ACL2 can immediately verify that p-reverse is its own inverse.
That is, it trivially accepts the following theorem:

(defthm reverse-reverse
(equal (p-reverse (p-reverse x)) x))

Before proving that p-reverse and p-reverse-zip are equal, however, we need
the following lemma:

(defthm reverse-zip
(equal (p-zip (p-reverse x) (p-reverse y))
(p-reverse (p-zip y x))))

This lemma, typical of both Ngthm and ACL2 lemmas, tells ACL2 how to
“push” p-zip into a p-reverse. Given this lemma, ACL2 can now easily verify
the following;:

(defthm reverse-reverse-zip
(equal (p-reverse-zip x) (p-reverse x)))

It is interesting to note that the theorem above does not depend on the structure
of the powerlist x. Specifically, there is no requirement that x is regular.

The functions p-rotate-right and p-rotate-left are easily defined in
terms of p-zip; indeed their simplicity is a tribute to the p-zip constructor:

14

(defun p-rotate-right (x)
(if (powerlist-p x)
(p-zip (p-rotate-right (p-unzip-r x)) (p-unzip-1 x))
x))
(defun p-rotate-left (x)
(if (powerlist-p x)
(p-zip (p-unzip-r x) (p-rotate-left (p-unzip-1 x)))
x))

Again, ACL2 can prove a number of theorems unassisted. For example, it can
show that p-rotate-right and p-rotate-left are inverses with the following
theorem:

(defthm rotate-left-right
(equal (p-rotate-left (p-rotate-right x)) x))

Notice, again, that the theorem remains true even for arbitrary powerlists, not
just regular powerlists. ACL2 can also prove the analogous theorem where we
rotate to the left first.

In addition, ACL2 proves the following surprising identity:

(defthm rotate-reverse-rotate
(equal (p-rotate-right (p-reverse-zip (p-rotate-right x)))
(p-reverse-zip x)))

This theorem can be used to prove the following “amusing identity” due to
Misra:

(defthm reverse-rotate-reverse-rotate
(equal (p-reverse-zip
(p-rotate-right
(p-reverse-zip
(p-rotate-right x))))
x))

Next, we consider repeated shifts. The function p-rotate-right-k loops
over p-rotate-right k times:

(defun p-rotate-right-k (x k)
(if (zp k)
X
(p-rotate-right (p-rotate-right-k x (1- k)))))

A subtler definition shifts the odd-indexed and even-indexed elements by about
half of k, then joins the result. This is given below:

(defun p-rotate-right-k-fast (x k)
(if (powerlist-p x)
(if (integerp (/ k 2))

15

(p-zip (p-rotate-right-k-fast (p-unzip-1 x)
(/ k 2))
(p-rotate-right-k-fast (p-unzip-r x)
/ k 2)))
(p-zip (p-rotate-right-k-fast (p-unzip-r x)
(1+ (/ (1- k) 2)))
(p-rotate-right-k-fast (p-unzip-1 x)
(/ (1- k) 2))))
x))

ACL2 can prove the equality of these two functions, but only with a certain
amount of help, partly because ACL2 has a hard time reasoning about the
values in k above.

Another function suggested by Misra is the shuffle function, which rotates
not the elements of a powerlist, but their index, based on zero-indexing. For
example, the low-order bit of the index becomes the high-order bit, and hence
the even-indexed elements will appear at the front of the result. This function
can be defined as follows:

(defun p-right-shuffle (x)
(if (powerlist-p x)
(p-tie (p-unzip-1 x) (p-unzip-r x))
x))

It is especially interesting, because it mixes the p-zip destructors with the
p-tie constructor. Once more, ACL2 is able to prove without assistance that
p-left-shuffle and p-right-shuffle are inverses:

(defthm left-right-shuffle
(equal (p-left-shuffle (p-right-shuffle x)) x))

Notice again that the theorem is true regardless of whether the powerlist x is
regular. This is slightly surprising when we consider that the functions were
defined precisely with a regular powerlist in mind.

Another interesting permutation function is p-invert which inverts the in-
dex of a powerlist. This function is used, for example, in the Fast Fourier
Transform algorithm. It can be defined as follows:

(defun p-invert (x)
(if (powerlist-p x)
(p-zip (p-invert (p-untie-1 x))
(p-invert (p-untie-r x)))

x))
Following [Mis94], we can prove the following lemma:

(defthm invert-zip
(equal (p-invert (p-zip x y))
(p-tie (p-invert x) (p-invert y))))

16

It is interesting that this lemma, although typical of ACL2 lemmas, was actually
needed in Misra’s original hand proof. As in [Mis94], ACL2 can now prove,
without user intervention, that p-invert is its own inverse. Moreover, it can
prove that p-invert and p-reverse commute:

(defthm invert-invert
(equal (p-invert (p-invert x)) x))

(defthm invert-reverse
(equal (p-invert (p-reverse x))
(p-reverse (p-invert x))))

Finally, we can show that for an arbitrary binary function fn2 (similar to the
one encapsulated in section 2.5) applied pairwise to the elements of two lists,
p-invert and fn2 commute:

(defthm invert-zip-fn2
(implies (p-similar-p x y)
(equal (p-invert (a-zip-fn2 x y))
(a-zip-fn2 (p-invert x) (p-invert y)))))

3.2 Gray Code

In this section, we present a more substantial example. A gray code for n bits
is a sequence of 2" n-bit vectors so that no two adjacent vectors differ by more
than one bit. In [Mis94], Misra defines a function which returns a gray code
as a powerlist of 2™ n-element lists. It is significant the the function uses lists
instead of powerlists to store the n-bit vectors, since n is an arbitrary integer,
not necessarily a power of two. Moreover, in [Mis94], no proof is given that the
function behaves correctly. This is not surprising, since most of the reasoning
would have to be done not with powerlist theory, but with linear list theory
instead.

In this section, we present an equivalent development using powerlists to
store the n-bit vectors and also provide a partial proof of correctness. The
first problem that needs to be resolved is that of using nested powerlists. The
final result will be a powerlist of 2" n-element nested powerlists, but since we
use a tree representation, there is no immediate way to know when the nested
powerlists begin — this is the price we pay for not having an explicit distinction
between powerlists of one element and the element itself. As mentioned earlier,
the solution is to use an explicit nest operator, and an attractive possibility is
to use Common LISP’s 1ist function. In this fashion, the gray code sequence
for n = 2 is as follows:

((00) ({0 1)) ((11)) ((10)))

We can do this because we chose not to represent powerlists as cons-trees, but
as structures.

17

In reality, however, there is a little magic going on. Recall, the defstructure
event in ACL2 does not define a new data type; instead, it implements this
data type in terms of the primitive tree structures. It turns out that the only
ACL2 nested structure is the cons-tree, which suggests the following surprising
theorem:

(consp (p-tie 1 2))

In fact, by default defstructure uses “typed” lists to implement the structures.
The actual structure can be exposed with the following theorem:

(equal (p-tie 1 2) ’(powerlist 1 2))

All this is important, since we have to use an explicit nest operator, e.g. list,
and we have to ensure that we can recognize an instance of a nesting operator
inside a powerlist. The solution is suggested by the equality above. The nesting
operator is a singleton list, i.e., a list containing a single powerlist. Powerlists,
on the other hand, are always either scalars or lists of three elements. In our
application, scalars will be either 0 or 1, so there will be no confusion. In
general, however, it is sad that the scalar list of three element ’ (powerlist 1
2) cannot be reasoned about in our implementation of the powerlist axioms.

Keeping this in mind, we can define the function computing gray code se-
quences as follows:

(defun p-gray-code (n)
(if (or (zp n) (equal n 1))
(p-tie (list 0) (list 1))
(p-tie (p-map-tie 0 (p-gray-code (1- n)))
(p-map-tie 1 (p-reverse (p-gray-code (1- n)))))))

Notice how p-gray-code returns a powerlist of lists in the base case; that is,
a powerlist of two nested (scalar) powerlists. This uses the auxiliary function
p-map-tie which applies p-tie to each element of its second argument:

(defun p-map-tie (x y)
(if (powerlist-p y)
(p-tie (p-map-tie x (p-untie-1 y))
(p-map-tie x (p-untie-r y)))
(1ist (p-tie x (car y)))))

Again, notice the use of 1ist and car to process the nested powerlists®.

To prove that the function above is correct, we define a predicate which
accepts proper gray code sequences. We start with a function to recognize
when two n-bit vectors can be adjacent in a sequence; that is, when they differ
by precisely one bit:

48tyle points would be awarded for using defmacro to hide the representation of nesting.

18

(defun p-gray-p (x y)
(if (and (powerlist-p x) (powerlist-p y))
(or (and (equal (p-untie-1l x) (p-untie-1 y))

(p-gray-p (p-untie-r x) (p-untie-r y)))

(and (p-gray-p (p-untie-1 x) (p-untie-1 y))
(equal (p-untie-r x) (p-untie-r y))))

(or (and (equal x 0) (equal y 1))
(and (equal x 1) (equal y 0)))))

We can understand the function by recognizing that two non-trivial powerlists
differ by exactly one bit if and only if one of their respective halves differs by
exactly one bit and the other halves are identical. With this function, we can
validate a gray code sequence with the following function:

(defun p-gray-seq-p (x)
(if (powerlist-p x)
(and (p-gray-seq-p (p-untie-1 x))
(p-gray-seq-p (p-untie-r x))
(p-gray-p (car (p-last-elem (p-untie-1 x)))
(car (p-first-elem (p-untie-r x)))))
t))

where the functions p-first-elem and p-last-elem return the first and last
element of a powerlist, respectively.

We would like to prove the correctness of p-gray-seq. That is, we are
driving towards the following theorem:

(defthm gray-seq-p-gray-code
(p-gray-seq-p (p-gray-code n)))

Getting there is typical of ACL2 proof efforts. The inductive step takes a valid
gray code sequence and prepends 0 or 1 to all elements of the sequence. We
must show that the resulting sequence remains valid:

(defthm gray-seq-p-gray-code-lemma
(implies (and (p-gray-seq-p y)
(or (equal x 0) (equal x 1)))
(p-gray-seq-p (p-map-tie x y))))

Moreover, we defined p-gray-seq-p using the p-first-elem and p-last-elem
functions. So we prove the following theorem, to “teach” ACL2 how to evaluate
terms involving these functions:

(defthm first-elem-map-tie
(equal (p-first-elem (p-map-tie x y))
(1ist (p-tie x (car (p-first-elem y))))))

Another non-trivial function used to define p-gray-seq is p-reverse. This
suggests the following theorem:

19

(defthm gray-seq-p-reverse
(equal (p-gray-seq-p (p-reverse x))
(p-gray-seq-p x)))

Moreover, the definition of p-reverse suggests that we need commutativity of
p-gray-p, since p-reverse will swap the left and right halves of the powerlist:

(defthm gray-p-commutes
(equal (p-gray-p x y)
(p-gray-p y x)))

And finally, in establishing (p-gray-seq-p (p-reverse x)), we will encounter
terms involving p-first-elem, p-last-elem, and p-reverse, which suggests
the two theorems below:

(defthm first-elem-reverse
(equal (p-first-elem (p-reverse x))
(p-last-elem x)))

(defthm last-elem-reverse
(equal (p-last-elem (p-reverse x))
(p-first-elem x)))

Finding these intermediate lemmas is the “art” of proving theorems with
ACL2, and also with Nqthm. Much has been written on the process of finding
these key lemmas. Besides [BM88] and [BM79], the reader interested in using
ACL2 is especially encouraged to read [KP94].

While the development above is illustrative of how ACL2 can be used to
prove program correctness, it tells only part of the story. In particular, our
correctness result would still hold if p-gray-seq were replaced with the zero
function! What is missing are the assertions that p-gray-seq produces 2" n-bit
vectors, that it does not produce the same n-bit vector more than once, etc. The
reader is encouraged to develop these proofs.

4 Sorting Powerlists

We turn our attention to the problem of sorting a powerlist, specifically sorting
a powerlist of rationals into ascending order. Our specification is as follows:

(defun p-sorted-p (x)
(if (powerlist-p x)
(and (p-sorted-p (p-untie-1 x))
(p-sorted-p (p-untie-r x))
(<= (p-max-elem (p-untie-1 x))
(p-min-elem (p-untie-r x))))

£))

where the functions p-min-elem and p-max-elemreturn the minimum and max-
imum elements of a list respectively. We show how p-min-elem is defined.

20

(defun p-min-elem (x)
(if (powerlist-p x)
(if (<= (p—min-elem (p-untie-1 x))
(p-min-elem (p-untie-r x)))
(p~min-elem (p-untie-1 x))
(p-min-elem (p-untie-r x)))
(rfix x)))

Notice how p-sorted-p is most naturally expressed in terms of p-tie; in fact, it
is not immediately obvious how an equivalent definition can be written in terms
of p-zip. For this reason, we choose to define p-min-elem in terms of p-tie,
though it could just as easily have been defined in terms of p-zip. However,
since it is likely that we will want to reason about p-zip in the future, we can
prepare by proving theorems such as the following:

(defthm min-elem-zip
(equal (p-min-elem (p-zip x y))
(if (<= (p-min-elem x) (p-min-elem y))
(p~min-elem x)
(p-min-elem y))))

(defthm min-elem-unzip
(implies (powerlist-p x)
(and (>= (p-min-elem (p-unzip-1 x))
(p-min-elem x))
(>= (p-min-elem (p-unzip-r x))
(p—min-elem x)))))

Both of these theorems are instances of generic theorems proved in section 2.5,
so ACL2 does not need to perform added work in proving them (given an ap-
propriate hint to instantiate the generic theorems). Moreover, since different
sorting algorithms are likely to require similar theorems about p-min-elem,
p-sorted-p, and so on, it pays to prove these up front. For example, we can
establish once and for all that the minimum of a powerlist is no larger than its
maximum. We can also prove how p-sorted behaves in the presence p-zip,
etc.

An oft forgotten requirement of sorting is that it not only return a sorted list,
but that it return a permutation of its argument. To ensure this, we can define
the following function, which returns the number of times a given argument
appears in a powerlist:

(defun p-member-count (x m)
(if (powerlist-p x)
(+ (p-member-count (p-untie-1 x) m)
(p-member-count (p-untie-r x) m))
(if (equal x m) 1 0)))

21

Again, we can prove basic theorems about p-member-count, such as how it
behaves with p-zip, since these lemmas will likely prove useful to any sorting
algorithm.

In summary, we will require that a proposed sorting algorithm p-sort satisfy
the following theorems:

(p-sorted-p (p-sort x))
(equal (p-member-count (p-sort x) m) (p-member-count x m))

Of course, we may allow specific sorting routines to impose restrictions on the
original powerlist x, e.g., a routine may only work with numeric lists.

4.1 Merge Sorting

Merge sort is the most natural parallel sorting algorithm. We can write an
abstract merge sort over powerlists as follows:

(defun my-merge-sort (x)
(if (powerlist-p x)
(p-merge (my-merge-sort (p-split-1 x))
(my-merge-sort (p-split-2 x)))
x))

The functions p-merge, and p-split-1 and p-split-2 instantiate specific
merge sort algorithms. Classically, p-merge will be a complicated function
and the split functions will be trivial. What we would like to do is to encapsu-
late these functions and their relevant theorems and then prove the correctness
of this generic merge sort. In particular, we wish to establish the following
theorems:

(defthm merge-sort-is-permutation
(implies (p-sortable-p x)
(equal (p-member-count (p-merge-sort x) m)
(p-member-count x m))))

(defthm merge-sort-sorts-input
(implies (p-sortable-p x)
(p-sorted-p (p-merge-sort x))))

The p-sortable goal lets us specify merge algorithms that only work for a
subclass of powerlists; the forthcoming Batcher merge, which only works for
regular powerlists, is an example of such an algorithm.

In order to prove the theorems above, we need the following assumptions
about the generic merge functions:

(encapsulate
((p-sortable-p (x) t)
(p-mergeable-p (x y) t)

22

(p-split-1 (x) t©)
(p-split-2 (x) t)
(p-merge (x y) t)
(p-merge-sort (x) x))

(defthm *obligation*-split-reduces-count
(implies (powerlist-p x)
(and (e0-ord-< (acl2-count (p-split-1 x))
(acl2-count x))
(e0-ord-< (acl2-count (p-split-2 x))
(acl2-count x)))))

(defthm *obligation*-member-count-of-splits
(implies (powerlist-p x)
(equal (+ (p-member-count (p-split-1 x) m)
(p-member-count (p-split-2 x) m))
(p-member-count x m))))

(defthm *obligation*-member-count-of-merge
(implies (p-mergeable-p x y)
(equal (p-member-count (p-merge x y) m)
(+ (p-member-count x m)
(p-member-count y m)))))

(defthm *obligation*-sorted-merge
(implies (and (p-mergeable-p x y)
(p-sorted-p x)
(p-sorted-p y))
(p-sorted-p (p-merge x y))))

(defthm *obligation*-merge-sort
(equal (p-merge-sort x)
(if (powerlist-p x)
(p-merge (p-merge-sort (p-split-1 x))
(p-merge-sort (p-split-2 x)))
x)))

(defthm *obligation*-sortable-split
(implies (and (powerlist-p x)
(p-sortable-p x))
(and (p-sortable-p (p-split-1 x))
(p-sortable-p (p-split-2 x)))))

(defthm *obligation*-sortable-mergeable

(implies (and (powerlist-p x)
(p-sortable-p x))

23

(p-mergeable-p (p-merge-sort (p-split-1 x))
(p-merge-sort (p-split-2 x))))))

Recall, however, that before ACL2 accepts such an encapsulate event, it must
be given a witness function; that is, an implementation of such a merging
scheme. The easiest route is to use a vacuous merger, by locally defining
p-sortable-p to be nil. An alternative approach is to use an actual sort-
ing algorithm. We chose to do the latter, and we picked an insertion sort as our
“merge” algorithm; that is, the “merge” step consists of repeatedly inserting
the elements of one powerlist into the other. The reader interested in such an
approach can browse through the source code available from the companion web
page. We will not mention it further, since it does not enhance the discussion
of either powerlists or ACL2.

4.2 Batcher Sorting

The Batcher merging algorithm can be defined as follows:

(defun p-batcher-merge (x y)
(if (powerlist-p x)
(p-zip (p-min (p-batcher-merge (p-unzip-1 x)
(p—unzip-r y))
(p-batcher-merge (p-unzip-r x)
(p~unzip-1 y)))
(p-max (p-batcher-merge (p-unzip-1 x)
(p—unzip-r y))
(p-batcher-merge (p-unzip-r x)
(p-unzip-1 y))))
(p-zip (p-min x y) (p-max x y))))

The functions p-min and p-max return respectively the pairwise minimum and
maximum or two powerlists. Since p-zip features prominently in the definition
of p-batcher-merge, we expect to find p-min and p-max similarly defined.

At first glance, the definition of p-batcher-merge looks straight-forward.
Certainly, it seems that a straight-forward structural induction should be suf-
ficient to prove all the properties about it one would wish. Such a blissful
perspective will most likely be short-lived. There are two imposing challenges
ahead. The first is that p-batcher-merge is defined in terms of p-zip, whereas
our target predicate p-sorted-p is defined in terms of p-tie. This is usu-
ally enough to make even a simple proof a little challenging. But in this case
it is especially troublesome, because p-batcher-merge does not recurse evenly
through its arguments. Notice in particular how the the left unzip of x is merged
with the right unzip of y, and vice versa.

Upon further consideration, the definition of p-batcher-merge seems to
pose an unsurmountable challenge to verification. An induction scheme based
on p-batcher-merge will provide assertions about the left half of x mixed with
the right half of y. But to complete the proof, we will also need assertions about

24

corresponding halves of x and y. One readily envisions nests of left unties of
right unzips of left unties. ...
Clearly, more caution than usual is required to verify this function.
Consider first the proof of the following goal:

(equal (p-member-count (p-batcher-merge x y) m)
(+ (p-member-count x m)
(p-member-count y m)))

Since p-min and p-max operate on the pairwise points of x and y, it is reason-
able to require that x and y be similar. Moreover, since p-batcher-merge is
recursing on opposite halves of x and y, we can expect that the powerlists must
also be regular. It turns out that we will also need to constrain the powerlist to
be numeric. This is because the ordering imposed by p-max is only well-defined
over this domain. Of course, we will have to prove the theorems that all in-
termediate results satisfy the structural requirements of the hypothesis; i.e., we
must establish that for similar x and y their p-min and p-max are also similar,
etc.
Our goal becomes the following:

(defthm member-count-of-merge
(implies (and (p-balanced-p x)
(p-similar-p x y)
(p—number-list x)
(p—number-list y))
(equal (p-member-count (p-batcher-merge x y) m)
(+ (p-member-count x m)
(p-member-count y m)))))

To prove the above claim, we must first establish that all the values of x and y
can be found somewhere in their p-min and p-max. We can prove this generi-
cally; that is, we can prove that the sum of any scalar function over x and y is
unaffected by p-min and p-max:

(defthm a-zip-plus-fnl-of-min-max
(implies (and (p-similar-p x y)
(p—number-list x)
(p—number-list y))
(equal (+ (a-zip-plus-fnl (p-max x y))
(a-zip-plus-fnl (p-min x y)))
(+ (a-zip-plus-fnl x)
(a-zip-plus-fnl y)))))

Notice how we’re extending the generic theorems defined in section 2.5 to include
specific functions, such as p-min and p-max. With this lemma, we can prove
the similar result for p-batcher-merge:

25

(defthm a-zip-plus-fnl-of-merge
(implies (and (p-balanced-p x)

(p-similar-p x y)

(p—number-list x)

(p—number-list y))

(equal (a-zip-plus-fnl (p-batcher-merge x y))
(+ (a-zip-plus-fnl x)
(a-zip-plus-fnl y)))))

Instantiating fnl with the pseudo-function (lambda (x) (if (= x m) 1 0))
and using the equivalence of a-zip-plus-fnl and b-tie-plus-fnl, we can
prove our original goal.

Notice above how all the reasoning was done with respect to p-zip, and only
in the last step do we appeal to the equivalence of p-member-count as defined
in terms of p-zip and p-tie to complete the proof.

We must now tackle the question of when p-batcher-merge returns a sorted
powerlist. The recursive step returns a powerlist of the form

(p-zip (p-min (p-batcher-merge X1 Y2)
(p-batcher-merge X2 Y1))

(p-max (p-batcher-merge X1 Y2)
(p-batcher-merge X2 Y1)))

We know that from the inductive hypothesis it will be easy to establish that
both (p-batcher-merge X1 Y2) and (p-batcher-merge X2 Y1) are sorted.
It is natural to ask, therefore, whether (p-zip (p-min X Y) (p-max X Y)) is
sorted, given sorted X and Y. Unfortunately, this is not the case, as the powerlists
(12) and (34) demonstrate. The problem is that the p-min of 2 and 4 is 2,
which is smaller than the p-max of 1 and 3. What we need is to ensure that the
elements of the lists are not only sorted independently, but that one lists does
not “grow” too much faster than the other.

Consider X = (z1 z2 z3x4) and Y = (y1 y2 y3 y4). Our condition amounts
to the following;:

Ty Yi S Zj,Y;

for all indices ¢ < j. This condition automatically implies that X and Y are
sorted. We can write this in ACL2 as follows:

(defun p-interleaved-p (x y)
(if (powerlist-p x)
(and (powerlist-p y)
(p-interleaved-p (p-untie-1 x) (p-untie-1 y))
(p-interleaved-p (p-untie-r x) (p-untie-r y))
(<= (p-max-elem (p-untie-1 x))
(p~min-elem (p-untie-r x)))
(<= (p-max-elem (p-untie-1 x))
(p~min-elem (p-untie-r y)))
(<= (p-max-elem (p-untie-1 y))

26

(p-min-elem (p-untie-r x)))
(<= (p-max-elem (p-untie-1 y))
(p-min-elem (p-untie-r y))))
(not (powerlist-p y))))

So now, if (p-interleaved-p x y) is true, we would like to show that (p-zip
(p—min x y) (p-max x y)) is sorted. Intuitively, this is a simple result. In
our example above, the first two elements of Z will be z; and y;, in ascending
order. Moreover, the hypothesis assures us these two numbers are the smallest
of the z; and y; for j > 2. Similarly, we can reason about z» and y», and so on.

To prove the claim in ACL2, we have to reason about the interaction of p-min
and p-min-elem, as well as their max counterparts. Since p-min is defined in
terms of p-zip and p-min-elem in terms of p-tie, it is easier to prove this
theorems in terms of a single recursive scheme, say p-tie and then use the
bridging lemmas to prove the result:

(defthm zip-min-max-sorted-if-interleaved
(implies (and (p-interleaved-p x y)
(p-similar-p x y)
(p—number-list x)
(p—number-list y))
(p-sorted-p (p-zip (p-min x y) (p-max x y)))))

Again, it is easier at first to prove this for p-min-tie and p-max-tie, since
p-sorted-p is defined in terms of p-tie.

We have only to show that the recursive calls to p-batcher-merge return
p-interleaved-p lists. That is, given sorted X and Y,

L1
L2

(p-batcher-merge (p-unzip-1 X) (p-unzip-r Y))
(p-batcher-merge (p-unzip-r X) (p-unzip-1 Y))

are p-interleaved-p. We can use our intuition to see why this must be the
case. We can assume that both L1 and L2 are sorted, since this fact will follow
from the induction hypothesis. Any prefix of L1 will have some values from X
and some from Y, say i and j values respectively. Moreover, since L1 has only
odd-indexed elements of X and L2 only the even-indexed elements of X, no prefix
of L1 can have more elements from X than the corresponding prefix of L2, and
similarly for the elements from Y. For example, suppose that L1 starts with
and x3, but the corresponding prefix of L2 does not contain z». In this case, L2
must start with y; and y3, which means that y;3 < z», since L2 is sorted and its
prefix does not contain z,. But, we can conclude from L1 that z3 < ys, since
L1 is also sorted. We have then that x5 < y» < y3 < x2 and so x3 < x>. But
this is a contradiction, since X is sorted.

Formalizing the argument given above places a severe challenge on the pow-
erlist paradigm, since the reasoning involves indices so explicitly, whereas pow-
erlists do away with the index concept. In fact, the whole concept of “prefix”
is strange, since these prefixes will by definition be irregular, and we’ve already
observed how p-batcher-merge requires regular arguments. This calls for a

27

little subtlety in our approach. We can replace the “prefix” concept with the

following:

(defun p-member-count-<= (x

(if (powerlist-p x)

(+ (p—member-count-<=
(p-member-count-<=
(if (<= (rfix x) m) 1 0)))

m)

(p~untie-1 x) m)
(p-untie-r x) m))

This returns the number of elements in x which are less than or equal to m; that
is, for an element m in x, it returns its (largest) index in x. With this notion,
we can formalize our argument involving the “prefix” of a powerlist.

We are interested in expressions of the form

M1

M2

(p—member-count-<= (p-batcher-merge (p-unzip-1 x)

m)

(p—unzip-r y))

(p-member-count-<= (p-batcher-merge (p-unzip-r x)

m)

so we begin with the following theorem:

(defthm member-count-<=-of-merge

(implies (and (p-balanced-p x)
(p-similar-p x y)
(p—number-list x)
(p—number-list y))
(equal (p-member-count-<= (p-batcher-merge x y) m)

(+ (p-member-count-<= x m)
(p-member-count-<=y m)))))

(p~unzip-1 y))

This theorem allows us to remove p-batcher-merge from the computation of
p-member-count. We are left with the following:

M1 =

M2

(+ (p-member-count-<=
(p-member-count-<=
(+ (p-member-count-<=
(p-member-count-<=

(p~unzip-1 x)
(p~unzip-r y)
(p~unzip-r x)
(p~unzip-1 y)

m)
m))
m)

m))

So the next step will be to compare the p-member-count-<= of the p-unzip-1
and p-unzip-r of a powerlist, specifically a sorted powerlist. Intuitively, we
expect these to differ by no more than 1; moreover, since the p-unzip-r starts
counting from the second position, we expect its p-member-count-<= to be
smaller than that of the p-unzip-1. In fact, we can prove the following theo-

rems:

(defthm member-count-<=-of-sorted-unzips-1
(implies (and (powerlist-p x)

28

(p-balanced-p x)
(p-sorted-p x))

(<= (p-member-count-<= (p-unzip-r x) m)
(p—member-count-<= (p-unzip-1 x) m))))

(defthm member-count-<=-of-sorted-unzips-2
(implies (and (powerlist-p x)
(p-balanced-p x)
(p-sorted-p x))
(<= (p-member-count-<= (p-unzip-1 x) m)
(1+ (p-member-count-<= (p-unzip-r x) m)))))

Putting it all together, we end up with the following syntactically imposing
theorem, which states M1 and M2 differ by no more than 1:

(defthm member-count-<=-of-merge-unzips
(implies (and (powerlist-p x)
(p-balanced-p x)
(p-similar-p x y)
(p—number-list x)
(p—number-list y)
(p-sorted-p x)
(p-sorted-p y))
(or (equal (p-member-count-<= (p-batcher-merge
(p~unzip-1 x)
(p—unzip-r y))
m)
(p-member-count-<= (p-batcher-merge
(p~unzip-r x)
(p~unzip-1 y))
m))
(equal (1+ (p-member-count-<= (p-batcher-merge
(p~unzip-1 x)
(p—unzip-r y))
m))
(p-member-count-<= (p-batcher-merge
(p~unzip-r x)
(p~unzip-1 y))
m))
(equal (1+ (p-member-count-<= (p-batcher-merge
(p~unzip-r x)
(p~unzip-1 y))
m))
(p-member-count-<= (p-batcher-merge
(p~unzip-1 x)
(p—unzip-r y))
m)))))

29

The next step is to show that for non p-interleaved-p lists, there is some m
so that the respective p-member-count-<= differ by more than 1. We can find
this m by making a “cut” through the two lists at the precise spot where they
fail the p-interleaved-p test. The following function performs such a “cut”:

(defun interleaved-p-cutoff (x y)
(if (and (powerlist-p x) (powerlist-p y))
(cond ((< (p-min-elem (p-untie-r x))
(p-max-elem (p-untie-1 x)))
(p-min-elem (p-untie-r x)))
((< (p-min-elem (p-untie-r x))
(p-max-elem (p-untie-1 y)))
(p-min-elem (p-untie-r x)))
((interleaved-p-cutoff (p-untie-1 x)
(p~untie-1 y))
(interleaved-p-cutoff (p-untie-1 x)
(p~untie-1 y)))
((interleaved-p-cutoff (p-untie-r x)
(p~untie-r y))
(interleaved-p-cutoff (p-untie-r x)
(p~untie-r y))))
nil))

When x and y are p-interleaved-p, the function interleaved-p-cutoff will
return nil. In all other cases, it returns a valid choice of m as a counterex-
ample to member-count-<=-of-merge-unzips. We can trivially show the first
observation as follows:

(defthm interleaved-p-if-nil-cutoff
(implies (and (p-similar-p x y)
(p—number-list x)
(p—number-list y)
(not (numericp (interleaved-p-cutoff x y)))
(not (numericp (interleaved-p-cutoff y x))))
(p-interleaved-p x y)))

In order to establish that interleaved-p-cutoff finds a valid counterexample
when x and y are not p-interleaved-p, notice that interleaved-p-cutoff
always returns an element of x, and furthermore for sorted x this value m is such
that its “index” in x is at least one more than its “index” in y, since it must
satisfy

(< (p—min-elem (p-untie-r x)) (p-max-elem (p-untie-1 y)))

for some corresponding subtree of x and y. In ACL2, we can prove the following
theorem:

(defthm member-count-diff-2-if-interleaved-cutoff-sorted

30

(implies (and (p-similar-p x y)
(p—number-list x)
(p—number-list y)
(p-sorted-p x)

(p-sorted-p y)
(interleaved-p-cutoff x y))
(< (1+ (p-member-count-<=
y

(interleaved-p-cutoff x y)))

(p-member-count-<=
X

(interleaved-p-cutoff x y)))))

This theorem serves to find the counterexample needed by the two lemmas
member-count-<=-of-merge-unzips and interleaved-p-if-nil-cutoff, so

we can now establish the following key theorem:

(defthm inner-batcher-merge-call-is-interleaved-p

(implies (and (powerlist-p x)
(p-balanced-p x)
(p-similar-p x y)
(p—number-list x)
(p—number-list y)
(p-sorted-p x)
(p-sorted-p y)
(p-sorted-p (p-batcher-merge

(p-sorted-p (p-batcher-merge
(p-interleaved-p (p-batcher-merge

(p-batcher-merge

(p~unzip-1
(p~unzip-r
(p~unzip-r
(p~unzip-1
(p~unzip-1
(p~unzip-r
(p~unzip-r
(p~unzip-1

x)
¥y)))
x)
y)»)))
x)

y))
x)
¥

From this point, the remainder of the proof is almost propositional. We can use
inner-batcher-merge-call-is-interleaved-p to prove the inductive case of
the correctness of batcher-merge. It is no accident that the inductive hypoth-
esis shares the antecedent of inner-batcher-merge-call-is-interleaved-p.

(defthm recursive-batcher-merge-is-sorted

(implies (and (powerlist-p x)
(p-balanced-p x)
(p-similar-p x y)
(p—number-list x)
(p—number-list y)
(p-sorted-p x)
(p-sorted-p y)

31

(p-sorted-p (p-batcher-merge (p-unzip-1 x)
(p~unzip-r y)))
(p-sorted-p (p-batcher-merge (p-unzip-r x)
(p-unzip-1 y))))
(p-sorted-p (p-batcher-merge x y))))

Almost anticlimatically, we can now prove the main result, which establishes
the correctness of Batcher merging:

(defthm sorted-merge

(implies (and (p-balanced-p x)
(p-similar-p x y)
(p—number-list x)
(p—number-list y)
(p-sorted-p x)
(p-sorted-p y))

(p-sorted-p (p-batcher-merge x y))))

With the theorem above and the meta-theorems proved in section 4.1, we
can prove the correctness of Batcher sorting:
(defthm batcher-sort-is-permutation
(implies (and (p-balanced-p x)
(p—number-list x))
(equal (p-member-count (p-batcher-sort x) m)
(p-member-count x m))))
(defthm batcher-sort-sorts-inputs
(implies (and (p-balanced-p x)
(p—number-list x))
(p-sorted-p (p-batcher-sort x))))

4.3 A Comparison with the Hand-Proof

It is instructive to compare the machine-verified proof of section 4.2 with the
hand-proof provided in [Mis94] and verified in [KS94].
The proof starts by defining the function z as follows:

z({(z)) = 1ifx =0, 0 otherwise
z(pXq) = z(p)+2(9)

That is, z(z) counts the number of zeros in z. Assuming that all powerlists range
only over 0’s and 1’s, we use the following characterization of sorted powerlists:

sorted({x))
sorted(p X q) = sorted(p) A sorted(q) N0 < z(p) — z(q) <1

The 0-1 assumption also allows us to completely characterize the pairwise min-
imum and maximum of two sorted lists as follows:

min(z,y) = uw,if sorted(x), sorted(y), and z(z) > z(y)
>z

(y)

max(x,y) = vy, if sorted(x), sorted(y), and z(x)

32

Moreover, we can prove the following key lemma:

sorted(min(z,y) X maz(z,y)) if sorted(z), sorted(y), and |z(z) — z(y)| < 1

With some algebraic reasoning, this yields the main correctness result:
sorted(pbm(z,y)) if sorted(z) and sorted(y)

where pbm is the Batcher merge function on powerlists.

This proof is much simpler than that given in section 4.2, and that may be
taken as an indication that ACL2 is ineffective in reasoning about powerlists.
However, such a conclusion is premature. In fact, ACL2 can verify the reasoning
given above without too much difficulty. But the end result would not be as
satisfying as the main theorems proven in 4.2 for a number of reasons. First, the
hand proof relies on the 0/1 principle, which states that any comparison based
sorting which correctly sorts all lists consisting exclusively of zeros and ones will
sort correctly an arbitrary list. The formal proof in the powerlist logic proves
the correctness only for lists of zeros and ones, and then uses the 0/1 principle
to “lift” this proof to the arbitrary case. But the 0/1 principle is certainly not
obvious; if anything, it is more surprising than the proof of Batcher merge itself.

A second reason is that the definition of sorted used is not the same as
the “standard” definition of a sorted list. It is only true for lists of 0’s and
1’s, and it is not immediately clear how this property compares to our usual
notion of sorted lists. The definition supplied, however, is extremely useful,
since it is based on zip instead of tie, and so it works more naturally with
the definition of Batcher merge. However, the proof of the equivalence of the
two definitions is missing, and that serves to reinforce the feeling of unease and
sense of incompleteness in the final proof. This is especially important if we
were to use Batcher sorting as part of a more complex function, since the key
property we require in the complex function — i.e., that Batcher sort correctly
sorts its input — has not been established yet.

In fact, it is fair to say that the proofs as given are a mixture of formal
reasoning and informal arguments. Such a mixture is extremely convenient
when generating the proof by hand, but it can also be the source of subtle
errors, such as the failure to identify needed hypothesis.

4.4 Bitonic Sorting

A bitonic list is one which can be split into two monotonic (i.e., ascending or
descending) parts. A bitonic sort is a sorting routine which is guaranteed to
work only for bitonic lists. We can define a bitonic merge as follows:

(defun p-bitonic-merge (x)
(if (powerlist-p x)
(p-zip (p-min (p-bitonic-merge (p-unzip-1 x))
(p-bitonic-merge (p-unzip-r x)))
(p-max (p-bitonic-merge (p-unzip-1 x))

33

(p-bitonic-merge (p-unzip-r x))))
x))

We can use this function in a merge sort style to create a complete sort function
as follows:

(defun p-bitonic-sort (x)
(if (powerlist-p x)
(p-bitonic-merge (p-tie (p-bitonic-sort (p-untie-1 x))
(p-reverse
(p-bitonic-sort
(p—untie-r x)))))
x))

There is a close correspondence between this routine and the Batcher sorting
routine. In fact, we can prove the following theorem:

(defthm bitonic-batcher-merge
(implies (and (p-balanced-p x)
(p-similar-p x y))
(equal (p-bitonic-merge (p-tie x (p-reverse y)))
(p-batcher-merge x y))))

From this, it is trivial to prove that bitonic sorting is equivalent to Batcher
sorting as follows:

(defthm bitonic-batcher-sort
(implies (p-balanced-p x)
(equal (p-bitonic-sort x)
(p-batcher-sort x))))

Naturally, this implies all the correctness results for p-bitonic-sort.

This proof is fairly nice; however, it does not directly prove the correctness of
p-bitonic-merge, only its use in the specific sorting function p-bitonic-sort.
Note, for example, how the hypothesis of the input being bitonic never comes
into play.

This is actually a key point. Defining “bitonic” in the powerlist logic in

non-trivial. The usual definition takes the list X composed of z1,zs,...,T,.
X is bitonic if there is some 1 < i < n so that X; = z1,22,...,2; and X, =
ZTit1,Tit2,-..,Ly are both monotonic. However, notice that neither X; nor

X, is necessarily a powerlist according to the definitions in [Mis94], since i is
not required to be a power of two. Moreover, even with a more liberal model
of powerlists, it is not necessarily the case that X = X; | X,. So what we
must do is a difficult case analysis based on the two left and right halves of X.
A representative condition would be that if the left half is ascending and then
descending, then the right half is descending and moreover that the first element
of the right half is not greater than the last element of the left. This definition
makes it difficult to reason about bitonic lists, since it requires an immediate
(and significant) case split.

34

[Mis94] avoids this problem by using a more tractable characterization of
bitonic lists. However, this characterization only holds for powerlists composed
of 0’s and 1’s, and its correctness is not formally established.

5 Prefix Sums of Powerlists

Prefix sums appear in many applications, e.g., arithmetic circuit design. For
a powerlist X = (x1,x2,...,xy,), its prefix sum is given by ps(X) = (x1,z1 &
T2y, L1 Dx2®...Dwxy,). The operator @ is an arbitrary binary operator; for
our purposes, we will assume it to be associative, and to have a left-identity 0.

There is a natural definition of prefix sums in terms of indices. That is, entry
y; in the prefix sum of X is equal to the sum of all the z; up to z;. However, this
definition does not extend nicely to powerlists, since the two halves of a prefix
sum are not themselves prefix sums. The trick is to generalize prefix sums to
allow an arbitrary value to be added to the first element, in a manner analogous
to a carry-in bit. This leads to the following definitions:

(defun p-prefix-sum-aux (prefix x)
(if (powerlist-p x)
(p-tie (p-prefix-sum-aux prefix (p-untie-1 x))
(p-prefix-sum-aux (p-last (p-prefix-sum-aux
prefix
(p~untie-1 x)))
(p~untie-r x)))
(bin-op prefix x)))
(defmacro p-prefix-sum (x)
‘(p-prefix-sum-aux (left-zero) ,x))

where p-last returns the last element of a powerlist. In the sequel, most
of the theorems will be about p-prefix-sum-aux, though a few will have to
be proved exclusively for p-prefix-sum. Alternatively, we could have defined
p-prefix-sum-aux to pass the sum of the left half of x instead of the last el-
ement of the left prefix sum. We chose the current definition, simply because
it is closer to the usual way we compute powerlists. However, ACL2 can easily
establish the following theorem, which will be frequently used in the sequel:

(defthm last-prefix-sum-aux
(implies (and (p-domain-list x) (domain-p val))
(equal (p-last (p-prefix-sum-aux val x))
(bin-op val (p-elem-sum x)))))

The functions bin-op and left-zero encapsulate the binary operator & and
its left identity, respectively. We use ACL2’s encapsulate so that the following
theorems are all theorem schemas which can be instantiated with any suitable
operator, e.g, plus, and, min, etc. The required axioms are as follows:

(encapsulate

35

((domain-p (x) t)
(bin-op (x y) t)
(left-zero () t))

(defthm booleanp-domain-p
(booleanp (domain-p x)))

(defthm scalar-left-zero
(domain-p (left-zero)))

(defthm domain-powerlist
(implies (domain-p x)
(not (powerlist-p x))))

(defthm left-zero-identity
(implies (domain-p x)
(equal (bin-op (left-zero) x) x)))

(defthm bin-op-assoc
(equal (bin-op (bin-op x y) z)
(bin-op x (bin-op y 2))))

(defthm scalar-bin-op
(domain-p (bin-op x y)))
)

The function domain-p recognizes our intended domain, which is required to
be scalar, i.e. non-powerlist. Note that we require the second argument to be
domain-p in left-zero-identity, but that domain-p is not a requirement of
bin-op-assoc, and furthermore that domain-p is always true of the result of
bin-op. This turns out to be important, in that ACL2 defines many binary
operators that meet these requirements precisely. Moreover, we need at least
one of these theorems to have domain-p as a hypothesis. For example, if we
remove the hypothesis from left-zero-identity, then for a powerlist =, we
would have that 0 & « = x and so & would not always return a scalar.

5.1 Simple Prefix Sums

The definition of p-prefix-sum is inherently sequential. Our first goal will be
to prove that the following, more parallel, definition is equivalent:

(defun p-star (x)
(if (powerlist-p x)
(p-zip (p-star (p-unzip-r x)) (p-unzip-1 x))
(left-zero)))
(defun p-add (x y)
(if (powerlist-p x)

36

(p-zip (p-add (p-unzip-1 x) (p-unzip-1 y))
(p-add (p-unzip-r x) (p-unzip-r y)))
(bin-op x y)))
(defun p-simple-prefix-sum (x)
(if (powerlist-p x)
(let ((y (p-add (p-star x) x)))
(p-zip (p-simple-prefix-sum (p-unzip-1 y))
(p-simple-prefix-sum (p-unzip-r y))))
x))

The function p-add returns the sum of two powerlists; p-star shifts a powerlist
to the right, prefixing the result with left-zero.

The first problem is that ACL2 does not accept the definition given above
for p-simple-prefix-sum. The difficulty is that the definition recurses with
x changing to (p-unzip-1 (p-add (p-star x) x)) and the latter term is not
obviously “smaller” than x. Therefore, ACL2 can not prove that the recursive
definition is well-founded. To circumvent this, we define the following “measure”
on powerlists:

(defun p-measure (x)

(if (powerlist-p x)
(+ (p-measure (p-unzip-1 x))
(p-measure (p-unzip-r x)))

)
We next prove theorems showing how p-star and p-add preserve measures:

(defthm measure-star
(equal (p-measure (p-star x)) (p-measure x)))

(defthm measure-add
(<= (p-measure (p-add x y)) (p-measure x)))

Finally, we provide ACL2 with the hint to use p-measure when proving the
definition of p-simple-prefix-sumis well-founded.

We can now concentrate on the correctness of p-simple-prefix-sum. The
definition of this function suggests two approaches: we can explore the powerlist
given by (p-add (p-star x) x), or we can consider what happens when we
unzip the prefix sum of x. We will take the first approach. Recall that p-star
shifts its argument to the right, and that p-add returns a pairwise sum. Thus,
for x given by

X = (21,72,23,...,2n)
(p-add (p-star x) x) is

Y =X X = (1,01 D2, 2D x3,...,Tp—1 D Tp)

37

Taking the p-unzip of this powerlist, gives the following:

Yi = (1,22 D23,...,0p—2D Tp_1)

Yo = (01 22,23 P Ta,...,Tn-1 D Tp)

It is clear now that indeed the prefix sum of Y7 yields precisely the odd-indexed
elements of the prefix sum of X and, similarly, the prefix sum of Y5 yields the
even-indexed elements. Thus we can, intuitively at least, verify the correctness
of p-simple-prefix-sum. To formalize this, it will be convenient to think of
Y7 and Y5 not as components of Y, but as two separate lists in their own right.
This removes the awkward reference to p-unzip and allows us to rederive Y}
and Y, in a way more amenable to reasoning about p-prefix-sum. We begin
with a new characterization of Y5:

(defun add-right-pairs (x)
(if (powerlist-p x)
(if (powerlist-p (p-untie-1 x))
(p-tie (add-right-pairs (p-untie-1 x))
(add-right-pairs (p-untie-r x)))
(bin-op (p-untie-1 x) (p-untie-r x)))
x))

Since add-right-pairs accounts for all the elements of x, we can conclude the
following important lemma:

(defthm elem-sum-add-right-pairs
(implies (p-balanced-p x)
(equal (p-elem-sum (add-right-pairs x))
(p-elem-sum x))))

It is then straight-forward to prove how the prefix sum of add-right-pairs
relates to the prefix sum of x:

(defthm prefix-sum-add-right-pairs
(implies (and (domain-p val)
(p-balanced-p x)
(p-domain-list x)
(powerlist-p x))
(equal (p-prefix-sum-aux val (add-right-pairs x))
(p~unzip-r (p-prefix-sum-aux val x)))))

Notice that this proof uses the characterization of the last element of a prefix
sum with the sum of the original list.

We have now completely characterized the prefix sum of Y5, so we’re half-
way there to a correctness of p-simple-prefix-sum. However, the second half
is not quite so easy. The first difficulty is that in order to define Y7, we must
pass some values from the left half of x to the right half. This is very much like
the problem defining p-prefix-sum, and we use a similar strategy:

38

(defun add-left-pairs (val x)
(if (powerlist-p x)
(if (powerlist-p (p-untie-1 x))
(p-tie (add-left-pairs val (p-untie-1 x))
(add-left-pairs (p-last (p-untie-1 x))
(p~untie-r x)))
(bin-op val (p-untie-1 x)))
(bin-op val x)))

Compounding the difficulties, we see that elem-sum-add-right-pairs does not
have a nice equivalent with add-left-pairs. The problem is that the function
add-left-pairs introduces a new value to the front of x and “drops” the last
value of x. The resulting lemma becomes

(defthm bin-op-elem-sum-add-left-last
(implies (and (powerlist-p x)
(p-balanced-p x))
(equal (bin-op (p-elem-sum (add-left-pairs vall
x))
(p-last x))
(bin-op vall (p-elem-sum x)))))

The situation becomes more complicated when we consider add-left-pairs
and p-prefix-sum-aux together. Particularly troublesome is that both of these
functions introduce an auxiliary value to pass information from the left side of
their argument to the right side. We will have to show how these values can be
simplified. In particular, the following is an important rewrite rule:

(defthm prefix-sum-add-left
(implies (and (powerlist-p x)

(p-balanced-p x)

(p-balanced-p y)

(not (powerlist-p vall))

(not (powerlist-p val2)))

(equal (p-prefix-sum-aux (bin-op vall

(p-elem-sum
(add-left-pairs

val2

x)))
(add-left-pairs
(p-last x)

y))
(p-prefix-sum-aux vall
(add-left-pairs
(bin-op val2
(p-elem-sum x))

¥)))))

39

This surprising rule was discovered, as are many others, by scrutinizing ACL2’s
output from a failed proof attempt. In fact, at first we did not recognize the
above as a theorem; it was only after working out some examples that we began
to suspect it was universal.

Using this rule, it is now simple to prove the final theorem:

(defthm prefix-sum-add-left-pairs
(implies (and (p-balanced-p x)
(p-domain-list x)
(powerlist-p x)
(domain-p vall)
(domain-p val2))
(equal (p-prefix-sum-aux vall
(add-left-pairs val2 x))
(p~unzip-1
(p-prefix-sum-aux (bin-op vall val2)

x)))))

This is an important moment, because taking prefix-sum-add-left-pairs
and prefix-sum-add-right-pairs together, we have a characterization of the
unzips of p-prefix-sum. That is, we have taken the original definition of
p-prefix-sum, which was inherently sequential, and we have replaced it with
an independent characterization of its unzips, which will make it much easier to
prove the correctness of p-simple-prefix-sum.

However, p-simple-prefix-sum is defined in terms of p-star and p-add,
and our new characterization uses add-left-pairs and add-right-pairs. The
next step is to show how these are related. To start with, we give alternative
definitions of p-star and p-add which use tie instead of zip; this will make it
easier to reason about then and add-left-pairs/add-right-pairs together.
Recall that p-star performs a shift operation and p-add a pairwise addition.
This suggests that we can replace them with the following:

(defun p-shift (val x)
(if (powerlist-p x)
(p-tie (p-shift val (p-untie-1 x))
(p-shift (p-last (p-untie-1 x)) (p-untie-r x)))
val))
(defun p-add-tie (x y)
(if (powerlist-p x)
(p-tie (p-add-tie (p-untie-1 x) (p-untie-1 y))
(p-add-tie (p-untie-r x) (p-untie-r y)))
(bin-op x y)))

ACL2 can easily prove the equivalence of these definitions with the original ones.
For our purposes, we only need the following theorem:

(defthm add-star-add-tie-shift
(implies (p-balanced-p x)

40

(equal (p-add (p-star x) x)
(p-add-tie (p-shift (left-zero) x) x))))

Using p-shift and p-add-tie, we can now prove how add-left-pairs and
add-right-pairs are constructed in p-simple-prefix-sum:

(defthm add-tie-shift-add-left-right
(implies (and (powerlist-p x)
(p-balanced-p x)
(p-domain-list x))
(equal (p-add-tie (p-shift (left-zero) x) x)
(p-zip (add-left-pairs (left-zero) x)
(add-right-pairs x)))))

At this point, the proof is almost complete. We know that the term
(p-add (p-star x) x)

can be rewritten as
(p-add-tie (p-shift (left-zero) x) x)

Moreover, we know how this term is unzipped into the two terms

(add-left-pairs (left-zero) x)
(add-right-pairs x)

And, finally, we know that the prefix sum of these terms can be zipped back
together to get the prefix sum of x. Putting all this together, we can prove the
correctness of p-simple-prefix-sum:

(defthm simple-prefix-sum-prefix-sum
(implies (and (p-balanced-p x)
(p-domain-list x))
(equal (p-simple-prefix-sum x)
(p-prefix-sum x))))

5.2 Ladner-Fischer Prefix Sums

[Mis94] gives another algorithm for computing prefix sums, this one due to
Ladner and Fischer:

(defun p-ladner-fischer-prefix-sum (x)
(if (powerlist-p x)
(let ((y (p-ladner-fischer-prefix-sum
(p-add (p-unzip-1 x) (p-unzip-r x)))))
(p-zip (p-add (p-star y) (p-unzip-1 x)) y))
x))

41

The complexity of this algorithm is what justifies the previous usage of the name
p-simple-prefix-sum!

A first glance suggests that proving p-ladner-fischer-prefix-sum correct
will be a major task. However, we have enough results to derive the actual proof
without too much effort. First, we notice that p-ladner-fischer-prefix-sum
returns the answer as the zip of two powerlists:

(p-add (p-star (p-unzip-r (p-prefix-sum x))) (p-unzip-1 x))
(p-prefix-sum (p-add (p-unzip-1 x) (p-unzip-r x)))

where we have replaced p-ladner-fischer-prefix-sum with p-prefix-sumin
anticipation of the induction hypothesis. The second term seems simpler, so we
begin with it. We already know it should be identical to the following:

(p-prefix-sum (add-right-pairs x))

It is obvious that (add-right-pairs x) must be equal to (p-add (p-unzip-1
x) (p-unzip-r x)) in order for p-ladner-fischer-prefix-sumto be correct.
This suggests the following lemma:

(defthm add-unzip-l-unzip-r
(implies (and (powerlist-p x)
(p-balanced-p x))
(equal (p-add (p-unzip-1 x) (p-unzip-r x))
(add-right-pairs x))))

And now the first half of the correctness result can be easily established.
It only remains to look at the left unzip of p-ladner-fischer-prefix-sum.
We need to show that the following are equivalent:

(p-add (p-star (p-unzip-r (p-prefix-sum x))) (p-unzip-1 x))
(p~unzip-1 (p-prefix-sum x))

This appears to be an awkward lemma, since it refers to both p-unzip-1 and
p-unzip-r in a unsymmetrical fashion. However, we can remove p-unzip-r
using the following theorem:

(defthm unzip-l-star
(equal (p-unzip-1l (p-star x)) (p-star (p-unzip-r x))))

Thus, we need only consider the following terms:

(p-add (p-unzip-1l (p-star (p-prefix-sum x))) (p-unzip-1 x))
(p~unzip-1 (p-prefix-sum x))

But now, since all the terms refer exclusively to p-unzip-1 and p-add is defined
in terms of p-zip, we can factor the p—unzip-1 calls as follows:

(p~unzip-1 (p-add (p-star (p-prefix-sum x)) x))
(p~unzip-1 (p-prefix-sum x))

42

At this point, one can conjecture that the calls to p-unzip-1 are unnecessary,
and in fact ACL2 can prove the following stronger theorem:

(defthm add-star-prefix-sum
(implies (and (p-balanced-p x)
(p-domain-list x))
(equal (p-add (p-star (p-prefix-sum x)) x)
(p-prefix-sum x))))

In section 5.3, we will see how this theorem, called the “Defining Equation”
in [Mis94], plays a key role in the hand proof.

The two results above establish that p-ladner-fischer-prefix-sumequals
p-prefix-sum, and thus we have demonstrated its correctness:

(defthm ladner-fischer-prefix-sum-prefix-sum
(implies (and (p-balanced-p x)
(p-domain-list x))
(equal (p-ladner-fischer-prefix-sum x)
(p-prefix-sum x))))

5.3 Comparing with the Hand-Proof Again

As was the case with Batcher sorting, the hand proof given in [Mis94] is much
simpler than the machine-verified proof given above for the correctness of the
prefix sum algorithms. Part of the reason is that in [Mis94] the proof begins in
media res, as it were. Instead of providing a constructive definition, the prefix
sum ps(z) of a powerlist z is defined as the solution to the following “defining
equation”:

z=2"®L

The perceptive reader will recognize this equation as add-star-prefix-sum.

The proof then proceeds by applying the defining equation to derive formulas
for the left and right unzip of a prefix sum. Specifically, the derivation yields
the Ladner-Fischer scheme. From there, it is shown how this scheme can be
algebraically simplified to yield the simple prefix sum algorithm.

However, as we saw in section 5.2, establishing the correctness of the defining
equation requires a fair amount of effort, and once it is established the remainder
of the Ladner-Fischer proof is relatively simple.

The extra difficulty observed in the previous sections is a direct result of
insisting the specifications, i.e., defining axioms, be constructive and readily
accepted. In the interest of rigor, we believe this insistence is justified, so that
our faith in a mechanically verified proof is not undermined by the necessity for
a large unstated theory which has only been verified by human hands.

43

6 Conclusions

In this paper, we set out to formalize powerlists in ACL2. Although powerlists
are designed as regular data structures, we found it advantageous to generalize
them in ACL2 to encompass non-regular powerlists. This is more in keeping
with ACL2’s style, where even arithmetic and boolean operators can apply to
all ACL2 objects.

An unexpected contribution was the complete formalization of algorithms
using powerlists. Previously, it had been shown how powerlists could be used
to reason informally about software, but the reasoning was performed with a
mixture of arguments inside as well as outside of powerlist algebra. In this
paper, we showed the completion, using powerlists, of many of the example
theorems in [Mis94].

The more significant portion of this research was devoted to working with
ACL2. In particular, we have shown how a complex theory can be developed in
ACL2 by someone who is outside of the ACL2 development effort. We believe
this shows a deal of maturity in ACL2 and illustrates how it can be used to
prove large theories. More importantly, we showed how many of ACL2’s “new”
features — e.g., books, congruence rules, equivalence rewriting, encapsulations,
forward chaining — can be successfully combined in a large project. Other,
more obscure, features also played a role, though they were unmentioned in
this paper. Readers interested in using ACL2 can find these instances in the
available source code.

We also found some short-comings in ACL2 that suggest further improve-
ments. For example, the arithmetic reasoning was a major stumbling block in
proving the correctness of the gray code example in section 3.2. We identified
some potential difficulties when using structures, since ACL2 does not provide a
mechanism to add new data types. Encapsulation also presented us with some
minor problems. For example, a great convenience of ACL2 is that its logic
is computational. Thus, when “debugging” a new function, it is possible to
execute it and see the results. However, this is not possible when using encap-
sulated functions. It would be useful if such functions could be used, perhaps
by allowing the user to provide “sample” definitions for printing, or by simply
printing them as called, e.g. (bin-op 2 4).

A final observation concerns the development of large ACL2 theories. While
it would be nice if they were developed fully grown, most of these theories are
developed through a process of iterative refinement. So, for example, while
deep in the middle of a proof concerning Batcher merge, we may discover an
important lemma about powerlists that should have been proved in the powerlist
book. However, theories that arise in this fashion can produce disaster, much
the same way that a program that is hacked over a long period of time can
become unmaintainable. Among the pitfalls are circular rewrite rules, which
drive the theorem prover into infinite loops. More subtle problems involve rules
which prematurely rewrite a term, preventing another rule from firing and thus
“breaking” a previously proved theorem. It would be nice if a tool were available
which could predict the ramifications of such a “small” change.

44

Moreover, even when a change is logically harmless, that is all the previous
theorems are still provable by ACL2, it may have drastic consequences on the
performance of the proof. For example, adding a rewrite rule can “hide” a
former rule, and thus a proof that was previously a few lines long now involves
a nested recursive proof, perhaps with a large number of cases. This suggests
the opportunity for another type of tool. This tool would take a theory and
return an “optimized” version, perhaps one including a few “Knuth-Bendix”
style rewrite rules, or one in which the rewrite rules are reordered. Such a tool
could use a mixture of automated and interactive processing; e.g., “why was
this rule used here?” or “why didn’t you use this theorem here?” While writing
this tool would be a significant task, we believe it would greatly enhance the use
of ACL2. After all, most portions of an ACL2 theory are devoted to guiding
ACL2 towards a certain proof. This tool, then, would be roughly analogous
to a program debugger in interactive mode, and to an optimizer when used
non-interactively.

Source Code

The source code for all the ACL2 examples listed here can be found from our web
page at the URL http://www.lim.com/ ruben/research/acl2/powerlists.
This code was processed with ACL2 version 1.8. When new versions of ACL2
become available — as of this writing, rumors of a forthcoming version 1.9 have
been heard — we intend to port the books to them.

Acknowledgments

We would like to extend our immense gratitude to Robert S. Boyer for suggesting
the key data structures and definitions which made this work possible. We
would also like to thank him for reviewing early drafts of this paper and offering
many insightful comments. Our thanks also go to Jay Misra for suggesting the
mechanical verification of Batcher sort as a worthy challenge; we did not fully
appreciate at the time how worthy the challenge would turn out to be.

References

[BMT79] Robert S. Boyer and J Strother Moore. A Computational Logic. Aca-
demic Press, Orlando, 1979.

[BM88] Robert S. Boyer and J Strother Moore. A Computational Logic Hand-
book. Academic Press, San Diego, 1988.

[CLR90] Thomas H. Corman, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms, chapter 32. McGraw-Hill, New York, 1990.

45

[Kap96] Deepak Kapur. Constructors can be partial too. Technical report,

[KM]

[KM94]

[Kor96]

[KP94]

[KS94]

[KS95]

[Mis94]

State University of New York at Albany, 1996.

Matt Kaufmann and J Strother Moore. ACL2 Version 1.8. Compu-
tational Logic, Inc.

Matt Kaufmann and J Strother Moore. Design goals for ACL2. Tech-
nical Report 101, Computational Logic, Inc., 1994.

Jacob Kornerup. Odd-even sort in powerlists. Information Processing
Letters, 1996.

Matt Kaufmann and Paolo Pecchiari. Interaction with the Boyer-
Moore theorem prover: A tutorial study using the arithmetic-
geometric mean theorem. Technical Report 100, Computational Logic,
Inc., 1994.

Deepak Kapur and M. Subramaniam. Automated reasoning about
parallel algorithms using powerlists. Technical Report TR-95-14, State
University of New York at Albany, 1994.

Deepak Kapur and M. Subramaniam. Mechanical verification of adder
circuits using powerlists. Technical report, State University of New
York at Albany, 1995.

Jay Misra. Powerlists: A structure for parallel recursion. ACM Trans-
actions on Programming Languages and Systems, 16(6):1737-1767,
November 1994.

46

