GRAPH AUGMENTATION AND RELATED

PROBLEMS: THEORY AND PRACTICE

by

TSAN-SHENG HSU, B.S., M.S.C.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
December, 1993

In memory of my grandmother Yuan Hsu (1912 — 1991)

Acknowledgments

I would like to express my gratitude to my advisor, Professor Vijaya
Ramachandran, for her guidance and support throughout the course of this
work. Her numerous suggestions and comments were particularly beneficial.
I am also indebted to all the other members of my dissertation committee,
Professors Robert Boyer, David Matula, Greg Plaxton, and Martin D. F. Wong,

for their valuable comments.

At different stages of this thesis, I have benefited from many useful
discussions with Sanjoy Baruah, Jianer Chen, Tim Collins, Brandon Dixen,
Harold Gabow, Tibor Jordan, Goos Kant, Arkady Kanevsky, G. Neelakan-
tan Kartha, Pierre Kelsen, Dian Lopez, Don Padgett, Robert Read, Nandit
Soparkar, Torsten Suel, Roberto Tamassia, and Honghua Yang. During the
years in Austin I have also benefited from the help of many friends. I am

grateful to all of them.

Most of the work reported in this thesis is joint work with Vijaya
Ramachandran. Most of the work reported in Part II for implementing parallel
graph algorithms is also joint work with Nathaniel Dean. I would like to thank
Tibor Jordan, Arkady Kanevsky and Roberto Tamassia for providing useful
information in developing Chapter 6, Baruch Schieber for helpful comments on
an earlier version of Chapter 7, Monika Mevenkamp for her help in developing
the interface between the parallel programs on the MasPar and NETPAD, Peter
Winkler for helpful discussions on how to generate two-edge-connected graphs,
Clyde Monma for his support of the implementation project reported in Part

11

I, and Michael B. Carter for providing a set of routines for measuring CPU

time used by programs run on the MasPar.

This work has been supported in part by an MCD Fellowship of
the University of Texas at Austin, by the National Science Foundation un-
der Grants CCR-89-10707 and CCR-90-23059, by the Texas Advance Research
Program under Grant 003658480, and by an IBM Graduate Fellowship. Part

of the work reported in Chapter 11 was done while I was visiting Bellcore.
Tsan-sheng Hsu

The University of Texas at Austin
December, 1993

v

GRAPH AUGMENTATION AND RELATED

PROBLEMS: THEORY AND PRACTICE

Publication No.

Tsan-sheng Hsu, Ph.D.
The University of Texas at Austin, 1996

Supervisor: Vijaya Ramachandran

Graphs play an important role in modeling the underlying structure of many
real-world problems. In this thesis, we investigate several interesting graph

problems.

The first part of this thesis focuses on the problem of finding a small-
est set of edges whose addition makes an input undirected graph satisfy a given
connectivity requirement. This is a fundamental graph-theoretic problem that
has a wide variety of applications in designing reliable networks and database
systems. We have obtained efficient sequential and parallel algorithms for find-
ing smallest augmentations to satisfy 3-edge-connectivity, 4-edge-connectivity,
biconnectivity, triconnectivity, and four-connectivity. Our parallel algorithms
are developed on the PRAM model. Our approach in obtaining these results
is to first construct a data structure that describes all essential information
needed to augment the input graph, e.g., the set of all separating sets and the

A%

set of all maximal subsets of vertices that are highly connected. Based on this
data structure, we obtain a lower bound on the number of edges that need to
be added and prove that this lower bound can be always reduced by one by

properly adding an edge.

The second part of the thesis focuses on the implementation of PRAM-
based efficient parallel graph algorithms on a massively parallel SIMD com-
puter. This work was performed in two phases. In the first phase, we imple-
mented a set of parallel graph algorithms with the constraint that the size of
the input cannot be larger than the number of physical processors. For this,
we first built a kernel which consists of commonly used routines. Then we im-
plemented efficient parallel graph algorithms by calling routines in the kernel.
In the second phase, we addressed and solved the issue of allocating virtual
processors in our programs. Under our current implementation scheme, there
is no bound on the number of virtual processors used in the programs as long as
there is enough memory to store all the data required during the computation.
The performance data obtained from extensive testing suggests that the extra
overhead for simulating virtual processors is moderate and the performance of

our code tracks theoretical predictions quite well.

vi

Table of Contents

Acknowledgments

Abstract

Table of Contents

Chapter 1 Introduction

1.1
1.2

Background oo

Summary of Thesis Results

Part I Graph Augmentation Problems

Chapter 2 Survey of Known Results

2.1

2.2

2.3

2.4
2.5
2.6

Augmenting Empty Graphs — Network Synthesis
2.1.1 Minimum Augmentation
2.1.2 Smallest Augmentation 0L
Minimum Connectivity Augmentation.
2.2.1 NP-Completeness Results
2.2.2 Approximation Algorithms
Smallest Edge-Connectivity Augmentation
2.3.1 Undirected Graphs
2.3.2 Directed Graphs oo
2.3.3 Mixed Graphso oo
Smallest Vertex-Connectivity Augmentation
Adding Edges to Meet Other Requirements.
Parallel Algorithms for Graph Augmentation

Vil

iv

vi

viil

Chapter 3 Smallest Biconnectivity Augmentation 25

3.1
3.2
3.3
3.4

3.5

3.6

Introduction Lo 25
Definitions Lo 25
Main Lemmaso 28
The Algorithm 32
341 Stage 1. o 33
3.4.2 Stage 2. 33
343 Stage 3. . . . 34
The Complete Parallel Algorithm and Its Implementation. . . . 57
3.5.1 The Complete Parallel Algorithm 57
3.5.2 The Parallel Implementation 60
Concluding Remarkso 62

Chapter 4 Smallest Triconnectivity Augmentation:

4.1
4.2
4.3
4.4

4.5

4.6

Biconnected Graphs 64
Introduction Lo 64
Definitions Lo 64
A Lower Bound for the Triconnectivity Augmentation Number . 69

Finding a Smallest Augmentation to Triconnect a Biconnected

Graph o 71
4.4.1 Properties of the 3-Block Tree for a Biconnected Graph . 71

4.4.2 The Sequential Algorithm 79
The Parallel Algorithm 84
4.5.1 Case 2.3.1: d3(s;1) —1 < i, u* is a w-vertex, and ds(u*) > é 86
4.5.2 Case 2.3.2: d3(s1)—1 < ﬁ, u* is a w-vertex, and ds(u*) < é 88

4.5.3 The Complete Parallel Algorithm for a Biconnected Graph 91
4.5.4 The Parallel Implementation 93

Concluding Remarkso 96

Chapter 5 Smallest Triconnectivity Augmentation:

General Graphs 97
5.1 Introductiono 97
5.2 Definitions L 98
5.2.1 2-Block Graphs00 98
5.2.2 3-Block Graphs o000 99
5.3 A Lower Bound for the Triconnectivity Augmentation Number . 103
5.4 Finding a Smallest Augmentation to Triconnect a Graph 108
5.4.1 Properties of the 3-Block Graph 108
5.4.2 An Algorithm for Triconnecting an Undirected Graph
Using the Smallest Number of Edges 115
5.4.3 A Linear Time Implementation 118
5.5 An Efficient Parallel Algorithm 124
5.5.1 Properties of the 3-Block Graph 125
5.5.2 The Graph is not Connected 127
5.5.3 The Graph is Connected, but not Biconnected 128
5.5.4 The Complete Parallel Algorithm and its Implementation 141
5.6 Concluding Remarks o 0oL 143
Chapter 6 Smallest Four-Connectivity Augmentation 145
6.1 Introduction Lo 145
6.2 Definitions 146
6.3 A Lower Bound for the Four-Connectivity Augmentation Number150
6.3.1 A Simple Lower Bound 150
6.3.2 A Better Lower Bound 151
6.3.3 A Comparison of the Two Lower Bounds 154
6.4 Finding a Smallest Four-Connectivity Augmentation for a Tri-

connected Graph oo oo 155

6.4.1 Properties of the Four-Block Tree 156

6.4.2 The Algorithm L. 160

6.5 Concluding Remarks 0 0oL 165
Chapter 7 Smallest Edge-Connectivity Augmentation 167
7.1 Introductiono 167
7.2 Definitionso 168
7.3 Finding All Separating Edge-k-Sets, k€ {2,3} 170
7.3.1 Finding All Separating Edge-Pairs 170

7.3.2 Finding All Separating Edge-Triplets 173

7.4 Edge-Connectivity Augmentation 175
7.5 Concluding Remarks 0oL 178
Chapter 8 Implementation of Augmentation Algorithms 180
8.1 Sequential Implementation 00000 180
8.1.1 Smallest Two-Edge-Connectivity Augmentation 181

8.1.2 Smallest Biconnectivity Augmentation 182

8.2 Parallel Implementation, 183
Chapter 9 Conclusion and Open Problems 186
9.1 Summary 186
9.2 Open Problems Lo 187

Part II Implementation of Efficient Parallel Graph

Algorithms 188
Chapter 10 Preliminaries 189
10.1 Implementation Strategy 189

10.2 Programming Environment. 000 191
10.3 Parallel Graph Algorithms 194
10.4 Mapping of the PRAM Model onto the MasPar Architecture . . 195
105 Overview o oL e 197

Chapter 11 Implementation of Parallel Graph Algorithms with-

out Virtual Processing 200
11.1 Introduction 200
11.2 Implementation Environment 200

11.2.1 Mapping Efficient PRAM Algorithms for Graph Problems 201

11.2.2 NETPAD Interface 205
11.3 Our Implementation of Parallel Graph Algorithms 207
11.3.1 Data Structureso 208
11.3.2 The Parallel Graph Algorithms Library 209
11.4 Performance Data 0. 215
11.4.1 Sequential Algorithms 215
11.4.2 Testing Scheme oL 216
11.4.3 Least-Squares Curve Fitting 218
11.4.4 Analysis oo Lo 219
11.5 Concluding Remarks o L. 221

Chapter 12 Efficient Implementation of Virtual Processing on a

Massively Parallel SIMD Computer 229

12.1 Introduction Lo 229
12.2 Preliminary 230
12.2.1 High-Level Description of Our Implementation 230

12.2.2 Mapping of the Virtual Processors onto the MasPar Ar-
chitectureo oo 232

12.3

12.4

12.5

12.6

General Coding Issues for Virtual Processing 234

12.3.1 Arithmetic and Logic Operations 234
12.3.2 Conditional Branching Statements 235
12.3.3 Procedure Calls 000 236
Implementation of Parallel Primitives 237
1241 Category 1. oo o o 238
12.4.2 Category 2. o 242
1243 Category 3. o 253
Comparisons Between Sequential and Parallel Implementations

of Basic Primitives oo 259
12.5.1 Prefix Sums00 oo 261
12.5.2 List Ranking oo 262
12.5.3 Sortingo 264
Concluding Remarkso 265

Chapter 13 Implementation of Parallel Graph Algorithms on a

13.1
13.2
13.3

13.4

13.5

Massively Parallel SIMD Computer with Virtual Pro-

cessing 267
Introduction Lo 267
High-Level Description of Our Implementation 268
Implementation of Parallel Graph Algorithms 270
13.3.1 Data Structures oo 270
13.3.2 The Parallel Graph Algorithms Library 276
Performance Analysis oL 278
13.4.1 Generation of Test Graphs 279
13.4.2 Testing Schemeo 279
13.4.3 Least-Squares Curve Fitting 281
13.4.4 Analysiso oo 282
13.4.5 Overhead for Implementing Virtual Processors 287
Concluding Remarkso 288

Chapter 14 Summ
14.1 Summary .
14.2 Future Work

Chapter A Proofs

ary and Future Work

Chapter B Performance Data for Parallel Programs

BIBLIOGRAPHY
Vita

X1l

295
295
296

299

306

310

Chapter 1

Introduction

1.1 Background

Graph Augmentation

The problem of augmenting a graph to reach a given requirement (e.g., connec-
tivity) by adding edges has important applications in designing networks with
high reliability [FC70, SWK69], designing reliable database system [Esw73] and
improving statistical data security [Gus87, Gus89]. The underlying model for
solving these problems can be formulated as a graph. In the application, each
addition of an edge incurs a certain cost. We refer to this problem as the graph

augmentation problem.

A general formulation of the graph augmentation problem is as fol-
lows. Given an input graph G and a finite cost assigned to each pair of vertices
in (G, we want to add a set of edges with the minimum total cost such that the
resulting graph G’ satisfies a given property (e.g., high vertex-connectivity).
The requirements for the input graph are called the input requirements and
the requirements for the augmented graph are called the output requirements.
Depending on the input requirements and the output requirements, we can
map the graph augmentation problem to a variety of real-world problems. For
example, in Chapters 4 and 5 we will present a linear-time sequential algorithm
and an efficient parallel algorithm to triconnect an undirected graph using the
smallest number of edges. This problem corresponds to the real-world prob-

lem of upgrading a (communication or computer interconnection) network such

1

that no failure of any two links or any two nodes can disconnect the whole net-
work. The input graph represents the existing network that does not have the
required connectivity. It is often the case in a local area network that the cost
of adding a link is about the same among all possible links. The solution found
by our algorithm given in Chapters 4 and 5 corresponds to the best way of

upgrading the reliability of the existing network.

If the cost between each pair of vertices in the input graph is not uni-
form, we refer to this problem as the minimum augmentation problem. A set
of edges with the minimum total cost whose addition meets the connectivity
requirement is called a minimum augmentation. Finding a minimum augmen-
tation can be very difficult for quite a few output requirements. For example,
the decision problem associated with the minimum augmentation for reaching
various connectivity requirements has been proven to be NP-complete. These

results will be listed in Chapter 2.

The unweighted version of the graph augmentation problem is often
easier than its weighted version. In the unweighted version of the problem,
we want to augment the input graph to reach a given output requirement
by adding a smallest set of edges. We refer to this problem as the smallest
augmentation problem. A smallest set of edges whose addition meets the output
requirement is called a smallest augmentation. We will show in Chapters 3
through 6 that the smallest augmentation problem can be solved efficiently for

satisfying several vertex connectivity requirements.

We note that the complementary problem of deleting a maximum set
of edges from a graph such that the resulting graph still satisfies certain prop-
erties has also been extensively studied for various connectivity requirements.

See [HKRT92, KR91b, Kel92, KV92] for details.

Implementation of Efficient Parallel Graph Algorithms

In addition to the theoretical study of graph augmentation problems, we also
study the implementation of graph algorithms. There has been a lot of work on
implementing sequential graph algorithms [DMM92, MN89], and in this thesis,
we will describe our implementation of some sequential graph algorithms. On
the other hand, although several parallel graph algorithms have been developed
[J4J92, KR90, Lei92, Qui87], not much implementation has been done. In the
second part of this thesis, we study the problem of implementing parallel graph

algorithms efficiently on a massively parallel SIMD computer.

PRAM Models

In this thesis, we use the parallel random access machine (PRAM) as the model
of parallel computation. A PRAM [KR90] consists of a set of random access
machines (RAM) and a global memory. FEach random access machine has a
processor and a local memory. Fach RAM has a unique ID numbered from 1
to the total number of processors in the PRAM machine. During each step of
the computation, each processor synchronously executes the same instruction,
but with possibly different operands. During each time cycle, a processor can
read a global memory cell, perform some local computations on its local data
and write data into a global memory cell. A schematic diagram of a PRAM is

shown in Figure 1.1.

The PRAM model assumes that each instruction takes constant time
no matter how many processors want to access the global memory. Depend-
ing on the type of global memory access allowed, the PRAM model can be
further classified into the following models: EREW PRAM, CREW PRAM,
CRCW PRAM, and ERCW PRAM. The EREW (exclusive-read exclusive-

write) PRAM model requires that no two processors read or write the same

Global Memory
A
Y Y L
@ @ e o ©o E!
local local ig;gi
memory memory y

t

a Random Access Machine

Figure 1.1: Schematic diagram for the PRAM model.

global memory location at any given time. The CREW (concurrent-read
exclusive-write) PRAM model allows concurrent access to the same global
memory location by more than one processor for reading, but does not al-
low more than one processor to write the same memory location at the same
time. The CRCW (concurrent-read concurrent-write) PRAM models allow dif-
ferent processors to read and write into the same global memory location at the
same time. In the case of writing different data into the same global memory
location at a given time, we must define the result of the concurrent write. The
COMMON CRCW model requires data that are written into a common global
memory location by different processors to be the same at any given time. In
the PRIORITY CRCW model, if several processors try to write different data
in the same global memory location at any given time, the data sent by the
processor with the least ID is written into the memory location. There are var-
ious other protocols for resolving collisions in writing. For details, see [KR90].
The ERCW (exclusive-read concurrent-write) PRAM models do not allow more
than one processor to read the same memory location at the same time, but
allow multiple processors to write into a memory location. The collision reso-

lution protocols for concurrent write, discussed above for the CRCW models,

also apply here. Not too many results are known for the ERCW PRAM models
[MRI3].

Algorithmic Notation

The algorithmic notation used is pseudo-Pascal and is similar to the notation
of Tarjan [Tar83] and Ramachandran [Ram93]. We enclose comments between
‘{*” and ‘*}’. Parameters are called by value unless they are declared with the
keyword modifies in which case they are called by value and result. We use
the following pfor statement for executing a loop in parallel.

pfor iterator do statement list rofp
The effect of this statement is to perform the statement list in parallel for each

value of the iterator.

Throughout the thesis, let log x denote log, x for any variable x. We
also use n to denote the number of vertices in the input graph and m to denote
the number of edges in the input graph. In this thesis, a spanning forest of a
graph (G is a maximal subgraph of G (with respect to the edges in (7) that is

a forest.

1.2 Summary of Thesis Results

This thesis consists of two parts. The first part deals with the small-
est augmentation problem when the output requirement is vertex connectivity.
At the end of Part I, we describe our implementation of some smallest augmen-
tation algorithms. The second part deals with the implementation of several

efficient parallel graph algorithms.

Part I
We present the following results in Part 1. Chapter 2 lists results known for

solving the augmentation problem. Chapter 3 gives a corrected linear time

sequential algorithm and an efficient parallel algorithm for finding a smallest
biconnectivity augmentation on an undirected graph. Our parallel algorithm
runs in O(log® n) time using a linear number of processors on an EREW PRAM,

where n is the number of vertices in the input graph.

Chapter 4 gives a linear time sequential algorithm and an efficient
parallel algorithm for finding a smallest triconnectivity augmentation on a bi-
connected graph. Our parallel algorithm runs in O(log® n) time using a linear
number of processors on an EREW PRAM. Building on the results in Chap-
ter 4, Chapter 5 shows how to extend our augmentation algorithms (both the
sequential algorithm and the parallel algorithm) to handle the case when the
input graph is not biconnected. Algorithms given in Chapter 5 have the same

complexities with the algorithms given in Chapter 4.

Chapter 6 gives an O(na(m,n) + m) time sequential algorithm for
finding a smallest augmentation to four-connect a triconnected graph with n

vertices and m edges, where a(m,n) is the inverse Ackermann function.

By using an efficient method to transform the problem of finding a
smallest edge-connectivity augmentation into the problem of finding a smallest
vertex-connectivity augmentation, we give a linear time sequential algorithm
and an efficient parallel algorithm for finding a smallest 3-edge-connectivity

augmentation in Chapter 7. Our parallel algorithm runs in O(logn) time us-

ing O(W—Wﬁ%) processors on a CRCW PRAM, where n is the number of
vertices and m is the number of edges n the input graph. In Chapter 7, we
also give an O(na(m,n) 4+ m) time sequential algorithm to 4-edge-connect an

undirected graph using the smallest number of edges.

In Chapter 8, we describe our implementation of several smallest aug-
mentation problems and provide performance data. Finally in Chapter 9, we

summarize the results of Part I and list some open problems.

Part 11
We present the following results in Part II. Chapter 10 gives an overview of the
hardware and software of the massively parallel SIMD computer MasPar MP-1

and our general approach towards implementing parallel graph algorithms on

the MP-1.

Chapter 11 shows the systematic approach we used to implement
parallel graph algorithm when the input size is not larger than the number of
available physical processors. Our approach was to first build a kernel which
consists of commonly used routines. Then we implemented efficient parallel
graph algorithms developed on the PRAM model by calling routines in the
kernel. We also implemented the corresponding sequential graph algorithms.
In addition to the description of our implementation, we provide including an

analysis of the speed-up achieved.

Using a language that does not support the use of virtual proces-
sors, Chapter 12 describes techniques for implementing parallel programs with
virtual processing. We first present our data allocation scheme for virtual pro-
cessing and a set of translation rules for rewriting a code that uses no virtual
processors into a code with virtual processing. We then describe the imple-
mentation and fine-tuning of a set of commonly used routines with virtual
processing. In coding these routines, we tried different underlying algorithms.
We present the performance data for our different implementations. We also
present the performance data of our sequential code and compare it with that

of our parallel code.

Using the techniques given in Chapter 12, we re-coded and fine-tuned
our earlier parallel graph algorithms (described in Chapter 11) to incorporate

the usage of virtual processors. The results are presented in Chapter 13. Under

the current implementation scheme, there is no limit on the number of virtual
processors that one can use in the program as long as there is enough main
memory to store all the data required during the computation. We also give two
general optimization techniques to speed up our computation. The performance
data we obtained from extensive testing suggests that the extra overhead for
simulating virtual processors is moderate. Furthermore, the performance of our
code tracks theoretical predictions quite well. In addition, our parallel code
using virtual processing runs on much larger size inputs than our sequential

code.

Finally in Chapter 14, we summerarize our work in Part II and list

directions for future improvements.

Part 1

Graph Augmentation Problems

Chapter 2

Survey of Known Results

In this chapter, we list results known for graph augmentation prob-

lems.

2.1 Augmenting Empty Graphs — Network Synthesis

The problem of how to design a network from scratch such that the
network contains desirable properties is called the network synthesis problem.
The corresponding graph augmentation problem requires that the input graph
is empty. In the following subsections, we give some classical results and some
recent results for augmenting empty graphs to satisfy various output require-
ments. The survey paper written by Christofides and Whitlock [CW81] de-
scribes results (obtained before 1981) on synthesizing networks with certain

connectivity requirements.

2.1.1 Minimum Augmentation

In this subsection, we list some results about synthesizing networks

when edges have non-uniform costs.

Monma, Munson, and Pulleyblank [MMP90] considered the problem
of constructing a minimum-cost 2-edge-connected or biconnected graph whose
cost function on edges satisfies the triangular inequality. They showed that
there always exists a minimum-cost 2-edge-connected (biconnected) graph that

satisfies the following conditions: (1) the degree of each its vertices is 2 or 3; (2)

10

11

the removal of any pair of edges (vertices) creates a cut edge (cutpoint) in one
of the connected components of the resulting graph. They gave a polynomial-
time approximation algorithm for constructing such a graph by finding a near-
optimal Hamilton circuit whose total cost is at most % times the total cost of

an optimal 2-edge-connected (biconnected) graph.

Bienstock, Brickell, and Monma [BBM90] extended the result in
[MMP90] to construct a minimum-cost k-edge-connected (k-vertex-connected)
graph whose cost function on edges satisfies the triangular inequality. They
first showed that there exists a minimum-cost k-edge-connected (k-vertex-
connected) graph that satisfies the following conditions: (1) the degree of each
of its vertices is k or k + 1; (2) the removal of any w edges (vertices), w > k,
creates a separating t-edge-set (vertex-set), ¢t < k, in one of the connected
components of the resulting graph. The number of vertices in the optimal -
vertex-connected graph is at least 2k. For any fixed & > 2, they proposed a
polynomial time approximation algorithm by finding a near-optimal Hamilton
circuit and adding an edge between any pair of vertices that can reach one an-
other by a path of < (%W edges. By using the Christofides heuristic for finding
a near-optimal Hamilton circuit, they can construct a graph whose cost is at

most 3 - k- (k+ 1) times the optimal cost.

Grotschel and Monma [GM90] further extended results in [BBM90,
MMPI0] by associating the designing of an optimal k-edge-connected (k-vertex-
connected) graph with the solution of a system of integer linear programs with

properly defined constraints.

2.1.2 Smallest Augmentation

In this subsection, we list some results for synthesizing networks when

the edges added have uniform cost.

12

Fulkerson and Shapley [FS71] gave an O(kn?) time algorithm to con-
struct a minimum k-edge-connected undirected graph with n nodes, for an
arbitrary given k. The graph they constructed has n — 1 edges if £ = 1 and
has (%ﬂ edges if & > 1. Their algorithm included a linear time subroutine
that given a minimum n-node k-edge-connected graph, generates a minimum

k-edge-connected graph with n+1 nodes by changing (i.e., deleting and insert-
ing) O(k) edges.

For the case of reaching an arbitrary vertex-connectivity on an empty
graph, Harary [Har62] constructed an n-node k-connected undirected graph
with the smallest number of edges (the number is n — 1 if k = 1; otherwise, the

number is [%2]) in O(kn) time for an arbitrary k. Schumacher [Sch84] gave an

2

O(n?) time algorithm for constructing an n-node k-connected undirected graph
with the smallest number of edges, and a diameter which is no larger than twice
the theoretical minimum. Both of their constructions are quite different from

the method used by Fulkerson and Shapley [FST1] to construct their minimum

n-node k-edge-connected undirected graphs.

Given d and k, Memmi and Raillard [MR82] constructed a regular
graph with degree d and diameter k using the maximum number of vertices.
Amar [Ama83] further proved that the graph constructed in [MR82] is d-vertex-
connected. Imase, Soneoka, and Okada [ISO85] considered this problem on

directed graphs.

2.2 Minimum Connectivity Augmentation

The problem of finding a minimum augmentation to connect an input
graph is equivalent to the problem of finding a minimum-cost spanning tree. A

survey of polynomial time sequential algorithms for this problem on undirected

13

graphs, directed graphs and for dealing with other additional constraints can be
found in Tarjan [Tar83]. A history of this problem is described in Graham and
Hell [GH85]. There are quite a few parallel algorithms for finding a minimum-
cost spanning tree. For a survey of results, see Gibbons and Rytter [GR88],
JaJa [JaJ92], Karp and Ramachandran [KR90], Quinn [Qui87], and the recent
result of Chong and Lam [CL93].

2.2.1 NP-Completeness Results

The decision problem associated with the minimum augmentation
problem is NP-complete for most of the connectivity requirements other than
connectedness. (For the definition of NP-completeness and a survey of related
results, see Garey and Johnson [GJ79].) Eswaran and Tarjan [ET76] proved
that for achieving strong connectivity on a directed graph and for achieving
2-edge-connectivity or biconnectivity on an undirected graph, the minimum
augmentation problem is NP-hard by a reduction from the Hamiltonian cir-
cuit problem. This version of the minimum augmentation problem remains
NP-hard even if the input graph is connected. The problem of strongly con-
necting a weakly connected directed graph remains NP-hard. The reductions
are made from the 3-dimensional matching problem [FJ81]. Watanabe and
Nakamura [WN87] showed that the minimum augmentation problem for k-
edge-connectivity or k-connectivity is NP-hard, for any & > 2. It is also
shown in [WNNB89] that for 3-edge-connectivity and triconnectivity, the mini-
mum augmentation problem is NP-hard even if the input graph is biconnected

by a reduction from the 3-dimensional matching problem.

Watanabe, Higashi, and Nakamura [WHN90] considered the following

variation of the minimum augmentation problem. Given a graph G and a

14

subset of vertices S in (¢, we want to find a set of edges with the minimum cost
whose addition makes every pair of vertices in S satisfy a given connectivity
requirement. The addition of multiple copies of the same edge is not allowed.
This problem is clearly NP-hard (even on undirected graphs) if one requires
the resulting graph to have k vertex-disjoint or k edge-disjoint paths between
every pair of vertices in S, for any k& > 2. They showed that the problem
is NP-hard if we are required to have a directed cycle between every pair of
vertices in S on directed graphs, even if the values of the costs are all equal to

1.

2.2.2 Approximation Algorithms

Frederickson and JaJa [FJ81] gave approximation algorithms for di-
rected graphs to achieve strong connectivity, and for undirected graphs to
achieve 2-edge-connectivity and biconnectivity. Their algorithm ran in O(n?)
time on an n-node graph where the sum of the costs of all edges added 1is
at most twice the minimum cost when the input graph is connected. (See
[GJT79, PS83] for a discussion on the definition of the performance ratios of
approximation algorithms.) Khuller and Thurimella [KT92] gave an improved
algorithm for approximating minimum biconnectivity augmentation within a
factor of 2 in O(m + nlogn) time when the input graph is connected. They
also studied the problem of increasing the edge-connectivity of any graph to k
using a set of edges whose cost is at most twice the optimal value. The gave an
O(knlogn(m +nlogn)) time algorithm for this problem. When & is odd, they
also gave an O(kn?) time algorithm to increase the edge-connectivity from k to
k+1, with a set of edges whose cost is within twice the optimal value. Watan-
abe and Nakamura [WN87] gave an O(n”) time approximation algorithm for

achieving 3-edge-connectivity on an n-node 2-edge-connected graph G where

15

the sum of the costs of all edges added is no more than the sum of the costs
of all the edges in a certain spanning tree of (&; the resulting graph obtained
from their algorithm is simple (that is, contains no multiple edges). Watan-
abe, Mashima, and Taoka [WMT92] gave several approximation algorithms for
increasing the edge-connectivity of any graph by 1 in O(n?) time. They gave

experimental data, but no theoretical analysis.

For approximation algorithms to increase connectivity within a given
set of vertices, Watanabe, Higashi, and Nakamura [WHN90] gave an O(n?) time
approximation algorithm for achieving 2-edge-connectivity on a specified set of
vertices on undirected graphs. The sum of the costs of all edges added by the
algorithm is no more than twice the minimum possible total cost if the input
graph is connected. They also gave an O(n”) time approximation algorithm
for achieving biconnectivity on a specified set of vertices on undirected graphs.
The sum of the costs of all edges added by the algorithm is no more than
four times the minimum possible if the input graph is connected. An O(n?)
time approximation algorithm was also given for reaching strong connectivity
on directed graphs; however, there is no performance ratio given on the total

weight of the set of edges added by their algorithm.

Goemans and Williamson [GW92] solved the minimum augmentation
problem when one requires the output graph to have at least one path between
any vertex in ()1 of p vertices and any vertex in ()3, where (); and)y are
given sets of vertices with cardinalities p. The approach they used is different
from [WHNO90] by encoding a set of constraints that can be solved using integer
linear programming. They obtained a 2— ;—) approximation result in O(n? logn)
time. Using similar techniques, Ravi and Klein [RK93] gave a way to augment

a graph such that there are at least two edge-disjoint paths between any pair

16

of vertices in a given set of p vertices. They obtained a 3 — % approximation
result in O(n*logn) time. They could obtain a 2 approximation result with

the same time bound if the given set of vertices is connected.

2.3 Smallest Edge-Connectivity Augmentation

For the problem of finding a smallest augmentation to reach a given
edge-connectivity property, several polynomial time algorithms on undirected

graphs, directed graphs and mixed graphs are known.

2.3.1 Undirected Graphs

Algorithms for finding a smallest augmentation to connect an undi-
rected graph are well-known (that is, the problem of finding a spanning tree).
We can first find connected components of the input graph by depth-first search,

and then connect connected components by a spanning tree.

In [ET76], Eswaran and Tarjan gave a linear time algorithm for
finding a smallest 2-edge-connectivity augmentation on undirected graphs by
looking at the structure of the 2-edge-connected components and cut-edges.
Watanabe, Narita, and Nakamura [WNN89] gave a polynomial time algorithm
for achieving 3-edge-connectivity. Watanabe, Yamakado and Onaga [WYO91]
gave an improved linear time algorithm for this problem. In Chapter 7 of this
thesis, we give another linear time algorithm for reaching 3-edge-connectivity
that can be parallelized. In that chapter, we also present an almost linear time

algorithm for achieving 4-edge-connectivity.

For achieving arbitrary edge-connectivity, Ueno, Kajitani, and Wada
[UKWS88] described a polynomial time algorithm for solving this problem on

a tree. No exact time bound was given. Watanabe [Wat87] and Watanabe

17

and Nakamura [WN8T7], gave the first polynomial time algorithms to solve the
smallest augmentation problem for an arbitrary undirected graph to achieving
a given edge-connectivity. Cai and Sun [CS89] also gave a polynomial time

algorithm for solving the same problem.

Naor, Gusfield, and Martel [NGM90] gave an O(&*nm + nF'(n,m))
time algorithm to increase the edge-connectivity of an undirected graph by o,
where n and m are the number of vertices and edges in G, respectively, and
F(n,m) is the time to perform one maximum flow on . (The best known
bound for F'(n,m)is O(min{nZm,mz}) [ET75].) They first devised an O(nm)
time algorithm to optimally increase the edge-connectivity of an undirected
graph by 1. By applying the basic algorithm 6 times, they showed that by
carefully choosing the edges added in each iteration, they could optimally in-
crease the edge-connectivity of any graph by 6. Frank [Fra90, Fra92] solved a
more general version of the smallest augmentation problem for reaching any
arbitrary required edge-connectivity. Let a weight be assigned to each node in
the input graph and let the cost of an edge be the sum of the weights of its two
endpoints. He gave an O(n®) time algorithms for finding a set of edges with the
minimum total weight whose addition makes the input graph (undirected or
directed) to achieve any arbitrary required edge-connectivity. Gabow [Gab91]
gave an improved algorithm for achieving 7-edge-connectivity on undirected

graphs. His algorithms runs in O(m + 7*nlogn) time.

2.3.2 Directed Graphs

We describe results known for solving the smallest edge-connectivity
augmentation problem on directed graphs in this section. Eswaran and Tarjan

[ET76] gave a linear time algorithm for finding a set of edges whose addition

18

to strongly connect a directed graph by using the minimum number of edges.
Their algorithm solved this problem by looking at all sinks and sources of the
given directed graph.

Kajitani and Ueno [KUS86] solved the problem of finding a smallest
augmentation to k-edge-connect a directed tree in polynomial time (no exact
time bound is given) for an arbitrary value k. Frank’s results [Fra90, Fra92]

mentioned in the previous section can also be used on directed graphs.

2.3.3 Mixed Graphs

For results on mixed graph, Gusfield [Gus87] considered the follow-
ing smallest augmentation problem. Given a mixed graph, we want to add a
smallest set of directed edges such that every pair of vertices in the resulting
graph can reach one another. He gave a linear time algorithm in [Gus87] for

solving the problem.

Note that all the above mentioned smallest augmentation algorithms
[CS89, Fra92, KU86, UKWS8S8, Wat87, WN87, WNN89] produce multi-graphs.
We do not know how to solve the smallest augmentation problem in polynomial
time for achieving an arbitrary edge-connectivity such that the resulting graph
remains simple. We also do not know how to solve this problem if we just want

to satisfy the given edge-connectivity requirement on a specified set of vertices.

2.4 Smallest Vertex-Connectivity Augmentation
The following results are known for solving the smallest augmentation
problem on an undirected graph to satisfy a vertex-connectivity requirement.

Eswaran and Tarjan [ET76] (and Plesnik [Ple76], independently) gave

a lower bound for the smallest number of edges needed to biconnect an undi-

19

rected graph and proved that the lower bound can always be achieved. Rosen-
thal and Goldner [RG77] developed a linear time sequential algorithm for find-
ing a smallest augmentation to biconnect a graph; however, the algorithm in
[RGT7] contains an error. Hsu and Ramachandran [HR91b] gave a corrected
linear time sequential algorithm. An O(log®n) time parallel algorithm on an
EREW PRAM using a linear number of processors for this problem was also
given in Hsu and Ramachandran [HR91b]. We will describe the above two

algorithms in Chapter 3.

Ferndndez-Baca and Williams [FBW89] considered the smallest aug-
mentation problem for reaching 2-edge-connectivity, biconnectivity, and strong
connectivity on hierarchically defined graphs. This version of the augmentation
problem has applications in VLSI circuit design. They obtained polynomial

time algorithms for the above problems.

Watanabe and Nakamura [WN93, WN88, WN90] gave an O(n(n +
m)?) time sequential algorithm for finding a smallest augmentation to tricon-
nect a graph with n vertices and m edges. Hsu and Ramachandran [HR91a]
gave a linear time algorithm for this problem. (Independently, Jordan [Jor93b]
gave a different linear time algorithm for the special case of optimally tri-
connecting a biconnected graph.) We will describe the above result in Chap-
ters 4 and 5. For four-connecting a triconnected graph, Hsu [Hsu92| gave an
O(na(m,n) 4+ m) time sequential algorithm, where a(m,n) is the inverse Ack-
ermann function. This algorithm will be described in Chapter 6 of this thesis.

There is no polynomial time algorithm known for finding a smallest
augmentation to k-vertex-connect an undirected graph, for £ > 4. Although no
polynomial time solution is known for this problem. Jordan [Jor93b] gave an
approximation algorithm for undirected graphs that uses no more than £ — 2

edges to (k + 1)-vertex-connect a k-vertex-connected graph.

20

A special variation of the smallest augmentation problem is to con-
sider the problem of augmenting a planar graph such that the output graph
is still planar and satisfies given connectivity properties. This version of the
augmentation problem has applications in drawing planar graphs nicely on a
plane [Kan93]. Kant and Bodlaender [KB91] showed that the problems of
adding a smallest set of edges to reach biconnectivity (reducing from the 3 par-
tition problem) and triconnectivity (reducing from the vertex cover problem)
are NP-hard for planar graphs. They gave approximation algorithms for these
two problems that add at most twice (biconnectivity) and 3 (triconnectivity)
the smallest number of edges. They also gave an algorithm for approximat-
ing 2-edge-connectivity to within a factor of 2. All of their algorithms run in
O(n - a(n,n) + m) time. The decision problem associated with the problem
of finding a smallest 2-edge-connectivity augmentation on planar graphs is not
known to be NP-complete. Kant and Bodlaender [KB92] also studied these
problems while trying to minimize the maximum degree of the resulting graph,
and Kant [Kan91] obtained some results for these problems for the case when

the input graph is outerplanar.

For directed graph augmentation, Masuzawa, Hagihara, and Tokura
in [MHT87] studied this problem when the input graph is a directed oriented
tree. Their algorithm runs in O(kn) time where k is the vertex-connectivity
of the resulting graph. Jordan [Jor93a] gave a polynomial time approximation
algorithm that uses no more than k extra edges for augmenting a (k—1)-vertex-
connected directed graph to achieve k-vertex-connectivity. Very recently, Frank
and Jordan [FJ93] gave a polynomial-time algorithm to solve the smallest
vertex-connectivity augmentation problem on directed graphs exactly. Their

algorithm increases the vertex-connectivity of a directed graph by any given

21

6 optimally. We do not know how to solve the smallest vertex-connectivity
problem (both on undirected graphs and directed graphs) if we just want to

satisfy the given connectivity requirement on a specified set of vertices.

2.5 Adding Edges to Meet Other Requirements

Most of the graph augmentation problems that we mentioned are
for achieving various connectivity requirements. There are several results on
achieving different requirements. Most of the output requirements are moti-

vated by real-world applications.

Eswaran [Esw73] showed how to augment a directed graph such that
the resulting graph is Eulerian by using a set of edges with the minimum total
cost. Boesch, Suffel, and Tindell [BST77] studied this problem on undirected
graphs when edges have a uniform cost. They specified the class of graphs
that can be augmented to Fulerian graphs and an algorithm for finding such a
smallest augmentation. Goodman and Hedetniemi [GHT73] gave an O(n) time

algorithm to augment a tree such that the resulting graph is Hamiltonian.

Bokhari and Raza [BR84] studied the problem of adding at most one

edge to each node. Under this paradigm, they gave polynomial algorithms for

n+2

obtaining a graph with diameter less than or equal to 4[log *3*] — 2 from a

tree, for obtaining a graph that contains a binary tree with diameter less than

n+2

or equal to 2[log =] from a chain, and for obtaining a graph that can emulate

a shuffle-exchange network in constant time from a mesh.

Jain and Gopal [JG86] studied the problem of adding exactly one
edge to the graph. Given a set of sources S and sinks 7' in the (undirected)
graph, one endpoint of e must be in S U T and the number of shortest paths

from any vertex in S to any vertex in 7' is optimally increased by adding e.

22

Instead of developing an exact solution for this problem, they used a heuristic

algorithm and no analysis was given.

Mo [Mo88] studied several smallest augmentation problems related to
bounding the radius of a graph. Given a set of k vertices C' and a value r, the
problem of finding a smallest augmentation such that all vertices are within a
radius of r from a vertex in (' is called the k-centriz radius r augmentation.
Mo proved that this problem is NP-hard for any r» > 2 and gave an O(kn)
time algorithm for r = 1. Mo also solved the problem when the input graph
is a tree. By extending the definition of reachability between two vertices, Mo
gave two more algorithms for related problems. In addition to the above, Mo
described the problem of adding a smallest set of edges such that the resulting
graph contains k disjoint maximum matchings. This problem is NP-hard for
“most” input graphs. Mo gave a polynomial time algorithm when the input

graph is a forest.

For results on augmenting a graph such that the resulting graph is an
interval graph, Kashiwabara and Fujisawa [KF79] first showed that it is NP-
hard (even for the case when edges have uniform costs). Instead of finding an
approximation solution, Ohtsuki, Mori, Kashiwabara and Fujisawa [OMKF81]
developed an O(nm) time algorithm for finding a minimal set of augmenting

edges. No bound on the number of added edges was given.

2.6 Parallel Algorithms for Graph Augmentation

Several parallel algorithms have been developed for finding a smallest
augmentation to connect a graph (that is, the problem of finding a spanning
tree). Results can be found in Gibbons and Rytter [GR88], J4J4 [JaJ92], Karp
and Ramachandran [KR90], Quinn [Qui87], and the recent result of Chong and
Lam [CL93].

23

Efficient parallel algorithms for finding smallest augmentations to
achieve the following connectivity requirements can be found in Soroker [Sor88].
For finding a smallest augmentation to 2-edge-connect an undirected graph with

n nodes and m edges, Soroker’s parallel algorithm runs in O(logn) time on a
CRCW PRAM using O(%) processors, where a(m,n) is the inverse
Ackermann function. This efficient parallel algorithm is a trivial parallelization
of the linear time algorithm given in Eswaran and Tarjan [ET76]. For finding
a smallest augmentation to strongly connect a directed graph with n nodes,
his algorithm runs in O(logn) time on a CRCW PRAM using O(M(n)) pro-
cessors, where M(n) is the number of processors needed for a CRCW PRAM
to compute the transitive closure of an n by n matrix in O(logn) time. (The
realistic value for M(n) is n®, but there are various involved algorithms whose
M(n) is n?**¢, where ¢ is a constant that is less than 1.) This efficient algo-
rithm is a parallelization of the sequential algorithm described in Eswaran and
Tarjan [ET76]. In this parallel algorithm Soroker gave an efficient parallel im-
plementation for solving a special class of the matching problem. His parallel
algorithm for finding a smallest set of directed edges whose addition makes a

mixed graph strongly orientable runs in O(logn) on a CRCW PRAM using
O(M (n)) processors.

Hsu and Ramachandran [HR91b] gave an O(log®n) time algorithm
for finding a smallest biconnectivity augmentation on an EREW PRAM using
a linear number of processors. Using similar techniques, we gave a parallel al-
gorithm for finding a smallest triconnectivity augmentation with the same pro-
cessor and time complexities. By using a technique to reduce from augmenting
edge-connectivity to augmenting vertex-connectivity, Hsu and Ramachandran

gave an O(logn) time CRCW algorithm for achieving 3-edge-connectivity using

24

O(%) processors given the adjacency list of the input graph. These
parallel algorithms will be described in Chapters 3, 4, 5, and 7 of this thesis.
There is no efficient parallel algorithm known for finding a smallest augmenta-

tion to k-vertex-connect or k-edge-connect a graph, for any k£ > 3.

Chapter 3

Smallest Biconnectivity Augmentation

3.1 Introduction

In this chapter, we present an efficient parallel algorithm for finding
a smallest augmentation to biconnect an undirected graph. In addition, we
discover an error in the sequential algorithm of Rosenthal and Goldner [RGT77].
We first give a corrected linear time sequential algorithm for the problem.
Our efficient parallel algorithm is based on this corrected sequential algorithm.
However we have to utilize several insights into the problem in order to derive
the parallel algorithm. The algorithm runs in O(log”n) time using a linear
number of processors on an EREW PRAM, where n is the number of vertices in

the input graph. The work described in this chapter also appears in [HR91b].

3.2 Definitions

Let G = (V, F) be an undirected graph with vertex set V and edge
set £, Let {F; |1 <1 <k} be a partition of F into a set of k disjoint subsets
such that two edges e; and e; are in the same partition if and only if e is equal
to ey or there is a simple cycle in G containing e; and ey A vertex is isolated if
it is not adjacent to any other vertex. Let ¢ be the number of isolated vertices
in G. Let {V; | 1 < i < k+q} be a collection of sets of vertices, where V;
is the set of vertices in E; for each ¢, 1 < ¢ < k, and V,;; contains only the
1th isolated vertex for each 2, 1 < ¢ < ¢. A vertex v is a cutpoint of a graph

GG if v appears in more than one vertex set V;. G is biconnected if it has at

25

26

least 3 vertices and contains no cutpoint or isolated vertex. The subgraph
Gy = (Vi,Ey), Yi, 1 <@ < k, is a biconnected component of G if V; contains
more than two vertices. Note that E; =0, k <i < k + ¢, since V; contains an
isolated vertex. The subgraph G; = (V;, E;), 1 <@ < k + ¢, is called a block
of G. Given an undirected graph (i, we can define its block graph blk(() as
follows. Each block and each cutpoint of (¢ is represented by a vertex of blk((G).
The vertices of blk((G) which represent blocks are called b-vertices and those
representing cutpoints are called c-vertices. Two vertices u and v of blk((G) are
adjacent if and only if u is a c-vertex, v is a b-vertex, and the corresponding
cutpoint of u is contained in the corresponding block of v or vice versa. It is
well-known that blk((G) is a forest and that if GG is connected, blk(G) is a tree.
If blk(G) is a tree, it is also called a block tree.

Let n. be the number of c-vertices in blk(G). A vertex v; represents
a c-vertex of blk(() and d; is the degree of v;. We assume that d; > d;4q,
1 <1 < n. throughout the discussion. For convenience, we define a; = d; — 1.
If blk(G) is a tree, let T' be the rooted tree obtained from blk((G) by rooting
blk(G) at the b-vertex which connects to vy and is on the path from vy to vs.
We use T; to represent the subtree of T rooted at v; for each 7, 1 <17 < n., and
we use T” to represent the subtree of T after deleting T;. Let [; be the number
of leaves of T;, 1 <1 < n.. We also use T}, to represent the subtree rooted at
a vertex v of blk((G). The subgraph of T induced by deleting the vertex v is
denoted by T' — v.

In a forest, a vertex with degree 1 is a leaf. Let [be the number of
leaves in blk(G). For a graph G’, we use I’ to denote the number of degree-1
vertices in blk(G"). Let d(v) be the degree of the vertex v in blk(G) and let d
be the largest degree of all c-vertices in blk(().

27

a c-vertex

44— a p-vertex

and the root of the tree

an edge
a path

\\f;

a p-vertex _.'.
and a leaf J

Ll

collections of subtrees

Figure 3.1: Notations for figures.

In figures, we use a rectangle to represent a b-vertex and a circle to
represent a c-vertex. A line denotes an edge. A path in the block graph is
represented by a thick dashed line while a polygon represents a collection of

subtrees. These notations are shown in Figure 3.1.

We now give several definitions. Part of Definition 3.2.4 is from

[RGTT).

Definition 3.2.1 A vertex v of blk((F) is massive if and only if v is a c-vertex
with d(v) — 1 > (5 A vertex v of blk(G) is critical if and only if v is a c-

vertex with d(v) —1 = [L]. The graph blk(G) is critical if and only if there

2

exists a critical c-vertex in blk(G).

Definition 3.2.2 A block graph blk((G) is balanced if and only if G is con-
nected and does not contain a massive c-vertex. (Note that blk(G) could have

a critical c-vertex.) A graph G is balanced if and only if blk(G') is balanced.

Definition 3.2.3 (The leaf-connecting condition) Two leaves uy and uy
of blk(G) satisfy the leaf-connecting condition if and only if uy and uy are
in the same tree of blk(G) and the path P from uy to uy in blk(G) contains

28

either (1) two vertices of degree more than 2, or

(2) one b-vertex of degree more than 3.

Definition 3.2.4 Let v be a c-vertex of blk(G). We call those components of
blk(G) — v that contain only one vertex of degree 1 in blk(G) v-chains [RG77].

A degree-1 vertex of blk(G) in a v-chain is called a v-chain leaf.

3.3 Main Lemmas

In this section, we present results that will be crucial in the develop-

ment of our efficient parallel algorithm.

Lemma 3.3.1 Ifblk(G) has more than two c-vertices, then a;+as+as—1 < [.

Proof. Note that vy is a c-vertex with the largest degree. Vertex vy is a ¢-
vertex with the largest degree among all c-vertices other than vy. Vertex vs is
a c-vertex with the largest degree among all c-vertices other than vy and wvs.
Recall that if blk((G) is a tree, we root blk(G') at the b-vertex b which connects
to v; and is on the path from vy to vy. Let the rooted tree be T'. Recall that
T: is the subtree of T rooted at v; and [; is the number of leaves in T;. T’ is
the subtree obtained from T by removing Ty. Let [. be the number of leaves
in T'. Case 1: If v3isin Ty, then [y > ay — 1 4+ a3 and [, > ay. This implies
I=0Li+1,>a +ay+a3—1. Case 2: If vz isin T’, but not in Ty, then l; > a4
and [, > ay+as. Thusl =14 + 1, > a1 + as + az. Case 3: If v3is in Ty, then

Iy >ayand [, > 1y > a3 — 1 4+ a3. This implies | =1, + 1, > a1 4+ a3 + az — 1.

Suppose that blk((G) is a forest and vy, ve, and vs are in different trees

Ty, T, and Ts, respectively. If v; is the only e-vertex in T;, then a; = [; — 1.

29

Otherwise, a; < [;. Thus a1 4+ ags + as < 1y + 13+ I3 < . It is easy to prove the
lemma for the case that blk(() is a forest and any two of vy, ve, and v are in

the same tree. O

Corollary 3.3.2 [f blk(G) has more than two c-vertices, then as < H'Tl

Proof. From the definition, we know that ay > ay > as. If a3 > H'Tl, then

a12a22a3>H'lehichimpliesal—l—ag—l—a3>H'Tl-3ZZ—I—1. This is a

contradiction to Lemma 3.3.1. O

Corollary 3.3.3 There can be at most one massive vertex in blk(G).

Proof. The corollary is obviously true if there are less than two c-vertices in
blk(G). If blk(G) has only two c-vertices vy and vy, there is a b-vertex b* in
blk(G) that connects to both vy and vy. We root blk((G) at b*. Since there
are only two c-vertices, the children of vy and v, are all leaves. We know that
a1 and ay are equal to the number of children of vy and vy respectively, thus
ay + ay = [. Suppose vy is massive, then a; > % Thus ay < % If blk(G) has
more than two c-vertices and vy and v, are massive, then ay + a5 > [. Since

az > 1, we have derived a contradiction to Lemma 3.3.1. O

Corollary 3.3.4 [f there is a massive vertex in blk(G), then there is no critical
vertex in blk(G).

Proof. The proof of Corollary 3.3.3 also applies here. O

Corollary 3.3.5 There can be at most two critical vertices in blk(G), if | > 2.

Proof. The corollary is obviously true if blk(G) has only one or two ¢-vertices.

Assume that blk(G') has more than two c-vertices. From Corollary refcoro:a3,

30

> +1

we know that a; < H'Tl Since (5 > =, if [> 2, we know that v3 cannot

:
be critical if [> 2. 0

Before introducing the next lemma, we have to study properties for
updating the block tree. The following method for obtaining blk(G’) from
blk((G) is given in Rosenthal and Goldner [RGT77].

Fact 3.3.6 Given a graph G and its block tree blk((), adding an edge between
two leaves u and v of blk(G) creates a cycle C. Let G’ be the graph obtained by
adding an edge between u' and v' in G where u' and v’ are non-cutpoint vertices
in the blocks represented by u and v respectively. The following relations hold
between blk(G) and blk(G"). (1) Vertices and edges of blk(G) that are not in
the cycle C' remain the same in blk(G"). (2) All b-vertices in blk(G) that are
in the cycle C' contract to a single b-vertex V' in blk(G"). (3) Any c-vertex in C
with degree equal to 2 is eliminated. (f) A c-vertex x in C with degree greater
than 2 remains in blk(G") with edges incident on vertices not in the cycle. The

vertex x also attaches to the b-vertex b in blk(G"). O
An example of forming blk(G’) from blk((G) is illustrated in Figure 3.2.

Lemma 3.3.7 Let uy and uy be two leaves of blk(G) satisfying the leaf-
connecting condition (Definition 3.2.3). Let x1 and x3 be non-cutpoint ver-
tices in blocks of G represented by uy and uy respectively. Let G' be the graph
obtained from G by adding an edge between vy and x5, and let P represent the
path between wuy and uy in blk(G). The following three conditions hold. (1)
I'=1-=2. (2) Ifv is a cutpoint in P with degree greater than 2 in blk(G), then
the degree of v decreases by 1 in blk(G"). (3) If v is a cutpoint in P with degree
equal to 2, then v is eliminated in blk(G").

31

The graph G’ obtained from G
The graph G. by adding an edge between vertices 8 and 10.

bIk(G) blk(G’)

Figure 3.2: An example of obtaining blk(G') from blk(G). Vertices of GG and
G’ circled with a dotted line are in the same block. For example, vertices 1,
2, and 3 of G are in block A. A vertex that appears in more than one block
is a cutpoint. For example, vertex 3 appears in block A and B, thus it is a
cutpoint. Vertices B, C, D, and E in blk(() are in a cycle if we add an edge
between C' and D. The cycle contracts into a new b-vertex X in blk(G"). The
degree of a c-vertex in the cycle decreases by 1 in blk(G'), if the original degree
is more than two. A degree-2 ¢-vertex in the cycle is eliminated in blk(G").

Proof. Parts (2) and (3) of the lemma follow from parts (3) and (4) of

Fact 3.3.6. We now prove part (1) of the lemma.

From part (2) in Fact 3.3.6, we know that every vertex of GG that is
in a component represented by a b-vertex in P is in a biconnected component

Q of G'. Let @) be represented by a b-vertex b in blk(G').

Case 1: Suppose that part (1) of the leaf-connecting condition (Defi-

nition 3.2.3) holds. Let w and y be two vertices of blk(() having degree more

32

than 2 in blk(G) and let blk(G') be rooted at b. In blk((), let w' be a vertex
adjacent to w and y’ be a vertex adjacent to y, with neither w’ nor 3’ in P.
The vertex b has at least two children, w’ and y’, in blk(G') and hence cannot

be a leaf. Since leaves uy and uy are eliminated in blk(G’) and no new leaf is

created, I' =1 — 2.

Case 2: Suppose that part (2) of the leaf-connecting condition (Def-
inition 3.2.3) holds. Let w be a b-vertex of degree more than 3. We can find
at least two c-vertices, y' and z’, connected to w, but not in P. The same

reasoning used in case 1 can now be applied. a

3.4 The Algorithm

The original linear time sequential algorithm in Rosenthal and Gold-
ner [RGTT7] consists of three stages. However, we have discovered an error in
stage 3 of the algorithm in [RG77]. We present a corrected version of that
stage of the algorithm here. Our parallel algorithm follows the structure of the
corrected sequential algorithm. The first two stages are easy to parallelize; we
describe them in Sections 3.4.1 and 3.4.2. However, stage 3 is highly sequen-
tial. Most of our discussion concerns the corrected algorithm for stage 3 and

its parallelization (Section 3.4.3).

We first state a lower bound on the number of edges needed to aug-

ment a graph to achieve biconnectivity.

Theorem 3.4.1 Fswaran and Tarjan [ET76]
Let G be an undirected graph with h connected components, and let ¢ be the
number of isolated vertices in blk(G). Then at least max{d + h — 2, (%W +q}

edges are needed to biconnect G, if ¢ +1> 1. O

33

3.4.1 Stage 1

Theorem 3.4.2 Rosenthal and Goldner [RG77]
Let GG be an undirected graph with h connected components. We can connect
G by adding h — 1 edges, which we may choose to be incident on non-cutpoint

vertices in blocks corresponding to leaves or isolated vertices in blk(G). O

Given blk((), it is easy to derive a parallel algorithm for stage 1 that runs opti-
mally in O(log n) time on an EREW PRAM by using the Euler tour technique
described in Tarjan and Vishkin [TV85]. The block graph can be updated
by creating a new b-vertex b and two new c-vertices ¢, and ¢, for each new
edge (v, w). We create edges from b to ¢, and b to ¢,. Let b, and b, be the
two b-vertices in the block graph whose corresponding blocks contain v and w,

respectively. We create edges from ¢, to b, and from ¢, to b,.

3.4.2 Stage 2

Theorem 3.4.3 Rosenthal and Goldner [RG7T7]

Let GG be connected and let v* be a massive vertex in G. Let 6 =d —1— (5
We can find at least 20 + 2 v*-chains. Let () be the set of v-chain leaves. By
adding 2k, k < 6, edges to connect 2k + 1 vertices of (), we can reduce both the

degree of the massive vertex and the number of leaves in the block tree by k. O

Corollary 3.4.4 Rosenthal and Goldner [RG7T7]
Let G be connected and let v* be a massive vertex in G. Let 6 = d —1 — (%W
and let () be the set of v*-chain leaves. By adding 26 edges to connect 26 + 1

vertices of (), we can obtain a balanced block tree. a

In stage 2, v*-chain leaves can be found by first finding the number of leaves

in each subtree rooted at a child of v*. A leaf is in a v*-chain if and only if

34

it is in a one-leaf subtree rooted at a child of v*. Let () be the set of vertices
(excluding v*) on cycles created by adding edges. The new block graph can be
updated by merging vertices in () into a single b-vertex b. Vertices b and v*
are connected by a new edge. These procedures can be optimally parallelized

to run in time O(logn) on an EREW PRAM.

3.4.3 Stage 3

In this stage, we deal with a graph G where blk((G) is balanced. The
idea is to add an edge between two leaves y and z under the conditions that
the path P between y and z passes through all critical vertices and the new
block tree has two less leaves if blk((G) has more than 3 leaves. Thus the degree

of any critical vertex decreases by 1 and the tree remains balanced.

In Rosenthal and Goldner [RG77], blk(() is rooted at a b-vertex b*.
A path P is found that contains two leaves y and z such that if b/k(G) contains
two critical vertices v and w, P contains both of them. If blk(() contains less
than two critical vertices, P contains b* and a c-vertex with degree d (recall
that d is the maximum degree of any c-vertex). It is possible that in the case
that blk(() is balanced with more than three leaves and less than two critical
vertices, P contains only one vertex of degree more than 2. If we add an edge
between the two end points of P, it is possible that the new block tree has only
one less leaf. An example of this is shown in Figure 3.3. Thus the lower bound

cannot be achieved by this method.

We now give a corrected version of stage 3 which runs in linear time.
Our method is based on the proof of the tight bound given in Eswaran and
Tarjan [ET76], but we add an additional step to handle the case d = 2 (that is,
a; = 1); the analysis of this case is omitted in [ET76]. We present our revised

version of stage 3 in Algorithm 3.1.

35

graph function seq_bca(graph G);
{* G has at least 3 vertices and blk(() is balanced; [is the number of degree-1
vertices in blk(G); a; + 1 is the largest degree of all e-vertices in blk(G). *}
tree T, vertex v, w, y, z, ¥1, Ts;
let T' be blk(G) rooted at an arbitrary b-vertex;
while [> 2 do

if a; = 1 then
if [= 2 then let v be any c-vertex in T'; w := v
else {x | > 2 x}
1. let v be a b-vertex with degree > 2; {* Such a vertex
must exist if [> 2 and a3 = 1. *}
w := v; {* This is the default value for w. *}
if there exists a b-vertex other than v with degree > 2 then
2. find a degree > 2 b-vertex w, w # v,

such that w, v, and the root are in a path,;
{* such a path can be found by using an algorithm in [RG77] %}
fi
fi
else {x a; > 1 x}
3. let v be a c-vertex with the largest degree in T
if 3 a c-vertex other than v with degree > 2 then
4. find a degree > 2 c-vertex w, w # v,
such that w, v, and the root are in a path,;
{* such a path can be found by using an algorithm in [RG77] %}
else {x v is the only c-vertex with degree > 2 *}
w := v; {* This is the default value for w. *}
if 3 a b-vertex in T" with degree greater than 2 then
J. find a degree > 2 b-vertex w, w # v,
such that w, v, and the root are in a path,;
{* such a path can be found by using an algorithm in [RG77] %}
fi
fi
fi;
6. find two leaves y and z such that y, v, w, and z are in a path;
find a non-cutpoint vertex i in the corresponding block of GG represented by y;
find a non-cutpoint vertex s in the corresponding block of G represented by z;
add an edge between 1 and xs; update the block graph T
od;
return ¢
end seq bcea;

Algorithm 3.1: Corrected sequential algorithm for finding a smallest biconnec-
tivity augmentation.

36

Figure 3.3: A counter example for the linear time sequential algorithm given
by Rosenthal and Goldner. The left tree is blk(G) rooted at B. Vertex A is
the c-vertex with the largest degree. The middle tree is the new block tree
after connecting two non-cutpoint vertices of G in the corresponding blocks
represented by €' and D. The number of leaves decreases by 1. The right tree
is the new block tree after connecting two non-cutpoint vertices of GG in the
corresponding blocks represented by C' and FE. The number of leaves decreases
by 2. The pair ' and D could be chosen by the algorithm given by Rosenthal
and Goldner while the pair ' and E can be chosen to reduce the number of
leaves by two.

In steps 2, 3, and 4 of algorithm seq_bca, we use a procedure described
in [RG77] to find a vertex w with degree > 2 such that w, the root, and a given
vertex v are in a path of the rooted block tree. The procedure is as follows. We
first traverse the (simple) path Py from v towards the root. The first vertex we
meet with degree > 2 is w. If there is no such vertex in P; and the degree of
the root is > 1, let ¢ be a child of the root such that ¢ is not in P. We traverse
one (simple) path P, from ¢ to a leaf without passing the root. The first vertex
we meet with degree greater than 2 is w. If we cannot a vertex with degree
> 2 in Py and P, then we trace any (simple) path Ps starting from v towards
a leaf without passing any ancestor of v. The first vertex we meet with degree
greater than 2 is w. It is well-known that if there exists a vertex other than v

with degree greater than 2 in a tree, then this procedure will find one.

37

Claim 3.4.5 If blk(G) is balanced, we can biconnect G' by adding (%W edges

using algorithm seq_bca.

Proof. We first discuss the case where blk((G') has more than 3 leaves. In this
case, a critical vertex must have degree more than 2.

Case 1: If blk(G) has two critical vertices v and w, it is known that the rest
of the vertices have degree less than or equal to 2 [RG77]. Algorithm seq_bca
finds the first critical vertex in step 3 and the second critical vertex in step 4.
Case 2: If blk(G) has only one critical vertex v, algorithm seq_bca finds it in
step 3. Because blk(() is balanced and [> 3, there must exist another vertex
w with degree more than 2. Otherwise v is massive. Algorithm seq_bca finds
w in step 4 or step 5.

Case 3: The block tree blk((Z) has no critical vertex. Then either there is only
one vertex (which must be a b-vertex) with degree more than 3 or there are two
vertices with degree more than 2. If there is only one vertex v with degree more
than 3, algorithm seq_bca finds v in step 1. Suppose there are two vertices v
and w with degree more than 2 in the block tree. If v and w are both c-vertices,
algorithm seq_bca finds them in steps 3 and 4, respectively. If v and w are
both b-vertices, algorithm seq_bca finds them in steps 1 and 2, respectively. If
one of v and w is a ¢-vertex and the other one is a b-vertex, algorithm seq_bca

finds the c-vertex in step 3 and the b-vertex in step 5.

In all three cases, we can find two vertices of degree more than 2
or a b-vertex of degree more than 3. Thus by Lemma 3.3.7, the number of
leaves in the new block tree reduces by 2. Because v and w are the possible
critical vertices, we reduce the value of d by 1. Thus the block tree remains

balanced. Hence, the algorithm can achieve the lower bound in Eswaran and

Tarjan [ET76].

38

For the case [= 3, we can reduce blk((F) to a new block tree with two
leaves by picking any pair of leaves in blk((G) and connecting them. A block
tree of 2 leaves can be reduced to a single vertex by connecting the two leaves.

Thus the claim is true. O

Claim 3.4.6 Algorithm seq-bca runs in O(n +m) time.

Proof. Using the same data structure as Rosenthal and Goldner [RG77] and

similar techniques, we can implement our algorithm in linear time. a

In the rest of this section, we describe an efficient parallel algorithm
for stage 3. Recall that the sequential algorithm adds one edge at a time and
keeps adding edges until the block tree becomes a single vertex. In our parallel
algorithm, however, we will find several pairs of leaves such that the path
between any such pair of leaves passes through all critical ¢-vertices. Thus the
degrees of critical vertices in the new block tree decrease by the number of edges
added to the original block tree. These pairs also satisfy the leaf-connecting
condition (Definition 3.2.3), which guarantees that the number of leaves in the
new block tree decreases by twice the number of edges added. The following
Lemma 3.4.7 tells us that the addition of several edges in parallel as outlined

above is a valid strategy.

Lemma 3.4.7 Let G be a graph whose block graph is balanced and let G be the
graph obtained from G by adding a set of k edges A = {(s1,t1), ..., (S, 1x)}.
For each v, 0 <1 <k, let G; be the graph obtained from G by adding the set of
edges {(s1,t1), ..., (8i, 1) }. Let sb andtl, 0 < i <k, be the b-vertices in blk(G;)
whose corresponding blocks contain s; and t;, respectively. If the following two

conditions hold (1) sty and t' | satisfy the leaf-connecting condition in Gj,

1 <i <k and (2) the path between si , and t' in blk(G;) passes through all

39

critical vertices in blk(G;), then (1) blk(G") remains balanced and (2) the value
of the lower bound given in Theorem 3.4.1 applied to G' is k less than the same
lower bound applied to G.

Proof. We obtain the same block graph for (G, no matter in what sequence we
choose to add these k edges, since there is a unique block graph for each graph
G. Thus blk(G") = blk(Gy). Since blk(G;) is balanced for 1 <@ <k, blk(G') is
balanced. We know that the value of the lower bound given in Theorem 3.4.1
applied to G; is 1 less than the value of the same lower bound applied to GG;_1,
1 <1 < k, where Gy = (G. Hence the value of the lower bound given in
Theorem 3.4.1 applied to G’ is k less than the value of the same lower bound
applied to G. O

From Theorem 3.4.1 and Claim 3.4.5, we know that exactly (%W edges
must be added to biconnect G if blk((G) is balanced. That is, we have to
eliminate [leaves during the computation. Our parallel algorithm runs in
stages with at least i of the current leaves eliminated in parallel time O(logn)
using a linear number of processors during each stage. We call this subroutine

O(log n) times to complete the augmentation.

Recall that a; 4+ 1 is equal to the degree of the ith c-vertex v; and
a; > a;11. The subtree T’ is obtained from T by deleting the subtree rooted
at vy. Let U; = {u | u is the leftmost leaf of T, where y is a child of v;}. For

example, the leaves in U; are illustrated as shadowed rectangles in Figure 3.4.

Depending on the degree distribution of vertices in the block tree,
the parallel algorithm for stage 3 is divided into 2 cases. In case 1, a; >
%. We have a c-vertex with a high degree. We pick the first min{a; — 1,
(%W — a3} leaves in Uy and call them Wj. Leaves in W; are matched with the

first min{|Wi|, |Us| — 1} leaves in U,. Unmatched leaves in Wy, if any, are

40

Figure 3.4: Each shadowed rectangle represents the leftmost leaf in a subtree
rooted at a child of vy. Leaves in Uy consist of leftmost leaves in every subtree
rooted at a child of vy.

matched with all remaining leaves but one in 7" before being properly matched
within themselves, if necessary. In case 2, a; < i. There is no c-vertex with
a large degree. We show that we can find a vertex u* with approximately the
same number of leaves in each subtree rooted at a child of u*. If u* is a b-
vertex, a suitable number of leaves between subtrees rooted at children of u*
are matched. Otherwise, u* is a c-vertex and a suitable number of subtrees
rooted at children of u* are first merged into a single subtree rooted at u*.

Then leaves in the merged subtree are matched with leaves outside.

The algorithm first finds the matched pairs of leaves in each case.
Then we add edges between matched pairs of leaves and update the block tree
at the end of each case. The block tree and the sequence of cutpoints vy,..., v,

c

will not be changed during the execution of each case.

We now describe the two cases in detail.

Case 1: a; > é We root the block tree at the b-vertex b* which is adjacent
to vy and is on the path from v; to vy. Let vy be the leftmost child of .

We permute the children of v; in non-increasing order (from left to right) of

41

Figure 3.5: A normalized tree. Vertex vy is a c-vertex with the largest degree.
Vertex vy is a c-vertex with a degree larger than or equal to any other ¢-vertices
in T — v1. We permute the children of v in non-increasing order (from left to
right) of the number of leaves in subtrees rooted at them.

the number of leaves in subtrees rooted at them. We will call this procedure
tree-normalization and the resulting tree T'. Figure 3.5 illustrates a normalized

tree.

Recall that U is the set of leftmost leaves in subtrees rooted at chil-
dren of v;. We select the first (from left to right) min{a; — 1, (5 — a3} leaves
from U; and call the set ;. The order of the leaves as specified in the original
tree is preserved. There are four phases for this case. In phases 1 and 2, leaves
in Wy are matched with leaves not in 7. In phase 3, leaves in W; are matched
with leaves in T} excluding those in Wj. In phase 4, the remaining leaves in

W are matched with themselves. The algorithm executes phases 1 through 4

in turns and keeps on iterating until there is no leaf in W left to be matched.

We now describe the four phases in detail. After the description, we
give the overall parallel algorithm for case 1 and prove that it eliminates a
constant fraction of the leaves while maintaining the lower bound described in

Theorem 3.4.1.

Phase 1: All leaves but the rightmost one in U, are matched with the

rightmost ay — 1 leaves of Wj. The matched leaves are removed from Wj. An

42

Figure 3.6: Pairs of matched leaves found in phase 1 of case 1 are connected by

dotted lines. The set W; consists of the leftmost leaves from the first min{a; —1,
(%W — a3} subtrees rooted at children of vy. All of the leftmost leaves in subtrees

rooted at children of vy are in the set U;, and all except the rightmost leaf in
U, are matched (if possible).

set of pairs of vertices function phasel(modifies set of vertices Wy, Us);
set of pairs of vertices L; vertex u, v;
L := 0; {+ L is the set of matched pairs. *}
number leaves in Wy from right to left starting from 1;
number leaves in Us from left to right starting from 1;
k = min{|Uz| — 1, |W1]};
pfor i =1 .. k do
u := the ith leaf in W7; remove u from Wr;
v := the 2th leaf in Us; remove v from Us;
L:=LuU{(u,v)}
rofp;
return L
end phasel;

Algorithm 3.2: Parallel algorithm to handle phase 1 of case 1.

example of the pairs of leaves matched in phase 1 is given in Figure 3.6. See

Algorithm 3.2.

Phase 2: We match all remaining leaves but one in 7" with the right-

most leaves of W, and remove matched leaves from Wj. See Algorithm 3.3. An

43

Figure 3.7: Pairs of matched leaves found in phase 2 of case 1 are connected by
dotted lines. Recall that 7} is the subtree of T rooted at v;. The subtree 7" is
obtained from T by deleting Ty. The set W; consists of the leftmost leaves in
the first min{a; — 1, (%W —az}—ag+ 1 subtrees rooted at children of v1. Leaves
in Wy are matched with all but the rightmost leaf in 7".

set of pairs of vertices function phase2(modifies set of vertices Wy, tree T");
set of pairs of vertices L; vertex u, v;
L := 0; {* L is the set of matched pairs. *}
number leaves in Wy from right to left starting from 1;
number leaves in 7" from left to right starting from 1;
k := min{the number of leaves in 7" minus 1, |¥1|};
pfori =1 . k do
u := the ith leaf in Wy; remove u from Wy; v := the ith leaf in T";
L:=LU{(u,v)}
rofp;
return L
end phase2;

Algorithm 3.3: Parallel algorithm for phase 2 of case 1.

example of the pairs of leaves matched in phase 2 is given in Figure 3.7.

Phase 3: Recall that T is the original block tree before phase 1, [is
the number of leaves in T', vy is a c-vertex with the largest degree in T', T} is
the subtree of T rooted at vy, [; is the number of leaves in Ty, T" is the tree
obtained from T' by removing Ty, and Uy = {u | u is the leftmost leaf of T},
where y is a child of v }. Note that there are min{a; —1, (%W —as} —(I=1l1—1)

leaves remaining in Wi. Leaves in W; come from the first |W;| members (from

44

left to right) of Uy. Let the set of v1-chain leaves in Wi be)1. We denote by
()2 the set of leaves other than the rightmost one of each subtree rooted at a
child of v;. (Note that ()1 N Q2 = 0.) In this phase, we match all leaves in (4
(i.e., all vy-chain leaves in W;) with an equal number of leaves in 3. Leaves
in Wi that are matched in phase 3 (¢ and Wi N Q2) are removed from Wj.
See Algorithm 3.4.

Claim 3.4.8 shows that we can always find enough leaves in) to

match all leaves in (4.

Claim 3.4.8 |Q2| Z |Q1|, Zfl > 3.

Proof. If |Q)1] = 0, the claim is true. Let |@1] > 0. Recall that there is only
one unmatched leaf s left in 7" after phase 2. Let T™ be the block tree obtained
from T' by adding edges between matched pairs of leaves found in phase 1 and
phase 2. We root T™ at the b-vertex * which is adjacent to v; and is on the
path from vy to s. Let r be the number of subtrees rooted at a child of vy in
T* with more than one leaf. Let y be the number of v{-chain leaves not in ().

The notations used in this proof are shown in Figure 3.8.

The total number of leaves in T* is equal to |Q1] + |Q2| + 7+ y + 1
if |@1] > 0. The degree of vy in T™ is equal to |Q1| + r +y + 1. Since T™ is
balanced (for a proof, see Claim 3.4.10 at the end of this section), v is not

massive and hence

Q1] + Qo[+ 7 +y+1
5 :

|Q1|‘|‘T‘|‘?J§

Thus

20Q1] +2r + 2y < Q1] + Q2| +7r +y + 2

= Qi +r+y—2<Q

45

7
7
@

5 O

\a-

‘«

é_/

Figure 3.8: Notations used in the proof of a claim used in phase 3 of case 1.
The tree shown is T, the updated block tree obtained by adding edges between
pairs of matched leaves found in phase 1 and phase 2. The set ()5 consists of
all but the rightmost leaf in each subtree rooted at a child of vy. The set)4
consists of vi-chain leaves in Wy after phase 2. The number of subtrees rooted
at a child of v; with more than one leaf is . The number of v;-chain leaves
not in)y is ¥.

We know that r > 1, otherwise vy is massive if [> 3. It is also true that y > 1

if |Q1| > 0. Thus |Q1| S |Q2| O

Phase 4: The remaining leaves of W; that are not matched during
phase 3 are matched within themselves. If the number of remaining leaves in
Wi is odd, we match one of them with the rightmost leaf in the subtree rooted
at vy. See Algorithm 3.5. An example of the pairs of leaves matched in phase
4 is given in Figure 3.9.

See Algorithm 3.6 for the complete algorithm for case 1.

Claim 3.4.9 The number of matched pairs k in case 1 satisfies (%W —az > k>

Loifl>3.

46

set of pairs of vertices function phase3(modifies set of vertices @1, Q2);
set of pairs of vertices L; vertex u, v;
L := 0; {+ L is the set of matched pairs. *}
number leaves in ()2 from right to left starting from 1;
number leaves in @1 from 1 to |Q1] in arbitrary order;
k= 1Q1l;
pfori=1. kdo
u := the ith leaf in)s; remove u from @Q5;
v := the ith leaf in Q1; remove v from Q1;
L:=LuU{(u,v)}
rofp;
return L
end phase3;

Algorithm 3.4: Parallel algorithm for phase 3 of case 1.

il

Figure 3.9: Illustrating phase 4 of case 1. The remaining leaves in W are
matched with themselves.

47

set of pairs of vertices function phase4(modifies set of vertices Wy, tree T');
set of pairs of vertices L; vertex u, v;
L := 0; {+ L is the set of matched pairs. *}
number leaves in Wy in arbitrary order from 1 to |Wi|;

k=
pfor i =1 .. k do
u := the (2-¢— 1)th leaf in Wy; remove u from Wy;
if 2 i < |Wy| then v := the (2 - i)th leaf in W;; remove v from W
else {x 2-i > || *} v := the rightmost leaf in the subtree rooted at vy
fi;
L:=Lu{(u,v)}
rofp;
return L
end phase4;

Algorithm 3.5: Parallel algorithm for phase 4 of case 1.

set of pairs of vertices function casel(tree 7T');
set of pairs of vertices L; set of vertices W1, @1, Q»; vertex b*; tree T";
root T" at the b-vertex b* which is adjacent to v; and is on the path from vy to vs;
let v1 be the leftmost child of 8" in T
permute the children of vy in non-increasing order (from left to right)
of the number of leaves in subtrees rooted at them;
Wy := the first (from left to right) min{a; — 1, f%] — az} leaves of Uy;
L := phase1(WWy, Us); {* L is the set of matched pairs. *}
if W, # () then L := L U phase2(Wy, T") fi;
T/ := the subtree of Ty with the first || subtrees rooted at children of vy;
(21 := the set of v1-chain leaves in T, ;
@2 = {u | v is a non-leftmost leaf of T, where T, has more than 1 leaf
and y is a child of vy in T} };
if W, # 0 then L := L U phase3(Q1, Q) fi; W1 := W1 NQy;
if W, # () then L := L U phase4(W;, T) fi;
return L
end casel;

Algorithm 3.6: Parallel algorithm for case 1.

48

Proof. Let z = min{a; — 1, [{] — as}. If the procedure does not execute

phases 3 and 4, we match z pairs. Because a; — 1 > é and H%W —as| > Léj

for [> 3 (Corollary 3.3.2), we know that z > é, if [> 3. Otherwise, in the

worst case, we match only ay — 1 pairs during phase 1 and phase 2. A pair of

vertices matched during phase 3 or 4 might be both members of W;. Thus

kzaz_l_l_[z—ag—l—l"zz—l—ag—l—l‘

2 2

If = = [1] — a5, then k > [%]2_1, which is greater than or equal to £ if [> 3

a1 —1

-—|. Because a; is greater than

and k is an integer. If z = a3 — 1, then k£ > |

é, k is greater than or equal to é. a

Claim 3.4.10

(1) Each pair of matched vertices found in function casel satisfies the leaf-
connecting condition (Definition 3.2.3).

(2) Let us place an edge between each matched pair found in function casel
sequentially, and update the block graph each time we add an edge. Critical
vertices, if any, of the block graph are on the path between the endpoints of

each edge placed.

Proof. From part (4) in Fact 3.3.6, the degrees of vy and vy decrease only by
1 by adding an edge between a pair of matched vertices. Let us consider paths
in the block tree between pairs of vertices matched in each phase. We show
that we can find at least two vertices with degree more than 2 in each path.
Phase 1: The path between each pair of matched vertices passes through vy
and vy. The degrees of vy and vy are at least 3.

Phase 2: The path between each pair of matched vertices passes through vy
and the root b*. The degrees of vy and b* are at least 3.

49

Phase 3 and phase 4: The path P between each pair of matched vertices passes
through v;. The degree of v, is at least 3. The path P also passes through a
child u of v; where the subtree rooted at u has more than one leaf. Thus the
degree of u is more than 2.

Thus the leaf-connecting condition (Definition 3.2.3) holds for each pair of

matched vertices.

Because we only add min{a; —1, (%W —az} edges during case 1, vz and
thus v;, such that ¢ > 4, does not become critical. From the previous discussion,
the path between each pair of matched vertices passes through v; and vy, the
only two possible critical vertices, during phase 1. We reduce degrees of possible
critical vertices by one by adding one new edge between each pair of matched
vertices. If we match any pair of vertices after phase 1, the degree of vy is at
most 2 and the degree of vy is at least 3. Thus vy is the only possible critical
vertex. The path between each pair of matched vertices passes through vy after
phase 1. We reduce the degree of the possible critical vertex, vy, by one by

adding one new edge between any pair of matched vertices. Thus the claim

holds. O

Corollary 3.4.11 Let k be the number of matched pairs found in function
casel. Let G' be the resulting graph obtained from the current graph G by
adding a new edge between each matched pair of leaves. The value of the lower
bound given in Theorem 3.4.1 applied to G’ is k less than the value of the same
lower bound applied to G, and blk(G") remains balanced. Let [be the number
of leaves in blk(G). The number of leaves in blk(G') is at most %l, if 1> 3.

Proof. From part (1) in Claim 3.4.10, the number of leaves in blk(G') is 2k
less than the number of leaves in blk(G). Since k > é if [> 3 (Claim 3.4.9), the

30

number of leaves in blk(G") is at most ?’ZI if I > 3. From part (2) in Claim 3.4.10,
the block graph of each intermediate graph remains balanced even if we place
a new edge between each matched pair of leaves found in function casel one
by one. By Lemma 3.4.7, we know that the value of the lower bound given in
Theorem 3.4.1 applied to G’ is k less than the value of the same lower bound
applied to G and blk(G") remains balanced. O

Case 2: a1 < é In this case, we take advantage of the fact that no c-vertex
has a large degree. Because there is no critical ¢-vertex, the algorithm can
add at least (%W — ay edges between leaves that satisty the leaf-connecting
condition (Definition 3.2.3) without worrying about whether the path between
them passes through a critical e-vertex. This gives a certain degree of freedom
for us to choose the matched pairs. We first root the block tree such that no

subtree, other than the ones that are rooted at the root, has more than half of

the total number of leaves.

Given any rooted tree T', we use [, to denote the number of leaves
in the subtree rooted at a vertex v. The following lemma shows that we can
reroot T at a vertex u* such that no subtree rooted at a child of u* has more

than half of the total number of leaves.

Lemma 3.4.12 Given a rooted tree T', there exists a vertex u™ in T such that
Ly > %, and none of the subtrees rooted at children of u* has more than %

leaves.

Proof. We permute the children of each non-leaf vertex v from left to right
in non-increasing order of the number of leaves in the subtrees rooted at them.
Let us consider the leftmost path P of the tree T. It is obvious that there

exists such a vertex u* in P. O

51

We root the block tree at u* and permute the children of u* from left
to right in non-increasing order of the number of leaves in subtrees rooted at
them. Let the rooted tree be T'. Let u;, 1 <7 < r, be the children (from left to
right) of u*, and x; be the number of leaves in the subtree rooted at ;. Note
that z; < %, for each 2. There are two subcases depending on whether u* is a
b-vertex or a c-vertex. We describe the two subcases in detail in the following

paragraphs.

Subcase 2.1: u* is a b-vertex We show that we can “evenly” partition
subtrees rooted at children of the root into two sets such that we can match
leaves between the two partitions. See Algorithm 3.7. We first give a claim to

show how to perform the partition.

Claim 3.4.13 There exists p such that 1 < p <r and % >0 x> é.

Proof. We know that x; > z;11, 1 <1 < r, and z; < %, 1 < ¢ <r. Thus there
exists p, 1 < p < r, such that

P I p+1 I
;xi < 5 and Z::JcZ > 3"

=1

Because x; > 2,41, 1 <1 <7, we know that >.7_; z; > %(%) 0O

The notations used for this subcase are illustrated in Figure 3.10.
Corollary 3.4.14 >0 2, <1-37" | .. 0

We match min{(320_; 2;) — 1, [L] — a1} leaves in subtrees T,,, 1 <

1 < p, with leaves outside them. From Claim 3.4.13 and Corollary 3.4.14, we

know that the matching can be done.

52

< =l

Figure 3.10: The notations used in case 2.1. The number of leaves in the

subtree rooted at wu; is x;. We find the largest p such that the total number of
leaves in the first p subtrees rooted at children of the root is greater than ﬁ,

but less than or equal to % Leaves in the first p subtrees rooted at children of
b* are in Z;. The set 75 consists of the rest of the leaves in the tree.

set of pairs of vertices function case2_1(tree T);
{* l is the number of leaves in T". *}
integer p; set of pairs of vertices L; set of vertices 71, 75; vertex u, v;
let u; be the ith (from left to right) child of the root;
let z; be the number of leaves in the subtree rooted at wu;;
find the largest integer p such that Y b_, z; < %, but Zf;l x; > %;
L := 0; {+ L is the set of matched pairs. *}
71 := the set of leaves in the subtrees rooted at u;, 1 <17 < p;
75 := the set of leaves in the subtrees rooted at w;, 7 > p;
number leaves in Z; in arbitrary order from 1 to |Z];
number leaves in 75 in arbitrary order from 1 to |Zs|;
b= min{(S0,) — L, [4] - a)
pfor i =1 .. k do
u, v := the ith vertex in 7y and Z,, respectively;
L:=LU{(u,v)}
rofp;
return L
end case2_1;

Algorithm 3.7: Parallel algorithm for case 2.1.

33

Corollary 3.4.15 The number of matched pairs k in case 2.1 satisfies (%W —
a1 > k> L if1>3. 0
Claim 3.4.16 Any matched pair found in function case2_1 satisfies the leaf-
connecting condition (Definition 3.2.3), if | > 3.

Proof. Consider the path P between a pair of matched leaves u and v. Let
u be a leaf in a subtree rooted at vertex u,, 1 < x < p, and let v be a leaf
in a subtree rooted at vertex u,, p < y < r. Since we match min{|Z;| — 1,
(%W — ay} leaves in Z; with an equal number of leaves in 7, and |Z;| < |Z3]
(Corollary 3.4.14), there is at least one leaf in a subtree rooted at a u;, 1 <1 < p,
that is not matched and there is also another leaf in a subtree rooted at a u;,
p < j < r, that is not matched if [> 3. The path P contains the root. If the
degree of the root is at least 4, u and v satisfy the leaf-connecting condition
(Definition 3.2.3). If the degree of the root is 3, P contains either u; or wu;.

The degrees of u; and u; are at least 3. Otherwise, P contains both u; and u;.

Thus v and v satisfy the leaf-connecting condition (Definition 3.2.3). O

Corollary 3.4.17 Let k be the number of matched pairs found in function
case2 1. Let G' be the resulting graph obtained from the current graph G by
adding a new edge between each matched pair of leaves. The value of the lower
bound given in Theorem 3.4.1 applied to G’ is k less than the value of the same
lower bound applied to G, and blk(G") remains balanced. Let [be the number
of leaves in blk(G). The number of leaves in blk(G') is at most %, if 1 > 3.

Proof. From Claim 3.4.16, the number of leaves in blk(G") is 2k less than the
number of leaves in blk((G). Since k > é if [> 3 (Corollary 3.4.15), the number

of leaves in blk(G") is at most % From Corollary 3.4.15, we add at most (5 —a

o4

edges, thus no c-vertex in blk(G") becomes massive. By Lemma 3.4.7, we know
that the value of the lower bound given in Theorem 3.4.1 applied to G’ is k
less than the value of the same lower bound applied to G, and blk(G’) remains

balanced. O

Subcase 2.2: u* is a c-vertex Recall that the u;, 1 < <r, and x; > 241,

1 <<,

We partition the set of subtrees rooted at children of the root into
two sets such that we can match leaves between two sets. We first give a claim

to show how to partition the set of subtrees.

Claim 3.4.18 Let q be the largest integer with x, > 2. There exists an integer
p such that 1 <p < g and 5> Y 2> g+ (p—1).

Proof. If x; > é, then p = 1. If 1 < é, we can find an integer p such that

% > 5P x> %l using an argument similar to the one given in the proof of
Claim 3.4.13. By definition, we know that z, > 2 because otherwise the root
(a c-vertex) is massive. Thus p < £. Hence (Y0_; ;) — (p—1) > L. 0

Let T, be the subtree rooted at u;. We define the merge operation
for the collection of subtrees T, 1 < ¢ < p, as follows. We first connect the

rightmost leaf of T}, and the leftmost leaf of T, 1 <@ < p. This can be done

i+19

by the fact that each T,,, 1 <1 < p, has at least 2 leaves.

Claim 3.4.19 Let T™ be the block tree obtained from T by collapsing b-vertices
that are in the same fundamental cycle created by the addition of new edges
introduced by the merge operation.

(1) The merge operation creates only one b-vertex b*.

(2) Vertex b* is a child of the root and b* is the root of the subtree that contains
the updated portion of the block tree.

39

A

o = = [

Figure 3.11: The notations used in case 2.2. The number of leaves in the
subtree rooted at wu; is x;. We find the largest p such that the total number
of leaves in the first p subtrees rooted at children of the root is greater than
é—l— (p—1), but at most % We first merge subtrees rooted at u;, 1 < < p, by
connecting the rightmost leaf in the subtree rooted at u; and the leftmost leaf

in the subtree rooted at w;y1, 1 < < p. Leaves in the first p subtrees rooted
at children of u* are in Y;. Y, consists of the rest of leaves in the tree. We then

match min{(>i_; ;) — 1, (%W — a1} — (p—1) leaves in Y; with leaves in Y.

Proof. Let C;, 1 <17 < p, be the fundamental cycle created by connecting the

rightmost leaf of T,, and the leftmost leaf of T The cycles C; and Ci4q,

U1 *
1 <1< p—1, share the b-vertex u;. From part (2) in Fact 3.3.6, we know that
all b-vertices in cycles C;, 1 < ¢ < p, shrink into a single b-vertex in the new

block tree. Let this new b-vertex be b*. Thus part (1) of the claim holds. Part
(2) of the claim follows from part (4) in Fact 3.3.6. O

Note that if we root the updated block tree T™ given in Claim 3.4.19 at
the b-vertex b*, the situation is similar to that in case 2.1. Thus we can match
an additional min{(>"_; «;)—1, (%W —a1} — (p—1) pairs of vertices by pairing
up unmatched leaves in subtrees T, Vi, 1 <12 < p, and leaves in subtrees in
subtrees T,,, Vi, p < ¢ < r. This algorithm is given in Algorithm 3.8. The

notations used are shown in Figure 3.11.

56

set of pairs of vertices function case2 2(tree T);
vertex u, v; integer p; set of vertices Y}, Ys; set of pairs of vertices L;
let u;, 1 < i < r, be the children of the root u*;
let T, be the subtree rooted at u;; let x; be the number of leaves in Ty,;;
find the largest integer p such that % >5F x> é +(p-1);
Y1 := the set of leaves in the subtrees rooted at u;, 1 <1 < p;
Y5 := the set of leaves in the subtrees rooted at wu;, ¢ > p;
L := 0; {* L is the set of matched pairs. *}
pfori=1. p—1do
let u be the leftmost leaf of Ty,,; let v be the rightmost leaf of T,
L := LU {(u,v)}; remove u and v from Y}
rofp;
number the leaves in Y7 in arbitrary order from 1 to |Y7];
number the leaves in Y5 in arbitrary order from 1 to |Y3|;
ko= min{} 2 2;, [5] —ar} — (p—1);
pfor i =1 . k do
u, v := the ith vertex in Y7 and Y3, respectively;
L:=LU{(u,v)}
rofp;
return L
end case2_2;

i1

Algorithm 3.8: Parallel algorithm for case 2.2.

Corollary 3.4.20 The number of matched pairs k in case 2.2 satisfies (%W —ay

>k>L ifl>3. =

z
]
Claim 3.4.21 Fach pair of vertices matched in function case2 2 satisfies the
leaf-connecting condition (Definition 3.2.3), if [> 3. O

Corollary 3.4.22 Let k be the number of matched pairs found in function
case2 2. Let G' be the resulting graph obtained from the current graph G by
adding a new edge between each matched pair of leaves. The value of the lower
bound given in Theorem 3.4.1 applied to G’ is k less than the value of the same
lower bound applied to G, and blk(G") remains balanced. Let [be the number
of leaves in blk(G). The number of leaves in blk(G') is at most %l, if 1> 3.

Proof. From Claim 3.4.21, the number of leaves in blk(G") is 2k less than the
number of leaves in blk((G). Since k > é if [> 3 (Corollary 3.4.20), the number

57

set of pairs of vertices function case2(tree 7T');

{* [is the number of leaves in T’; ay + 1 is the largest degree of all ¢-vertices in T'. *}
vertex u*;
root T" at an arbitrary vertex;
find a vertex u* such that there are more than % leaves in the subtree rooted at u*,
but none of the subtrees rooted at a child of u* have more than % leaves;
root T at u™;
permute the children of u* (from left to right) in non-increasing order of
the number of leaves in subtrees rooted at them;
if u* is an b-vertex then return case2_1(7)
else {* u* is a c-vertex #} return case2.2(7) fi

end case2;

Algorithm 3.9: Parallel algorithm for case 2.

of leaves in blk(G") is at most 31[. From Corollary 3.4.20, we add at most (%W —ay
edges, thus no c-vertex in blk(G") becomes massive. By Lemma 3.4.7, we know
that the value of the lower bound given in Theorem 3.4.1 applied to G’ is k
less than the value of the same lower bound applied to G, and blk(G’) remains

balanced. O

The complete algorithm for case 2 is shown in Algorithm 3.9. The cor-
rectness of this algorithm is shown earlier in the two subcases (Corollary 3.4.17

and Corollary 3.4.22).
3.5 The Complete Parallel Algorithm and Its Imple-
mentation

We first describe the overall parallel algorithm and then an efficient
parallel implementation on an EREW PRAM.

3.5.1 The Complete Parallel Algorithm

We present the complete parallel algorithm for the biconnectivity aug-
mentation problem in Algorithm 3.10. The correctness of algorithm par_bca

follows from the correctness we established earlier for the various cases (Corol-

38

lary 3.4.11, Corollary 3.4.17 and Corollary 3.4.22). In the previous sections, we
have shown details of each step in algorithm par_bca except step 1. We now
describe an algorithm for updating the block tree given the original block tree
T and the set of edges S added to it (step 1 in algorithm par_bca).

To describe the parallel algorithm for updating the block graph T
after adding a set of edges S, we define the following equivalence relation R
on the set of b-vertices B, where B={v | v is a b-vertex in T and v is in a
cycle created by adding the edges in S}. A pair (z, y) is in R if and only if
x € B,y € B, and vertices in blocks represented by = and y are in the same
block after adding the edges in S. It is obvious that R is reflexive, symmetric,
and transitive. Since R is an equivalence relation, we can partition B into k
disjoint subsets B;, 1 < i < k, such that for each ¢, x,y € B; implies (z, y)
€ R and for any (z, y) € R, x and y both belong to the same B;.

The following claim can easily be verified by using Fact 3.3.6 and the

above definition for the equivalence relation on the set of b-vertices.

Claim 3.5.1 Two b-vertices by and by are in the same equivalence class if and
only if there exists a set of fundamental cycles {Co,...,Cy} such that by € Cy,

by € C, and C; and Ciyy share a common b-vertez, for 0 <1 < g. O

Notice that fundamental cycles in the block tree created by adding
edges between pairs of leaves found in phase 1 and phase 2 of case 1 and subcase
2.1 share a common b-vertex (the root). Any pair of fundamental cycles created
by adding edges between pairs of leaves found in phase 3 of case 1 either share
a child of vy (a b-vertex) or do not share any b-vertex at all. Fundamental
cycles created by adding edges between pairs of leaves found in phase 4 of case

1 do not share any b-vertex with any other fundamental cycle. Any pair of

39

graph function par bca(graph G);
{* The input graph G has at least 3 vertices;
[is the number of leaves in the block graph T'. *}
set of pairs of vertices L; tree T'; vertex u, v, 1, ¥o; set of edges S5
T = blk(G);
if T is a forest then perform the procedure specified in Section 3.4.1 fi;
if T is not balanced then perform the procedure specified in Section 3.4.2 fi;
while [> 2 do
if [> 3 then

if a1 > L then L := case1(T) else {* a; < £ x} L 1= case2(T) fi
else {x | <3 «} let v and v be two leaves in T; L := {(u,v)}
fi;
S =0
pfor each (u,v) € L do
z1 = a non-cutpoint vertex in the corresponding block of G represented
by u;
zo = a non-cutpoint vertex in the corresponding block of G represented
by v;
add an edge between z1 and z2; S := S U {(u,v)}
rofp;

1. T :=parupdate(T, S) {* The procedure par_update returns the updated
block tree after adding the set of edges in S. *}

od;

return ¢

end par_bea;

Algorithm 3.10: Parallel algorithm for finding a smallest augmentation to bi-
connect a graph.

fundamental cycles created by adding edges between pairs of leaves found in
subcase 2.2 share either the root (a b-vertex) or a b-vertex created by the merge

operation (Claim 3.4.19).

From the above discussion, we know that b-vertices in fundamental
cycles formed by adding edges due to phase 1 and phase 2 of case 1 shrink
into a single b-vertex in the new block tree. Let I' be the fundamental cycles
formed by adding edges due to phase 3 of case 1. The b-vertices in I' which
share a common child of v; shrink into a single b-vertex. The b-vertices in a
fundamental cycle formed by adding edges due to phase 4 of case 1 shrink into

a single b-vertex. The b-vertices in all fundamental cycles formed by adding

60

edges due to subcase 2.1 or subcase 2.2 shrink into a single b-vertex. Thus we

know how to compute the equivalence classes of R.

In Algorithm 3.11, we describe our method to update the block tree
given the original block tree T" and the set of edges S added to it.

Claim 3.5.2 Function par_update returns the updated block tree.

Proof. From Claim 3.5.1 and parts (3) and (4) in Fact 3.3.6. O

Note that we can get the updated block tree by using an algorithm
for finding biconnected components. We will, however, show in Section 3.5.2
that the time needed on an EREW PRAM for updating the block tree using
function par_update is less than what is needed to compute connected com-
ponents using a linear number of processors. Hence we do not want to use
the straightforward algorithm for finding connected components to implement

function par_update.

3.5.2 The Parallel Implementation

We now describe an efficient parallel implementation for algorithm
par_bca. Given an undirected graph, we can find its block graph in O(log®n)
time using a linear number of processors on an EREW PRAM by the parallel
algorithm in Tarjan and Vishkin [TV85] for finding biconnected components
and using some procedures in Nath and Maheshwari [NM82].

The parallel versions of stage 1 and stage 2 are described in Sec-
tion 3.4.1 and Section 3.4.2, respectively. In stage 3, the children-permutation
procedure can be done in time O(logn) using a linear number of processors
on an EREW PRAM by calling the parallel merge sort routine in Cole [Col88]
and using the Euler tour technique in Tarjan and Vishkin [TV85] to restructure

61

tree function par update(tree T, set of edges S);
vertex w; integer k; set of edges Sy, S2, Ss3, S4;
let B be the set of b-vertices in a cycle in T'U S}
{* The partition {B; | 1 < i < k} of B is computed such that two b-vertices
b1 and by are in the same set if and only if there exists a set of
fundamental cycles {Cl,...,Cy} in T'U S with by € Cy, by € Cy and C; and Cjyqq
share a common b-vertex, 0 < i < q. *}
if S is constructed from pairs found in case 1 then
S; := the edges in S corresponding to the pairs found in phase ¢, 1 < i < 4;
By := the set of b-vertices in fundamental cycles in 17U S7 U Ss;
pfor the ith child z; of v; do
B;41 = the set of b-vertices in fundamental cycles in T'U S5 that contain z;
rofp;
k := 1 + the number of children of vy in T7
pfor the ith edge ¢; in S4 do
let B;yr be the set of b-vertices in the fundamental cycle in 7T'U {e;}
rofp;
k =k + |S4|
else {x S is constructed from the pairs found in case 2 *}
By =B k=1
fi;
pfor i =1 .. k do
collapse all b-vertices in B; into a single b-vertex
rofp;
eliminate parallel edges created by collapsing b-vertices;
let 77 be this graph;
pfor each c-vertex w in 7" do if degree(w) = 1 then eliminate w fi rofp;
return 7"
end par_update;

Algorithm 3.11: Parallel algorithm for updating the block tree.

we need the following procedures.

and normalize the tree. To perform functions casel, case2, and par_update,

o A procedure that numbers leaves in the tree from left to right or from

right to left.

e For each vertex v in a tree, find the number and the set of leaves in the

subtree rooted at v.

e For a vertex v in a tree, find the leftmost leaf of each subtree rooted at a

child of v.

62

o For a tree T' with a set of edges S added between leaves in T', compute:

— the number of cycles that pass through a vertex in T'U S}

— the set of vertices in a cyclein T'U S.

All of these procedures can be done in O(logn) time using a linear number of
processors on an EREW PRAM by using the FEuler technique in Tarjan and
Vishkin [TV85] and certain procedures of Schieber and Vishkin [SV88].

From Corollaries 3.4.11, 3.4.17, and 3.4.22, we know that algorithm
par_bca removes at least a quarter of the leaves in the current block graph
during each execution of the while loop. Initially, the number of leaves is
at most n. Hence the main while loop in algorithm par bca is executed
O(logn) times. Each iteration takes O(logn) time using a linear number of
processors, since the parallel sorting routine used in permuting children needs

O(n) processors. This establishes the following claim.

Claim 3.5.3 The biconnectivity augmentation problem on an undirected graph
can be solved in time O(log®n) using a linear number of processors on an

EREW PRAM, where n is the number vertices in the input graph. a

3.6 Concluding Remarks

In this chapter we have presented a linear time sequential algorithm
and an efficient parallel algorithm to find a smallest augmentation to biconnect
a graph. Our sequential algorithm corrects an error in an earlier algorithm
proposed for this problem in Rosenthal and Goldner [RG77]. Our parallel al-
gorithm is new, and it runs in O(log” n) time using a linear number of proces-

sors on an EREW PRAM. Although the parallel algorithm follows the overall

63

structure of our sequential algorithm, the parallelization of some of the steps
required new insights into the problem. Our parallel algorithm can be made to

run within the same time bound using O(%

) processors by using the
algorithm for finding connected components in [CV86], and the algorithm for

integer sorting in [Hag87].

Chapter 4

Smallest Triconnectivity Augmentation:
Biconnected Graphs

4.1 Introduction

In this chapter, we present a linear time sequential algorithm for find-
ing a smallest augmentation to triconnect a biconnected graph. Our sequential
algorithm has a similar structure to the one used in biconnectivity augmenta-
tion as described in Chapter 3. (We have been informed that Jordan [Jor93b]
independently obtained a linear time algorithm for this problem.) We also give
an EREW parallel algorithm for solving this problem in O(log”n) time using
a linear number of processors. The approach used for the parallel algorithm is
similar to the one described in Chapter 3 for finding a smallest biconnectivity
augmentation. In Chapter 5, we will consider the problem of finding a smallest
triconnectivity augmentation on a graph that is not biconnected. An extended

abstract of part of the work presented in this chapter appears in [HR91a].

4.2 Definitions

We first give some definitions.

Higher Connectivity

A graph G'is k-connected, k > 2, if and only if GG has at least k+ 1 vertices and
the removal of any set of vertices of size less than k& does not disconnect it. Let
S be a minimal set of vertices whose removal disconnects a k-connected graph

(. The set of vertices S is a separating k-set. If |S| = 2, it is a separating pair.
64

65

Another characterization of k-connected graphs is due to Menger
[Men27, EveT9]. A graph G is k-connected, k > 2, if G contains more than k
vertices and there are k vertex-disjoint paths between every pair of vertices in

(G. The above two definitions are equivalent.

Bridge

Let @) be a subgraph of a graph G. We define the bridges of () in GG as follows:
we partition vertices in G — () into classes such that two vertices are in the
same class if and only if there is a path connecting them which does not use
any vertex of (). Each such class K defines a nontrivial bridge B = (Vg, E)
of (), where B is the subgraph of G with Vg = K U {vertices of @) that are
connected by an edge to a vertex in K}, and FEp containing the edges of G
incident on a vertex in K. An edge in G —) with both endpoints in () is a

trivial bridge of (). The nontrivial and trivial bridges of () together form the
bridges of ().

Tutte Split

Let {a1, az} be a separating pair in G and let GG, be the subgraph of GG induced
on {ay, az}. For any bridge X of G,, let Vx be the set of vertices in X; let
X be the induced subgraph of G on (V — Vx) U {a1,a;}. Let B be a bridge
of GG, such that B and B both contain at least two edges and either B or B
is biconnected. The Tutte split operation on {aq, az} defined in Tutte [Tut66]
(see also Ramachandran [Ram93]) on a biconnected graph G forms two graphs
Gi1 = BU{(aj,a3)} and Gy = BU {(a1,a3)}. The edge (a1, ay) added in Gy
and (5 is called a virtual edge.

Tutte Component

Let G’ be the graph obtained from a biconnected graph GG by performing the

Tutte split operation successively until no Tutte split is possible. An example

66

Figure 4.1: A biconnected graph G and the graph obtained from G by repeated
application of Tutte split. Virtual edges created by Tutte splits are shown as
dashed lines. Note that several vertices are duplicated after applying Tutte
splits.

is shown in Figure 4.1. Every connected component in G’ is called a Tutte
component. From [Tut66], we know that every Tutte component is of one of
the following three types: (i) a triconnected component; (i2) a simple cycle

(a polygon); (¢7¢) a pair of vertices with at least three edges between them (a

bond).

3-Block Graph

Given a biconnected graph G, we define the 3-block graph, 3-blk(G'), as follows.
(This is essentially the tree of triconnected components [HT73] with a few
variations.) Let G’ be the graph obtained from a biconnected graph G by
performing the Tutte split operation successively until no Tutte split is possible.
The 3-block graph contains three sets of vertices: [(-vertices, o-vertices, and
w-vertices. For every Tutte component that is a triconnected component in
(', we create a f3-vertex in 3-blk((7). For every polygon @) in G, we create
a m-vertex; if w is a vertex in () with degree 2 in (G, we create a [-vertex b,

for w, and we call w the corresponding Tutte component represented by b,,. A

67

Figure 4.2: A graph G and 3-blk((G). We represent a o-vertex, a f-vertex and a
w-vertex by a shadowed circle, a shadowed rectangle and two concentric circles,
respectively. The vertex-numbers appearing with each o-vertex in 3-blk(G)
represent the corresponding Tutte pair in G. The vertex-numbers appearing
with each -vertex in 3-blk(() represent the vertices in its corresponding Tutte
component.

[B-vertex that corresponds to a single vertex in GG is a trivial f-vertex.

Let z; and z be the two vertices in () that are adjacent to a degree-2
vertex w. We create a o-vertex for the pair of vertices z; and z,. For every
pair of vertices a; and ay in (¢, we create a o-vertex for (aq, ay) if we have
performed a Tutte split with respect to ay and ay in G. Examples of a o-
vertex, a (-vertex, and a w-vertex are shown in Figure 4.2, where they are
represented by a shadowed circle, a shadowed rectangle, and two concentric

circles, respectively.

Vertices u and v in 3-blk((G) are adjacent if any of the following condi-
tions holds: (7) u is a 3-vertex corresponding to a Tutte component H, that is
a triconnected component, v is a o-vertex, and H, contains the pair of vertices
corresponding to v; (i7) u is a (-vertex corresponding to a degree-2 vertex w
in G and v is the o-vertex corresponding to the pair of vertices in GG that are
adjacent to w; (¢1¢) v is a w-vertex corresponding to a polygon @ in H and v
is o-vertex corresponding to a pair of vertices in @); (:v) interchanging u and v

in any one of the previous three conditions.

63

The pairs of vertices that correspond to o-vertices are Tutte pairs. It
is easy to see that a Tutte pair must be a separating pair while the reverse is
not necessarily true. Further, it is well-known that a biconnected graph with
n vertices can have ©(n?) separating pairs while the number of Tutte pairs
in an n-vertex biconnected graph is O(n) [Kan88, Ram93]. Figure 4.2 shows
the 3-block graph of the original graph whose Tutte components are shown in

Figure 4.1.

From [HT73, Ram93, Tut66], we know that 3-blk((G) is a tree if GG is
biconnected. We call this tree the 3-block tree for G. Each Tutte component
that corresponds to a [3-vertex in the 3-block graph is a 3-block of GG. Given a
biconnected graph G with n vertices and m edges, 3-blk(() can be constructed
in O(n+m) time using procedures in [HT73, FRT93, Ram93]. The 3-block tree
can also be constructed in O(logn) time using a linear number of processors
on a CRCW PRAM [FRT93, Ram93]. The algorithm for constructing the 3-
block tree can be made to run within the same time bound using a sublinear
number of processors by using the algorithm for finding connected components

in [CV86] and the algorithm for integer sorting in [Hag87].

Implied Path in the 3-Block Tree

Given two vertices u and v in a biconnected graph G, the implied path between
u and v in 3-blk((G) is the path between the two -vertices that corresponds to
the two Tutte components that contain u and v, respectively. An example of

an implied path in 3-blk((G) is shown in Figure 4.3.

Degrees for o-Vertices and Tutte Pairs

Let GG be a biconnected graph. Given a o-vertex s in 3-blk((), let (a1, az) be
its corresponding Tutte pair. We define ds((ay,az)) or ds(s) to be the degree
of s in 3-blk((G). Note that ds((a1,az)) is greater than or equal to 2 for any

69

Figure 4.3: The graph G, 3-blk((), and the implied path P between vertices 6
and 12 in 3-blk(G).

Tutte pair (a1, az). Note also that the degree for a separating pair s is equal

to the number of components in the graph obtained from G by removing s.

Chain

Given a o-vertex s in 3-blk((G), let (3-blk(G) — s) be the graph obtained from
3-blk(G) by removing s. An s-chain [RG77] is a component of 3-blk(G) — s
which contains only one 3-block leaf in 3-blk((). The 3-block leaf of 3-blk(G)

in an s-chain is called the s-chain leaf.

Triconnectivity Augmentation Number
Given a graph G, the triconnectivity augmentation number of G, A3((G), is the

smallest number of edges that need to be added to GG to triconnect G.

4.3 A Lower Bound for the Triconnectivity Augmen-
tation Number

In this section, we identify disjoint portions of the input graph that
must have a new incoming edge in any triconnectivity augmentation. Based on
this information, we give a lower bound for the triconnectivity augmentation

number that is similar to the one given for the biconnectivity augmentation

number in [ET76].

70

We first identify [-vertices in a 3-block graph whose corresponding
Tutte components must contain a new incoming edge in order to triconnect the

input graph.

Definition 4.3.1 A degree-1 F-vertex in the 3-block tree of a biconnected graph
is a 3-block leaf.

Let H be a Tutte component that corresponds to a 3-block leaf in 3-blk(G).
From Definition 4.3.1, we know that ¢ is disconnected if we remove the Tutte
pair in H from G. If we want to triconnect the input graph, we must add at

least one new incoming edge to H.

We now identify verticesin H such that if we add an edge between one
of the vertices we identified and a vertex not in H, then H no longer corresponds
to a 3-block leaf. These vertices will be used in the development of the algorithm

for finding a smallest triconnectivity augmentation (Section 4.4.2).

Definition 4.3.2 Given a 3-block leaf b in 3-blk(G), let Hy be its corresponding
Tutte component. A vertex u in Hy is a« demanding vertex of b if u is not
in the Tutte pair of G that is contained in Hy. The vertex u is also called a

demanding vertex in G.

Claim 4.3.3 There exists at least one demanding vertex in every 3-block leaf

in the 3-block tree of a biconnected graph. a

When we specify the 3-block graph of a graph G, we will include a demanding
vertex for each 3-block leaf in the 3-block graph.

We now define the weight of a graph, which we will relate later to its

triconnectivity augmentation number.

71

Definition 4.3.4 Let GG be a biconnected graph. Let I5(G) be the number of
3-block leaves in 3-blk(G'). The weight of the graph G, w(G), is I3(G).

We now state a lower bound for the triconnectivity augmentation number of

a biconnected graph. The proof of this lemma is similar to a proof given in

[ET76).

Lemma 4.3.5 We need at least max{d—1, (@H edges to triconnect a bicon-

nected graph G, where d is the largest degree among all o-vertices in 3-blk(G).

a

4.4 Finding a Smallest Augmentation to Triconnect a
Biconnected Graph

In this section, we consider the problem of finding a smallest set of
edges to triconnect a biconnected graph. We show that the lower bound given
in Lemma 4.3.5 can be achieved, and we give a linear time algorithm to find

such a smallest triconnectivity augmentation.

4.4.1 Properties of the 3-Block Tree for a Biconnected Graph

In this section, we explore properties of 3-blk((F) that will be used in

the following sections.

Massive, Critical, and Balanced

For a biconnected graph GG with weight w((), a Tutte pair s or its corresponding

w(@)

5. A Tutte pair s or its corresponding

o-vertex is massive if ds(s) —1 > |
o-vertex is critical if d3(s) —1 = (ﬂgﬁ If no Tutte pair in GG is massive, then
GG and its 3-block graph are called balanced. These definitions are analogous

to the same types of vertices for biconnectivity augmentation as defined in

Chapter 3.

72

First we give bounds on the number of massive and critical o-vertices
in 3-blk((G). They are similar to the bounds on the number of massive and
critical c-vertices in the 2-block graph given in Chapter 3. Proofs given in

Chapter 3 can be easily modified to prove the following claim and its corollary.

Claim 4.4.1 Let s; be a o-vertex with the largest degree among all o-vertices
in 3-blk(G), and let s; be a o-vertex with the largest degree among all o-vertices
other than si,...,s;_1, for1 € {2,3}. Then 30, da(s;) — 4 < I, where | is the
number of 3-block leaves in 3-blk((G). O

Corollary 4.4.2 Let s1, so, and s3 be the o-vertices defined in Claim 4.4.1
and let [be the number of 3-block leaves in 3-blk(().

(i) If 3-blk(G) has more than two o-vertices, then ds(ss) < H'T4.

(it) There can be at most one massive o-vertex in 3-blk(G).

(it1i) If there is a massive o-vertex in 3-blk(G), then there is no critical o-vertex
in 3-blk(G).

(tv) There can be at most two critical o-vertices in 3-blk(G) if | > 2. O

Given a biconnected graph G, its 3-block tree, and a graph G’ ob-
tained from G' by adding an edge between two distinct vertices u and v, we
now describe a method to obtain 3-blk(G’) from 3-blk(G) by local updating
operations on 3-blk(() instead of computing it directly from G’. Let u and v
be two vertices of G that are in Tutte components represented by -vertices ¢,

and t,, respectively. Let P be the implied path between u and v in 3-blk(G).

The Implied Graph
We give some more notations. Given G, 3-blk(G), G, and P as defined in

the previous paragraph, we define the implied graph Gp of the path P in G

73

Figure 4.4: The implied path P between vertices 6 and 12 in 3-blk(G) and its
implied graph. The original graph G is shown in Figure 4.3.

as follows. The implied graph G'p contains vertices and edges that are in the
Tutte components of G corresponding to J-vertices in P. For every m-vertex
q in P, let s? and s} be the two o-vertices that are adjacent to ¢ in P. Let
(af, a}) and (b], b3) be the Tutte pairs represented by s? and s, respectively.
If s? is adjacent to a trivial g-vertex in P that corresponds to the vertex w in
G, then let a] = w and let a} = w. The same procedure is applied on sj, b],
and b}. If we traverse clockwise around the simple cycle €, represented by ¢
starting from af, let the sequence of vertices visited in {a3, b7, b3} is b7, b3 and
a3. We add the edge (af, b]) to Gp if a] # b and we add the edge (ai, b3) to

Gp if ad # b]. An example is shown in Figure 4.4.

The implied graph for any path P has some very useful properties.
The following claim shows that the implied graph of a path P is biconnected
if G'p contains at least three vertices. Note that G'p contains a single vertex if
and only if u = v. The implied graph G'p contains two vertices with two edges
between them if and only if v and v are both degree-2 in G and v and v are in
the same polygon. Further, we will show later (in part ¢¢ of Lemma 4.4.5) that
the implied graph becomes triconnected after adding an edge between u and v

if it contains at least 4 vertices.

74

Claim 4.4.3 Given a biconnected graph G and two demanding vertices u and
v in G where u and v are in different Tutte components, let P be the implied
path in 3-blk(G) between u and v. The implied graph of P, Gp, is biconnected

if and only if Gp contains more than two vertices.

Proof. The only if part is obvious. We now prove the if part.

By the definition of 3-block graph, we know that a Tutte component
corresponding to a nontrivial F-vertex is triconnected. Since Gp contains more
than two vertices, u and v are not in the same polygon. Thus P contains at

least one nontrivial F-vertex. Hence G'p contains at least 4 vertices.

Given any two distinct vertices xy and x5 in Gp, let P’ be the implied
path between 1 and x4 in 3-blk(G). We now show that there are two vertex-
disjoint paths between x; and xy in Gp. If there is only one vertex r in P’,
then x; and x5 are contained in the Tutte component H, that corresponds to
r. Since u and v are distinct, H, is nontrivial and is triconnected. Thus there

are two vertex-disjoint paths between x; and x5 in Gp.

If P" consists of more than one vertex, let P’ = [t1, z1,. .., 2., 13]. Note
that P’ is a subpath of P. Let k& be the number of 3-vertices and w-vertices
in {z1,...,2} and let y; be the ith S-vertex or 7w-vertex encountered when
we traverse P’ from z; to z,. Let sy; and sg;41 be the two o-vertices that are
adjacent to y;, 1 <7 < k. We construct two vertex-disjoint paths U} P! and
Ufiolpf between z; and x5 in Gp, where Py and P§ are two vertex-disjoint
paths in G'p from x4 to the two vertices in the Tutte pair represented by z; (z3
if t1 is trivial); P, and P7, are two vertex-disjoint paths in G'p from x; to
the two vertices in the Tutte pair represented by z, (z,_q if ¢ is trivial); P!
and P?, 1 < i < k, are two vertex-disjoint paths from the two vertices in the

Tutte pair represented by s,; to the two vertices in the Tutte pair represented

75

by s9,41. We choose the numbering of each P! and P? in such a way that
P'nPL, #0and PPNPL, #0,0<:<k
We have proved that there are two vertex-disjoint paths between any

two distinct vertices in G'p, and G'p contains at least 4 vertices. Thus Gp is

biconnected. This proves the if part. a

We now define the crack operation which is useful in describing the

relation between 3-blk((G) and the 3-block graph of G after adding an edge.

Definition 4.4.4 Let G be a biconnected graph and let G' be the graph ob-
tained from G by adding an edge between two demanding vertices w and v in
G, where u and v are in different Tutte components. Given P, the implied path
between v and v in 3-blk(G) and a w-vertex q in P, let s¢ and si be the two
o-vertices in P that are adjacent to q. Let (af,a}) and (b],b%) be the two Tutte
pairs in G that correspond to st and s, respectively. We assume that if we
traverse clockwise around the simple cycle Cy represented by q starting from
ai, the sequence of vertices visited in {a3, bi, b3} is b, b and a. The crack
operation on q with respect to P consists of the following procedures on G and
3-blk(G).

(i) In G, we add the edge (ai,b]) to the simple cycle C, corresponding to q if
ai # b] and (ai,b]) is not an edge in C,. The edge (a3, b}) is added under the
same condition for a3 and by. For each new simple cycle C created by adding
these edges, we create a new w-vertex in 3-blk(G) if C contains a Tulte pair in
C, (excluding (ai,a}) and (b],03)).

(it) After performing operations given in part (i), let ¢1 and g2 be the two
w-vertices corresponding to simple cycles containing (ai,b]) and (a3, b3), re-
spectively in 3-blk(G). New o-vertices sy (corresponding to the new Tulte pair
(ai,b6])) and sy (corresponding to the new Tutte pair (a3,b3)) are added and

76

Figure 4.5: A graph G, 3-blk((), and the updated 3-block graph after adding a
new edge between vertices 6 and 12 (represented by a dotted line). The 7-vertex
¢s in the updated 3-block graph is created by the crack operation performed on
g2. Note that the implied path between vertices 1 and 8 is adjacent on polygon
¢1, while the implied path between vertices 2 and 8 is non-adjacent on polygon

q1-

connected to 1 and ¢z, respectively, in 3-blk(G).

(i1i) After performing operations given in parts i and i1, let s be a o-vertex in
3-blk(G) such that s # s% and s # s}. An edge (s,q) in 3-blk(G) is changed to
(s,q1) or (s,q2) depending on whether the Tutte pair represented by s is on the

simple cycle represented by ¢ or by qs.

Note that the crack operation creates at most two w-vertices. If there are
two w-vertices created by performing the crack operation on a w-vertex ¢ with
respect to a path P, then P is non-adjacent on q. Otherwise, P is adjacent on

g. An example is shown in Figure 4.5.

Lemma 4.4.5 states how 3-blk(G") is obtained from 3-blk((), where
(i’ is the graph obtained form G by adding an edge. (A similar result was found
independently in [DBT90].)

Lemma 4.4.5 Let G be a biconnected graph and let G' be the graph obtained
from G by adding an edge between two vertices u and v in GG, where u and v

are in different Tutte components. Let P be the implied path between u and v

77

in 3-blk(G). We can obtain 3-blk(G') from 3-blk(G') by applying the following
operations.

(i) Edges in P are eliminated. Vertices and edges in 3-blk(G) that are not in
P remain in 3-blk(G").

(it) The B-vertices in P shrink into a new [-vertex bp in 3-blk(G'). The
corresponding Tutte component of bp is GpU{(u,v)}, where Gp is the implied
graph of P.

(i1i) A vertex s in P with ds3(s) = 2 is eliminated in 3-blk(G") if s is a o-vertex
or a T-vertex.

A o-vertex s in P with ds(s) > 3 is adjacent to bp if bp exists.

(iv) A w-vertex q in P with ds(q) > 3 is cracked (Definition 4.4.4) and new

o-vertices created by the crack operation are connected to bp.

Proof. Parts (¢) and (¢i7) are obvious. We only prove parts (i¢) and (iv).

Since Gp are in different Tutte components, G'p contains at least 2
vertices. If Gp contains exactly two vertices {u, v}, then GpU{(u,v)} is a bond.
If Gp contains more than two vertices, GGp is biconnected (Claim 4.4.3). (In the
proof of Claim 4.4.3 we also show that Gp must contain at least 4 vertices in
this case.) We know that the only way to disconnect G'p is by removing Tutte
pairs corresponding to o-verticesin P. After the removal of any Tutte pair, Gp
contains exactly two connected components and u and v are separated. Thus
the graph G obtained from G'p by adding (u, v) is triconnected. This proves
part (i2).

We know that pairs of endpoints of edges added in cracking w-vertices
correspond to new Tutte pairs. Every new Tutte pair created is contained in
(. This proves part (iv). O

An example of updating the 3-block graph is shown in Figure 4.5.

78

Corollary 4.4.6 Let G’ be the graph obtained from G by adding an edge be-
tween any two demanding vertices u and v in G and let P be the implied path
in 3-blk(G) between u and v. Then the degree of each o-vertex s in P, with
degree > 2 in 3-blk((), is decreased by 1 in 3-blk(G'). 0

In Definition 4.4.7, we specify the conditions under which the addition
of an edge between two 3-block leaves in 3-blk(() reduces the number of 3-
block leaves by two. Thus if we add an edge between two vertices satisfying
the condition given in Definition 4.4.7, we can reduce the first part of the lower

bound (Lemma 4.3.5) by 1.

Definition 4.4.7 (The leaf-connecting condition)

Let GG be a biconnected graph and let v and v be two demanding vertices in .
Let P be the implied path between u and v in 3-blk(G). The pair of vertices u
and v satisfies the leaf-connecting condition if and only if any one of the
following conditions holds:

(i) the path P contains a 3-vertex of degree at least j;

(1) the path P contains two vertices of degree at least 3;

(t1i) there exvists a w-vertex in P such that P is non-adjacent to it.

Lemma 4.4.8 Let G be a biconnected graph and G' be the graph obtained from
G by adding a new edge (u,v). Let 1 be the number of 3-block leaves in 3-bIk(G),
and let ' be the number of 3-block leaves in 3-bIk(G"). If u and v satisfy the
leaf-connecting condition (Definition §.4.7) and 1 > 3, then I' =1 — 2.

Proof. If we substitute G-vertices with b-vertices and o-vertices with c-vertices,
parts (7) and (7¢) of the leaf-connecting condition (Definition 4.4.7) are similar

to the leaf-connecting condition given in Chapter 3 for biconnecting a graph.

79

For a proof of the lemma when u and v satisfy part ¢ or part 22 of the leaf-

connecting condition, see Chapter 3.

Let u and v satisfy part (zi7) of the leaf-connecting condition. We
know that two 3-block leaves in 3-blk(() that correspond to Tutte components
containing v and v are eliminated in 3-b/k(G’). Since degree-1 vertices must
be [-vertices, we have to prove no new degree-1 f-vertex is created. From
Lemma 4.4.5, we know that at least two new w-vertices p; and py are created
by the crack operation if part (¢7¢) of the leaf-connecting condition is satisfied.
The new (-vertex created is adjacent to two o-vertices that are connected to

p1 and py, respectively. Hence it is not a 3-block leaf. O

4.4.2 The Sequential Algorithm

In this section, we describe an algorithm (aug2to3) to triconnect a
biconnected graph using exactly the number of edges given in Lemma 4.3.5.
Given a biconnected graph (7, let [be the number of 3-block leaves in 3-blk(().
Let d be the largest degree among all o-vertices in 3-blk(G). We will show in
Claim 4.4.10 that by using Algorithm 4.1, the lower bound given in Lemma 4.3.5

can be reduced by 1 each time we add a new edge.

Algorithm aug2to3 treats two cases separately. If ¢ is not balanced,
there can be only one massive o-vertex s (Corollary 4.4.2). We add an edge (u,
v) such that d and [are both decreased by 1 in the resulting 3-block graph. This
can be done by choosing v and v such that the two Tutte components containing
u and v are both corresponding to s-chain leaves. If G is balanced, there can
be at most two critical o-vertices (Corollary 4.4.2). We add an edge (u, v) such
that d is decreased by 1 and [is decreased by 2. This can be done by choosing

u and v such that they satisfy the leaf-connecting condition (Definition 4.4.7),

80

and the implied path between them in 3-blk(() passes through all possible
critical o-vertices. In algorithm aug2to3, we only consider the case when 3-
blk(() contains a f-vertex with degree > 2. If there is no such j-vertex in
3-blk((), the 3-block tree either is triconnected, contains two leaves or is a star
with a w-vertex as its center. It is easy to augment the graph with the smallest

number of edges in all of the above cases.

We describe the method for optimally triconnecting a biconnected
graph in Algorithm 4.1. Before we prove the correctness of algorithm aug2to3,
we state a claim for the case when the input graph G is unbalanced. The proof

of this claim is similar to a proof in [RG77] (see Chapter 3).

Claim 4.4.9 Let G be an unbalanced biconnected graph with at least | vertices.
Let s be the massive o-vertex in 3-blk(G) and let 6 = ds(s) — 1 — (%W There
are 26 + 2 s-chains in 3-blk(G). Let M be the set of s-chain leaves. By adding
2k, k < 6, edges to connect 2k 4+ 1 vertices of M, we reduce both ds(s) and the

number of leaves in the 3-block tree by k. O
We now prove the correctness of algorithm aug2to3.

Claim 4.4.10 Let d be the largest degree among all o-vertices in 3-blk(G) and
let 1 be the number of 3-block leaves in 3-blk(G). If G is biconnected with at
!

=1} edges using

least | vertices, we can triconnect G by adding max{d — 1, [3

algorithm aug2to3.

Proof. If 3-blk(() contains a massive vertex sy, then the two s;-chain leaves
are found in step 1. The correctness of algorithm aug2to3 when step 1 is
executed is proved in Claim 4.4.9. If 3-blk(() is balanced, all critical vertices
are in Py U Py. (For details, see [RGT7].) Thus d is decreased by 1 after adding

81

{* The input graph G is biconnected with at least 4 vertices; 3-b{k(G) contains
a non-leaf B-vertex; the algorithm finds a smallest augmentation to triconnect G. *}
set of pairs of vertices function aug2to3(graph G);
tree T vertex v, w, y, z, uq, us;
{* Vertices v and w are the two vertices in the 3-block tree that satisfy
the leaf-connecting condition (Definition 4.4.7), if G is balanced;
vertices y and z are two degree-1 vertices in the 3-block tree such that the path
between them in the 3-block tree passes through v and w; vertices uy and s
are demanding vertices of y and z, respectively. *}
T := 3-blk(G); root T at a non-leaf S-vertex b; S := 0
let [be the number of degree-1 vertices in T
while [> 2 do
let s1 be a o-vertex with the largest degree in T
if s; 1s massive then
1. find two si-chain leaves y and z
else {* s; is not massive *}
if ds(s1) > 2 then

2. v = 8§
else if d3(s;) < 2 then

3. let v be the vertex with the largest degree in T'
ﬁ.

find the path P; from v to the root b;
find a path Ps from b to a leaf v"* such that Ps does not pass v;
if 3 a vertex other than v in P; U Py with degree > 3 then

4. w ="
else {« all vertices other than v in P; U Py are degree-1 or degree-2 *}
J. find a path Ps from v to a leaf v in the subtree rooted at v such that if v is a

m-vertex of degree > 4, then P, U P, U P5 is non-adjacent on v;
{x If v is a 7m-vertex, a path is non-adjacent on v if the crack operation
(Definition 4.4.4) performed on v produces two new w-vertices. *}
w = v,
find two degree-1 vertices y and z such that the path between them
passes through v and w
fi
fi;
find a demanding vertex u; of y; find a demanding vertex us of z;
{* Claim 4.3.3 shows that the above two statements will always succeed. *}
S := SU{(u1,u2)}; update the 3-block graph T
ifl#A3then! :=]—2else {x[=3«}1:=1-11f
od;
return S
end aug2to3;

Algorithm 4.1: A linear time algorithm for finding a smallest triconnectivity
augmentation on biconnected graph.

82

an edge (Corollary 4.4.6). The pair of vertices u; and uy also satisfies part

(71) of the leaf-connecting condition (Definition 4.4.7) by steps 2, 3, and 4, if

possible. Otherwise, it satisfies part (i) of the leaf-connecting condition by

step 3, or satisfies part (i:¢) of the leaf-connecting condition by step 5. Thus
!

if d —1 < [3], then [is decreased by 2 each time algorithm aug2to3 adds an

edge.

The algorithm guarantees that max{d—1, [£]} is decreased by 1 each
time we add an edge. We know that max{d—1, [{]} = 0 implies that 3-b/k(G)
is a single g-vertex. Thus G is triconnected if G contains at least 4 vertices.

Hence the claim holds. O

Theorem 4.4.11 The triconnectivity augmentation number for a biconnected
graph G, As(G), equals max{d — 1, (%W}, where d is the largest degree among
all o-vertices in 3-blk(G) and | is the number of 3-block leaves in 3-blk(G).

Proof. By Lemma 4.3.5 and Claim 4.4.10. O

Claim 4.4.12 Algorithm aug2to3 runs in linear time.

Proof. The 3-block graph can be obtained in linear time by using procedures
in [HT73, Ram93]. If G is a biconnected graph with n vertices and m edges,
3-blk(() consists of O(n) vertices.

Using a hash table technique that is the same as the one used in
[RGT77], we can maintain the current degree of all vertices in 3-blk((G). We
can also find a vertex in 3-blk((G') with a given degree in constant time using

the hash table. The sum of the degrees of all vertices in 3-blk((G) is O(n) and

the degree of any vertex in 3-blk((G) can only be decreased by adding edges.

83

During the entire computation, we create only O(n) vertices and edges in 3-

blk(G). Hence it takes O(n) time in total to maintain the hash table.

We use the following data structure to represent the rooted 3-block
tree [RG77]. Each vertex in 3-blk(() has 4 pointers: (¢) a left-sibling pointer;
(7¢) a right-sibling pointer; (i¢¢) a parent pointer; (¢v) a child pointer. Sibling
nodes form a linear doubly-linked list using the two sibling pointers. The
sibling linked list for the children of a w-vertex r will be ordered according to
its relative positions in the simple polygon represented by r. The child pointer
of a node points to (an arbitrary) one of its children. The parent pointer of a

node points to its parent.

We always maintain sibling pointers and the child pointer for each
node; however, during the updating of 3-blk((7), the parent pointer will not
be changed. To determine the actual parent pointer, we use the property that
every edge added collapses [-vertices into the root. The parent pointer of
a (-vertex always points to its parent in the current tree. If two w-vertices
are created by the crack operation, we can initialize their parent pointers in
constant time. If the parent of a o-vertex was a 3-vertex and is collapsed into
the root, its current parent is the root. If the parent of a o-vertex s was a
w-vertex and is cracked, then the current parent of s, parent(s), is a grandchild
of the root and the current grandparent of s, grandparent(s), is a degree-2 o-
vertex. Our algorithm does not need to access parent(s) and grandparent(s)
to perform further computation except that we need to know whether or not
the degree of parent(s) is greater than 2. This can be done in constant time
by checking the sibling list containing s. Using this data structure, paths Py,
Py, and P5 used in algorithm aug2to3 can be found in O(|P; U Py U Ps]) time.

Each vertex and each edge is visited a constant number of times dur-

ing the entire computation, so the total time for visiting and updating the

84

tree structure is O(n). Since we create at most one 3-block leaf in the entire
computation of algorithm aug2to3 (when there are three 3-block leaves left),
we can find a demanding vertex in each degree-1 vertex in constant time after
an O(n + m) preprocessing procedure. Thus the overall time complexity is

O(n +m). O

4.5 The Parallel Algorithm

In this section, we develop an efficient parallel algorithm for finding

a smallest augmentation to triconnect a biconnected graph.

Given a biconnected graph G, 3-blk((G) is a tree. Our parallel algo-
rithm is similar to the parallel algorithm for finding a smallest biconnectivity
augmentation given in Chapter 3. Note that if 3-b/k(() is unbalanced, we can
easily add edges in parallel to balance it using a method similar to the one
given in Chapter 3. Hence we focus our discussion on the case when the input

graph (' is balanced.

Let {s1,...,8,.} be the set of o-vertices in 3-blk(() where G is bi-
connected and balanced. Without lose of generality, let ds(s;) > ds(siy1),
1 <1 < ns. Let [denote the number of 3-block leaves in 3-blk(G).

Here is a brief summary of our parallel algorithms. The full details
are given in the following subsections. Our algorithm first transforms 3-blk(()
into the following format. We root 3-blk(() at a vertex such that s; is the left
child of the root. We further permute the children of s; such that the number
of leaves in the subtrees rooted at the children of s; is non-increasing from left
to right. Let U; = {u | u is the leftmost leaf of T,, where y is a child of s;},
1 <@ < ng,, and let T” be the subtree of 3-blk(() obtained from removing the

subtree rooted at s;.

85

Depending on the degree distribution of vertices in the rooted 3-
blk((), the parallel algorithm treats two separated cases. In case 1, ds(s1) >
i. We have a o-vertex with a high degree. We pick Let W, be the first
min{ds(s1) — 2, (%W —ds(s3) + 1} leaves in Uy. Leaves in Wy are matched with
the first min{|Wi|, |Uz| — 1} leaves in U,. Unmatched leaves in Wy, if any, are
matched with all remaining leaves but one in 7" and finally properly matched
with themselves, if necessary. In case 2, ds(s;) < é. There is no o-vertex
with a large degree. We show that we can root 3-blk((F) at a vertex u* with
approximately the same number of leaves in each subtree rooted at a child of
u*. If u* is a #-vertex, a suitable number of leaves between subtrees rooted at
children of u* are matched. If u* is a o-vertex, a suitable number of subtrees
rooted at children of u* are first merged into a single subtree rooted at u*. Then
leaves in the merged subtree are matched with leaves outside. Otherwise, u*
is a m-vertex. Let U = {u | u is the leftmost leaf of T,, where y is a child of
w*}. If ds(u*) > £, we match min{[1] — ds(s1), LMJ} pairs of leaves in U. If
ds(u*) < i, we match a suitable number of leaves between the subtrees rooted

at the children of u™.

The algorithm first finds the matched pairs of leaves in each case.
Then we add edges between matched pairs of leaves and update 3-blk(G) at
the end of each case. The 3-block tree and the sequence of o-vertices sq,..., s,

will not be changed during the execution of the algorithms for cases 1 and 2.

The parallel algorithm for case 1 and case 2 when u* is a [J-vertex
(case 2.1) or a o-vertex (case 2.2) is similar to the cases for biconnectivity
augmentation as described in Chapter 3. In the following subsections, We

describe the part for dealing with case 2 when u* is a w-vertex (case 2.3).

Depending on the degree of u*, we have two different strategies. We

first root 3-blk(G) at w*. If ds(u*) > L we find a leaf for each subtree rooted

47

86

set of pairs of vertices function case2 3_1(tree 7T');
{* The number of leaves in the 3-block tree T is l. *}
integer p, k, s; set of pairs of vertices L;
L := 0; {+ L is the set of matched pairs. *}

k= min{[£] = da(s1), |25] - 1)
s o= [B52] 4+ 1
pfor i =1 .. k do
let u; be the éth (clockwise according to the relative position of the u;’s
around the root) child of the root;
let w; be the leftmost leaf in the subtree rooted at u;;
let g(w;) be a demanding vertex of w;
rofp;
pfor i =1 .. k do
L= LU {(q(wi), q(wiys))}
rofp;
return L
end case2.3.1;

Algorithm 4.2: Parallel algorithm for handling case 2.3.1.

at a child of u*. Let the set of leaves found be ¢#. We add an edge between
two leaves in U. If d3(u*) < é, we add suitable number of edges such that each
new edge connects leaves in two subtrees rooted at different children of u*. We
describe the two cases in detail in the following sections.
4.5.1 Case 2.3.1: d3(s;1) —1 < %, u* is a w-vertex, and ds(u*) > &

We first describe the algorithm for this case. Then we prove that each
edge we add will decrease the triconnectivity augmentation number by 1 and

that we add a constant fraction of the number of edges as indicated by the

triconnectivity augmentation number in each execution of Algorithm 4.2.

We find a leaf for each subtree rooted at a child of v*. Let the set of
leaves found be 2. We then match min{[1] —ds(s;), |00 | 1} pairs of leaves

2

from U and add an edge between two matched leaves. See Algorithm 4.2.

Claim 4.5.1 The number of matched pairs found in function case2_3_1 is at

least Léj —1.

87

Proof. Let k = min{[1] — d3(s:), LM;—*ZJ — 1}. We add exactly k edges in

this case. Since ds(u™) > ﬁ, we have LdS(;*)J —1> Léj — 1. Also, ds(s1) < ﬁ.

Hence (%W —ds(s1) > i. O

Claim 4.5.2 Let k be the number of matched pairs found in function
case2 3.1. Let G' be the new graph obtained from G by adding edges between

demanding vertices of pairs of leaves found in case 2.3.1. If | > 11, then
As(G") = As(G) — k and G' remains balanced.

Proof. Let k be the total number of edges added and let p = ds(u*). Let s be
L@J + 1. Let the set of edges be added in the order (w1, w4s), (wa, wats),
vy (Wk, Weys), and let the graph obtained by adding the first ¢ edges be G},
0 < < k. Note that Gy = GG. We first prove by induction on z that the pair
(w;, w;ys) satisfies the leaf-connecting condition in 3-blk((;).

Induction Base: If [> 11, then ds(u*) > 4. Thus the path P between w;

and wi,, passes through the root, which is a 7-vertex with degree at least 4.
The path P is non-adjacent on the root. Hence w; and wy satisfy the leaf-
connecting condition in 3-blk(Gl).

Induction Step: Assume the statement is true for any value of 7, where ¢ < r

and r > 1. The structure of 3-blk(G,_1) is as follows. Let T; be the subtree
rooted at w; in 3-blk(Go), 1 < ¢ < p. If we root the updated 3-block tree
at the new [-vertex created each time we add an edge, then T,,.... T are in
the subtree of 3-blk(G,_1) rooted at a w-vertex p; and T,4s,..., T, are in the
subtree of 3-blk((,_1) rooted at another 7-vertex p. The path between p; and
p2 passes through the root. Thus the path between w, and w,; passes through

two vertices of degrees at least 3 (p; and p2).

88

—
—_———

Figure 4.6: This diagram illustrates the proof of correctness for case 2.3.1 for
triconnecting a biconnected graph. The 3-block tree obtained after adding the
first r — 1 edges is shown. In the new 3-block tree, only one new [-vertex u is
created. Note that the pair of vertices (w,, w,;5) satisfies the leaf-connecting
condition, since the path between them passes through p; and ps, two vertices
with degree at least 3.

We have proved that after adding k edges, the number of leaves in the
updated 3-block tree decreases by 2k. Since k < (%W — ds(s1), no o-vertex in
the updated 3-block tree becomes massive. Thus 3-blk((Z) remains balanced.
(A diagram is given in Figure 4.6 to illustrate this proof.) O
4.5.2 Case 2.3.2: ds(s1) — 1 < ﬁ, u* is a w-vertex, and ds(u*) < é

Let vy, ..., v, be the children of v* such that x; > 2,11, 1 <1 < p,
where z; is the number of leaves in the subtree rooted at v;. Let T; be the

subtree rooted at v;, 1 <1 < p. We match all but one of the leaves in T5; with

the same number of leaves in Ty;_y, 1 <4 < |£], using Algorithm 4.3.

Claim 4.5.3 The number of matched pairs found in function case_ 2_3_2 is at

least é.

89

set of pairs of vertices function case 232 (tree T);
set of pairs of vertices L;
let p be the degree of the root of T
let v;, 1 < ¢ < p, be the children of the root u* such that z; > z;11, 1 <@ < p,
where z; 1s the number of leaves in the subtree rooted at v;;
let T; be the subtree rooted at v;; L := @; {* L is the set of matched pairs. *}
pfori=1. [§] do
number leaves in T5;_1 from 1 to x5;_1 in arbitrary order;
number leaves in Ts; from 1 to x9; in arbitrary order;
pfor j = 1. z9;—1do
let u be the jth leaf of T5;_1; let v be the jth leaf of T5;;
let ¢(u) and ¢(v) be a demanding vertex of u and v, respectively;
L= LU{(q(u),q(v))}
rofp
rofp;
if |L| > [£] — d3(s1) then remove |L| — ([4] — ds(s1)) pairs from L fi;
return L
end case 2.3.2;

Algorithm 4.3: Parallel algorithm for handling case 2.3.2.

Proof. We know that z; > z;41, 1 <2 < p. Thus

2] 1£] 1£] P
Toi > Y Taiqr and w1 4+2) x> =1
1 =1 =1 =1

We have chosen u* so that no subtree rooted at a child of the root v* has more

than half of the total number of leaves. Thus z; < % Hence

5

Top = —.

We know that p = ds(u*) <

Claim 4.5.4 Let k be the number of matched pairs found in function

case 2 32. Let G' be the new graph obtained from G by adding edges be-

90

tween the demanding vertices of pairs of leaves found in case 2.3.2. If | > 11,
then As(G') = As(G) — k and G' remains balanced.

Proof. We add an edge between every pair of leaves found in case 2.3.2. Let
the set of edges be added in the following order. The set of edges between
leaves in T} and leaves in T, are added first in arbitrary order. Then we add
the set of edges between leaves in T5 and leaves in Ty. We keep on doing this
until all edges have been added. Let G be the current graph and let (; be the
graph obtained from GG by adding the set of edges between leaves in T;_y and
leaves in T5,. Note that Gy = . Let G;; be the graph obtained from G; by
adding j edges between leaves in T,y and leaves in T5;,. Note that Gpo = G.
We first prove by induction on ¢ that all pairs matched between leaves in T;_1
and leaves in Ty; satisfy the leaf-connecting condition in 3-blk(G;_1).

Induction Base: If we add edges to any matched pairs between leaves in 17 and

leaves in T3, then both T} and T3 have more than two leaves. Thus there is a
vertex in 3-blk(G) with degree at least 3 on the path from a leaf in 7} to the
root. There is also another vertex with degree at least 3 on the path from a leaf
in T5 to the root. Thus the first pair matched between leaves in T} and leaves
in Ty satisfies the leaf-connecting condition. (We show a diagram in Figure 4.7

to illustrate this proof.)

The path P;;_; between two leaves of the :th pair passes the new
p-vertex b;,_y created by adding the (¢ — 1)th edge. It is either the case that
b;_1 1s degree 4 or b;_y is degree 3 and we can find another degree 3 vertex in
Py i_1, since there exists at least one leaf in 77, and at least one least one leaf in
T5, that is not participating in any matching. Thus each matched pair between
a leaf in T} and a leaf in T, found in case 2.3.2 satisfies the leaf-connecting

condition.

91

Figure 4.7: This diagram illustrates the proof of correctness for case 2.3.2 for
triconnecting a biconnected graph. The 3-block tree for the current graph
is shown on the right. The 3-block tree obtained after adding the first edge
between the leftmost leaf in 7} and the leftmost leaf in 75 is shown on the left.
Note that the root of the original 3-block tree is split into two 7-vertices p; and
p2. Note also that all G-vertices in the path between a; and b; are collapsed
into a new J-vertex u. We root the new 3-block tree at u. Every pair of vertices
(ai, b;), 1 < < xq, satisfies the leaf-connecting condition.

Induction Step: Assume the statement holds for ¢ such that ¢+ < r and r > 1.

The proof for ¢ = r is similar to the base case.

Let r be the total number of edges added. We have proven that after
adding k edges, the number of leaves in the updated 3-block tree decreases by
2k. Since k < [L] — ds(s1), no o-vertex in the updated 3-block tree becomes

2

massive. Thus the claim holds. O

4.5.3 The Complete Parallel Algorithm for a Biconnected Graph

We now describe the parallel algorithm (Algorithm 4.4) for the case
when the input graph is biconnected. The correctness of this algorithm follows
from Claims 4.5.2 and 4.5.4 and Corollaries 3.4.11, 3.4.17 and 3.4.22 given in
Chapter 3. We know that the number of leaves in 3-blk(() is at most n, where
n is the number of vertices in the input graph. Algorithm paug2to3 terminates

in O(log n) iterations and the resulting graph is triconnected.

92

{* G is biconnected with at least 4 vertices;
the algorithm finds a smallest augmentation to triconnect G. x*}
set of pairs of vertices function paug2to3(graph G);
vertex u*;
T := 3-bk(G); S = 0;
[:= number of leaves in T7;
root T' at a [-vertex with degree > 2;
while [> 1 do
let s1 be a o-vertex with the largest degree in T
if d5(s1) — 1 > £ then L := case1(T') {* see Chapter 3 *}
else {x d3(s1) — 1< L «}
root T" at an arbitrary vertex;
find a vertex u* such that there are more than % leaves in the subtree rooted
at u*, but none of the subtrees rooted at a child of u* has more than % leaves;
root T' at u™;
permute children of «* (from left to right) in non-increasing order of
the number of leaves in subtrees rooted at them;
if u* is a F-vertex then L := case2_1(T') {* see Chapter 3 %}
else if u* is a o-vertex then L := case2 2(T') {* see Chapter 3 *}
else {x u* is a 7m-vertex x}
if ds(u*) > % then L := case2.3_1(T)
else {x d3(u*) < & *} L := case2.32(T) fi
fi
fi;
pfor (a1,a2) € L do
let u; be a demanding vertex in a;, 7 € {1,2};
S:=5UuU (Ul,UQ)
rofp;
1. update T" and [
od;
return S
end paug2to3;

Algorithm 4.4: Parallel algorithm for finding a smallest triconnectivity aug-
mentation for a biconnected graph.

93
4.5.4 The Parallel Implementation

In the previous sections, we have shown details of each step in algo-
rithm paug2to3 except step 1. We now describe an algorithm for updating the
current 3-block graph T given the set of edges S added (step 1 in algorithm

paug2to3).

Updating -Vertices

If function paug2to3 executes case 1, case 2.1, or case 2.2, the method for
updating f-vertices in the 3-block tree is described in Section 3.5.1. If function
paug2to3 executes case 2.3.1, all S-vertices in a fundamental cycle created by
adding edges are merged into one new [-vertex. Let vq,...,v, be the children
of the root in case 2.3.2. The children are numbered in non-increasing order
according to the number of leaves in the subtrees rooted at them. (See Sec-
tion 4.5.2 for details.) If function paug2to3 executes case 2.3.2, then at least
one of the following two conditions is true: (1) all -vertices in any funda-
mental cycle created by adding edges are merged into one new [-vertex; (2)
a new (-vertex is created for each set of F-vertices in fundamental cycles that
pass through ve;_1 and vy;. The following claim gives the method for updating

(B-vertices and can be easily verified.

Claim 4.5.5 Let {v1,...,v,} be the children of the root in 3-blk(G) in case
2.8.2. Let Y;, 1 <@ < |E], be the set of all vertices in {vy,...,v,} thal are
visited if we traverse starting from vq;_1 to vy; clockwise around the simple
polygon represented by the root of 3-blk(G). We create a new [B-vertex (in the
new 3-block tree obtained after adding edges found in case 2.3.2) for the set

of B-vertices in fundamental cycles passing through vy;_1 and vy; if and only if

voj_1 € Y; implies vy € Y; and vice versa. O

94

Figure 4.8: This diagram illustrates an example for creating a new 3-vertex af-
ter adding edges between matched vertices found in case 2.3.2 for triconnecting
a biconnected graph. We root the shown 3-block tree at u*. In case 2.3.2, we
match leaves between the subtree rooted at vy;_1 and the subtree rooted at vs;.
Note that if we traverse from vg;_1 to vy; clockwise around the simple polygon
represented by the root and we visit vgj_1 (vy;), we will also visit vy; (vgj-1).
Thus we create one new (-vertex for the set of 3-vertices in fundamental cycles
that pass through vy;_1 and vs;.

Figure 4.8 shows an example where the above condition is satisfied.

Updating o-Vertices
The method for updating o-vertices in 3-blk(() is similar to the method for

updating c-vertices in 2-blk((). For details, see Section 3.5.1.

Updating wn-Vertices
The method for updating w-vertices is as follows. For each m-vertex p in 3-

bIk(G), let

5171, ceey SI,T17 5271, ceey 5277«2, ceey SQk—l,la ceey Szk_lﬂo%_l, SQkJ, ceey Szkﬂ«%

be the o-vertices that are adjacent to p (in clockwise order). Let

{5171, ceey SI,T17 5371, ceey 5377«3, ceey SQk—l,la ceey SQk—l,TQk_l}

95

Figure 4.9: Illustrating the procedure for updating a #-vertex p in the 3-block
graph after adding a set of edges in parallel. Note that {S11,S512,..., 5,
S5y e ey O3y ey 211y ey %1, | 15 the set of o-vertices that are in
fundamental cycles created by adding edges. We create a new w-vertex p; that
is adjacent to Sy ;, VJ.

be the set of o-vertices that are in some fundamental cycles created by adding
edges. Let ¢; ;1 and ¢; ;2 be the two vertices in 5; ;, for all ¢ and j, such that
if we traverse the simple polygon represented by p from ¢; ;1 clockwise, ¢; ;2 is

visited before any other vertex in Sy v, for all ¢ and j’ such that {¢/, j'} # {¢,7}.

Notations are shown in Figure 4.9.

The following claim can be easily verified by using properties for up-

dating 3-blk(G).

Claim 4.5.6 The updated 3-block graph contains a new w-vertex p; and ils
adjacent o-vertices Sq;;, Vi, 1 <1 < k and ¥y, 1 < 5 < ry;. For each new
m-vertex p;, a new o-vertex S; is created for the pair of vertices (¢2i1.1, C2irg2)-

S; is adjacent to p; and the new [-vertices created. a

The above updating operations and each iteration of algorithm

paug2to3 can be implemented to run on an EREW PRAM using a linear

96

number of processors in O(log n) time by using the parallel merge sort routine
in Cole [Col88], the Euler technique in Tarjan & Vishkin [TV85] and procedures
in Schieber & Vishkin [SV88]. Algorithm paug2to3 terminates in O(logn) it-
erations. The 3-block tree can be constructed in O(log®n) time using a linear
number of processors on an EREW PRAM using routines in [NM82, Ram93].

Thus we have the following claim.

Claim 4.5.7 Algorithm paug2to3 finds a smallest triconnectivity augmenta-
tion for a biconnected graph in O(log®n) time on an EREW PRAM using a

linear number of processors. O

4.6 Concluding Remarks

In this chapter, we have presented a linear time sequential algorithm
for finding a smallest augmentation to triconnect a biconnected undirected
graph. We also have presented an efficient parallel algorithm for this prob-
lem. The parallel algorithm runs in O(log®n) time using a linear number of
processors on an EREW PRAM. Our parallel algorithm follows the structure
of the parallel algorithm for finding a smallest biconnectivity augmentation as
described in Chapter 3. However, the 3-block graph data structure used in our
algorithm is more complicated than the 2-block graph data structure used in
Chapter 3. We had to prove additional properties to derive the desired par-

allel algorithm. Our parallel algorithm can be made to run within the same

(n+m)loglogn

Togn) processors by using the algorithm for find-

time bound using O(
ing connected components in [CV86] and the algorithm for integer sorting in

[Hag87].

Chapter 5

Smallest Triconnectivity Augmentation:
General Graphs

5.1 Introduction

In this chapter, we present a linear time sequential algorithm for find-
ing a smallest augmentation to triconnect any undirected graph. Our sequential
algorithm is similar in structure to the one used in biconnectivity augmentation
(see Chapter 3). We also show an EREW parallel algorithm for solving this
problem in O(log®n) time using a linear number of processors. The approach

used for the parallel algorithm is similar to the one in Chapter 3.

Our strategy for finding a smallest triconnectivity augmentation con-
sists of two stages. In stage 1, we biconnect the graph. In stage 2, we use
the algorithm in Chapter 4 for optimally triconnecting a biconnected graph.
We also make sure that the total number of edges added in these two stages is
minimum. [t turns out that we cannot use the algorithm for finding a smallest
biconnectivity augmentation given in Chapter 3 to implement stage 1, since
there exists a graph G such that any smallest augmentation for biconnecting ¢
does not lead to a smallest augmentation for triconnecting (. (See Section 5.3
for details.) Note that for edge-connectivity, it is shown in [NGM90, Wat87]
that there exists a smallest augmentation A to k-edge-connect a graph G such
that A is included in a smallest augmentation to (k4 1)-edge-connect G, for an
arbitrary k. An extended abstract of part of the work reported in this chapter

appears in [HR91a).
97

98
5.2 Definitions
5.2.1 2-Block Graphs

We give a modified definition for the 2-block graph here that is not
exactly the same as the one given in Chapter 3 and in [ET76, RG77]. In
Chapter 3 and [ET76, RG77], edges are partitioned into maximal sets such that
any two distinct edges in the same set are in a simple cycle. Each partition of
edges is called a 2-block. Thus a cut edge is represented by a b-vertex in the
block graph given in Chapter 3 and in [ET76, RG77]. The intersection of any
two 2-blocks is a cutpoint. The above definition was changed to guarantee that
a non-trivial 2-block is biconnected. Our revised definition is based on vertex-
partitions instead of edge-partitions. The two definitions are very similar. We
can easily transform one to the other. Operations and properties defined in

one can also be easily modified to apply on the other.

2-Block [ET76, Eve79, RGT77]

Given an undirected graph GG with a set of vertices V., let V ={V; | 1 < <k}
be a set of subsets of V such that U Vi = V and two vertices u and w are in
the same subset if and only if there is a simple cycle in G which contains u and
w or v = w. The induced subgraph of G on each V;, 1 <1 < k, is a 2-block.
The union of all 2-blocks includes all edges in i that are not cut edges (an
edge is called a cut edge in GG if its removal makes the resulting graph contain
more connected components than those in). For a graph GG with h connected
components, a vertex w is a cutpoint of G it and only if the graph obtained from
GG by removing w and all edges adjacent to w contains more than h connected
components. A 2-block containing only one vertex is called a trivial 2-block. A
trivial 2-block of G is called a cut-block if it is a cutpoint. It is easy to see that

a trivial 2-block is not a cut-block if and only if it contains a vertex of degree

99

less than 2 in . It is well-known that a 2-block is biconnected if it contains

at least three vertices.

2-Block Graph

Given an undirected graph G, we define its 2-block graph, 2-blk((), as follows.
Each cutpoint and 2-block that is not a cut-block is represented by a vertex in
2-blk((G). The vertices of 2-blk(G') that represent blocks that are not cutpoints
are called b-vertices and those representing cutpoints are called c-vertices. For
a vertex u in 2-blk(G), let V,, = {u} if u is a c-vertex and V, = {w | w is a
vertex in the corresponding 2-block represented by u} if u is a b-vertex. The
induced subgraph of GG on V,, is the corresponding subgraph of u. Two vertices u
and w in 2-blk(G') are adjacent if and only if any one of the following conditions
is true: (¢) |[Vu| = 1, |Viw| = 1 and the vertex in V,, and the vertex in V,, are
adjacent in G (i) |V, = 1 and V,, C V,,; (vi2) |V = 1 and V,, C V. Tt
is well-known that 2-blk(() is a forest. A degree-1 b-vertex in 2-blk(() is a
2-block leaf. 1f GG is connected, 2-blk(() is a tree. If 2-blk(G) is a tree, we
refer to it as a 2-block tree. For a vertex v in G, let dy(v) be the degree of its
corresponding c-vertex in 2-blk((G) if v is a cutpoint. If v is not a cutpoint, let
dy(v) = 1. For more on the properties of 2-blk((), see Chapter 3. An example
of a graph and its 2-blk(() is shown in Figure 5.1, where rectangles and circles

represent b-vertices and c-vertices, respectively.

5.2.2 3-Block Graphs

We give an extended definition for the 3-block graph (which was given
in Chapter 4 for a biconnected input graph) to handle the case when the input

graph is not biconnected.

3-Block Graph
Given a 2-block H of G, let 3-blk(H) be its 3-block graph. If H is a trivial

100

—_

Figure 5.1: A graph G, 2-blk(('), and the implied path between vertices 16 and
21 in the 2-block graph (to be defined later). We represented a b-vertex and a ¢-
vertex, by a rectangle and a circle, respectively. The vertex-number appearing
within each c-vertex in 2-blk(() represents the corresponding cutpoint in G.
The vertex-numbers appearing with each b-vertex in 2-blk(() represent the
vertices in its corresponding 2-block.

2-block, let 3-blk(H) be a single 3-vertex corresponding to the trivial Tutte

component H.

From [HT73, Ram93, Tut66], we know that 3-blk(H) is a tree. We
call this tree a 3-block tree. We call the set of trees corresponding to 2-blocks in
G the 3-block graph of G or 3-blk((G). Each Tutte component that corresponds
to a f-vertex in the 3-block graph is a 3-block of (G. We know that 3-blk((G)
is a tree if (G is biconnected. Given a graph ' with n vertices and m edges,
2-blk(G) and 3-blk((G) can be computed in O(n 4+ m) time using procedures in
[HT73, Ram93]. An example of a 3-block graph is shown in Figure 5.2. (We

use the notation given in Chapter 4 to illustrate 3-block graphs.)

The Implied Path in the 2-Block Graph
Let GG be an undirected graph and let u and v be two distinct vertices in G.
Let G’ be the graph obtained from G by adding the edge (u, v) and let b, and

b, be the two vertices in 2-blk(() whose corresponding subgraphs contain u

101

Figure 5.2: A graph G and its 3-block graph. The -vertices corresponding to
the sets of vertices {4, 10, 11, 12} and {6} are 3-block leaves (to be defined
later), while the §-vertices corresponding to the sets of vertices {4, 8, 9, 10}
and {8} are not. The [-vertices corresponding to the sets of vertices {17},
{19} and {2, 3, 4, 5} are isolated 3-block vertices (to be defined later), while
the 3-vertex corresponding to the set of vertices {10, 14, 15, 16} is not.

and v, respectively. We denote the path P, between b, and b, in 2-blk(G) the
implied path between w and v in 2-blk(G) (we let P, = [b,] if there is no such

path). An example is shown in Figure 5.1.

Separating-Sequence, Cut-Sequence and the Collection of Implied
Paths in the 3-Block Graph

Let Y be the set of all b-vertices in the implied path P, and those c-vertices
in P, whose corresponding cutpoints are cut-blocks. Let |Y| = r and y; be the
1th vertex in Y encountered when we traverse P, starting form b, to b,. We
construct a separating-sequence W = [w; = u,wq, ..., Wop_1,Wz =]
for vertices u and v such that for all ¢, 1 < 7 < r, wqe;_1 and wy; are the two
cutpoints adjacent to y; if y; is a b-vertex; wy;_1 and wy; are the two vertices
adjacent to y; in GG if y; 1s a cutpoint; wy and wy,_1 are cutpoints adjacent to 1y,
and vy,, respectively. Note that wy; and wy;11 can be the same, 1 < ¢ < r; they
are different if and only if any there is at least one c-vertex in {y;, yix1}. A

cut-sequence C' = [u, ¢, ..., ¢p,v] for vertices u and v is a sequence of vertices

102

Figure 5.3: A graph G and 3-blk((G) (including 4 trees). The separating-
sequence between vertices 16 and 21 is [16, 6, 6, 12, 12, 21]. The cut-sequence
between vertices 16 and 21 is [16, 6, 12, 21]. The collection of implied paths
between vertices 16 and 21 in 3-blk(() is also illustrated.

in (¢ such that ¢; is the cutpoint corresponding to the ¢th c-vertex encountered
when we traverse P, from b, to b, and z is the number of c-vertices in P,. An

example is shown in Figure 5.3.

For 1 < < r, let H; be the corresponding 2-block represented by y;
if y; is b-vertex; let H; be the corresponding cutpoint represented by y; if y; is
a c-vertex. For 1 <1 < r let Q; = [H;] if y; is a c-vertex; otherwise, let Q;
be the path in 3-blk(H;) between the two [-vertices that correspond to Tutte
components containing ws;_y and wsy;. Fach ¢);, 1 <2 < r, is chosen such that
both wq;_1 and wy; are each contained in exactly one of the Tutte components
corresponding to G-vertices in); if y; is a b-vertex. Note that wy; and wg;14q
can be the same, 1 < ¢ < r; they are different if and only if there are a sequence
of more than one cutpoint between y; and y;11 in P,. If there is more than one
Tutte component that contains w;, 1 < ¢ < 2r, we choose an arbitrary one.

We call @ = {Qq,...,Q.} the collection of implied paths between u and v in

103

3-blk(G). If GG is biconnected, r = 1; @y is also called the implied path between
u and v in 3-blk(G). An example of a collection of implied paths in 3-blk(()

is shown in Figure 5.3.

Separating Degrees for o-Vertices

Given a graph with A connected components, the separating degree sd((ay, az))
of a Tutte pair (a1, az) is i, da(a;) + ds((ar,az)) + h — 4. We will show
(Claim 5.3.1 in Section 5.3) that the separating degree of a Tutte pair is equal
to the smallest number of edges needed to connect the graph obtained from
G by removing the Tutte pair. The separating degree for the corresponding

o-vertex s, sd(s), is equal to sd((a1,as)).

5.3 A Lower Bound for the Triconnectivity Augmen-
tation Number

We state a claim to justify the way the separating degree of a Tutte

pair in a 3-block graph is defined.

Claim 5.3.1 The separating degree of a Tutte pair is equal to the smallest
number of edges needed to connect the graph obtained from G by removing the

Tutte pair.

Proof. Let (G be a graph with A connected components. Recall that the sepa-
rating degree sd(s) for a Tutte pair (ay, ay) in 3-blk(G) is equal to -7, da(a;)
+ ds(s) + h—4. Let GG; be the connected component in (¢ that contains a; and
ay. Let () be the set of connected components in the graph obtained from G
by removing a; and ay. We can partition () into three disjoint sets @', ¢); and
()2 such that Q' = {C' | C € Q, C contains a vertex adjacent to a; and a vertex

adjacent to az}; @1 = {C | C € @, C contains a vertex adjacent to a1} —Q'; Q2

104

={C | C € @, C contains a vertex adjacent to ay} — Q’. From the definition of
2-block graph and 3-block graph, we know that |Q'| = ds(s), |Q1| = da(a1) — 1
and |Q2| = da(az) — 1. Thus the graph G’ obtained from G by removing a; and
ay contains 3.7, (dy(a;) — 1) + d3(s) + h — 1 connected components. Hence it
takes at least -7, dy(a;) + ds(s) + h — 4 edges to connect (&', O

We identify [3-vertices in a 3-block graph whose corresponding Tutte
components must contain a new incoming edge if we want to triconnect the

input graph.

Definition 5.3.2 Given a f-vertex b in 3-blk((), let Hy be its corresponding
Tutte component of G. A degree-1 $-vertex b in 3-blk(G) is a 3-block leaf if
any one of the following conditions is true:

(i) Hy consists of only one vertex u and u is not a cutpoint; (Note that (i) holds
if and only if u is in a polygon.)

(it) if Hy contains any cutpoint ¢ of G, ¢ is in a Tutte pair of G contained in
Hy.

A degree-0 (-vertex b in 3-blk((G) is an isolated 3-block vertex if
any one of the following conditions is true:
(t) Hy contains at most 2 cutpoints;

(it) Hy consists of only one vertex u and the degree of u in G is at most 2.

Let H be a nontrivial Tutte component that corresponds to a fg-vertex in 3-
blk(G). From Definition 5.3.2 we know that GG becomes disconnected if we
remove the following vertices from G: (i) vertices in H that are cutpoints of
G5 (1) vertices in H that are in a Tutte pair in H. If H is a trivial Tutte
component, the graph obtained from & by removing vertices that are adjacent

to H is disconnected. Let r be the number of vertices removed. We know that

105

r < 21if H corresponds to a 3-block leaf or an isolated 3-block vertex. If we want
to triconnect the input graph, we must add at least 3 — r new edges incoming
to H. Figure 5.2 illustrates 3-block leaves and isolated 3-block vertices. Note
that if G is biconnected, then a degree-1 $-vertex in 3-blk(() must be a 3-block

leaf; this is not necessarily true if G is not biconnected.

We now identify demanding vertices in H that are analogous to de-

manding vertices defined in Chapter 4.

Definition 5.3.3 Given a 3-block leaf or an isolated 3-block vertex b in 3-
blk(G), let Hy be its corresponding Tutte component. A vertex u in Hy, is a
demanding vertex of b if any one of the following conditions is true: (1) u is
not a cutpoint or in any Tutte pair of G contained in Hy; (i) b is an isolated
3-block vertex and Hy consists of only the vertex u. The vertex u is also called

a demanding vertex in G.

Claim 5.3.4 There exists at least one demanding vertex for any 3-block leaf

or isolated 3-block vertex in a 3-block graph.

Proof. The corresponding Tutte component H, for b that is a 3-block leaf can
be a vertex with degree 2 in (G or a triconnected component with a single Tutte
pair. If Hy is a single vertex, then the claim is true. If Hj is triconnected, Hy

consists of at least 4 vertices. Since H; contains only one Tutte pair, the claim

holds.

If bis an isolated 3-block vertex with Hj being a triconnected compo-
nent, then the claim can be proved in a way similar to the one given above. If
Hj contains less than 4 vertices, then Hj, must contain a single vertex y. From

Definition 5.3.3, we know that y is the demanding vertex for b. a

106

When we specify the 3-block graph of a graph G, we will include a
demanding vertex to each 3-block leaf and each isolated 3-block vertex in the

3-block graph.

We now define the weight of a graph, which we will relate later to the

number of edges needed to triconnect the graph.

Definition 5.3.5 Let H be a 2-block in a graph G whose corresponding vertex
in 2-blk(G) is rg. Let Is(H) be the number of 3-block leaves in H. We define
the weight of the graph G, w(G), to be 3o, o p1oeks | Max{3 —da(rm), 3(H)},
if G is not biconnected. Otherwise, let w(G) = I3(G).

Note that in Chapter 4, the weight of a biconnected graph G is defined as I5(G),

which is equivalent to the above definition.

We now state a lower bound for the triconnectivity augmentation
number for a general undirected graph.

el

Lemma 5.3.6 Given an undirected graph G, we need at least max{d, [=5

edges to triconnect GG, where d is the largest separating degree among all o-

vertices in 3-blk(G).

Proof. The first component of the lower bound comes from Claim 5.3.1. For
the other component of the lower bound, suppose that G’ is triconnected and
is obtained from G by adding a smallest set of edges. For each 2-block H, we
must have at least 3—dy(rg) new incoming edges in ' For each 3-block leaf in

3-blk(H), the induced subgraph on vertices corresponding to it must contain at

(maX{S—dg (2TH)713 (H)}—‘

least one new incoming edge in . Hence we need at least

new edges for each 2-block H. The total number of new edges needed is thus

107

. Hence we need at least max{d, (@H edges in G'. This proves the

T

2

lemma. O

Note that the lower bound stated in Lemma 5.3.6 is equal to max{d,
(@H when the graph is biconnected. For biconnected graphs, this is equiv-
alent to the lower bound given in Chapter 4. Note also that it is shown in
[INGM90, Wat87] that there exists a smallest augmentation A to k-edge-connect
a graph G such that A is included in a smallest augmentation to (k + 1)-edge-
connect &, for an arbitrary k. Note that a linear time sequential algorithm for
finding a smallest augmentation to triconnect a biconnected graph is presented
in Chapter 4. We would like to know whether we can design an algorithm for
finding a smallest augmentation to triconnect a general graph by first finding
a smallest augmentation to biconnect it (a linear time algorithm is described

in Chapter 3) and then applying the algorithm to triconnect it. The following

lemma states that this is not always possible.

Lemma 5.3.7 There exists a graph G such that any smallest augmentation

for biconnecting G does not lead to a smallest augmentation for triconnecting

G.

Proof. Consider the graph G shown in Figure 5.4. From Chapter 3 and
[ET76], we know that the smallest number of edges needed to biconnect ¢
is 2. To biconnect (7, we must first add an edge between a vertex in {1,2} U
{3,4,5,6,7,8,9} and a vertex in {12, 13} U{15,16}. Without loss of generality,
we assume the edge added is between a vertex in {1, 2} and a vertex in {12,
13}. The next edge added must be between a vertex in {3, 4, 5, 6, 7, 8, 9} and
a vertex in {15, 16}. Since the Tutte pair {9, 10} has a separating degree 6 in

the resulting biconnected graph G’, we need to add at least 5 more edges to

108

Figure 5.4: An example that shows that finding any smallest augmentation
to biconnect a graph G (the graph on the left) does not lead to a smallest
augmentation for triconnecting G.

triconnect G'. (Lemma 5.3.6). The total number of edges used is 7. However,
it takes only 6 edges to triconnect the original graph as shown in Figure 5.4.

This proves the lemma. a

5.4 Finding a Smallest Augmentation to Triconnect a
Graph

In this section, we consider the problem of finding a smallest aug-

mentation to triconnect any undirected graph. We show that the lower bound

given in Lemma 5.3.6 can be always achieved by giving an algorithm for finding

a smallest triconnectivity augmentation with the required cardinality. Finally,

we describe a linear time implementation for the algorithm.

5.4.1 Properties of the 3-Block Graph

In this section, we study properties of the 3-block graph that are used
in the next section for designing an algorithm to find a smallest triconnectivity

augmentation.

Massive, Critical and Balanced

For an undirected graph G with weight w((), a Tutte pair z or its corresponding

109

o-vertex is massive if sd(z) > (wTG)W A Tutte pair z or its corresponding o-

vertex is critical if sd(z) = (@W If no Tutte pair in GG is massive, then G

and its 3-block graph are called balanced.

In Lemma 5.4.1, we study the changes made on the 3-block graph
after adding an edge into the original graph. We then state the property of the
set of all critical o-vertices in 3-blk(G') using Claim 5.4.5; the condition that
after adding an edge, the separating degree of certain o-vertices decreases by
one in Claim 5.4.7; the condition that after adding an edge, the weight of the
resulting graph decreases by two in Lemma 5.4.8. Finally in Corollary 5.4.9,
we show that we can always decrease the lower bound given in Lemma 5.3.6

by one by adding an edge.

Let GG' be the graph obtained from G' by adding an edge between
two demanding vertices u and v in G. We describe the updating operation

performed on 3-blk(G) to get 3-blk(G") after adding an edge.

Lemma 5.4.1 Let G’ be the graph obtained from G by adding an edge between
two demanding vertices w and v in G, where u and v are in different Tutte
components. Let b, and b, be the two b-vertices in 2-blk(G') whose corresponding
2-blocks contain u and v, respectively. Let Y be the set of b-vertices and c-
vertices whose corresponding cutpoints are cut-blocks in Py, the path in 2-blk(G)
between b, and b,. Let |Y| =r and y; be the ith vertex in Y encountered when
we traverse Py starting form b, to b,. Given {Q1,...,Q,}, the collection of
implied paths in 3-blk(G) between u and v, the separating-sequence [wy, . .., wa,]
and the cut-sequence [u, ¢1,..., ¢z, v], we can obtain 3-blk(G") from 3-blk(G)
by performing the following operations.

(i) For each Q;, 1 <1 <r, we perform the operation given in Chapter | on the

3-block tree that contains Q); if (); contains more than 1 vertex.

110

(it) A new w-vertex is created with the corresponding Tutte component being
the simple cycle [u, c¢1,...,¢c., v, uj. Fach pair of vertices wyi_y and wy;,
1 <i<r,is a Tutte pair. The corresponding o-vertex for Tutte pair (we;_1,
wy;) is incident on the new w-vertex created.

(t1i) For each c-vertex y;, 1 <1 <r, we create a 3-vertex and connect it to the
o-vertex corresponds to Tutle pair (wag;—1, wa;).

(iv) For each b-vertex y;, 1 <1 <r, the o-vertex corresponding to the Tutte pair
(Wai—1, W) is incident on the B-vertex z whose corresponding Tutte component
contains wq;_1 and woq; if z exists.

(v) We merge o-vertices corresponds to the same Tutte pair and delete degree-1

T-vertices.

Proof. The correctness of performing operations in part (¢) is given in Chap-
ter 4. Part (iz) is from the definition of Tutte split and the definition of the
3-block graph. Parts (¢i2), (vi) and (v) are from the definition of the 3-block

graph. O
An example is shown in Figure 5.5.

We know that if G is biconnected, there can be at most two critical
o-vertices in 3-blk((7) as described in Chapter 4. But this is not true for G is
not biconnected (see also [WN88]). We now state a claim about the set of all
critical o-vertices in 3-blk(() for a graph G. In general, if there are more than
two critical o-vertices in 3-blk((), we can partition the set of critical o-vertices
into at most two subsets such that either a subset has exactly one o-vertex
or Tutte pairs corresponding to critical o-vertices in a subset share a common

cutpoint.

In the statement of the following lemmas and claim, we use the fol-

lowing notations. Let GG be a connected graph. Let S = {s1,...,s,} be the set

111

Figure 5.5: A 3-blk(G) (including 4 trees) whose original graph G is shown
in Figure 3, and the updated 3-block graph after adding a new edge between
vertices 16 and 21. The separating-sequence between vertices 16 and 21 is [16,
6, 6, 12, 12, 21]. The cut-sequence between vertices 16 and 21 is [16, 6, 12,
21]. The new 7w-vertex ¢ is created for the cut sequence, which represents the
polygon [16, 6, 12, 21]. The new 3-block graph contains only 2 trees.

of critical o-vertices in 3-blk((G). Given S, let &1 = {c | ¢ is a cutpoint that is
shared by more than one Tutte pair represented by members of S}. Let Sy =
{s] s €S and Ac € 3y such that the Tutte pair represented by s contains c}.
The proofs of Lemma 5.4.2, Lemma 5.4.3 and Lemma 5.4.4 are quite lengthy.

We prove them by discussing the lower bound of the weight of GG for different

values of |34] and |J3|. The details of the proofs can be found in Appendix A.

Lemma 5.4.2 |3y| < 2. If [S4] = 2, then each Tutte pair in G contains one

of the cutpoints in 3y and there are only two cutpoints in G.

Proof. See Appendix A. O

Lemma 5.4.3 If |3q] = 1, then |S] < 1. If Sy = {c} and |y = 1, where ¢

is a cutpoint, then all vertices in 2-blk(G) have degrees less than or equal to 2.

Proof. See Appendix A. O

112

Lemma 5.4.4 Let G be a connected graph with w(G) > 2. Then || < 2. If
3y = {81, 82}, where s; and sy are critical Tutte pairs, then

(i) G is biconnected if s; and sy are in the same 2-block;

(it) there are only two cutpoints in G if s1 and so are in different 2-blocks. The

two cutpoints are connected by a cut edge.

Proof. See Appendix A. O

The following claim follows directly from Lemma 5.4.2, Lemma 5.4.3

and Lemma 5.4.4.
Claim 5.4.5 |%1| + |%2| S 2. O
The following is a corollary of Claim 5.4.5.

Corollary 5.4.6 Let G be an undirected graph. We can find two demanding
vertices uy and uy in G such that each critical o-vertex is either in the collection
of implied paths between uy and uy in 3-blk(G) or its corresponding Tutte pair

contains a culpoint in the implied path between uy and uy in 2-blk(G). O

The following claim states some conditions under which separating

degrees of certain o-vertices decrease by 1.

Claim 5.4.7 Let G be an undirected graph and let u and v be two demanding
vertices in . Let G' be the graph obtained from G by adding the edge (u, v)
and let s be a o-vertex in 3-blk(G) with sd(s) > 3. Then sd(s) decreases by 1
in G' if any one of the following conditions is true:

(i) s is in one of the paths in the collection of implied paths between u and v
in 3-blk(G);

(it) the corresponding Tutte pair of s contains a cutpoint in the implied path
between v and v in 2-blk(G).

113

Proof. Let s be a o-vertex with sd(s) > 3 and let s lie in one of the paths in
the collection of implied paths between v and v in 3-blk(G) (part (¢)). From
Chapter 4, we know two edges adjacent to s are eliminated and one new edge

is created and connected to s. Thus the degree of s decreases by one.

Let s be a o-vertex with sd(s) > 3 and let its corresponding Tutte
pair be (a1, as), where ay is in the implied path P in 2-blk(G) (part (¢¢)). Thus
ay is a cutpoint. If P, also passes through ay, then ay is also a cutpoint; from
the properties of the 2-block graph proved in Chapter 3, we know that dz(a;)
and dy(az) both decrease by one. Since ds(s) increases by one in G/, sd(s),
which is equal to 37, dy(a;) + ds(s) + h — 4, decreases by 1. If P, does not
pass through ag, then dy(aq) decreases by 1 and dy(az) and ds(s) both remain

the same. Thus sd(s) is decreased by one. This proves the claim. a

Lemma 5.4.8 states a condition under which the weight of the graph

decreases by 2 after adding an edge.

Lemma 5.4.8 Let G' be the graph obtained from a graph G by adding an edge
between two distinct demanding vertices u and v. Then w(G') = w(G) —2 ifu

and v are in different connected components or in different 2-blocks.

Proof. Let G be a graph with connected components G4, ..., Gy and let u and
v be in G, and G,, respectively. Let G| be the graph obtained from G, U G,
by adding (u, v). Let u and v be in 2-blocks H, and H,, respectively and let
H) and H] be 2-blocks of ' that contain u and v, respectively. Let r, and r,
be b-vertices in 2-blk(() that represent H, and H,, respectively and let r/ and
r. be b-vertices in 2-blk(G') that represent H] and H], respectively.

Since v and v are in different connected components or in different

2-blocks, G is not biconnected. If G’ is biconnected, GG is connected and u

114

and v are in different 2-blocks. Thus for each i € {q,r}, ls(H!) = l5(H;) — 1
if 1(H) > 0; () = 1 and 3 — dy(r;) = 2 if 3 — do(r;) > I3(H;). Since
w(@) = l3(H!) and w(G) = Sieypy max{3—da(ri), ls(H;)} if & is biconnected,
w(G') = w(() — 2. The case for G is biconnected can be proved in a similar

way.

We now prove this lemma for the case when 7 is not biconnected
(that is, G’ and G’ are not biconnected). We know that w(G) = T w(Gy)
and w(G') = w(G) = w(Gy) = w(Gy) + w(G) i ¢ # 11 w(E) = w(G) -
w(Gy) +w(G) if ¢ = r. For each i € {q,r}, L(H!) = l3(H;) — 1 if 3(H;) > 0;
3—dy(r!) = (3—da(r;)) — 1if 3—dy(r;) > Is(H;). Thus max{3 — dy(r), Is(H;)}
= max{3—dy(r), Is(H)} —1,i € {g,r}. Hence w(G') = w(G)—2. This proves

the lemma. O

By Lemma 5.4.8 and Corollary 5.4.6, we now show that for any bicon-
nected graph, we can always decrease the lower bound given in Lemma 5.3.6

by 1 by adding an edge.

Corollary 5.4.9 Let GG be a connected graph that is not biconnected. We can
find two demanding vertices uy and uy in G such that they satisfy the condition
given in Corollary 5.4.6 and w(G U {(u1,uz2)}) = w(G) — 2.

Proof. If we can find two demanding vertices not in the same 2-block that
satisfy the condition given in Corollary 5.4.6 or any two critical o-vertices
whose Tutte pairs share a common cutpoint, then Lemma 5.4.8 shows w(G U
{(u1,us)}) = w(G) — 2. Let uy and uz be in the 2-block H; every critical
o-vertex is also in H and they do not share a cutpoint. From Claim 5.4.5, we
know that there can be at most two critical o-vertices whose Tutte pairs do

not share a cutpoint. If there is only one critical o-vertex in H, we can easily

115

substitute one of uy; and uy for a demanding vertex in a 2-block that is not H
such that u; and wy satisfy both the conditions given in Corollary 5.4.6 and
Lemma 5.4.8. Thus w(G U {(uy,uz)}) = w(G) — 2. If there are two critical
o-vertices in H, their degrees in 3-blk(() must be greater than 2 since G is
not biconnected and they are the only two critical o-vertices in 3-blk((). The
number of 3-block leaves decreases by 2 as described in Chapter 3. Thus the

weight of ¢ decreases by 2 after adding (uq, usg). O

5.4.2 An Algorithm for Triconnecting an Undirected Graph Using
the Smallest Number of Edges

In the following algorithm, aug3, we find a pair of demanding vertices
u and v in G such that the collection of implied paths Q in 3-blk(G) between
u and v passes through the massive o-vertex or all critical o-vertices if GG is
connected. If G is not connected, v and v are demanding vertices in G that
are in different connected components. We also have to make sure that w(()
is reduced by 2 if 3-blk(() is balanced by satisfying the conditions given in
Lemma 5.4.8. Before the proof of correctness for algorithm aug3, we state a
claim for an input graph G that is unbalanced. The proof of this claim is

similar to a proof in Chapter 3 and [RG77].

Claim 5.4.10 If there exists a massive o-vertex sy in 3-blk(G), then a o-
vertexr so with the largest separating degree among o-vertices other than sy is
not massive or critical. Let 6 = sd(s1) — (ﬂgﬁ There are at least 26 + 2 s1-
chains in 3-blk(G). Let M be the set of sy-chain leaves. By adding 2k, k <6,
edges to connect 2k + 1 vertices of M, we reduce both sd(s1) and the weight of
the graph by k.

116

{* The input undirected graph G has at least 4 vertices; the algorithm finds a smallest
augmentation to triconnect G. *}
set of pairs of vertices function aug3(graph G);
tree 15, Ts;vertex s, y, z, ui, us;
L = 0; T := 2-blk(G); T5 := 3-blk(G);
let w(G) be the weight of G5 {* Definition 5.3.5. *}
while w(G) > 2 and 3 a c-vertex in Ty do
if GG is not connected then
1. find y and z that are 3-block leaves or isolated 3-block vertices
in different trees in 73
else {* (@ is connected. *}
let d be the largest separating degree among all o-vertices in T5;
if d > [ﬂzﬁl] then {+ 3 an unique massive o-vertex in 75 (Claim 5.4.10). *}
2. let s be the massive o-vertex in 75;

R

find two s-chain leaves y and z in T3
else {x d < [@] *}
4. find two 3-block leaves y and z in 73 such that demanding vertices u and v
of y and z, respectively, satisfy the condition given in Corollary 5.4.6
{* Corollary 5.4.9 shows that this is always possible. *}

fi
fi;
{* Claim 5.3.4 shows the following two statements will always succeed. *}
J. find a demanding vertex u; of y;
6. find a demanding vertex usy of z;

add an edge between wy and wus; L := LU (ug, ua);
update the 2-block graph 75; update the 3-block graph 75;
if GG is connected and d > fwTG)] then w(G) = w(G) -1
else {* (@ is not connected or d < [ﬂzﬁl] *} w(G) = w(G) -2
fi

od;

{* G is biconnected. *}

return I U aug2to3(G)

end aug3;

Algorithm 5.1: A linear time sequential algorithm for finding a smallest tricon-
nectivity augmentation.

117

Proof. Let Tutte pairs corresponding to s; and sy be (a1, ag) and (as, a4),
respectively. Let G be a graph with i connected components. If there are at
least two cutpoints in {a; | 1 <7 < 4} and |[{a; | 1 <7 < 4}| = 4, then the
weight of the graph, w((), is at least 2(37, da(a;) +h —T) + 37, da(s;). We
know that sd(s1) > (ﬂgﬁ If sd(s2) > (ﬂgﬁ, then Y7, sd(s;) > w(G). Since
sd(sy) = ds(s1) + X7, do(a;) +h —4 and sd(sq) = da(s9) + s da(a;) +h — 4,
St do(a;) < 6. But S0, dy(a;) > 6 because there are at least two cutpoints
in{a; |1 <i<4}and |[{a; |1 <i¢ <4} =4. We have reached a contradiction.

Thus s, is neither critical nor massive.

For the case of having less than two cutpoints in {a; | 1 <7 < 4}
and [{a; | 1< < 4)] = 4 w(G) > 25y da(ar) + b — 6) + T2, do(s)
and oI, da(a;) > 4. For the case of [{a; | 1 < i < 4} < 4, let a3 = aqy;
w(G) > 20 do(a;) +h —5) + 7, da(s;) and 37, dy(a;) > 2. The claim
can be proved in a similar way. For the size of the set of s;-chain leaves and

the rest of the claim, see Chapter 3 and [RG77]. O

Claim 5.4.11 Let G be an undirected graph with at least 4 vertices. We can
triconnect G by adding max{d, (@H edges using algorithm aug3, where d is
the largest separating degree among all o-vertices in 3-blk(G) and w(G) is the

weight of G

Proof. If G is not connected, algorithm aug3 finds uy and us in different

connected components at steps 1, 5 and 6. From Lemma 5.4.8, we know that

(M

5| is decreased by 1. From the definition of separating degree, d is decreased

by 1 because the number of connected components is decreased by 1.

From Claim 5.4.10, we know that there can be at most one massive

vertex s if d > (@W Algorithm aug3 finds s at step 2. We reduce max{d,

118

(@H by 1 by adding a new edge between two s-chain leaves (step 3) if GG is

connected and unbalanced.

If G is balanced, algorithm aug3 adds an edge (uq, uz) such that wuy
and uy are two demanding vertices that satisfy the condition given in Corol-
lary 5.4.9. Thus (ﬂgﬁ is decreased by 1 and G remains balanced. Algorithm
aug3 keeps doing this until G is biconnected. Notice that if G is biconnected,
w(G) = I5(G). At this point, algorithm aug3 calls algorithm aug2to3 in Chap-

ter 4 on the current biconnected graph. Hence the claim is true. O

Theorem 5.4.12
The triconnectivity augmentation number for a graph G equals max{d, (ﬂ@w 1,

2
where d is the largest separating degree among all o-vertices in 3-blk(G') and

w(G) is the weight of G.

Proof. By Lemma 5.3.6 and Claim 5.4.11. O

5.4.3 A Linear Time Implementation

Let sg be the sum of the separating degrees of all Tutte pairs in the
3-block graph of a graph & with n vertices and m edges. By using techniques
similar to those described in Chapters 3 and 4, algorithm aug3 can be imple-
mented to run in O(n+m+s¢) time. Since s could be Q(nz) for a graph with
n vertices, we do not have a linear time implementation for algorithm aug3 if
m is not ©(n?). However, Lemma 5.4.16 tells us of a possible method to obtain
a linear time implementation (part of the claim in the lemma is also stated
in [WNB88]). Before the statement of Lemma 5.4.16, we need the following

definition and corollary.

119

(C-Component and S-Component
We now define components in a graph that are used in defining the weight of

the graph.

Definition 5.4.13 Let s = (ay,a2) be a Tutte pair in G = (V, E) and let
G'' = G —{ay,ay}. Let V! be the set of vertices of a connected component in
G'. For each ¢ € {ay,a3} that is a cutpoint, a c-component for s in G is
an induced subgraph H on V! U {c} such that H — {c} does not contain any
vertex adjacent to the vertex in {ay,a2} — {c} in G. An s-component in ¢

is an induced subgraph H on V! U {a1,as} such that there exists a vertex in

H — {ay, a2} adjacent to a; in G, 1 € {1,2}.

The following claim and corollary will show that each a-component and s-

component “contributes” a certain value in the calculating of the weight.

Claim 5.4.14 Let s = {ay,az} be a Tutte pair in a graph G and let ¢ €
{ay,a3}. There exists a 2-block H in each c-component for s in G, where the
corresponding b-vertex for H in 2-blk(G) is degree-1 and H is not in any other
c-component or s-component. For each s-component in (G, there exists either
a 2-block H' whose corresponding b-vertex in 2-blk((G) is degree-1 or a 3-block
H' whose corresponding B-vertex in 3-blk(G) is a 3-block leaf such that H' is

not in any other c-component or s-component.

Proof. See Appendix A. O

The following is a corollary of Claim 5.4.14.

Corollary 5.4.15 Let s = {aq,a2} be a Tutte pair in a graph G and let ¢ €
{ay,a3}. Then each c-component for s in G contributes at least 2 in calculating

w(G) and each s-component in G contributes at least 1 in calculating w(G). O

120

We are now ready for Lemma 5.4.16.

Lemma 5.4.16 Given a critical Tutte pair sy and another Tutte pair sy, s1 #
S9, tn a connected graph G, let sy and sy share a common cutpoint c. Let
s1=(c,a1) and let sy = (c,az). Then ds(s1) > ds(s2) + 2(da(az) — 1). If s3 is

also critical, then dy(a1) = 1 and ds(az) =1 (i.e., a1 and ay are not culpoints).

Proof. The separating degree of s;, sd(s;), is ds(s;) + da(a;) + da(c) — 3,
i€ {1,2}.

There are at least day(a;) — 1 a;-components for each s; in GG such that
they do not contain ¢. If s; and s3 are in the same 2-block, there are at least
dy(¢) — 1 e-components that do not contain a; and az, and there are at least
ds(s;) — 1 s;-components. The above components do not contain in each other.
From Corollary 5.4.15, the weight of (G is thus at least

2 2

S dofsi) — 2+ 23 dafag) — 2) + 2da(c) — 1),

i=1 i=1
If 51 and sy are in distinct 2-blocks, there are at least day(c) — 2 ¢-components
that do not contain ay and az, and there are at least ds(s;) s,-components. Each
of the above components is not contained in the other. From Corollary 5.4.15,

the weight of (& is at least

ng(si) + Z(Z: dy(a;) —2) + 2(dx(c) — 2).

Since sy is critical, 2sd(s1) > w(G). By substituting the value of sd(s1) and
the lower bound value of w((G) into the above inequality, ds(s1) > ds(ss2) +
2(dy(az) — 1).

If s5 is also critical, then we can derive ds(s2) > ds(s1)+2(d2(ar) —1)
by an argument similar to the one given above. Thus ds(a;) = 1, for ¢ € {1,2}.

a

121

Lemma 5.4.16 says that for a set of more than 1 critical o-vertex
whose corresponding Tutte pairs share a common cutpoint ¢, the other vertices
in these Tutte pairs are not cutpoints. Let S. be the set of Tutte pairs that
share ¢ and let 7. be the subset of S, with the largest degree in 3-blk((G) among
all Tutte pairs in S.. A Tutte pair s in S, is a candidate if and only if any one
of the following conditions is true: (¢) J. = {s}; (¢7) s € J. and only the vertex
¢ in each Tutte pair in J. is a cutpoint; (i7i) s € J. and both vertices in s are
cutpoints. We can find a candidate for any S.. The following is a corollary of

Lemma 5.4.16.

Corollary 5.4.17 Let ¢ be a cutpoint in G and let S, be the set of Tutte pairs
that share c. If |S.| > 2 and any one of the candidates is not critical, then

none of the Tutte pairs in S. is critical.

Proof. Let J. be the subset of S. with the largest degree in 3-blk(G') among
all Tutte pairs in S.. From Lemma 5.4.16, we know that all critical Tutte pairs
must be in J.. If there is only one candidate in 7., then it is the only one
that can be critical. If the vertex other than ¢ in each Tutte pair in 7. is not
a cutpoint, then all Tutte pairs in J. have the same separating degree. Thus
if any one of the Tutte pair in 7. is not critical, then none of Tutte pairs in S.
is critical. If there are two distinct Tutte pairs s1 = (a1, ¢) and sy = (ag,¢) in

J. such that ay and ay are cutpoints, then none of them could be critical by

Lemma 5.4.16. O

Let n be the number of vertices and m be the number of edges in the
input graph. Using Lemma 5.4.16 and the sorted table data structure given in
[RGTT7], we can implement algorithm aug3in O(n+m) time using the following

data structure.

122

Given a set V of p nodes with a key in each node whose value is O(p),
the sorted table is an array L of O(p) entries. The ith entry of £ points to a
doubly linked list which contains all nodes in V with the key value :. For Tutte
pairs that do not share any cutpoint with any other Tutte pairs, we maintain
a sorted table using their separating degrees as keys. Entries in £ are updated
whenever their separating degrees are changed. The sum of the separating

degrees of all o-vertices in L is O(n).

Given a sorted table £, an equivalent sorted list is a doubly linked
list on entries of £ that do not point to an empty list. The relative order of
entries in L is preserved. For each cutpoint ¢ that is shared by Tutte pairs
S.=A{(e,a1),...,(c,a,)}, where r > 2, we maintain the following information:
Ye, a candidate for S, (y. is updated only if the current candidate no longer
satisfies the condition of being a candidate) and Q., a sorted list on the set of
o-vertices corresponding to Tutte pairs in S, with their degrees in the 3-block
graph as their key values. Note that we must re-choose y., where ¢ is a cutpoint,
if and only if the degree of any Tutte pair in S, is changed or an endpoint of
Y. is no longer a cutpoint. By maintaining the sorted list, y. can be picked in
constant time. We only pick candidates O(n) times in total. Thus the above

information can be maintained in a total of O(n) time.

For a cutpoint ¢, let its y. be (¢, a.). We maintain an entry with key
value sd(y.) in the sorted table if and only if any one of the following conditions

< 15 (eie) |S,,

is true: (7) a. is not a cutpoint; (¢i) |S,, > 1 and y. = yq,.
This makes sure that if we update (decrease) the degree of a cutpoint, only a
constant number of entries in the sorted table are updated. Note that if we
have to change y,. for a cutpoint ¢, we only have to get a constant number of

entries in and out the sorted table. Every entry in the sorted table is updated

whenever its separating degree is changed.

123

During the augmentation using algorithm aug3, we create new o-
vertices by creating new polygons. The sum of the degrees (in the 3-block
graph) of all created o-vertices is O(n). Since the sum of the degrees of all
o-vertices in the 3-block graph, the sum of the degrees of all ¢-vertices in the 2-
block graph and the sum of the separating degrees of all o-vertices in 3-blk(G)
are all O(n), the total time to update the sorted table is O(n). Using the above

method, we can implement algorithm aug3 in linear time.

Claim 5.4.18 Algorithm aug3 runs in linear time.

Proof. The 2-block graph and the 3-block graph can be obtained in linear time
by using procedures in [Ram93]. Using implementation techniques similar to
those given in Chapter 4, algorithm aug3 can be implemented to run in time
O(n+m) plus the time to maintain the separating degrees of all o-vertices in the
3-block graph. A naive implementation for maintaining separating degrees runs
in O(n?) time. Using our sorted table and sorted lists, the time for maintaining

all separating degrees is O(n).

We now specify the time spent in updating the 2-block graph and the
3-block graph. Note that we do not have to update 2-blk((G) and 3-blk(G) if
(G 1s not connected. Without lose of generality, let G be connected, but not
biconnected. In the following discussion, we use definitions given in Page 110
(before the statement of Lemma 5.4.2). If || = 1, then 2-blk(() is a path
(Lemma 5.4.3). If |34] = 2, then 2-blk((G) contains only two cutpoints and
the next edge we add will biconnect ¢ (Lemma 5.4.2). Thus the total time for
updating 2-blk(G) for |31] > 0 is linear. If |y = 2, then it is also true that
the next edge we add will biconnect GG (Lemma 5.4.4). For the case of |33 < 2,

we first root 2-blk(() at a b-vertex with degree > 2. It is obvious that we can

124

always make sure that the implied path in 2-blk(G') between the two endpoints
of each new edge added passes the root. Thus the overall updating time is also

linear for ;| < 2.

For updating 3-blk((), we first root each tree in 3-blk(() at a -
vertex with degree > 2. We do not have to worry about the case when || = 2
or || = 2. If [S2| < 2, we can make sure that each path in the collection of
implied path in 3-blk((G) between the two endpoints of each new edge added
passes the root of the tree where it is in. If |31] = 1, each tree in the current
3-blk(G) will be passed at most twice before the graph becomes biconnected.
Let P be the implied path in 3-blk((G') between two endpoints of an new added
edge. We can afford to reroot each tree in 3-blk((') a constant number of times
to make sure that each P passes through the root of the tree (in 3-blk(()) that
contains P. Thus the overall updating time for 3-blk((G) is also linear. Thus
the overall time complexity is O(n 4+ m) if we use a data structure that is the
same as the one used in Chapter 4 and [RGT77] for representing 2-blk(G) and
3-blk(G). O

5.5 An Efficient Parallel Algorithm

In this section, we describe an efficient algorithm for finding a smallest
triconnectivity augmentation for a graph that is not biconnected. The algo-
rithm first examines the input graph. If it is not connected, we connect it
using 1 edges such that the triconnectivity augmentation number decreases by
ri. Then we examine whether it is biconnected. If it is not biconnected, we
biconnect it using ry edges such that the triconnectivity augmentation num-
ber decreases by ry. We then apply the algorithm developed in Chapter 4 to

optimally triconnect it.

125

The structure of this section is as follows. We first describe properties
of the 3-block graph for an input graph that is not biconnected. We then
describe a simple parallel algorithm for connecting the input graph. Finally,

we develop an algorithm for biconnecting the current connected graph.

5.5.1 Properties of the 3-Block Graph

We first describe a lemma for properties of the 3-block graph which

will be used in designing our parallel algorithm.

Lemma 5.5.1 Given a graph G, let s,, s, and s, be three distinct separating
pairs in 3-blk(G) with sd(s,;) > sd(s,) > sd(s,). Recall that w(G) is the weight

of the graph defined in Definition 5.3.5.

w(G)+14
3 .
w(G)—2

(i) If sz, 8y and s, do not share a common cutpoint, then sd(s.) <

(it) If sz, s, and s, share a common culpoint ¢, then sd(s,) — dz(c) <

Proof. We prove the first part of the claim by case analysis. Let s, = (¢; 1, ¢2),
i € {x,y,z}. It is possible that a vertex in a separating pair in {s., s, s.}
is also in another separating pair in {s;, s,, s.}. Let {¢cz1, ¢z, ¢y1, €2, Con,
c.o) = {all <o <r}, where r < 6. Thus w(G) > ds(s:) + da(sy) + ds(s.) —
2 =237 1(da(¢;) — 2). Recall that sd(s;) = ds(s;) + da(ein) + da(ei) — 4, for
i € {x,y,z}. Since r < 6, w(G) > sd(s,) + sd(s,) + sd(s,) — 14. We know
that sd(s.) < sd(s,) < sd(s;). Thus 3sd(s,) < sd(s;)+ sd(s,)+ sd(s.). Hence
3sd(s,) < w(G) + 14.

The second part of the claim can be proved in a similar way. We
know that » = 4 in this case. Let ¢ = ¢4 be the endpoint that is shared by all

three separating pairs. Thus

3

w(G) > ds(sy) + da(sy) + ds(s.) — 24+ 20> (da(e;) — 1) + da(c) — 1).

=1

126

Hence
w(G) > sd(sg)+ sd(sy) + sd(s,) — ds(c) + 2
> 3(sd(s.) — dafe)) + 2.
This implies 3(sd(s.) — da(¢)) < w(G) — 2. a

The following fact about the properties on the structure of the 2-block

graph and the 3-block graph is well-known.

Fact 5.5.2 Given an undirected graph G and its 2-block graph 2-blk(G), let b
be a 2-block leaf (or an isolated b-vertex) in 2-blk(G) and let Hy be ils corre-
sponding 2-block in GG. Then one of the following statements is true.

(t) Hy contains two distinct 3-block leaves.

(it) Hy is a vertex of degree 1.

(t1i) Hy contains only one 3-block leaf.

(iv) Hy corresponds to an isolated 3-block vertex.

Using the above fact, we want to find vertices in a 2-block leaf such
that if we add an edge between two such vertices in different 2-block leaves,
the number of 2-block leaves and the number of 3-block leaves both reduce by
2. Thus if we add an edge properly, we can reduce the triconnectivity number

and biconnect the input graph at the same time.

Definition 5.5.3 Let G be an undirected graph. The two demanding ver-
tices ¢1(b) and ¢2(b) of a 2-block leaf (or an isolated b-vertex) b in 2-blk(G)
(not necessary to be distinct), are defined as follows. Let Hy be the subgraph of
G represented by b.

(i) If there are two distinct 3-block leaves t1 and ty in the 3-block tree 3-blk(Hy),

127

then let ¢1(b) be a demanding vertex of t1 and let ¢2(b) be a demanding vertex
of t.

(iv) If Hy consists of a single vertex v, then let ¢1(b) = v and let ¢2(b) = v.
(t12) If there is only one 3-block leaf t in 3-blk(H,), then let ¢1(b) and ¢2(b) be
two distinct demanding vertices of 1.

(iv) If Hy is triconnected, then let ¢1(b) and ¢z2(b) be two distinct demanding

vertices in Hy.

The following claim can be easily verified from the definition of w(().

Claim 5.5.4 Given a graph G with two 2-block leaves by and by in 2-blk((),
let q1(b;) be one of the two demanding vertices of b;, © € {1,2}. Then w(G U

{(q1(b1), 1 (b)) }) = w(G) — 2. 0

5.5.2 The Graph is not Connected

If the input graph is not connected, let the set of connected compo-
nents be {Gy, Gy, ... ,Gy}. Let b; be a 2-block leaf (or an isolated b-vertex) in
2-blk(G;), 1 <o < h. We find the two demanding vertices ¢1(b;) and gq(b;) for
each b;, 1 <17 < h. The algorithm adds a set of h — 1 edges A, where A equals

{(q2(b1), q1(b2)),(q2(b2), q1(b3)), - -+ (q2(bn-1), q1(br))}-

Claim 5.5.5 Let the original graph be G and let the graph obtained by adding
the above h — 1 edges be G'. The graph G’ is connected and the triconnectivity

augmentation number decreases by h — 1.

Proof. It is obvious that G’ is connected. By adding A, we create some
separating pairs, but not Tutte pairs. Thus the largest degree among all o-

vertices in 3-blk((F) is the same with the largest degree among all o-vertices

128

set of pairs of vertices function p3aug0Otoi(forest T5);
{* Ty is the 2-block graph for the input graph. *}
set of pairs of vertices L;
let 75 ; be the ith tree in 75, 1 <1 < h;
L := 0; {+ L is the set of matched pairs. *}
let b; be a leaf or an isolated vertex in 75 ;, 1 <1 < h;
let ¢1(b;) and ¢2(b;) be the two demanding vertices for b;, 1 < i < h;
pfori=1. h—1do
L= LU {(q2(bi), q1(biy1))}
rofp;
return L
end p3augOtol;

Algorithm 5.2: Parallel algorithm to connect a graph such that the set of edges
added 1s a subset of a smallest triconnectivity augmentation.

in 3-blk(G"). Tt is easy to see that that w(G') = w(G) — 2(h — 1) from the
definition of the weight of the graph. Thus the triconnectivity augmentation

number decreases by h — 1. a

5.5.3 The Graph is Connected, but not Biconnected

In this section, we consider the case when the input graph is balanced
and connected. If the graph is not balanced, we can reduce the triconnec-
tivity augmentation number by k by adding £ edges and obtain a balanced
graph using a method similar to the one used in biconnectivity augmentation

as described in Chapter 3.

Let s; be a o-vertex with the largest separating degree in 3-blk(G).
Depending on the value of sd(sy), we have two subcases for this problem. If
sd(s1) < ﬂ?, we are free to add up to LMZQZJ — sd(s1) edges without worrying
about whether any o-vertex will become massive. We only have to make sure
that each time we add an edge, the two endpoints of the new edge satisfy the
leaf-connecting condition (Lemma 5.4.8). We can reduce the triconnectivity

augmentation number by exactly the number of new edges added. If sd(sy) >

129

Figure 5.6: Illustrating case 1 for biconnecting a connected graph while at the
same time reducing the triconnectivity augmentation number by the number
of edges added. The 2-block tree of the current graph is shown with a circle
representing a c-vertex and a rectangle representing a b-vertex. The two shad-
owed rectangles in each leaf are the two demanding vertices of each 2-block
leaf. We add edges between demanding vertices of adjacent 2-block leaves.

ﬂ?, we have to add new edges carefully in order not to unbalance the resulting
graph. In each subcase, we make sure the number of edges added is either a
constant fraction of the current triconnectivity augmentation number or the

graph after the addition of new edges is biconnected. Thus we only have to

apply this algorithm O(logn) times to biconnect the input graph.
We now describe the two cases in detail.

Case 1: sd(s;) < @
In this case, we match demanding vertices between 2-block leaves. Since the
path between each edge added passes through at least a cutpoint, we reduce

the weight of the graph by 2 by adding an edge (Lemma 5.4.8). We add at
w(G)

5| — sd(s1) edges. Thus no o-vertex becomes massive. An example

most |

is shown in Figure 5.6.

We first describe the algorithm in Algorithm 5.3. Then we prove its

correctness.

Claim 5.5.6 Let the G be the current graph and let G' be the graph obtained

130

set of pairs of vertices function caseli(forest Ts, T5);
{* Ty is the 2-block graph; T3 is the 3-block graph *}
set of pairs of vertices L;
let s1 be a o-vertex with the largest separating degree in 75;
let Is be the number of 2-block leaves in T5;
k = min{ly — 1, Lﬁzﬁlj —sd(s1)};
let by, ba, .. .,bpy1 be k+ 1 2-block leaves in Ty;
let ¢1(b;) and ¢2(b;) be the two demanding vertices of b;, 1 < i <k + 1;
L := 0; {+ L is the set of matched pairs. *}
pfor i =1 .. k do
L= LU {(q2(b:), q1(biy1))}
rofp;
return L
end casel;

Algorithm 5.3: Parallel algorithm for case 1 of optimally triconnecting a con-
nected graph.

from G' by adding an edge between each pair of matched vertices found in func-
tion casel. Then either G' is biconnected or the number of edges added is

> w(@)

— 4

Proof. We add exactly & = min{l, — 1, LMZQZJ —sd(s1)} edges. Since sd(s1) <
ﬂ?, the claim is true if k = LMZQZJ —sd(s1). If k =1y—1, we will prove in the
following paragraph that there is no cutpoint in G’. First we observe that if ¢
is a cutpoint in G’, then it is a cutpoint in (G. Any cutpoint in (is no longer
a cutpoint in G, since there is a path in 2-blk(G") from any leaf in 2-blk(G) to

any other leaf in 2-blk(() that does not pass through any cutpoint in G. O

Claim 5.5.7 Let G be the current balanced graph and let G' be the graph ob-
tained from G by adding an edge between each pair of vertices found in function

casel. A3(G') = As(G) — k and G’ remains balanced.

Proof. We first observe that by adding edges in a connected graph G, we do not

increase the largest separating degree among all o-vertices in 3-blk((). Let the

131

edges be added in the sequence from (q2(b1), q1(b2)) to (qa(by), qi(bes1)). Let the
graph obtained from G by adding the first i edges be G;. Since the path between
¢2(bis1) and gy (biy2) passes though a cutpoint in 2-blk(G;), w(Gipy) = w(G)—2
(Lemma 5.4.8). 0

Case 2: sd(s1) > @
Let sy, s2 and s3 be three o-vertices in 3-blk(() such that no other o-vertex
has a larger separating degree than that of s;, 1 <7 <3, and sd(s1) > sd(s3) >
sd(s3). From Lemma 5.5.1, we know that no o-vertex will become critical or
massive if we add at most @ — sd(s3) edges such that the path between the
two endpoints of each edge added passes though s; and sy and the cutpoint ¢, if
any, which is shared by s; and s5. We also make sure each time we add an edge,
the weight of the graph decreases by 2. Thus the triconnectivity augmentation

number decreases by the number of edges added. Our algorithm will try to

“get rid” of as many cutpoints as possible.

There are four phases for this part of the algorithm. Let ¢ be the
cutpoint, if any, that is shared by s; and s,. In phase 1, we first make sure that
s1 and sy are in the same biconnected component. We then match demand-
ing vertices between c-components such that ¢ is no longer a cutpoint in the
resulting graph obtained by adding an edge between each matched pair. Let
s$1 = (c11, c12) and let sy = (e21, c22). Let Wi, i € {1,2}, be the set of ¢; 1-
and ¢; 2-components that do not contain s;. Let Y;, ¢ € {1,2}, be the set of
si-components that contain a cutpoint and let Y, be the set of s;-components
that do not contain a cutpoint. In phase 2, we match demanding vertices of
elements in Wy UY; UY/ and demanding vertices of elements in W, U Y, U Y]
For each pair of vertices we match, the path between them in the 2-block graph

passes through at least one cutpoint and the path between them in the 3-bock

132

graph passes through s; and s,. In phase 3, we match demanding vertices of el-
ements in Y; and demanding vertices of elements in Y, such that the separating
degree of s; becomes 2 after adding an edge between the two vertices in each
matched pair. We also match among demanding vertices of elements in W.
Finally in phase 4, we match demanding vertices of Y U Y/ with demanding
vertices of 2-block leaves. By doing this, we reduce the separating degree of s;
to 2 if there are enough 2-block leaves left; otherwise, the graph is biconnected.

We now describe the fours phases in detail.

Phase 1: Let ¢ be the common cutpoint shared by s; and s,. If s
and sy are not in the same biconnected component, we match a demanding
vertex in an s;-component and a demanding vertex in an sy-component. After
adding an edge between the pair of demanding vertices, s; and sy are in the
same biconnected component. We then find the two demanding vertices ¢ (b;)
and ¢a(b;) for the rest of c-components in {C; | 1 <7 < r}, where b; is a 2-block
leaf in C;. We match ¢(b;) with ¢1(bi41), 1 <@ < r, and match ¢(b,) with a

demanding vertex in an s;-component. An example is shown in Figure 5.7.

Phase 2: Recall that s; = (¢11, ¢12) and sy = (e21, ¢22). Let Wi be
the set of ¢;1- and ¢; 3-components that do not contain s;, ¢ € {1,2}. Recall

also that Y; is the set of s;-components that contain a cutpoint, 7 € {1,2}.

We try to eliminate cutpoints from endpoints of s; and sy by matching
demanding vertices of components in W; U Y; U Y] and those in W5 U Y5 U Y]
By doing this, we reduce separating degrees of both s; and sy and also decrease

the sum of degrees of all ¢-vertices in the 2-block tree. An example is shown in

Figure 5.8.

Phase 3: Recall that Y/ is the set of s;-components that do not contain
a cutpoint, 7 € {1,2}. Note that after phase 2, W, = () and Y3 = (). Note also

133

Figure 5.7: Illustrating phase 1 of case 2 for biconnecting a connected graph
while at the same time reducing the triconnectivity augmentation number by
the number of edges added. The current graph is shown with two separating
pairs s1 = (¢1,¢) and s3 = (c2,¢) sharing a common cutpoint ¢. The two
rectangles shown inside each e-component C' are the two demanding vertices of a
2-block leaf in C'. The rectangle shown inside an s;-component £ is a demanding
vertex of a 3-block leaf in h. We merge c-components with - by adding edges
between demanding vertices properly. After adding the set of edges, vertex x
becomes the demanding vertex for the new s;-component formed.

set of pairs of vertices function phasel(vertex si, sa;
modifies set of components 71, 75; modifies forest 7>, T3);
{* s1 and s are two o-vertices with the largest separating degrees. *}
{* Z; is the set of s;-components, 7 € {1,2}. *}
{* s1 and sy share a common cutpoint ¢. *}
set of pairs of vertices L;
L := 0; {+ L is the set of matched pairs. *}
if s; and so are not in the same biconnected component then
let z; € Z;, i € {1,2}; q(z) := a demanding vertex of a 3-block leaf in z;
L:=LU{(¢(z1), g(z2))}; Zi = Z; —{z}, 1€ {1,2}
fi;
let {C; |1 <4< r} be the set of c-components that do not contain s; and ss;
pfor: =1 .. r do
let b; be a 2-block leaf in Cj;
let ¢1(b;) and ¢2(b;) be the two demanding vertices of b;;
L= L U {(q2(bi), q1(biy1))}
rofp;
let h € Z3; find a 3-block leaf ¢ in h;
let v be the associated demanding vertex of ¢;
L= LU {(g200,), v)};
replace the associated demanding vertex of ¢ with ¢1(b1);
return L
end phasel;

Algorithm 5.4: Parallel algorithm for phase 1 of case 2 for optimally tricon-
necting a connected graph.

134

Figure 5.8: Illustrating phase 2 of case 2 for biconnecting a connected graph
while at the same time reducing the triconnectivity augmentation number by
the number of edges added. The current graph is shown with two separating
pairs s1 = (¢11,¢12) and s3 = (e21,¢22). The set W; consists of ¢;1- and ¢; »-
components, ¢ € {1,2}. The set Y; consists of the s;-components that contain a
cutpoint, ¢ € {1,2}. The set Y/ consists of s;-components that do not contain
a cutpoint, ¢ € {1,2}. We add edges such that the path in 2-blk(G) between
the two endpoints of each added edge passes through at least a cutpoint.

135

set of pairs of vertices function phase2(modifies set of components Wy, Ws,
Y1, Y2, VY, V3; modifies forest Ts, T5);
{* W; is the set of ¢; 1- and ¢; o-components, i € {1,2}. *}
{* Y; is the set of s;-components that contain a cutpoint, 7 € {1,2}. *}
{* Y/ is the set of s;-components that do not contain a cutpoint, ¢ € {1,2}. *}
set of pairs of vertices L;
L := 0; {+ L is the set of matched pairs. *}
Zi = W;UY;UY/, i€ {1,2);
number elements in Z; from 1 to |Z;] such that elements in W; are numbered before
elements in Y; and elements in Y; are numbered before elements in ¥/, ¢ € {1,2};
k= min{|Z2| — 2, max{|W, UYy|, [Wa UYal|}};
pfor i =1 .. k do
let z, ; be the ¢th element of Z;; let 25 ; be the ith element of Zy;
let a; be a 2-block leaf in 2y ;; let b; be a 2-block leaf in 25 ;;
let ¢1(a;) be be one of the two demanding vertices of a;;
let ¢1(b;) be be one of the two demanding vertices of b;;
L= LU (qi(ai), ¢1(b:));
if 1 < |WW1| then remove z; ; from W
else if |Wy| < i < |Wi| + |Y1| then remove z; ; from Y3
else if |Wi| 4 |Y1| < 7 then remove z; ; from Y/
fi;
if 1 < |WW,| then remove 2z ; from W
else if |Ws| < i < |Ws| + |Y3| then remove z5 ; from Y>
else if |Ws| + |Y2| < ¢ then remove z;; from Yy
fi
rofp;
return L
end phase2;

Algorithm 5.5: Parallel algorithm for phase 2 of case 2 to optimally triconnect
a connected graph.

that Wy = 0 and Yy = 0 if |Y;] > 2. If |Y]| > 2, we match demanding vertices
of all but two elements in Y] with demanding vertices of elements in Y/. If
Y]] = 2, then we match between demanding vertices of elements in W;. An

example is shown in Figure 5.9.

Phase 4: Note that after phase 3, |Y]| = 2, Wy = 0, W, = 0, and
Y, = (. We match demanding vertices of elements in Y; with demanding
vertices of elements in Y]. If Y] #) after the previous matching, we match the

rest of them within themselves. If Y/ # () after the matching, we match them

136

Figure 5.9: Illustrating phase 3 of case 2 for biconnecting a connected graph
while at the same time reducing the triconnectivity augmentation number by
the number of edges added. The current graph is shown with two separating
pairs s; and s;. We add edges such that the separating degree of sy in the
resulting is at most 2 and the two vertices in s; are no longer cutpoints.

with demanding vertices of the remaining 2-block leaves. An example is shown
in Figure 5.10.

We now describe the complete algorithm for case 2 in Algorithm 5.8.

The following claim can easily be verified.

Claim 5.5.8 Let G' = G U {(uy,uq)}, where uy and uy are vertices in G, but
(ur,uz) € G. For every Tutte pair s in G', the following is true.

(i) If s is also a Tutte pair in G, then sd(s) in G' is less than or equal to sd(s)
in G.

(it) if s is not a Tulte pair in G, then sd(s) in G' equals 2. O

Claim 5.5.9 Let G’ be the graph obtained by adding an edge between each pair

137

set of pairs of vertices function phase3(modifies set of components Wy, V7,
Y/, YJ; modifies forest T, T3);
{* W1 is the set of ¢1 1- and ¢1 o-components. *}
{* Y] is the set of s;-components that contain a cutpoint. *}
{* Y/ is the set of sa-components that do not contain a cutpoint, ¢ € {1,2}. *}
set of pairs of vertices L;
L := 0; {* L is the set of matched pairs. *}
if || > 2 then
pfori=1. |YJ|—2do
let z5 ; be the ith element of Yy; let 21 ; be the ith element of Y7;
let a; be a 3-block leaf in 25 ;; let b; be a 3-block leaf in 2y ;;
let ¢(a;) be a demanding vertex of a;; let ¢(b;) be a demanding vertex of b;;
L= LU {(aa), a(b:)}:
remove z; ; from Yy ; remove zq ; from Y/
rofp
else {* V]| < 2 %}
=Wl -1
pfor i =1 .. k do
let z; be the ith element of W7,
let a; be a 2-block leaf in z;;
let ¢1(a;) and ga(a;) be the two demanding vertices of a;;
L= LU {(q2(ai), q1(ait1))}
rofp;
let ¢ be a 3-block leaf in Y7 UYY/; let ¢(¢) be a demanding vertex of ¢;
L= L U {(q2(a1w,)), 9()};
replace the demanding vertex of ¢ with ¢;(aq)
fi;
return L
end phase3;

Algorithm 5.6: Parallel algorithm for phase 3 of case 2 to optimally triconnect
a connected graph.

of matched vertices. It is either the case that G' is biconnected or the number

if w(G) > 56.

of pairs matched in case 2 is at least WéG)

Proof. If we cannot find enough 2-block leaves to be matched in phase 4.
That means for each 2-block leaf b in 2-blk((), there is an edge from b to the
2-block contains sy and s3. Thus G’ is biconnected. Otherwise, either we add
at least ﬂ%_ﬂ edges or we reduce the separating degree of sy to 2. Since
each time we add an edge, the separating degree of s; reduces by at most 1

and sd(sy) > @. Thus we add at least min{%, @ — 2} edges. Since

138

set of pairs of vertices function phase4(modifies set of components Yy, Y7;
modifies forest Ts, T5);
{* Y7 is the set of s;-components that contain a cutpoint. *}
{* Y7 is the set of s;-components that do not contain a cutpoint. *}
set of pairs of vertices L;
L := 0; {+ L is the set of matched pairs. *}
if Yy # 0 and |Y; UY/| > 2 then
k= min{|Y7UY{| -2, V1|};
pfor i =1 . L%J do
let z; be the ith element of Y7;
let a; be a 2-block leaf in z;;
let ¢1(a;) and g¢a2(a;) be the two demanding vertices of a;;
L= LU {(q:1(az-1), qi(az))};
remove z9;_1 and z9; from Y;
rofp
fi;
if |Y7 UY/| > 2 then
Y =Y uYy;
let Is be the number of 2-block leaves that do not contain a matched vertex;
k = min{ly, |Y| - 2};
pfor i =1 .. k do
let y; be the ith element in Y
let a; be the a 3-block leaf in y;;
let b; be the ith 2-block leaf that does not contain a matched vertex;
let g(a;) be a demanding vertex of a;;
let ¢1(b;) be one of the two demanding vertices of b;;
L= LU {(q(a;), 1(b;))}
rofp
fi;
return L
end phase4;

Algorithm 5.7: Parallel algorithm for phase 4 of case 2 for optimally tricon-
necting a connected graph.

139

Figure 5.10: Illustrating phase 4 of case 2 for biconnecting a connected graph
while at the same time reducing the triconnectivity augmentation number by
the number of edges added. The current graph is shown with two separating
pairs s; and s3. We match among demanding vertices in s;-components that
contain a cutpoint. Then we match demanding vertices between the rest of
si-components and demanding vertices of 2-block leaves in the current graph.
After this phase, either the resulting graph is biconnected or the separating
degrees of s; and s, equal to 2.

w(G)—14 w(G) - w(G w(G) -
(e)s > (E;)lfw(G)Z56 and%—ZZ%lfw(G)Zlfi, the number of

matched pairs is at least @ if w(G) > 56. O
Claim 5.5.10 Let G be the input balanced graph to function case2 and let G’
be the graph obtained from G by adding an edge between two endpoints of each
matched pair. Let k be the number of edges added. As(G') = As(G)—k and G’

remains balanced.

Proof. We first prove that each time we add an edge between a pair of matched
vertices, the separating degree of s; reduces by 1 if sd(s;) > 3, ¢ € {1,2}. Each
edge added between a pair of matched vertices found in phase 1 reduces the

separating degree of both s; and sy by 1, since two ¢-components are merged

140

set of pairs of vertices function case2(forest Ts, T5);
{* T5 is the 2-block graph; T3 is the 3-block graph. *}
set of pairs of vertices L;
L := 0; {+ L is the set of matched pairs. *}
let s1, s; and s3 be three o-vertices in 75 such that no other o-vertex has larger
separating degree than theirs and sd(s1) > sd(s2) > sd(s3);
mazF = ﬂzﬁl — sd(s3); {* maximum number of edges to be added *}
let 51 = (c1,1,¢1,2); let 59 = (2,1, ¢2,2);
Z; .= the set of s;-components, i € {1,2};
L := phasel(sy, s2, 71, Za2, T2, T5);
Z; = Y; UY/ such that Y} are elements in Z; that contains a cutpoint, ¢ € {1, 2};
W; := the set of ¢; 1- and ¢; s-components, i € {1,2};
L=LU phase2(W1, Wz, Yl, Yz, Yll, Yzl, Tz, Tg),
L := L U phase3(Wy, Y1, Y/, Yy, Ta, T5);
L := L U phase4(Yy, Y{, To, T3);
if maxF < |L| then remove the last |L| — maxz F pairs added from L fi;
return L
end case2;

Algorithm 5.8: Complete parallel algorithm for case 2 of optimally triconnect-
ing a connected graph.

into one ¢-component where ¢ is a cutpoint shared by s; and s3. In phases 2
to 4, the path in 3-blk(() between the pair of matched vertices passes through
both s; and s;. Thus the separating degree of s; reduces by 1 each time we

add an edge if sd(s;) > 3, ¢ € {1,2}.

We now prove that each time we add an edge, the weight of the graph
decreases by 2. Notice that the path between pairs of vertices found in phases
1 to 3 passes through at least a cutpoint in the 2-block graph. Thus the weight
of the graph decreases by 2 each time we add an edge between the pair of
matched vertices (Lemma 5.4.8). In phase 4, the path between each pair of
matched vertices passes through s; and sy where ds(s;) > 3, ¢ € {1,2}. Thus

each matched pair satisfies the leaf-connecting condition. O

141

set of pairs of vertices function p3augito2(forest Ts, T5);
{* The current graph is connected, but not biconnected. x*}
{* T3 is the current 2-block graph and 75 is the current 3-block graph. *}
let s1 be a o-vertex in 3-blk(G) with the largest separating degree;
if sd(s1) < % then return case1(7s, 75)
else { sd(s1) > ﬂ? *} return case2(7y, T5)
fi
end p3auglto2;

Algorithm 5.9: Parallel algorithm for biconnecting a connected graph such that
the set of edges added is a subset of a smallest triconnected augmentation.

The Complete Parallel Algorithm for G is Connected, but not Bi-
connected

We describe the algorithm for handling the case when the input graph is con-
nected, but not biconnected in Algorithm 5.9. The correctness of this algorithm
follows from Claim 5.5.7 and Claim 5.5.10. We know that w(G) = O(n) and
the number of leaves in 2-blk(() is at most n, where n is the number of vertices
in the input graph. From Claim 5.5.6 and Claim 5.5.9, we know that after exe-

cuting algorithm p3augito2 O(log n) times, the resulting graph is biconnected.

5.5.4 The Complete Parallel Algorithm and its Implementation

In this section, we first show the complete parallel algorithm with
routines for updating the 2-block graph and the 3-block graph. Then we show

an efficient implementation of the parallel algorithm.

The Complete Parallel Algorithm
We present the complete parallel algorithm (Algorithm 5.10) for solving the
triconnectivity augmentation problem. The correctness of algorithm paug3 fol-

lows from the correctness we established earlier of the various cases in

Claim 5.5.5, Claim 5.5.7 and Claim 5.5.10).

In the previous sections, we have shown details of each step in algo-

142

set of pairs of vertices function paug3(graph G);
{* The input graph G has at least 4 vertices; T5 is the 2-block graph;
[is the number of leaves in the 3-block graph T5. #}

set of pairs of vertices L; forest 75, T3; set of edges 5

Q:=0;

Ty = 2-blk(G); Ts := 3-blk(G);

while 75 has more than one vertex do

if T5 is a forest then {x G is not connected. *}

1. L := p3aug0to1(7s)
else if T5 is a tree and 73 is not balanced then
2. perform a procedure similar to the one specified in Chapter 3

else if T5 is a tree and has more than one vertex and 73 is balanced then
{*i.e., G is connected, but not biconnected. *}

if w(G) > 56 then

3. L := p3augito2(7s, T5)
else {* w(G) < 56 *}
4. L =
apply the sequential triconnectivity augmentation algorithm in Section 5.4
fi
fi

S:=0,Q:=QUL;
pfor each (u,v) € L do
add an edge between u and v; S := SU {(u,v)}
rofp;
J. par_update(7s, 75, GG, S) {* The procedure par_update updates the
2-block graph T5 and 3-block graph T3 after adding the set of edges in S. *}
od;
return @ U paug2to3(G)
end paug3;

Algorithm 5.10: Complete parallel algorithm for optimally triconnecting a
graph.

rithm paug3 except step 5. We now describe an algorithm for updating the
2-block graph and the 3-block graph given the current 2-block graph T5, the
current 3-block graph T5 and the set of edges S added (step 5 in algorithm
paug3).

Updating the 2-Block Graph

Note that step 1 in algorithm paug3 is executed only once and steps 2 and 4
are executed a constant number of times. Thus we can re-compute the 2-block

graph and 3-block graph from the current graph G without increasing the time

143

complexity if algorithm paug3 finds matched pairs by performing steps 1, 2
and 4. Note also that all 2-blocks in a fundamental cycle created by adding
edges are merged into a new 2-block in the 2-block graph if algorithm paug3
finds matched pairs by executing step 3. Hence the algorithm for updating the

2-block graph is similar to an updating algorithm given in Chapter 3.
The algorithm for updating the 3-block graph is stated in Chapter 4.

The Parallel Implementation

Let n be the number of vertices in the input graph. The 2-block graph and the
3-block graph can be constructed in O(log®n) time using a linear number of
processors on an EREW PRAM. Note that each procedure used in algorithm
paug3 can be implemented in O(log n) time using a linear number of processors

on an EREW PRAM by using the Euler technique in [TV85], procedures in

[SV88] and the routine for finding triconnected components in [Ram93].

We know that steps 1, 2 and 4 are executed a constant number of
times. By Claim 5.5.6 and Claim 5.5.9, we know that algorithm paug3 bicon-
nects the input graph by executing O(logn) times of step 3. This establishes

the following claim.

Claim 5.5.11 The triconnectivity augmentation problem on an undirected
graph can be solved in time O(log®n) using a linear number of processors on

an EREW PRAM, where n is the number vertices in the input graph. a

5.6 Concluding Remarks

In this chapter, we have presented a linear time sequential algorithm
for finding a smallest augmentation to triconnect an undirected graph. The

algorithm is divided into two stages. During the first stage, we biconnect

144

the input graph. Then we triconnect the resulting biconnected graph using
the smallest number of edges in the second stage as described in Chapter 4.
We have to make sure that the total number of edges added in these two
stages is minimum. Our algorithm runs in linear time. We also presented
an O(log”n) time EREW parallel algorithm using a linear number of proces-

sors. Our parallel algorithm can be made to run within the same time bound

using O(ﬁm—mm) processors by using the algorithm for finding connected

logn

components in [CV86] and the algorithm for integer sorting in [Hag87].

Chapter 6

Smallest Four-Connectivity Augmentation

6.1 Introduction

In this chapter, we describe a sequential algorithm for optimally four-
connecting a triconnected graph. We first present a lower bound for the number
of edges that must be added in order to reach four-connectivity. Note that
lower bounds different from the one we give here are known for the number
of edges needed to biconnect a connected graph [ET76] and to triconnect a
biconnected graph (Chapter 4). It turns out that in both these cases, we can
always augment the graph using exactly the number of edges specified in the
lower bound. See Chapters 3 and 4 for details. However, an extension of this
type of lower bound for four-connecting a triconnected graph does not always
give us the exact number of edges needed [Jor92, KT91]. (For details and

examples, see Section 6.3.)

We present a new type of lower bound that equals the exact number
of edges needed to four-connect a triconnected graph. By using our new lower
bound, we derive an O(na(m,n) 4+ m) time sequential algorithm for finding a
smallest set of edges whose addition four-connects a triconnected graph with n
vertices and m edges, where a(m,n) is the inverse Ackermann function. Our
new lower bound applies for arbitrary k, and gives a tighter lower bound than
the one known earlier for the number of edges needed to k-connect a (k — 1)-
connected graph. The new lower bound and the algorithm described here may

lead to a better understanding of the problem of optimally k-connecting a

145

146

(k — 1)-connected graph, for an arbitrary k. An extended abstract of the work
reported here appears in [Hsu92].

6.2 Definitions

We give definitions used in this chapter.

Wheel and Flower

A set of at least three separating triplets with one common vertex ¢ is called a
wheel in [KTDBCI1]. A wheel can be represented by the set of vertices {¢} U
{80, 81,...,84-1} which satisfies the following conditions: (i) ¢ > 2; (i¢) Vi # 7,
{¢, s;,8;} is a separating triplet unless in the case that j = ((¢ + 1) mod ¢) and
(s, $j) is an edge in G (i17) ¢ is adjacent to a vertex in each of the connected
components created by removing any of the separating triplets in the wheel;
(tv) ¥y # (¢ + 1) mod q, {c,s;,s;} is a degree-2 separating triplet. The vertex
¢ is the center of the wheel [KTDBC91]. For more details, see [KTDBC91].

The degree of a wheel W = {¢} U {s0,81,...,8,-1}, d(W), is the
number of connected components in GG — {¢, sg,...,8,-1} plus the number of
degree-3 vertices in {sg, $1,...,8,-1} that are adjacent to ¢. The degree of
a wheel must be at least 3. Note that the number of degree-3 vertices in
{80, 81,...,84-1} that are adjacent to ¢ is equal to the number of separating
triplets in {(c, 55, $(i+2) mod ¢) | 0 < ¢ < ¢, such that s(y1) moea 4 is degree 3 in
G'}. An example is shown in Figure 6.1.

A separating triplet is called a flower [KTDBCI1] if it has degree > 2
or is not in any wheel. Note that it is possible that two flowers of degree-2
fi=Ha; |1 <i<3}and f = {ag,; | 1 <7 <3} have the property that Ve,
1 < <3, either a1; = az; or (a1, az;) is an edge in G. We write fiRfy if fi
and f; satisfy the above condition. For each flower f, the flower cluster F; for
f is the set of flowers {f1,..., fz} (including f) such that fRf;, ¥i,1 <i < z.

147

Figure 6.1: Tllustrating a wheel {7} U {1,2,3,4,5,6}. The degree of this wheel
is 5, i.e., the number of components we got after removing the wheel is 4 and
there is one vertex (vertex 5) in the wheel with degree 3.

Each of the separating triplets in a triconnected graph ' is either
represented by a flower or is in a wheel. We can construct an O(n)-space rep-
resentation for all separating triplets (i.e., flowers and wheels) in a triconnected

graph with n vertices and m edges in O(na(m,n) 4+ m) time [KTDBC91].

K-Block

Let G = (V, E) be a graph with vertex-connectivity k& — 1. A k-block in G is
either (¢) a minimal set of vertices B in a separating (k — 1)-set with exactly
k — 1 neighbors in V' \ B (these are special k-blocks) or (ii) a maximal set of
vertices BB such that there are at least k vertex-disjoint paths in G between any
two vertices in B and B is not a special k-block (these are non-special k-blocks).
Note that a set consisting of a single vertex of degree £ — 1 in GG is a k-block.
A k-block leafin GG is a k-block B; with exactly & — 1 neighbors in V'\ B;. Note
also that every special k-block is a k-block leaf. If there is any special 4-block
in a separating triplet S, d(S) < 3. Given a non-special 4-block B leaf, the
vertices in B that are not in the flower cluster that separates B are demanding

vertices. We let every vertex in a special 4-block leaf be a demanding vertex.

148

Claim 6.2.1 FEvery non-special /-block leaf contains at least one demanding

vertex. a

Using procedures in [KTDBC91], we can find all of the 4-block leaves in a

triconnected graph with n vertices and m edges in O(na(m,n) + m) time.

Four-Block Tree

From [KTDBC91] we know that we can decompose vertices in a triconnected
graph into the following 3 types: (i) 4-blocks; (¢7) wheels; (i2i) separating
triplets that are not in a wheel. We modify the decomposition tree in
[KTDBCI1] to derive the four-block tree 4-blk(() for a triconnected graph
G as follows. We create an R-vertex for each 4-block that is not special (i.e.,
not in a separating set or in the center of a wheel), an F-vertex for each sepa-
rating triplet that is not in a wheel, and a W-vertex for each wheel. For each
wheel W = {c} U {s0, $1,...,84-1}, we also create the following vertices. An
F-vertex is created for each separating triplet of the form {c, 545 8(i4+1) mod)
in W. An R-vertex is created for every degree-3 vertex s in {sg, s1,...,84-1}
that is adjacent to ¢ and an F-vertex is created for the three vertices that are
adjacent to s. There is an edge between an F-vertex f and an R-vertex r if
each vertex in the separating triplet corresponding to f is either in the 4-block
H, corresponding to r or adjacent to a vertex in H,. There is an edge between
an F-vertex f and a W-vertex w if the the wheel corresponding to w contains
the separating triplet corresponding to f. A dummy R-vertex is created and
adjacent to each pair of flowers f; and f, with the properties that f; and f,
are not already connected and their flower clusters contain each other (i.e.,

f1 € Fy, and fy € Fy). An example of a 4-block tree is shown in Figure 6.2.

Note that a degree-1 R-vertex in 4-blk((7) corresponds to a 4-block

leaf, but the reverse is not necessarily true, since we do not represent some

149

Figure 6.2: Illustrating a triconnected graph and its 4-blk((G). We use rectan-
gles, circles and two concentric circles to represent R-vertices, F'-vertices and
W-vertices, respectively. The vertex-numbers beside each vertex in 4-blk(()
represent the set of vertices corresponding to this vertex.

special 4-block leaves and all degree-3 vertices that are centers of wheels in
4-blk(G). A special 4-block leaf {v}, where v is a vertex, is represented by
an R-vertex in 4-blk(G') if v is not the center of a wheel w and it is in one
of separating triplets of w. The degree of a flower I in (G is the degree of its
corresponding vertex in 4-blk((). Note also that the degree of a wheel W in GG
is equal to the number of components in 4-blk((') by removing its corresponding
W-vertex w and all F'-vertices that are adjacent to w. A wheel W in G is a star
wheel if d(W) equals the number of leaves in 4-blk((') and every special 4-block
leaf in W is either adjacent to or equal to the center. A star wheel W with the
center ¢ has the property that every 4-block leaf in G (not including {c} if it is
a 4-block leaf) can be separated from (G by a separating triplet containing the
center ¢. If GG contains a star wheel W, then W is the only wheel in (G. Note
also that the degree of a wheel is less than or equal to the degree of its center
in G.

K-Connectivity Augmentation Number

The k-connectivity augmentation number for a graph GG is the smallest number

150

of edges that must be added to G in order to k-connect G.

6.3 A Lower Bound for the Four-Connectivity Aug-
mentation Number

We first give a simple lower bound for the four-connectivity augmenta-
tion number that is similar to the ones for biconnectivity augmentation [ET76]
and triconnectivity augmentation as described in Chapter 4. We show that
this above lower bound is not always equal to the four-connectivity augmenta-
tion number [Jor92, KT91]. We then give a modified lower bound. This new
lower bound turns out to be the exact number of edges that we must add to
reach four-connectivity (see proofs in Section 6.4). Finally, we show relations

between the two lower bounds.

6.3.1 A Simple Lower Bound

Given a graph GG with vertex-connectivity & — 1, it is well-known
that max{[%], d — 1} is a lower bound for the k-connectivity augmentation
number where [, 1s the number of &-block leaves in ¢ and d is the maximum
degree among all separating (k — 1)-sets in G [ET76]. It is also well-known
(see, for example, Chapters 3 and 4) that for & = 2 and 3, this lower bound
equals the k-connectivity augmentation number. For k = 4, however, several
researchers [Jor92, KT91] have observed that this value is not always equal to
the four-connectivity augmentation number. Examples are given in Figure 6.3.
Figure 6.3.(1) is from [Jor92] and Figure 6.3.(2) is from [KT91]. Note that
if we apply the above lower bound in each of the three graphs in Figure 6.3,
the values we obtain for Figures 6.3.(1), 6.3.(2), and 6.3.(3) are 3, 3, and 2,

respectively, while we need one more edge in each graph to four-connect it.

151

Figure 6.3: Illustrating three graphs where in each case the value derived by ap-
plying a simple lower bound does not equal its four-connectivity augmentation
number.

6.3.2 A Better Lower Bound

Notice that in the previous lower bound, for every separating triplet
S in the triconnected graph G = {V, E}, we must add at least d(S) — 1 edges
between vertices in V' \ § to four-connect ¢, where d(S) is the degree of §
(i.e., the number of connected components in G — §); otherwise, S remains a
separating triplet. Let the set of edges added be A;s. We also notice that
we must add at least one edge into every 4-block leaf B to four-connect G
otherwise, B remains a 4-block leaf. Since it is possible that & contains some
4-block leaves, we need to know the minimum number of edges needed to
eliminate all 4-block leaves inside S. Let the set of edges added be A;s. We
know that A; s N Ays = 0. The previous lower bound gives a bound on the
cardinality of A4, s, but not that of Ay s. In the following paragraph, we define

a quantity to measure the cardinality of A; .

Let Qs be the set of special 4-block leaves that are in the separating
triplet S of a triconnected graph . Two 4-block leaves By and By are adjacent
if there is an edge in G between every demanding vertex in By and every
demanding vertex in By. We create an augmenting graph for S, G(S), as

follows. For each special 4-block leaf in Qg, we create a vertex in G(S). There

152

Figure 6.4: Tllustrating the seven types of augmenting graphs, their complement
graphs and augmenting numbers that one can get for a separating triplet in a
triconnected graph.

is an edge between two vertices v1 and vq in G(S) if their corresponding 4-blocks

are adjacent. Let G(S) be the complement graph of G(S). The seven types of

augmenting graphs and their complement graphs are illustrated in Figure 6.4.

Definition 6.3.1 The augmenting number «(S) for a separating triplet S
in a triconnected graph is the number of edges in a maximum matching M of

G(S) plus the number of vertices that have no edges in M incident on them.

The augmenting numbers for the seven types of augmenting graphs are shown
in Figure 6.4. Note that in a triconnected graph, each special 4-block leaf
must receive at least one new incoming edge in order to four-connect the input
graph. The augmenting number a(S) is exactly the minimum number of edges

needed in the separating triplet S in order to four-connect the input graph.

153

The augmenting number of a separating set that does not contain any special
4-block leaf is 0. Note also that we can define the augmenting number a(C) for
a set C that consists of the center of a wheel using a similar approach. Note

that a(C) < 1.

We also need the following definition.

Definition 6.3.2 Let GG be a triconnected graph with | J-block leaves. The leaf
constraint of G, l¢((), is (%} The degree constraint of a separating triplet
Sin G, de(S), is d(S)— 14 a(S), where d(S) is the degree of S and a(S) is the
augmenting number of S. The degree constraint of G, de(G), is the mazimum

degree constraint among all separating triplets in G. The wheel constraint

of a star wheel W with center ¢ in G, we(W), is (@W +a({c}), where d(W)
is the degree of W and a({c}) is the augmenting number of {c}. The wheel
constraint of G, we(G), is 0 if there is no star wheel in G; otherwise it is the

wheel constraint of the star wheel in G.

We now give a better lower bound on the 4-connectivity augmentation number

for a triconnected graph.

Lemma 6.3.3 We need at least max{le(G), de(G), we(G)} edges to four-

connect a triconnected graph G.

Proof. Let A be a set of edges such that G' = G U A is four-connected. For
each 4-block leaf B in (G, we need one new incoming edge to a vertex in B;
otherwise B is still a 4-block leaf in . This gives the first component of the

lower bound.

For each separating triplet & in G, G — § contains d(S) connected

components. We need to add at least d(S)—1 edges between vertices in G — 8,

154

otherwise S is still a separating triplet in G’. In addition to that, we need to
add at least a(S) edges such that at least one of the two end points of each
new edge is in §; otherwise S contains a special 4-block leaf. This gives the

second term of the lower bound.

Given the star wheel W with the center ¢, 4-blk(() contains exactly
d(W) degree-1 R-vertices. Thus we need to add at least (@W edges between
vertices in G — {c}; otherwise, G’ contains some 4-block leaves. In addition
to that, we need to add a({c}) non-self-loop edges such that at least one of

the two end points of each new edge is in {¢}; otherwise {¢} is still a special

4-block leaf. This gives the third term of the lower bound. O

6.3.3 A Comparison of the Two Lower Bounds

We first observe the following relation between the wheel constraint
and the leaf constraint. Note that if there exists a star wheel W with degree
d(W), there are exactly d(W) 4-block leaves in G if the center is not degree-3.
If the center of the star wheel is degree-3, then there are exactly d(W) + 1 4-
block leaves in (. Thus the wheel constraint is greater than the leaf constraint
if and only if the star wheel has a degree-3 center. We know that the degree of
any wheel is less than or equal to the degree of its center. Thus the value of

the above lower bound equals 3.

We state the following claims for the relations between the degree

constraint of a separating triplet and the leaf constraint.

Claim 6.3.4 Let S be a separating triplet with degree d(S) and h special 4-
block leaves. Then there are at least h + d(S) 4-block leaves in G. O

155

Claim 6.3.5 Let {aq, a2, a3} be a separating triplet in a triconnected graph G.
Then a;, 1 <1 < 3, is incident on a vertex in every connected component in

G—{Gl,ag,ag}. O

Corollary 6.3.6 The degree of a separating triplet S is no more than the

largest degree among all vertices in S. O

From Corollary 6.3.6, we know that it is not possible that a triconnected graph
has type (6) or type (7) of the augmenting graphs as shown in Figure 6.4, since
the degree of their underling separating triplet is 1. We also know that the
degree of a separating triplet with a special 4-block leaf is at most 3 and at

least 2. Thus de(S) is greater than d(S) — 1 if de(S) equals either 3 or 4. Thus

we have the following lemma.

Lemma 6.3.7 Let low,(G) be the lower bound given in Section 6.3.1 for a
triconnected graph G and let lows(G) be the lower bound given in Lemma 6.3.3
in Section 6.3.2. (i) low(G) = lowy(G) if lows(G) & {3,4}. (ii) lowy(G) —
low; (G) € {0,1}. 0

Thus the simple lower bound extended from biconnectivity and triconnectivity
is in fact a good approximation for the four-connectivity augmentation num-

ber.

6.4 Finding a Smallest Four-Connectivity Augmenta-
tion for a Triconnected Graph

We first explore properties of the 4-block tree that we will use in this
section to develop an algorithm for finding a smallest 4-connectivity augmen-
tation. Then we describe our algorithm. Graphs discussed in this section are

triconnected unless specified otherwise.

156
6.4.1 Properties of the Four-Block Tree

Massive Vertex, Critical Vertex and Balanced Graph

A separating triplet S in a graph G is massive if de(S) > le(G). A separating
triplet S in a graph G'is critical if de(S) = le(G). A graph G is balanced if there
is no massive separating triplet in G. If G is balanced, then its 4-blk(() is also
balanced. The following lemma and corollary state the number of massive and

critical vertices in 4-blk(G).

Lemma 6.4.1 Let S, Sy and S3 be any three separating triplets in G such
that there is no special f-block in S$; N S;, 1 <1< j <3. 30 ,de(S;) <141,

where [is the number of J-block leaves in G.

Proof. The input graph G is triconnected. We can modify 4-blk((') in the
following way such that the number of leaves in the resulting tree equals [and
the degree of an F-node f equals its degree constraint plus 1 if f corresponds
to §;, 1 <1 < 3. For each W-vertex w with a degree-3 center ¢, we create an
R-vertex r. for ¢, an F-vertex f. for the three vertices that are adjacent to ¢
in GG. We add edges (w, f.) and (f., r.). Thus r. is a leaf. For each F-vertex
whose corresponding separating triplet S contains h special 4-block leaves, we
attach a(S) subtrees with a total number of h leaves with the constraint that
any special 4-block that is in more than one separating triplet will be added
only once (to the F-node corresponding to S;, 1 < i < 3, if possible). From
Figure 6.4 we know that the number of special 4-block leaves in any separating
triplet is greater than or equal to its augmenting number. Thus the above
addition of subtrees can be done. Let 4-blk((Z)" be the resulting graph. Thus
the number of leaves in 4-blk(G)" is [. Let f be an F-node in 4-blk(G)" whose

corresponding separating triplet is . We know that the degree of f equals

157

de(S)+1if S € {S; |1 <7 <3}, It is easy to verify that the sum of degrees of
any three internal vertices in a tree is less than or equal to 4 plus the number

of leaves in a tree. O

Corollary 6.4.2 Let GG be a graph with more than two non-special 4-block
leaves. (i) There is at most one massive F-vertex in 4-blk(G). (i1) If there is
a massive F-vertex, there is no critical F-vertex. (iit) There are at most two

critical F-vertices in 4-blk(G). O

Updating the Four-Block Tree

Let v; be a demanding vertex or a vertex in a special 4-block leaf, ¢ € {1,2}.
Let B; be the 4-block leaf that contains v;, 7 € {1,2}. Let b;, ¢ € {1,2}, be the
vertex in 4-blk((G) such that if v; is a demanding vertex, then b; is an R-vertex
whose corresponding 4-block contains v;; if v; is in a special 4-block leaf in a
flower, then b; is the F'-vertex whose corresponding separating triplet contains
v;; if v; is the center of a wheel w, b; is the F-vertex that is closet to b moa 2)41
and is adjacent to w. The vertex b; is the implied vertex for B;, 1 € {1,2}. The
implied path P between By and By is the path in 4-blk(G) between by and bs.
Given 4-blk(() and an edge (v1, v2) not in (¢, we can obtain 4-blk(GU{(v1,v2)})

by performing local updating operations on P. For details, see [KTDBC91].

In summary, all 4-blocks corresponding to R-vertices in P are col-
lapsed into a single 4-block. FEdges in P are deleted. F-vertices in P are
connected to the new R-vertex created. We crack wheels in a way that is sim-
ilar to the cracking of a polygon for updating 3-block graphs (see Chapter 4
and [DBTI0] for details). We say that P is non-adjacent on a wheel W if the
cracking of W creates two new wheels. Note that it is possible that a separating

triplet S in the original graph is no longer a separating triplet in the resulting

158

graph by adding an edge. Thus some special leaves in the original graph are

no longer special, in which case they must be added to 4-blk(G).

Reducing the Degree Constraint of a Separating Triplet

We know that the degree constraint of a separating triplet can be reduced by
at most 1 by adding a new edge. From results in [KTDBC91], we know that
we can reduce the degree constraint of a separating triplet S by adding an
edge between two non-special 4-block leaves By and B; such that the path in
4-blk(G) between the two vertices corresponding to By and By passes through
the vertex corresponding to &. We also notice the following corollary from the

definitions of 4-blk((') and the degree constraint.

Corollary 6.4.3 Let S be a separating triplet that contains a special 4-block
leaf. (i) We can reduce de(S) by 1 by adding an edge between two special 4-block
leaves By and By in S such that By and By are not adjacent. (it) If we add an
edge between a special 4-block leaf in S and a 4-block leaf B not in S, the degree
constraint of every separating triplet corresponding to an internal vertex in the

path of 4-blk(G') between vertices corresponding to S and B is reduced by 1. O

Note that part (¢) in Corollary 6.4.3 can be verified by observing all different

augmenting graphs for a triconnected graph (shown in Figure 6.4).

Reducing the Number of Four-Block Leaves

We now consider the conditions under which the adding of an edge reduces the
leaf constraint le(G) by 1. Let real degree of an F-node in 4-blk(G) be 1 plus
the degree constraint of its corresponding separating triplet. The real degree
of a W-node with a degree-3 center in (¢ is 1 plus its degree in 4-blk(G'). The

real degree of any other node is equal to its degree in 4-blk(G).

159

Definition 6.4.4 (The leaf-connecting condition) Let By and B be two
non-adjacent 4-block leaves in G. Let P be the implied path between By and
By in 4-blk(G). Two 4-block leaves By and By satisfy the leaf-connecting
condition if at least one of the following conditions is true. (i) There are at
least two vertices of real degree at least 3 in P. (11) There is at least one R-
vertex of degree at least 4 in P. (i12) The path P is non-adjacent on a W-vertex
in P. (iv) There is an internal vertex of real degree at least 3 in P and at least
one of the 4-block leaves in {Bq, By} is special. (v) By and By are both special

and they do not share the same set of neighbors.

Lemma 6.4.5 Let By and By be two j-block leaves in G that satisfy the leaf-
connecting condition. We can find vertices v; in B;, 1 € {1,2}, such that

le(GU{(v1,02)}) = 1le(G) — 1, if le(G) > 2.

Proof. Let By and B be the two 4-block leaves that satisfy the leaf-connecting
condition. If they satisfy parts ¢ to w22 of the leaf-connecting, proofs similar to
the ones given in Chapter 4 for finding a smallest triconnectivity augmentation

can be used to prove this lemma.

Assume that By and By satisfy part (iv) or part (v) of the leaf-
connecting condition. Since we add an edge between By and By, B;, ¢ € {1,2},
is no longer a 4-block leaf. We have to show that the new 4-block created is
not a 4-block leaf. If By and By satisfy part (iv) of the leaf-connecting condi-
tion, then the new 4-block created is adjacent to at least two F'-vertices. One
of them is the degree-3 vertex ¢ in P if ¢ is an F-vertex; otherwise it is an
F-node adjacent to ¢. The other F-vertex adjacent to the created 4-block is

the F-vertex contains the special 4-block leaf in P.

If By and By satisfy part (v) of the leaf-connecting condition and they

are in the same separating triplet, then no 4-block is created. Otherwise, the

160

created 4-block is adjacent to the two F-vertices whose corresponding separat-

ing triplets contain By and B,. O

6.4.2 The Algorithm

We now describe an algorithm for finding a smallest augmentation to
four-connect a triconnected graph. Let § = de(G) — le(G). The algorithm first
adds 26 edges to the graph such that the resulting graph is balanced and the
lower bound is reduced by 26. If l¢(G) # 2 or we(G) # 3, there is no star
wheel with a degree-3 center. We add an edge such that the degree constraint
de(@) is reduced by 1 and the number of 4-block leaves is reduced by 2. Since
there is no star wheel with a degree-3 center, we(() is also reduced by 1 if
we(G) = le(G). The resulting graph stays balanced each time we add an edge
and the lower bound given in Lemma 6.3.3 is reduced by 1. If l¢(G)) = 2 and
we(G) = 3, then there exists a star wheel with a degree-3 center. We reduce
we(G) by 1 by adding an edge between the degree-3 center and a demanding
vertex of a 4-block leaf. Since le(G) = 2 and we(G) = 3, de(() is at most 2.
Thus the lower bound can be reduced by 1 by adding an edge. We keep adding
an edge at a time such that the lower bound given in Lemma 6.3.3 is reduced
by 1. Thus we can find a smallest augmentation to four-connect a triconnected

graph. We now describe our algorithm.

Input Graph is Not Balanced

We use an approach that is similar to the one used in biconnectivity (Chapter 3)
and triconnectivity augmentations (Chapter 4) to balance the input graph.
Given a tree T and a vertex v in T, a v-chain [RGT77] is a component in T'— {v}

without any vertex of degree more than 2. The leaf of 7" in each v-chain is a

v-chain leaf [RGTT]. Let 6 = de(G) — le(G) for a unbalanced graph G and let

161

4-blk(G)" be the modified 4-block tree given in the proof of Lemma 6.4.1. Let
f be a massive F-vertex. We can show that either there are at least 20 + 2
f-chains in 4-blk(G) (i.e., f is the only massive F-vertex) or we can eliminate
all massive F-vertices by adding an edge. Let A; be a demanding vertex in the
ith f-chain leaf. We add the set of edges {(A\;, A\iy1) | 1 <@ < 26}, It is also
easy to show that the lower bound given in Lemma 6.3.3 is reduced by 26 and

the graph is balanced.

Input Graph is Balanced

We first describe the algorithm in Algorithm 6.1. Note that Algorithm 6.1 uses
a subroutine shown in Algorithm 6.2 to handle the case that the 4-block graph
is a star. Then we give its proof of correctness. In the description, we need the
following definition. Let B be a 4-block leaf whose implied vertex in 4-blk(G)
is b and let B’ be a 4-block leaf whose implied vertex in 4-blk(() is . The leaf
B’ is a nearest 4-block leaf of B if there is no other 4-block leaf whose implied

vertex has a distance to b that is shorter than the distance between b and ¥'.

Before we show the correctness of algorithm aug3to4, we need the

following claim and corollaries.

Claim 6.4.6 [RG77] If 4-blk(G) contains two critical vertices fi and fy, then
every leaf is either in an fi-chain or in an fy-chain and the degree of any other

vertex in 4-blk(G) is at most 2. O

Corollary 6.4.7 Let fi and fy be two critical vertices in 4-blk(G) and let S;,
i € {1,2}, be the corresponding separating triplet of fi. If S;, i € {1,2}, f;
contains a special 4-block leaf, then the augmenting number of f; is equal to the

number of special 4-block leaves in S;.

162

graph function aug3to4(graph G);
T := 4-blk(G); root T at an arbitrary vertex; [:= |{ degree-1 R-vertices in T }|;
while 3 a 4-block leaf in G do
if 3 a degree-3 center ¢ then
1. if lc(G) = 2 and we(G) = 3 then {* ¢ is the center of the star wheel w. *}
uy := the 4-block leaf {c}; let us be a a non-special 4-block leaf
else if 3 another degree-3 center ¢’ non-adjacent to ¢ then
let us be the 4-block leaf {¢'}
else if 3 a special 4-block leaf b non-adjacent to u; then let us := b
else if A (degree-3 center or special 4-block leaf) non-adjacent to u; then
let us be a a 4-block leaf s. t. 3 an internal vertex with
real degree > 3 in their implies path fi
else if lc(G) # 2 or we(G) # 3 then
if | > 2 and 3 2 critical F-vertices f1 and f, then
2. find two non-special 4-block leaves u; and us s. t. the implied path
between them passes through f; and fs
else if [> 2 and 3 only one critical F'-vertex f; then
if 3 two non-adjacent special 4-block leaves in the
separating triplet & corresponding to f; then
3. let u; and us be two non-adjacent 4-block leaves in S
else if A two non-adjacent special 4-block leaves in the
separating triplet & corresponding to f; then
4. let v be a vertex with the largest real degree among all vertices in T — fi;
if real degree of v in 7" > 3 then
find two non-special 4-block leaves u; and us
s. t. the implied path between them passes through f; and v fi
fi{* The case when the degree of v in T' < 3 will be handled in step 8. %}
else if 3 two vertices v and vy with real degree > 3 then
J. find two non-special 4-block leaves u; and uy such
that the implied path between them passes through v, and v,
else if 3 an R-vertex v of degree > 4 then
0. find two non-special 4-block leaves u; and uy such
that the implied path between them passes through v
else if 3 a W-vertex v of degree > 4 then
7. let u; and us be two non-special 4-block leaves such
that the implied path between them is non-adjacent on v
else {x T is a star with the center v. %} star(ui, us, l, T)
fi;
let y;, i € {1,2}, be a demanding vertex in u; s. t.
(y1, y2) is not an edge in the current G;
G = GU{(y1,y2)}; update T, I, le(G), we(G) and de(G)
od;
return ¢
end aug3to4;

Algorithm 6.1: Algorithm for finding a smallest four-connectivity augmentation
of a triconnected graph.

163

{* The input 4-block tree T is a star. Find u; and uy in T
such that we can connect them and reduce the augmentation number. *}
procedure star(modifies vertex uy, us, integer lN, tree T);
if there is one vertex v in 7" with degree > 3 then
8. find a nearest vertex w of v that contains a 4-block leaf vq;
let w’ be a nearest vertex of w containing a 4-block leaf non-adjacent to vy;
find 4-block leaves u; and us whose implied path passes through w, v’ and v
{* The above step can be always done, since T' is a star. *}
{* Note that T is path for all the cases below. x}
else if 3 2 non-adjacent special 4-block leaves in a separating triplet § then

9. let w; and uy be two non-adjacent special 4-block leaves in §
else if 3 a special 4-block leaf u; then
10. find a nearest non-adjacent 4-block leaf wus

else {x [=2}
let u; and us be the two 4-block leaves
corresponding to the two degree-1 R-vertices in T

fi

end star;

Algorithm 6.2: A subroutine called by algorithm aug3to4 to handle the case
when the 4-block graph is a star.

Proof. It is easy to check that Claim 6.4.6 is true for the modified 4-block
tree we gave in the proof of Lemma 6.4.1. We observe from Figure 6.4 that
the augmenting number of a separating triplet is at most equal to the number
of special 4-block leaves in it. If we have more special 4-block leaves than its
augmenting number, then the modified 4-block tree we built does not satisty

the condition imposed by Claim 6.4.6. O

Corollary 6.4.8 Let fi and fy be two critical F-vertices in 4-blk(G). If the
number of degree-1 R-vertices in 4-blk(G) > 2 and the corresponding separating
triplet of f;, 1 € {1,2}, contains a 4-block leaf B;, we can add an edge between a
vertex in By and a vertex in By to reduce the lower bound given in Lemma 6.5.3

by 1. O

Theorem 6.4.9 Algorithm aug3to4 adds the smallest number of edges to four-

connect a triconnected graph.

164

Proof. We first observe that if the wheel constraint we(G) dominates the lower
bound, then there exists exactly one wheel w. The wheel w is a star wheel and
has a degree-3 center. We also know that 4-blk(() contains 3 non-special 4-
block leaves and there is no critical F'-vertex. The pair of vertices found in step
1 satisfy part (iv) or part (v) of the leaf-connecting condition. Thus step 1 of

algorithm aug3to4 finds the right pair of vertices between which a new edge is

added if we(G) dominates.

If the degree constraint dominates, then there is at least one critical
vertex. Steps 2, 3, 4, 8 and 9 make sure the degree constraint of any critical
vertex is reduced by 1 by adding the new edge found. (Note that steps 8, 9 and
10 are in Algorithm 6.2.) Corollary 6.4.8 makes sure the implied path between
the pair of vertices found in step 9 passes through all critical vertices, if any.
The pair of vertices found in steps 2 and 4 satisfy part (¢) of the leaf-connecting
condition. The pair of vertices found in steps 3 and 8 satisfy part («v) of the
leaf-connecting condition. The pair of vertices found in step 9 satisfy part (v)
of the leaf-connecting satisfy part (iv) of the leaf-connecting condition. The
pair of vertices found in step 9 satisfy part (v) of the leaf-connecting condition.
Thus we reduce both de(G') and le(G) by 1. Hence the lower bound is reduced

by 1 by adding an edge.

We now prove the case when the leaf constraint dominates. We have
to make sure the pair of vertices found satisfy the leaf-connecting condition. In
the following, we show in each step, the part of the leaf-connecting condition
that is satisfied if the number of 4-block leaves is at least 4. Step 2: part ();
step 3: part (v); step 4: part (¢); step 5: part (¢); step 6: part (i7); step 7: part

(712); step 8: part (iv) or part (v); step 9: part (v); step 10: part (v). If there

165

are less than 3 4-block leaves in (v, we can add an edge between demanding
vertices of any arbitrary two 4-block leaves. Thus le((F) is reduced by 1 each
time we add an edge. Hence the lower bound is reduced by 1 by adding an

edge. O

We now describe an efficient way of implementing algorithm aug3to4.
The 4-block tree can be computed in O(na(m,n)+m) time for a graph with n
vertices and m edges [KTDBCI1]. We know that the leaf constraint, the degree
constraint of any separating triplet and the wheel constraint of any wheel in GG
can only be decreased by adding an edge. We also know that [¢(G), the sum of
degree constraints of all separating triplets and the sum of wheel constraints of
all wheels are all O(n). Thus we can use the technique in [RG77] to maintain
the current leaf constraint, the degree constraint for any separating triplet and
the wheel constraint for any wheel in O(n) time for the entire execution of
the algorithm. We also visit each vertex and each edge in the 4-block tree a
constant number of times before deciding to collapse them. There are O(n)
4-block leaves and O(n) vertices and edges in 4-blk((). We use a set-union-
find algorithm to maintain the identities of vertices after collapsing. Hence the
overall time for updating the 4-block tree is O(na(n,n)). We have the following

claim.

Claim 6.4.10 Algorithm aug3to4 can be implemented in O(na(m,n) + m)
time where n and m are the number of vertices and edges in the input graph,

respectively and o(m,n) is the inverse Ackermann function. a

6.5 Concluding Remarks

We have given a sequential algorithm for finding a smallest set of

edges whose addition four-connects a triconnected graph. The algorithm runs

166

in O(na(m,n) + m) time using O(n + m) space. The following approach was
used in developing our algorithm. We first gave a 4-block tree data structure
for a triconnected graph that is similar to the one given in [KTDBC91]. We
then described a lower bound on the smallest number of edges that must be
added based on the 4-block tree of the input graph. We further showed that it

is possible to decrease this lower bound by 1 by adding an appropriate edge.

The lower bound that we gave here is different from the ones that we
have for biconnecting a connected graph and for triconnecting a biconnected
graph. We also showed relations between these two lower bounds. This new
lower bound applies for arbitrary k, and gives a tighter lower bound than the
one known earlier for the number of edges needed to k-connect a (k — 1)-
connected graph. It is likely that techniques presented in this chapter may be
used in finding the k-connectivity augmentation number of a (k — 1)-connected

graph, for an arbitrary k.

Chapter 7

Smallest Edge-Connectivity Augmentation

7.1 Introduction

In this chapter, we consider algorithms for finding smallest edge-
connectivity augmentations. We present a linear time algorithm and an ef-
ficient parallel algorithm to construct a compact representation for all separat-
ing edge-pairs in an undirected graph i that is 2-edge-connected. Our parallel
algorithm runs in O(log n) time on a CRCW PRAM using O(W) pro-
cessors on a CRCW PRAM, where n and m are the number of vertices and
edges in (G, respectively. We then use this above algorithm together with re-
sults in Chapters 4 and 5, and [ET76, NGM90, Ram93] to derive an algorithm
with the same complexity bounds to find a smallest set of edges whose addition
3-edge-connects a graph. We will also show a simple linear time algorithm to
construct a compact representation for all separating edge-triplets in a graph
(& that is not 4-edge-connected given compact representations for all cutpoints,
separating vertex-pairs, and separating vertex-triplets in G. By using our re-
sult and results in [NGM90], we can find a smallest set of edges whose addition
4-edge-connects a graph in the same complexity as the algorithm for building
a compact representation for all separating vertex-triplets [KTDBC91] (which
runs in in O(na(m,n) + m) time sequentially). We do not have an efficient
parallel algorithm for this problem since there is no efficient parallel algorithm
known for finding a compact representation for all separating vertex-triplets in
a graph.

167

168

Previous results for solving the above problems are as follows. Gabow
[Gab91] gave an O(m + nlogn) time sequential algorithm for constructing a
structure similar to ours to represent all separating edge-pairs and all separating
edge-triplets. Linear time algorithms for testing 3-edge-connectivity were given
in Galil and Italiano [GI91] and Ramachandran [Ram90]. Using an approach
that is different from ours, Watanabe, Yamakado and Onaga [WYO91] gave a
linear time sequential algorithm for finding a smallest 3-edge-connectivity aug-
mentation, but our algorithm appears to be simpler than theirs. For testing
4-edge-connectivity, Galil and Italiano [GI91] have a sequential algorithm runs
in the same time complexity as ours. Gabow [Gab91] gave an O(m + nlogn)
time sequential algorithm for finding a smallest 4-edge-connectivity augmen-
tation. Note that the augmented graph for reaching 3-edge-connectivity or
4-edge-connectivity produced by our algorithms (and all other algorithms men-
tioned here) is a multi-graph. We do not know how to find a smallest 3-edge-
connectivity or 4-edge-connectivity augmentation if we want the resulting graph

to be simple.

7.2 Definitions

Edge-Connectivity

An undirected graph GG with more than one vertex is k-edge-connected if the
graph obtained from ' by removing any set of k — 1 (or less) edges is still
connected. The edge-connectivity of a graph G is k it G is k-edge-connected,
but not (k + 1)-edge-connected. A set of edges A with cardinality k is a
separating edge-set if the removal of A disconnects (G. A separating edge-set
with cardinality 1 is a cut edge. A separating edge-set with cardinality 2 is a
separating edge-pair. A separating edge-set with cardinality 3 is a separating

edge-triplet. A w-edge-connected component H in a k-edge-connected graph G,

169

Figure 7.1: Illustrating a 2-edge-connected graph (on the left) and its 2-eblk(()
(on the right). Note that the 2-eblk((G) is a tree-like structure and vertex 10 is
shared by three cycles.

where w > k, is a maximal subgraph of G such that H is w-edge-connected.
Given a connected graph G, it is well-known [ET76] that we can build a 2-
edge-block graph 2-eblk(() where each vertex represents either a vertex that
is not in any 2-edge-connected component of G or the set of vertices in a 2-
edge-connected component. There is an edge between two vertices vy and v,
in 2-eblk(() if and only if there is a cut edge between the two components
represented by vy and wvy. It is also well-known [ET76] that 2-eblk(G) is a tree

if G is connected.

The notation of a k-eblk(G) for a (k — 1)-edge-connected graph G
is described in Dinits, Karzanov and Lomosonov [DKL76] (in Russian, a de-
scription is available in [NGM90]). They showed the following results. If & is
even, k-eblk((G) is a tree. If k is odd, k-eblk(() is a tree-like structure where
two cycles in k-eblk((G) share at most one vertex. An example of 3-eblk(G)
is shown in Figure 7.1. Edges not in a cycle are called tree-edges and edges
in a cycle are called cycle-edges. Each vertex in G is mapped into exactly one
vertex in k-eblk((). Each vertex in k-eblk(() represents an empty set, a vertex

that is not in any k-edge-connected component of (&, or the set of vertices in a

170

k-edge-connected component. Each tree-edge (a1, az) in k-eblk(G') represents
a separating edge-set whose removal separates (G into two components (G; and
(35, where (G; contains the set of vertices represented by «a;, ¢ € {1,2}. Each
cycle-edge (b1, by) represents the set of edges of cardinality k% between the
component represented by b; and the component represented by b,. The union
of two sets of edges represented by two cycle-edges in the same cycle is a sep-
arating edge-set. Fach of the separating edge-sets in (G is either represented
by a tree-edge in k-eblk(() or two cycle-edges in the same cycle. Let GGy and
(G be the two components obtained from ' by the removal of a separating
edge-pair and let k-eblk(GH) and k-eblk(Gy) be the two components obtained
from e-blk(() by the removal of its corresponding tree-edge or two cycle-edges.
Vertices in (G;, 1 = 1 and 2, map into vertices in k-eblk(G;), respectively. The
structure k-eblk(G) can be computed in O(nm) time for arbitrary k& [KT86].

Singular-Set
A subset of [vertices V' in a k-edge-connected graph G = (V, F) is an [-singular
set if there exists a set of k edges in G whose removal separates GG into two

components, one of which consists of exactly the vertices in V.

7.3 Finding All Separating Edge-k-Sets, k € {2,3}

In this section, we develop algorithms to form 3-eblk(G) for an undi-
rected graph G that is 2-edge-connected and to form 4-eblk(G) when G is

3-edge-connected.

7.3.1 Finding All Separating Edge-Pairs

Let ¢ be a 2-edge-connected graph. We first construct its 2-block
graph 2-blk(() by using the algorithm in Chapter 3 and [ET76]. Note that

171

each 2-block in 2-blk((') represents either a vertex whose adjacent edges are all
cut edges or a biconnected component. For each 2-block H in G that is not a
single vertex, we construct its 3-block graph 3-blk(H) by using the algorithm
in Chapter 4 and [HT73, FRT93]. Note that in 3-blk(H), 3-vertices correspond
to triconnected components or a vertex of degree 2 in H, o-vertices correspond

to separating vertex-pairs, and w-vertices correspond to polygons.

The following lemma gives a method to find all separating edge-pairs
in a 2-edge-connected graph G by examining cutpoints, 1-singular sets, Tutte
pairs (defined in Chapter 4), 2-singular sets, and polygons (defined in Chap-
ter 4) in the 3-block trees for all 2-blocks (defined in Chapter 3) in G.

Lemma 7.3.1 Let GG be a 2-edge-connected graph and let {(aq,as), (b1,b2)} be
a separating edge-pair in G'. Then at least one of the following is true.

(i) {a1, as, br, ba} = {ec1, c2}, where ¢; is either a cutpoint or a 1-singular set,
i €{1,2} (e.g., a1 = by =¢1 and a3 = by = ¢3).

(ii) {a1, aq, by, ba} = {c, s1, s2}, where ¢ is either a culpoint or a I-singular
set in G and {s1, s2} is either a Tutte pair or a 2-singular set in G (e.g.,
a; = az=c¢, by = sy and by = s5).

(iii) (a1,as) and (by,by) are two edges in a polygon represented by a w-vertex

in 3-blk(G), and {a1, az} and {by, by} are not separating vertex-pairs.

Proof. Note that there are only connected components in the resulting graph
obtained from G by removing any one separating edge-pair. Let GGy and G5 be
the two connected components in G — {(a1,as), (b1, b2)}. Assume that vertices
a; and b; are in G;, ¢ € {1,2}. If there exists an ¢*, ¢* € {1,2}, such that
a;» = byx = ¢ and G« contains more than one vertex, then either ¢ is a cutpoint

or a l-singular set. If G+ contains a single vertex ¢, then ¢ is degree-2 (i.e., a

172

Figure 7.2: Tllustrating the three types of separating edge-pairs that we have
in a 2-edge-connected graph. Note that in Figure 7.2.(¢), {1,2,3,4,5,6} is a
polygon in 3-blk(G). In this polygon, edge (5, 6) is not solid; edges (2, 3) and
(4, 5) are 1-solid; edge (1, 2) is 2-solid.

I-singular set). If {(a1,a2), (b1,b2)} = {¢, s1,82} and s1 # s9, then (51, s2) is
either a 2-singular set or a separating pair. From the definition of a polygon
it is easy to see that if (sy, s2) is a separating pair in a polygon C, then s
and sy are not adjacent in C. Thus (s, s2) is a Tutte pair. Otherwise (a1, az)
and (by, by) must be two edges in a polygon obtained by decomposing & into
triconnected components. (For details, see [HT73, FRT93, Ram93].) O

An example is shown in Figure 7.2.

Let G be a biconnected graph and let 3-blk(() be its 3-block graph.
We define an edge (ay, az) in a polygon represented by a w-vertex in 3-blk(G)
to be 2-solid if there are exactly ¢ multiple edges between vertices a; and a,
in G and {ay, as} is not a separating vertex-pair in GG. Examples are shown
in Figure 7.2.(c). The following corollary of Lemma 7.3.1 shows the relation
between a polygon in a 3-blk((G) and a cycle in 3-eblk(G).

Corollary 7.3.2 Let G be a biconnected graph and let C' be a polygon repre-
sented by a w-vertex in 3-blk(G). If C' contains at least two 1-solid edges, then

any two 1-solid edges in C' is a separating edge-pair for G. O

Note that if a polygon C' contains exactly two 1-solid edges ¢; and ey, then {ey,
€2} is a separating edge-pair corresponding to a tree-edge in 3-eblk(G'). Note

173

also that a polygon (' with more than two 1-solid edges corresponds to a cycle

in 3-eblk(() that consists of all of the 1-solid edges in C.

From Lemma 7.3.1 and Corollary 7.3.2, we have the following theo-

rem.

Theorem 7.3.3 There is a linear time sequential algorithm for building k-
eblk(G) for an undirected graph G with edge-connectivity k—1, Vk, 1 < k < 3.
There is also a parallel algorithm for this problem that runs in O(logn) time
using O(ﬁm—mm) processors on ¢ CRCW PRAM, given where n and m are

Togn

the number of vertices and edges in G, respectively.

Proof. Note that there are O(n) cutpoints in G. The number of Tutte pairs
is O(n). The number of 1-singular sets is O(n) and these sets are represented
as trivial 2-blocks. The number of 2-singular sets in a 2-edge-connected graph
is O(n). They can can found by checking polygons with 3 vertices in 3-blk(G).
We can find all separating edge-pairs according to Lemma 7.3.1 by building a
table for all 1-singular sets, cutpoints, Tutte pairs, 2-singular sets, and using a

bucket sort routine. O

7.3.2 Finding All Separating Edge-Triplets

Let GG be a 3-edge-connected graph. We first construct its 2-block
graph 2-blk((G) by using the algorithm in Chapter 3. For each 2-block H in ¢
that is not a single vertex, we construct its 3-block graph 3-blk(H) by using the
algorithm in [HT73, FRT93, Ram93]. For each 3-block I in a 2-block H that

is triconnected, we construct its 4-block graph 4-blk([/) by using the algorithm
in Chapter 6 and [KTDBCI1].

The following lemma gives a method to find all separating edge-

triplets in a 3-edge-connected graph G by examining cutpoints, 1-singular sets,

174

=0 C-» @9 ¢
@o @90 @0 <O

Figure 7.3: Illustrating the eight types of separating edge-pairs that we have
in a 3-edge-connected graph.

Tutte pairs, 2-singular sets, flowers, 3-singular sets and polygons in the 3-block
trees for all 2-blocks in (. The proof of this lemma is similar to the proof for

Lemma 7.3.1.

Lemma 7.3.4 Let G be a 3-edge-connected graph and let S = {(ay, az), (b1, b2),
(c1,¢2)} be a separating edge-triplet in G'. Let Gy and Gy be the two connected
components in G — {(ay,az), (b1, bs), (c1,¢c2)}. Assume that vertices a;, b;, and
¢; are in G, 1 € {1,2}. Then at least one of the following is true.

(i) {a;, bi, ¢;} is a cutpoint, I-singular set, Tutte pair, 2-singular set, flower,
or 3-singular set, Vi, 1 € {1,2}.

(ii) (a1,az2) is a 1-solid edge in a polygon C, (by,by) = (c1,¢2) (i.e., there are
two multiple edges between vertices by and by), and (b1, bs) is a 2-solid edge in

the same polygon C. O

An example is shown in Figure 7.3.

Corollary 7.3.5 Let G be a biconnected graph and let C' be a polygon repre-
sented by a w-vertex in 3-blk(G). If C contains exactly one 1-solid edge and
at least one 2-solid edge, then the combination of the 1-solid edge and any one
2-solid edge in C' is a separating edge-triplet for G. a

175

From Lemma 7.3.4 and Corollary 7.3.5, we have the following theo-

rem.

Theorem 7.3.6 There is an O(na(m,n) + m) time sequential algorithm for
building 4-eblk(G) for an undirected graph G that is 3-edge-connected.

Proof. The proof of this theorem is similar to the proof for Theorem 7.3.3 with
the only exception that we need to find all 3-singular sets. These 3-singular
sets can be found by checking all 3-blocks in G that are complete graphs of 4
vertices if G contains more than 6 vertices. It is easy to check 3-singular sets

in a graph with no more than 6 vertices. O

7.4 Edge-Connectivity Augmentation

The approach used in [NGM90] to increase the edge-connectivity of
any graph G by 0 is to first develop an algorithm for increasing the edge-
connectivity of G by 1. By choosing appropriate edges, [NGM90] further
showed that it is possible to optimally increase the edge-connectivity of any
graph by ¢ by applying the basic algorithm ¢ times. Their algorithm for in-
creasing the edge-connectivity of any graph by 1 is as follows. (For k = 2,
this specializes to the linear time algorithm of [ET76].) Let G be the input
graph with edge-connectivity & — 1. We first compute k-eblk(G). A leaf in
k-eblk(() is defined as either a degree-1 vertex or a degree-2 vertex that is in a
cycle. (Note that the set of vertices in G which corresponds to a leaf is called
an extreme set in [NGM90].) We perform the following modified depth-first
search (DFS) starting from an arbitrary vertex in k-eblk((G). If the algorithm
is visiting a vertex that is not in a cycle, then we perform the normal DFS. If

the algorithm visits a vertex v in a cycle C' from another vertex in C', then the

176

algorithm must visit all adjacent unvisited vertices of v that are not in C' before
visiting its unvisited adjacent vertex in C'. Leaves in k-eblk((') are numbered
according to the orders they are encountered during the modified DFS. Let [
be the number of leaves and let L; be the ith leaf. It is shown in [NGM90] that
we can increase the edge-connectivity of GG by 1 by adding an edge between
L; and Li—l—L%J’
linear time given k-eblk((). For details, see [NGM90].

Vi, 1 <1< (%W The above algorithm can be implemented in

To guarantee that the edge-connectivity of a graph can be optimally
increased by 6 by applying the above basic algorithm é times, we must pick an
appropriate vertex in each leaf on which a new incoming edge can be incident.
We will call such a vertex a demanding vertex. Let A be the current edge-
connectivity and let A4+ be the desired edge-connectivity. Let H;, 1 <1 <6, be
a subgraph of H;_y (where Hy = (&) which corresponds to a leaf (or an isolated
vertex) in (A+1)-eblk(H;_1) and the out-degree of vertices in H; is at most A+1.
(Note that we extend the definition of an edge-block graph for an input graph
GG in a way that if G is a single vertex than its edge-block graph is a single
vertex.) It is shown in [NGM90] that if we pick a vertex in Hg, then we can
maintain the overall optimality by applying the basic algorithm ¢ time. (Note
that this type of strategy will not work for increasing the vertex-connectivity
of an undirected graph. For details, see Chapter 5.) For A € {0,1,2,3}, we can
pick such a demanding vertex for each leaf in A-eblk(() in linear time. Thus

we can find a smallest (A — 1)-edge-connectivity augmentation in linear time

given A-eblk(G).

We now show how to implement the above algorithm efficiently in
parallel given the edge block tree. We first locate the set of vertices S that are

shared by at least two cycles in k-eblk(G'). For each vertex v in S, we create a

177

Figure 7.4: Illustrating the transformation of a tree-like structure shown in
Figure 7.1.(b) into a tree. The original 3-eblk(G) (Figure 7.1.(b)) is first trans-
formed into a graph (Figure 7.4.(a)) such that two cycles do not share any
vertex by duplicating vertices that are in more than one cycle. We then con-
tract vertices of degree at least 3 in a cycle into a single vertex. The resulting
graph (Figure 7.4.(b)) is a tree.

new vertex v; for the s¢th cycle C, ; that contains v. Edges adjacent to v in C,;
are reconnected to v;. We also connect v to each v;. Thus no cycle shares a
vertex with another cycle after the above step. For each cycle C', we contract
vertices of degree at least 3 in ' into a single vertex uc with the requirement
that the order of the edges adjacent to ue is the same as the order of the
edges we encountered when we traverse (' clockwise starting from an arbitrary
vertex. After removing multiple edges, the resulting graph is a tree. Note that
leaves in the original tree-like structure become leaves in the resulting graph

after the transformation. An example is shown in Figure 7.4.

We can perform a preorder numbering on leaves in the resulting tree.
All of the above steps (including the one for finding demanding vertices) can

be implemented in O(logn) time on a CRCW PRAM using O(W—Wﬁ%)
processors. The additional steps described in [NGM90] in order to guarantee
the overall optimality if we want to apply the basic algorithm more than once

are easily parallelized. Thus we have the following theorems.

178

Theorem 7.4.1 There is a linear time sequential algorithm for finding a small-
est set of edges whose addition 3-edge-connects an undirected graph. There

is also a parallel algorithm for solving this problem in O(logn) time using

O(ﬁm—mm) processors on a CRCW PRAM, where n and m are the number

logn

of vertices and edges in G, respectively. O

Theorem 7.4.2 There is an O(na(m,n) + m) time sequential algorithm for
finding a smallest set of edges whose addition j-edge-connects an undirected

graph. 0

7.5 Concluding Remarks

We have presented a simple algorithm to construct a compact repre-
sentation for all separating edge-pairs in a graph G that is not 3-edge-connected
by using compact representations for all cutpoints and separating vertex-pairs
in G. We can also use this algorithm to find a smallest 3-edge-connectivity

augmentation. Our algorithm runs in linear time sequentially. Its parallel ver-

sion runs in O(log n) time on a CRCW PRAM using O(M%) processors
given any reasonable sparse representation of the input graph. We also have
shown a simple linear time algorithm to construct a compact representation for
all separating edge-tripletsin a graph G that is not 4-edge-connected given com-
pact representations for all cutpoints, separating vertex-pairs, and separating
vertex-triplets in G. We can also use this algorithm to find a smallest 4-edge-
connectivity augmentation in the same complexity as the algorithm for building
a compact representation for all separating vertex-triplets [KTDBC91] (which

runs in in O(na(m,n) + m) time sequentially). We do not have an efficient

parallel algorithm for this problem since there is no efficient parallel algorithm

179

known for finding a compact representation for all separating vertex-triplets in

a graph.

Note that all but two of the parallel routines used in this chapter run

in O(logn) time on an EREW PRAM using O(Zt2) processors. One excep-

logn

tion is the parallel routine for computing connected components, which runs

in O(logn) time on a CRCW PRAM using O(%) processors [CV86]
given the adjacency list of the input graph, where « is the inverse Acker-
mann function. This routine can also be implemented on an EREW PRAM in
O(log nloglogn) time using O(n + m) processors [CLI3]. The other exception

is the parallel routine for performing bucket sorting, which runs in O(logn)

time on a CRCW PRAM using O(W) processors [CV86]. This rou-
tine can also be implemented on an EREW PRAM in O(logn) time using a
linear number of processors. Thus algorithms reported in this chapter can be
implemented on an EREW PRAM that run in O(lognloglogn) time using a

linear number of processors giving any reasonable sparse representation of the

input graph.

Chapter 8

Implementation of Augmentation Algorithms

In this chapter, we describe our implementation of the linear time
sequential algorithms for finding a smallest 2-edge-connectivity augmentation
[ET76] and for finding a smallest biconnectivity augmentation which is given
in Chapter 3. We also describe our implementation of an efficient parallel algo-
rithm [ET76, Sor88] for finding a smallest 2-edge-connectivity augmentation.
In addition to describing our implementation, we also provide performance data

for our code.

8.1 Sequential Implementation

To speed up our sequential implementations, we used the graph ma-
nipulation package NETPAD [DMM92]. (An introduction of NETPAD is given
in Part IT of this thesis.) The NETPAD software contains a rich set of funda-
mental graph algorithms that can be used to implement complex graph algo-

rithms. We tested our implemented algorithms on a SUN SPARC 10/41.

The organization of this section is as follows. In Section 8.1.1, we
describe the implementation and the performance data of the smallest 2-edge-
connectivity augmentation algorithm given in [ET76]. In Section 8.1.2, we
describe the implementation and the performance data of the smallest bicon-
nectivity augmentation algorithm given in Chapter 3.

180

181

8.1.1 Smallest Two-Edge-Connectivity Augmentation

We implemented the linear time sequential algorithm for finding a
smallest 2-edge-connectivity augmentation given in [ET76] (which is briefly
described in Section 7.4). After coding, we tested the performance of our im-
plementation. Since the performance depends on the number of edges added,
we needed to generate test graphs whose augmentation numbers are approxi-

mately known.

Note that the 2-edge-connectivity augmentation number of a tree is

[Q, where (is the number of leaves in the tree. Since the input graph is
converted into its 2-edge-block tree data structure before applying the aug-
mentation algorithm, we tested our program on trees. We generated our test
graph (tree) with about ¢ leaves and about w internal nodes using the following
method. We first generated an empty graph with /4w isolated vertices. Let the
first ¢ vertices be leaf-nodes and let the rest of the vertices be internal-nodes.
We randomly connected a degree-0 leaf-node with an arbitrary internal-node
until all leaf-nodes were connected. We then randomly connected a degree-0
or degree-1 internal-node with an arbitrary internal-node such that no cycle
was created. Note that the degree of some internal-nodes remained to be one
after we made all feasible connections. By doing this, we created a tree with
a total of / 4+ w nodes and at least ¢ leaves. Our experiments showed that
for w = 20, the graphs that we constructed contained about 1.1¢ leaves. The

number of internal nodes is reduced since some of them might be degree 1 after

our construction.

We tested our program on trees generated with w = 2¢. For each
value of w, we tested four different graphs and recorded the average running
time. The performance data for running our program on a SPARC 10/41

workstation is shown in Table 8.1.

182

w £ | test 1 | test 2 | test 3 | test 4 | average
(secs) | (secs) | (secs) | (secs) (secs)

500 250 0.07 0.07 0.07 0.05 0.06
1,000 500 0.13 0.10 0.13 0.12 0.12
1,500 750 0.20 0.18 0.18 0.22 0.20
2,000 | 1,000 0.25 0.25 0.27 0.25 0.25
2,500 | 1,250 0.33 0.32 0.33 0.35 0.33
3,000 | 1,500 0.40 0.40 0.42 0.40 0.40
3,500 | 1,750 0.48 0.47 0.53 0.48 0.49
4,000 | 2,000 0.57 0.57 0.57 0.57 0.57
4,500 | 2,250 0.62 0.63 0.65 0.62 0.63
5,000 | 2,500 0.70 0.72 0.72 0.73 0.72
9,460 | 2,730 0.93 0.80 0.80 0.82 0.84

Table 8.1: Performance data for finding a smallest 2-edge-connectivity aug-

mentation on a SPARC 10/41.

8.1.2 Smallest Biconnectivity Augmentation

The coding of our linear time sequential algorithm for finding a small-
est biconnectivity augmentation given in Chapter 3 required a little more work
as we had to implement several non-trivial data structures. After coding, we
tested the performance of our implemented algorithm. Since the performance
of our program depends on the number of edges added, we needed to test
our program on input graphs whose biconnectivity augmentation numbers are

known approximately.

Note that the biconnectivity augmentation number depends on the
largest degree among all cutpoints and the number of leaves in the 2-block
tree. Note also that in a 2-block tree, internal nodes consist of cutpoints and
2-blocks. We generated a tree-like structure whose 2-block tree consisted of
about (leaves, ¢ cutpoints and w internal 2-blocks using the following method.
We begin by first generating a tree T with about ¢ leaves and ¢ + w internal
nodes by the following steps. Let L be a set of ¢ isolated vertices, C' be a set

of ¢ isolated vertices, and W be a set of w isolated vertices. We first generated

183

an empty graph with the set of vertices in LUC UW. We randomly connected
a degree-0 vertex in L with a vertex in ' until all vertices in L were degree
1. We then randomly connected a vertex in ' with a vertex in W as long
as no cycle was created. The resulting graph was the tree T' that we needed
with about ¢ leaves and about ¢ 4+ w internal nodes. Our experiments with
{ = w = ¢ showed that the average number of leaves in T" was about 1.2¢. The
number of cutpoints is reduced since some of them might be degree 1 after our

construction.

Using the following method we then converted T" into a tree-like struc-
ture G such that the 2-block graph of (G is isomorphic to T'. For a vertex v in
W with degree > 1, let N(v) be the set of its neighbors. We created a simple
cycle by linking vertices in N(v) one after the other. After adding such a cycle
to T' for each vertex with degree > 1 in W, we created a tree-like structure

whose 2-block tree is isomorphic to T

We tested our programs on tree-like structures generated with w =
¢ = (. For each value of w, we tested four different graphs and recorded the

average running time. The performance data for running our program on a

SPARC 10/41 workstation is shown in Table 8.2.

8.2 Parallel Implementation

We implemented the simple PRAM algorithm for finding a smallest 2-
edge-connectivity augmentation given in [E'T76, Sor88] on a massively parallel
SIMD computer MasPar MP-1 [Mas92d]. (An introduction of the MasPar is
given in Part Il of this thesis.) This algorithm runs in O(logn) time on a
CRCW PRAM using a linear number of processors given the adjacency list of

the input graph, where n is the number of vertices in the input graph. The

184

c w £ | test 1 | test 2 | test 3 | test 4 | average
(secs) | (secs) | (secs) | (secs) (secs)

200 200 200 0.08 0.08 0.07 0.08 0.08
400 400 400 0.20 0.20 0.17 0.20 0.19
600 600 600 0.27 0.25 0.28 0.28 0.27
800 800 800 0.38 0.38 0.40 0.40 0.39
1,000 | 1,000 | 1,000 0.52 0.50 0.48 0.48 0.50
1,200 | 1,200 | 1,200 0.65 0.60 0.57 0.58 0.60
1,400 | 1,400 | 1,400 0.80 0.77 0.70 0.73 0.75
1,600 | 1,600 | 1,600 0.85 0.82 0.90 0.83 0.85
1,800 | 1,800 | 1,800 0.98 1.00 1.00 1.02 1.00
1,975 | 1,975 | 1,975 1.08 1.17 1.10 1.13 1.12

Table 8.2: Performance data for finding a smallest biconnectivity augmentation

on a SPARC 10/41.

MasPar computer that we used had 16,384 processors where each processor
is about 230 times slower than a SUN SPARC 10/41. We used the parallel
language MPL [Mas92b, Mas92c] that is an extension of the C programming
language [KR88]. (An introduction of the MPL is also given in Part II of this
thesis.) Since the MPL does not support the use of virtual processors, we
implemented the algorithm only to handle the case when the input size is no

more than the number of physical processors in the MasPar (i.e., 16,384).

After coding, we tested our programs using the test graphs generated
by the method described in Section 8.1.1. For each value of w, we tested four

different graphs and recorded the average running time. The performance data

is shown in Table 8.3.

From Tables 8.1 and 8.3, we notice that although our parallel program
had a slower rate of increase in running time than our sequential algorithm,
our parallel algorithm actually ran slower (in real time) on the largest inputs.
It may be the case that by allocating more processors, our parallel program
could run faster. In Part I, we address the issue of using virtual processors in

parallel programs.

w £ | test 1 | test 2 | test 3 | test 4 | average
(secs) | (secs) | (secs) | (secs) (secs)

500 250 0.62 0.61 0.61 0.61 0.61
1,000 500 0.78 0.84 0.82 0.76 0.80
1,500 750 0.85 0.94 0.90 0.85 0.88
2,000 | 1,000 1.02 1.03 0.91 1.03 1.00
2,500 | 1,250 1.10 1.18 1.27 1.09 1.16
3,000 | 1,500 1.14 1.14 1.22 1.08 1.15
3,500 | 1,750 1.40 1.41 1.30 1.36 1.37
4,000 | 2,000 1.65 1.38 1.52 1.47 1.50
4500 | 2,250 | 157 | 137 149 150 1.48
5,000 | 2,500 1.59 1.76 1.57 1.63 1.64
5,460 | 2,730 1.66 1.60 1.64 1.65 1.64

185

Table 8.3: Performance data for finding a smallest 2-edge-connectivity aug-

mentation in parallel on the MasPar MP-1 with 16,384 processors.

Chapter 9

Conclusion and Open Problems

9.1 Summary

In Part I, we have presented several algorithms for finding a smallest
k-vertex-connectivity augmentation, where & < 4. We also have given an effi-
cient method to transform the problem of finding a smallest edge-connectivity
augmentation into the problem of finding a smallest vertex-connectivity aug-
mentation. The approach used by our algorithms for finding a smallest vertex-
connectivity augmentation is to first consider the case when the input graph
is (k — 1)-vertex-connected. We derived a data structure based on the struc-
ture of (G to describe all necessary information needed for our augmentation
algorithm. This data structure represents all separating k-sets and all maximal
subsets of vertices that are k-vertex-connected. For example, for & = 2, we used
the well-known block tree structure [Har69, Tut66]. For k& = 3, we modified
the well-known tree of triconnected components [Tut66, HT73] to obtain the
3-block tree. For k = 4, the data structure was the 4-block tree [KTDBC91].

We observed that there is a natural correspondence between the aug-
mentation of the input graph and the augmentation of its k-block tree. Using
this property, our augmentation algorithm worked on the derived data struc-
ture instead of working on the original graph. We first defined a lower bound
for the augmentation number based on the structure of the k-block tree. Then
we proved that this lower bound could be reduced by one by properly adding

an edge. We then gave an efficient implementation of this addition of edges.

186

187

By doing this, we have given an efficient algorithm for finding a smallest aug-

mentation.

The case when the input graph is not (k—1)-connected required more
work. Basically, we first extended the k-block graph data structure for an
input graph that is not (k — 1)-vertex-connected by a recursive decomposition
to obtain an ¢-block graph from each (¢ — 1)-block in an (¢ — 1)-block graph,
1 <2 < k. Then we derived a simple lower bound for the augmentation
number and gave an inductive proof to show that this given lower bound is
always achievable. We were able to obtain efficient sequential and parallel
algorithms to find such an augmentation for the case when k = 3. We feel that
a similar approach can be used to extend our result for £ = 4. Although the
algorithm for the case k& = 3 was simple, the proof of correctness was rather

involved.

9.2 Open Problems

Although a polynomial time approximation algorithm is known for
finding a smallest k-vertex-connectivity augmentation on a (k — 1)-vertex-
connected graph, for an arbitrary k [Jor93b], the problem remains open for
k > 5 if one needs to solve the problem exactly in polynomial time. We feel
that the strategy derived in this thesis might be useful in solving this prob-
lem. For this, further insights into the structure of a k-vertex-connected graph,

k>4, (e.g., [CBKT93, Kan88, Mat72, Mat76, Mat78]) will be needed.

Part 11

Implementation of Efficient Parallel Graph
Algorithms

188

Chapter 10

Preliminaries

Graphs play an important role in modeling the underlying structure of
many real-world problems. Over the past couple of decades, efficient sequential
algorithms have been developed for several graph problems and have been
implemented on sequential machines (e.g., [DMM92, MN89]). The NETPAD
system [DMM92] at Bellcore is a general tool for graph manipulations and
algorithm design that facilitates such implementations. More recently, several
research results on efficient parallel algorithms have been developed [J4J92,
KR90, Lei92, Qui87], not much implementation has been done. In Part II,
we describe our work on implementing efficient PRAM graph algorithms on a

massively parallel SIMD computer, the MasPar MP-1.

The organization of this chapter is as follows. Section 10.1 gives a
description of our implementation strategy. Section 10.2 describes the MasPar
hardware and software. Section 10.3 describes the set of graph algorithms
that we have implemented and the strategy we used in implementing them.
Section 10.4 describes the mapping between the PRAM model and the MasPar.

Section 10.5 gives a brief overview of the rest of the chapters in Part II.

10.1 Implementation Strategy

Several strategies can be used to implement parallel algorithms on a
parallel computer. One possible strategy is to implement different algorithms

for different architectures. Since parallel machines are widely diverse in their

189

190

architectures, one can take advantage of the special properties offered by an ar-
chitecture and fine-tune the algorithms to run well on a particular machine. For
parallel algorithms using this approach, see [Lei92, Qui87]. However, this time-
consuming process must be carried out each time a new architecture arrives.
This approach may be useful for some of the very important subroutines used
in the machine (e.g., sorting [BLM*91, PS90]). However, for complicated com-
binatorial problems, reinventing different algorithms for different architectures
tends not to be a feasible solution. As the problems get more complicated, it
takes longer time to derive efficient algorithms. Further, we feel that this is not
a very good strategy as one often discovers that the fundamental algorithmic
techniques underlying the parallel algorithms for most problems are indepen-
dent of the particular parallel machine being used. Thus one should utilize

these basic techniques to assist the implementation of parallel algorithms.

In view of the above, a natural strategy is to use parallel algorithms
developed on an abstract parallel machine model. Several abstract models that
are closely related to real parallel machine architectures have been proposed
[Ble’9, DNS81, GMR93, HS86, Sch80, CKP*93]. Instead of using a new model,
we have performed a direct implementation of parallel algorithms based on
the popular PRAM model [J4J92, KR90, Rei93]. Although the PRAM is an
idealized theoretical model that does not capture the real cost of performing
inter-processor communications on the MasPar, we believe that it provides a
good abstract model for developing parallel algorithms. Parallel algorithms
developed on the PRAM model are often very modular in structure (or have
parallel primitives). Problems are solved by calling these parallel primitives.
For solving undirected graph problems, a set of parallel primitives required for

constructing an ear decomposition has proved to be very useful [Ram93, Vis91].

191

Our parallel implementation follows this approach. We first built a kernel
which consists of commonly used routines in parallel graph algorithms. Then
we implemented efficient parallel graph algorithms developed on the PRAM

model by calling routines in the kernel.

Our experience with implementing PRAM graph algorithms on the
MasPar MP-1 as will be reported in Chapters 11, 12, and 13 supports our
viewpoint that efficient PRAM algorithms are adaptable to run on real ma-
chines. The basic primitives should be fine-tuned for the real machine (or use
algorithms whose time and processor complexities have been throughout ana-
lyzed on a more accurate model, e.g., [CKP*93]), but the overall structure of

a complex PRAM algorithm can be mapped directly on to the real machine.

10.2 Programming Environment

The MasPar computer [Mas9l¢] is a fine-grained massively parallel
single-instruction-multiple-data (SIMD) computer. All of its parallel processors
synchronously execute the same instruction at the same time. A simplified

version of its architecture is shown in Figure 10.1.

The MasPar has a front end processor running the Unix operating sys-
tem [RT74] and a Data Parallel Unit (DPU) for execution of parallel programs.
The front end machine is a micro-VAX workstation. The DPU consists of an
Array Control Unit (ACU) and 16,384 Processor Elements (PE’s). The ACU
is a special purpose processor for controlling the execution of all of the PE’s.
Programs are stored in one special local memory bank of ACU and broadcast
to each PE simultaneously. The architecture of the MasPar allows very effi-
cient broadcasting from the ACU to all PE’s. Since the ACU is about 10 times
faster than each individual PE [Mas91c], the other purpose of the ACU is to

Front End Processor

local

DPU

ACU

(Array Control Unit)

local memory

Broadcast from ACU

Sequentialize I/0 request from PE

ACU-PE I/O bus interface

@@ @

@
Y X
local memory
i s
—*
. 000
é .
o Xnet connections °
L4 " . .
=
- o000
Global Router

Figure 10.1: System architecture for the MasPar computer.

192

193

perform simple local computations and broadcast the results to all PE’s. The
ACU is a special processor that is designed for load and save operations, and
hence the ACU might not be very efficient in computing complex arithmetic
operations. For performing global arithmetic operations, it appears that the
preferred method is to perform the computations on the front end processor

and have the front end transfer the results back to the ACU.

All of the PE’s are organized as a two-dimensional matrix. In Fig-
ure 10.1, nezproc = 128 and nproc = 16,384 for our machine, but these numbers
may be different at other installations. Each PE consists of a special processor
and a bank of local memory (about 64 kilobytes in our system). Upon receiving
an instruction from the ACU, the processor will execute the instruction on its
own local data. Each PE is connected to its 8 neighbors (toroidal wrapped) in
a connection scheme called XNET. All PE’s are also connected via a global
router. Local data inside each PE can be exchanged through the global router
as well as the local XNET. The XNET configuration is faster, but requires that
all PE’s receving data from the same direction. For transmitting a 32-bit data
through distance 1, the XNET communication is slightly less than 100 times
faster than the time needed to go through the global router [Mas91b]. During
the computation, it might be necessary for the PE’s to access the local memory
of the ACU (about 1 megabytes). Such I/O requests are sequentialized and

carried out one at a time. This process is very time-consuming.

The MasPar system provides a fast way of transferring data between
the local memory of the front end and the local memory of the ACU. It
also provides a fast way of transferring data between the local memory of the
front end and the local memory banks of the PE’s. In order to perform the
latter transfer, the set of PE’s to receive data from the front end must form a

rectangular block. More details are described in Chapter 11.

194

We used the MasPar Parallel Language (MPL) [Mas91a, Mas91b] to
implement our algorithms. MPL is an extension of the C language described
in [KR78]. In addition to all of the standard C language features, it allows the
user program a set of PE’s to execute the same instruction on their own local
data. MPL leaves the responsibility of processor allocation to the programmer.
During the execution of the MPL program, the programmer must specify the set
of PE’s that are to execute the current instruction. MPL also allows the user to
instruct the ACU to do local computations. MPL takes two types of input files.
The first is a program file with a suffix “.c” which indicates that it is a pure C
language program. MPL compiles this program and generates executable code
that can be run on the front end. The second file is a program file with a suffix
“.m” which indicates that it is a C language program that includes extended
features for doing operations on the PE’s. MPL compiles the program and
generates executable code that can be run on the DPU. In the “.m” program,
one can allocate local data on each PE by adding the keyword plural to a
C data declaration statement. Variables declared without the plural keyword
are allocated on the ACU. Any expression that involves a plural variable is
computed on each active PE. An expression that contains no plural variables

is computed on the ACU.

Using the MPL programming language, each PE can perform opera-
tions on 32-bit words and also on 64-bit words. (A 64-bit word can be declared

by using the MPL data type long long.)

10.3 Parallel Graph Algorithms

In designing sequential graph algorithms, depth-first search and
breadth-first search have been used as basic search strategies for solving vari-

ous graph problems [Tar72]. Unfortunately, no efficient parallel algorithms are

195

known presently for these two search techniques [KR90]. Hence we are unable to
obtain efficient parallel algorithms by parallelizing sequential algorithms based
on depth-first search or breadth-first search. Instead, an alternative search tech-
nique called ear decomposition has proved to be a very useful tool for designing
parallel graph algorithms [KR91a, KR90, MSV86, MR92, Ram93, RR89]. Com-
bined with an efficient parallel routine for finding connected components [AS87]
and the Euler tour technique [TV85], this gives efficient parallel algorithms for
several important problems on undirected graphs which include various con-
nectivity problems [KR91a, FRT93, MR92, Ram93|, st-numbering [MSV86],
planarity testing and embedding [RR89], finding a strong orientation and find-
ing a minimum cost spanning forest. Figure 10.2 illustrates the building blocks
for designing parallel graph algorithms using ear decomposition, the Euler tour

technique and the routine for finding connected components.

Our parallel implementations followed this approach. We first built
a kernel which consists of commonly used routines in parallel graph algo-
rithms. Then we implemented efficient parallel graph algorithms developed
on the PRAM model by calling routines in the kernel.

10.4 Mapping of the PRAM Model onto the MasPar
Architecture

We map part of the local memory in each PE and the local memory
of the ACU onto the PRAM global memory. The major difference between the
PRAM model and the MasPar architecture is the time spent on global memory
accessing. The MasPar allows constant time broadcasting of the contents of
any single local memory location from the ACU to all PE’s. However, it takes
O(P) time for P PE’s to access the local memory of the ACU. Hence it is not

efficient to map the global memory in the PRAM model to the local memory of

196

Euler tour connected
technique components

l

tree

functions

/

open ear ear
decomposition decomposition
biconnected
components strong)
R . spanning
orientation forest
s-t
numbering ‘
2-edge .
connected minimum-cost
triconnected components spanning forest
components
3-edge
connected
four-vertex planarity components
connectivity

Figure 10.2: Parallel graph algorithms based on algorithms for connected com-
ponents, the Euler tour technique and ear decomposition.

the ACU. In addition to the problem of efficient memory access, the size of the
local memory of the ACU is not large enough to put all the global data we need.
Instead, we partition the local memory bank of each PE into two halves. One of
them, which we call the global data bank of each PE, is mapped onto part of the
global memory bank and the other half, which is called the local data bank of
each PE, is used for storing local data for local computations. The entire local
memory of the ACU will be part of the global memory of the PRAM model.
When implementing a PRAM algorithm on the MasPar architecture, we put
information that is most frequently used by a certain RAM into the global data
bank of that particular PE. We put common data used by all the PE’s into
the local memory bank of the ACU and arrange for the ACU to broadcast the

needed data to all PE’s. We illustrate the mapping in Figure 10.3.

197

Figure 10.3: Mapping from the MasPar architecture to the PRAM model.

10.5 Overview

The organization for the rest of the chapters in Part 1 is as follows. In
Chapter 11, we present our first implementation of a set of parallel algorithms
for basic graph problems on the massively parallel machine MasPar, together

with some performance data. We also describe the interface we developed for

these algorithms with NETPAD.

The implementation of parallel graph algorithms described in Chap-
ter 11 has the constraint that the maximum input size is restricted to be no
more than the number of physical processors on the MasPar. The MasPar
language MPL that we used for our code does not support virtual processing.
In Chapter 12, we describe techniques for implementing efficient parallel al-
gorithms on the MasPar MP-1 with virtual processing. We first present our
data allocation scheme for virtual processing and a set of translating rules
for rewriting a code that uses no virtual processors into a code with virtual
processing. We then describe the implementation and fine-tuning of a set of

commonly used routines with virtual processing. In coding these routines, we

198

tried different underlying algorithms. We present the performance data for our
implementations. We also present the performance data of our sequential code
and compare it with the performance data of our parallel code. Our experi-
mental data suggests that by using our techniques, one can implement parallel
algorithms with virtual processing efficiently on the MasPar using the MPL

language.

Using the techniques described in Chapter 12, we re-coded and fine-
tuned our earlier code for parallel graph algorithms (Chapter 11) to incorporate
the use of virtual processors. This work is described in Chapter 13. Under this
implementation scheme, there is no limit on the number of virtual processors
that one can use in the program as long as there is enough main memory to
store all the data required during the computation. We also give two general

optimization techniques to speed up our computation.

We tested our code with virtual processing on test graphs with various
edge densities. We also compared the performance data for our parallel code
with the performance data of our sequential code for these problems. We found
that the extra overhead for simulating virtual processors is moderate and the
performance of our code tracks theoretical predictions quite well, although real-
time speed-ups are quite small since the MasPar processors are rather slow. In
addition, our parallel code using virtual processing runs on much larger inputs

than our sequential code.

Finally, we summerarize our work and list directions for future work

in Chapter 14.

We used the following conventions for the names of subroutines pro-
vided by the MPL and our implemented routines in Part II. We use the type-
writer type style in INTRX [Lam86] for the names of these MPL subroutines,

199

e.g., psort. The names for the MPL subroutines without virtual processing
do not have the prefix letter “v”, e.g., psort. We add a prefix letter “v” to
the name of an MPL subroutine without virtual processing for the name of
the same subroutine when virtual processing is allowed, e.g., vpsort means an

implementation of psort with virtual processing.

Chapter 11

Implementation of Parallel Graph Algorithms without
Virtual Processing

11.1 Introduction

This chapter summarizes a project we undertook at Bellcore dur-
ing the summer of 1991 for implementing parallel graph algorithms. In this
project, we implemented efficient parallel algorithms for solving several undi-
rected graph problems using the massively parallel computer MasPar [Mas91c]
at Bellcore. In addition, we also built an interface between the graph algo-
rithm design package developed at Bellcore called NETPAD [DMM92, Mev9la,
Mev91lb, MDM91] and our parallel programs. Our purpose was to experiment
and set up programming environments for implementing parallel algorithms on

massively parallel computers.

The organization of this chapter is as follows. Section 11.2 describes
our implementation environment and an interface that we have built between
NETPAD and our parallel programs. Section 11.3 describes the implementa-
tion details of our parallel graph algorithms. Section 11.4 gives speed-up data
of our parallel implementations and an analysis of their performance. Finally,
Section 11.5 gives concluding remarks. Work reported in this chapter is based

on material presented in [HRD92].

11.2 Implementation Environment

In this section we describe the environment in which we implemented

several efficient PRAM graph algorithms. In Section 11.2.1, we discuss the
200

201

general issues involved in implementing PRAM algorithms on the MasPar.
Our parallel implementations are integrated with a graph algorithm design
package called NETPAD [Mev9la, Mev91lb, MDM91]. Section 11.2.2 describes
the NETPAD software and our interface between the NETPAD and our parallel

programs.

11.2.1 Mapping Efficient PRAM Algorithms for Graph Problems

Since the MPL programming language requires that the user takes
care of the processor allocation problem, we use the simple strategy of allocat-
ing one PE for a node and an edge in our implementation. Hence our imple-
mentation can only handle graphs of size less than or equal to the number of
PE’s in the MasPar. We place data generated for each node or edge into the
global data bank of the PE that is in charge of the node or edge. Global vari-
ables (for example, the total number of nodes and the total number of edges)
are put into the local memory of the ACU. Each PE can access its global data
bank efficiently under the mapping; however, global memory accesses to global
data banks of other PE’s will require going through the global router to get
the data. In Chapter 10, we mentioned that a faster way of getting data from
the other PE is by going through the XNET configuration. We can use the
XNET configuration if PE; wants to read the global data bank of PE,,., for
all processor elements PE;, where ¢ is a constant. Some of the global memory
accesses required by the PRAM algorithm fall into this category, as in the case
when each PE obtains the data from the PE with an ID that is one greater
than itself. In our implementation, we always try to take advantage of the

XNET configuration whenever possible.

202

List Ranking on the MasPar One problem that we often face in mapping
PRAM graph algorithms onto the MasPar architecture comes from the fact that
we usually define the graph using the edge list data structure (an edge list of an
undirected graph (i is a list of all the edges in G). The PRAM algorithms often
link all the edges or all the nodes in a special ordered linked list and perform
list processing computations such as list ranking [KR90] (a list ranking on a
linked list requires each element in the list to compute the suffix sum of all the
elements in front of it; the sum could be any associative operator). The list
ranking problem on a list of length n can be solved by a sequence of O(logn)
global memory accesses on a PRAM. These global memory accesses can be
implemented only as requests to the global router, since elements in a list are

not structurally allocated such that we can use the XNET configuration.

An operation on an array of elements called prefiz sums [LF80, Sch80]
(or scan [Ble89, Mas91a]) is to compute the prefix sum of all the elements before
each array element; the prefix sum operator can be any associative operator.
This computation is similar to list ranking, except that the input is in an array
rather than a linked list. The prefix sums problem can be solved by a sequence
of O(logn) global memory access on a PRAM. In implementing the PRAM
prefix sums algorithm on the MasPar, if we put the ¢th element of the array into
the :th PE, then global memory accesses can be structured in a way that we can
make use of the XNET connection. There is already such a routine called scan
which is implemented in MasPar system library [Mas91a]. The scan operation
is very fast compared to the list ranking algorithm we implemented. Note that
a linked list can be converted into an array by first performing a list ranking
computation and then rearranging the list elements into an array using a global

memory write. Since the list ranking operation is one of the most commonly

203

0.05 T T T T T T T T
EREW List Ranking —>—
Prefix Sum (Scan) =—
0.045 - Sequential List Ranking on the ACU (* 1/10) ——]|
CREW List Ranking (* 1/10) &—
0.04 B
0.035 1
0.03 B
n
ksl
<1
o 0.025 1
[9)
9]
1]
0.02 1
0.015 B
0.01 | B
0.005 1
o L2 t t $ + t t $ $
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

List Size

Figure 11.1: Relative performances of sequential list ranking on the ACU,
parallel CREW list ranking, parallel EREW list ranking and the prefix sums
(scan) operation. In order to fit all data on the same chart, the data for
sequential list ranking and CREW list ranking has been divided by 10. The
ACU is about 10 times more powerful than each individual PE. Thus on an
input list of size 16,384, prefix sums on an array gains a speed-up factor of
about 4,000, while EREW list ranking has a speed-up factor of about 380. The
prefix sums operation is more than 10 times faster than the EREW list ranking.

used subroutines in PRAM undirected graph algorithms, we convert a linked
list to an array if several list ranking operations are to be performed on the
list. Figure 11.1 compares the relative speed-up of the list ranking program

and the scan (prefix sums) operation.

Concurrent Global Memory Access on the MasPar Some of the PRAM
algorithms that we have implemented are based on concurrent read and/or
concurrent write PRAM models. If a PRAM global memory concurrent read

request is sent to the global router, the global router will automatically satisty

204

all concurrent read requests. To understand the behavior of the concurrent
read operation executed by the global router, we implemented a routine to
transform concurrent read requests to exclusive read requests using the stan-
dard simulation algorithm (see, e.g., [KR90]). We found that the performance
of our parallel algorithms when using the global router and using our simulated

concurrent read routines is very similar.

For concurrent write, the global router allows more than one PE to
write into the global memory bank of any particular PE. However, the result
of the concurrent write is unpredictable. It does not allow any concurrent
write into the local memory bank of the ACU. One can use the system library
routine sendwith [Mas9la] to implement concurrent write. The sendwith
routine allows each PE to send data to the global memory bank of any PE. If
there is more than one PE trying to send data to any one PE at a given time, all
of these data are collected and an associative operator specified by the routine
is performed to compute the result, which is then given to the destination PE.
For example, a sendwithMax32(item, destination) command tells each active
PE to send the 32-bit variable ¢tem in its own local memory to the PE with
the ID equal to its local variable destination. If there are several PE’s trying
to write into any one PE, the result is the maximum value of all variables sent.
The sendwith operation uses a sorting routine, several non-conflict (EREW)
global memory accesses, and a scan operation. The sendwith operation can

be performed in O(log p) time on an EREW PRAM model with p processors.

In our implementation of PRIORITY CRCW algorithms, we used the
global router to satisfy concurrent read requests and the sendwith operations

to implement concurrent write requests.

205
11.2.2 NETPAD Interface

The NETPAD software [Mev9la, Mev9lb, MDM91] is a general tool
for graph manipulations and graph algorithm design. It uses the X-window
system [Nye88], and one can edit graphs and display them easily. The NETPAD
system also provides a rich set of basic graph manipulation operations. By
calling these operations in one’s own program (preferably written in C [KR78]),

users can implement their own graph algorithms easily.

NETPAD was used in the following ways to support the design of
our parallel graph algorithm packages. It provided routines for generating test
graphs. We also used it as a standard interface to input graphs generated
by other packages. Most importantly, we used it to display the output of
our parallel graph algorithms. Since NETPAD has been designed primarily
for supporting sequential computations, it was necessary to build an interface
between it and the parallel programs that we implemented on the MasPar. We
describe the interface in the following paragraphs. Figure 11.2 gives a schematic

diagram of this interface.

For each MasPar routine that we implemented, we wrote a NETPAD
external program in C language (with a suffix “.c” in its filename) and included
it in one of the NETPAD pop-out menus. While running NETPAD software in
the front end, this external program would be invoked through the NETPAD
system. The NETPAD system uses the Unix fork system call to create another
process in the front end to run the external program. The graph in the current
window is saved into a file and the name of that file is passed to the forked
process. The external program first uses the NETPAD system routines to
retrieve the input graph from the input file. The NETPAD system routines are

also used to collect the edge list for the graph and store it in an array inside

running on the Front End

r’—/‘\‘

running on the DPU

normal

206

transfer procedure call
of fork - =
 ——
control
callrequest
NETPAD ear.c —= i callear.m earsub.m
convert the input use copyln
file into an edge list or blockin perform the
. to get data :
in the local memor: computation
Y from the front end
transfer the input graph edge list contained
of is contained in a file in the arguments
 —— —
data

the function call structure for invoking MasPar routines from the NETPAD

it return
(transfer of control) e
convert the result use copyOut
in the local memory return or blockOut
. NETPAD fil to transfer data
to @ . .
(transfer of data) the output graph mod re to the Front End function return
is contained in a file values

-

the function call return structure after the execution of the MasPar routines

Figure 11.2: Interface for calling the MasPar routines for executing the ear
decomposition algorithm from NETPAD.

the local memory bank of the front end. (The external program that we wrote
can also be executed independently from the NETPAD system. As long as we
have a file that describes the input graph using the NETPAD format, we can
run the external program under the Unix system without going through the

NETPAD system.)

After the external program collects the edge list, we can request a
MasPar MPL program (with a suffix “.m” in its filename) to be executed in the
DPU using a special MasPar system call named callrequest. An interfacing
MPL program must be written for each MasPar routine that we want to use.
This routine is invoked by the external program running on the front end by
using callrequest with arguments describing memory addresses (of the front

end) that will be used by the DPU. The MPL program first uses the system

207

routine copyIn to copy the contents of any consecutive block of memory in the
front end to the local memory of the ACU. Then it uses the system routine
blockIn to copy the contents of any consecutive block of memory in the front
end to each PE. Routine blockIn takes two sets of parameters. The first set
describes the starting location of the front end memory to be copied and the size
of each memory cell. The second set of parameters describes the rectangular
block of PE’s that are to receive data. The routine puts the ith cell into the ¢th
PE within the block. The MPL routine then calls the MasPar library that we
have implemented to perform the actual computations for the parallel graph

algorithms.

After completing the MasPar computations, the MPL interfacing pro-
gram uses the system routine copyOut to copy any data in the local memory
of the ACU to the local memory of the front end. A similar routine blockOut
transfers data from a rectangular block of PE’s to a consecutive block of mem-
ory locations in the front end. After termination of the MPL interfacing routine,
the external program running on the front end takes the output graph in its lo-
cal memory and writes the output graph into a file using the NETPAD format.
The external program exits and sends a signal to the NETPAD system. The
NETPAD system gets the output file and displays the graph on the drawing

window.

In Figure 11.2, we illustrate this interface by using an example of call-

ing a MasPar routine to perform ear decomposition [Ram93] from NETPAD.

11.3 Owur Implementation of Parallel Graph Algorithms

In this section, we describe the parallel graph algorithms we have
implemented. In Section 11.3.1, we describe the data structures used in im-

plementing the algorithms. We give the structure of the library of programs

208

we have implemented, along with a brief description of techniques used for

fine-tuning each program in Section 11.3.2.

11.3.1 Data Structures

Array and Linked List We map a global memory array used in a PRAM
algorithm onto the MasPar by putting the ith element of the array into the ¢th
PE. We map a linear linked list used in a PRAM algorithm by putting each
element in the list into a different PE. Pointers in PRAM are replaced by PE
ID’s.

Tree We represent an edge in an undirected tree by two directed edges with
opposite directions. A tree is represented by a list of directed edges. In im-
plementing the tree data structure on the MasPar, we put one directed edge
in one PE with the requirement that the set of edges that are incoming to the
same vertex have to be allocated in a segment of PE’s with consecutive 1D’s.
Using this representation, we can use the XNET configuration to perform the
interprocess communications needed for computing an Euler tour on a tree.
Since computing an Euler tour is one of the most commonly used routines for
performing tree-based parallel computations, we save time by using this type

of mapping.

Undirected Graph A general undirected graph is also represented by a list
of edges. Fach edge has two copies with the two endpoints interchanged. On
the MasPar, we put an edge on a PE with the requirement that the two copies

of the edge have to be located in adjacent PE’s.

Let the input graph contain n vertices and m edges. We number

vertices from 1 to n. Since we have to take care of processor allocation when

209

using the MPL programming language, we use the following method to allocate
processors. The PE with ID equal to 7 performs computations for the :th vertex
in the PRAM algorithm. Although the PE’s of the MasPar are numbered from
0, we do not use the PE with the ID 0 for convenience of programming. Each
edge has two copies which have consecutive ID’s. The PE with ID equal to @
performs computations for the :th edge in the PRAM algorithm. Under this
scheme, our current implementation can perform computations on graphs with

p— 1 vertices and L%J edges, where p is the number of PE’s on the MasPar.

11.3.2 The Parallel Graph Algorithms Library

To build our parallel graph algorithms library, we first wrote a kernel
that includes all of the commonly used subroutines for designing parallel graph
algorithms. Then we built our graph application programs by calling routines
in the kernel. The structure of the whole library is shown in Figure 11.3. We

first describe routines in the kernel.

Routines in the Kernel All of these routines are based on PRAM algorithms
that run in O(log n) time using n processors for an input of size n. These are
not optimal algorithms, but they are within an O(logn) factor of optimality,
and they are very simple. Our implementations were only for input of size less

than 16,384, so the overall optimality was not a serious problem.

1. List ranking. We implemented EREW PRAM list ranking routines that
compute the rank of each element in a list, where each element in the list
is stored in a different PE with a pointer that points to the ID of the PE
that stores the next element in the list. These routines require O(logn)

global memory accesses on a list of n elements.

210

Figure 11.3: The structure of the routines we built for the parallel graph algo-
rithm library: The kernel of the library will be used by the application routines.
An arrow from one node to another node means the routine at the tail of the
arrow (upper) will be used by the routine at the head of the arrow (lower).

211

2. Rotation. These routines rotate the data stored in the PE with ID ¢
to the PE with ID (¢ + d) mod p, where d is a constant and p is the
number of PE’s in the system. The rotation routines make use of the
mesh-connected XNET connection and are faster than implementing the
same functions using the global router. These routines require 2 XNET

communications.

3. Segmented rotation. We store data in each PE and partition PE’s into
sequences of consecutive segments. These routines rotate the data stored
in each PE within each segment. Data within each segment are rotated in
a way similar to the rotation routines described in (2). These routines use
a constant number of XNET communications and non-conflict (EREW)

global memory accesses.

4. Range minimum. Let v be a local variable stored in each PE. We build
a table such that given a starting ID s; and an ending ID e; in each PE,
we can compute the minimum value of all v’s from PE s; to PE ¢; using
only one global memory access. For this, we implemented the O(logn)-
time O(n)-processor PRAM algorithm in [TV85] for solving the range
minimum problem on n elements. In this algorithm, the n elements are
stored in an array A. We are required to build a two-dimensional array
Wi,], such that Wi, j] = minj;' A[i + k], for all 0 < j < [logn]
and 1 <1 < n—2 +1. We construct the two-dimensional array by
storing all elements of {W{i,j7] | 0 < 7 < [logn]} in the ith PE. Thus
each PE has a one-dimensional local array. Since each global memory
access is very structured in the algorithm for building the table, we can
use XNET communications to implement global memory accesses used

in this algorithm. Let k; be the least integer such that 2% is greater than

212

or equal to % To process each query, a PE with ID i reads Ws;, k]
and Wle; — 2% 41, k;] through the global router and returns the minimum

of the two values.

5. Euler tour construction [TV85]. Given a tree represented by an ad-
jacency list, we store each edge of the adjacency list in a different PE.
Edges that are adjacent to a vertex are stored in consecutive PE’s. By
replacing each undirected edge between two vertices with two directed
edges of opposite directions, the algorithm returns an Fuler tour for the
input tree by building a linear linked list. The routine uses the segmented
rotation routines, list ranking routines, rotation routines and one global

memory access.

6. Preorder numbering. Given a tree, we assign a consecutive preorder
numbering for its vertices starting from 1. To implement this, we have

to use list ranking and a constant number of global memory accesses.

7. Least common ancestor. This routine finds the preorder number of
the least common ancestor for any given pairs of vertices in a rooted tree.
Each PE stores two vertex 1D’s of the tree. For each PE, the routine
returns the vertex which is the least common ancestor of the two vertices
in the input rooted tree. The routine uses the range minimum queries

and a constant number of global memory accesses.

Graph Application Routines We now describe several graph algorithms

that we implemented using the above kernel.

1. Connected components. We implemented the CRCW PRAM algo-
rithm described in [AS87]. The PRAM algorithm runs in O(logn) time

213

using O(n 4+ m) processors on a graph with n vertices and m edges. The
concurrent read operation was implemented by using the global router.
The concurrent write operation needed in the algorithm was implemented
by the sendwith operation. After the execution of the algorithm, the ¢th
PE gets a number indicating the connected component containing the
1th vertex. The component number is the least vertex number in the

connected component.

. Spanning forest. We modified the algorithm in [AS87] for finding con-
nected components to find a spanning forest of the input graph. The orig-
inal algorithm partitions the set of vertices into a set of disjoint sets such
that vertices in each set are in the same connected component. Initially,
the algorithm puts a vertex in each set. As it executes, the algorithm
merges two sets of vertices if they are in the same connected component.
Our program selects an edge connecting a vertex in one set to a vertex

in the other set while merging these two disjoint vertex sets.

. Minimum cost spanning forest. Given an input graph with an integer
weight assigned on each edge, we modify the algorithm in [AS87] for
finding connected components to find a minimum cost spanning forest for
the input graph. This algorithm also partitions the graph into disjoint
sets of vertices. In addition, for each current set of vertices, we compute
a minimum-cost edge with exactly one endpoint in the set using the
sendwith operation. This edge determines which other set of vertices is
to be merged with its set. Once the merge is completed, the edge that
caused the merging is marked as one of the edges in the minimum cost

spanning forest.

214

4. Ear decomposition of a two-edge-connected undirected graph.
We implemented the PRAM parallel algorithm in [Ram93] for finding an
ear decomposition by calling the MasPar system sorting routine, routines

in the kernel and the routine for finding a spanning forest.

5. Open ear decomposition of a biconnected undirected graph. We
implemented the PRAM parallel algorithm in [Ram93] for finding an open
ear decomposition by calling the MasPar system sorting routine, routines
in the kernel, the routine for finding a spanning forest, and our parallel

routine for finding an ear decomposition.

6. Strong orientation of a two-edge-connected undirected graph.
We first find an ear decomposition for the input graph. Then we direct
the edges of each ear so that each ear forms a directed path or a directed
cycle. Observe that the ear decomposition algorithm first finds a rooted
spanning tree T'. The edges in an ear are of the form (vy,vs), (ve,vs),

oy (po1, k), (Ve), (e teet), (Upeq,Up—g), ooy (U2, uq), where (1)
(v;,vi11) is a tree edge and v; is the parent of v;11 in T, for 1 <1 < k; (2)
(ip1,u;) is a tree edge and w;1q is the parent of u; in T, for 1 <7 < r;
(3) (vk,u,) is a non-tree edge. Thus we direct every non-tree edge (u,v)
from u to v where u has a smaller ID than v. Then we assign directions
to tree edges in such a way that the edges in an ear form a directed path

or directed cycle and the first two ears together form a directed cycle.

7. Cut edges. We first find a rooted spanning tree T' for the input graph
(. (The current version of the program requires (¢ to be connected.) A
cut edge is a tree edge (u,v), where u is the parent of v and there is no

non-tree edge (x,y) in GG such that either « or y is a descendant of v or

215

equal to v and the least common ancestor of x and y is an ancestor of u or
equal to u. This can be implemented by using the Euler tour technique

and the range minimum queries.

11.4 Performance Data

In this section, we present performance data for our parallel pro-
grams. In Section 11.4.1 we first describe the set of sequential algorithms that
we have implemented corresponding to the parallel graph algorithms given in
Section 11.3.2. Then in Section 11.4.2, we describe the way we tested and
made measurements on the running time of the sequential programs and their
parallel counterparts. We obtained their CPU running time and computed the
speed-up factor between our parallel programs and sequential programs. This

data is presented and analyzed in Section 11.4.4.

11.4.1 Sequential Algorithms

After we implemented the parallel graph algorithms library, we also
implemented the following sequential graph algorithms using NETPAD.

1. A recursive version of depth-first search for finding connected compo-

nents.

2. A routine for finding all cut edges in the graph based on the recursive

version of depth-first search [Tar72].

3. A routine for finding a strong orientation based on the recursive version

of depth-first search [Tar72].

4. A routine for finding an ear decomposition based on the recursive ver-
sion of depth-first search [Ram93]. This routine also finds an open ear

decomposition on a biconnected graph.

216

5. Kruskal’s algorithm [Tar83] for finding a minimum cost spanning forest.

All but the last of the above five routines are based on depth-first search with
some special bookkeepings. The routine for finding an ear decomposition also
needs a linear time bucket sort routine. For depth-first search, finding cut edges
and finding a strong orientation, the running time is linear in the size of the

graph (with a very small constant factor).

The routine for finding an ear decomposition runs in linear time, but
has a slightly larger constant factor because of the usage of the bucket sort
routine. Kruskal’s algorithm for finding a minimum cost spanning forest runs
in O(n+mlogn) time on an input graph with n vertices and m edges. Although
faster algorithms are known for this problem [Tar83], we implemented Kruskal’s

algorithm because of its simplicity.

11.4.2 Testing Scheme

We ran our sequential programs a SPARC II workstation with 32
megabytes of main memory. We wrote a random graph generator using NET-

PAD and generated random graphs for various input sizes.

We tested our programs on graphs with more edges than vertices. To
generate a random graph with n vertices and m edges, we first generated an
empty graph with n vertices. Then we added one edge at a time where each
edge being chosen with uniform probability until all m edges were generated. To
generate a connected test graph with n vertices and m edges, we first generated
an empty graph with n vertices. Then we constructed a spanning tree by adding
edges to connect different connected components with each edge being chosen

with uniform probability over all candidate edges. Finally, we randomly added

217

edges until the graph contained m edges. For testing the algorithm for finding
a minimum spanning forest, we assigned a random integer cost ranging from 0
to 999 to each edge in the graph with each number being equally likely to be

chosen (with repetition).

We generated a biconnected test graph with n vertices and m edges by
first generating an empty graph with n vertices. We then chose a random length
k,3 <k <n,and k isolated vertices at random. We randomly permuted these
k vertices and constructed a simple cycle by adding an edge between every
pair of adjacent vertices in the random permutation and by adding an edge
between the first and last vertices in the permutation. After that, we added
non-trivial open ears of random lengths to connect all isolated vertices. To add
a non-trivial open ear, we chose a random length [, 1 <! < z, where x was the
number of remaining isolated vertices. We randomly picked two non-isolated
vertices u and v (without repetition). We then randomly permuted [isolated
vertices and constructed a simple path by adding an edge between every pair of
adjacent vertices in the random permutation. We added an edge between u and
the first vertex in the above permutation and another edge between v and the
last vertex in the above permutation. After connecting all isolated vertices, we
randomly added edges until all m edges were generated. A 2-edge-connected
test graph with n vertices and m edges was generated in a similar fashion by

“growing” ears that could possibly be cycles.

Let n and m be the number of vertices and the number of edges in
the input graph, respectively. Given any input size (the number of vertices),

we generated graphs with three different densities: sparse graphs with m = %n;

intermediate-density graphs with m = n'®; dense graphs with m = %. For

each input size on each density, we generated 4 different random graphs. On

218

each input graph, each program was run 10 times. (We ran each program 10
times on the same input data in order to even out any fluctuation in the Unix
routines we used for measuring CPU running time.) The CPU time used in
each run was collected. (We only measured the part of the CPU time used
for graph computations. The overhead for input/output and for using the

NETPAD system was not included.) We then calculated the average CPU

time used by the sequential programs for each input size on each density.

The same set of testing graphs was then fed into our parallel programs.
On each input graph, we ran the parallel program 10 times. The CPU time
used for graph computation was collected for each run. We then calculated the
average CPU time used by the parallel programs for each input size on each

density.

11.4.3 Least-Squares Curve Fitting

We applied the least-squares fit package in Mathematica [Wol88] to
the data we obtained. We used the following method to find the fitted curves
for our performance data. We first derived the theoretical asymptotical running
time for our parallel program. For example, our code for finding a spanning
forest in a graph with n nodes and m edges runs in O(log”n) time since an
O(log® n) time sorting routine is needed to implement global concurrent write
operations. We first used Mathematica to find coefficients cg, ¢1, ¢3 and ¢3
such that the function ¢y + ¢1 - logz + ¢5 - log2 T+ cy- 10g3 z best fit the set of

experimental data that we obtained.

It any of the coefficients was negative, we forced the negative coeffi-
cient ¢; with the largest integer ¢ to be zero and perform the fitting once again.
We iterated this process until all coefficients were not negative. We also per-

formed the least-squares fit for performance data of the sequential programs

219

when the amount of memory used in the program was within the capacity of
the main memory.

To test the goodness of the curve we obtained, we computed the

average error as the square root of - Zle(%f—il)z, where k is the number of
experimental data points, f is the function that describes the fitted curve and

y; is the experimental value when the input size is x;.

11.4.4 Analysis

For each graph problem that we solved sequentially and in parallel, we
have plotted the relative CPU time used by both programs on sparse graphs,
intermediate-density graphs and dense graphs. The results are shown in Fig-
ure 11.4 for finding connected components; Figure 11.6 for finding a minimum
cost spanning forest; Figure 11.8 for finding an ear decomposition of a 2-edge-
connected graph; Figure 11.12 for finding all cut edges; Figure 11.10 for finding
a strong orientation of a 2-edge-connected graph; Figure 11.14 for finding an
open ear decomposition of a biconnected graph. Although each PE is much
slower than the SPARC workstation, we found that in the case of finding a
minimum cost spanning forest and finding an ear decomposition, parallel pro-
grams in fact run faster in real time compared to sequential programs. For
example, the routine for finding an ear decomposition on the MasPar is about
3 times faster (in real CPU time) on the largest test graph we have than the
one that runs on the SPARC II workstation.

To compute the relative speed-up between our parallel programs run-
ning on the MasPar and the sequential programs running on SPARC worksta-
tions, we need to have the ratio of the computation speed of a MasPar PE to

that of a SPARC workstation. In [Mas91c] it is stated that each PE is about

220

10 times slower than the MasPar ACU. We tested programs running on the
MasPar ACU and the MasPar front end. Test data show the current MasPar
front end, which is a micro-VAX workstation, is about 2 to 3 times faster than
the MasPar ACU. We then ran our sequential programs on the MasPar front
end. Test data show that the front end is at least 10 times slower than the
same programs running on the SPARC II workstation. In some tests, it is more
than 15 times slower. (This figure is confirmed by data in [IEE91].) Thus the
SPARC II workstation is at least 200 times faster than each MasPar PE.

We rescaled the CPU time used by sequential programs running on
the SPARC II. according to the above figures and computed the speed-up of the
parallel programs running on the MasPar relative to the sequential programs
on the SPARC II. All of our parallel programs run in O(log®m) time using

2m processors on an input graph of m edges. Thus the theoretical speed-up

P
log® p

for our parallel programs using p PE’s is ©() for all problems, except for

the one for finding a minimum cost spanning forest. The theoretical speed-

p
log® p

up for finding a minimum cost spanning forest is ©() using p PE’s since
the sequential algorithm runs in O(n + mlogn) time. We plotted the relative
speed-up for each problem with its theoretical speed-up curve. In plotting each
theoretical speed-up curve, we used a constant multiplicative factor that best
approximated the experimental data. The results are shown in Figure 11.5
for finding connected components, in Figure 11.7 for finding a minimum cost
spanning forest, in Figure 11.9 for finding an ear decomposition of a 2-edge-
connected graph, in Figure 11.13 for finding all cut edges, in Figure 11.11 for

finding a strong orientation od a 2-edge-connected graph, and in Figure 11.15

for finding an open ear decomposition of a biconnected graph.

We note that the average error for fitted curves on dense graphs and

intermediate-density graphs is almost the same whether we fit the data with

221

functions dominated by log® z or log” z, though we used functions dominated
by log® z in this chapter. However, the average error for sparse graphs is about

twice as large if we use functions dominated by log® z instead of log® .

In terms of actually writing code, we wrote about 4,000 lines of MPL
code for our library of parallel programs which includes the kernel and the graph
algorithms. We used about 1,600 lines of C code for our sequential programs
with the help of NETPAD library routines. Without the help of NETPAD to
take care of the general graph data structures and other commonly used graph
operations, the size of our sequential programs would have been larger. (In our
parallel programs, we only use NETPAD for input and output.) Thus the code
for our parallel algorithms was not much larger than that for the sequential

algorithms.

11.5 Concluding Remarks

We have implemented several efficient PRAM graph algorithms on
the MasPar. We have developed an interface between the graph manipulation
package NETPAD and our parallel programs. We have also written sequential
programs for solving the same graph problems and studied the relative speed-up
of the parallel programs over the sequential ones. Although our implemented
parallel code is not currently cost-effective as compared to the performance of
our sequential code, our parallel code looks promising when cheaper parallel
machines are available in the future due to market demands as one would expect

the speed of a sequential machine will eventually reach its limit.

We note a few observations.

¢ PRAM-based graph algorithms can be implemented efficiently
and easily. The PRAM model has proven to be a very good theoretical

222

model for designing parallel algorithms. By developing a general mapping
strategy between the PRAM model and the target machine hardware ar-
chitecture, we can make use of results developed on the PRAM model.
Our experience with the MasPar shows that we can achieve reasonable
speed-up by this approach. The whole process of programming and de-
bugging is easy and fast. (All of the work reported here was accomplished

within a period of 12 weeks.)

Global routing bottleneck. The current global router on the MasPar
is very slow compared to the XNET configuration. (It is 100 times slower
than the XNET for transferring a 32-bit data to each PE [Mas91b].)
Although we use the XNET configuration when we can in our implemen-
tations, our parallel graph algorithms often need to use the global router
for performing list computations. The performance of our parallel pro-
grams would be significantly improved if the global router could be made

to run faster when routing large data sets.

NETPAD is a useful tool for designing graph algorithms. NET-
PAD takes care of the input of test graphs and the output of results.
NETPAD also provides an interface for generating test data from other
programs. Its graphic display capability provides a good tool for debug-
ging. In the design of the sequential programs, NETPAD also provides
library routines for maintaining graph data structures. Our parallel pro-
grams used NETPAD for the input of test graphs and the output of

results.

Finding a Spanning Forest (m = (3/2)n)
1.4 ¢ MasPar =@
0.0003 log”3(X)
1.2 1 SPARC II - |
1 0.000023 X
12
2
§ 0.8
0
2 0.6
0.4
0.2 o
+,+,,++++4
0 —+++7 L L L L
4000 8000 12000 16000
2 * (# of edges)
Finding a Spanning Forest (m = n"(3/2))
0.6 T T T T
MasPar =
0.5 | 0.11 + 0.000095 log”3(X)]
SPARC II -~
0.000011 X -
0.4
12
°
§ 0.3
0
Q
751
0.2
et
0.1 +'7t7+7+444+,,\ 1
0 T L L L
4000 8000 12000 16000
2 * (# of edges)
Finding a Spanning Forest (m = (n"2)/4)
0.6 T T T T
MasPar =
0.5 | 0.11 + 0.00011 log"3(X)]
SPARC II -~
0.4
12
°
§ 0.3
0
Q
751
0.2
,+,,,+r+v¥'+‘+"‘
0.1 F +Jn,,++'*"*’+ﬂ il
ﬂk‘r+++"*'+ﬁL
+++++’*+
0 4t 1 1 1 1
4000 8000 12000 16000

2 * (# of edges)

Figure 11.4: Relative performances of
the sequential program on a SPARC
IT workstation and the parallel pro-
gram on the MasPar for finding con-
nected components.

223

Finding A Spanning Forest (m = (3/2)n)
100 + Sequential/Parallel = -
15.33P/10g"3(P) .
3 80t]
+ ot c®%a
9] Lo oo
1] oo
60 o a " 1
o) R °
3 oo
% 40 D?Dav 1
0, a2
%) e
20 .7 1
x:l
0
4000 8000 12000 16000
Number of Processors (P)
Finding A Spanning Forest (m = n"(3/2))
120 T T T T
Sequential/Parallel =
100 | 15.16P/1og"3(P) - |
b L] -
£ 80 R
1] ot
3] LB
o, 60 gooe P 1
5 L
B
® 40t e]
20 [a® 1
0
4000 8000 12000 16000
Number of Processors (P)
Finding A Spanning Forest (m = (n"2)/4)
100 + Sequential/Parallel = -
12.98P/1og"3(P) -
8 80 5 o
) o
1] 0O oo
] g™
Bo60 f oot 1
5 HFDGﬂ
0 40 ¢ et 1
[0} o-g
Q, ot
%) o
20 F o 1
,E"‘EI
0
4000 8000 12000 16000
Number of Processors (P)
Figure 11.5: Speed-up data for find-

ing connected components.

Minimum Spanning Forest (m = (3/2)n)

2 rF MasPar = R
0.12+0.0003310g"3 X
SPARC II -~
1.5 | 0.0000057 X log(X)
12
°
c
3
9 1
751
0.5
0 + L L L L
4000 8000 12000 16000
2 * (# of edges)
Minimum Spanning Forest (m = n”(3/2))
1t MasPar = R
0.095+0.000210g"3 X
SPARC II -~
0.8 F0.01+0.000004X+0.000001X1og X 4]
S
g 0.6
9]
0
Q
D 0.4
0.2
o ot
,+.+—'+'+'
0
4000 8000 12000 16000
2 * (# of edges)
Minimum Spanning Forest (m = (n"2)/4)
1t MasPar = R
0.058 + 0.00021 log”3(X)
SPARC II -~
0.8 10.009+0.000004X+9%10" (-8)XlogX
S
g 0.6
9]
0
Q
D 0.4
+$,+»—+'+’
0.2 f [1
+++,+—+'+' ot
U
0 + 1 1 1 1
4000 8000 12000 16000

2 * (# of edges)

Figure 11.6: Relative performances of
the sequential program on a SPARC
IT workstation and the parallel pro-
gram on the MasPar for finding a min-
imum spanning forest.

224

Minimum Spanning Forest (m = (3/2)n)

350 T T T
Sequential/Parallel =

300 2.9 P/log”2(P) -
H
9250t o ol
O - 'EI‘,. -
£ 200 | e
Q o
2150 | 5]

P

9,100 r g b
2 L

50 [207" 1

8
0
4000 8000 12000 16000

Number of Processors (P)

Minimum Spanning Forest (m = n"(3/2))

160 T T T
Sequential/Parallel

140 ¢ 1.43 P/log”2(P) -

120 |
100 | o
80 | o 0%
60 | = o

Speedup Factor
o
a
o
o

20 o=

o

4000 8000 12000
Number of Processors (P)

16000

Minimum Spanning Forest (m = (n"2)/4)
T

120 Sequential/Parallel =
1.16 P/log*2(P) -
4 100 -]
9 g
P o
3 80 o 1
By o ga
8 60 | DDDgQEDEDDDD]
kS o
o, 401 L]
) LS
20 [o7 1
i
0 s s s s
4000 8000 12000 16000
Number of Processors (P)
Figure 11.7: Speed-up data for find-

ing a minimum spanning forest.

Ear Decomposition (m = (3/2)n)

MasPar =
2l 0.021+3.94%10"(-4)*log”3(X)
SPARC II -~
0.000093 X
w 1.5
°
]
9]
o 1
751
0.5
0
4000 8000 12000 16000
2 * (# of edges)
Ear Decomposition (m = n"(3/2))
2 rF MasPar =© R
0.19 + 0.00014 log”3(X)
SPARC II -~
1.5 b 0.000084 X
0 b
el A
=} bt
0 1t L 1
751 e
0.5
0
4000 8000 12000 16000
2 * (# of edges)
Ear Decomposition (m = (n"2)/4)
2 rF MasPar = R
0.18 + 0.00015 * log~3(X)
SPARC II -~
1.5 b 0.000083 X
2] +
° ot
=} et
9] P
§ 1y |
751 P
0.5

4000 8000 12000 16000
2 * (# of edges)

Figure 11.8: Relative performances of
the sequential program on a SPARC
IT workstation and the parallel pro-
gram on the MasPar for finding an
ear decomposition of a two-edge-
connected graph.

400
350
300
250
200
150

Speedup Factor

100
50

600

500

400

300

200

Speedup Factor

500

400

300

200

Speedup Factor

100

225

Ear Decomposition (m = (3/2)n)

Sequential/Parallel = |

44.4 P/log”3(P) + 7 -
oo D"D;D”VD;

,om o
-t 4
0B "
.08
oa’ 1
ne®
PR 1
4000 8000 12000 16000

Number of Processors (P)

Ear Decomposition (m = n"(3/2))

Sequential/Parallel =
88.9 P/log”3(P) - 50 -~ |
B
P”hwn
oz? 1
,.«'E"D'
a® B
Uﬂﬁﬂ
D,D"]
4000 8000 12000 16000

Number of Processors (P)

Ear Decomposition (m = (n"2)/4)
:

Sequential/Parallel o
83.7 P/log"3(P) - 43 - |

=
-2
e
-a

4000 8000 12000 16000
Number of Processors (P)

Figure 11.9: Speed-up data for find-
ing an ear decomposition of a two-
edge connected graph.

Strong Orientation (m = (3/2)n)

1.6 1 MasPar =©
1.4 L 0.033+3.89%10"(-4)*log"3(X)
SPARC II -~
1.2 F 0.000025 X T o
g 1
5
o 0.8
Q
“ 0.6
0.4
0.2
0 pob AT L L L
4000 8000 12000 16000
2 * (# of edges)
Strong Orientation (m = n"(3/2))
0.9 T T T T
0.8 MasPar =©
0.18 + 0.00015 log”3(X)
0.7 SPARC II -~ q
0.00028 + 0.000016 X
0.6 . o] B a -
L] a
2 0.5 oo 1
3
S 0.4 1
wn
0.3 1
0.2 T
v+ﬂ+,+,v,++——
0.1 I 1
o L™ ‘ ‘ ‘
4000 8000 12000 16000
2 * (# of edges)
Strong Orientation (m = (n"2)/4)
0.9 T T T T
0.8 MasPar =]
: 0.17 + 0.00016 log”3(X)
0.7 SPARC II -~ q
0.0005 + 0.000015 X -
, 0-6 Loo
T 0.5 |
3
S 0.4 1
wn
0.3 b
0.2 +'+7+f7+'¥'*'+ ’ 7
RS
0.1 ++'++++,+v++ 4
0 == et I L L I
4000 8000 12000 16000

2 * (# of edges)

Figure 11.10: Relative performances
of the sequential program on a
SPARC II workstation and the par-
allel program on the MasPar for find-
ing a strong orientation of a two-edge-
connected graph.

80

60

40

Speedup Factor

20

100

80

60

40

Speedup Factor

20

80

60

40

Speedup Factor

20

226

Strong Orientation (m = (3/2)n)

Sequential/Parallel =
12.85 P/log”3(P)
o V[j"l_;\‘D o
,unﬂ”ﬁ 7o 1
Dﬂpﬁ
g3
[TR=a
o 1
.50
02
4000 8000 12000 16000

Number of Processors (P)

Strong Orientation (m = n"(3/2))

Sequential/Parallel = -
13.83 P/log"3(P)
o DDDBD b
o a
[D,D""‘
v'vD’EI‘ 4
4000 8000 12000 16000

Number of Processors (P)

Strong Orientation (m = (n"2)/4)
T T

Sequential/Parallel =
13.15 P/log"3(P) ~o
o 4
o g 8.
L
=g 4
o YD'V,,D»\: d
8 s 4
o 58
68
J,ah]
4000 8000 12000 16000

Number of Processors (P)

Figure 11.11: Speed-up data for find-
ing a strong orientation of a two-edge
connected graph.

Finding All Cut

Edges (m = (3/2)n)

1.8 ‘ |
. MasPar =@
. 0.013 + 0.0004 * log"3(X)
ol SPARC II +
1.2 0.00049 + 0.000023 X -~
w 1*
g gt
3
o 0.8
wn
0.6
ot | o et
0 20 et o et ot]
) +t+—+—++'+++'+
o Lo | | |
4000 8000 12000 16000
2 * (# of edges)
Finding All Cut Edges (m = n"~(3/2))
1 ‘ ‘ ‘ ‘
MasPar =@
0.18 + 0.00014 * log"3(X)
o SPARC II +]
0.00035 + 0.000011 X -
2 0.6
[=
o
6]
S 0.4
7 a3
g
S
0 == okt +—T+—+ o | | |
4000 8000 12000 16000
2 * (# of edges)
Finding All Cut Edges (m = (n"2)/4)
1 ‘ ‘ ‘ ‘
MasPar =@
0.17 + 0.00015 * log"3(X)
o SPARC II +]
0.000051 + 0.00001 X -
2 0.6
[=
o
o
w 0.4
“ ++++++J
SRS I .
Q Attt e | | |

4000

8000

12000 16000

2 * (# of edges)

Figure 11.12: Relative performances

of the

sequential program on a

SPARC II workstation and the paral-
lel program on the MasPar for finding

all cut edges.

80
70
60
50
40
30
20
10

Speedup Factor

80
70
60
50
40
30
20
10

Speedup Factor

80
70
60
50
40
30

Speedup Factor

20
10

227

Finding All Cut Edges (m = (3/2)n)

L Sequential/Parallel =
11.6 P/log”3(P)
r Loe? 5o R
[0 ? o™ il
L . D,,D'D” - 4
L g0
0g?]
L . B - 4
‘.ﬂ'D
L 4
4000 8000 12000 16000

Number of Processors (P)

Finding All Cut Edges (m = n"(3/2))

[Sequential/Parallel =

| 10.31 P/log*3(P) -

L 000

oo
L B 4
L DYD'DD 4
0.2
L e 4
P
L g 4
4000 8000 12000 16000

Number of Processors (P)

Finding All Cut Edges (m = (n"2)/4)

Sequential/Parallel =
9.33 P/log"3(P)

4000 8000 12000 16000
Number of Processors (P)

Figure 11.13: Speed-up data for find-
ing all cut edges.

228

Open Ear Decomposition (m = (3/2)n) Open Ear Decomposition (m = (3/2)n)
2r MasPar © | 250 1 Sequential/Parallel =
0.26+4.13%10" (-4)*1log"3(X) 35.55 P/log”3(P) -
SPARC II + 8 900 | .
1.5 0.000093 X “yuut O go 780
3 - 8 .D.'”"D”E‘v
2 moO150 | oo 1
o =
g | 2
° o
@« ® 100 5 g
3 g®
0.5 {4 » . LB o
50 p Tg° 1
0 -* L L L L 0 L L L L
4000 8000 12000 16000 4000 8000 12000 16000
2 * (# of edges) Number of Processors (P)
Open Ear Decomposition (m = n"(3/2)) Open Ear Decomposition (m = n"(3/2))
1.8l T T T M 300 F T — T —
MasPar =@ Sequential/Parallel =
1.6 0.27 + 0.00033 log”~3(X) f 250 | 36.91 P/log”3(P) g
SPARC II -+ . 250 .
1.4 | 0.000084 X ~-:+] 9
w 1.2 g 200 ¢ o, gofd
et 1 [=l
3 o 150 s o _pgB8s 1
5 8
o 0.8 o o 2o
@ 9] o
0.6 g 100 Ly 1
0.4 @ e
50 5O 1
0.2 50
0 0
4000 8000 12000 16000 4000 8000 12000 16000
2 * (# of edges) Number of Processors (P)
Open Ear Decomposition (m = (n"2)/4) Open Ear Decomposition (m = (n"2)/4)
T T T T 350 T T T T
1.8 ¢ MasPar © | Sequential/Parallel =
1.6 0.44 + 0.00017 log”~3(X) f 300 46.65 P/10g"3(P) i
SPARC II + u o0
L.a7p 0.000083 X ~---.7 § 250 | JEEEE
w 1.2 g D—"D"D'“
g m 200 LT 1
o 1 a0
0 I o
o 0.8 2 150 —
wn o) g8
0.6 8 100 f LBt 1
[5) e
0.4 -
0.2 30 1
0 0
4000 8000 12000 16000 4000 8000 12000 16000
2 * (# of edges) Number of Processors (P)

Figure 11.14: Relative performances Figure 11.15: Speed-up data for find-
of the sequential program on a ing an open ear decomposition of a
SPARC II workstation and the paral- biconnected graph.

lel program on the MasPar for finding

an open ear decomposition of a bicon-

nected graph.

Chapter 12

Efficient Implementation of Virtual Processing on a
Massively Parallel SIMD Computer

12.1 Introduction

This chapter continues the discussion of our implementation project
on the massively parallel computer MasPar MP-1. In Chapter 11, we reported
the implementation of several parallel graph algorithms on the MasPar MP-1
using the parallel language MPL [Mas92b, Mas92c], which is an extension of
the C language [KR88]. (An introduction to MPL is given in [PC93].) The
MPL language is a very efficient tool for using the MasPar, but it requires the
specification of the physical organization of the processors used in the program.
As a result, our implementation described in Chapter 11 could only handle the
case where the input size is are no more than the number of available physical

Processors.

A major advantage in using massively parallel machines with virtual
processing is that we can solve problems involving large inputs that cannot be
handled by conventional sequential machines. Though the machine that we
used (the MasPar MP-1) has only 16,384 processors, we extend our code such

that it can handle inputs of sizes larger than 16,384.

Several parallel machines offer the convenience of using virtual pro-
cessors in their high-level programming languages. For example, the Connec-
tion Machine [LAD%92] offers the support of using virtual processors with the

229

230

assistance of the hardware and microcode underlying the C* programming lan-
guage. The parallel FORTRAN language used in the MasPar also supports
the usage of virtual processors. However, these supports for using virtual pro-
cessors come with the penalty of having a very large overhead. Programs that
want to achieve a high percentage of machine utilization are either coded in a
low-level programming language that supports virtual processing using macros
and low-level system routines (e.g., the Paris language in the Connection Ma-
chine [BLM*91]) or coded in a language that does not support virtual pro-
cessing (e.g., the MPL language in the MasPar (Chapter 11 and [PS90])). In
the current chapter, we describe techniques for efficiently implementing virtual

processing using the latter approach.

Our results are reported in the following sections which are organized
as follows. Section 12.2 gives a high-level description of our implementation,
and the strategy we used in mapping virtual processors onto the MP-1. Sec-
tion 12.3 gives a set of rules for rewriting a non-virtual processing code to a
code with virtual processing. Section 12.4 describes the implementation and
fine-tuning of basic parallel primitives used for parallel algorithms. Finally,

Section 12.6 gives the conclusion.

In this chapter, we use non-virtual processing routines to denote rou-

tines that cannot handle virtual processing.

12.2 Preliminary
12.2.1 High-Level Description of Our Implementation

We use the following techniques for implementing parallel algorithms
with virtual processing using the MPL language. First, we implemented a

parallel algorithm using the MPL language assuming the size of the input is

231

no more than the number of available physical processors. We then defined a
virtual machine according to the number of virtual processors that we needed.
We mapped this virtual machine into the real machine by evenly distributing
data allocated to virtual processors among available physical processors. Under
this scheme (shown in Section 12.2.2), each physical processor simulated an
equal number of virtual processors as follows. Let vnproc be the total number
of virtual processors requested and let nproc be the number of available physical

processors. We allocate (%W virtual processors to physical processor and

vnprocw

— vnproc virtual processors inactive throughout
nproc

make the last nproc - [

the computation.

After properly allocating data, we translated the original non-virtual
processing code line by line by using rewriting rules given in Section 12.2.2
and Section 12.3 to handle virtual processing. Requests for performing arith-
metic and logic operations on data allocated among virtual processors were
simulated by several requests performed on physical processors that simulated
them. Conditional branching statements were also transformed using a similar
strategy. We also provided special mechanism for maintaining the set of active

virtual processors throughout the code.

After translating our code using the rewriting rules, we replaced the
system routines used in the code. (The MasPar system provides these non-
virtual processing system routines for use in the MPL.) We implemented and
fine-tuned these system routines and a set of commonly used routines with
virtual processing. In the implementation process, we used various techniques
and approaches to optimize our code. By replacing the commonly used routines
in the original non-virtual processing code with the new primitives with virtual
processing, we have implemented the original parallel algorithm with virtual

processing.

232

12.2.2 Mapping of the Virtual Processors onto the MasPar Archi-

tecture

In our programs, each virtual processor (or VPE) is given a unique 1D
ranging from 0 to vnproc—1, where vnproc is the number of virtual processors.
(Note that nproc is the number of physical processors and they are organized
as an nzproc X nyproc mesh. For the machine that we used, nproc = 16,384

and nxproc = nyproc = 128.) The number of virtual processors per physical

ynproc

w. The virtual processors are arranged into a 2-
nproc

processor 18 vpr = [

dimensional vnaproc x vnyproc mesh.

For our implementation, we used the so-called hierarchical partition-
ing scheme [Mas92a]. Each physical processor simulated a vpr x 1 sub-mesh
of virtual processors. Thus given an nxproc x nyproc 2-dimensional mesh, the
virtual machine being simulated is an (naxproc - vpr) x nyproc 2-dimensional
mesh. (The implementation of bitonic sort with virtual processing [PS90] used
the same mapping scheme as ours.) We illustrate the mapping in Figure 12.1.
The reason for our choice is that in our implementation of parallel algorithms,
we frequently need to use operations that can utilize the locality of data (e.g.,
the prefix sum (scan) operator [Ble89]). This type of data partitioning enables

us to preserve the locality of data.

Once our code decided on the vpr value as described earlier in this
section, we transform the plural variables used in a non-virtual processing code

using the following rewriting rule.

Rewriting Rule 1
(1) Fach plural variable allocated in a non-virtual processing code is transformed

into a plural array of vpr elements in our new code with virtual processing. The

233

1 T T] I] =N

Lo I e e [
N I N A I A I

[] L] L]

(] . []
T r— 1 = r— 1 1] 1
[N Y N (R I (PP Lo
[[S I

Figure 12.1: Mapping of 4 virtual processors onto each PE.

/+ with virtual processing */
plural int a[vpr];
int b; nt b;

’ = | plural char active[vpr];

* without virtual processing *
p g
plural int a;

12.1.(a) 210)

Program 12.1: MPL code segments for data allocation. The variable a is plural
and the variable b is singular. A flag active is allocated to each virtual processor
in our code.

1th element in the jth physical processor corresponds to the local copy of virtual
processor (j — 1) - vpr +¢. Variables used in an MPL non-virtual processing
code without the plural attribute are not changed in the new code.

(2) An extra flag (called active) in each virtual processor is allocated in the new

code to indicate whether its corresponding virtual processor is active during each

step of computation.

A small piece of code segment is shown in Program 12.1 to demonstrate our data
allocation scheme. Program 12.1.(a) shows the original non-virtual processing

code. Program 12.1.(b) shows the transformed code with virtual processing.

Thus given a plural variable data and a VPE with 1D w, the local
copy of data is stored in the (w mod vpr)th element of the local array data in

the PE with 1D { J

W
vpr

234
12.3 General Coding Issues for Virtual Processing

The MPL programming language provides two ways of performing
SIMD parallel computations. First, the MPL language provides basic arith-
metic and logic operations among plural data, and conditional branching state-
ments for performing parallel computations without virtual processing. We
discuss the rules for rewriting these statements to handle virtual processing in
the following subsections. Second, the MPL also provides subroutines for the
fundamental parallel primitives such as computing the prefix sums of an array,
sorting and inter-processor communicating when no virtual processor is used.
We had to write our own routines for performing the same tasks with virtual
processing. We will discuss how to incorporate virtual processing into the sys-
tem provided subroutines and the commonly used routines given in Chapter 11

in Section 12.4.

12.3.1 Arithmetic and Logic Operations

It was easy to translate arithmetic operations involving the usage of
plural variables to handle virtual processing. For each such statement, we
transformed the request for computations performed on virtual processors to
computations on physical processors. We used the following rule to rewrite

statements involved with only arithmetic and logic operations.

Rewriting Rule 2 Fach MPL statement that involves only arithmetic and
logic operations can be simulated with virtual processing by vpr sub-steps us-
ing avatlable physical processors. In sub-step ¢, physical processor PE;, for
all j, computes the value for virtual processor VPE(;_1).upry(i-1). The trans-
formed code puts a for loop around the original statement and converts the

plural variables into their array formats as described in (1) of Rewriting Rule 1

235

/+ with virtual processing */
plural int alvpr], b[vpr], sum[vpr];
/* without virtual processing */ int ¢;
plural int a, b, sum;
nt ¢;
. {
: — register int i;
sum=ax*b+c; for(i = 0; i < vpr; i++)
suml[i] = a[] * b[7] + ¢;
12.2.(2) | e }
12.2.(b)

Program 12.2: MPL code segments for arithmetic and logic operations.

(Section 12.2.2). A group of statements can be grouped into a single for loop

as long as each of them involves only arithmetic and logic operations.

The code rewritten for virtual processing was about twice as long as its non-

virtual processing code.

An example is shown in Program 12.2. In Program 12.2.(a), each
processor had its own local variables a, b, and sum. The variable ¢ was a
global variable stored in the ACU. After performing the statement in Pro-
gram 12.2.(a), each processor assigned the value of the multiplication of its
own a and b plus the value of the global variable ¢ into the local variable sum.
The code rewritten to run on a system with virtual processing is shown in

Program 12.2.(b).

12.3.2 Conditional Branching Statements

By using an if statement to test a local value in each processor, we
could decide whether a processor was active or not during each step of compu-
tation. We used the following rewriting rule to translate conditional branching

statements.

236

/* with virtual processing */
plural int afvpr], blvpr];
/+ without virtual processing */ .
plural int a, b, ¢; (
: register int ¢;
if(a #0) — for(i = 0; ¢ < vpr; i++)
1. b=c¢/q if(afi] £ 0)
bi] = eldl/alil;
IPENC)] —— }
12.3.(b)

Program 12.3: MPL code segments for conditional branching statements.

Rewriting Rule 3 An MPL conditional branching statement consists of a
conditional test on the value of an expression n, a list of statements that are
executed if the value of n is true and an optional list of statements that are
executed otherwise. If n consists of only arithmetic and logic operations, we
rewrite the conditional branching statement by putting a for loop around the

statement and then converting every plural variable in n into its array format

as described in (1) of Rewriting Rule 1 (Section 12.2.2).

For example, in Program 12.3.(a) each processor with its local value of a being
non-zero assigned the value ¢/a to its local variable b. The local value of b in
each processor whose a is zero would not be changed. Thus all PE’s with non-
zero a values were active in step 1. The rewritten code with virtual processing

is shown in Program 12.3.(b).

12.3.3 Procedure Calls

Another way of using an if statement for the selection of active pro-
cessors involves the calling of subroutines using processors that are currently
active. We used the following rewriting rule to translate a procedure call state-

ment within an if statement.

237

Rewriting Rule 4 [f procedure calls are used in an expression n that decides
the execution of an if statement, then each procedure call should be evaluated
before the if statement. The results of the procedure calls are saved in temporary
variables which are then used to evaluate n. If procedure calls are used inside
the body of an if statement, we use the active flag, defined in (2) of Rewriting
Rule 1 (Section 12.2.2), to store the information of which processors are active.
The active flag is then passed into the called subroutine. The information about
the current set of active processors is saved before the calling of a subroutine

and is restored after the subroutine call.

We show an example in Program 12.4. In Program 12.4.(a), the MPL library
routine reduceAdd32(a) returned the summation of all a values in active pro-
cessors. After the execution of the code in Program 12.4.(a), b contained the
summation of all local values of a’s that were positive. The rewritten code with

virtual processing is shown in Program 12.4.(b).

12.4 Implementation of Parallel Primitives

In this section, we describe our implementation of a set of library sub-
routines with virtual processing. The library routines include several parallel
primitives provided by the system and several parallel primitives in the graph
algorithms kernel that were given in Chapter 11. None of them could handle

the usage of virtual processors.

We classify the parallel primitives into three different categories ac-
cording to the methods we used to implement them with virtual processing.
They will be discussed in detail in the following subsections. Every routine

in each category was fine-tuned for speed and small memory space usage. For

238

/+ with virtual processing */
plural int afvpr];

int b[vpr];

plural char active[vpr];

/+ without virtual processing */ code for saving the current
plural int a; “active” values (omitted)

int b; {
: register int i;

— for(i = 0; i < vpr; i++){

active[i] = 0;

if(a[t] > 0) active[d] = 1;

if(a > 0)
b = reduceAdd32(a);

12.4.(2) | e }
b = vreduceAdd32(a, active);

code for retrieving the previous
“active” values (omitted)

12.4.(b)

Program 12.4: MPL code segments for calling a subroutine using a set of
selected active processors.

some of the routines, we tried different implementations, and performance data
for all of them are reported. We often found that there is a trade-off between
the running time and the amount of additional memory used. One can choose
the best implementation to suit one’s needs. Performance data for routines
with and without virtual processing are presented to show the overhead for
our implementation of virtual processing. For each type of the operators in
each category, we show as an example a representative routine that was imple-
mented. One can implement similar routines in the same type of the operator

by making minor changes to our sample code.

12.4.1 Category 1

Parallel primitives in this category could be implemented with virtual

processing by exactly one execution of their corresponding original non-virtual

239

processing codes and some local computations performed in each physical pro-

cessor. The following parallel primitives are in this category.

e The reduce operator which applies an associative operator on a plural
variable and outputs its result. For example, the MPL library routine
reduceAdd32 returns the summation of 32-bit integers in each active
processor. This routine has been provided in the system library without

virtual processing.

e The scan operator which applies prefix summing using a given associative
operator on a plural variable. For example, the MPL library routine
scanAdd32 computes all of the prefix sums of an array of 32-bit integers
for active processors. This routine has been provided in the system library

without virtual processing.

e The neighbor operator which retrieves data from the processor whose 1D
is adjacent to the ID of the current processor. This operator is described
in the kernel routines given in Chapter 11. For example, the kernel rou-
tine Lneighbor32 retrieves a 32-bit integer from processor ¢ — 1 for each
processor ¢, ¢ > 0. We implemented this operator without virtual pro-
cessing in the work described in Chapter 11 by using two MPL system

mesh-communication operations (i.e., XNET).

e The segmented rotation operator which rotates data within a set of pro-
cessors with continuous ID’s. A set of processors with continuous I1D’s is
called a segment of processors. Let the next processor to the right of the
processor with ID 7 in a segment of processors be the processor whose 1D

is 241 if 2 is not the largest ID in the segment; otherwise its next processor

240

/* return the summation of a values in all active VPE’s */
int vreduceAdd32(a, active)
plural int afvpr];
plural char active[vpr];
{
plural int tsum;
register int i;
/* compute the partial sum in each physical PE %/
tsum = 0;
for(i = 0; ¢ < vpr; i++)
if(active[i]) tsum = tsum + ali;
/* compute the summation of all partial sums */
return(reduceAdd32(tsum));

1

Program 12.5: MPL Code for adding an array of 32-bit integers with virtual
processing.

to the right is the processor in the segment with the least ID. This oper-
ator is described in the kernel routines given in Chapter 11. For example,
the kernel routine segRshift32 rotates a 32-bit integer in each active
processor to the processor on the right in the same segment. We imple-
mented this operator without virtual processing in the work described in
Chapter 11 by using several MPL mesh-communication operations and

global routings (i.e., router).

As an example, we show the code of vreduceAdd32 for implement-
ing the MPL system routine reduceAdd32 with virtual processing in Pro-
gram 12.5. We could use the naive algorithm of applying the MPL system
routine reduceAdd32 (without virtual processing) vpr times and returning the
summation of the vpr results using the ACU for computing the summation of
vpr-nproc elements. However in Program 12.5, we used the MPL system routine
reduceAdd3?2 exactly once plus performing O(vpr) local arithmetic operations
in each physical processor to achieve the same goal. The computation of the

MPL system routine reduceAdd32 requires the use of inter-processor communi-

241

Lneighbor32 reduceAdd32 segRshift32 scanAdd32
time (ms) [ratio | time (ms) [ratio | time (ms) | ratio | time (ms) | ratio
use no VPE 0.017 0.068 0.747 0.934
upr = 1 0.034 2.0 0.116 1.7 1.063 1.4 1.079 1.2
2 0.035 2.1 0.153 2.3 1.146 1.5 1.145 1.2
4 0.059 3.5 0.227 3.3 1.379 1.8 1.285 1.4
8 0.108 6.4 0.375 5.5 1.881 2.5 1.560 1.7
16 0.204 12.0 0.671 9.8 2.882 3.9 2.122 2.3
32 0.398 23.4 1.264 18.6 5.163 6.9 3.235 3.5
64 0.785 46.2 2.449 36.0 9.777 13.1 5.454 5.8
128 1.558 91.6 4.836 71.1 19.087 25.6 9.901 10.6

Table 12.1: Performance data for performing four basic parallel primitives on
32-bit integers. The “ratio” columns give the ratio of the time used by the
routines using vpr virtual processors per physical processors to the time used
by the non-virtual processing routines.

cation, which is much slower than local computation [Mas91b, Pre93b]. Hence
we could expect the computation time for vreduceAdd32 to be faster than the
naive algorithm of applying the MPL system routine reduceAdd32 vpr times.
Note that the active flag, which was defined in (2) of Rewriting Rule 1 (Sec-
tion 12.2.2), was used in Program 12.5 to mark the set of virtual processors

that were currently active.

We list the performance data for our parallel implementation of the
algorithms for the four representative examples in this category in Table 12.1.
The running time for operators in this category could be formulated as follows.
Let f,(Q,vpr) be the time to run the algorithm Q with virtual processing using
p-vpr VPE’s and let 5,(Q) be the time to run @ without virtual processing

using p physical PE’s. Then

t,(Q,vpr) = 5,(Q) +vpr - ,(Q) + ¢(Q),

where ¢(Q) is the time to initialize and to wrap-up the simulation of virtual
processors for algorithm Q and [,(Q) is the unit time used in performing local
computations in the simulation. Since we expect s,(Q) > [,(Q) for the MasPar

MP-1, routines in this category had super-linear speed-ups when using virtual

242

tp(Q,upr)
5p(Q)

the performance of our current implementation with virtual processing and

processors (i.e., < vpr). In Table 12.1, we also show the ratio between
the performance of a previous implementation in Chapter 11 without virtual
processing using p = 16,384 physical processors. Note that this ratio is roughly
equal to vpr - %

On a massively parallel computer, we would expect the value of 5,(Q)
to be smaller as p becomes smaller. Thus the best way to compute algorithm
Q with virtual processing on an input of size k is not to use all of the available
physical processors. Instead, one should use only r physical processors such that
t,(Q, d) plus the time to evenly distribute the data is minimized, where k = r-d.
However, we found that s,(Q) remained the same no matter how many active
physical processors were used in the MasPar MP-1 for all the routines in this

category. (This fact was also confirmed by experiments conducted in [Pre93b].)

Thus we were unable to further fine-tune our code using this approach.

12.4.2 Category 2

Parallel operators in this category could be implemented with virtual
processing by exactly vpr executions of the original parallel primitives (without
virtual processing) and some local computations performed in each physical

processor. The following parallel primitives are in this category.

o The routing operator. The router operators are used for performing
global routing. For example, the MPL system routine router[addr].data
returns the value of the plural variable data that is stored in the processor

with ID addr for each active processor.

o The list ranking operator. Given a linear linked list, each element in the

list 1s stored in a processor. For each element, compute the summation

243

of all the data that are ahead of it in the linked list. This operator is
described in the kernel routines given in Chapter 11. For example, the
kernel routine listrank32(ptr, data) performs list ranking on the plural
variable data for each active processor, where ptr specifies the location of

the next element.

We now describe our implementations of primitives in category 2 and their

performance data in the following subsections.

Routing

Implementation The MPL language provides an efficient implementation
of the routing operator if the data needed to be routed is any one of the
fundamental data types allowed by the MPL language (e.g., not a member
of an array element). However, to implement routing operators using virtual
processing, we needed to access different indices of a plural array within each
physical processor. To do this, we used the MPL system routine rfetch(from,
st, to, sz) to retrieve sz bytes of data starting from the local address st of the
physical processor with ID from and store it in the local address to for each
active processor. For example in Program 12.6.(a), each processor fetched the
data stored in the processor with ID addr and stored it in the local variable
result. The size of the data was sizeof(data) bytes. (Note that sizeof is an
MPL system routine.) To implement this statement with virtual processing,
we had to access the proper data element allocated to each virtual processor in
our implementation. We show the implementation of a routing statement with
virtual processing in Program 12.6.(b). After testing our program, we found

that the above implementation did not work properly when vpr = 1 because

244

/+ without virtual processing */
resull = router[addr].data;

12.6.(a)

4

/+ with virtual processing */
for(i = 0; i < vpr; i++)

s_rfetch(| 2ddrli , &dataladdr(i] % vpr], &result]i], sizeof(data));
P addrli] | g dataladdr[i] % ! d

vpr

12.6.(b)

Program 12.6: MPL code segments for routing statements. Note that “%” is
the modulo operator in the MPL language and “&” is an unary operator to
compute the address of a variable. Note also that the data allocated to the

VPE with ID addr[i] was stored in the (addr(i] % vpr)th element of the plural

array data in the physical processor with 1D {MJ.

upT

the MPL system routine rfetch does not function correctly when its input
parameters are arrays of size one. Thus most of our programs reported in this

chapter that used the router did not work for vpr = 1.

Further Fine-Tuning The performance of a routing statement in the Mas-
Par MP-1 is determined by the following three factors: the size of data transmit-
ted by each active processor, the number of virtual processors that are active,
and the maximum degree of concurrency among all physical processors. The
first two factors are related to the bandwidth of the communication network
and the third factor is related to the sequentialization of concurrent requests
on physical processors. The first two factors are determined by the nature of

the routing request and are hard to be changed.

To improve the performance of a routing statement, we could reduce
the maximum degree of concurrency (i.e., the third factor). There is a well-

known PRAM algorithm to simulate a concurrent read (write) statement by

245

using sorting and exclusive read (write) statements [Eck79, Vis83, KR90]. Al-
though this algorithm does not eliminate all concurrency in reading (writing)
when virtual processors are used (i.e., reading (writing) to VPE’s with different
ID’s might be mapped into different locations in the same physical processor),
one would expect the maximum degree of concurrency to be greatly reduced.
Note that we need to pay the overhead of performing a sorting routine to use

this algorithm.

We implemented the above algorithm for routing and tested our pro-
gram when vpr = 16 while varying the expected degree of concurrency. We
also tested Program 12.6 with virtual processing and vpr = 16 and the system
routing routine without virtual processing. Let con be the expected degree of
concurrency in our testing (i.e., the expected number of physical (virtual) pro-
cessors that read data from a physical (virtual) processor without (with) virtual
processing). We obtained the desired expected degree of concurrency by draw-

ing the destination addresses from a system pseudo-random number generator

nproc
con

in the range from 0 to —1 without virtual processing, and in the range from

0 to =222 — 1 with virtual processing, where 1 < con < nproc. Note that
it is well-known (for example, it is fairly easy to derive from [ASE92, Che52])
that with high probability the maximum number of requests on any physical
processor is some constant times con when con > log(“£%) without virtual

con

processing and is some constant times vpr - con when vpr - con > log(*22>%)

with virtual processing. Thus con is the expected degree of concurrency per

virtual processor if it is sufficiently large.

The performance data is shown in Table 12.2. Table 12.2 suggested
that the performance of the system routine for performing concurrent read on a

physical processor did not grow linearly in the number of expected concurrent

246

Routing 32-bit Integers
time (ms)

expected concurrency | no virtual vpr = 16
(con) | processing | Program 12.6 convert to
exclusive read
1 0.45 18.00 236.97
2 0.67 26.95 239.00
4 1.13 45.03 244.78
8 1.56 63.56 238.61
16 2.86 115.71 237.72
32 5.33 218.57 236.51
64 5.44 216.33 232.18
128 5.49 218.23 230.30
256 10.59 415.99 233.74
512 20.60 819.08 229.88
1,024 41.28 1,624.66 229.56
2,048 82.94 3,250.92 229.30
4,096 144.84 5,673.66 231.47
8,192 144.84 5,675.19 231.47
16,384 144.84 5,676.73 234.77

Table 12.2: Comparison of performance data for reading 32-bit integers from
different processors without virtual processing and with virtual processing when
vpr = 16 on the MasPar MP-1. The number of physical processors used is
nproc = 16,384. We tested two implementations of inter-processor memory
accessing with virtual processing. The destination addresses were drawn from

a system pseudo-random number generator in the range from 0 to === — 1

con
VpTnproc

without virtual processing, and in the range from 0 to — 1 with virtual

processing.

requests. Instead, the running time fell into the repeated patterns of growing
linearly for some values of con and then staying unchanged for other values
of con. We also notice that the naive implementation with virtual processing
shown in Program 12.6 ran faster than its exclusive read version when con was
within 128. However, for programs that expect a high degree of concurrency,

the exclusive read version should be used.

Permutation Routing We also tested the performance of a permutation
routing with and without virtual processing. The performance data is shown
in Table 12.3. Note that the expected degree of concurrency on a physical

processor is proportional to the value of vpr when virtual processors are used.

247

Permutation Routing
time (ms) | ratio
system (no VPE) 0.45
vpr = 2 2.28 5.07
4 4.57 10.16
8 9.25 20.56
16 18.12 40.27
32 36.53 81.18
64 72.33 160.73

Table 12.3: Performance data for performing a permutation routing of 32-bit
integers. The “ratio” column gives the ratio of the time used by the routine
using vpr virtual processors per physical processor to the time used by the
non-virtual processing routine.

Thus when the value of vpr doubled, we not only had twice the number of
virtual processors, but also had twice the expected degree of concurrency on
each physical processor. The performance could be 4 times as bad when we
doubled the value of vpr. However in Table 12.3, we notice that that the cost
for performing a permutation routing was linear in the value of vpr instead
of being quadratic. From the data obtained in this section, we can conclude
that if the degree of concurrency is not too large, it is better to use the naive

implementation of routing given in Program 12.6.

List Ranking We implemented the simple EREW list ranking algorithm us-
ing pointer jumping [KR90]. The algorithms runs in O(logn) iterations by
repeatedly changing the current pointer of each active processor to the pointer
stored in the processor that is currently next to it. A processor becomes in-
active when it reaches the end of the list. The MPL code for this algorithm
is shown in Program 12.7. Note that each iteration of the for loop in steps 1
and 2 of Program 12.7.(b) required performing a router operation. Note also
that steps 1 through 3 in Program 12.7.(b) corresponded to steps 1 and 2 in
Program 12.7.(a). To transform steps 1 and 2 in Program 12.7.(a) to handle

virtual processing, temporary variables were needed to store the intermediate

248

/* without virtual processing */
/+ Perform a list ranking on the linked list specified by the
the successor pointer pir and the element data in each processor.
The pointer value of the last element is negative.
The result will be stored in rank. */
int listrank32(rank, ptr, data)
plural int rank, ptr, data;
{
plural int pointer;;
rank = data; pointer = ptr;
while there is a value in pointer that is not negative{
1. rank = rank + router[pointer].rank;
) pointer = router|[pointer].pointer;
b

12.7.(a)

Y

/+ with virtual processing */
int vlistrank32(rank, ptr, data, active)
plural int rank[vpr], ptr[vpr], datalvpr]; plural char active[vpr];
{
register int ¢; plural int tmpptr{vpr], temp, pointer[vpr];
/* the first element in the list has a negative pointer value */
for(i = 0; i < vpr; i++)
if(active[i]){
pointer[i] = ptr[i]; rank[i] = data[i];
telse pointer[i] = —1;
while there is a value in pointer that is not negative{
for(i = 0; i < vpr; i++)
if(active[i] and pointer[i] > 0){
ps_rfetch({’Lmer[i]

vpr

—_

J, &rank[pointer[i] % vpr], &temp, sizeof(rank));
rank[i] += temp;

for(i = 0; i < vpr; i++)
if(active[i] and pointer[i] > 0)
ps_rfetchq

[\]

pointer[i]
vpr

J, &pointer[pointer[i] % vpr], &mpptr(i],
sizeof(pointer));
3. for(i = 0; ¢ < vpr; i++) if(active[i]) pointer[i] = tmpptr[i];

1

12.7.(b)

Program 12.7: The MPL code for a simple sub-optimal deterministic list rank-
ing algorithm with virtual processing.

249

listrank3?2
not pipelined pipelined

time (ms) | time (ms) | ratio

use no VPE 13.91
upr = 2 72.05 44.16 3.2
4 154.55 94.41 6.8
8 330.37 201.43 14.5
16 704.30 429.10 30.8
32 1,494.33 910.17 65.4
64 3,164.83 1,927.21 138.5

Table 12.4: Performance data for performing the list ranking operation on 32-
bit integers. The “ratio” column gives the ratio of the time used by the routine
using vpr virtual processors per physical processor to the time used by the
non-virtual processing routine.

results. Thus we expected the amount of memory used by our programs with
virtual processing to be more than vpr times the amount of memory in the

programs for non-virtual processing routines.

Pipelined Requests Note that in steps 1 and 2 of Program 12.7.(b), each
VPE retrieved data and pointer from the same VPE. We observe that it is
often the case on the MP-1 that the total time required for two inter-processor
communications of /; and [bytes, respectively, is more than the time required
for one inter-processor communication of [; + [bytes. Since each VPE read
from the same VPE in steps 1 and 2, we could pipeline these two requests. By
doing this, we were able to save time, though programming pipelined opera-
tions required additional temporary space to pack data together. We list the

performance of our list ranking algorithms (both pipelined and non-pipelined)

in Table 12.4.

Note that in Table 12.4, we did not list the performance of the
pipelined list ranking without virtual processing because the overhead was
larger than the benefit. We also did not obtain performance data for the case

when vpr = 1, since our current implementation did not work for this case.

250

(The reason is explained earlier in the previous section.) We notice that the
usage of pipelined instructions made our program run about 1.6 times faster
than the non-pipelined version in the case when vpr = 64. Since the amount of
temporary space used in implementing pipelined requests was relatively small,

we decided to use the pipelined version for our code.

Randomization We did not implement the list ranking operator using the
optimal deterministic O(log n)-time O(%)—processor algorithm presented in
[CV88, AMS8S], where n is the number of elements in the list, since we felt that
the coding would be tedious and the overhead would be too large. Instead, we
implemented the simple O(log n)-time O(n)-processor deterministic algorithm
which is shown in Program 12.7.(b). Let nporc be the number of physical
processors. In the case of nproc > n, Program 12.7.(b) is optimal and should

run faster than the algorithms described in [CV88, AM88] because of simplicity.

We expect Program 12.7.(b) to run slower when n is greater than nproc.

A Simple Optimal Randomized Algorithm In addition to the
fairly complicated deterministic optimal algorithms in [CV88, AMS8S], there
are several simple randomized optimal algorithms for performing the list rank-
ing operator (see e.g., [KR90, Vis84, CLR90, AMS86]). A simple randomized
optimal list ranking algorithm [CLR90] is shown in Algorithm 12.1. The imple-
mentation of step 1.1 on the MasPar using the MPL needed to use one global
routing of 8-bit flags. Step 1.2 used one global routing of 8-bit flags and two
pipelined global routings of 32-bit integers. Step 2 used only one global routing
of 32-bit integers. All global routings used in this algorithm were done among

physical processors.

251

/+ An optimal randomized list ranking algorithm. */
1. /* Shrink the size of the list */
mark all elements “un-eliminated”

assume vpr = is an integer

nproc
assigned vpr elements to a PE
while the total number of “un-eliminated” elements > 1 do
for each PE; execute in parallel
pick an “un-eliminated” element e;
generate a random bit b(e;) for e;
let s(e;) be the successor of e; in the current list
1.1. if b(e;) = 1 and (b(s(e;)) = 0 or no random bit assigned for s(e;))
1.2. then eliminate e; from the list
end
end
2. compute the rank of the eliminated element by “unraveling” the computation
of step 1

Algorithm 12.1: An optimal randomized list ranking algorithm.

Recall that each iteration in the simple list ranking algorithm (Pro-
gram 12.7.(b)) used two pipelined global routings of 32-bit integers among
virtual processors. (Routing among virtual processors was implemented using
Program 12.6.) The performance data for Program 12.7.(b) and our MPL code
for Algorithm 12.1 are shown in Table 12.5. In our testing, we terminated
our program if more than 512 iterations were needed to finish step 1 of Algo-
rithm 12.1. We marked those experiments that needed more than 512 iterations
as failure because both the time spent and the extra space used were too large.
Although the average time needed for each successful trial was smaller than the
time needed for Program 12.7.(b) when vpr > 16, the probability of success for
Algorithm 12.1 was fairly large. The reason might be that the size of the input
is not large enough and hence the constant factor in the theoretical analysis

[CLRI0] is large.

By tracing our code, we observed the following. If the total number of
elements was significantly smaller than the number of physical processors, then

only a fairly small percentage of elements were eliminated during each iteration.

252

However, if the total number of elements was larger than the number of physical
processors, then almost nproc elements were eliminated during each iteration.
(Note that we could eliminate at most nproc elements during each iteration.)
We conjecture that the reason for this behavior might come from the MPL
system pseudo-random number generator p_random used in our code. The
system routine p_random generates a pseudo-random number for each active
PE. On Page 5 of [Mas92d], it says “Although the values of p_random are
random sequences from each PE’s point of view, you might see some discernible
pattern in the PE array as a whole.” Since the behavior of the pseudo-random
number degrades when one only use a small portion of the numbers generated
by all the PE’s, our performance data did not match the bound obtained by the
theoretical analysis. It would be interesting to obtain a good pseudo-random
number generator for SIMD parallel computers to produce good pseudo-random

numbers among all processors.

A Revised Optimal Randomized Algorithm In order to rem-
edy the above problem possibly caused by the usage of the system pseudo-
random number generator, we observe that our simple deterministic algorithm
(Program 12.7.(b)) is optimal if nproc > n. Thus we modified Algorithm 12.1
as follows. We ran the randomized algorithm until the first time the number
of “un-eliminated” elements was no more than the number of physical proces-
sors. Then we ran the deterministic algorithm without virtual processing given
in Chapter 11 by evenly distributing the remaining elements among available
physical processors. Each physical processor would get at most one of the re-
maining elements. We finally “unraveled” the computation and obtained the

result for each virtual processor. The algorithm is shown in Algorithm 12.2.

253

Since the number of remaining elements in each iteration was at least
equal to the number of physical processors during the execution of step 1 in Al-
gorithm 12.2, the probability that one physical processor retained at least one
“un-eliminated” element was very high. Thus we could eliminate a fairly large
amount of elements in each iteration even using the system pseudo-random
number generator. The performance data for Algorithm 12.2 is also shown
in Table 12.5. Note that the number of iterations needed to execute Algo-
rithm 12.2 is much smaller than the number of iterations needed to execute
Algorithm 12.1. All of our test cases for Algorithm 12.2 succeeded in % - vpr
iterations. We also note that on the largest input, Algorithm 12.2 was more
than twice faster than the sub-optimal deterministic version. The drawback of
Algorithm 12.2 is that the implementation of step 2 was non-trivial and it used
more than thrice the amount of space than Program 12.7.(b) for storing the his-
tory of step 1 in order to “unravel” the computation in step 3. When memory is
at a premium, Program 12.7.(b) should be used. (The implementation of a set
of parallel graph algorithms as described in Chapter 12 used Program 12.7.(b)
to save space.) However, for machines that provide large amount of local mem-

ory for each virtual processor (e.g., the Connection Machine), Algorithm 12.2

should be used.

12.4.3 Category 3

Parallel primitives in this category could not be implemented with vir-
tual processing by the simple strategies given in Section 12.4.1 or Section 12.4.2.
For example, giving a parallel operator that sorts nproc elements does not im-
ply that one can apply this operator vpr times to sort vpr - nproc elements. We

have to look for different algorithms for solving these problems instead of rely-

254

/+ A modified optimal randomized list ranking algorithm. */

1. /* Shrink the size of the list */
perform the while loop in step 1 of Algorithm 12.1 until the the total number of
remaing elements is < the number of physical processors

/+ Load Balancing */

2. /* compute the rank of the current list by using the simple algorithm specified
in Program 12.7.(b) */

2.1distribute the remaining “un-eliminated” elements evenly among physical processors

2.2 compute the rank using Program 12.7.(b)

2.3send results back to original processors

3. compute the rank of the eliminated element by “unraveling” the computation of
step 1

Algorithm 12.2: A modified optimal randomized list ranking algorithm.

Deterministic Algorithm Randomized Algorithms
vpr Program 12.7.(b) Algorithm 12.1 Algorithm 12.2

time (ms) | # iterations % success | time (ms) | # iterations % success | time (ms) | # iterations
2 44.16 15 42.5 179.96 150.7 100.0 31.63 3.6
4 94.41 16 45.0 260.00 218.2 100.0 54.06 9.9
8 201.43 17 47.5 266.58 174.8 100.0 92.14 15.7
16 429.10 18 70.0 409.08 207.6 100.0 180.19 371
32 910.17 19 62.5 642.37 237.5 100.0 371.36 74.0
64 1,927.21 20 40.0 1,134.99 287.7 100.0 808.53 145.5

Table 12.5: Performance data for the three algorithms we implemented for
performing list ranking deterministically with virtual processing. For each al-
gorithm, we also record the average number of iterations performed in Pro-
gram 12.7.(b) and in step 1 of Algorithm 12.1 and Algorithm 12.2 over 40
different trials. Randomized algorithms were terminated and marked as failure
if more than 512 iterations were needed.

ing on iteratively applying the basic parallel primitives. The following parallel

primitives are in this category.

e The sort operator which sorts elements in parallel. For example, the
MPL system routine psort(result, data) sorts data in each processor

and stores them in result.

e The rank operator which computes, for each processor, the number of
elements among all local copies of a plural variable d that are smaller

than the processor’s local value of d (break ties arbitrary). The value

255

computed is its rank.

For example, the MPL system routine prank(result, data) stores the rank

of data in result for each processor.

e The sendwith operator which combines data sent to each processor. To
use the sendwith operator, one specifies an associative operator, a source
plural variable s, and a plural variable d for destination address. Each
active processor sends the local value of s to the processor whose 1D is
specified in the local value of d. If there are several values sent to one
processor, all incoming values (this does not include the original value
in the destination processor) are combined using the given associative

operator before storing into the destination processor.

For example, the MPL system routine sendwithAdd32(result, data, addr)
sends the local value of data in each processor to the local variable result
in the destination processor addr. If several data are sent to one proces-

sor, then the summation of these data is stored.

e The range minimum (maxzimum) operator. Given local variables v, s and
t in each processor, we build data structures such that we can return the
minimum (maximum) value of all v’s from the processor with 1D s to
the processor with 1D ¢ for each processor. This operator is described in
the kernel routines given in Chapter 11. For example, the kernel routine
buildTMin32(v) builds such data structures for 32-bit integers and the
kernel routine queryMin32(s, ¢) returns the minimum (maximum) values
queried. We implemented these two routines in the work reported in

Chapter 11 without virtual processing.

We describe these primitives in the following.

256

Sort, Rank, and Sendwith The first three routines in this category could
be implemented with virtual processing by calling a sorting routine that could
handle virtual processors. For sorting with virtual processing, we used the
package developed in [PS90]. Since the sorting package in [PS90] can only han-
dle the case when the number of virtual processors simulated by each physical

processor is a power of two, our code inherited the same restriction.

To implement the rank operator with virtual processing on the plural
array a, we first created a 2-tuple (a, viproc) for each VPE, where viproc was
its ID. We then sorted these 2-tuples lexicographically. After sorting, each
VPE sent its current rank value back to the VPE that originally had the «
value before the sorting (whose ID was indicated in the second component of
the 2-tuple). Note that to compute the ranks of 32-bit integers, we had to sort
64-bit data.

The implementation of the sendwith operator with virtual processing
is as follows. We first sorted all requests from active VPE’s according to their
destination addresses. We then grouped requests to the same destination in a
segment and performed a segmented scan operation [Ble89] using the associa-
tive operator specified by the sendwith operator. In each segment, we picked
the last VPE to write the result to the destination. Note that to send 32-bit

integers using the sendwith operator, we had to sort 64-bit data.

Performance data for the first three routines in this category is shown
in Table 12.6. Note that the sorting routine that we used is very competitive
compared to the system sorting routine. For sorting vpr - nproc elements,
the time required is about vpr times the time used by the system sorting
routine which sorts nproc elements. Note also that the overhead for performing

the sendwith routine with virtual processing was pretty large. To send vpr -

257

psort32 prank32 sendwithMax64
time (ms) [ratio | time (ms) [ratio | time (ms) | ratio
system (no VPE) 7.69 9.44 9.6
upr = 2 17.87 2.3 24.76 2.6 34.4 3.6
4 31.07 4.0 48.75 5.2 66.9 7.0
8 59.64 7.8 98.57 10.4 134.4 14.0
16 118.99 15.5 201.68 21.4 273.8 28.5
32 241.90 31.5 415.41 44.0 559.8 58.3
64 496.62 64.6 860.70 91.2 1,149.9 119.8

Table 12.6: Performance data for performing the sort operator [PS90] and the
rank operator on 32-bit integers, and for performing the sendwith operator
on 64-bit integers by using maximum as the combining operator. The “ratio”
columns give the ratio of the time used by the routines using vpr virtual pro-
cessors per physical processor to the time used by the non-virtual processing
routines.

nproc elements with virtual processing, we had to spend about 2 - vpr times
the amount of time to send nproc elements without virtual processing. The
overhead for implementing the rank operator with virtual processing was in

between the overhead for implementing the sort operator and the overhead

for implementing the sendwith operator.

Range Minimum (Maximum) Recall from Chapter 11, the table we built
in each processor for the range minimum (maximum) queries without virtual
processing was a one-dimensional array W such that W[:] is the minimum
(maximum) value of all elements starting from the current processor to a pro-
cessor whose ID was 2° — 1 larger than the ID of the current processor. To
retrieve the minimum (maximum) value starting from the processor with ID
s to the processor with ID ¢, we returned the minimum (maximum) value of
W k] in the processor with ID s and W k] in the processor with ID ¢ — 2% 4+ 1,
where 28 <t — s+ 1 < 251, We could implement this with virtual processing
using a straight forward approach of building such an array for each virtual

processor. However, the size of the array in each physical processor would be

vpr - [log(vpr - nproc)].

258

Instead of the above strategy, we used the following approach. For
each physical processor that simulated virtual processors with ID’s from x to
x 4+ vpr — 1, we built a suffix array ST and a prefix array P7T such that ST[i]
was the minimum (maximum) value of elements from = 4 ¢ to @ +vpr — 1 and
PT[i] was the minimum (maximum) value of elements from = to # +¢— 1. We
also built a two-dimensional inner array [T such that 7z, j] was the minimum
(maximum) value of all elements in virtual processors with ID’s from = + ¢ to
z+1+2 —1, for all j such that 2/ < vpr. Let v be the minimum (maximum)
value of all elements in virtual processors simulated by one physical processor.
We built a global array W for v’s that was the same as the array we built

without virtual processing.

To query the minimum (maximum) value of a range of elements allo-
cated on virtual processors that were simulated by one physical processor, we
used the inner array I'T. To query the value of a range of elements allocated on
virtual processors simulated by more than one physical processor, we used the
suffix array ST, the prefix array PT" and the global array W. The total size
of arrays in each physical processor was [log(nproc)| + vpr - (2 4 [log(vpr)]).
Although our implementation issued four routing requests per virtual proces-
sor, two more than the naive approach, to perform the queries, our approach
used less memory than the naive approach when nproc > 4. For large values
of nproc, the above approach used about ﬁ of the amount of memory used by

the naive approach.

Thus for parallel programs that require a lot of memory, the above
approach should be used. For massively parallel computers with a larger mem-
ory space per virtual processor, the naive approach should be used to achieve

up to two times speed-up. We show the performance data for buildMinT32

259

buildMinT32
time (ms) | ratio
system (no VPE) 0.036
upr = 2 0.039 1.08
4 0.041 1.14
8 0.048 1.33
16 0.070 1.94
32 0.135 3.75
64 0.361 10.02

Table 12.7: Performance data for building data structures to support range
minimum queries of 32-bit integers. The “ratio” column gives the ratio of the
time used by the routine using vpr virtual processors per physical processor to
the time used by the non-virtual processing routine.

in Table 12.7. Note that the performance of our range minimum query rou-
tine depends on too many parameters (e.g., the degree of concurrency on the

queries). Thus we did not obtain its performance data.

12.5 Comparisons Between Sequential and Parallel Im-
plementations of Basic Primitives

In this section, we compare the performance data for sequential and
parallel implementations of three basic parallel primitives, one each from the
three categories described in Section 12.4. The three basic parallel primitives

are prefix summing, list ranking and sorting.

We implemented the above three operators sequentially using the C
programming language [KR88] on a UNIX system [RT74] (SunOS 4.1.3). We
used the quick sort routine provided by the system library for sorting. The
performance data for the sequential algorithms was obtained by running our
programs on a SPARC 10/41 machine with 32 megabytes of main memory
and about 80 megabytes of swapping space. As indicated in Chapter 11, the
SPARC 1II is at least 200 times faster than a single MasPar PE. We ran our
sequential code for finding connected components on our SPARC 10/41 and

compared its running time with the running time used on a SPARC II. We

260

found that SPARC 10/41 is at least 1.15 times faster than a SPARC II. Thus
SPARC 10/41 is at least 230 times faster than a single MasPar MP-1 PE. Since
the MasPar MP-1 that we were using had 16,384 PE’s, the raw computational
power of the MP-1 was at least 63 times larger than a SPARC 10/41.

All of our performance data for sequential programs was obtained
when the machine had only one active job. We measured two quantities in per-
forming sequential computations. The first quantity was the user time, which
is the amount of the CPU time used directly by a computation. The second
quantity was the total time, which is the user time plus the amount of time
used by the system to handle events generated while executing a computation,
e.g., the swapping between the cache system and the main memory when there
is a cache miss, and the swapping between main memory and the secondary
storage when there is a page fault. On a single user system, the total time of a
sequential computation is roughly equal to its turn-around time, i.e., the wall

clock time during the computation.

We found that for running our sequential programs on inputs that
required less than 24 megabytes (or 80% of the main memory on our system),
the total time was roughly equal to the user time. When the amount of memory
used was more than 32 megabytes, the effect of slow down due to swapping
started to appear. For inputs that required 24 — 32 megabytes of memory, the
behaviors of our programs varied. One advantage in using a massively parallel
computer, in addition to the enormous raw computation power offered, is the
huge total amount of main memory available for a computation. For example,
although each physical processor in the MasPar MP-1 only had 64 kilobytes
of memory, the total available memory for a 16,384-processor machine was 1

gigabytes (or 32 times larger than the main memory of our SPARC 10/41).

261

Thus we would expect that our parallel implementations can run larger inputs
faster than our sequential implementations, since sequential implementations
would spend most of the time swapping when the input could not fit into the
main memory. We expect the total available main memory would become even
larger on a parallel machine once the speed of a sequential machine reaches its
limit. At that time, our parallel implementation would be able to run much

larger inputs.

The performance data for performing the prefix summing, list ranking
and sorting are shown in Figure 12.2, Figure 12.3, and Figure 12.4, respectively.
On the left of each figure is the performance data for the sequential implemen-
tation. On the right of each figure is the performance data for the parallel
implementation and a curve obtained by using a least-squares-fit package in
Mathematica [Wol88]. We also obtained a least-squares-fit curve for the se-
quential performance data when the amount of memory used in the program

was within the limit of the main memory.

12.5.1 Prefix Sums

Programs in the first category issued regular communication requests
to nearby processors in their parallel implementations. These programs gen-
erated a linear number of swapping requests on the part of the data that was
placed on the secondary storage when implemented sequentially if the locality
of data referencing in the programs was utilized wisely. For example, each data
would have to be placed in the main memory (or cache) only once to com-
pute prefix summing sequentially. Thus we would expect to achieve a linear
speed-ups on programs in this category in their parallel implementations. We

observe that our parallel implementation ran about 70 times faster than our

262

scanwithAdd32 (SPARC 10/41) scanwithAdd32 (MasPar MP-1)

10 0.1
user time o 0.09 | cpu time =
0.0029 X 0.001 + 0.000042 X
8 r total time -+ 3} 0.08 r
e 0.07
8 6t L 2 0.06 |
g S o0.05 |
[} L 0 °
4 % 0.04 o
0.03
2t 0.02 f
0.01 F =
l:‘.EI‘
0 . . . 0
0 400 800 1200 0 400 800 1200 1600
input size (in units of 10000) input size (in units of 10000)

Figure 12.2: Performance data for performing prefix summing sequentially and
in parallel.

sequential implementation when all data could fit in the main memory of our
SPARC 10/41. Note that we only expected the MasPar MP-1 to be 63 times
faster than the SPARC 10/41. When data had to be placed out of the core in
our sequential code, our parallel program ran about 100 times faster than our
sequential implementation on the largest input that we have tested. The total
amount of swapping time was about 3 seconds, which was about 40% of the

total time, on the largest input that we have tested.

12.5.2 List Ranking

Programs in the second category had unpredictable communication
patterns in their parallel implementations. The amount of speed-ups that one
could get was thus proportional to the performance of the inter-processor com-
munication primitives provided by the parallel machine. On the other hand,
the sequential implementation of these programs generated a large number of
swapping requests when part of its data had to be placed out of core since very
little locality could be used for data accessing. Thus we would expect programs

in this category to have very little speed-ups when the size of the inputs was

263

List Ranking (SPARC 10/41) List Ranking (MasPar MP-1)
T T T T T T T T T T

50
user time o 45 | cpu time = |
200 r 0.040 X 0.012 X + 0.00096 X log(X) -
total time -+ 40 ¢
150 | ; ol
3 f & 30t
<3 <3
: g 257
100
a o 207 .
i 15 |
50 + N |
b 10 L
M 57
0 I ! f . . 0 2
0 50 100 150 200 250 300 350 300 600 900 1200 1500
input size (in units of 10000) input size (in units of 10000)

Figure 12.3: Performance data for performing list ranking sequentially and in
parallel.

small and to have super-linear speed-ups when the size of the inputs was large.

It is well-known that that data in the secondary storage of a sequential
machine (e.g., SPARC 10/41) is partitioned into fixed size segments, e.g., 512-
byte segments or 1,024-byte segments. When a program references a cell that
is not currently in the main memory, the segment where the cell is in is brought
in by swapping an equal size segment out. The same scheme is performed in
the cache level. In the case of performing list ranking on large inputs, the
number of times a segment had to be brought in from the secondary storage is
proportional to the size of the segment. For example, when half of the elements
were in the secondary storage, our program had to generate a page fault about
every two memory references. From the performance data shown in Figure 12.3,
we observe that our parallel implementation was only twice faster than our
sequential implementation if all cells in the linked list were in the main memory.
However, when heavy swapping was needed in the sequential implementation,
its performance degraded dramatically. We tested our code on larger and larger
inputs until the wall-clock time for finishing a job was more than 24 hours on

our SPARC 10/41 when there was only one active job in the system. For the

264

Quick Sort (SPARC 10/41) Bitonic Sort (MasPar MP-1)
T T T T T T

600 12
user time o cpu time =©
500 0.22 + 0.17 X + 0.022 Xlog(X) 10 | £(X)
total time -+
400 : 8
1] 12}
ket kel
8 300} 8 6
0 0
o} 9] .
0] n =
200 4
100 | 2 o
0 L L L 0 Tl L L L L
0 400 800 1200 0 400 800 1200 1600
input size (in units of 10000) input size (in units of 10000)

Figure 12.4: Performance data for performing sorting sequentially and in par-
allel. The sequential implementation used a quick sort algorithm. The par-
allel implementation which is given in [PS90] uses a bitonic sort algorithm.
The function f(X) in the right figure is 0.004 4+ 0.004X + 0.001.X log X +
0.0000064.X log® X.

largest input that we tested, the sequential program spent over 120 seconds,
which was more than 75% of the total time, in performing swapping. On the
other hand, our parallel implementation performed predictably well for the size
of the the input that was more than 5 times larger than the largest input that

we have tested on the sequential implementation.

12.5.3 Sorting

Programs in the third category issued predictable communication re-
quests to processors that were not near-by in their parallel implementations.
Their sequential implementations generated a moderate number of swapping
requests when part of their input had to be placed out of core. Thus we would
expect a moderate speed-up in their parallel implementations. For example, we
would expect each segment in the secondary storage to be swapped only a log-
arithmic number of times in a good sequential implementation of the quick sort

algorithm. Our performance data in Figure 12.4 shows that the swapping time

265

for the largest input on our sequential implementation was about 12 seconds,
which was only about 2.5% of the total time. The parallel implementation of
the bitonic sort algorithm we used [PS90] was about 45 times faster than the
sequential implementation of the quick sort algorithm on the largest input that

we have tested.

12.6 Concluding Remarks

We have described our techniques for implementing virtual processing
on the MasPar MP-1 using the MPL language. We have described our data
allocation and code rewriting rules for writing MPL programs such that the
number of processors used in the program is not limited. We have also described
the implementation and fine-tuning of a set of parallel primitives with virtual
processing. We will build on this approach in Chapter 13 where we present the

implementation of a set of efficient parallel graph algorithms.

We note the following observations.

e The current architecture of the MasPar MP-1 is not adequate to run pro-
grams that require a lot of memory per physical processor. The router
is too slow (about 200 times slower) compared to the speed of a mesh
communication. It is reported in [Pre93a] that the new MasPar MP-2
upgrades the raw computation power of each individual processor while
keeping its communication hardware and limitation of memory space un-
changed. For our application, we feel that the amount of memory in
each processor should be increased and the bandwidth of the communi-
cation channel should be enlarged before the upgrading of the processor

computation power.

266

e Our approach of implementing virtual processing on the MasPar MP-1
using the MPL language is promising. The performance of parallel prim-
itives after fine-tuning was predictable for the range of vpr, the number
of virtual processors simulated by each physical processor, that we have
tested. We also observe that for the set of parallel primitives that we
have implemented, there is a strong relationship between the swapping
time used by our sequential code and the inter-processor communication

time used by our parallel code.

o Amdahl’s law for parallel processing [Amd67] states that if 2 of the com-
putation in a program can only be speeded up by a factor of y, then the
maximum speed-ups that one can get is = - y. For designing parallel pro-
grams with virtual processing by calling parallel primitives implemented
in this chapter, one obtains the least speed-ups (less than 2 times) from
primitives in category 2 (Section 12.4.2) when the size of input can fit
into the main memory of the sequential machine. Thus we would expect
only 2 to 3 times speed-ups when the size of input is small in parallel
programs that require to spend a constant fraction of their computation
time on routines in category 2. However, for large inputs, we can achieve
large speed-ups. This has been confirmed by the experiments conducted
in the next chapter for implementing a set of parallel graph algorithms

with virtual processing using the approach outlined in this chapter.

Chapter 13

Implementation of Parallel Graph Algorithms on a
Massively Parallel SIMD Computer with Virtual
Processing

13.1 Introduction

This chapter continues the discussion of our implementation project
on the massively parallel computer MasPar MP-1. There has been a fair
amount of prior work for implementing parallel algorithms on massively paral-
lel machines [AS92, BLM*91, DL92a, D1.92b, HPR92, NT92, PS90] since the
completion of the first phase of our project reported in Chapter 11. However,
most of this work has been targeted towards solving problems that are highly
structured and are not very difficult to scale up. The focus of our work is
on solving graph-theoretical problems for which the algorithms require large

amounts of non-oblivious memory accesses.

In Chapter 11, we described the implementation of several paral-
lel graph algorithms on the MasPar MP-1 using the parallel language MPL
[Mas92b, Mas92c] which is an extension of the C language. The MPL lan-
guage provides a very efficient way of using the MasPar with the drawback of
requiring the specification of the physical organization of the processors used
in the program. Our implementation described in Chapter 11 used an edge list
data structure to store the input graph. An undirected edge (u,v) was stored
twice as one directed edge from u to v and another directed edge from v to u.

Each of the two copies of an undirected edge was stored in one processor along

267

268

with a node. As a result, we could only handle the case when the input graph

has no more than nproc nodes and edges where nproc is the maximum

nproc
number of processors that we can use in the system. The machine that we
used, the MasPar MP-1, had nproc = 16,384 processors. In this chapter, we
report the second phase of this work, which consisted of implementing these
graph algorithms to handle inputs of size greater than 16,384 using the tech-
niques developed in Chapter 12. In this current implementation, we use the

rewritting rules and the library routines given in Chapter 12 to obtain our code

with virtual processing.

Our results are reported in the following sections which are organized
as follows. Section 13.2 gives a high-level description of our implementation.
Section 13.3 describes the implementation details of our parallel graph algo-
rithms library. Section 13.4 gives performance analysis. Finally, Section 13.5

gives the conclusion. The work presented in this chapter also appears in

[HRDI3].

13.2 High-Level Description of Our Implementation

In our earlier implementation of parallel graph algorithms without
virtual processing described in Chapter 11, we first provided a general mapping
between the architecture of the MasPar and the schematic structure of the
PRAM model. This mapping scheme took advantage of some of the special
properties of the MasPar, although it was not fine-tuned for each individual
routine. This mapping scheme was described in Chapter 10. (This approach
has been used in simulating PRAM algorithms on various parallel architectures,
e.g., see the section on simulating PRAM algorithms in [Lei92]. However, most

of the previous results do not have any implementation details and provide no

269

performance data.) Using this mapping, we then coded each simple parallel
primitive on the MasPar. While coding each primitive, we utilized the special
properties of the MasPar to fine-tune our code. Since each parallel primitive
is very easy to code, one would expect the fine-tuning step to be much simpler
than the fine-tuning step of a complicated algorithm. We implemented a set
of parallel graph algorithms without virtual processing by calling the parallel
primitives we coded and routines provided in the system library as described

in Chapter 11.

Due to the constraints imposed by the programming environment on
the MasPar, the above implementation requires the size of the input to be no
more than the number of available physical processors. However, the parallel
primitives coded can be used with any number of processors by invoking Brent’s
scheduling principle [Bre74, KR90] to simulate several virtual processors on
one physical processor. To do this, we extended our mapping scheme to handle
the allocation and simulation of virtual processors. The extended mapping is

described in Chapter 12.

Using our original code when no virtual processors are used as de-
scribed in Chapter 11 as a blueprint and the extended mapping as a guideline,
we transformed our code to handle the allocation of virtual processors. Since
the MPL language does not support virtual processing, we had to implement
our own scheme for virtual processing. To do this, we re-coded and fine-tuned
the set of parallel primitives identified in Chapter 11 and several system library
routines to handle the allocation of virtual processors efficiently. Then we im-
plemented a set of parallel graph algorithms by calling these parallel primitives
and system routines. The primitives and graph algorithms we implemented are

described in Section 13.3.

270

13.3 Implementation of Parallel Graph Algorithms

In this section, we first describe the implementation of several data

structures. Then we describe the parallel graph algorithms library that we have

built.

13.3.1 Data Structures

Array and Linked List

Given the value of vpr, we mapped a global memory array used in a PRAM
algorithm onto the MasPar by putting the :th element of the array into the
ith VPE. Thus this element will be allocated in the (¢ mod vpr)th element of a
local array on the qﬁJ Jth physical processor. We mapped a linear linked list

used in a PRAM algorithm by putting each element in the list into a different
VPE. Pointers in PRAM were replaced by the ID’s of VPE’s.

Tree

We represented an edge in an undirected tree by two directed edges of opposite
directions. A tree was represented by a list of directed edges. In implementing
the tree data structure on the MasPar, we put one directed edge in one VPE
with the requirement that the set of edges that are incoming to the same vertex
have to be allocated on a consecutive segment of VPE’s. Each of the two copies
of an undirected edge kept a reverse pointer which pointed to the location of the
other copy of the same edge. Using this representation, we can use the XNET
connection to perform inter-processor communications needed for computing
an Fuler tour on a tree. Since computing an Euler tour is one of the most
common subroutines on trees used by parallel graph algorithms, we saved time
by using this mapping.

Undirected Graph

In our implementation without virtual processing as described in Chapter 11, a

271

general undirected graph was represented by a list of edges. Fach edge had two
copies with the two endpoints interchanged. We placed an edge on a MasPar
PE with the requirement that the two copies of the edge have to be located
on adjacent PE’s. The reason for using this data structure was twofold. First,
we wanted a tree to be represented by a list of edges such that edges incident
on a node were allocated in a continuous segment of processors for the ease
of finding an Euler tour in a tree. Representing an undirected edge by its
two corresponding directed versions was consistent with the representation of a
tree. Second, undirected graph algorithms often needed to perform operations
on nodes based on information stored on the edges incident on them. Since
an undirected edge has two endpoints, each edge had to perform operations
on each of its two endpoints. Thus we needed two processors to handle one
undirected edge. When virtual processing was involved, the natural candidate

for our mapping was to allocate each copy of an edge on a different VPE.

Let m and n be the numbers of (undirected) edges and nodes in the
input graph, respectively. Using the naive strategy for allocating undirected
graphs described in the previous paragraph, we determined the value of vpr by
computing the least power of 2 that is greater than or equal to [%w Edges
were allocated among virtual processors with the ID’s from 2 to 2m + 1. (For
the easy of programming, we did not use the first two virtual processors for
storing edges.) The ¢th node was allocated to the virtual processor with the

ID 2. Initially, we coded the routine for finding a spanning forest with virtual

processing using this simple strategy.

In the case when m was much greater than n, this type of data allo-
cation scheme was not balanced since only a small portion of the machine was

performing computations related to nodes. The other drawback in using this

272

type of allocation came from the types of operations that were usually used in
parallel graph algorithms. It is often the case that information related to edges
incident on a node v had to be collected to produce data that will be stored
in the processor that was allocated for v. In performing these operations, data
will compete with each other to reach a small segment of processors that are
physically connected to each other. The delay for this type of inter-processor
communications was very large. In order to improve the performance of our

code, we considered alternative strategies.

Dynamic Load Balancing One possible solution for the above problem was
to compute different vpr values for nodes and for edges. However, for this we
would have to revise our code for parallel primitives such that each primitive
knew whether it was performing operations on edges or on nodes. Also, the
code for our graph algorithms would have to be changed. This would result in
a more complicated implementation. Instead of going through such a serious
revision, we came up with the following simple method that did not require us
to change other programs. We first computed the number of virtual processors
per node to be nfactor = {WJ. We then allocated the :th node to the
(¢ - nfactor)th virtual processor. We chaned the node numbers referred to in
each edge accordingly. This was done by multiplying n factor to every node
number used in the edge list. We then performed all of our computations as if
the number of nodes is n-n factor. (This is equivalent to adding n-(n factor—1)
isolated vertices into the input graph.) After performing the computation, data
related to nodes allocated in every other n factor virtual processors was col-
lected. By performing simple preprocessing and post-processing, we evenly
distributed all nodes and did not have to track the value of vpr during each op-

eration. Our previous code for finding a spanning forest with virtual processing

273

could be used with minor modification.

Note that we could apply the same technique to several data struc-
tures used in our programs. For example, our graph algorithms often found a
spanning forest in the input graph and obtained an Euler tour of each of the
tree in the spanning forest. The total number of edges in the Euler tours of
the forest was 2n — 2. We could apply the same technique to achieve a better
load balancing by evenly distributing tour edges among physical processors.
Our graph algorithms also performed range minimum queries on an array of
elements whose size was 2n — 2. We could also use this technique to achieve
a better load balancing by evenly distributing elements in the array among

physical processors.

We tested the implementation of our parallel program for finding a
spanning forest on graphs of three different edge densities: (1) dense graphs

where m = 721—2; (2) intermediate-density graphs where m = n'?; (3) sparse

graphs where m = 37” Performance data is shown in Figure 13.1 for this
problem with and without the usage of dynamic load balancing. Figure 13.1
shows that by using dynamic load balancing, our parallel program ran about
12 times faster than our parallel program without dynamic load balancing on
dense graphs. On intermediate-density graphs, it was about 8 times faster. On

sparse graphs, it was about 1.5 times faster. We expect this type of behavior

as dynamic load balancing provides more help as the graph gets denser.

Compressed Data Structure A major goal of our implementation was to
run inputs whose sizes are as large as possible. Since we have a limited amount
of memory space per physical processor, we wanted to minimize the amount of
space used by each edge without paying too much overhead in computation.

It turns out that except for the case of representing a tree for finding an Fuler

274

tour, we can easily simulate the effect of having two processors handling one
undirected edge by performing computations twice, one from each direction.
Thus our program only allocated one processor to handle each edge. A side
effect of this allocation scheme is that we had to write an expansion routine
to convert this compressed representation into the tree format if we needed
to build an Euler tour. In summary, our program first allocated vpr virtual

processors per physical processor, where vpr is the least power of 2 that is

greater than or equal to [7 w In the case when 2n > vpr - nproc and a

nproc
spanning tree format was needed, we doubled the value of vpr and called the
expansion routine to transform the compressed data structure into the normal

graph representation.

The performance data for running our program with and without the
usage of compressed data structures for graphs to find a spanning forest are
illustrated in Figure 13.2. Figure 13.2 shows that our program ran at about
the same speed with or without the usage of compressed data structures on
dense graphs and intermediate-density graphs. Note that by using compressed
data structures, we could double the size of the largest graph we could han-
dle. For sparse graphs, we had to pay a little overhead in using compressed
data structures. Since the overhead was small, we decided to use compressed
data structures for graphs though the code became a bit longer. Thus when
allocating vpr virtual processors to each physical processor, we could run our
programs on graphs with vpr - nproc nodes and vpr - nproc edges it we did
not require the usage of a spanning forest in the program. We could run pro-

SEEEPTE nodes and vpr - nproc edges if we had to use a

grams on graphs with
spanning forest representation during the computation. Without the usage of
compressed data structures, we could only run our programs on graphs with

half the number of edges.

Milliseconds Milliseconds

Milliseconds

Finding a Spanning Forest (m = 3n/2)
300 T T T T T T T T
without load balancing —=—
250 | with load balancing -+ |
200 r R
150 b
100 r 1
50 R
O) L L L L L L L
0 10 20 30 40 50 60 70 80 90
X’ = n + m (in units of 10000)
Finding a Spanning Forest (m = n"(3/2))
120 T T — T T — .
without load balancing —=—
with load balancing -+
100 - R
80 r 1
60 R
40 r R
20 | 1
0 A e A I I I
0 10 20 30 40 50 60

X’ = n + m (in units of 10000)

Finding a Spanning Forest (m = n"2/4)

300 : : ‘
without load balancing —=—
250 | with load balancing -+ |
200 |]
150 |]
100 |]
50 |]
O
0 10 20 30 40 50 60
X’ = n + m (in units of 10000)
Figure 13.1: Mlustrating the perfor-
mance data for our parallel program

for finding a spanning forest in graphs
with and without dynamic load bal-
ancing.

275

Finding a Spanning Forest (m = 3n/2)
300 T T T T T T

with load balancing only -+
Iplus compressed data structure —=— |

Seconds
-
v
o
:

100 r 1
50 b
0+' L L L L L L
0 20 40 60 80 100 120 140
X’ = n + m (in units of 10000)
Finding a Spanning Forest (m = n"(3/2))
35 T T T T T
with load balancing only -+
30 plus compressed data structure z=— 1
25 f 1
g
S 20 1
o
o 15 ¢ 1
[}
10 | b
5 |
0 , , , , ,
0 20 40 60 80 100 120
X’ = n + m (in units of 10000)
Finding a Spanning Forest (m = n"2/4)
25 T T T T T
with load balancing only -+
20 plus compressed data structure - |
g 15t 1
<
o
)
@ 10+t 1
5 |
0 , , , , ,
0 20 40 60 80 100 120

X’ = n + m (in units of 10000)

Figure 13.2: Mlustrating the perfor-
mance data for our parallel program
for finding connected components in
graphs with and without the use of
compressed data structure.

276
13.3.2 The Parallel Graph Algorithms Library

To build our parallel graph algorithms library, we first wrote a kernel
that includes all of the commonly used subroutines for designing parallel graph
algorithms. Then we built our graph application programs by calling routines
in the kernel and routines provided in the system library. The structure of the

whole library is shown in Figure 13.3.

Routines in the System Library and the Kernel We briefly describe the
routines in the kernel. All of these routines are based on PRAM algorithms
that run in O(logn) time for an input of size n. Although some of them
are not theoretically optimal algorithms in that they perform ©(nlogn) work,
they are within an O(logn) factor of optimality, and they are very simple.
These routines are as follows. (1) List ranking [KR90]. (2) Rotation. This
routine rotates the data stored in a processor with ID ¢ to the processor with
ID (¢ 4+ d) mod p, where d is an input to the routine and p is the number of
PE’s in the system. (3) Segmented rotation. We store data in each processor
and partition the set of processors into sequences of consecutive segments.
This routine rotates the data stored in each processor within each segment.
Data within each segment are rotated in a way similar to the rotation routine
described in (2). (4) Range minimum [TV85]. (5) Euler tour construction
[TV85]. (6) Preorder numbering [TV85]. (7) Least common ancestor [TV85].

When implementing the above routines in the kernel without virtual
processing as described in Chapter 11, we also used the following routines
that are provided in the system library. (1) Sorting. (2) Prefix sums. (3)
Inter-processor communication. (4) Data combining. In our implementation

of parallel algorithm with virtual processing, we also used the above routines.

277

Figure 13.3: The structure of the routines we built for the parallel graph al-
gorithms library. The kernel of the library will be used by the application
routines. In our coding, we also use routines provided in the system library.
An arrow from one node to another node means the routine at the tail of the
arrow (upper) is used by the routine at the head of the arrow (lower).

278

Since the MasPar does not provide virtual processing for these system routines,
we coded and fine-tuned all of these routines with virtual processing except
sorting. For sorting with virtual processing, we used the package developed in
[PS90]. Since the sorting package in [PS90] can only handle the case when the
number of virtual processors simulated by each physical processor is a power of
two, our code inherited the same restriction. The implementation of routines

in the system library and the kernel is described in Chapter 12.

Graph Application Routines We implemented parallel algorithms for the
following problems using the above kernel. (1) Spanning forest [AS87]. (2)
Minimum cost spanning forest [AS87]. (3) Cut edges [Ram93]. (4) Ear de-
composition of a two-edge-connected undirected graph [Ram93]. (5) Open ear
decomposition of a biconnected undirected graph [Ram93] (6) Strong orienta-

tion of a two-edge-connected undirected graph [Ram93].

13.4 Performance Analysis

We tested our code by generating test graphs and measuring the per-
formance of the code on these test graphs. In addition to testing our parallel
code for the problems listed in Section 13.3.2, we also took the implementation
of their corresponding sequential algorithms described in Chapter 11 and tested
them on large inputs using SUN SPARC workstations. The corresponding sets
of performance data were compared and studied. Note that a MasPar MP-1
PE is about 200 times slower than a SUN SPARC II and about 230 times slower
than a SUN SPARC 10/41. Thus it is to be expected that the performance of
our sequential programs will be faster than our parallel programs in some cases,
though the speed-up of our parallel implementation was quite good, given the

parameters of the MasPar MP-1. One noteworthy feature of our parallel imple-

279

mentation is that it could handle inputs whose sizes are much larger than the

the sizes of the input that can be handled by our sequential implementation.

The organization of this section is as follows. We first describe the
method we used in generating test graphs. Then we describe the way we
tested our programs and the curve-fitting scheme we performed on the sets of

performance data. Finally, we analyze the performance data.

13.4.1 Generation of Test Graphs

We tested our programs using graphs of three different edge densities
as described in Section 13.3.1 and Chapter 11. For testing the code for finding
a spanning forest and a minimum spanning forest, we generated test graphs
from the class of random graphs G, ,,, as described in Chapter 11. In addition,
a random cost in the range from 0 to 99,999 (with repetition) on each edge,
instead of from 0 to 999 as used in Chapter 11, was generated for testing the
routine for finding a minimum spanning forest. Test graphs with a given edge
density, a given size, and a given property (e.g., biconnectivity) were generated

using a similar method as described in Section 11.4.2.

13.4.2 Testing Scheme

For each size and sparsity, we generated four different test graphs.
We ran each program on each test graph for 10 iterations and recorded the

average of the 40 trials. The results are plotted in Figures 13.4 — 13.8.

We had access to a MasPar MP-1 machine with 16,384 processors
and 32 kilobytes of available memory per processor. (The other 32 kilobytes
of memory in each processor was not available to us.) We were able to test

all of our programs except the one for finding an open ear decomposition for

280

the value of vpr up to 64. We were only able to run our parallel program for
finding an open ear decomposition for the value of vpr = 32. Note that for
testing dense graphs and intermediate-density graphs, we could run programs
on graphs with m = vpr-16,384. For testing sparse graphs (m = %n), we could
only run inputs with m = % -vpr - 16,384 since a tree data structure is required
in the computation and we needed 2n = %m virtual processors to represent it.
Our parallel programs for finding a spanning forest and for finding a minimum
spanning forest used 24 kilobytes per physical processor when the value of vpr
was 64. The rest of the programs used 32 kilobytes for the largest inputs that

we have tested. We spent about 2 months to obtain all of our performance

data.

We ran the set of sequential algorithms implemented in Chapter 11
on a SUN SPARC 10/41 machine with 32 megabytes of memory and about 80
megabytes of swapping space on input sizes greater than 16,384. We tested
the sequential programs on larger and larger inputs until either the programs
complained that the usage of the memory is too much or we waited more than
1 day while there was only one active job running on the machine. For sparse
graphs, our sequential programs ran out of available memory before we could
obtain performance data that was worse than the corresponding parallel pro-
gram. However, on dense graphs and intermediate-density graphs, our parallel
algorithms run much faster (in real CPU time) than their sequential counter-
parts. The likely reason is that we use a depth-first search in our sequential
programs, which is a recursive program whose depth of recursion could be as

large as the number of nodes in the graph.

Our sequential programs were implemented with the help of the graph

package NETPAD [DMM92] developed in Bellcore as described in Chapter 11.

281

NETPAD uses a lot of extra memory in creating a standard graph data struc-
ture. Thus we might save space by coding the sequential algorithms from
scratch. We also note that the turn-around time (wall-clock time) for each of
our sequential programs was very large when we used more than 80% of the
main memory even if the system had only one job active, though our time mea-
surement routine would report only a small fraction of the turn-around time.
For example, for finding a minimum spanning forest sequentially on graphs
with 300,000 edges, the time measurement routine reported a total usage of
110 seconds for 10 iteration of our program. However, the turn-around time
was about 20 hours. We conjecture the reason might be that the architecture
of SPARC 10/41 handles swapping poorly. We were unable to find better rou-
tines for measuring the performance of our sequential programs on the SPARC
10/41. For 5 of our 6 parallel programs, we were able to obtain sequential
performance data that was worse than their parallel counterpart by testing
large inputs. For the sequential algorithm for finding a minimum spanning
forest, the turn-around time was too long when the input graph had more than
300,000 edges. As a result, we did not obtain further performance data for
finding a minimum spanning forest such that we could observe the place where
the sequential performance was worse than the parallel performance as shown
in other programs. Overall, we spent more than 2 months in getting all of
the performance data for our sequential programs. For all problems, we could

handle input whose sizes are 4 to 5 times larger using our parallel code.

13.4.3 Least-Squares Curve Fitting

We applied the least-squares fit package in Mathematica [Wol88] to
the data we obtained. We used the following method to find the fitted curves

for our performance data. We first derived the theoretical asymptotical running

282

time for our parallel program. For example, our code for finding a spanning
forest in a graph with n nodes and m edges runs in O(% -log®n) time using
p processors since we used an O(log®n) time bitonic sorting routine in imple-
menting global concurrent write operations. We first used Mathematica to find
coefficients c¢g, ¢1, ¢2, ¢3 and ¢4 such that the function ¢o+ ¢y -2+ ¢y 2 -logax +

cs-x-log® x + ¢y -log” = best fit the set of experimental data that we obtained

with virtual processing.

It any of the coefficients was negative, we forced the negative coeffi-
cient ¢; with the largest integer ¢ to be zero and perform the fitting once again.
We iterated this process until all coefficients were not negative. We also per-
formed the least-squares fit for performance data of the sequential programs
when the amount of memory used in the program was within the capacity of

the main memory.

To test the goodness of the curve we obtained, we computed the
average error as the square root of - Zle(%f—il)z, where k is the number of
experimental data points, f is the function that describes the fitted curve and

y; is the experimental value when the input size is x;.

13.4.4 Analysis

In Section 13.4.4 through Section 13.4.4, we present the performance
of our code for each of our six graph problems. In the following, 2’ is the size
of the input in units of 10,000. In interpreting the following data, note that
we present the fitting curves in terms of ' when virtual processors are used.
There is a further compression by a factor of 2 due to the compressed data
structure when virtual processors are used. The function value of each fitted

curve is the running time in seconds.

283

Finding a Spanning Forest For the parallel implementation, we modified
the CRCW PRAM algorithm in [AS87] for finding connected components to
find a spanning forest of the input graph. The original algorithm partitions
the set of vertices into a set of disjoint sets such that vertices in each set are in
the same connected component. Initially, the algorithm puts a vertex in each
set. During the execution, the algorithm merges two sets of vertices if they are
detected to be in the same connected component. Our program selects an edge
connecting a vertex in one set to a vertex in the other set while merging these
two disjoint vertex sets. The sequential algorithm that we implemented is the

simple linear time depth-first search algorithm.

The performance data with virtual processing is shown in Figurel3.4.
The fitted curves for the parallel performance data with virtual processing are
0.00142' log” ' + 1.322" + 1.41 (with 7.1% average error), 0.0000091z' log® 2’ +
0.272" + 0.028 (with 3.2% average error), and 0.0000742’ 10g3 ' +0.152" +0.45
(with 9.1% average error) for sparse graphs, intermediate-density graphs and
dense graphs respectively. The corresponding fitted curves for the sequential
performance data when the data is within the main memory are 0.172', 0.172’,

and 0.152".

Finding a Minimum Spanning Forest For the parallel implementation,
we modified the algorithm in [AS87] for finding connected components to find
a minimum cost spanning forest for the input graph. This algorithm also
partitions the graph into disjoint sets of vertices. In addition, for each current
set of vertices, we compute a minimum edge with exactly one endpoint in the
set using the concurrent write operation. This edge determines which other set
of vertices is to be merged with its set. Once the merge is completed, the edge

that caused the merging is marked as one of the edges in the minimum cost

284

spanning forest. For sequential implementation, we implemented the O(n +
m logn)-time Kruskal’s algorithm [Tar83] for finding a minimum cost spanning
forest. Although faster algorithms are known for this problem, we implemented

Kruskal’s algorithm for its simplicity.

The performance data with virtual processing is shown in Figure 13.5.
The fitted curves for the parallel performance data with virtual processing are
0.00152" log” ' + 0.782" + 2.46 (with 14% average error), 0.00037z' log” 2’ +
0.682"+0.11 (with 0.000212' 10g3 ' +0.672" (with 7.2% average error) for sparse
graphs, intermediate-density graphs and dense graphs respectively. The cor-
responding fitted curves for the sequential performance data when the data
is within the main memory are 0.12'log 2’ + 5.44, 0.0562"log 2’ + 1.78, and
0.0492" log ' + 1.22.

Finding All Cut Edges Our parallel implementation is based on [Ram93].
We first obtained a rooted spanning tree T for the input graph G. (The current
version of the program requires G to be connected.) A cut edge is a tree edge
(u,v), where u is the parent of v and there is no non-tree edge (x,y) in GG such
that either = or y is a descendant of v or equal to v and the least common
ancestor of x and y is a proper ancestor of v. This can be determined by
using the Euler tour technique and the range minimum queries. For sequential
implementation, we used a linear time algorithm for finding all cut edges in the

graph based on depth-first search [Ram93].

The performance data with virtual processing is shown in Figure 13.7.
The fitted curves for the parallel performance data with virtual processing are
0.00192" log® &' + 1.442" 4+ 1.59 (with 10.2% average error), 0.000182' log” 2’ +
0.612" + 0.27 (with 2.9% average error), and 0.00043z" log” ' + 0.492" + 0.73

(with 3.7% average error) for sparse graphs, intermediate-density graphs and

285

dense graphs respectively. The corresponding fitted curves for the sequential
performance data when the data is within the main memory are 0.222', 0.182/,

and 0.162".

Finding an Ear Decomposition For the parallel implementation, we used
the PRAM parallel algorithm in [Ram93] for finding an ear decomposition of
a 2-edge-connected graph by calling the sorting routine, routines in the kernel
and the routine for finding a spanning forest. For sequential implementation,
we used a linear time algorithm for finding an ear decomposition based on

depth-first search [Ram93].

The fitted curves for the parallel performance data with virtual pro-
cessing are 0.0014z'log”z’ + 1.432" 4+ 0.36 (with 5.0% average error),
0.000362" log® 2'40.332'4-0.2 (with 11.0% average error), and 0.000642" log” z'+
0.212" +0.91 (with 5.9% average error) for sparse graphs, intermediate-density
graphs and dense graphs respectively. The corresponding fitted curves for the
sequential performance data when the data is within the main memory are

0.572', 0.722', and 0.68z".

Finding an Open Ear Decomposition For the parallel implementation,
we used the PRAM algorithm in [Ram93] for finding an open ear decomposi-
tion. This routine is obtained by modifying the ear decomposition algorithm
mentioned in the previous section. The sequential ear decomposition algorithm
mentioned in the previous section [Ram93] also finds an open ear decomposition

of a biconnected graph.

The performance data with virtual processing is shown in Figure 13.9.

The fitted curves for the parallel performance data with virtual processing are

0.00172" log” &' + 1.592" + 0.24 (with 13.9% average error), 0.0014z' log® 2’ +

286

1.032" + 0.36 (with 9.0% average error), and 0.00242' log” z’' + 0.0572" log 2’ +
0.962" 4+ 0.5 (with 7.1% average error) for sparse graphs, intermediate-density
graphs and dense graphs respectively. Note that the sequential performance
data for finding an open ear decomposition is the same as the sequential per-
formance data for finding an ear decomposition. We will not restate them

here.

Finding a Strong Orientation For the parallel implementation, we first
obtained an ear decomposition for the input graph. Then we directed the
edges of each ear so that each ear forms a directed path or a directed cycle.
Observe that the ear decomposition algorithm first obtained rooted spanning
tree T. The edges in an ear are of the form (vq,v2), (ve,v3), ..., (Vg—1, V%),
(Vky)y (UpytUpoq)y (U1, tUp—g), ., (U2, uq), Where (v;,v;41) is a tree edge
and v; is the parent of v;4q in T, for 1 < ¢ < k; (uig1,u;) is a tree edge and
uiy1 is the parent of w; in T, for 1 < ¢ < r; (vg,u,) is a non-tree edge. Thus
we directed every non-tree edge (u,v) from u to v where u has a smaller ID
than that of v. Then we assigned directions to tree edges in such a way that
the edges in an ear formed a directed path or directed cycle and the first two
ears together formed a directed cycle. For sequential implementation, we used
a linear time algorithm for finding a strong orientation based on a recursive

version of depth-first search [Tar72].

The performance data with virtual processing is shown in Figure 13.8.
The fitted curves for the parallel performance data with virtual processing are
0.00212" log” &' + 1.392" + 1.78 (with 5.8% average error), 0.00012z' log® 2’ +
0.422" + 0.032 (with 2.6% average error), and 0.00058z" log® 2’ + 0.232" + 0.89
(with 5.1% average error). for sparse graphs, intermediate-density graphs and

dense graphs respectively. The corresponding fitted curves for the sequential

287

m = 3n/2 m = n3/? m=n?/4

no vpr vpr = 16 no vpr vpr = 16 no vpr vpr = 16

m=28191 | m=262,142 | m = 8,191 | m = 262,142 | m = 8,191 | m = 262,142

(seconds) (seconds) | (seconds) (seconds) | (seconds) (seconds)

Spanning Forest 1.01 74.86 0.41 7.23 0.39 5.35
Minimum Spanning Forest 1.05 51.97 0.73 18.58 0.70 19.69
All Cut Edges 1.17 83.36 0.61 17.92 0.57 15.85
Ear Decomposition 1.19 72.54 0.60 11.32 0.58 8.71
Open Ear Decomposition 1.47 90.35 1.11 33.69 0.94 33.50
Strong Orientation 1.20 75.35 0.63 11.61 0.60 9.06

Table 13.1: Performance data for our parallel programs with and without vir-
tual processing. The data for parallel programs without virtual processing is
from Chapter 11.

performance data when the data is within the main memory are 0.312', 0.2527,

and 0.222".

13.4.5 Overhead for Implementing Virtual Processors

We compared the amount of time used by our parallel programs with
and without virtual processing. The performance data is shown in Table 13.1.
Note that we ran 5 of our 6 programs for the value of vpr up to 64 using no
more than half of the available memory in the system. The one program that
we could run only up to the value of vpr = 32, was the open ear decomposition
routine. Also, when vpr = 32, our code for open ear decomposition could not
handle inputs of size 32-16,384 on sparse graphs. (See Section 13.4.2 for details.)
Hence in Table 13.1, we use vpr = 16 to show the performance of our parallel
code when the virtual processors simulated in each physical processor were all
active. The performance data without virtual processing is from Chapter 11.
Our implementation of parallel algorithms with virtual processing had excellent
speed-ups on dense graphs and intermediate-density graphs in relation to the
implementation without virtual processing. For example, for finding an ear

decomposition on dense graphs, we used 15 times more CPU time with virtual

288

processing while handling graphs that were 32 times larger. For sparse graphs,
the overhead was fairly large. The reason might be that for sparse graphs, using
virtual processors increased the degree of concurrency when concurrent read or
write is used. Since we could not offset it by the use of dynamic load balancing,
our implementation had a big overhead on sparse graphs. We also note that
the overhead for implementing the open ear decomposition algorithms is about

twice as large as the overhead for implementing other algorithms.

13.5 Concluding Remarks

We have implemented a set of parallel algorithms for undirected
graphs on the MasPar MP-1 to handle sizes of the input that are larger than
the number of available physical processors. We tested our parallel programs
on inputs whose sizes were up to 64 times larger than the number of physi-
cal processors and compared their performance with corresponding sequential
programs. Note that by using the full configuration of the current machine,
we can simulate up to 128 virtual processors per physical processor. However,
sharing the machine with other users limited us to use only half of the avail-
able memory in each processor. Thus if the full machine had been available, we
could have run our programs on graphs with one million nodes and two million

edges.

We note the following observations.

e By using the high-level structure of the PRAM algorithms as building
blocks, our coding and debugging effort was relatively small. We wrote
more than 12,000 lines of parallel code for the set of parallel graph al-
gorithms that we implemented with virtual processing. All of the work

reported here (include testing) was done within one year. Note that 4,000

289

lines of parallel code were written in 12 weeks for our implementation
described in Chapter 11 for the same set of parallel programs without
virtual processing. We consider our strategy for implementing parallel

graph algorithms to be promising.

We examined the variation in data we obtained on the four different test
graphs of a given size and a given edge density. Most of the data points
(> 90%) were within 7% of their average values. Less than 5% of the

data points were more than 15% away from their average values.

We compared the experimental data points with the computed points on
the fitted curves. The average error was about 10% for all data sets with
virtual processing. Our fitted curves fit quite well on the experimental
performance data. The fitted curves showed that the dominant term in
our parallel code was log®n. We conjecture the reason might be that
our graph algorithms usually compute by performing O(logn) iterations

and if each iteration takes ©(log®n) time, the overall time complexity is

O(log” n).

Sequential implementations usually performed badly when a fraction of
their data were placed out of the main memory. Note that our sequen-
tial programs used extra memory because we used NETPAD. Thus the
biggest size inputs that one can run on a SPARC 10/41 would be some-
what larger than what we have shown here if a more efficient coding of
the graph data structure is used. It is also possible to run larger inputs
on our sequential programs if we use a machine with larger main memory.
The current machine we used has 32 megabytes of main memory, while

machines with up to 1 gigabytes of main memory are currently available.

290

However, one would expect the total memory in a parallel computer to
be much larger than the size of any sequential machine once the market

demands the existance of such machines.

Although each MasPar MP-1 PE is much slower than the SPARC work-
station, we found that in most of the cases, parallel programs in fact runs
faster in real time compared to sequential programs. In particular, our
parallel programs were much faster on dense graphs and intermediate-
density graphs than on sparse graphs. We traced our parallel program
for finding a spanning forest and noticed that by using our dynamic load
balancing technique, the performance of a concurrent read or write was
not too bad on a dense graph compared to the performance of the same
operations on a sparse graph. Recall that our algorithm for finding a
spanning forest obtained a spanning forest by repeatedly growing forests
in parallel in a loop until the size of any tree in the current forest could
not be expended. For dense graphs, the parallel algorithms terminated
in fewer iterations than on sparse graphs. Thus the running time was
much smaller on dense graphs than on sparse graphs. Our parallel code

can also handle much larger inputs than our sequential code.

We found that our sequential program for finding a spanning forest used
about 45 megabytes of memory on the largest inputs. Our parallel pro-
gram used no more than 24 kilobytes of memory per physical processor
on inputs whose sizes were more than 4 times larger than the size of the
largest inputs for the sequential program. Since there are 16,384 physical
processors in the MasPar MP-1, the total memory used in our paral-
lel program was no more than 384 megabytes. Hence we used about 8

times more memory in our parallel programs while we could run inputs

291

whose sizes were 4 times larger than the largest input size on the SPARC
10/41. In most cases, when testing the largest size inputs, our parallel
code ran faster than their sequential counterparts on dense graphs and

intermediate-density graphs even when the input size was 4 times larger.

Milliseconds Milliseconds

Milliseconds

292

Finding a Spanning Forest (m = 3n/2))
350000 T T T T T T
MasPar MP-1 (16384 PE’'s) «©
300000 r 1468+1297X'+1.5X'1log"3 X'’ T
250000 r o
<]
200000 | 3 1
9]
n
150000 [sl
-
100000 = A
50000 r
0 , , , , , ,
0 20 40 60 80 100 120 140
X’ = n + m (in units of 10000)
Finding a Spanning Forest (m = n"(3/2))
45000 T T T T T
L MasPar MP-1 (16384 PE’s) o |

40000 268X'+0.016X"'1log"3 X'

35000
g

30000 8*

25000 o1
n

20000 r -
4

15000 =
=

10000 | b

5000 [1
0 , , , , ,
0 20 40 60 80 100 120
X’ = n + m (in units of 10000)
Finding a Spanning Forest (m = n"2/4)
25000 r MasPar MP-1 (16384 PE’'s) «© B
455+148X'+0.074X'1log"3 X'

20000 0 1
o
<]
o

15000 [84
n
-
4

10000 | —

8] s
=
5000 2 b
O o L L L L L
0 20 40 60 80 100 120

X’ = n + m (in units of 10000)

Figure 13.4: Relative performance of
the sequential program on a SPARC
10/41 workstation and the parallel
program on the MP-1 for finding a
spanning forest with virtual process-
ing. The least-squares-fit curves for
the sequential performance data when
< 80% of the main memory are used
are 0.17z, 0.17z, and 0.15z, respec-
tively, from the top to the bottom.

Minimum Spanning Forest (m = 3n/2))
300000 T T T . T T T T
MasPar MP-1 (16384 PE’'s) «©
250000 | 3136+945X'+0.79X"'1log"3 X’
200000 r b
150000 [1
100000 | 1
50000 b
0 , , , , , , , ,
0 20 40 60 80 100 120 140 160 180
X’ = n+m (in units of 10000)
Minimum Spanning Forest (m = n"(3/2))
12 r T T T : T 1
0000 MasPar MP-1 (16384 PE’'s) «©
577X'+28X’'1ogX’'+0.068X'log"3 X'
100000 b
80000 1
60000 b
40000 r b
20000 1
0 , , , , ,
0 20 40 60 80 100 120
X’ = n+m (in units of 10000)
Minimum Spanning Forest (m = n"2/4)
120000 T T T T T
MasPar MP-1 (16384 PE’'s) «©
100000 | 8579+2.0*X’'*log"3 X'
80000 r b
[u]
60000 1 1
40000 5]
20000 o b
O DD L L L L L
0 20 40 60 80 100 120

X’ = n+m (in units of 10000)

Figure 13.5: Relative performance of
the sequential program on a SPARC
10/41 workstation and the parallel
program on the MP-1 for finding a
MSFE with virtual processing. The
least-squares-fit curves for the sequen-
tial performance data when < 80%
of the main memory are used are
54+ 0.2xlogx, 1.8 + 0.1z log =, and
1.2 + 0.1z log z, respectively.

Milliseconds

Milliseconds

Milliseconds

Ear Decomposition (m = 3n/2))

350000 T T T T T
MasPar MP-1 (16384 PE’'s) «©
300000 1594X’+1.0X’log"3 X' 1
250000 r 51
o
200000 | S
[0)
n
150000 ul
3
100000 + =
50000 r
0 ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120
X’ = n+m (in units of 10000)
Ear Decomposition (m = n"(3/2))
70000 MasPar MP-1 (16384 PE’s) o
4923+1.3X'1log"3 X’
60000 ,
[0]
50000 f T
8 0
40000 | o
n
-
30000 =h
o o
20000 =
10000 ° ,
DD
0 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100
X’ = n+m (in units of 10000)
Ear Decomposition (m = n"2/4)
70000 MasPar MP-1 (16384 PE’s) o
911+212X’+0.64X'1log"3 X'
60000 ,
[0]
50000 f T
o]
40000 | o
n
-
30000 =h
-
20000 =
10000 ,
0 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100

X’ = n+m (in units of 10000)

Figure 13.6: Relative performance of
the sequential program on a SPARC
10/41 workstation and the parallel
program on the MP-1 for finding an
ear decomposition with virtual pro-
cessing. The least-squares-fit curves
for the sequential performance data
when < 80% of the main memory are
used are 0.57x, 0.72x, and 0.68z, re-
spectively, from the top to the bot-
tom.

140

120

120

293

Finding All Cut Edges (m = 3n/2))

400000 T T T T T T
MasPar MP-1 (16384 PE’'s) «©
350000 ¢ 1250+1634X’+1.4X'10g"3 X' 1
300000 1
250000 b
200000 r 1
150000 b
100000 [1
a
50000 r b
0 , , , , , ,
0 20 40 60 80 100 120 140
X’ = n+m (in units of 10000)
Finding All Cut Edges (m = n"(3/2))
100000 MasPar MP-1 (16384 PE’'s) = A
270+606X'+0.18X'1log"3 X’
80000 r 1
60000 b
40000 r b
20000 r b
0 , , , , ,
0 20 40 60 80 100 120
X’ = n+m (in units of 10000)
Finding All Cut Edges (m = n"2/4)
100000 T T T T T
MasPar MP-1 (16384 PE’'s) «©
725+486X’'+0.43X'1log"3 X’
80000 r b
60000 r 1
40000 b
20000 r 1
0 , , , , ,
0 20 40 60 80 100 120

X’ = n+m (in units of 10000)

Figure 13.7: Relative performance of
the sequential program on a SPARC
10/41 workstation and the parallel
program on the MP-1 for finding
all cut edges with virtual process-
ing. The least-squares-fit curves for
the sequential performance data when
< 80% of the main memory are used
are 0.22z, 0.18z, and 0.16z, respec-
tively, from the top to the bottom.

Milliseconds Milliseconds

Milliseconds

Strong Orientation (m = 3n/2))

350000 T T T T T T
MasPar MP-1 (16384 PE’'s) «©
300000 1750X’'+0.46X"1log"3 X' T
250000 1
<]
200000 | 3 1
5 9]
n
150000 [sl
-
100000 = A
50000 1
0 , , , , , ,
0 20 40 60 80 100 120
X’ = n+m (in units of 10000)
Strong Orientation (m = n"(3/2))
60000 | MasPar MP-1 (16384 PE’'s) «© 4
5027+1.3X'1log"3 X'
50000 r .
CI]
8
40000 r 31
@
30000 a
—
o —
20000 p=ie
10000 2 1
O DD L L L L L
0 20 40 60 80 100
X’ = n+m (in units of 10000)
Strong Orientation (m = n"2/4)
50000 r MasPar MP-1 (16384 PE’s) © A
894+228X’'+0.58X'1log"3 X'’
40000 0
kel
<]
o
30000 84
n
-
a
20000 r —
-
=
10000 | b
0 , , , , ,
0 20 40 60 80 100

X’ = n+m (in units of 10000)

Figure 13.8: Relative performance of
the sequential program on a SPARC
10/41 workstation and the parallel
program on the MP-1 for finding a
strong orientation with virtual pro-
cessing. The least-squares-fit curves
for the sequential performance data
when < 80% of the main memory are
used are 0.31z, 0.25x, and 0.22z, re-
spectively, from the top to the bot-
tom.

160000 r
140000 r 1
120000 o 7
100000 r 1

140

120

120

294

Open Ear Decomposition (m = 3n/2))
MasPar MP-1 (16384 PE’'s) o 4
22127+7.2X"log"3 X'

80000 r 1
60000 r 1
40000 r 1
20000 r B 1

0 . .

0 10 20 30 40 50 60 70
X’ = n+m (in units of 10000)

Open Ear Decomposition (m = n"(3/2))

100000 T T T T T T T T T
MasPar MP-1 (16384 PE’'s) «©
9805+5.9X’1log"3 X’
80000 r 1
60000 1
40000 r 1
o
20000 a 1
0 e L L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 55
X’ = n+m (in units of 10000)
Open Ear Decomposition (m = n"2/4)
100000 T T T T T T T T T
MasPar MP-1 (16384 PE’'s) «©
596+1132X’'+1.1X'log"3X"’
80000 r 1
60000 1
40000 r 1
20000 r 1
0
0 5 10 15 20 25 30 35 40 45 50 55

X’ = n+m (in units of 10000)

Figure 13.9: Relative performance of
the sequential program on a SPARC
10/41 workstation and the parallel
program on the MP-1 for finding
an open ear decomposition with vir-
tual processing. The least-squares-fit
curves for the sequential performance
data when < 80% of the main mem-
ory are used are 0.57z, 0.72z, and
0.68x, respectively, from the top to
the bottom.

Chapter 14

Summary and Future Work

14.1 Summary

In Part II, we have presented our work on implementing efficient
PRAM:-based algorithms for undirected graphs on a massively parallel SIMD
computer, the MasPar MP-1. Our implementation project is divided into two

stages, which we summerize below.

In the first stage, for ease of programming, we assume that the input
size 1s no more than the number of physical processors. We observed that
PRAM algorithms for complex undirected graph problems are usually derived
by calling fundamental parallel primitives. Thus our implementation strategy
is to first code a set of commonly used routines (the kernel) that are frequently
used in solving undirected graph problems. Building on the top of the kernel,
we implemented complex PRAM undirected graph algorithms. The code for the
graph algorithms we have implemented consist of a sequence of kernel calls and
simple data manipulations in between calls. To achieve good performance for
our parallel implementation, we fine-tuned each routine in the kernel according
the target machine properties (e.g., the MasPar MP-1). Since each primitive

is very simple, the fine-tuning process for the kernel was easy.

In the second stage, we extended our implementation to handle the
allocation of virtual processors. The programming language MPL that we used
does not support virtual processing, though is very efficient. To implement

virtual processing, we used the non-virtual processing code written in the first

295

296

stage as a blue print to derive our revised code with virtual processing. We first
provided simple translating rules for handling data allocation. Using simple
translating rules, we also rewrote our high-level non-virtual processing code for
the graph algorithms line by line. Furthermore, we fine-tuned each routine in
the kernel using different algorithms and picked the best implementation for
each routine. We also implemented system routines with virtual processing.
By doing the above, we have implemented a set of efficient parallel algorithms

for undirected graphs with virtual processing.

Our experience as obtained from work done in Part Il shows that
PRAM algorithms provide a useful way of decomposing complex problem on
undirected graphs. By using our approach, it is easy to code complex algo-
rithms and the performance of implemented algorithms track theoretical pre-

diction quite well.

14.2 Future Work

There are several avenues for future work. We list some of them:

o With a better understanding of the MPL language and the MasPar ar-
chitecture, we could fine tune our programs to run faster. Some of the
things that could be done include better utilization of registers in each
PE, using faster I/O interface between the PE’s and the MasPar file sys-

tem and finding the trade-off between performing computations on the

ACU and on the PE.

e Since we have implemented most of the commonly used routines for
implementing PRAM undirected graph algorithms, we expect that it

will be fairly easy to implement other graph algorithms; for example,

297

the routines for testing 3-edge-connectivity, triconnectivity and planarity
[Ram93, RR&9], since we have already implemented most of the basic

subroutines for these problems.

The lack of a good graph manipulation package like NETPAD for han-
dling large graphs makes it difficult to debug our programs. In Chap-
ter 11, NETPAD was able to help the debugging and testing of our par-
allel implementation after we built an interface to use it on the MasPar.
In our current implementation, the sizes of the graphs became too large

for NETPAD to handle. Work should be done for graph manipulation

(especially visualization) packages on large graphs.

Our current implementation requires that vpr, the number of virtual
processors simulated by each physical processor, be a power of 2 because
of a bitonic sorting package [PS90] that we used. We would like to replace
this sorting package by a sorting routine that can simulate any number

of virtual processors per physical processor.

The usage of randomization speeded up our parallel implementation of the
list ranking algorithm, though it used extra memory space. In general,
randomized algorithms are usually very simple and easy to code. We
would like to exploit the usage of randomization in our fine-tuning of
parallel primitives. Work should also be done to improve the system
pseudo-random number generator such that it will generate good pseudo-

random numbers even if only a few processors are active.

Note that the code rewriting rules that we gave in Chapter 12 are very
structured and regular. We could automate the code-rewriting process

by further formalizing the rules. Thus one can enjoy the convenience of

298

programming in the high-level language without paying too much effort

in coding virtual processing.

o We note that our current implementation with virtual processing has a
large overhead on sparse graphs. More work has to be done to improve

the running time on graphs that are very sparse.

Appendix A

Proofs

Proof of Lemma 5.4.2:

We prove the lemma by contradiction. Let |31 = {¢1,¢2,..., ¢},
k > 3. Let sy and s3 be two Tutte pairs in GG such that s; contains ¢;, 7 € {1,2}.
Let s1 = (a1,az2) and let s3 = (as,aq). Let a1 = ¢ and let a3 = ¢;5. Let
A={a;|1 <1 <4} We know that
2 2 4
st(si) = ng(si) + Z dy(a;) — 6. (A.1)
i=1 i=1 i=1
We then find out the possible lower bound value for w(() in the following cases.

Case 1: 51 and sy share a common cutpoint and they are in different 2-blocks.

We assume that ay = a4. There are at least da(aq) —1 a1-components
for s1, dy(as) — 1 as-components for s2, da(az) — 2 as-components for s; which
are also as-components for sz, ds(s1) s1-components and ds(s2) se-components.
Those components share only vertices in {ay,as,as}. From Corollary 5.4.15,

we know that
3 2
w(G) > 2 ng(ai) -8+ Z ds(s;).
Case 2: s; and sy share a common vertex that is not a cutpoint or they share

a common cutpoint and s; and s; are in the same 2-block .

In this case, s; and sy are in the same 2-block. We assume that ay =
a4. There are at least dy(aq1)—1 a;-components for s, dy(as) —1 as-components

for sz, da(az) — 1 az-components for s; which are also a4-components for s,

299

300

ds(s1) — 1 sy-components that do not contain any sy-component and ds(sz2) so-
components that do not contain any s;-component. Those components share

only vertices in A. Thus

w(G) > ZZS: dy(a;) — 6 + i:dg(Si) — 2.

Case 3: | Al = 4 and s; and s, are in the same 2-block.

There are at least da(ar) — 1 aq-components for sy, dz(az) — 1 as-
components for sq, dy(as)—1 as-components for sy, dz(a4)—1 as-components for
89, d3(s1)—1 sy-components that do not contain any ss-component and ds(sq) —
1 s3-components that do not contain any s;-component. Those components

share only vertices in A. Thus

w(G) > 224: dy(a;) — 8 + i:dg(Si) — 2.

Case : |A] = 4, s; and sy are not in the same 2-block and s; is in a 2-block

that contains a; or as.

There are at least da(a;) — 1 ay-components for sy, dz(ay) — 2 as-
components for s; that do not contain any vertex in {as,as}, dz(as) — 1 as-
components for sg, dy(as) — 1 ag-components for sz, ds(s1) s;-components that
do not contain any s-component and ds(sz) sa-components that do not contain

any sj-component. Those components share only vertices in A. Thus

4 2
w(G) > 2 ng(ai) — 10 + ng(si).
=1 =1
Case 5: |Al =4, s; and sy are not in the same 2-block, and s, is in a 2-block

that does not contain a; or as.
Without loss of generality, if s, is in any a;-component, ¢ € {1,2},
for sy, then let s3 be in aj-component for s;. Similarly, if s; is in any a;-

component, ¢ € {3,4}, for s, then let s; be in az-component for s;. There

301

are at least dy(ay) — 2 as-components for s; that do not contain sg, da(ag) — 1
az-components for sy, dz(as) — 2 az-components for sy that do not contain sy,
dy(as) — 1 ag-components for sq, ds(s1) — 1 s;-components that do not contain
any sy-component and ds(sz) — 1 sz-components that do not contain any s;-
component Furthermore, if s5 is in any a;-component for sy, ¢ € {1,2}, we have
another si;-component that does not contain any ss-component Otherwise, we
have another a;-component that does not contain s,. Similar arguments can

be applied on s;. Thus

w(G) > Qidz(ai) —12 4+ Zz:dg(SZ’) + .

where @ = 0 if (a1, as3) is a cut-edge; otherwise, x > 1.
We know that
Z sd(s;) > w(@). (A.2)

If we substitute the lower bound value of w((G) and the value of -7, sd(s;)
(Equation A.1) into Inequality A.2, we can derive a contradiction except in

case b when z = 0.

In case 5 when = = 0, we can derive 3_!_; dy(a;) = 6. Since |A| = 4
and two of the vertices in A are cutpoints, the other two vertices in A are not
cutpoints. Furthermore, if G contains cutpoints other than those in A, then

4 2
w(G) > Zng(ai) — 11+ ng(si) + .
i=1 i=1
It is also true that if G contains any Tutte pair that does not include one of
two cutpoints in A, then
4 2
w(G) > Zng(ai) — 11+ ng(si) + .
i=1 i=1

Thus the lemma holds. O

302
Proof of Lemma 5.4.3:

We prove the lemma by contradiction. Let &y = {c} and let s and
s3 be two distinct Tutte pairs in 5. Let s; be a Tutte pair contains c¢. Let
s1 = (a1,a9), $2 = (a3, aq) and s3 = (as, ag).

Let a;y = ¢ and let A = {a; | 1 < ¢ < 6}. Note that none of the

vertices in {a; | 3 < ¢ < 6} could be cutpoints, since otherwise we can use the

proof of Lemma 5.4.2 to get a contradiction. Note that

3

st(si) = ng(si) + ng(ai) — 5.

=1
We find out the possible values for w(G') in the following cases.

Case 1: sy, 83 and s3 are in the same 2-block.

There are at least a total of 30, ds(s;) — 4 sj-components,
sy-components and s3-components such that none of them is contained in the

other. There are also dy(a;) — 1 a;-components, ¢ € {1,2}. Thus
2

w(G) > 23 dy(a;) — 2) + ;df)(si) — 4.

i=1
Case 2: s1 and s, are in a 2-block, while s3 is in another 2-block.

If s3 isin a 2-block that contains one of the verticesin {a; | 1 <i < 4},
then there are at least ds(s1) — 1 s;-components, ds(s2) — 1 sy-components and
s3(s3) — 1 sz-components such that they share only vertices in A. There are
also at least ds(a;) — 1 a;-components, ¢ € {1,2}, with possibly one of the

ai-component contains s3. Thus
2 3

w(G) > 2> da(a;) — 3) + 3 da(s:) — 3.

=1 =1

Otherwise, from an argument similar to the above we can derive

w(G) > Z(Z: dy(a;) —2) + Z:dg(SZ’) — 2.

303

Case 3: s and s3 are in a 2-block, while s; is in another 2-block.

If s5 and s3 are in an a;-component or as-component, then there are
dy(a;) — 1 a;-components, ¢ € {1,2}, with possibly one of them contains s; and
s3. There are also at least ds(s;) — 1 s;-components such that they share only

vertices in A. Thus

2 3

w(G) > 2 dy(a) — 3) + > da(s:) — 3.

=1 =1
Otherwise,
2 3
w(G) 2 A dafa) = 2)+ 3 da(si) — 2,
=1 =1
Case 4: s1, 83 and s3 are in distinct 2-blocks.

There are at least ds(s;) — 1 s;-components, ¢ € {2,3}, and ds(sq)
si-components such that they share only vertices in A. There are at least

S°7 , dy(a;) — 4 a;-components, i € {1,2}. Thus
2 3
w(G) > 203 dy(a;) —4) 4+ > ds(si) — 2.
=1 =1

We know that
3

Z sd(s;) >

=1

w(@).

DO | o

If we substitute the lower bound value of w((G) and the value of 37, sd(s;)
into the above inequality, we can derive a contradiction in each case except in
case 4 when dy(ay) = 2, da(az) = 1 and Y7_, d3(s;) = 6. But if this is the case,
then sd(s1) > sd(sz). Thus s; could not be critical at the same time, 1 <7 < 3.

This proves the lemma. The rest of the lemma can be proved in a similar way.

a

304

Proof of Lemma 5.4.4:

We prove the lemma by contradiction. Let 3y = {s1,52,83,..., 8%},
where k > 3. Let sy = (a1,0az2), s2 = (as,a4) and s3 = (as5,a6). Let A= {a; |
1 <1 < 6}. Note that none of the Tutte pairs in {s; | 1 < i < 3} contains
any cutpoint; otherwise, a contradiction can be derived using the proof of

Lemma 5.4.3. Note that

We find out the possible values for w(() in the following cases.

Case 1: sy, 83 and s3 are in the same 2-block.

There are at least a total of 30, ds(s;) — 4 sj;-components,
sy-components and s3-components such that none of them is contained in the

other. Thus
3
w(G) > ng(si) — 4.
=1
Case 2: s1 and s, are in a 2-block, while s3 is in another 2-block.

There are at least ds(s;) — 1 s;-components, 1 < ¢ < 3, such that they

only share vertices in A. Thus
3
w(G) > ds(si) — 3.

Case 3: s1, 83 and s3 are in distinct 2-blocks.

There are at least a total number of Y-7_, ds(s;) — 4 s;-components,
1 <4 <3, with none of them contains more than one Tutte pair in {s; | 1 <

i < 3}. Thus
3
w(G) > ng(si) — 4.
=1

305

We also know that

3

Z sd(s;) >

=1

w(@).

DO | o

If we substitute the lower bound value of w((G) and the value of 37, sd(s;)
into the above inequality, we can derive a contradiction in case 2. The resulting
inequality holds for case 1 only when ds(s;) = 2,1 < < 3 and w(G) = 2. Since
the weight of G is greater than 2, the lemma holds. The resulting inequality
holds for case 3 only when ds(s;) = 2, 1 < ¢ < 3. Since there are at least
3 2-blocks in 2-blk(G), w(G) is at least 4. Thus s;, 1 < ¢ < 3, could not be

critical. The rest of the lemma can be derived in a similar way. a

Proof of Lemma 5.4.14:

Let L be an c¢-component for s in (G. Then 2-blk(L) is a connected
component in 2-blk(() — {c} which contains a degree-1 b-vertex r in 2-blk(G).
The corresponding 2-block H of r is not in any other c¢-component or s-

component.

It L is a s-component in (&, then let W be the 2-block that contains s.
Then 3-blk(L N W) is a connected component in the resulting forest obtained
from 3-blk(() by removing the corresponding o-vertex for s. Thus there is a
p-vertex in 3-blk(L N W) with degree 1 in 3-blk(G). It is either the degree-1
(F-vertex contains no cutpoint or it contains a cutpoint other than a; and a,. If
the degree-1 3-vertex contains no cutpoint, then we have proved the claims. If
it contains a cutpoint ¢ that is not equal to either a; or as, then we can find a
b-vertex in 2-blk(L U W) with a degree 1 in 2-blk((G) using a similar argument.

a

Appendix B

Performance Data for Parallel Programs

program n m | test 1 | test 2 | test 3 | test 4 | average
(secs) | (secs) | (secs) | (secs) (secs)

Finding 256 16,382 0.71 0.69 0.67 0.69 0.69
a spanning 362 32,766 0.61 0.60 0.60 0.60 0.60
forest 512 65,534 1.35 1.81 1.35 1.82 1.58
724 131,070 2.21 2.20 2.21 2.87 2.37

1,024 262,142 4.61 6.06 4.65 6.06 5.3b

1,448 524,286 8.43 8.41 8.27 8.41 8.38

2,048 | 1,048,574 | 17.17 | 17.16 | 17.18 | 22.61 18.53

645 16,382 1.00 0.75 0.79 0.80 0.83

1,024 32,766 0.88 0.83 0.86 1.06 0.91

1,625 65,534 1.95 2.04 1.53 1.95 1.87

2,580 131,070 2.98 3.81 2.99 3.78 3.39

4,096 262,142 7.37 7.13 7.21 7.19 7.23

6,501 524,286 | 14.44 | 1441 | 14.40 | 14.32 14.39

10,321 | 1,048,574 | 28.62 | 28.85 | 28.92 | 28.96 28.84

10,922 16,382 3.02 4.30 4.09 3.00 3.60

21,844 32,766 7.42 7.49 7.43 7.32 7.41

43,688 65,534 | 1453 | 19.14 | 14.27 | 14.65 15.65

87,376 131,070 | 37.85 | 28.32 | 38.37 | 28.94 33.37

131,070 196,605 | 59.93 | 44.95 | 44.68 | 46.82 49.09

174,752 262,142 | 76.20 | 57.64 | 57.34 | 108.27 74.86

349,504 524,286 | 153.00 | 154.13 | 154.23 | 115.77 | 144.28

524,286 786,429 | 240.86 | 245.12 | 241.43 | 241.58 | 242.25

306

307

program n m | test 1 | test 2 | test 3 | test 4 | average
(secs) | (secs) | (secs) | (secs) (secs)

Finding 256 16,382 1.41 1.78 1.48 1.50 1.54
a minimum 362 32,766 1.60 1.58 2.02 2.10 1.83
spanning 512 65,534 4.47 4.71 5.54 4.38 4.78
forest 724 131,070 8.87 9.96 7.83 9.21 8.96
1,024 262,142 | 18.48 | 20.41 18.72 | 21.17 19.69

1,448 524,286 | 33.87 | 34.68 | 40.86 | 40.42 37.46

2,048 | 1,048,574 | 71.28 | 69.70 | 67.29 | 63.19 67.86

645 16,382 1.64 1.72 1.74 1.68 1.69

1,024 32,766 2.33 2.21 2.46 2.42 2.3b

1,625 65,534 4.61 5.49 4.14 4.70 4.74

2,580 131,070 9.98 7.53 9.40 9.28 9.05

4,096 262,142 | 18.60 | 19.15 | 15.15 | 21.43 18.58

6,501 524,286 | 39.72 | 37.34 | 4451 | 39.39 40.24

10,321 | 1,048,574 | 91.13 | 83.77 | 80.02 | 78.21 83.28

10,922 16,382 4.25 3.87 3.33 4.40 3.96

21,844 32,766 5.53 7.46 5.04 7.23 6.32

43,688 65534 | 14.23 | 11.77 | 17.92 | 14.12 14.51

87,376 131,070 | 24.62 | 26.02 | 30.01 | 24.88 26.38

174,752 262,142 | 56.67 | 45.24 | 44.91 | 61.05 51.97

349,504 524,286 | 81.99 | 112.32 | 112.33 | 101.43 | 102.02

699,048 | 1,048,572 | 220.88 | 212.18 | 225.07 | 244.75 | 225.72

308

program n m | test 1 | test 2 | test 3 | test 4 | average
(secs) | (secs) | (secs) | (secs) (secs)

Finding 256 16,382 1.17 1.12 1.12 1.14 1.14
an ear 362 32,766 1.11 1.13 1.13 1.13 1.13
decomposition 512 65,534 2.84 2.36 2.84 2.39 2.61
724 131,070 4.19 4.21 4.88 4.17 4.36

1,024 262,142 8.78 8.66 8.77 8.64 8.71

1,448 524,286 | 17.91 | 17.86 | 17.83 | 17.85 17.86

2,048 | 1,048,574 | 41.33 | 45.99 | 46.04 | 41.24 43.65

645 16,382 1.51 1.25 1.27 1.24 1.32

1,024 32,766 1.39 1.41 1.61 1.61 1.51

1,625 65,534 3.08 2.62 2.65 2.59 2.74

2,580 131,070 6.01 5.22 5.18 5.98 5.60

4,096 262,142 | 1158 | 11.65 | 11.74| 10.32 11.32

6,501 524,286 | 22.82 | 23.15 | 23.08 | 23.01 23.02

10,321 | 1,048,574 | 46.23 | 46.40 | 40.69 | 46.57 44.97

21,844 32,766 8.88 8.87 8.37 8.79 8.73

43,688 65534 | 17.79 | 1733 | 17.58 | 17.31 17.50

87,376 131,070 | 34.28 | 33.74 | 33.60 | 43.58 36.30

131,070 196,605 | 52.57 | 52.51 | 68.60 | 53.58 56.82

174,752 262,142 | 87.51 | 67.33 | 67.76 | 67.56 72.54

349,504 524,286 | 138.33 | 177.21 | 176.93 | 176.67 | 167.28

524,200 786,300 | 268.98 | 203.11 | 269.47 | 266.96 | 252.13

Finding an 256 16,382 3.46 3.28 3.41 3.3 3.37
open ear 362 32,766 3.86 3.97 4.12 4.11 4.02
decomposition 512 65,534 9.45 8.77 8.82 8.93 8.99
724 131,070 | 16.14 | 15.12 | 15.29 | 15.94 15.62

1,024 262,142 | 33.13 | 3354 | 3479 | 3255 33.50

1,448 524,286 | 70.69 | 70.67 | 69.53 | 70.77 70.42

645 16,382 3.72 3.22 3.38 3.52 3.46

1,024 32,766 4.16 4.21 4.19 4.31 4.22

1,625 65,534 9.42 7.81 7.99 7.65 8.22

2,580 131,070 | 17.22 | 18.14 | 17.09 | 16.06 17.13

4,096 262,142 | 31.40 | 33.72 | 3529 | 34.35 33.69

6,501 524,286 | 65.62 | 64.89 | 70.74 | 66.14 66.85

10,922 16,382 6.21 6.11 4.75 5.92 5.7

21,844 32,766 | 10.65 | 10.56 | 10.13 | 10.50 10.46

43,688 65,534 | 20.97 | 21.46 | 20.88 | 21.11 21.10

87,376 131,070 | 52.03 | 42.99 | 42.45 | 42.22 44.92

174,752 262,142 | 105.81 | 85.11 | 85.43 | 85.03 90.35

262,100 393,150 | 115.50 | 118.20 | 116.57 | 118.14 | 117.10

program n m | test 1 | test 2 | test 3 | test 4 | average
(secs) | (secs) | (secs) | (secs) (secs)

Finding all 256 16,382 1.93 1.87 1.88 1.89 1.89
cut edges 362 32,766 1.87 1.87 1.86 1.88 1.87
512 65,534 4.34 3.88 4.35 3.88 4.11

724 131,070 7.19 7.21 7.87 7.20 7.37

1,024 262,142 | 16.61 | 15.12 | 16.57 | 15.10 15.85

1,448 524,286 | 29.73 | 29.67 | 29.55 | 29.70 29.66

2,048 | 1,048,574 | 65.96 | 63.89 | 63.94 | 69.38 65.79

645 16,382 2.01 1.98 1.99 2.15 2.03

1,024 32,766 2.04 2.05 2.03 2.09 2.05

1,625 65,534 4.47 4.46 4.45 3.98 4.34

2,580 131,070 8.78 8.00 7.96 8.80 8.39

4,096 262,142 | 17.87 | 17.84 | 17.94 | 18.04 17.92

6,501 524,286 | 34.95 | 32.01 | 35.00 | 31.97 33.48

10,321 | 1,048,574 | 71.94 | 66.04 | 71.99 | 71.60 70.39

10,922 16,382 5.45 5.41 5.19 5.32 5.34

21,844 32,766 8.93 9.27 | 11.19 8.95 9.59

43,688 65,534 | 17.86 | 17.02 | 1791 | 17.63 17.60

87,376 131,070 | 35.78 | 3557 | 3549 | 34.21 35.26

131,070 196,605 | 71.62 | 70.59 | 71.60 | 70.64 71.11

174,752 262,142 | 88.49 | 88.28 | 68.95 | 87.72 83.36

349,504 524,286 | 137.68 | 177.80 | 178.97 | 178.35 | 168.20

524,286 786,429 | 277.93 | 278.59 | 282.71 | 281.90 | 280.28

Finding 256 16,382 1.18 1.17 1.17 1.18 1.18
a strong 362 32,766 1.15 1.16 1.16 1.16 1.16
orientation 512 65,534 2.93 2.45 2.93 2.48 2.70
724 131,070 4.28 4.31 4.97 4.26 4.45

1,024 262,142 9.00 9.12 9.00 9.12 9.06

1,448 524,286 | 18.10 | 18.08 | 18.04 | 18.07 18.08

2,048 | 1,048,574 | 41.24 | 45.89 | 4595 | 41.15 43.56

645 16,382 1.53 1.28 1.30 1.26 1.34

1,024 32,766 1.42 1.44 1.63 1.64 1.53

1,625 65,534 3.13 2.67 2.70 2.64 2.78

2,580 131,070 6.10 5.31 5.27 6.06 5.68

4,096 262,142 | 10.58 | 11.87 | 11.94 | 12.03 11.61

6,501 524,286 | 23.32 | 23.67 | 23.60 | 23.52 23.53

10,321 | 1,048,574 | 47.25 | 47.38 | 41.60 | 47.55 45.94

21,844 32,766 8.98 8.97 8.47 8.89 8.82

43,688 65,534 | 17.96 | 17.51 | 17.76 | 17.49 17.68

87,376 131,070 | 36.14 | 35.57 | 35.42 | 46.03 38.29

131,070 196,605 | 52.84 | 52.75 | 68.86 | 53.82 57.06

174,752 262,142 | 90.91 | 69.93 | 7038 | 70.17 75.35

349,504 524,286 | 143.04 | 183.32 | 183.06 | 182.79 | 173.05

524,200 786,300 | 263.55 | 262.95 | 199.05 | 261.08 | 246.66

309

[AMS6]

[AMSS]

[Ama83]

[Amd67]

[ASS7]

[AS92]

[ASE92]

[BBMOO]

BIBLIOGRAPHY

R. J. Anderson and G. L. Miller. Optimal parallel algorithms for
list ranking. Extended abstract, 1986.

R. J. Anderson and G. L. Miller. Deterministic parallel list rank-
ing. In Proc. 3rd Aegean Workshop on Computing, volume LNCS
#319, pages 81-90. Springer-Verlag, 1988.

A. Amar. On the connectivity of some telecommunications net-

works. IEEE Trans. on Computers, C-32(5):512-519, 1983.

G. M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proc. AFIPS
Spring Joint Computer Conf., pages 483-485, 1967.

B. Awerbuch and Y. Shiloach. New connectivity and MSF algo-
rithms for shuffle-exchange network and PRAM. [EEE Tran. on
Computers, pages 1258-1263, October 1987.

R. Anderson and J. Setubal. On the parallel implementation of
Goldberg’s maximum flow algorithm. In Proc. jth ACM Symp.
on Parallel Algorithms and Architectures, pages 168-177, 1992.

N. Alon, J. H. Spencer, and P. Frdos. The Probabilistic Method.
John Wiley & Sons, Inc., 1992.

D. Bienstock, E. F. Brickell, and C. L.. Monma. On the struc-
ture of minimum-weight k-connected spanning networks. SIAM

J. Disc. Math., 3(3):320-329, 1990.

310

[Bles9]

[BLM*91]

[BRS4]

[Bre74]

[BST77]

[CBKT93]

[Cheb2]

[CKP+93]

311

G. E. Blelloch. Scan Primitives and Parallel Vector Models. PhD
thesis, M.I.T., October 1989.

G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J.
Smith, and M. Zagha. A comparison of sorting algorithms for the
Connection Machine CM-2. In Proc. 3th ACM Symp. on Parallel
Algorithms and Architectures, pages 3—-16, 1991.

S. H. Bokhari and A. D. Raza. Augmenting computer networks.
In Proc. Int’l Conf. on Parallel Processing, pages 338-345, 1984.

R. P. Brent. The parallel evaluation of general arithmetic expres-

sions. J. ACM, 21:201-206, 1974.

F. T. Boesch, C. Suffel, and R. Tindell. The spanning subgraphs
of Eulerian graphs. J. Graph Theory, 1:79-84, 1977.

R. F. Cohen, G. Di Battista, A. Kanevsky, and R. Tamassia.
Reinventing the wheel: an optimal data structure for connectivity
queries. In Proc. 25th Annual ACM Symp. on Theory of Comp.,
pages 194-200, 1993.

H. Chernoff. A measure of the asymptotic efficiency for tests of
a hypothesis based on the sum of observations. Annals of mathe-

matical Statistics, 23:493-509, 1952.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: Towards
a realistic model of parallel computation. In Proc. 4th Symp.

on Principles and Practices of Parallel Programming, pages 1-12,

1993.

[CL.93]

[CLRY0]

[Col88]

[CS89]

[CVS6]

[CVSS]

[CWS1]

[DBT90]

312

K. W. Chong and T. W. Lam. Finding connected components in
O(log nloglogn) time on the EREW PRAM. In Proc. 4th Annual
ACM-SIAm Symp. on Discrete Algorithms, pages 11-20, 1993.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, MA, 1990.

R. Cole. Parallel merge sort. SIAM J. Comput., 17:770-785,
1988.

G.-R. Cai and Y.-G. Sun. The minimum augmentation of any

graph to a k-edge-connected graph. Networks, 19:151-172, 1989.

R. Cole and U. Vishkin. Approximate and exact parallel schedul-
ing with applications to list, tree and graph problems. In Proc.
27th Annual IEEE Symp. on Foundations of Comp. Sci., pages
478-491, 1986.

R. Cole and U. Vishkin. Approximate parallel scheduling. Part
I: The basic technique with applications to optimal parallel list
ranking in logarithmic time. SIAM J. Comput., 17:128-142, 1988.

N. Christofides and C. A. Whitlock. Network synthesis with con-
nectivity constraints — a survey. In Operational Research 81,

pages 705-723, 1981.

G. Di Battista and R. Tamassia. On-line graph algorithms with
SPQR-trees. In Proc. 17th Int’l Conf. on Automata, Language
and Programming, volume LNCS # 443, pages 598-611. Springer-
Verlag, 1990.

[DKLT76]

[DL92a]

[DL92b)]

[DMMO92]

[DNSS81]

[EckT79]

[EswT3]

[ET75]

[ET76]

313

E. A. Dinits, A. V. Karzanov, and M. L. Lomosonov. On the
structure of a family of minimal weighted cuts in a graph. In
A. A. Fridman, editor, Studies in Discrete Optimization, pages
290-306. Nauka, Moscow, 1976. in Russian.

B. Dixon and A. K. Lenstra. Factoring integers using SIMD

sieves. Manuscript, 1992.

B. Dixon and A. K. Lenstra. Massively parallel elliptic curve
factoring. Manuscript, 1992.

N. Dean, M. Mevenkamp, and C. L.. Monma. NETPAD: An in-
terface graphics system for network modeling and optimization.
In Proc. Computer Science & Operations Research: New Develop-
ments in their Interfaces, pages 231-243. Pergamon Press, 1992.

E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix and graph
algorithms. SIAM J. Comput., 10:657-675, 1981.

D. M. Eckstein. Simultaneous memory access. Technical report,

Computer Science Dept., lowa State Univ., Ames, TA, 1979.

K. P. Eswaran. Representation of graphs and minimally aug-
mented Eulerian graphs with applications in data base manage-
ment. Technical Report RJ 1305, IBM, Yorktown Heights, N.Y.,
1973.

S. Even and R. E. Tarjan. Network flow and testing graph con-
nectivity. SIAM J. Comput., 4:507-518, 1975.

K. P. Eswaran and R. E. Tarjan. Augmentation problems. STAM
J. Comput., 5(4):653-665, 1976.

[EveT9]

[FBWS9]

[FCT0]

[FJ81]

[FJ93]

[Fra90]

[Fra92]

[FRT93]

[FS71]

314

S. Even. Graph Algorithms. Computer Science Press, Rockville,
MD, 1979.

D. Fernandez-Baca and M. A. Williams. Augmentation prob-
lems on hierarchically defined graphs. In 1989 Workshop on Algo-
rithms and Data Structures, volume LNCS # 382, pages 563-576.
Springer-Verlag, 1989.

H. Frank and W. Chou. Connectivity considerations in the de-
sign of survivable networks. I[EEE Trans. on Circuit Theory, CT-
17(4):486-490, December 1970.

G. N. Frederickson and J. JaJa. Approximation algorithms
for several graph augmentation problems. SIAM J. Comput.,
10(2):270-283, May 1981.

A. Frank and T. Jordan. Minimal edge-coverings of pairs of sets.

Manuscript, June 1993.

A. Frank. Augmenting graphs to meet edge-connectivity require-
ments. In Proc. 31th Annual IEEE Symp. on Foundations of
Comp. Sci., pages T08-718, 1990.

A. Frank. Augmenting graphs to meet edge-connectivity require-

ments. STAM J. Disc. Math., 5(1):25-43, February 1992.

D. Fussel, V. Ramachandran, and R. Thurimella. Finding tri-
connected components by local replacements. SIAM J. Comput.,

22(3):587-616, 1993.

D. R. Fulkerson and L. S. Sharpley. Minimal k-arc connected
graphs. Networks, 1:91-98, 1971.

[Gab91]

[GGWO3]

[GHT3]

[GHS3]

[GI91]

[GJIT9]

[GM90]

[GMRO3]

315

H. N. Gabow. Applications of a poset representation to edge con-
nectivity and graph rigidity. In Proc. 32th Annual IEEE Symp.
on Foundations of Comp. Sci., pages 812-821, 1991.

H. N. Gabow, M. X. Goemans, and D. P. Williamson. An effi-
cient approximation algorithm for the survivable network design

problem. In Proc. 3rd IPCO Conference, 1993, to appear.

S. Goodman and S. Hedetniemi. On the Hamiltonian completion
problem, 1973. Presented at the Capital Conf. on Graph Theory

and Combinatorics, Washington, D. C.

R. L. Graham and P. Hell. On the history of the minimum span-
ning problem. Annels of the History of Computing, 7(1):43-57,
1985.

7. Galil and G. F. Italiano. Reducing edge connectivity to vertex
connectivity. ACM SIGACT News, 22(1):57-61, 1991.

M. R. Garey and D. S. Johnson. COMPUTERS AND IN-
TRACTABILITY A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, New York, 1979.

M. Grotschel and C. L. Monma. Integer polyhedra associated
with certain network design problems with connectivity con-

straints. SIAM J. Disc. Math., 3:502-523, 1990.

P. B. Gibbons, Y. Matias, and V. Ramachandran. The
QRQW pram: Accounting for contention in parallel algorithms.
Manuscript, July, 1993.

[GRSS]

[Gus87]

[Gus89]

[GW92]

[Hag87]

[Har62]

[Har69]

[HKRT92]

[HPR92]

[HR91a]

316

A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cam-
bridge Univ. Press, 1988.

D. Gusfield. Optimal mixed graph augmentation. SIAM J. Com-
put., 16(4):599-612, August 1987.

D. Gusfield. A graph theoretic approach to satistical data secu-
rity. SIAM J. Comput., 75:552-571, 1989.

M. X. Goemans and D. P. Williamson. A general approximation

technique for constrained forest problems. In Proc. 3rd Annual

ACM-SIAM Symp. on Discrete Alg., pages 307-315, 1992.

T. Hagerup. Towards optimal parallel bucket sorting. Informa-
tion and Computation, 75:39-51, 1987.

F. Harary. The maximum connectivity of a graph. Proc. Nat.

Acad. Sei., 48:1142-1146, 1962.
F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.

X. Han, P. Kelsen, V. Ramachandran, and R. E. Tarjan. Com-
puting minimal spanning subgraphs in linear time. In Proc. 3rd

ACM-SIAM Symp. on Discrete Algorithms, pages 146156, 1992.

W. Hightower, J. Prins, and J. Reif. Implementations of random-
ized sorting on large parallel machines. In Proc. jth ACM Symp.
on Parallel Algorithms and Architectures, pages 158-167, 1992.

T.-s. Hsu and V. Ramachandran. A linear time algorithm for
triconnectivity augmentation. In Proc. 32th Annual IEEE Symp.
on Foundations of Comp. Sci., pages 548-559, 1991.

[HR91b]

[HRD92]

[HRDI3]

[HS36]

[Hsu92]

[HT73]

[IEE91]

[1SO85]

317

T.-s. Hsu and V. Ramachandran. On finding a smallest augmen-
tation to biconnect a graph. In Proc. 2nd Annual Int’l Symp. on
Algorithms, volume LNCS #557, pages 326-335. Springer-Verlag,
1991. SIAM J. Comput., to appear.

T.-s. Hsu, V. Ramachandran, and N. Dean. Implementation of
parallel graph algorithms on the MasPar. In AMS Proc. of DI-
MACS Workshop on Computational Support for Discrete Math.,
to appear. Also available as TR-92-38, Dept. of Comp. Sci., Univ.

of Texas at Austin.

T.-s. Hsu, V. Ramachandran, and N. Dean. Implementation of
parallel graph algorithms on a massively parallel SIMD computer
with virtual processing. Technical Report TR-93-14, Dept. of

Computer Sciences, Univ. of Texas at Austin, 1993.

W. D. Hillis and G. L. Steele Jr. Data parallel algorithms. Com-
munications of the ACM, 29:1170-1183, 1986.

T.-s. Hsu. On four-connecting a triconnected graph. In Proc. 35th
Annual IEEE Symp. on Foundations of Comp. Sei., pages 70-79,
October 1992.

J. E. Hopcroft and R. E. Tarjan. Dividing a graph into tricon-
nected components. SIAM J. Comput., 2:135-158, 1973.

IEEE Computer. New products column, January 1991.

M. Imase, T. Soneoka, and K. Okada. Connectivity of regular
directed graphs with small dimeters. IEEE Trans. on Computers,
C-34(3):267-273, 1985.

[14J92]

[JGS6]

[Jor92]

[Jor93al

[Jor93b]

[Kan88]

[Kan91]

[Kan93]

[KBY1]

318

J. JaJa. An Introduction to Parallel Algorithms. Addison-Wesley,
1992.

S. P. Jain and K. Gopal. On network augmentation. IEEFE Trans.
on Reliability, R-35(5):541-543, 1986.

T. Jordan, February 1992. private communications.

T. Jordan. Increasing the vertex-connectivity in directed graphs.

In Proc. 1st Fuorpean Symp. on Algorithms, 1993, to appear.

T. Jordan. Optimal and almost optimal algorithms for connectiv-
ity augmentation problems. In Proc. 3rd IPCO Conference, 1993,

to appear.

A. Kanevsky. Vertex Connectivity of Graphs: Algorithms and
Bounds. PhD thesis, University of Illinois, Urbana-Champaign,
IL, 1988. (Tech. Rep. ACT-97-UILU-ENG-88-2247, Coordinated

Science lab.).

G. Kant. Linear planar augmentation algorithms for outerplanar
graphs. Tech. Rep. RUU-CS-91-47, Dept. of Computer Science,
Utrecht University, the Netherlands, 1991.

G. Kant. Algorithms for Drawing Planar Graphs. PhD thesis,
Utrecht University, the Netherlands, 1993.

G. Kant and H. I.. Bodlaender. Planar graph augmentation prob-
lems. In Proc. 2nd Workshop on Data Structures and Algorithms,
volume LNCS #519, pages 286-298. Springer-Verlag, 1991.

[KBY2]

[Kel92]

[KEF79]

[KR78

[KRSS]

[KRIO]

[KR91a]

[KRO1D]

319

G. Kant and H. L. Bodlaender. Triangulating planar graphs while
minimizing the maximum degree. In Proc. 3rd Scand. Work-
shop on Algorithm Theory, volume LNCS #621, pages 258-271.

Springer-Verlag, 1992.

P. Kelsen. Efficient Computation of Extremal Structures in
Graphs and Hypergraphs. PhD thesis, University of Illinois,
Urbana-Champaign, 1L, 1992.

T. Kashiwabara and T. Fujisawa. NP-completeness of the prob-
lem of finding a minimum-clique-number interval graph containing
a given graph as a subgraph. In Proc. of 1979 IEEFE Int’l Symp.
on Circuits and Systems, pages 657-660, 1979.

B. W. Kernighan and D. M. Ritchie. The C Programming lan-
guage. Prentice Hall, Englewood Cliffs, NJ, 1978.

B. W. Kernighan and D. M. Ritchie. The C Programming lan-
guage. Prentice Hall, Englewood Cliffs, NJ, 1988. Second Edition.

R. M. Karp and V. Ramachandran. Parallel algorithms for
shared-memory machines. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 869-941. North Holland,
1990.

A. Kanevsky and V. Ramachandran. Improved algorithms for
graph four-connectivity. J. Comp. System Seci., 42:288-306, 1991.

P. Kelsen and V. Ramachandran. On finding minimal 2-connected
subgraphs. In Proc. 2nd ACM-SIAM Symp. on Discrete Algo-
rithms, pages 178-187, 1991.

[K'T86]

[KT91]

[KT92]

[KTDBC91]

[KUS6]

[KV92]

[LAD+92]

320

A. V. Kazanov and E. A. Timofeev. Efficient algorithm for finding
all minimal edge cuts of a nonoriented graph. Cybernetics, pages
156-162, 1986. Translated from Kibernetika, No. 2, pp. 8-12,
March—April 1986.

A. Kanevsky and R. Tamassia, October 1991. private communi-

cations.

S. Khuller and R. Thurimella. Approximation algorithms for
graph augmentation. In Proc. 19th Int’l Conf. on Automata,
Language and Programming, volume LNCS #623, pages 330-341.
Springer-Verlag, 1992.

A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. On-line
maintenance of the four-connected components of a graph. In
Proc. 32th Annual IEEE Symp. on Foundations of Comp. Sci.,
pages 793-801, 1991.

Y. Kajitani and S. Ueno. The minimum augmentation of a
directed tree to a k-edge-connected directed graph. Networks,
16:181-197, 1986.

S. Khuller and U. Vishkin. Biconnectivity approximations and
graph carvings. In Proc. 24th ACM Symp. on Theory of Comput-
ing, pages 759-770, 1992.

C. Leiserson, 7. S. Abuhamdeh, D. Douglas, C. R. Feynmann,
M. Ganmukhi, J. Hill, W. D. Hillis, B. Kuszmaul, M. St. Pierre,
D. Wells, M. Wong, 5-W Yang, and R. Zak. The network ar-
chitecture of the Connection Machine CM-5. In Proc. 4th ACM

[Lam86]

[Lei92]

[LF80]

[Mas91a]

[Mas91b]

[Mas91c]

[Mas92a]

[Mas92b]

[Mas92c]

[Mas92d]

321

Symp. on Parallel Algorithms and Architectures, pages 272287,
1992.

L. Lamport. IATpX A Document Preparation System. Addison-
Wesley, Reading, MA, 1986.

F. T. Leighton. Introduction to Parallel Algorithms and Architec-

tures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

R. E. Ladner and M. J. Fischer. Parallel prefix computation. .J.
ACM, 27:831-838, 1980.

MasPar Computer Co. MasPar Parallel Application Language
(MPL) Reference manual, version 2.0 edition, March 1991.

MasPar Computer Co. MasPar Parallel Application Language
(MPL) User Guide, version 2.0 edition, March 1991.

MasPar Computer Co. MasPar System QOverview, version 2.0 edi-

tion, March 1991.

MasPar Computer Co. MasPar Data Display Library (MPDDL)

Reference manual, version 3.0, rev. a6 edition, July 1992.

MasPar Computer Co. MasPar Parallel Application Language
(MPL) Reference manual, version 3.0, rev. a3 edition, July 1992.

MasPar Computer Co. MasPar Parallel Application Language
(MPL) User Guide, version 3.1, rev. a3 edition, November 1992.

MasPar Computer Co. Release Notes for MasPar System Soft-

ware, version 3.1, rev. b4 edition, November 1992.

[Mat72]

[Mat76]

[Mat78]

[MDMO1]

[Men27]

[Mev9la]

[Mev91b]

[MHTS7]

[MMP90]

322

D. W. Matula. k-components, clusters, and slicings in graphs.

SIAM J. Appl. Math., 22(3):459-480, 1972.

D. W. Matula. Subgraph connectivity numbers of a graph. In
Y. Alavi and D. R. Lick, editors, Theory and Applications of

Graphs. Springer-Verlag Lecture Notes in Mathematics, 1976.

D. W. Matula. k-blocks and ultrablocks in graphs. J. Combina-
torial Theory, Series B, 24:1-13, 1978.

M. Mevenkamp, N. Dean, and C. L. Monma. NETPAD User’s
Guide. Bellcore, August 1991.

K. Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96—
115, 1927.

M. Mevenkamp. NETPAD Programmer’s Guide. Bellcore, Au-
gust 1991.

M. Mevenkamp. NETPAD Reference Guide. Bellcore, August
1991.

T. Masuzawa, K. Hagihara, and N. Tokura. An optimal time
algorithm for the k-vertex-connectivity unweighted augmentation
problem for rooted directed trees. Discrete Applied Mathematics,
pages 67-105, 1987.

C. L. Monma, B. S. Munson, and W. R. Pulleyblank. Minimum-
weight two-connected spanning networks. Math. Programming,

46:153-171, 1990.

[MNS9]

[MoS8]

[MRS2]

[MR92]

[MRO3]

[MSV86]

[NGM90]

[NM82]

[NT92]

323

K. Mehlhorn and S. Naher. LEDA. a library of efficient data types
and algorithms. Technical Report TR A 04/89, FB10, Universitét

des Saarlaners, Saarbriicken, 1989.

7. Mo. Graph and Directed Graph Augmentation Problems. PhD
thesis, Western Michigan University, 1988.

G. Memmi and Y. Raillard. Some new results about the (d,k)
graphs problem. IEEE Trans. Computers, C-31:784-791, 1982.

G. Miller and V. Ramachandran. A new triconnectivity algorithm

and its applications. Combinatorica, 12:53-76, 1992.

P. D. MacKenzie and V. Ramachandran. Optical communication

and ERCW PRAMs. Manuscript, 1993.

Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition
search (EDS) and st-numbering in graphs. Theoret. Comput. Sei.,
pages 277-298, 1986.

D. Naor, D. Gusfield, and C. Martel. A fast algorithm for op-
timally increasing the edge-connectivity. In Proc. 31th Annual

IEEE Symp. on Foundations of Comp. Sei., pages 698-707, 1990.

D. Nath and N. Maheshwari. Parallel algorithms for the con-
nected components and minimal spanning tree problems. Infor-

mation Processing Letters, 14(1):7-11, March 1982.

B. Narendran and P. Tiwari. Polynomial root-finding: Analysis
and computational investigation of a parallel algorithm. In Proc.
4th ACM Symp. on Parallel Algorithms and Architectures, pages
178-187, 1992.

[Nye88]

[OMKFS1]

[PC93]

[Ple76]

[Pre93a]

[Pre93b]

[PS83]

324

A. Nye. X Window System User’s Guide. O’Reilly & Associates,
Inc., 1988.

T. Ohtsuki, H. Mori, T. Kashiwabara, and T. Fujisawa. On min-
imal augmentation of a graph to obtain an interval graph. .J.

Comp. System Seci., 22:60-97, 1981.

R. Pickering and J. Cook. A first course in programming the
DECmpp/Sx. Technical report, para//lab, Dept. of Informatics,
Univ. of Bergen, N-5020 Bergen, Norway, 1993. Series of Parallel

Processing: A Self-Study Introduction.

J. Plesnik. Minimum block containing a given graph. ARCHIV
DER MATHEMATIK, XXVII:668-672, 1976.

L. Prechelt. Comparison of MasPar MP-1 and MP-2 communica-
tion operations. Technical Report 16/93, Institute fiir Programm-
strukturen und Datenorganisation, Fakultat fir Informatik, Uni-

versitat Karlsruhe, Germany, April 1993.

L. Prechelt. Measurements of MasPar MP-1216 A communica-
tion operations. Technical Report 01/93, Institute fiir Programm-
strukturen und Datenorganisation, Fakultat fir Informatik, Uni-

versitat Karlsruhe, Germany, January 1993.

C. H. Papadimitriou and K. Steiglitz. Combinational Optimiza-
tion: Algorithms and Complexity. Prentice Hall, Englewood
Cliffs, NJ, 1983.

[PS90]

[Qui8T]

[Ram90]

[Ram93]

[Rei93)]

[RGTT]

[RK93]

[RRSY]

[RT74]

325

J. F. Prins and J. A. Smith. Parallel sorting of large arrays on the
MasPar MP-1. In Proc. 3rd Symp. on the Frontiers of Massively
Parallel Computation, pages 59-64, 1990.

M. J. Quinn. Designing Efficient Algorithms for Parallel Com-
puters. McGraw-Hill, 1987.

V. Ramachandran. Class notes. Dept. of Computer Sciences,

Univ. of Texas at Austin, Spring 1990.

V. Ramachandran. Parallel open ear decomposition with appli-
cations to graph biconnectivity and triconnectivity. In J. H. Reif,
editor, Synthesis of Parallel Algorithms, pages 275-340. Morgan-
Kaufmann, 1993.

J. H. Reif, editor. Synthesis of Parallel Algorithms. Morgan-
Kaufmann, 1993.

A. Rosenthal and A. Goldner. Smallest augmentations to bicon-

nect a graph. SIAM J. Comput., 6(1):55-66, March 1977.

R. Ravi and P. Klein. When cycles collapse: A general approx-
imation technique for constrained two-connectivity problems. In

Proc. 1st Euorpean Symp. on Algorithms, 1993, to appear.

V. Ramachandran and J. Reif. An optimal parallel algorithm for
graph planarity. In Proc. 30th Annual [EEE Symp. on Founda-
tions of Comp. Sci., pages 282-287, 1989.

D. M. Ritchie and K. Thompson. The Unix timesharing system.
Communications of the ACM, 17:365-375, July 1974.

[Sch80]

[Sch84]

[Sor88]

[SV8S]

[SWK69]

[Tar72]

[Tar83]

[Tut66]

[TV85]

326

J. T. Schwartz. Ultracomputers. ACM Trans. on Programming
Languages and Systems, 2:484-521, October 1980.

U. Schumacher. An algorithm for construction of a k-connected
graph with minimum number of edges and quasiminimal diameter.

Networks, 14:63-74, 1984.

D. Soroker. Fast parallel strong orientation of mixed graphs and
related augmentation problems. Journal of Algorithms, 9:205—
223, 1988.

B. Schieber and U. Vishkin. On finding lowest common ancestors:
Simplification and parallelization. In Proc. 3rd Aegean Workshop
on Computing, volume LNCS #319, pages 111-123. Springer-
Verlag, 1988.

K. Steiglitz, P. Weiner, and D. J. Kleitman. The design of
minimum-cost survivable networks. IFEE Trans. on Circuit The-

ory, CT-16(4):455-460, 1969.

R. E. Tarjan. Depth-first search and linear graph algorithms.
SIAM J. Comput., 1:146-160, 1972.

R. E. Tarjan. Data Structures and Network Algorithms. SIAM
Press, Philadelphia, PA, 1983.

W. T. Tutte. Connectivity in Graphs. University of Toronto
Press, 1966.

R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity
algorithm. STAM J. Comput., 14:862-874, 1985.

[UKWSS]

[Vis83]

[Vis84]

[Vis91]

[Wat87]

[WHNO0]

[WMT92]

[WNS8T]

327

S. Ueno, Y. Kajitani, and H. Wada. Minimum augmentation of a

tree to a k-edge-connected graph. Networks, 18:19-25, 1988.

U. Vishkin. Implementation of simultaneous memory address ac-

cess in models that forbid it. J. Algorithms, 4:45-50, 1983.

U. Vishkin. Randomized speed-ups in parallel computation. In
Proc. 16th ACM Symp. on Theory of Computing, pages 230-239,
1984.

U. Vishkin. Structural parallel algorithmics. In Proc. 15th
ICALP, volume LNCS #510, pages 363-380. Springer-Verlag,
1991.

T. Watanabe. An efficient way for edge-connectivity augmenta-
tion. Tech. Rep. ACT-76-UILU-ENG-87-2221, Coordinated Sci-
ence lab., University of Illinois, Urbana, IL, 1987.

T. Watanabe, Y. Higashi, and A. Nakamura. Graph augmenta-
tion problems for a specified set of vertices. In Proc. 1st Annual
Int’l Symp. on Algorithms, volume LNCS #450, pages 378-387.
Springer-Verlag, 1990. Earlier version in Proc. 1990 Int’l Symp.
on Circuits and Systems, pages 2861-2864.

T. Watanabe, T. Mashima, and S. Taoka. The k-edge-
connectivity augmentation problem of weighted graphs. In Proc.
3rd Annual Int’l Symp. on Algorithms and Computation, volume
LNCS #650, pages 31-40. Springer-Verlag, 1992.

T. Watanabe and A. Nakamura. Edge-connectivity augmentation

problems. J. Comp. System Seci., 35:96-144, 1987.

[WNSS]

[WN9O]

[WN93]

[WNNS9]

[Wol88]

[WYO91]

328

T. Watanabe and A. Nakamura. 3-connectivity augmentation
problems. In Proc. of 1988 IEEE Intl Symp. on Clircuits and
Systems, pages 1847-1850, 1988.

T. Watanabe and A. Nakamura. A smallest augmentation to
3-connect a graph. Discrete Applied Mathematics, 28:183-186,
1990.

T. Watanabe and A. Nakamura. A minimum 3-connectivity aug-

mentation of a graph. J. Comp. System Seci., 46:91-128, 1993.

T. Watanabe, T. Narita, and A. Nakamura. 3-edge-connectivity
augmentation problems. In Proc. of 1989 IEEFE Int’l Symp. on
Circuits and Systems, pages 335-338, 1989.

S. Wolfram. Mathematica™ A System for Doing Mathematics by
Computer. Addison-Wesley, 1988.

T. Watanabe, M. Yamakado, and K. Onaga. A linear time aug-
menting algorithm for 3-edge-connectivity augmentation prob-
lems. In Proc. of 1991 IEEE Int’l Symp. on Circuits and Systems,
pages 1168-1171, 1991.

VITA

Tsan-sheng Hsu was born in Sanchung, Taipei, Taiwan, the Republic
of China, on July 29, 1963, the second son of Gan-hua Lu and Wu-toun Hsu.
He studied at the National Taiwan University, from 1981 to 1985, where he
received a Bachelor of Science degree in Computer Sciences. After graduation,
he served the compulsory two-year military service as an army infantry officer.
From August 1987 to July 1988, he was a teaching assistant and a computer
system manager at the Department of Computer Science and Information En-
gineering, National Taiwan University. He then entered the Ph.D. program of
the University of Texas at Austin in September 1988. He received a Master
of Science in Computer Sciences degree in May 1990 and he expects to receive

the Ph.D. degree in Computer Sciences in Fall 1993.

Permanent address: No. 7 Alley 15 Lane 422
Jen-Ai Street, Sanchung
Taipei 24149, Taiwan
Republic of China

This dissertation was typeset' with IATRX by the author.

'ATEX document preparation system was developed by Leslie Lamport as a special version
of Donald Knuth’s TEX program for computer typesetting. TgX is a trademark of the
American Mathematical Society. The IXTpX macro package for The University of Texas at
Austin dissertation format was written by Khe-Sing The and revised by Tsan-sheng Hsu.

