
COMPUTABLE OBSTRUCTIONSTO WAIT-FREE COMPUTABILITYJohn HavlicekMarch 31, 1997Abstract. We show how to associate e�ectively computable obstructions to a wait-free distributed decision task (I;O; �) in the asynchronous shared-memory, read-write model. The key new ingredient of this work is the association of a simplicialcomplex T , the task complex , to the input-output relation �. There is a simplicialmap � from the task complex to the input complex I, and � is determinedby the task.The existence of a wait-free protocol solving the task implies that the map �� inducedin homology must surject, and thus the non-zero elements of the cokernel of �� areobstructions to solvability of the task. These obstructions are e�ectively computablewhen using suitable homology theories, such as mod-2 simplicial homology. Functorsother than homology can be substituted, although the obstructions obtained maynot be computable. We also extend the Herlihy-Shavit Theorem on Spans to thecase of protocols that are anonymous relative to the action of a group, provided theaction is suitably rigid. For such rigid actions, the quotients of the input complexand the task complex by the group are well behaved, and obstructions to anonymoussolvability of the task are obtained analogously, using the homology of the quotientcomplexes. 1. IntroductionGiven a model of computation, a basic theoretical problem is to gain an un-derstanding of tasks computable in the model and to prescribe some meaningfulmeasure of the complexity of these tasks. This problem has proved quite di�cultfor models of distributed computation that are expected to tolerate faults but inwhich lack of synchronization prevents the detection of faulty processes. The sem-inal paper of Fischer, Lynch, and Paterson [FLP] shows that in the asynchronousmessage-passing model, no deterministic protocol that tolerates even a single faultyprocess can solve the basic task of consensus. Subsequent work of Biran, Moran,and Zaks [BMZ] generalizes the approach of [FLP] to give necessary and su�-cient conditions for solvability of distributed decision tasks assuming asynchronousmessage passing and resilience to a single faulty process. Their techniques use adja-cency graphs associated to con�gurations of inputs, outputs, and protocol outputs.Elements of these graphs appear also in [FLP]. Among the necessary conditionsfor solvability is that connectivity of the graphs be preserved in a suitable sensewhen passing from inputs to outputs. It should be noted that in the adjacencyThe author was supported by an MCD Fellowship granted by the University of Texas at Austinduring the research and writing of this paper. Typeset by AMS-TEX1

2 JOHN HAVLICEKgraphs of [BMZ], a vertex corresponds to a con�guration of all processes, while twovertices are connected by an edge if the corresponding con�gurations agree exceptat a single process.More recent work ([BG2, HS1-2, SZ] are just a few examples) has focussed onthe asynchronous read-write shared-memory model, in which processes communi-cate by atomic (snapshot) read and atomic write operations on shared memorylocations. For this model, Herlihy and Shavit [HS1] introduced a framework for de-scribing and reasoning about solvability of distributed decision tasks that uses thelanguage of simplicial complexes from combinatorial and algebraic topology. Thesimplicial complexes I and O that describe the inputs and outputs, respectively, fora decision task are \dual" to the adjacency graphs of inputs and outputs in [BMZ].Indeed, a vertex in one of these complexes represents a con�guration of a singleprocess, and a simplex of dimension k represents a con�guration of k+1 processes.If two con�gurations share a common sub-con�guration of size k+ 1, then the cor-responding simplices intersect in a sub-simplex (i.e., face) of the dimension k. Theuse of simplicial complexes provides the exibility to represent con�gurations of anypositive number of processes, which is important when entertaining the possibilityof failure of more than one process, and it represents the collection of con�gurationsof a given type e�ciently, at least in the sense that each con�guration correspondsto a unique simplex. (In the adjacency graph representation, multiple edges maycorrespond to the same con�guration.)In addition to being notationally convenient, simplicial complexes provide the\right" topology for studying wait-free solvability of decision tasks. Wait freedomin this context amounts to resilience to failure of up to all but one process (sinceprocesses run asynchronously and fail only by crashing). The correctness of thetopology is justi�ed by the Asynchronous Computability Theorem of Herlihy andShavit [HS2]. This theorem gives elegant necessary and su�cient conditions for theexistence of a wait-free protocol to solve a decision task. A decision task is speci�edby a triple (I;O;�). As above, I and O are the complexes of inputs and outputs,respectively, and � is the relation that associates to each input con�guration thecollection of output con�gurations that are satisfactory under the task. In veryloose terms, the Asynchronous Computability Theorem says that (I;O;�) admitswait-free solution if and only if there is a suitable continuous map f : jIj ! jOj thatrespects the relation �. Here, jIj denotes the topological space that is obtainedin a standard fashion from the combinatorial object I, and similarly for jOj. Inslightly more precise terms, the condition is that there exists a subdivision �(I)that respects processes and there exists a simplicial map �:�(I)!O that respectsboth processes and the relation �. The map f can be taken as j�j when j�(I)jis identi�ed with jIj. (A precise statement of the Asynchronous ComputabilityTheorem is given in Subsection 2.5 below.)In order to prove the Asynchronous Computability Theorem, Herlihy and Shavitintroduce an auxiliary complex, the protocol complex , whose topology capturesthe capabilities of the protocol. Given a protocol that is wait-free executable onI, the protocol complex P(I) is the simplicial complex of con�gurations of �nalviews of �nishing processes in all possible executions of the protocol with inputcon�gurations from I. If the protocol solves the task, then there is a simplicialmap �:P(I)!O that respects process identi�ers and the task relation. The map� simply maps �nishing processes to their output values. The proof of necessity

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 3proceeds by showing that for a �ne enough subdivision �(I), there exists a simplicialmap ':�(I) ! P(I) that respects both process identi�ers and, in an appropriatefashion, carriers of the subdivision. Herlihy and Shavit call such a map ' a span.Their Theorem on Spans is stated precisely in Subsection 2.5 below. The map � canthen be obtained as the composition � �'. The proof of su�ciency relies essentiallyon Borowsky and Gafni's clever Participating Set Protocol [BG1] for solving thesimplex agreement task . This protocol serves as a \universal" protocol for wait-freedecision tasks, and the existence of the map � allows specialization of the universalprotocol to the task at hand.The Asynchronous Computability Theorem can be used to give proofs of theimpossibility of solution of Chaudhuri's set consensus task [Ch] and Attiya et al.'srenaming task [At+].1 Such proofs can be found in [HS1, HS3], although it shouldbe noted that independent proofs of the impossibility of solution of the set consen-sus task appear in [BG2, SZ]. Arguments of this kind tend to focus on a single inputcon�guration that is challenging for the task (such as a con�guration of distinctinputs in the case of set consensus) and show that there is a topological obstructionto arranging � on that simplex despite the re�nement of the subdivision �. Whilethey are concise and �sthetically pleasing applications of topology, these argumentsare ad hoc and seem ill suited to automation. For example, a basic problem in au-tomating a search for � is that it is not known how �ne a subdivision � shouldsu�ce. It would therefore be interesting to �nd a more systematic and computa-tionally feasible method for approaching the question of wait-free solvability of adecision task.2In this paper, we propose such a method. Our approach takes advantage of theglobal topology of the input complex and the previously unexplored topology ofthe task speci�cation itself. We associate a simplicial complex T , the task complex ,to the input-output relation � of a decision task (I;O;�). The task complex isdetermined in a simple way from �, and there is a simplicial map �: T ! I, alsodetermined from �. From the Herlihy-Shavit Theorem on Spans, it follows thatif the task admits wait-free solution, then j�j has a right homotopy inverse, i.e. acontinuous map �: jIj ! jT j such that the composition j�j � � is homotopic to theidentity map of jIj. The existence of a right homotopy inverse implies that the map��:H�(T)! H�(I)induced in simplicial homology must surject in all dimensions. (A more generalconsequence of the existence of a right homotopy inverse for j�j is given in Theorem3.2.2.) Of course, the homology map �� and its image can be computed whether ornot there is a wait-free solution of the task, and the existence of nonzero elements inthe cokernel of �� (equivalently, the existence of elements of H�(I) that are not inthe image of ��) implies that no wait-free solution exists. It is customary in such asituation to say that the cokernel of �� consists of obstructions to wait-free solutionof the decision task.3 It is well known that simplicial homology of a �nite complex1Precise descriptions of these tasks are given in Subsections 5.2 and 5.3.2Any such method that is computable is necessarily incomplete, since it is known [GK, HR3]that the question of wait-free solvability of a decision task is undecidable in general for three ormore processes.3We do not mean that coker�� is a complete set of obstructions in the sense that coker�� = 0implies the existence of a wait-free solution. See the preceding footnote.

4 JOHN HAVLICEKcan be computed in time that is a polynomial function of the number of simplicesof the complex. The image of a homology map such as �� can also be computedin time that is polynomial in the number of simplices of the domain and the targetcomplexes. In this sense, the obstructions we propose are e�ectively computable.Of course, having de�ned obstructions to wait-free computability does not guar-antee that computation of these obstructions actually detects the impossibility ofsolution of any decision tasks. But, in fact, the obstruction method seems to bepowerful enough to detect the impossibility of solution of tasks such as consensus,set consensus, and renaming, the last after suitably adapting the de�nition of ob-structions to the situation of anonymous protocols. Our results in this regard aresomewhat preliminary and technical, though, and it is, perhaps, more convincingsimply to automate the method of obstructions and let it work on examples.The balance of this section presents a detailed overview of the present paper.Considerable e�ort has been made to ensure accessibility both to computer scien-tists and to mathematicians, and it is hoped that the writing is palatable to read-ers from both groups. The main text assumes that the reader is familiar with thematerial from algebraic topology that has already been used to study distributedcomputability. This material includes the language of simplicial complexes and sub-divisions and the simplicial homology functor. Some elements of homotopy theoryhave been used in the proofs of major theorems, such as the Theorem on Spans.The reader unfamiliar with these topics is encouraged to skim the appendix. Theprimer by Herlihy and Rajsbaum [HR2] provides another good introduction, andthe �rst chapter of Munkres standard textbook [Mu] is an excellent reference.In Section 2, we set down preliminaries for our work. Brevity has been sacri�cedfor completeness. The asynchronous read-write shared-memory model is discussedin Subsection 2.1. Subsection 2.2 gives formal de�nitions of well-posed decisiontask and of the properties of extensibility and reducibility of such tasks. All ofthese ideas exist, at least in spirit, in prior work, but the treatment here is a bit dif-ferent. Rather than accounting for the possibility of faulty processes when de�ningwhat it means for a protocol to solve a task, we demand that the task speci�cationitself allow for failures by pairing input and output simplices of di�erent dimensions.Subsection 2.3 describes wait-free protocols. The point of view is to understand aprotocol by considering all of its possible (linear) execution sequences and the rela-tion of input-output pairs that can be generated by these executions. This relationis called the executable relation of the protocol. We give axioms for the existence ofexecution sequences, and we show that, under suitable assumptions, these axiomsensure that the executable relation is well-posed, extensible, and reducible in thesense of Subsection 2.2. We use the executable relation to give a simple and, hope-fully, natural de�nition of what it means for a protocol to solve a wait-free decisiontask. Again, these ideas exist already in the literature, although the de�nition ofsolution of a wait-free decision task has been murky. Subsection 2.4 describes theprotocol complex associated to a wait-free protocol. In Subsection 2.5, we give aprecise statement of the Theorem on Spans proved by Herlihy and Shavit [HS1],which is the launching point for our work. We also cite the necessary and su�cientconditions of the Asynchronous Computability Theorem [HS2].With all of this background, the de�nition of the task complex T in Section 3is quite easy. Subsection 3.1 gives the de�nition and a few very simple examples,motivated from [HS2]. We show how to use T to associate obstructions to a decision

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 5task in Subsection 3.2, and we give our main result as Theorem 3.2.2. Applicationsare deferred until Section 5.In Section 4, we enhance the topological structures already introduced by addingthe action of a group of symmetries. The objective is to give a precise descriptionof protocols that are anonymous in the informal sense of making no \essential"use of process identi�ers. Group actions on topological spaces form a standardtopic in algebraic topology. The idea of characterizing anonymous protocols interms of such actions appears in [HR1], although in a somewhat di�erent form.Subsection 4.1 presents the rigidity properties of group actions on complexes thatare appropriate for our work and shows how to form quotient spaces under suchactions. In Subsection 4.2, we restrict attention to groups of symmetries that ariseby permuting processes. We give a simple condition for such group actions to berigid and make a precise de�nition of anonymity. Theorem 4.2.1 is a generalizationof the Theorem on Spans, and it leads immediately to a generalization of our mainresult to the situation of anonymous protocols, Theorem 4.2.2.Section 5 gives non-trivial applications of the obstruction method. We show thatthe obstruction method is powerful enough to detect the impossibility of solvingordinary consensus and of solving certain non-trivial cases of set consensus andanonymous renaming. These results are somewhat preliminary, and the argumentsmake rather heavier use of algebraic topology than needed in the preceding sections.On the other hand, the obstruction method opens the door to computer-aided proofsof impossibility of solution of wait-free decision tasks.Acknowledgment. The author wishes to thank Lorenzo Alvisi for many useful andencouraging discussions during the research and writing of this paper.2. Preliminaries2.1 Model of computation.The model of computation for the present work is the asynchronous read-writeshared-memory model that has been common in recent studies of wait-free decisiontasks [BG3, GK, HS2, HS3, SZ]. We assume a system of n+1 processes, p0; : : : ; pn.These processes run asynchronously, which means that no assumption is madeabout their relative speeds. The processes may therefore experience arbitrary delaysrelative to one another. Each process is assumed to have private memory that canbe used for internal computations and in which private input values can appearat the outset of a distributed computation. The private memory is assumed to beunbounded.The processes communicate through shared memory locations. The shared mem-ory is organized as an array S[0::n] of non-overlapping regions. The region S[i] canbe written only by pi, but can be read by any process. We assume that each regionS[i] is unbounded. Processes interact with shared memory via atomic write andscan operations.4 In a write operation, process pi appends a value to S[i] with-out destroying the contents of any previously written location in S[i]. The sharedmemory is assumed to support atomic snapshots [Af+]. A scan operation by pi4An operation by a process is atomic if it is always executed without interruption.

6 JOHN HAVLICEKtherefore returns to the private memory of pi a copy of the entire shared memory.This copy is called the view returned to the process by the scan operation.The processes execute deterministic protocols. A protocol is a collection of pro-grams running on the processes that direct all shared-memory write and scan op-erations. A protocol may also direct internal computations of a process, althoughsuch computations can inuence other processes only through the use of writes andscans. The internal state of a process consists of the values stored in its privatememory. A deterministic protocol is one such that the internal state of pi at anypoint of the computation determines recursively a unique ensuing sequence of ac-tions and internal state changes of pi up to and including the next scan of sharedmemory. The view returned from the next scan is not determined and depends onthe intervening writes by other processes to shared memory.Processes may fail only by crashing. A process crashes when it stops executionwithout having been directed to halt by the protocol. A crashed process remainscrashed, taking no further action. A process may crash at any time, except in away that disintegrates an atomic operation. A crashing process makes no terminalwrite to shared memory to notify the other processes of its demise. Since processesrun asynchronously, they cannot distinguish a crashed process from one that hasbeen severely delayed. With the distinction between crashed and severely delayedprocesses blurred, the condition that a protocol run wait-free is tantamount to thecondition that the protocol tolerate faults by up to n of the n+ 1 processes.2.2 Decision tasks.In a distributed decision task, each of the n+ 1 processes begins with a privateinput value, executes a protocol, during which it may communicate with the otherprocesses, and, barring failure, concludes by writing an output value to sharedmemory and then halting.5 For this paper, we assume that the input values andoutput values come from �nite sets VI and VO (respectively) that are �xed fromthe outset. An assignment of input (respectively, output) values to one or more ofthe processes will be called an input (respectively, output) con�guration. An inputor output con�guration which assigns values to all n + 1 processes will be calledfull . We can represent assignment of the value v to the process with identi�er pby the ordered pair x = (p; v). According to the notation in [HS3], for such a pairwe write id(x) = p and val(x) = v.6 An input (respectively, output) con�gurationis then written as a set X = fx0; : : : ; xrg of pairs such that id(x0); : : : ; id(xr) aredistinct process identi�ers and each value val(vi) comes from VI (respectively, VO).Such a con�guration can be thought of as a chromatic r-simplex with vertices xiand coloring xi 7! id(xi). The vertices of X are additionally labelled by the variousvalues. If X and X 0 are con�gurations such that X � X 0, then we say that X isextensible to X0 and X 0 is an extension of X.A decision task for the n+1 processes must specify which full input con�gurationsare admissible for the task. In this paper, we focus on tasks that are genuinely5In [HS3] the authors require that the output values be private. However, for the normalizedfull-information protocols in [HS3], any process that (1) scans the shared memory after the �nalwrite of process p, (2) can detect that this write is the �nal write of process p (as in the caseof protocols that proceed in a �xed number of asynchronous rounds), and (3) has access to thedecision function � can deduce the output of p.6If v 2 VI and it is useful to emphasize this fact, we may write inval(x) = v. Similarly, ifv 2 VO, we may write outval(x) = v.

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 7intended for all the processes, and so any admissible input con�guration shouldbe extensible to an admissible full input con�guration. In order for the task tobe well-posed for wait-free computation, it must also address the possibility offailure of some of the processes, perhaps from the outset. A process is said tobe participating in an execution of a protocol if it at least manages to write itsinput value to shared memory. The process is said to be e�ectively participatingin an execution if it manages to write its input value to shared memory before the�nal scan by some non-faulty process. Assuming that the protocol directs eachprocess to make at least one scan of shared memory, every non-faulty process ise�ectively participating. The input values of non-participating processes cannotinuence the execution, and the input values of processes that are not e�ectivelyparticipating cannot inuence the execution of any non-faulty process. We say thatthe e�ective input con�guration for the execution is the con�guration of inputs ofthe e�ectively participating processes. In order to articulate that tasks be intendedfor all processes and to allow for the possibility of processes that do not participate,or that do not participate e�ectively, we make the following requirement of a wait-free decision task:(T1): Any admissible input con�guration is extensible to an admissible full inputcon�guration. Any input con�guration that is extensible to an admissibleinput con�guration is itself admissible.With this requirement, the admissible input con�gurations form a pure n-dimensionalchromatic simplicial complex, the input complex, which is denoted I.Again following the notation of [HS3], we write ids(X) for the set fid(x) :x 2 Xg. A decision task must specify for each admissible input con�guration thecollection of output con�gurations that are considered satisfactory solutions to thetask for the given input. The decision task must therefore specify an input-outputrelation � consisting of pairs (X;Y) where X is an admissible input con�gurationand Y is an output con�guration satisfactory for input X. It is unreasonable for adecision task to ask processes that are not e�ectively participating to reach decisionvalues. We therefore require(T2): If (X;Y) 2 �, then ids(Y) � ids(X).7If all participating processes in an execution are non-faulty, then there shouldbe an acceptable way for them all to write output values. The decision task needs,therefore, to specify for an admissible input con�gurationX at least one satisfactoryoutput con�guration involving the same processes. Since e�ectively participatingprocesses may fail, there must also be output con�gurations involving as few asone process that are satisfactory for the corresponding input con�guration. Notethat the last condition is not the same as specifying an output con�guration foran input with fewer processes, since the input values of e�ectively participatingprocesses that fail can inuence the outputs of non-faulty processes. Thus, werequire7Herlihy and Shavit [HS3] require that ids(Y) = ids(X) for (X;Y) 2 �. With this strictercondition, however, it is no longer correct to consider� as specifying all satisfactory input-outputpairs for a wait-free task, since e�ectively participating processes are then never allowed to fail.

8 JOHN HAVLICEK(T3): For each admissible input con�guration X and for each non-empty subsetP of ids(X), there is at least one pair (X;Y) in � such that ids(Y) = P .Definition 2.2.1: A decision task that satis�es (T1), (T2), and (T3) will nowformally be called well-posed.Since processes cannot distinguish a faulty process from one which is runningslowly, it is desirable for a wait-free decision task to exhibit extensibility in therelation �. Consider, for example, a situation in which a subset of the non-faultyprocesses run very quickly, so fast, say, that they �nish the protocol before othersamong the non-faulty processes write their input values to shared memory. Areasonable wait-free task must allow the slow processes to �nish the protocol in asatisfactory way. We may therefore require(T4): If (X;Y) 2 � and X 0 is an admissible extension of X, then there is anextension Y 0 of Y with ids(Y 0) = ids(X 0) such that (X 0; Y 0) 2 �.A well-posed decision task that satis�es (T4) will be called extensible.Remark. Any decision task can be modi�ed to satisfy (T4) by adding a specialoutput value ? and creating any missing extensions Y 0 by assigning the value ?to processes with no value de�ned from the original set VO. Processes halting withvalue ? are then understood to have withdrawn from the decision process withoutchoosing one of the original output values. Such a modi�ed decision task may ormay not preserve the spirit of the original task. �Another desirable property of a wait-free decision task is reducibility , meaningthat the input-output relation� admits the assembly of a satisfactory solution frompartial solutions. If a collection P of processes has �nished a protocol at some pointand the output con�guration of the processes in P does not represent a satisfactorysolution for the e�ective input con�guration at that moment, then an immediatecrash of all processes not in P leaves the protocol with an unsatisfactory output.We may therefore require(T5): Let (X;Y) 2 �. Then there is a strictly ascending chain Y1 � � � � �Yr = Y of output con�gurations with jYjj = j and an ascending chainX1 � � � � � Xr = X of input con�gurations such that ids(Yj) � ids(Xj) andeach (Xj ; Yj) 2 �.A well-posed decision task that satis�es (T5) will be called reducible. We may beless restrictive in the decision task by admitting as acceptable any partial solutionof an acceptable solution. We will say that a well-posed decision task is stronglyreducible if it satis�es(T6): If (X;Y) 2 � and Y1 is extensible to Y , then (X;Y1) 2 �.It seems that most decision tasks considered in previous research have been treatedas strongly reducible. The input-output relation � of a well-posed task can beextended to a relation �0 satisfying (T6) simply by adding any missing pairs. Ourconstruction of the task complex T will not distinguish between � and �0.If � is the input-output relation of a decision task, then we say that an outputcon�guration Y is admissible if there is an admissible input con�guration X such

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 9that (X;Y) 2 �. Note that the collection of admissible output con�gurations neednot be a simplicial complex, even if the task is well-posed. We call an output con�g-uration sub-admissible if it is extensible to an admissible output con�guration. Thecollection of sub-admissible output con�gurations does form a chromatic simplicialcomplex, the output complex, which is denoted O. If the decision task is stronglyreducible, then all sub-admissible output con�gurations are themselves admissible,and so, in this case, O consists entirely of admissible con�gurations.We close this subsection with two very simple examples, taken from [HS2]. Wewill revisit these examples to illustrate the construction of the task complex inSection 3.Example 2.2.2. Two-process binary consensus. In this task, VI = VO = f0; 1g.There are two processes, p and q, and each can begin with either of the two possibleinput values. The task requires that the processes reach consensus in the sense thatall �nishing processes choose the same output value. Furthermore, this commonvalue must be the input value of at least one e�ectively participating process.We will use the following notation. A con�guration is written as a sequence ofvalues within angle brackets, the value of p �rst and the value of q second. If aprocess has no value in the con�guration, then we write � in place of its value.Thus, h01i represents the con�guration in which p has value zero and q has value1, while h�0i represents the con�guration in which q has the value 0 and p does notappear.The input complex I has four vertices, h�0i, h�1i, h0�i, and h1�i, and four1-simplices h00i, h01i, h10i, and h11i. I can be realized as the boundary of asquare, and jIj is thus homeomorphic to a 1-sphere. The output complex O can beidenti�ed with the subcomplex of I obtained by removing the two 1-simplices withmixed values, h01i and h10i. jOj is therefore a pair of disjoint line segments.In order to describe �, we abbreviate the notation for a pair from (habi; hcdi) tosimply hab; cdi. Then � is enumerated ash0�; 0�i h1�; 1�i h�0; �0i h�1; �1ih00; 0�i h00; �0i h00; 00i h11; 1�i h11; �1i h11; 11ih01; 0�i h01; 1�i h01; �0i h01; �1i h01; 00i h01; 11ih10; 0�i h10; 1�i h10; �0i h10; �1i h10; 00i h10; 11iNotice that this task is both extensible and strongly reducible.Example 2.2.3. Two-process binary almost-consensus. This task has the sameinput complex as two-process binary consensus, and any input-output pair sat-isfactory for binary consensus is still allowed as satisfactory. In addition, if theprocesses begin with distinct inputs, then h10i is allowed as a satisfactory output.The output complex O has, therefore, the additional 1-simplex h10i and jOj isthree sides of a square. The input-output relation is obtained from that for bi-nary consensus by adding h01; 10i and h10; 10i. As with binary consensus, binaryalmost-consensus is both extensible and strongly reducible.2.3 Executions of wait-free protocols.We assume all protocols to be structured so that the �rst action of a process is towrite its input value to shared memory, and its last action before halting is to writeits output value to shared memory. A process is said to start/�nish the protocol if

10 JOHN HAVLICEKand when it writes its input/output value to shared memory. A process scanningshared memory after process p has �nished the protocol can therefore deduce that phas �nished. We assume that all protocols direct each process to make at least onescan of shared memory between starting and �nishing. Protocols are also assumedto be deterministic, and processes can fail only by crashing. All executions areassumed to have at least one non-faulty process.Let e be an execution of a protocol. We assume that it is meaningful to speakof a clairvoyant view of e from which can be determined(1) The full input con�guration describing the input values o�ered to all n+ 1processes.(2) The sequence heii of \events" of e.(3) A partition of the n+1 processes into the sets Fe and NFe of processes thatare faulty in e and that are non-faulty in e, respectively.We do not assume that any process is able to achieve a clairvoyant view.At this point we have not said what constitutes an event, nor have we saidexactly which events are reected in the sequence heii. In general terms, an eventshould represent an atomic action of some process. We assume that all scans ofand writes to shared memory are reected in the sequence heii. Recall that writesare assumed to append to shared memory, not overwrite, and thus if w is a writeevent in the sequence and s is a scan event appearing later in the sequence, thenthe value written in w appears in the view returned in s. We also assume that if theprotocol directs internal actions of processes, su�ciently many internal actions arereected in the sequence to ensure that a non-faulty process cannot appear faulty.8It is then possible to de�ne the sets NFe and Fe in terms of the sequence of events,as in [HS3]: NFe consists of the processes that �nish or to which are associatedin�nitely many events.A clairvoyant view of e determines the e�ective input con�guration for the ex-ecution, which we will denote by Xe. Recall that Xe is the con�guration of inputvalues of processes with a start event in e that precedes a scan event by some pro-cess that is non-faulty in e. A clairvoyant view also determines the con�gurationYe of output values of all processes that �nish the protocol in e. We haveids(Ye) � NFe � ids(Xe) :In order to characterize more precisely the collection of all wait-free executionsof a protocol, we propose the axioms (E1) through (E5) below. We will use theseaxioms to establish properties of the executable relation of the protocol (de�nedbelow), showing that this relation determines a well-posed, extensible, reducibledecision task.(E1): For any full input con�guration and for any non-empty sets of processesR � Q � P , there exists an execution in which P is the set of participatingprocesses, Q is the set of e�ectively participating processes, and R is the setof non-faulty processes.(E2): If e is an execution and X is a full input con�guration that extends the inputcon�guration of processes participating in e, then there is an execution e08A protocol could conceivably direct a process to enter a non-terminating internal computationwhose actions are not reected in the sequence of events.

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 11with X as full input con�guration and whose sequence of events is the sameas that of e.(E3): Two successive events of an execution may be interchanged to yield anotherexecution provided the events are associated to di�erent processes and (1)the events are both scans of shared memory, (2) the events are both writesto shared memory, or (3) at least one of the events is internal to a process.(E4): Let e be an execution, and let P be a set of processes that does not containall processes in NFe. For any event ec that does not follow the �nishingevent of any process in P , there is an execution e0 such that (1) e0i = ei fori < c, (2) no process in P has an event in e0ce0c+1 � � � , hence P � Fe0 , and(3) NFe � P � NFe0 .(E5): Let e be an execution, and let p be a process in Fe whose last event in e isej (we understand j = �1 if p has no event in e). For any event er withr > j, there is an execution e0 such that (1) e0i = ei for i < r, (2) e0r isan event associated to p, (3) processes other than p that have no event inerer+1 � � � have no event in e0re0r+1 � � � , and (4) NFe [fpg � NFe0 .Loosely speaking, (E4) represents crashing all processes in P by the instant beforeevent ec. Since the failure of a process to write might allow another process to �nishmore quickly, (E4)(3) allows processes in Fe�P to become non-faulty in e0, althoughsuch processes could be crashed by another application of (E4). Notice that (E4) canbe used to eliminate all events of processes that are participating but not e�ectivelyparticipating in e. In the resulting execution e0, (Xe0 ; Ye0) = (Xe; Ye) and allparticipating processes are e�ectively participating. (E5) represents \resurrecting"process p at the instant before event er . (E5)(3) ensures that processes that crashedbefore er are not resurrected along with p. By suitably crashing and resurrectingprocesses, these axioms can be used to obtain executions that reect delays oraccelerations of the various processes.Definition 2.3.1: Let X be an input con�guration. A protocol is wait-free ex-ecutable on X if in any execution e of the protocol for which the e�ective inputcon�guration Xe is extensible to X, all non-faulty processes �nish the protocol, i.e.,if Xe � X) ids(Ye) = NFe :Notice that if a protocol is wait-free executable onX and ifX1 is extensible toX,then the protocol is wait-free executable on X1. A protocol is wait-free executableon a complex of input con�gurations if it is wait-free executable on each simplex ofthe complex.Definition 2.3.2: Let K be a complex of input con�gurations on which a protocolis wait-free executable. By �ex(K) we mean the relation consisting of all pairs(Xe; Ye) arising from executions of the protocol with Xe a simplex of K. �ex(K) isthe executable relation that arises by applying the protocol to K.Definition 2.3.3: A protocol is a wait-free solution of a well-posed decision task(I;O;�) if (1) the protocol is wait-free executable on I, and (2) the executablerelation �ex(I) of the protocol is a subset of �.Remark. In [HS3], the authors give di�erent de�nitions of what it means for aprotocol to be a wait-free solution of a decision task (I;O;�HS). (In [HS3], the

12 JOHN HAVLICEKinput-output relation consists only of pairs (X;Y) for which ids(X) = ids(Y), andwe write �HS to emphasize this restriction.) On p. 6 of [HS3], the authors de�nea protocol to be a wait-free solution of (I;O;�HS) if (1) the protocol is wait-freeexecutable on I, and (2) for any execution e in which the input con�guration Xof participating processes is a simplex of I, there is an extension Y of Ye suchthat (X;Y) 2 �HS. Condition (2) amounts to allowing that if (X;Y) 2 �HS, thenany non-empty Y1 � Y also represents a satisfactory solution for input X. In otherwords, the task should be treated as strongly reducible. The speci�cation ofX as aninput con�guration of participating processes instead of just e�ectively participatingprocesses is unimportant if the task is also understood to be extensible, as in [HS3,p. 4]. It is not di�cult to check that if �HS is extensible in the sense of [HS3, p. 4],then there is a unique minimal extension � of �HS that is extensible and stronglyreducible, and a wait-free solution of (I;O;�HS) in the sense of [HS3, pp. 4{6] isequivalent to a wait-free solution of (I;O;�) according to our de�nition. �We can view the executable relation �ex(K) of a protocol on K as the input-output relation of a decision task. We write Oex(K) for the associated outputcomplex. Notice that if the protocol is a wait-free solution of (I;O;�), then Oex(I)is a subcomplex of O.Proposition 2.3.4: Let K be a pure n-dimensional complex of input con�gurationson which a given protocol is wait-free executable. Then (K;Oex(K);�ex(K)) is awell-posed, extensible, and reducible decision task of which the protocol is a wait-freesolution.Proof: Throughout, we use the assumption that the protocol is wait-free executableon K. The task satis�es (T1) because K is a pure complex. (T2) is satis�ed becauseids(Ye) � ids(Xe) for any execution e, and (T3) follows by applying (E1). Thus,the task is well-posed. Let (X;Y) 2 �ex(K). Using (E4), there is an execution esuch that (Xe; Ye) = (X;Y) and such that all participating processes are e�ectivelyparticipating. Suppose that X 0 is a simplex of K that extends X. By using (E2), wecan assume that the full input con�guration for e is an extension of X 0. Let ej bethe �nal scan event for a process in ids(Ye). Using (E5) successively to resurrect allprocesses in ids(X 0) after ej , we obtain an execution e0 satisfying ids(Ye0) = NFe0 =ids(X0),Xe0 = X 0, and such that Ye0 extends Ye. Thus, (T4) is satis�ed and the taskis extensible. Recall now the execution e such that (Xe; Ye) = (X;Y) and such thatall participating processes are e�ectively participating. We apply (E4) successivelyto crash increasing sets of processes. Let p be the non-faulty process whose �nishevent f occurs latest in e. We use (E4) to crash p and all processes in Fe by theinstant before f . Let the resulting execution be er�1, and write Xr�1 = Xer�1 andYr�1 = Yer�1 . Then Xr�1 � X, Yr�1 � Y , and ids(Yr�1) = ids(Ye) � fpg. (Thedi�erence X �Xr�1 will be non-empty if the �nal scan s of p is the last among theprocesses in NFe and there are processes with start events in e falling between s andthe preceding �nal scan of a process in NFe.) Now we repeat this procedure wither�1 in place of e. Continuing in this fashion, we obtain the chains of con�gurationsrequired by (T5). Thus, the task is reducible. �2.4 The protocol complex.Consider a protocol and let e be an execution. A process that �nishes theprotocol in e is understood to have as �nal view the view from the last scan it

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 13made of shared memory together with the output value it wrote before halting. Wecan represent the fact that a process p achieves �nal view v by the pair z = (p; v).For such a pair, we write p = id(z) and v = view(z), and we say that the pair isderivable from e. We also write inval(z) and outval(z) to denote the input valueand output value (respectively) of process id(z). The same pair might be derivablefrom many di�erent executions of the protocol. A con�guration of the protocol is anon-empty set Z = fz0; : : : ; zrg of pairs of process identi�ers and �nal views suchthat id(z0); : : : ; id(zr) are distinct and such that there exists a single execution efrom which all the pairs z0; : : : ; zr are derivable. In this case, we say that Z isderivable from e. Such a con�guration can be thought of as a chromatic r-simplex.If Z is derivable from e, then there are chromatic simplicial maps :Z ! Xe and�:Z ! Ye de�ned by : z 7! (id(z); inval(z)) and �: z 7! (id(z); outval(z)) :Notice that Z does not identify an execution e from which it is derivable. A givencon�guration of the protocol may be derivable from many executions.Let z be a pair associating a process and �nal view in some execution. LetX(z) denote the input con�guration of all processes and corresponding input valuesthat appear in view(z). Similarly, let Y (z) denote the output con�guration of allprocesses and corresponding output values that appear in view(z), including processid(z). If z is derivable from the execution e, then X(z) � Xe, Y (z) � Ye, andid(z) 2 ids(Y (z)) � ids(X(z)) :For a con�guration Z of the protocol, we writeX(Z) = [z2ZX(z) ; Y (Z) = [z2Z Y (z) :If Z is derivable from e, then X(Z) � Xe, Y (Z) � Ye, andids(Z) � ids(Y (Z)) � ids(X(Z)) :The maximal con�guration for an execution e is the con�guration consisting of all�nal views of non-faulty processes. If Z is the maximal con�guration for e, thenX(Z) = Xe, Y (Z) = Ye, andids(Z) = ids(Y (Z)) � ids(X(Z)) :If the protocol is wait-free executable on the input con�guration X, then theprotocol complex P(X) is de�ned to be the complex consisting of all con�gurationsZ derivable from executions e satisfying Xe � X. Similarly, if the protocol iswait-free executable on the complex K of input con�gurations, then the protocolcomplex P(K) is the union of the complexes P(X) as X runs through the simplicesof K. In this case, there are chromatic simplicial maps :P(K)!K and �:P(K)!Oex(K)de�ned as above.Proposition 2.4.1: Let K be a complex of input con�gurations, and consider aprotocol that is wait-free executable on K. Then�ex(K) = f(X(Z); Y (Z)) : Z 2 P(K)g :

14 JOHN HAVLICEKProof: If e is an execution with Xe a simplex of K, let Z be the maximal con�gu-ration for e. Then (Xe; Ye) = (X(Z); Y (Z)). This proves the inclusion �.Now let Z be a con�guration in P(K). Then Z is derivable from an executione with Xe a simplex of K. We have ids(Z) � ids(Y (Z)) � NFe. Let s be thelast scan event of any process in ids(Z). Then any process with �nishing eventbefore s is in ids(Y (Z)), and any process in ids(Y (Z))� ids(Z) has �nishing eventbefore s. Since the protocol is deterministic and wait-free executable on K, failuresby processes not in ids(Y (Z)) after s cannot prevent any process in ids(Z) from�nishing with the same output value as it would have otherwise. We can thereforeuse (E4) to crash all processes not in ids(Y (Z)) just after s, leaving the processesin ids(Z) to �nish. Let the resulting execution be e0. Then NFe0 = ids(Y (Z)) andYe0 = Y (Z). Furthermore, any process that has not started by s does not start ine0, so Xe0 = X(Z). Therefore, (X(Z); Y (Z)) = (Xe0 ; Ye0) 2 �ex(K). �Corollary 2.4.2: Let (I;O;�) be a well-posed decision task, and consider a pro-tocol that is wait-free executable on I. The protocol is a solution of the task if andonly if f(X(Z); Y (Z)) : Z 2 P(I)g � � :Remark. On p. 25 of [HS3] the authors give the following de�nition of wait-freesolution of a task (I;O;�HS): a protocol that is wait-free executable on I is asolution of the task provided that, for every input con�guration X in I and everyprotocol con�guration Z in P(X),ids(Z) = ids(X)) (X; �(Z)) 2 �HS : (A)For Z in P(X), though, X(Z) � X andids(Z) � ids(Y (Z)) � ids(X(Z)) � ids(X) :Thus, ids(Z) = ids(X) implies that each of these inclusions is an equality, and itfollows that Y (Z) = �(Z) andX(Z) = X. The condition (A) is therefore equivalentto the requirement that, for all X 2 I and for all Z 2 P(X),ids(Z) = ids(X)) (X(Z); Y (Z)) 2 �HS : (B)If we understand � to be the the minimal extensible and strongly reducible exten-sion of �HS, then the condition (B) is equivalent to the inclusion in the precedingcorollary. �Notice that if ids(Z) = ids(Y (Z)) in the second paragraph of the proof of theproposition, then in fact Z is the maximal con�guration for the execution e0. Thus,we have theCorollary 2.4.3: Consider a protocol that is wait-free executable on a complex Kof input con�gurations. A con�guration Z in P(K) is maximal for some executione with Xe a simplex of K if and only if ids(Z) = ids(Y (Z)).2.5 Theorems of Herlihy{Shavit.Throughout this subsection, we assume that the protocol considered is wait-free executable on K. In citing and whenever using the results of Herlihy and

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 15Shavit, we assume without further remark that the protocol involved takes thenormalized full-information form assumed by those authors. Roughly speaking, ina full-information protocol each process accumulates in private memory the entirehistory of views that it has received from scans of shared memory, and in each writeto shared memory a process includes a copy of the history it has accumulated up tothat point. It would be interesting to investigate the extent to which their resultsdepend upon this assumption. A key theorem behind the work in [HS1, HS2, HS3]is the followingTheorem on Spans 2.5.1 ([HS1]): Let K be a complex of input con�gurations,and consider a protocol that is wait-free executable on K. Then there exists a chro-matic subdivision �(K) and a chromatic simplicial map ':�(K)! P(K) satisfying'(S) 2 P(carrier(S)) for all simplices S in �(K).Following Herlihy and Shavit, we call the map ' given by the theorem a spanassociated to the protocol on K. Let S be a simplex of �(K), so that '(S) is acon�guration of the protocol, and let e be an execution such that Xe � carrier(S)and '(S) is derivable from e. Then X('(S)) � Xe and Y ('(S)) � Ye. Since ' ischromatic, ids(S) = ids('(S)), and soids(S) � ids(Y ('(S))) � ids(X('(S))) � ids(Xe) � ids(carrier(S)) :If S happens to be of full dimension in carrier(S), then ids(S) = ids(carrier(S)),and so each inclusion above is an equality. In this case, it follows that X('(S)) =carrier(S) and that '(S) is the maximal con�guration for some execution e0 withXe0 = carrier(S).If K is a chromatic complex and �(K) is a chromatic subdivision, then thereis a unique chromatic simplicial map f�:�(K) ! K satisfying f�(S) � carrier(S)for every simplex S in �(K), and jf�j is homotopic to the identity map when weidentify j�(K)j with jKj. (See Subsection A.6.) If ':�(K)! P(K) is a span, then �':�(K)!K is chromatic simplicial and satis�es �'(S) � carrier(S) for everysimplex S 2 �(K). Thus, � ' = f� ;and j'j is a right homotopy inverse for j j.Following [HS2], we de�ne � = � �'. In general �(Z) � Y (Z) for any con�gura-tion Z of the protocol, and, according to Corollary 2.4.3, equality holds if and onlyif Z is maximal for some execution. Thus, it follows that �(S) � Y ('(S)), withequality if and only if S is of the same dimension as carrier(S). From Proposition2.4.1 we also have (X('(S)); Y ('(S))) 2 �ex(K) :Since �ex(K) is extensible, there is an extension Y of Y ('(S)), and hence also of�(S), so that (carrier(S); Y) 2 �ex(K) :If S has the same dimension as carrier(S), then(carrier(S); �(S)) 2 �ex(K) :The following corollary, the necessary condition of the Asynchronous Computabil-ity Theorem, now follows from the Theorem on Spans and the preceding discussion.

16 JOHN HAVLICEKCorollary 2.5.2 ([HS2]): Let K be a complex of input con�gurations, and considera protocol that is wait-free executable on K. Then there exist a chromatic subdivision�(K) and a chromatic simplicial map �:�(K)!Oex(K) such that for each simplexS in �(K) there exists an extension Y of �(S) such that (carrier(S); Y) 2 �ex(K).If S has the same dimension as carrier(S), then (carrier(S); �(S)) 2 �ex(K).In order to obtain the su�cient condition of the Asynchronous ComputabilityTheorem, one uses Borowsky and Gafni's Participating Set Protocol for the simplexagreement task [BG1] as a \universal" protocol. The existence of an iterated stan-dard chromatic subdivision �(I) and a simplicial map �:�(I)!O respecting thetask relation � enables specialization of the universal protocol to solve (I;O;�).There is a technical argument involved in allowing�(I) to be an arbitrary chromaticsubdivision; see [BG3, HS3].Theorem 2.5.3 ([HS2]): Let (I;O;�) be a well-posed, extensible, and stronglyreducible decision task. Suppose that there is a chromatic subdivision �(I) and achromatic simplicial map �:�(I) ! O such that (carrier(S); �(S)) 2 � for everysimplex S of �(I). Then (I;O;�) has a wait-free solution.3. The Task ComplexWe de�ne a simplicial complex from the input-output relation � of a well-poseddecision task. Our construction is quite simple and loses information about �. Inparticular, the construction does not discriminate between � and the relation �0obtained by extending � to be strongly reducible. More careful constructions thatbetter reect the conditions imposed by � may be possible.3.1 De�nition and simple examples.An input-output pair (X;Y) will be called matched if ids(X) = ids(Y). We canthink of a matched pair as a single simplex T as follows. For each p in ids(X), form atriple t = (p; v; w), where (p; v) 2 X and (p; w) 2 Y . Then let T be the set of triplest formed in this fashion from (X;Y). T can be thought of as a chromatic simplexwith ids(T) = ids(X) = ids(Y). For t as above, we write p = id(t), v = inval(t), andw = outval(t). Having said carefully how to form the simplex T from a matchedpair (X;Y), we will typically identify (X;Y) with T whenever convenient.Definition 3.1.1: Let � be the input-output relation of a well-posed decisiontask. The task complex T associated to � is the chromatic complex consisting ofall matched pairs (X;Y) for which there exist extensions X 0 of X and Y 0 of Y suchthat (X 0; Y 0) 2 �.Let I and O be the input and output complexes associated to �. Then thereare chromatic simplicial maps�: T ! I and !: T ! Ode�ned by �(t) = (id(t); inval(t)) and !(t) = (id(t); outval(t)) :

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 17Notice that �(X;Y) = X and !(X;Y) = Y . If �0 is the relation of another well-posed task such that � � �0, then I � I0, O � O0, and T � T 0, all in the obviousway.Example 3.1.2. Two-process binary consensus. Recall the input-output relation� from Example 2.2.2. Each matched pair from � is itself a simplex of T . Thesepairs areh0�; 0�i h1�; 1�i h�0; �0i h�1; �1ih00; 00i h11; 11i h01; 00i h01; 11i h10; 00i h10; 11iIn addition, T has the following matched pairs that are not in � but that areextensible to pairs in �:h0�; 1�i h1�; 0�i h�0; �1i h�1; �0iSuch pairs correspond to decisions by a single process that are allowed providedthe other process participates e�ectively and with the appropriate input value. Forexample, h0�; 1�i is an unacceptable input-output pair if q does not participatee�ectively, since p is not allowed to decide 1 when the only e�ective input, p's own,is 0. This pair is acceptable, however, if q writes input value 1 before the �nal scanof p and then, perhaps, q crashes and p �nishes with output value 1.jT j separates into two components according to the output values of the sim-plices. Each component is the realization of a three-edge path. Thus, jT j is homo-topy equivalent to a two-point space, as is jOj, and j!j: jT j ! jOj is a homotopyequivalence. On the other hand, jIj is homeomorphic to a 1-sphere, and the mapj�j: jT j ! jIj is homotopic to a constant map.Example 3.1.3. Two-process binary almost-consensus. In addition to the matchedpairs given in the preceding example, the task complex for binary almost-consensushas the 1-simplices h01; 10i and h10; 10i. As a result, jT j is connected, and in factj�j: jT j ! jIj is a homotopy equivalence. Since jOj is now contractible to a point,j!j is homotopic to a constant map.3.2 Obstructions.Consider a protocol that is wait-free executable on a complex K of inputs. Wewrite Tex(K) for the task complex associated to �ex(K). If z is a vertex of P(K),representing a process and �nal view from some execution, we can de�ne#: z 7! (id(z); inval(z); outval(z)) :If Z is a simplex of P(K), then #(Z) is the matched pair ((Z); �(Z)). Since((Z); �(Z)) is extensible to (X(Z); Y (Z)) 2 �ex(K), it follows that ((Z); �(Z))is a simplex of Tex(K). Thus, # de�nes a chromatic simplicial map from P(K) toTex(K) such that the following diagrams commute:P(K) #����! Tex(K)??y ??y�K =����! K ; P(K) #����! Tex(K)??y� ??y!Oex(K) =����! Oex(K) :Now suppose that the protocol is a wait-free solution of the well-posed decisiontask (I;O;�) with task complex T . Then �ex(I) � �, and so Tex(I) � T andOex(I) � O as subcomplexes. We therefore obtain commutative diagrams

18 JOHN HAVLICEKP(I) #����! T??y ??y�I =����! I ; P(I) #����! T??y� ??y!Oex(I) �����! O :Applying the Theorem on Spans, there is a commutative diagram�(I) '����! P(I) #����! T??yf� ??y ??y�I =����! I =����! I : (3:2:1)Thus, � � # � ' = f�, and since jf�j is homotopic to the identity, j# � 'j is a righthomotopy inverse for j�j. The following theorem is now immediate.Theorem 3.2.2: Let (I;O;�) be a well-posed decision task that admits a wait-freesolution, and let T be the associated task complex.(1) Let F� be a covariant functor on the category of �nite simplicial complexesand simplicial maps, and assume that F� transforms any simplicial mapwhose realization is a homotopy equivalence into a surjection. Then themorphism F�(�):F�(T)! F�(I) is a surjection.(2) Let F� be a contravariant functor on the category of �nite simplicial com-plexes and simplicial maps, and assume that F� transforms any simplicialmap whose realization is a homotopy equivalence into an injection. Thenthe morphism F�(�):F�(I)! F�(T) is an injection.Note that the conditions on the covariant functor are satis�ed when F� is sim-plicial homology or the ordinary homotopy group functor; the conditions on thecontravariant functor are satis�ed when F� is simplicial cohomology.By an obstruction to wait-free computability of a well-posed task (I;O;�), wemean a mathematical object whose existence or \non-triviality" implies that nowait-free solution for the task can exist. Non-trivial usually means non-zero. An ob-struction is (e�ectively) computable if it is (e�ectively) computable from (I;O;�).E�ectively computable obstructions to wait-free computability can be obtainedby choosing F� to be simplicial homology with �eld coe�cients. When the coe�-cients are understood, it is customary to write F�(K) = H�(K) and F�(�) = ��. Ifa wait-free solution for the task exists, then��:H�(T)! H�(I)must surject, and so any element of H�(I) not in the image im�� is an obstructionto wait-free computability. Equivalently, any non-zero element of the quotientcoker�� = H�(I).im��is an obstruction.In the simple examples below, we use simplicial homology with coe�cients inthe �eld F.

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 19Example 3.2.3. Two-process binary consensus. From Example 3.1.2, the mapj�j: jT j ! jIj is homotopic to a constant map, and therefore the map ��:H�(T)!H�(I) induced in homology is zero in dimension one. But H1(I) �= F, and so agenerator of this homology is an obstruction to wait-free computability.Example 3.2.4. Two-process binary almost-consensus. From Example 3.1.3, themap j�j: jT j ! jIj is a homotopy equivalence, and therefore ��:H�(T)! H�(I) isan isomorphism, hence a surjection. Thus, there are no obstructions to wait-freecomputability. Consider the subcomplex T 0 of T consisting of the 1-simplicesh00; 00i h10; 10i h11; 11i h01; 11i h01; 10i h01; 00iand their vertices. T 0 is isomorphic to a subdivision �(I). It is not di�cult to seethat an isomorphism f :�(I) ! T 0 can be chosen so that � = ! � f satis�es thehypotheses of Theorem 2.5.3, and so this task admits wait-free solution. (See also[HS2], where an explicit protocol is given.)Less trivial applications of the obstruction method are given in Section 5.4. Symmetric Complexes and Anonymous ProtocolsIn this section, complexes of con�gurations are enhanced by adding the actionof a group of symmetries that arise by permuting process identi�ers. The objectiveis to treat anonymous wait-free protocols. Theorem 4.2.1 generalizes the Theoremon Spans and Theorem 4.2.2 generalizes Theorem 3.2.2 to this situation. Only therenaming application in Subsection 5.3 uses the ideas from this section.4.1 Group actions on complexes.Let K be a �nite simplicial complex, and let G be a group of permutations ofthe vertices of K. If X = fx0; : : : ; xrg is a simplex of K and g 2 G, then we writegX for the set fgx0; : : : ; gxrg. We say that G acts simplicially on K, and that Kis a G-complex , if for every g 2 G and every simplex X of K, gX is also a simplexof K. In this case, g:K ! K is a simplicial automorphism for every g 2 G, and Gcan be thought of as a group of symmetries of K. The orbit of a simplex X underthe action of G is the set of simplices GX = fgX : g 2 Gg. Suppose K and L areboth G-complexes. A simplicial map f :K ! L is a G-equivariant map, or simplya G-map, if f(gX) = gf(X) for all g 2 G and X 2 K. The action of G on K canbe extended piecewise-linearly to an action of G on the realization jKj. A G-mapf :K ! L then gives rise to a G-equivariant piecewise linear map jf j: jKj ! jLj.A homotopy F : jKj � [0; 1] ! jLj is called G-equivariant if for each �xed valuet0 2 [0; 1] of the homotopy parameter, F (�; t0): jKj ! jLj is a G-equivariant map.For the present work, it is useful to focus attention on a restricted class of actionsthat induce no non-trivial self-maps of simplices. We say that G acts rigidly on K,or that K is a rigid G-complex, if for any g 2 G and any simplex X = fx0; : : : ; xrgof K, gX = X implies that gxi = xi for 0 � i � r. In other words, if g maps Xto itself, then it does so by the identity map. Assume that G acts rigidly and thatg; h 2 G are such that gX = Y = hX. Then g�1hX = X, so that g�1h restrictsto the identity map X ! X. It follows that each of g and h restricts to the same

20 JOHN HAVLICEKsimplicial mapX ! Y . Thus, for any simplex Y in the orbit GX, there is a uniquesimplicial map X ! Y induced by every g 2 G that maps X to Y .Lemma 4.1.1: Let K and L be G-complexes and let f :K ! L be a G-map suchthat dimf(X) = dimX for every simplex X in K. If L is rigid, then K is rigid.Proof: Suppose gX = X, where g 2 G and X = fx0; : : : ; xrg is a simplex ofK. Then f(X) = f(gX) = gf(X). Since L is rigid, it follows that the restric-tion of g to f(X) = ff(x0); : : : ; f(xr)g is the identity. Thus gf(xi) = f(xi),and hence f(gxi) = f(xi), for 0 � i � r. The dimension condition ensures thatf(x0); : : : ; f(xr) are distinct, and it follows that gxi = xi for 0 � i � r. �Notice that the dimension condition of the lemma is satis�ed whenever K, L, andf are all chromatic.Let K be a G-complex. We say that a subdivision �(K) is a G-subdivision if �(K)is aG-complex and carrier(gS) = g carrier(S) for any g 2 G and S in �(K). Becauseof its uniformity, a barycentric or standard chromatic subdivision of a G-complexcan be given the structure of a G-subdivision. If K is a rigid G-complex, thenG-subdivisions can be generated inductively on the skeleta of K as follows. Thereis no subdivision on the 0-skeleton. Suppose X is a simplex of K that has not yetbeen subdivided and that the lower dimensional skeleta have been G-subdivided.Choose any subdivision ofX that is consistent with the subdivision on the boundaryof X. By rigidity, for each Y in the orbit GX, there is a unique simplicial mapX ! Y induced by elements of G, and so the subdivision of X gives a well-de�nedsubdivision of Y . This subdivision of Y is consistent with the subdivision on theboundary of Y because the lower skeleta are G-subdivided. It is not di�cult to seethat a subdivision constructed in this fashion is itself a rigid G-complex.Lemma 4.1.2: Let K be a �nite rigid G-complex, and let �(K) be a G-subdivision.Then there exists a G-map f :�(K) ! K such that f(S) � carrier(S) for everysimplex S in �(K). For any such f , the map jf j: j�(K)j ! jKj is G-equivariantlyhomotopic to the identity map j�(K)j ! jKj relative to the vertices of K.Proof: We can assume j�(K)j = jKj and that the vertex set of K is contained inthe vertex set of �(K). A map f can be constructed as follows. First, let f mapany vertex of K to itself. The de�nition of f is G-equivariant so far. Now pick anyvertex x on which f has not yet been de�ned. Pick some vertex of carrier(x) andlet f map x to this vertex. Then extend f to be G-equivariant over the orbit Gxby letting f(gx) = gf(x). We need to check that this extension is well-de�ned. Ifgx = hx, then, since �(K) is a G-subdivision,g carrier(x) = carrier(gx) = carrier(hx) = h carrier(x) :By rigidity, g and h induce the same simplicial map on carrier(x). Since f(x) ischosen in carrier(x), gf(x) = hf(x), and this proves that the equivariant extensionof f to Gx is well-de�ned. Continuing in this fashion, f is de�ned and G-equivarianton the entire vertex set of �(K). If S is a simplex of �(K), then for each vertex x ofS, carrier(x) is a face of carrier(S). Since f(x) is a vertex of carrier(x), f(x) is alsoa vertex of carrier(S), and this ensures that f(S) is a face of carrier(S). Thus, f issimplicial and satis�es the carrier requirement. Finally, since f is a simplicial mapthat is G-equivariant on vertices, it follows that f is G-equivariant on simplices.

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 21For the homotopy, we letF (x; t) = tx+ (1� t)(jf j(x))for x 2 j�(K)j and t 2 [0; 1]. Note that x and jf j(x) both lie in jcarrier(x)j, andF (x;�) is simply a parameterization of the line segment joining these two points.F is continuous and is therefore a homotopy from jf j to the identity. Since jf j mapsvertices of K to themselves, F is relative to these vertices (i.e., leaves them �xed).Fix t0 2 [0; 1], let g 2 G, and let x 2 j�(K)j. Since jf j is G-equivariant, we havejf j(gx) = gjf j(x). Since x and jf j(x) both lie in jcarrier(x)j, gx and gjf j(x) bothlie in g jcarrier(x)j = jcarrier(gx)j. It follows thatF (gx; t0) = t0(gx) + (1� t0)(gjf j(x)) = g�t0x+ (1� t0)(jf j(x))� = gF (x; t0) :Thus, F is a G-equivariant homotopy. �If K is a rigid G-complex, then we can form a quotient space K=G by identifyingpoints that can be mapped to one another by the action of the group.9 The resultingspace may not be a simplicial complex, but will always be a more general cellcomplex [Mu, x38]. If X is an r-simplex of K, then every simplex in the orbitGX is an r-simplex that can be uniquely identi�ed with X via a simplicial mapinduced by G. We let the cell complex K=G have one r-dimensional cell for eachr-dimensional orbit. We write [X] for the cell associated to the orbit GX, and so[X] = [Y] if and only if Y 2 GX. We think of [X] as an r-simplex whose facesmust be identi�ed with (i.e., \glued" to) cells of lower dimension. The rigiditycondition ensures that the identi�cation of the faces is well-de�ned. The reasonthis construction may not yield a simplicial complex is that two distinct cells mayshare the same boundary, or a single cell may have several of its boundary facesglued together. With this construction there is a cellular projection map�:K! K=Gde�ned by �(X) = [X].Notice that if f :K ! L is a G-map of rigid G-complexes, then f induces acellular map [f]:K=G! L=Gde�ned by [f]([X]) = [f(X)], and the following diagram commutes:K f����! L??y� ??y�K=G [f]����! L=GIf F : jKj� [0; 1]! jLj is a G-equivariant homotopy, then F induces a homotopy[F]:K=G� [0; 1]! L=G :If K is rigid, if �(K) is a rigid G-subdivision, and if f is as in Lemma 4.1.2, then[f]:�(K)=G!K=Gis homotopic to the identity (when we identify �(K)=G with K=G).9To be precise, we should probably write jKj=G, although we will always understand thenotations K=G and jKj=G to mean the same space. Quotient spaces of this sort can be de�nedeven if K is not rigid, but they may not be so well behaved.

22 JOHN HAVLICEK4.2 Anonymous protocols.We now consider group actions on complexes of con�gurations that arise bypermuting processes. Let � be the symmetric group of all permutations of then+1 processes. An element g 2 � acts on a con�guration (input, output, protocol,or task) by permuting process identi�ers. More precisely, if x = (p; v) is a pairassociating process and value, we de�negx = (gp; v) :In other words, id(gx) = g id(x) and val(gx) = val(x). The same de�nition applieswhen val represents an inval, outval, or view. The de�nition also applies to triples:if t = (p; v; w), then gt = (gp; v; w). If (X;Y) is a pair of con�gurations satisfyingids(Y) � ids(X), then ids(gY) � ids(gX), so that (gX; gY) is also such a pair. Wewrite g(X;Y) = (gX; gY). This de�nition is consistent with the identi�cation of amatched pair with a con�guration of triples.Let K be a complex of con�gurations and let � be a subgroup of �. We saythat K is a � -symmetric complex , or, briey, a � -complex , if the action of � on Kis simplicial in the sense de�ned in the preceding section. In a similar fashion, wesay that the input-output relation � is a � -relation if g(X;Y) 2 � whenever g 2 �and (X;Y) 2 �.It is straightforward to check that if (I;O;�) is a well-posed task and � is a� -relation, then I, O, and T are � -complexes. Furthermore, the maps � and !are � -maps.Now consider a protocol that is wait-free executable on the � -complexK of inputcon�gurations. We say that the protocol is � -anonymous on K if it satis�es thefollowing property of executions (compare with [HR1]).(E6): Let e be an execution with Xe a simplex of K and let g 2 � . Then there isan execution ge such that (1) the full input con�guration of ge is obtainedfrom the full input con�guration of e by the action of g, and (2) the event(ge)i is the same as ei except that all processes are permuted by g.Note that (E6)(2) means not only that the process associated with the event is per-muted, but, for example, that the permutation is also applied to the view returnedfrom a scan. From (E6) it follows that Fge = gFe, NFge = gNFe, Xge = gXe, andYge = gYe. It is not di�cult to see that if the protocol is wait-free executable and� -anonymous on K, then P(K) is a � -complex and �ex(K) is a � -relation, andhence Oex(K) and Tex(K) are � -complexes. Furthermore, , �, and # are � -maps.Let K be a � -complex of inputs and suppose that a protocol is wait-free ex-ecutable and � -anonymous on K. In order to complete the diagram 3.2.1 in a� -symmetric fashion, it remains to arrange a chromatic � -subdivision �(K) and aspan ' that is a chromatic � -map. We shall not pursue here the general conditionsunder which � -equivariant spans can be found, but, rather, remain content to showthat they can be found when K is a rigid � -complex. A simple condition on K thatensures rigidity of the action of � is the following.(R): For any simplex X = fx0; : : : ; xrg of K, val(x0); : : : ; val(xr) are distinct.Suppose that K is a rigid � -complex of inputs on which a protocol is wait-freeexecutable and � -anonymous. Since chromatic maps preserve the dimensions of

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 23simplices, applying Lemma 4.1.1 to the � -maps :P(K) ! K and �: Tex(K) ! Kshows that each of P(K) and Tex(K) is a rigid � -complex. Similarly, if (I;O;�)is a well-posed task with � a � -relation, and if the action of � on I is rigid, thenfrom �: T ! I we infer that the action of � on T is rigid.We can now give the following generalization of the Theorem on Spans.Theorem 4.2.1: Let K be a rigid � -complex of inputs, and consider a protocolthat is wait-free executable and � -anonymous on K. Then there is a chromatic� -subdivision �(K) that is a rigid � -complex and a � -equivariant span ':�(K)!P(K).Proof: The reader is referred to the proof of the Theorem on Spans in [HS3, pp. 35{36]. The structure of the proof is to construct the subdivision �(K) and the span' inductively on the skeleta of K. The topology of P(K) guarantees that once thesubdivision and span have been de�ned on the boundary of a simplexX, they can beextended over X itself. We need only modify the argument, as in the discussion ofG-subdivisions of a rigid G-complex and the proof of Lemma 4.1.2 in the precedingsection, so that whenever we extend the subdivision and span to X, we also extend� -equivariantly to all simplices in the orbit �X. �Under the hypotheses of the theorem, we obtain the commutative diagram�(K) '����! P(K) #����! Tex(K)??yf� ??y ??y�K =����! K =����! Kof rigid � -complexes and � -maps. Passing to quotients, we obtain�(K)=� [']����! P(K)=� [#]����! Tex(K)=�??y[f�] ??y[] ??y[�]K=� =����! K=� =����! K=�where [f�] is homotopic to the identity. If (I;O;�) is a well-posed task with �a � -relation, if I is a rigid � -complex, and if the protocol is a wait-free and � -anonymous solution, then we obtain the commutative diagram�(I) '����! P(I) #����! T??yf� ??y ??y�I =����! I =����! Iof rigid � -complexes and � -maps. Passing to quotients gives�(I)=� [']����! P(I)=� [#]����! T =�??y[f�] ??y[] ??y[�]I=� =����! I=� =����! I=�

24 JOHN HAVLICEKThe following generalization of Theorem 3.2.2 is now immediate.Theorem 4.2.2: Let (I;O;�) be a well-posed decision task with � a � -relation,I a rigid � -complex, and T the associated task complex. Suppose also that the taskadmits a wait-free and � -anonymous solution.(1) If F� is a covariant functor on the category of �nite cellular complexes andcellular maps and if F� transforms homotopy equivalences into surjections,then the morphism F�([�]):F�(T =�)! F�(I=�) is a surjection.(2) If F� is a contravariant functor on the category of �nite cellular complexesand cellular maps and if F� transforms homotopy equivalences into injec-tions, then the morphism F�([�]):F�(I=�)! F�(T =�) is an injection.As in Subsection 3.2, we can associate obstructions to the wait-free and � -anonymous computability of a task with � -symmetric input-output relation andrigid � -complex of inputs by choosing an appropriate functor F� or F�.5. ApplicationsIn this section we give some non-trivial examples of well-posed decision tasksthat have associated to them non-zero obstructions and therefore admit no wait-free solution. All of these tasks have been considered before in the literature, andnone of the impossibility results below is new. Nor is any claim made that theproofs using obstructions are simpler than proofs given previously. The goal is,rather, to show that the obstruction method is powerful enough to yield interestingimpossibility results.For each of the examples below, obstructions will be obtained using homologywith coe�cients in the F of integers mod-2.5.1 Consensus.In the consensus task, each of the n+1 processes begins with an input value fromthe set VI = f0; : : : ;mg, where m > 0. All input con�gurations are allowed. Allprocesses that �nish the task are required to reach consensus in the sense that theyall have the same output value. It is also required that the common output valueof the �nishing processes be the input value of at least one e�ectively participatingprocess. The input-output relation � therefore consists of all pairs (X;Y) of inputand output con�gurations such that ids(Y) � ids(X), vals(X) � VI , and vals(Y) =fvg for some v 2 vals(X).We �rst explore the topology of the input complex. Fix v 2 VI and let Xv denotethe unique full input con�guration in which every process has input value v. Let Svbe the closed star of Xv in I. In other words, Sv is the subcomplex of I consistingof all con�gurations that have or can be extended to have v as a value. Also, let Lvdenote the subcomplex of I consisting of all simplices that do not meet Xv. Thesimplices of Lv are precisely those con�gurations X for which v 62 vals(X). Noticethat Lv has mn+1 full simplices. Also, notice thatSv \ Lv = L(n�1)v ;

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 25where L(n�1)v denotes the (n� 1)-skeleton of Lv.The realization jIj can be deformed to a homotopy equivalent space I by con-tracting jSvj to a point. The deformation can be de�ned in two stages. In the�rst stage, all con�gurations that have only the value v are contracted to a singlebase point, b. This amounts to contracting jXvj to the point b, which we can thinkof as the barycenter of jXvj. Simplices of Lv are una�ected by the �rst stage ofthe deformation. The realization of a simplex X in Sv that is not a face of Xv isdeformed as follows. X can be written uniquely as a joinX = X0 �X1 ;where X0 is a face of Xv and X1 is a simplex of L(n�1)v . Since jX0j is deformed tothe point b, jXj is deformed to jfbg �X1j :The result of the �rst stage of deformation is again the realization of a simplicialcomplex, I0, and the structure of I 0 isI0 = fbg � L(n�1)v [L(n�1)v Lv :In other words, I0 is obtained from Lv by joining the (n�1)-skeleton L(n�1)v to thepoint b. In the second stage of deformation, we simply contract jfbg � L(n�1)v j to b.The result is the spaceI = jIj.jSvj � b = jLvj.jL(n�1)v j � b :But the last space, formed by collapsing the (n � 1)-skeleton of an n-dimensionalcomplex to a point, is a wedge of n-spheres, one for each n-simplex of the originalcomplex. Thus, I = N_1 Sn ;where we have written N = mn+1. Each full input con�guration from Lv gives riseto one of the n-spheres by collapsing its boundary to b.The reduced homology of a wedge of spheres has one generator in dimension kfor each k-sphere. Thus, we haveHn(I) �= Hn(I) �= FN :It is worth spending a moment to describe homology generators in terms of theoriginal complex I. LetX be a full input con�guration fromLv, so that v 62 vals(X).X gives an n-sphere in I by collapsing its boundary to b. In order to obtain thecorresponding n-sphere in I, which we denote by SX , we need to \uncollapse" theboundary. Notice that each proper face X1 of X determines a unique proper faceX0 of Xv such that ids(X0) \ ids(X1) is empty and ids(X0) [ids(X1) is the setof all process identi�ers. Then the join X0 �X1 is an n-simplex of Sv. The unionof all such n-simplices, together with X and Xv, gives the desired sphere SX . Thenumber of choices for X1 is nXk=1�n+ 1k � = 2n+1 � 2 :

26 JOHN HAVLICEKThus, when we add X and Xv, we have 2n+1 n-simplices in SX .Next, we turn to the task complex. For each v 2 VI , let Tv denote the subcomplexof T consisting of matched pairs (X;Y) for which vals(Y) = fvg. Notice that jT jseparates into connected components jTvj. Once v is understood, the con�gurationY contributes no information to a matched pair (X;Y) of Tv, and we see that Tv isisomorphic as a complex to Sv. Since jSvj can be contracted to a point, as in theconstruction of I, each component jTvj can be contracted to a point, and so jT j ishomotopy equivalent to a space consisting of m + 1 points. In particular,Hn(T) = 0 :This means that �� must be the zero map in dimension n, and so all of the non-zerohomology classes in Hn(I) are obstructions to wait-free solution of the consensustask.5.2 Set consensus.The set consensus task of Chaudhuri [Ch] is a generalization of the consensustask. In the k-set consensus task, each of the n + 1 processes begins with aninput value from the set VI = f0; : : : ;mg, where m � n. All input con�gurationsare allowed. The �nishing processes are required to choose output values fromamong the input values of the e�ectively participating processes, and the set of alloutput values of �nishing processes is required to have no more than k elements.The input-output relation � therefore consists of all pairs (X;Y) of input andoutput con�gurations such that ids(Y) � ids(X), vals(Y) � vals(X) � VI , andjvals(Y)j � k.The task just described is also referred to as (m + 1; k)-consensus (see [HR1]).The task admits trivial solution for k � n+1, so we henceforth assume that k � n.It is easy to see that any solution to (m+1; k)-consensus for m � n will implementa solution of (n + 1; k)-consensus. Also, any solution to (n + 1; k)-consensus fork � n will implement a solution of (n+1; n)-consensus. Thus, we consider only the(n+ 1; n)-consensus task below. The case n = 1 reduces to consensus as discussedin the preceding subsection, so we assume n � 2.It is known (see [SZ, BG2, HS1]) that the (n + 1; n)-consensus task does notadmit wait-free solution. At present, we do not have a proof that the impossi-bility of wait-free solution of (n + 1; n)-consensus is detected by the obstructionmethod. Nevertheless, there seems to be good evidence that obstructions exist us-ing homology with coe�cients in F. In this subsection, we show one way to studythe homology map �� and report results of automated computations that showthe existence of obstructions to the wait-free solution of the (3; 2)-, (4; 3)-, and(5; 4)-consensus tasks.The input complex for (n+1; n)-consensus is the same as the input complex forconsensus described in the preceding subsection with m = n. Thus,jIj ' I = N_1 Sn ;where N = nn+1. Obstructions can therefore exist only in dimension n, and wehave Hn(I) �= FN :

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 27The output complex O can be viewed as the subcomplex of the input complexconsisting of simplices X for which jvals(X)j � n. Notice thatI(n�1) � O ;and the simplices of I �O are precisely the (n+1)! full con�gurations in which theinput values are distinct. Let us �x the process identi�ers as 0; : : : ; n. We can usethe symmetric group � on f0; : : : ; ng to index the full input con�gurations withdistinct input values by writingX� = f(0; �(0)); : : : ; (n; �(n))gfor � 2 �. It follows thatHn(I;O) = Cn(I;O) �= F(n+1)! ;with basis the set fX� :� 2 �g.Lemma 5.2.1: The image of the projection mapp:Hn(I)! Hn(I;O)is spanned by the set of all sums of the form X� +X� , where �; � 2 �. Hn(O) isof rank nn+1 � (n + 1)! + 1; for any � 2 �, f@X�g is a basis for Hn�1(O), whichis of rank one.Proof: Since Hn�1(I) = 0, the inclusion ofO in I gives rise to a long exact sequence0! Hn(O)! Hn(I) p�! Hn(I;O) @�! Hn�1(O)! 0 : (�)We �rst show that every sum of the form X� +X� is in the image of p. Since� is generated by transpositions, it su�ces to prove the case when � is obtainedfrom � by a transposition. To ease notation, we assume, without loss of generality,that �(i) = � (i) for i � 2, and we write�(0) = v = � (1) and �(1) = w = � (0) ;where v 6= w. Let F = X� \X� = f(2; �(2)); : : : ; (n; �(n))g ;and let X = f(0; w); (1; w)g �F :Recall the notation from the discussion of consensus in the preceding subsection.We have X 2 Lv, and we can build an n-sphere SX from X by joining faces ofX to faces of Xv. Recall that SX represents the homology class in Hn(I) thatis identi�ed via isomorphism with the class in Hn(I) obtained by collapsing theboundary of X to a point. Notice that each of X� and X� is a simplex in SX ,obtained asX� = f(0; v)g � �f(1; w)g � F � and X� = f(1; v)g � �f(0; w)g � F � :Furthermore, every simplex of SX apart from X� and X� has either the value vrepeated or the value w repeated. Thus,p:SX 7! X� +X� :

28 JOHN HAVLICEKNow we show that the image of p is generated by sums of the form X� + X� .Fix v and recall the notations from the discussion of consensus. A basis for Hn(I)is given by the set of homology classes represented by spheres SX , where X rangesover the full con�gurations from Lv. If jvals(X)j < n, then no simplex of SXhas distinct values. In this case, SX � O, and we have p(SX) = 0. Otherwise,vals(X) = f0; : : : ; ng�fvg, and X has one repeated value w. Then SX is as in thepreceding paragraph, and so p(SX) = X� +X� for appropriately chosen � and � .The statements about Hn(O) and Hn�1(O) are now immediate from the exactsequence (�). �The task complex T consists of all matched pairs (X;Y) such that vals(Y) �vals(X) and jvals(Y)j � n. The topology of T is more complicated than in thecase of consensus, and the dimension of Hn(T) is large compared to that of Hn(I).Many of the classes in Hn(T) map toHn(O), though. In order to make this precise,we introduce a subcomplex S � T . A matched pair (X;Y) is in S if and only ifit can be extended to a full matched pair (X 0; Y 0) 2 � with X0 2 O. In this case,vals(X)[vals(Y) � vals(X 0) and jvals(X 0)j � n, so a necessary condition for (X;Y)to be in S is jvals(X) [vals(Y)j � n : (A)If, in addition to (A), we havejvals(Y) � vals(X)j � n + 1� jids(X)j ; (B)then we can �nd a full extension X0 of X satisfying vals(X 0) = vals(X) [vals(Y),and it follows that (X;Y) 2 S.We let �0 denote the restriction of � to S, and we let �00 denote the map of pairs(T ;S)! (I;O) arising from �. Then we have the following commutative diagramwith exact rows.0 ����! Hn(S) ����! Hn(T) ����! Hn(T ;S)??y�0� ??y�� ??y�00�0 ����! Hn(O) ����! Hn(I) p����! Hn(I;O) (5:2:2)The map �0� is actually a surjection. This follows because we can form anembedding �:O ! Sby �(Y) = (Y; Y). Thus, �0 � � is the identity map on O, and surjectivity of �0�follows. From the diagram (5.2.2) we then have that the image of �� containsHn(O) and, further, that �� surjects only if the image of �00� contains the image ofp. In fact, the behavior of �00� is rather restricted, as we shall see in Proposition 5.2.3below. We �rst make some observations about the relative homology Hn(T ;S).The relative chain group Cn(T ;S) has as basis the set of matched pairs of fullcon�gurations from T that can be written in the form (X� ; Y). Since vals(X�)contains all input values, Y can be any con�guration with jvals(Y)j � n. It is not,however, true that @(X� ; Y) is a chain from S, and so (X� ; Y) itself is not a relativecycle.

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 29In order to understand which faces of (X� ; Y) are in S and which are not, weuse the following face notation: for the con�guration X = f(0; v0); : : : ; (n; vn)g andfor 0 � i � n, we write FiX = X � f(i; vi)g :For a matched pair, Fi(X;Y) = (FiX;FiY). With this notation,@(X� ; Y) = (F0X� ; F0Y) + � � �+ (FnX� ; FnY) :Since jvals(FiX�)j = n, it follows that (FiX� ; FiY) satis�es (B), and thus (FiX� ; FiY)is in S if and only if jvals(FiX�) [vals(FiY)j � n : (A0)Since vals(FiX�) contains all values apart from �(i), (A0) holds if and only if�(i) 62 vals(FiY) : (C)Since jvals(Y)j � n, (C) must hold for at least one i, 0 � i � n, and so (X� ; Y)has at least one face in S. On the other hand, Y must have at least one repeatedvalue, so (C) must fail for at least one i, 0 � i � n. Thus, (X� ; Y) has between 1and n of its faces in S. Notice also that if � 6= � , then matched pairs of the form(X� ; Y) and (X� ; Y 0) cannot share a face of dimension (n � 1).Consider a chain T = T1 + � � �+ Tr in Cn(T ;S), where Tj = (X�j ; Yj). T is arelative cycle, and hence a homology class in Hn(T ;S), if and only if the faces ofthe various Tj that do not lie in S cancel in pairs over the �eld F. Suppose that Tis a relative cycle. Since Ti and Tj can share a face of dimension n� 1 only if theyhave the same input con�guration, the chainT � = X�j=� Tjmust itself be a relative cycle. We can therefore decompose T asT = X�2� T � ;where each T � is a relative cycle.Proposition 5.2.3: The map �00� in dimension n is either the zero map or asurjection on Hn(I;O). If �00� is the zero map in dimension n, then �� has imageHn(O) in dimension n and therefore does not surject on Hn(I).Proof: Suppose that �00� is not the zero map. Then �00�(T) is non-zero for somerelative cycle T 2 Hn(T ;S). Decompose T asT = X�2� T � :Then �00�(T �) must be non-zero for some � 2 �. This means that X� is in theimage of �00� . But then by symmetry it follows that �00� surjects on Hn(I;O).The statement concerning �� follows from the diagram (5.2.2). �From the proof of the proposition and the preceding discussion, we see that inorder to show that �00� is zero in dimension n, it is enough to check that for a �xedchoice of �, any relative cycle T � as above has an even number of simplices. Such acomputation is straightforward to automate, which we have done for n = 2, 3, and

30 JOHN HAVLICEK4. In each case, we have found that �00� is the zero map in dimension n, and thereforethe non-zero classes in Hn(I)=Hn(O) are obstructions to wait-free solution of the(n + 1; n)-consensus task for these values of n. It seems reasonable to conjecturethat �00� is always the zero map in dimension n.5.3 Renaming.The renaming task was posed in [At+]. We follow the description of the task in[HR1]. The n+1 processes begin with distinct names from VI = f0; : : : ; Ng, whereN > n. The processes are required to choose distinct output names from VO =f0; : : : ;Kg, where n � K < N . The input-output relation � therefore consistsof all pairs (X;Y) of input and output con�gurations such that ids(Y) � ids(X),vals(X) � VI , vals(Y) � VO, andjvals(X)j = jids(X)j and jvals(Y)j = jids(Y)j :(The last equalities impose the distinctness requirements on the names.)The task just described can be referred to more precisely as the (N;K) renamingtask. In order to avoid trivial protocols, some condition of anonymity or comparisonbase with regard to process identi�ers is appropriate. In [At+], the authors showthat a wait-free comparison-based solution exists in the message-passing modelwhen K � 2n + 1, but not for K � n + 2. On the other hand, [HS1] showsthat there is no wait-free comparison-based solution in the read-write model whenK � 2n. Anonymous solutions for renaming are considered in [HR1], while [HS3]treats comparison-based solutions.In this subsection, we consider �-anonymous wait-free solutions for the (n+1; n)renaming task with n � 1. � always denotes the symmetric group on the processidenti�ers. The choices N = n + 1 and K = n are special and have been madebecause they simplify the topology considerably. The distinctness requirements onthe names ensure that condition (R) is satis�ed by the input and output complexes.As pointed out in Section 4, it follows that the action of � on each of the complexesI, O, and T is rigid.To simplify notation, we assume that the process identi�ers are 0; : : : ; n. Theoutput complexO has (n+1)! full con�gurations, obtained by permuting the outputvalues from VO = f0; : : : ; ng among the processes. As in the preceding subsection,we use the elements of � to index these con�gurations. For � 2 �, we writeY � = f(0; �(0)); : : : ; (n; �(n))g :For � 6= � , the dimension of the intersection Y � \ Y � is at most n � 2, withequality if and only if � is obtained from � by a transposition. Notice that if Y isan output con�guration, the orbit �Y consists of all con�gurations Y 0 such thatvals(Y 0) = vals(Y). In particular, �Y � contains all the full output con�gurations.It follows that the quotient space O=� is a realization of the simplicial complex ofnon-empty subsets of VO , which is the complex of faces of a single n-simplex.Next, we consider the input complex. We show �rst that I is a connected pseudon-manifold [Mu, p. 261]. An (n�1)-dimensional input con�guration X1 determinesthe unique process i 62 ids(X1) and the two values v; w of VI � vals(X1). It followsthat X1 can be extended to exactly two full input con�gurations, namelyf(i; v)g �X1 and f(i; w)g �X1 :

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 31Now suppose that X = f(0; v0); : : : ; (n; vn)g is a full input con�guration and picktwo processes, i and j. Let F = X � f(i; vi); (j; vj)g ;let w be the unique value in VI � vals(X), and de�ne� = f(i; w); (j; vj)g � F ; � 0 = f(i; w); (j; vi)g � F ; �00 = f(i; vj); (j; vi)g � F :Then X \ �, � \ �0, and �0 \ � 00 are all (n � 1)-simplices. � 00 results from Xby applying the transposition from � that interchanges i and j. By repeating thisprocedure, it follows that ifX 0 is in the orbit�X, thenX can be connected toX0 bya sequence of full input con�gurations such that successive con�gurations intersectin an (n�1)-simplex. In order to connect X similarly to a full con�gurationX 0 froma di�erent orbit, we �rst connect X to some full con�guration in �X0 by changing asingle value in X, as by the sequence X;� above. (Notice that � 2 �X0 if and onlyif vals(�) = vals(X 0), and this can be arranged by choosing (i; w) appropriately.)Then the preceding procedure can be used to �nd a sequence from � to X 0. Thisproves that I is a connected pseudo n-manifold. It follows [Mu, p. 262] thatHn(I) �= F ;with generator the cycle that is the sum of all full input con�gurations.Since the orbit of an input con�guration X consists of all con�gurations X 0 suchthat vals(X 0) = vals(X), it follows that the quotient space I=� is a realization ofthe simplicial complex of subsets S � VI satisfying 1 � jSj � n+1. The non-emptysubsets of VI form the complex of faces of an (n+ 1)-simplex, and so I=� realizesthe subcomplex of proper faces. I=� is therefore homeomorphic to an n-sphere. Itfollows that Hn(I=�) �= F ;and the map ��, induced by the projection map�: I ! I=� ;sends the generator of Hn(I) to (n + 1)! times the generator of Hn(I=�). Since(n+ 1)! is even, �� is the zero map in dimension n.The task complex T consists of all matched pairs (X;Y) such that vals(X) � VI ,vals(Y) � VO, and jvals(X)j = jids(X)j = jids(Y)j = jvals(Y)j. Fix a full outputcon�guration Y0, and let Y = !�1(Y0) ;the subcomplex of T consisting of pairs whose output con�guration is a face of Y0.We de�ne a simplicial map f�: T ! Yas follows. For any matched pair (X 0; Y 0) in T , there is a unique matched pair(X;Y) with Y � Y0 such that (X 0; Y 0) is in the orbit �(X;Y). By rigidity, there isa unique simplicial map (X 0; Y 0)! (X;Y) induced by elements of �, and this mapis the de�nition of f� on (X 0; Y 0). The uniqueness ensured by rigidity guaranteesthat the de�nition of f� is consistent. Let �0 denote the restriction of the projection�: T ! T =� to Y. Since Y contains exactly one simplex in each orbit of �, itfollows that T =� is a a realization of a simplicial complex isomorphic to Y, and

32 JOHN HAVLICEK�0 determines this isomorphism. Furthermore, any pair (X;Y) in Y is determinedby its input con�guration X. Writing �0 for the restriction of � to Y, �0 gives anisomorphism of complexes Y �= I. Summarizing, the following diagram commutes:T f�����! Y �0����! I??y� ??y�0 ??y�T =� =����! T =� [�]����! I=�We have shown already that �: I ! I=� induces the zero map in n-dimensionalhomology. Since �0 and �0 are isomorphisms of complexes, it follows that [�] also in-duces the zero map in n-dimensional homology. Thus, the nonzero class inHn(I=�)is an obstruction to �-anonymous wait-free solution of the (n+1; n) renaming task.Appendix: Topological BackgroundIn this appendix, we attempt to give a quick introduction to the material fromalgebraic topology that has been used to study questions of computability in modelsof fault-tolerant distributed systems. We also highlight some facts that do not seemto have been cited before in this line of research, but which are needed in the presentpaper.A.1 Topological spaces.A topological space is a set X together with a speci�cation of the family of subsetsof X that are open. The family of open subsets of X is required to include X, theempty set, and to be closed under arbitrary union and �nite intersection. Such afamily of open sets is called a topology for X. Intuitively, the topology determinesthe way in which X is put together internally, what parts of X are \connected,"a notion of \closeness" of points of X, and so on. A common way of generatinga topology for X is through a distance function (or metric) on X. A distancefunction on X is a symmetric function d from X � X to the non-negative realnumbers that assigns zero distance from a point to itself (i.e., d(x; x) = 0), assignspositive distance to a pair of distinct points, and satis�es the triangle rule:d(x; z) � d(x; y) + d(y; z) :From a distance function d, one can de�ne the open "-neighborhood of a pointx 2 X to be B"(x;X) = fx0 2 X: d(x; x0) < "g ;a generalization of open neighborhoods from calculus. One then de�nes a subsetY � X to be open if and only if for every y 2 Y there is an " > 0 such thatB"(y;X) � Y :The topology formed in this way is called the metric topology for X arising from d.For example, any subset X of Euclidean space Rn can be topologized by restrictingthe usual Euclidean distance function to X. In this way, one can obtain topologies

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 33for all the familiar hypersurfaces of multi-variable calculus. Common examples arethe unit n-sphere (the set of unit vectors from Rn+1), tori of various dimensions,projective spaces, and so on. Every topological space considered in this paper canbe realized as a subset of an appropriate Euclidean space together with the metrictopology just described.A.2 Continuity, homeomorphism, and homotopy.If X and Y are spaces with metric topologies, then continuity of a functionf :X ! Y is de�ned as in calculus: f is continuous if and only iflimx!x0 f(x) = f(x0)for every x0 2 X. Continuity is usually the minimum requirement for a functionbetween topological spaces to be of topological interest. A generalization of theIntermediate Value Theorem from calculus shows that continuous images of con-nected spaces are again connected. Similarly, a generalization of the ExtremumPrinciple from calculus shows that continuous images of compact spaces are againcompact. Continuous functions between topological spaces are often referred toas continuous maps, or simply maps. Compositions of continuous maps are againcontinuous, and the identity function from a space X to itself is continuous. A mapf :X ! Y is called a homeomorphism if it is bijective and the inverse f�1:Y ! Xis also continuous. In this case X and Y are said to be homeomorphic. Homeomor-phic spaces are regarded as topologically equivalent. For example, the surfaces of atetrahedron, a cube, and a solid circular cone of �nite height are all homeomorphicto the unit 2-sphere.A weaker notion of equivalence of topological spaces can be obtained using con-tinuous deformations, or homotopies. Two maps f; g:X ! Y are homotopic, writ-ten f ' g, if there is a map F :X � [0; 1]! Ysatisfying F (�; 0) = f and F (�; 1) = g. Such F is called a homotopy from f tog. Here [0; 1] denotes the unit interval of the real line, and the cartesian productX � [0; 1] can be thought of as a cylinder of unit height and with cross section X.For each �xed t 2 [0; 1], F (�; t):X ! Y is a map, and as t moves from 0 to 1,F (�; t) deforms continuously from f to g. Notice that by taking F (x; t) = f(x), itfollows that f is homotopic to itself.Example A.2.1. Let X be all of Rn, let f :X ! X by f(x) = 0, and let g be theidentity map of X. Then f ' g via the homotopyF (x; t) = tx :Example A.2.2. Let X be the space of non-zero vectors of Rn, let f :X ! X byf(x) = x=jxj, the map sending a vector x to the unit vector in the same directionas x, and let g be the identity map of X. Then f ' g via the homotopyF (x; t) = tx+ (1 � t) xjxj :(The reader should check that F (x; t) 6= 0 for x 2 X and t 2 [0; 1].)If f :X ! Y and g:Y ! X are maps such that f � g is homotopic to the identitymap of Y , then g is called a right homotopy inverse for f , and if g � f is homotopic

34 JOHN HAVLICEKto the identity map of X, then g is called a left homotopy inverse for f . If g isboth a left and right homotopy inverse for f , then the same is true of f for g. Inthis case, f and g are called homotopy inverses of one another and the spaces Xand Y are said to be homotopy equivalent , which is written X ' Y . Notice that iff :X ! Y is a homeomorphism, then f and f�1 are homotopy inverses, and thushomotopy equivalence is indeed a weaker notion than homeomorphism.Example A.2.3. Let X = Rn�f0g and let Y = fx 2 Rn: jxj = 1g, the unit (n�1)-sphere. De�ne f :X ! Y by f(x) = x=jxj, and de�ne g:Y ! X by g(y) = y. Thenthe homotopy of Example A.2.2 shows that g�f is homotopic to the identity map ofX, and the composition f �g is the identity map of Y . Thus, f and g are homotopyinverses, and X ' Y .A.3 Categories and functors.The goal of algebraic topology is to study topological spaces by systematicallyassociating to them algebraic objects that are topological invariants. By \topolog-ical invariant" we mean an object that is the same, in an appropriate sense, forhomeomorphic spaces. The di�erence of the algebraic invariants associated to twospaces then provides a measure of the topological di�erence of the spaces. The mostuseful invariants are de�ned not only on spaces, but on maps as well. The formalway to describe such invariants is with the language of categories and functors.For concreteness, let us �x a �eld F and assume that the algebraic objects will betaken from among the family of all F vector spaces. The algebraic functions betweensuch vector spaces are the F-linear maps. The composition of two F-linear maps isF-linear, and the identity function on any F vector space is F-linear. Formally, onethen says that the F vector spaces and F-linear maps form a category . Similarly,the family of topological spaces and continuous maps form a category. A systematicassociation of invariants to topological spaces and maps can then be expressed bya functor F from the topological category to the category of F vector spaces. Foreach topological space X, F(X) is an F vector space, and for each continuous mapf :X ! Y , F(f) is an F-linear map from the vector space F(X) to the vector spaceF(Y). The functor is required to send the identity map of X to the identity F-linearmap of F(X), and it is also required to respect compositions in the sense thatF(f � g) = F(f) � F(g)whenever f �g is de�ned. Such a functor is called covariant because it preserves theorder of compositions of maps. An example of such a functor is singular homologywith coe�cients in the �eld F. One can also consider functors that always reversethe order of compositions, and such functors are called contravariant . An exam-ple is singular cohomology with coe�cients in F. Contravariant functors typicallyarise when a duality principle is applied, in which case the roles of injections andsurjections tend to be interchanged.There is usually a trade o� between how �nely a functor detects topological dif-ferences and how easily values of the functor can be calculated. Common functors,such as singular homology, singular cohomology, and the homotopy group functor,do not distinguish spaces that are homotopy equivalent. More precisely, if F is oneof these functors and if f; g:X ! Y are homotopic maps of topological spaces, thenF(f) and F(g) are equal as maps from F(X) to F(Y). It follows that if X ' Y ,then F(X) and F(Y) are isomorphic as algebraic objects.

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 35A.4 Simplicial complexes and maps.The topological spaces that arise in the study of computability in fault-tolerantdistributed systems are given by discrete data, such as con�gurations of input valuesfor the processes, and these spaces can be described as simplicial complexes. Allsimplicial complexes considered in this paper are �nite. A �nite simplicial complexis a �nite family K of non-empty �nite sets that satis�es the following hereditaryproperty: if S 2 K and S0 is a non-empty subset of S, then S0 2 K. An elementS 2 K is called a simplex , and the points of S are its vertices. The dimension ofa simplex is one less than the number of its vertices, and a simplex of dimension kis called a k-simplex. If S0 is a non-empty (proper) subset of S, then S0 is called a(proper) face of S. The complex K is said to be a pure complex of dimension n iffor each simplex S 2 K there is an n-dimensional simplex S1 2 K such that S is aface of S1. In this case, an n-simplex of K is said to be a full simplex. The unionof all simplices of a complex gives the vertex set V of the complex. It is customaryto identify the vertex v with the 0-simplex fvg. More generally, the collection ofall faces of a simplex S forms a simplicial complex S. The distinction between Sand S is often blurred.If K has no simplex of dimension greater than one, then (V;K) is an undirectedgraph. By \drawing" a graph as a subset of Rn in such a way that edges intersectonly at vertices, the graph is realized as a topological space. In a similar fashion,any simplicial complex K can be realized suitably as a subset jKj of Rn for largeenough n. We will refer to such jKj as a realization of K.10 A simple way to obtainjKj is the following. Take n to be the number of elements of V and to choose foreach vertex v a vector jvj 2 Rn such that the set fjvj: v 2 V g is linearly independent.To a simplex S 2 K, one associates the convex hull jSj of fjvj: v 2 Sg. If v0; : : : ; vkare the vertices of S, then jSj is the set of points x 2 Rn that can be written in theform x = kXi=0 tijvij ;where the ti are non-negative real numbers satisfying Pki=0 ti = 1. For any suchx, the corresponding tuple (t0; : : : ; tk) is unique, and these numbers are called thebarycentric coordinates of x. The \central" point of jSj is obtained when eachti = 1=(k+ 1), and this point is called the barycenter of jSj. The topological spacejKj is obtained as the union of the sets jSj for all simplices S 2 K. Notice that thelinear independence of fjvj: v 2 V g ensures thatjSj \ jS0j = jS \ S0j (A.4.1)for any simplices S; S0 2 K. This property generalizes the condition that in drawinga graph, edges must intersect only at vertices. In general, any way of picking thepoints jvj in Rn so that the convex hulls associated to simplices satisfy (A.4.1)gives an admissible realization. Any two such realizations of K are homeomorphictopological spaces. We abuse language by referring to the realization jKj, whenwhat is meant is any one of the possible homeomorphic choices for jKj.If S is a 1-simplex, then jSj is a line segment; if S is a 2-simplex, then jSj is atriangular face; if S is a 3-simplex, then jSj is a solid tetrahedron; and so forth.10The notation jKj for a realization is standard, although it conicts with the common notationfor cardinality of a set. Context should always make clear the meaning of j � j.

36 JOHN HAVLICEKThus, the convex hulls of the various simplices of K give a generalized triangulardecomposition, or triangulation, of jKj, which is the analog of the familiar notionfrom geometry of triangular decomposition of a planar polygonal region.Let K and L be simplicial complexes with vertex sets V and W , respectively. Asimplicial map from K to L is a function f :V ! W such that f(S) is a simplexof L whenever S is a simplex of K. Notice that f(S) has dimension no greaterthan that of S. The simplicial map f determines a function K ! L by S 7! f(S),although not every function K ! L arises in this way. When we write f :K ! L,we mean that f is a simplicial map. If a simplicial map f is bijective as a mapof vertex sets, then we say that f is an isomorphism of simplicial complexes. Theidentity function V ! V determines the identity simplicial map K ! K, which isan isomorphism. The composition of two simplicial maps is simplicial. Thus, the�nite simplicial complexes and simplicial maps form a category.A simplicial map f :K ! L gives rise to a continuous map jf j: jKj ! jLj in thefollowing way. First de�ne jf j(jvj) = jf(v)j for each vertex v 2 V . Then de�nejf j on the convex hull jSj of a simplex S 2 K by extending piecewise-linearly.More precisely, if v0; : : : ; vk are the vertices of jSj, then for a point x 2 jSj withbarycentric coordinates (t0; : : : ; tk), de�nejf j(x) = kXi=0 tijf(vi)j :It is straightforward to check that the map jf j de�ned in this way is continuous. Iff is an isomorphism of simplicial complexes, then jf j is a homeomorphism.Notice that if f is the identity simplicial map of K, then jf j is the identitymap of jKj. It is not di�cult to check that if f and g are simplicial maps whosecomposition f �g is de�ned, then jf �gj = jf j � jgj. Thus, j � j can be interpreted as acovariant functor from the category of simplicial complexes and simplicial maps tothe category of topological spaces and continuous maps.11 The distinction betweenK and jKj is often blurred, and when we speak of topological properties of K, wemean those of jKj.A simplicial complex K is a subcomplex of the complex L provided K � L. Inthis case, the inclusion � of the vertex set of K in the vertex set of L is a simplicialmap, and any realization jLj determines a unique realization jKj � jLj such thatthis last inclusion is j�j. Particularly important examples of subcomplexes are theskeleta of a complex. For a simplicial complex K and a non-negative integer n, then-skeleton of K, denoted K(n), is the subcomplex of K consisting of all simplices ofdimension at most n. K(0) is identi�ed with the vertex set of K, while K(1) is anundirected graph. If S the complex of faces of an (n + 1)-simplex, then jS(n)j ishomeomorphic to an n-sphere.If S and T are disjoint simplices, then their union is given the special notationS � T and called the join of S and T . S � T is a simplex of dimension one morethan the sum of the dimensions of S and T . If K and L are disjoint complexes,then the join K�L is the complex of all simplices of the form S, T , or S �T , whereS is a simplex of K and T is a simplex of L. In the special case where L consists11Strictly speaking, we must make a choice of realization jKj for each �nite simplicial complexK, or we must understand jKj to be an appropriate equivalence class.

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 37of a single vertex v, the join K � fvg is called a cone. The realization jK � fvgj hasthe structure of a cone with vertex jvj and cross sections homeomorphic to jKj.A.5 Chromatic complexes and maps.The simplicial complexes that arise in the study of computability in fault-tolerantdistributed systems have additional data associated to the vertices. The verticesgive pairings of processes with associated values of an appropriate type, such asinput values or output values. Thus, each vertex can be thought of as having acolor , which is the identi�er of the associated process. The vertex is also labelledby a value, but we reserve the term \color" to mean the process identi�er. A simplexin such a complex represents a consistent and mutually compatible arrangement ofvalues among processes. The assignment of distinct values to a single process isnot consistent, and so for these complexes it is required that distinct vertices in asimplex have distinct colors.To make this requirement somewhat more precise, let us �x a simplex S, to bethought of as the set of process identi�ers, and let S be the complex of faces of S.An S-chromatic complex is a simplicial complex K together with a simplicial mapcK:K ! S such that cK(X) is a k-simplex of S whenever X is a k-simplex of K.The map cK is the coloring of the complex. If L is another S-chromatic complex,then a simplicial map f :K ! L is called S-chromatic if cL � f = cK. In this case,f(X) must be a k-simplex of L whenever X is a k-simplex of K. When the simplexS of colors is understood, it is dropped from the notation.A.6 Subdivisions and simplicial approximation.A simplicial map f :K ! L gives rise to a continuous map jf j: jKj ! jLj, but acontinuous map g: jKj ! jLj need not be of the form jf j for any simplicial f . In fact,g need not even be homotopic to any jf j. The reason is that jf j is severely restrictedby the condition of piecewise-linearity arising from the �xed simplicial structure ofK. A similar situation arises in calculus, when a smooth curve : [0; 1] ! Rn isapproximated by a polygonal curve obtained by connecting the points (xi) for apartition fxig of [0; 1]. The strategy for improving the polygonal approximation isto re�ne the partition of [0; 1]. The analogous re�nement for K produces a �nertriangulation of jKj and is called a subdivision.To be precise, let K be a simplicial complex with realization jKj. A subdivisionof K is a simplicial complex �(K) for which there is a realization j�(K)j that isequal to jKj and which satis�es the following properties.(1) For every simplex S of �(K) there is a simplex X of K such that jSj � jXj.The minimal such X is called the carrier of S, written carrier(S).(2) For every simplex X of K, there is a �nite collection S1; : : : ; Sr of simplicesof �(K) such that jXj = jS1j [� � � [jSrj.The convex hulls jS1j; : : : ; jSrj of condition (2) give the re�ned triangulation, orsubdivision, of jXj.The barycentric subdivision of K is a uniform subdivision that ensures that everysimplex of K is divided non-trivially. This subdivision can be described inductivelyon the skeleta. For each simplex X of K, we add the barycenter b of jXj, which is anew vertex if X is of dimension greater than zero. If X is of dimension greater thanzero, then the proper faces of X are assumed already to have been subdivided, and

38 JOHN HAVLICEKeach join of fbg to a simplex in the subdivision of a proper face of X is added as anew simplex.By iterating barycentric subdivision, one can obtain arbitrarily �ne subdivisionsof K, which are analogous to partitions of arbitrarily �ne mesh in calculus. It isa theorem that if g: jKj ! jLj is a continuous map, then for a su�ciently �nesubdivision �(K) of K there exists a simplicial map f :�(K)! L that approximatesg in the sense that jf j ' g. (See [Mu], xx14{16.)Now �x a subdivision �(K) of K. We can identify the realizations j�(K)j = jKj.The identity map j�(K)j ! jKj is continuous and therefore can be approximatedsimplicially, perhaps after further subdividing �(K). It turns out that no furthersubdivision is necessary, according to the followingLemma A.6.1: Let K be a �nite simplicial complex, and let �(K) be a subdivision.There exists a simplicial map f :�(K) ! K such that f(S) � carrier(S) for everysimplex S in �(K). For any such f , the map jf j: j�(K)j ! jKj on the realizationsis homotopic to the identity map j�(K)j ! jKj relative to the vertices of K.See, for example, Lemma 3.4.2 of [S]. A generalization of this Lemma is proved inSection 4.If K is a chromatic complex, then a chromatic subdivision of K is a subdivision�(K) of K that is itself a chromatic complex and for which the colors of the verticesof any simplex S of �(K) form a subset of the colors of the vertices of carrier(S).Standard chromatic subdivision is a construction similar to barycentric subdivisionthat gives uniform chromatic subdivisions. When subdividingX, one adds a clusterof vertices bearing all the colors appearing in X in an appropriate arrangementabout the barycenter and then makes the joins that are allowed by the chromaticcondition. See [HS2] for details.Suppose K is a chromatic complex and �(K) is a chromatic subdivision. Foreach simplex S in �(K), there is a unique face of carrier(S) whose vertices havethe same colors as S, and there is a unique color-preserving vertex map from S tothat face. It follows that there is a unique chromatic simplicial map f�:�(K)!Ksatisfying f�(S) � carrier(S) for every simplex S in �(K). From Lemma A.6.1, itfollows that jf�j is homotopic to the identity map j�(K)j ! jKj.A.7 Simplicial homology.There are many di�erent homology functors, de�ned on various categories andtailored to detect various nuances of spaces. We describe one of the simplest ofthese, the simplicial homology functor. We will use only coe�cients in the two-element �eld F of integers mod-2. This restriction simpli�es the presentation byavoiding orientations. See [Mu] for a more general account.Let K be a simplicial complex. An n-chain of K is a sum S1 + � � �+ Sk, whereeach Si is an n-simplex of K. Repeated occurrences of the same simplex in thesum are understood to cancel in pairs. Such a sum can be thought of as a linearcombination with coe�cients from F, where the simplices themselves are vectors.The set of n-chains of K forms an F vector space, denoted Cn(K), and has as a basisthe set of n-simplices of K. If K has no simplex of dimension n, then Cn(K) = 0.The sequence of all Cn(K), n � 0, is called the simplicial chain complex of K andis denoted C](K). There is a boundary operator @ on C](K) de�ned as follows.For n � 1, an n-simplex S 2 K has n + 1 faces of dimension n � 1, and @n(S) is

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 39de�ned to be the chain that is the sum of these faces. For a vertex v, we understand@0(v) = 0. This de�nition of @n on a basis of Cn(K) extends uniquely to an F-linearmap @n:Cn(K)! Cn�1(K), where we understand C�1(K) = 0. A key property ofthe boundary operator is that @n � @n+1 = 0 (A.7.1)for n � 0.An n-chain whose boundary is zero is called an n-cycle. The kernel of @n is thesubspace of n-cycles, which is written as Zn(K). From (A.7.1), it follows that theimage of @n+1 is a vector subspace of Zn(K), and the quotient vector spaceHn(K) = Zn(K)�im@n+1is de�ned to be the n-dimensional homology of K. If T 2 Zn(K), we write [T]for the coset in Hn(K) represented by T . It is customary to write H�(K) for thesequence of all Hn(K), n � 0. Some useful examples of homology are given inSubsection A.9, after we describe the relationship between simplicial and singularhomologies.Notice that the de�nition of simplicial homology relies critically on simplicialstructure. It is not obvious how the particular simplicial structure of a complexK, and thus the corresponding triangulation of a realization jKj, a�ects H�(K).In fact, two simplicial complexes with homeomorphic realizations have isomorphicsimplicial homology, and so simplicial homology is a topological invariant. Onestrategy for the proof of this fact uses subdivision and simplicial approximation(see Chapter 2 of [Mu]).An attractive feature of the simplicial homologyH�(K) is that it can be computede�ectively from K. Once K has been represented, the boundary operators areeasily calculated and can be represented by matrices. The homologyH�(K) is thencomputable by using Gaussian elimination. See [Mu, x11] for more details. Noticethat since K is �nite, the dimensions of the simplices of K are bounded. If N is themaximum dimension of any simplex of K, then Cn(K) = 0 for n > N . It followsthat Hn(K) = 0 for n > N , andHN (K) = ZN (K) :If f :K ! L is a simplicial map and if S is an n-simplex of K, then we de�nefn(S) = f(S) if f(S) is an n-simplex, and fn(S) = 0 if f(S) is of dimension lessthan n. This de�nition on the basis of Cn(K) gives a unique extension to a linearmap fn:Cn(K)! Cn(L), which is referred to as the map of n-chains induced by f .The sequence of all such fn, n � 0, is denoted f]:C](K)! C](L) and is called thechain map induced by f . One checks that for n � 0,@n+1 � fn+1 = fn � @n+1 ;where the boundary operator on the left is from C](L) and the boundary operatoron the right is from C](K). It follows that there is a well-de�ned linear mapHn(K)! Hn(L)in homology given by [T] 7! [fn(T)]for T 2 Zn(K). The sequence of these homology maps for n � 0 is called themap induced by f in homology and is denoted f�:H�(K) ! H�(L). The identity

40 JOHN HAVLICEKsimplicial map K ! K clearly induces the identity map on H�(K). It is not di�cultto show that if f �g is a composition of simplicialmaps, then (f �g)� = f��g�. Thus,simplicial homology with coe�cients in F is a covariant functor from the category of�nite simplicial complexes and simplicial maps to the category of �nite-dimensionalF vector spaces and F-linear maps.If K is a subcomplex of L, then the inclusion �:K ! L gives an injective chainmap �]:C](K) ! C](L). The quotient C](L)=C](K) is denoted C](L;K) and iscalled the relative simplicial chain complex associated to the pair (L;K). From thisde�nition, there is a short exact sequence120! C](K) �]�! C](L) p�! C](L;K)! 0 ; (A.7.2)where p is projection on the quotient. The boundary operator @ from C](L) givesrise to a well-de�ned boundary operator on C](L;K), which we also denote by @.The kernel of @ on Cn(L;K) is the subspace of relative n-cycles, denoted Zn(L;K).Notice that a chain T 2 Cn(L) represents a relative n-cycle if and only if @T 2Cn�1(K). The relative homology Hn(L;K) is de�ned as above:Hn(L;K) = Zn(L;K)�im@ :From the short exact sequence (A.7.2), one derives a long exact sequence in homol-ogy: � � � @�! Hn(K) ���! Hn(L) p��! Hn(L;K) @�! Hn�1(K) ���! � � � (A.7.3)The connecting map @:Hn(L;K)! Hn�1(K) is de�ned as follows. For an element� 2 Hn(L;K), let T 2 Cn(L) be a chain representing a relative n-cycle in the coset� . Then @T 2 Zn�1(K). The coset of @T in Hn�1(K) gives the value of @� . Ofcourse, there is some checking to be done to ensure that this map is well-de�ned.A.8 Singular homology.An alternative homology is obtained from the singular homology functor , whichis de�ned on the category of topological spaces and continuous maps. We assumethat singular homology is also computed with coe�cients in F. For a de�nition ofsingular homology, see Chapter 4 of [Mu]. Su�ce it to say here that the de�nitionuses notions of chains and boundaries analogous to those introduced above, andthe singular homology functor has the exact sequence property (A.7.3).A basic theorem in homology theory is that for any simplicial complex K andrealization jKj, there is an isomorphismjK:H�(K)! H�(jKj) : (A.8.1)Here H�(jKj) denotes the singular homology of the realization jKj, and the isomor-phism is understood to be a sequence of isomorphisms, one for each dimension.Furthermore, if f :K ! L is a simplicial map, then there is a commutative diagramH�(K) jK����! H�(jKj)??yf� ??yjf j�H�(L) jL����! H�(jLj) (A.8.2)12A sequence � � � f�! V g�! � � � of linear maps is exact if the kernel of g is equal to the imageof f . For a longer sequence, exactness means exactness at every junction.

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 41jf j� denotes the map induced in singular homology by jf j. (See [Mu, x34].)A property of singular homology is that if �; �:X ! Y are homotopic maps,then the induced maps ��; ��:H�(X) ! H�(Y) are equal. In particular, mapsthat are homotopy inverses of one another induce singular homology maps that areinverses of one another, and thus X ' Y implies H�(X) is isomorphic to H�(Y).From the diagram (A.8.2) it follows that if f; g:K ! L are simplicial maps suchthat jf j ' jgj, then the maps f� and g� induced in simplicial homology are equal.Similarly, if jf j has a left/right/two-sided homotopy inverse, then f� must be aninjection/surjection/isomorphism.As a simple application of these ideas, we revisit the situation of a subdivision�(K).Lemma A.8.3: Let �(K) be a subdivision of K and let f :�(K) ! K be as inLemma A.6.1. Then f�:H�(�(K))! H�(K) is an isomorphism.Proof: We have the commutative diagramH�(�(K)) j�(K)����! H�(j�(K)j)??yf� ??yjf j�H�(K) jK����! H�(jKj)from (A.8.2). According to Lemma A.6.1, jf j is homotopic to the identity mapj�(K)j ! jKj, and it follows from the property of singular homology cited abovethat jf j� is the identity map. Since the j maps are isomorphisms, f� is an isomor-phism. �A.9 Homology examples.We give here a brief collection of homology examples that give ample backgroundfor the applications in Section 5. All homology is with coe�cients in F, and forsimplicity we consider only topological spaces that are homotopy equivalent torealizations of �nite simplicial complexes. When speaking of Hn(X), we refer to nas the dimension of the homology and to dimFHn(X) as the rank of the homology.The rank of H0(X) is equal to the number of path components of X. Thus,X is path-connected if and only if H0(X) �= F. From the de�nition of simpli-cial homology, it is easy to see that for a one-point space fxg, H0(fxg) �= F andHi(fxg) = 0 for i 6= 0. The reduced homology of a space X, denoted ~H�(X), isthe relative homology H�(X; fxg), where x 2 X. From the exact sequence (A.7.3),H0(X) �= ~H0(X) � F, while Hn(X) �= ~Hn(X) for n > 0, and thus either of H�(X)and ~H�(X) can be obtained from the other. We use reduced homology when it isconvenient.Let X and Y be disjoint spaces. If we write X t Y for the space that is thedisjoint union of X and Y , thenH�(X t Y) �= H�(X) �H�(Y) ;where we mean that there is an isomorphism in each dimension. Similarly, we canform a product space X � Y , appropriately topologized, and the simplest form ofthe K�unneth Theorem givesH�(X � Y) �= H�(X)
H�(Y) :

42 JOHN HAVLICEKBy X _ Y , we mean the one-point union, or wedge, of X and Y . This space isobtained by identifying one point x0 2 X with one point y0 2 Y . Then~H�(X _ Y) �= ~H�(X) � ~H�(Y) :The smash product X ^ Y is obtained from X � Y by identifying the subspaceX � fy0g [fx0g � Y , which is homeomorphic to X _ Y , to a point. One has~H�(X ^ Y) �= ~H�(X)
 ~H�(Y) :Each of these constructions is associative, up to homeomorphism, and can be iter-ated. Furthermore, � distributes over t and ^ distributes over _, up to homeo-morphism.If Sn is an n-sphere, then ~H�(Sn) is non-zero only in dimension n, where thehomology has rank one: ~Hn(Sn) �= F. The constructions of the preceding paragraphcan be applied to build spaces from spheres whose homology is easily computed.For example, a 2-torus T 2 is homeomorphic to the product S1 � S1 of 1-spheres,and thus H�(T 2) �= H�(S1)
H�(S1) :Explicitly, H0(T 2) and H2(T 2) are of rank one, while H1(T 2) is of rank two. Asanother example, let X = m_1 Sn ;the m-fold wedge of n-spheres. Then ~Hn(X) is of rank m, while ~Hi(X) = 0 fori 6= n.

COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 43References[Af+] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic snapshots ofshared memory, Journal of the ACM 40 (1993), no. 4, 873{890.[At+] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk,Renaming in an asynchronousenvironment, Journal of the ACM (1990).[BMZ] O. Biran, S. Moran, and S. Zaks, A combinatorial characterization of the distributed1-solvable tasks, Journal of Algorithms 11 (1990), 420{440.[B] E. Borowsky, Capturing the power of resiliency and set consensus in distributed systems,Ph.D. Thesis, UCLA, 1995.[BG1] E. Borowsky and E. Gafni, Immediate atomic snapshots and fast renaming, Proceedingsof the 12th ACM Symposium on Principles of Distributed Computing, 1993, pp. 41{51.[BG2] E. Borowsky and E. Gafni, Generalized FLP impossibility result for t-resilient asynchro-nous computations, Proceedings of the 25th ACM Symposium on the Theory of Comput-ing, 1993, pp. 91{100.[BG3] E. Borowsky and E. Gafni, A simple algorithmically reasoned characterization of wait-freecomputations, manuscript.[Ch] S. Chaudhuri, More choices allow more faults: set consensus problems in totally asyn-chronous systems, Information and Computation 105 (1993), 132{158.[FLP] M. Fischer, N. Lynch, and M. Paterson, Impossibility of distributed consensus with onefaulty process, Journal of the ACM 32 (1985), no. 2, 374{382.[GK] E. Gafni and E. Koutsoupias, Three-processor tasks are undecidable, manuscript.[HR1] M. Herlihy and S. Rajsbaum, Algebraic spans, Proceedings of the 13th Annual ACMSymposium on Principles of Distributed Systems, 1995.[HR2] M. Herlihy and S. Rajsbaum, A primer on algebraic topology and distributed computing,Springer Lecture Notes in Computer Science, vol. 1000.[HR3] M. Herlihy and S. Rajsbaum, The decidability of distributed decision tasks, manuscript.[HS1] M. Herlihy and N. Shavit, The asynchronous computability theorem for t-resilient tasks,Proceedingsof the 25th ACM Symposiumon the Theory of Computing, 1993, pp. 111{120.[HS2] M. Herlihy and N. Shavit, A simple constructive computability theorem for wait-free com-putation, Proceedings of the 26th ACM Symposium on the Theory of Computing, 1994,pp. 101{110.[HS3] M. Herlihy and N. Shavit,The topological structure of asynchronous computability, BrownTR CS-96-03, 1996.[Mu] J. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.[SZ] M. Saks and F. Zaharoglou, Wait-free k-set agreement is impossible: The topology ofpublic knowledge, Proceedings of the 25th ACM Symposium on the Theory of Computing,1993, pp. 101{110.[S] E. Spanier, Algebraic Topology, Springer, 1966.Department of Computer Sciences, The University of Texas at Austin, Austin, Texas78712E-mail address : havlicek@cs.utexas.edu

