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ABSTRACT. We show how to associate effectively computable obstructions to a wait-
free distributed decision task (7,0, A) in the asynchronous shared-memory, read-
write model. The key new ingredient of this work is the association of a simplicial
complex T, the task complex, to the input-output relation A. There is a simplicial
map o from the task complex to the input complex 7, and « is determined by the task.
The existence of a wait-free protocol solving the task implies that the map o« induced
in homology must surject, and thus the non-zero elements of the cokernel of oy are
obstructions to solvability of the task. These obstructions are effectively computable
when using suitable homology theories, such as mod-2 simplicial homology. Functors
other than homology can be substituted, although the obstructions obtained may
not be computable. We also extend the Herlihy-Shavit Theorem on Spans to the
case of protocols that are anonymous relative to the action of a group, provided the
action is suitably rigid. For such rigid actions, the quotients of the input complex
and the task complex by the group are well behaved, and obstructions to anonymous
solvability of the task are obtained analogously, using the homology of the quotient
complexes.

1. INTRODUCTION

Given a model of computation, a basic theoretical problem is to gain an un-
derstanding of tasks computable in the model and to prescribe some meaningful
measure of the complexity of these tasks. This problem has proved quite difficult
for models of distributed computation that are expected to tolerate faults but in
which lack of synchronization prevents the detection of faulty processes. The sem-
inal paper of Fischer, Lynch, and Paterson [FLP] shows that in the asynchronous
message-passing model, no deterministic protocol that tolerates even a single faulty
process can solve the basic task of consensus. Subsequent work of Biran, Moran,
and Zaks [BMZ] generalizes the approach of [FLP] to give necessary and suffi-
cient conditions for solvability of distributed decision tasks assuming asynchronous
message passing and resilience to a single faulty process. Their techniques use adja-
cency graphs associated to configurations of inputs, outputs, and protocol outputs.
Elements of these graphs appear also in [FLP]. Among the necessary conditions
for solvability is that connectivity of the graphs be preserved in a suitable sense
when passing from inputs to outputs. It should be noted that in the adjacency
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graphs of [BMZ], a vertex corresponds to a configuration of all processes, while two
vertices are connected by an edge if the corresponding configurations agree except
at a single process.

More recent work ([BG2, HS1-2, S7Z] are just a few examples) has focussed on
the asynchronous read-write shared-memory model, in which processes communi-
cate by atomic (snapshot) read and atomic write operations on shared memory
locations. For this model, Herlihy and Shavit [HS1] introduced a framework for de-
scribing and reasoning about solvability of distributed decision tasks that uses the
language of simplicial complexes from combinatorial and algebraic topology. The
simplicial complexes 7 and O that describe the inputs and outputs, respectively, for
a decision task are “dual” to the adjacency graphs of inputs and outputs in [BMZ].
Indeed, a vertex in one of these complexes represents a configuration of a single
process, and a simplex of dimension k represents a configuration of k41 processes.
If two configurations share a common sub-configuration of size k + 1, then the cor-
responding simplices intersect in a sub-simplex (i.e., face) of the dimension k. The
use of simplicial complexes provides the flexibility to represent configurations of any
positive number of processes, which is important when entertaining the possibility
of failure of more than one process, and it represents the collection of configurations
of a given type efficiently, at least in the sense that each configuration corresponds
to a unique simplex. (In the adjacency graph representation, multiple edges may
correspond to the same configuration.)

In addition to being notationally convenient, simplicial complexes provide the
“right” topology for studying wait-free solvability of decision tasks. Wait freedom
in this context amounts to resilience to failure of up to all but one process (since
processes run asynchronously and fail only by crashing). The correctness of the
topology is justified by the Asynchronous Computability Theorem of Herlihy and
Shavit [HS2]. This theorem gives elegant necessary and sufficient conditions for the
existence of a wait-free protocol to solve a decision task. A decision task is specified
by a triple (Z,0, A). As above, T and O are the complexes of inputs and outputs,
respectively, and A is the relation that associates to each input configuration the
collection of output configurations that are satisfactory under the task. In very
loose terms, the Asynchronous Computability Theorem says that (Z,0, A) admits
wait-free solution if and only if there is a suitable continuous map f:|Z| — |O| that
respects the relation A. Here, |Z| denotes the topological space that is obtained
in a standard fashion from the combinatorial object Z, and similarly for |@|. In
slightly more precise terms, the condition is that there exists a subdivision x(Z)
that respects processes and there exists a simplicial map p: x(Z) — O that respects
both processes and the relation A. The map f can be taken as |p| when |x(Z)]
is identified with |Z|. (A precise statement of the Asynchronous Computability
Theorem is given in Subsection 2.5 below.)

In order to prove the Asynchronous Computability Theorem, Herlihy and Shavit
introduce an auxiliary complex, the protocol complex, whose topology captures
the capabilities of the protocol. Given a protocol that is wait-free executable on
Z, the protocol complex P(Z) is the simplicial complex of configurations of final
views of finishing processes in all possible executions of the protocol with input
configurations from Z. If the protocol solves the task, then there is a simplicial
map d: P(Z) — O that respects process identifiers and the task relation. The map
4 simply maps finishing processes to their output values. The proof of necessity



COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 3

proceeds by showing that for a fine enough subdivision x(Z), there exists a simplicial
map ¢: x(Z) — P(Z) that respects both process identifiers and, in an appropriate
fashion, carriers of the subdivision. Herlihy and Shavit call such a map ¢ a span.
Their Theorem on Spans is stated precisely in Subsection 2.5 below. The map p can
then be obtained as the composition § o . The proof of sufficiency relies essentially
on Borowsky and Gafni’s clever Participating Set Protocol [BG1] for solving the
simplex agreement task. This protocol serves as a “universal” protocol for wait-free
decision tasks, and the existence of the map p allows specialization of the universal
protocol to the task at hand.

The Asynchronous Computability Theorem can be used to give proofs of the
impossibility of solution of Chaudhuri’s set consensus task [Ch] and Attiya et al.’s
renaming task [At+].! Such proofs can be found in [HS1, HS3], although it should
be noted that independent proofs of the impossibility of solution of the set consen-
sus task appear in [BG2, SZ]. Arguments of this kind tend to focus on a single input
configuration that is challenging for the task (such as a configuration of distinct
inputs in the case of set consensus) and show that there is a topological obstruction
to arranging g on that simplex despite the refinement of the subdivision x. While
they are concise and asthetically pleasing applications of topology, these arguments
are ad hoc and seem 1ll suited to automation. For example, a basic problem in au-
tomating a search for g is that it is not known how fine a subdivision x should
suffice. It would therefore be interesting to find a more systematic and computa-
tionally feasible method for approaching the question of wait-free solvability of a
decision task.?

In this paper, we propose such a method. Our approach takes advantage of the
global topology of the input complex and the previously unexplored topology of
the task specification itself. We associate a simplicial complex T, the task complez,
to the input-output relation A of a decision task (Z,0, A). The task complex is
determined in a simple way from A, and there is a simplicial map a:7 — Z, also
determined from A. From the Herlihy-Shavit Theorem on Spans, it follows that
if the task admits wait-free solution, then |a| has a right homotopy inverse, i.e. a
continuous map §:|Z| — |T| such that the composition |a| o 5 is homotopic to the
identity map of |Z|. The existence of a right homotopy inverse implies that the map

a: Ho(T) = Ho(2)

induced in simplicial homology must surject in all dimensions. (A more general
consequence of the existence of a right homotopy inverse for |«| is given in Theorem
3.2.2.) Of course, the homology map «, and its image can be computed whether or
not there is a wait-free solution of the task, and the existence of nonzero elements in
the cokernel of a. (equivalently, the existence of elements of H.(Z) that are not in
the image of a..) implies that no wait-free solution erists. Tt is customary in such a
situation to say that the cokernel of a, consists of obstructions to wait-free solution
of the decision task.® It is well known that simplicial homology of a finite complex

I Precise descriptions of these tasks are given in Subsections 5.2 and 5.3.

2 Any such method that is computable is necessarily incomplete, since it is known [GK, HR3]
that the question of wait-free solvability of a decision task is undecidable in general for three or
more processes.

3We do not mean that coker a4 is a complete set of obstructions in the sense that coker oy = 0
implies the existence of a wait-free solution. See the preceding footnote.



4 JOHN HAVLICEK

can be computed in time that is a polynomial function of the number of simplices
of the complex. The image of a homology map such as a, can also be computed
in time that is polynomial in the number of simplices of the domain and the target
complexes. In this sense, the obstructions we propose are effectively computable.

Of course, having defined obstructions to wait-free computability does not guar-
antee that computation of these obstructions actually detects the impossibility of
solution of any decision tasks. But, in fact, the obstruction method seems to be
powerful enough to detect the impossibility of solution of tasks such as consensus,
set consensus, and renaming, the last after suitably adapting the definition of ob-
structions to the situation of anonymous protocols. Our results in this regard are
somewhat preliminary and technical, though, and it is, perhaps, more convincing
simply to automate the method of obstructions and let it work on examples.

The balance of this section presents a detailed overview of the present paper.
Considerable effort has been made to ensure accessibility both to computer scien-
tists and to mathematicians, and it is hoped that the writing is palatable to read-
ers from both groups. The main text assumes that the reader is familiar with the
material from algebraic topology that has already been used to study distributed
computability. This material includes the language of simplicial complexes and sub-
divisions and the simplicial homology functor. Some elements of homotopy theory
have been used in the proofs of major theorems, such as the Theorem on Spans.
The reader unfamiliar with these topics is encouraged to skim the appendix. The
primer by Herlihy and Rajsbaum [HR2] provides another good introduction, and
the first chapter of Munkres standard textbook [Mu] is an excellent reference.

In Section 2, we set down preliminaries for our work. Brevity has been sacrificed
for completeness. The asynchronous read-write shared-memory model is discussed
in Subsection 2.1. Subsection 2.2 gives formal definitions of well-posed decision
task and of the properties of extenstbility and reducibility of such tasks. All of
these ideas exist, at least in spirit, in prior work, but the treatment here is a bit dif-
ferent. Rather than accounting for the possibility of faulty processes when defining
what 1t means for a protocol to solve a task, we demand that the task specification
itself allow for failures by pairing input and output simplices of different dimensions.
Subsection 2.3 describes wait-free protocols. The point of view is to understand a
protocol by considering all of its possible (linear) execution sequences and the rela-
tion of input-output pairs that can be generated by these executions. This relation
is called the executable relation of the protocol. We give axioms for the existence of
execution sequences, and we show that, under suitable assumptions, these axioms
ensure that the executable relation is well-posed, extensible, and reducible in the
sense of Subsection 2.2. We use the executable relation to give a simple and, hope-
fully, natural definition of what it means for a protocol to solve a wait-free decision
task. Again, these ideas exist already in the literature, although the definition of
solution of a wait-free decision task has been murky. Subsection 2.4 describes the
protocol complex associated to a wait-free protocol. In Subsection 2.5, we give a
precise statement of the Theorem on Spans proved by Herlihy and Shavit [HS1],
which is the launching point for our work. We also cite the necessary and sufficient
conditions of the Asynchronous Computability Theorem [HS2].

With all of this background, the definition of the task complex 7 in Section 3
is quite easy. Subsection 3.1 gives the definition and a few very simple examples,
motivated from [HS2]. We show how to use 7 to associate obstructions to a decision
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task in Subsection 3.2, and we give our main result as Theorem 3.2.2. Applications
are deferred until Section 5.

In Section 4, we enhance the topological structures already introduced by adding
the action of a group of symmetries. The objective is to give a precise description
of protocols that are anonymous in the informal sense of making no “essential”
use of process identifiers. Group actions on topological spaces form a standard
topic in algebraic topology. The idea of characterizing anonymous protocols in
terms of such actions appears in [HR1], although in a somewhat different form.
Subsection 4.1 presents the rigidity properties of group actions on complexes that
are appropriate for our work and shows how to form quotient spaces under such
actions. In Subsection 4.2, we restrict attention to groups of symmetries that arise
by permuting processes. We give a simple condition for such group actions to be
rigid and make a precise definition of anonymity. Theorem 4.2.1 is a generalization
of the Theorem on Spans, and 1t leads immediately to a generalization of our main
result to the situation of anonymous protocols, Theorem 4.2.2.

Section 5 gives non-trivial applications of the obstruction method. We show that
the obstruction method is powerful enough to detect the impossibility of solving
ordinary consensus and of solving certain non-trivial cases of set consensus and
anonymous renaming. These results are somewhat preliminary, and the arguments
make rather heavier use of algebraic topology than needed in the preceding sections.
On the other hand, the obstruction method opens the door to computer-aided proofs
of 1mpossibility of solution of wait-free decision tasks.

Acknowledgment. The author wishes to thank Lorenzo Alvisi for many useful and
encouraging discussions during the research and writing of this paper.

2. PRELIMINARIES

2.1 Model of computation.

The model of computation for the present work is the asynchronous read-write
shared-memory model that has been common in recent studies of wait-free decision
tasks [BG3, GK, HS2, HS3, SZ]. We assume a system of n+ 1 processes, py, ..., Pn-
These processes run asynchronously, which means that no assumption is made
about their relative speeds. The processes may therefore experience arbitrary delays
relative to one another. Each process is assumed to have private memory that can
be used for internal computations and in which private input values can appear
at the outset of a distributed computation. The private memory is assumed to be
unbounded.

The processes communicate through shared memory locations. The shared mem-
ory is organized as an array S[0..n] of non-overlapping regions. The region S[{] can
be written only by p;, but can be read by any process. We assume that each region
S[¢] is unbounded. Processes interact with shared memory via atomic write and
scan operations.* In a write operation, process p; appends a value to S[i] with-
out destroying the contents of any previously written location in S[i]. The shared
memory is assumed to support atomic snapshots [Af4]. A scan operation by p;

4 An operation by a process is atomic if it is always executed without interruption.
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therefore returns to the private memory of p; a copy of the entire shared memory.
This copy is called the view returned to the process by the scan operation.

The processes execute deterministic protocols. A protocol is a collection of pro-
grams running on the processes that direct all shared-memory write and scan op-
erations. A protocol may also direct internal computations of a process, although
such computations can influence other processes only through the use of writes and
scans. The internal state of a process consists of the values stored in its private
memory. A deterministic protocol is one such that the internal state of p; at any
point of the computation determines recursively a unique ensuing sequence of ac-
tions and internal state changes of p; up to and including the next scan of shared
memory. The view returned from the next scan is not determined and depends on
the intervening writes by other processes to shared memory.

Processes may fail only by crashing. A process crashes when it stops execution
without having been directed to halt by the protocol. A crashed process remains
crashed, taking no further action. A process may crash at any time, except in a
way that disintegrates an atomic operation. A crashing process makes no terminal
write to shared memory to notify the other processes of its demise. Since processes
run asynchronously, they cannot distinguish a crashed process from one that has
been severely delayed. With the distinction between crashed and severely delayed
processes blurred, the condition that a protocol run wait-free is tantamount to the
condition that the protocol tolerate faults by up to n of the n + 1 processes.

2.2 Decision tasks.

In a distributed decision task, each of the n 4+ 1 processes begins with a private
input value, executes a protocol, during which it may communicate with the other
processes, and, barring failure, concludes by writing an output value to shared
memory and then halting.> For this paper, we assume that the input values and
output values come from finite sets V; and Vo (respectively) that are fixed from
the outset. An assignment of input (respectively, output) values to one or more of
the processes will be called an input (respectively, output) configuration. An input
or output configuration which assigns values to all n + 1 processes will be called
full. We can represent assignment of the value v to the process with identifier p
by the ordered pair & = (p,v). According to the notation in [HS3], for such a pair
we write id(z) = p and val(z) = v.° An input (respectively, output) configuration
is then written as a set X = {&g,..., 2.} of pairs such that id(zg),...,id(z,) are
distinct process identifiers and each value val(v;) comes from V (respectively, Vo).
Such a configuration can be thought of as a chromatic r-simplex with vertices z;
and coloring #; — id(z;). The vertices of X are additionally labelled by the various
values. If X and X’ are configurations such that X C X’ then we say that X is
extensible to X’ and X’ is an extension of X.

A decision task for the n+1 processes must specify which full input configurations
are admissible for the task. In this paper, we focus on tasks that are genuinely

5In [HS3] the authors require that the output values be private. However, for the normalized
full-information protocols in [HS3], any process that (1) scans the shared memory after the final
write of process p, (2) can detect that this write is the final write of process p (as in the case
of protocols that proceed in a fixed number of asynchronous rounds), and (3) has access to the
decision function § can deduce the output of p.

8If v € V7 and it is useful to emphasize this fact, we may write inval(z) = v. Similarly, if
v € Vo, we may write outval(z) = v.
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intended for all the processes, and so any admissible input configuration should
be extensible to an admissible full input configuration. In order for the task to
be well-posed for wait-free computation, it must also address the possibility of
failure of some of the processes, perhaps from the outset. A process is said to
be participating in an execution of a protocol if it at least manages to write its
input value to shared memory. The process is said to be effectively participating
in an execution if it manages to write its input value to shared memory before the
final scan by some non-faulty process. Assuming that the protocol directs each
process to make at least one scan of shared memory, every non-faulty process is
effectively participating. The input values of non-participating processes cannot
influence the execution, and the input values of processes that are not effectively
participating cannot influence the execution of any non-faulty process. We say that
the effective input configuration for the execution is the configuration of inputs of
the effectively participating processes. In order to articulate that tasks be intended
for all processes and to allow for the possibility of processes that do not participate,
or that do not participate effectively, we make the following requirement of a wait-
free decision task:

(T1): Any admissible input configuration is extensible to an admissible full input
configuration. Any input configuration that is extensible to an admissible
mput configuration is itself admissible.

With this requirement, the admissible input configurations form a pure n-dimensional
chromatic simplicial complex, the input complex, which is denoted 7.

Again following the notation of [HS3], we write ids(X) for the set {id(x)
z € X}. A decision task must specify for each admissible input configuration the
collection of output configurations that are considered satisfactory solutions to the
task for the given input. The decision task must therefore specify an input-output
relation A consisting of pairs (X,Y’) where X is an admissible input configuration
and Y is an output configuration satisfactory for input X. It is unreasonable for a
decision task to ask processes that are not effectively participating to reach decision
values. We therefore require

(T2): If (X,Y) € A, then ids(Y) C ids(X).”

If all participating processes in an execution are non-faulty, then there should
be an acceptable way for them all to write output values. The decision task needs,
therefore, to specify for an admissible input configuration X at least one satisfactory
output configuration involving the same processes. Since effectively participating
processes may fail, there must also be output configurations involving as few as
one process that are satisfactory for the corresponding input configuration. Note
that the last condition is not the same as specifying an output configuration for
an input with fewer processes, since the input values of effectively participating
processes that fail can influence the outputs of non-faulty processes. Thus, we
require

"Herlihy and Shavit [HS3] require that ids(Y) = ids(X) for (X,Y) € A. With this stricter
condition, however, it is no longer correct to consider A as specifying all satisfactory input-output
pairs for a wait-free task, since effectively participating processes are then never allowed to fail.
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(T3): For each admissible input configuration X and for each non-empty subset
P of ids(X), there is at least one pair (X,Y) in A such that ids(Y) = P.

DEFINITION 2.2.1: A decision task that satisfies (T1), (T2), and (T3) will now
formally be called well-posed.

Since processes cannot distinguish a faulty process from one which is running
slowly, it is desirable for a wait-free decision task to exhibit extensibility in the
relation A. Consider, for example, a situation in which a subset of the non-faulty
processes run very quickly, so fast, say, that they finish the protocol before others
among the non-faulty processes write their input values to shared memory. A
reasonable wait-free task must allow the slow processes to finish the protocol in a
satisfactory way. We may therefore require

(T4): If (X,Y) € A and X' is an admissible extension of X, then there is an
extension Y' of Y with ids(Y') = ids(X’) such that (X' V') € A.

A well-posed decision task that satisfies (T4) will be called extensible.

Remark. Any decision task can be modified to satisfy (T4) by adding a special
output value 1 and creating any missing extensions Y’ by assigning the value L
to processes with no value defined from the original set V. Processes halting with
value L are then understood to have withdrawn from the decision process without
choosing one of the original output values. Such a modified decision task may or
may not preserve the spirit of the original task. O

Another desirable property of a wait-free decision task is reducibility, meaning
that the input-output relation A admits the assembly of a satisfactory solution from
partial solutions. If a collection P of processes has finished a protocol at some point
and the output configuration of the processes in P does not represent a satisfactory
solution for the effective input configuration at that moment, then an immediate
crash of all processes not in P leaves the protocol with an unsatisfactory output.
We may therefore require

(T5): Let (X,Y) € A. Then there is a strictly ascending chain Y1 C -+ C
Y, = Y of output configurations with |Y;| = j and an ascending chain
Xy C--- C X, =X of input configurations such that ids(Y;) C ids(X;) and
each (X;,Y;) € A,

A well-posed decision task that satisfies (T5) will be called reducible. We may be
less restrictive in the decision task by admitting as acceptable any partial solution
of an acceptable solution. We will say that a well-posed decision task is strongly
reducible if 1t satisfies

(T6): If (X,Y) € A and Y1 is extensible to Y, then (X,Y1) € A.

It seems that most decision tasks considered in previous research have been treated
as strongly reducible. The input-output relation A of a well-posed task can be
extended to a relation A’ satisfying (T6) simply by adding any missing pairs. Our
construction of the task complex 7 will not distinguish between A and A’.

If A is the input-output relation of a decision task, then we say that an output
configuration Y is admissible if there is an admissible input configuration X such
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that (X,Y) € A. Note that the collection of admissible output configurations need
not be a simplicial complex, even if the task is well-posed. We call an output config-
uration sub-admussible if 1t is extensible to an admissible output configuration. The
collection of sub-admissible output configurations does form a chromatic simplicial
complex, the output complex, which is denoted O. If the decision task is strongly
reducible; then all sub-admissible output configurations are themselves admissible,
and so, in this case, O consists entirely of admissible configurations.

We close this subsection with two very simple examples, taken from [HS2]. We
will revisit these examples to illustrate the construction of the task complex in
Section 3.

EXAMPLE 2.2.2. Two-process binary consensus. In this task, Vi = Vo = {0,1}.
There are two processes, p and ¢, and each can begin with either of the two possible
input values. The task requires that the processes reach consensus in the sense that
all finishing processes choose the same output value. Furthermore, this common
value must be the input value of at least one effectively participating process.

We will use the following notation. A configuration is written as a sequence of
values within angle brackets, the value of p first and the value of ¢ second. If a
process has no value in the configuration, then we write % in place of its value.
Thus, (01) represents the configuration in which p has value zero and ¢ has value
1, while (x0) represents the configuration in which ¢ has the value 0 and p does not
appear.

The input complex Z has four vertices, (x0), (x1), (0x), and (1%}, and four
1-simplices (00), (01), (10), and (11). Z can be realized as the boundary of a
square, and |Z| is thus homeomorphic to a 1-sphere. The output complex O can be
identified with the subcomplex of 7 obtained by removing the two 1-simplices with
mixed values, (01) and (10). |@] is therefore a pair of disjoint line segments.

In order to describe A, we abbreviate the notation for a pair from ({ab), {¢d)) to
simply (ab, ed). Then A is enumerated as

(0, 0%) (1, 1%) (%0, %0) (x1,%1)

(00,0%)  (00,%0)  (00,00)  (11,1x)  (11,%1)  (11,11)
(01,04)  (01,1%)  (01,%0)  (01,%1)  (01,00)  (01,11)
(10,04  (10,1%)  (10,%0)  (10,%1)  (10,00)  (10,11)

Notice that this task is both extensible and strongly reducible.

EXAMPLE 2.2.3. Two-process binary almost-consensus. This task has the same
input complex as two-process binary consensus, and any input-output pair sat-
isfactory for binary consensus is still allowed as satisfactory. In addition, if the
processes begin with distinct inputs, then (10) is allowed as a satisfactory output.
The output complex O has, therefore, the additional 1-simplex (10) and |O] is
three sides of a square. The input-output relation is obtained from that for bi-
nary consensus by adding (01,10} and (10, 10). As with binary consensus, binary
almost-consensus is both extensible and strongly reducible.

2.3 Executions of wait-free protocols.

We assume all protocols to be structured so that the first action of a process is to
write its input value to shared memory, and its last action before halting is to write
its output value to shared memory. A process is said to start/finish the protocol if
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and when it writes its input/output value to shared memory. A process scanning
shared memory after process p has finished the protocol can therefore deduce that p
has finished. We assume that all protocols direct each process to make at least one
scan of shared memory between starting and finishing. Protocols are also assumed
to be deterministic, and processes can fail only by crashing. All executions are
assumed to have at least one non-faulty process.

Let e be an execution of a protocol. We assume that it is meaningful to speak
of a clairvoyant view of e from which can be determined

(1) The full input configuration describing the input values offered to all n + 1
processes.

(2) The sequence {e;) of “events” of e.

(3) A partition of the n+1 processes into the sets F. and NF, of processes that
are faulty in e and that are non-faulty in e, respectively.

We do not assume that any process is able to achieve a clairvoyant view.

At this point we have not said what constitutes an event, nor have we said
exactly which events are reflected in the sequence (¢;). In general terms, an event
should represent an atomic action of some process. We assume that all scans of
and writes to shared memory are reflected in the sequence (e;). Recall that writes
are assumed to append to shared memory, not overwrite, and thus if w is a write
event in the sequence and s is a scan event appearing later in the sequence, then
the value written in w appears in the view returned in s. We also assume that if the
protocol directs internal actions of processes, sufficiently many internal actions are
reflected in the sequence to ensure that a non-faulty process cannot appear faulty.®
It is then possible to define the sets NF. and F. in terms of the sequence of events,
as in [HS3]: NF. consists of the processes that finish or to which are associated
infinitely many events.

A clairvoyant view of e determines the effective input configuration for the ex-
ecution, which we will denote by X.. Recall that X, is the configuration of input
values of processes with a start event in e that precedes a scan event by some pro-
cess that is non-faulty in e. A clairvoyant view also determines the configuration
Ye of output values of all processes that finish the protocol in e. We have

ids(Ye) € NF. Cids(X.) .

In order to characterize more precisely the collection of all wait-free executions
of a protocol, we propose the axioms (E1) through (E5) below. We will use these
axioms to establish properties of the executable relation of the protocol (defined
below), showing that this relation determines a well-posed, extensible, reducible
decision task.

(E1): For any full input configuration and for any non-empty sets of processes
R C Q C P, there exists an execution in which P is the set of participating
processes, () 1s the set of effectively participating processes, and R is the set
of non-faulty processes.

(E2): Ife is an execution and X is a full input configuration that extends the input
configuration of processes participating in e, then there is an ewvecution ¢’

8 A protocol could conceivably direct a process to enter a non-terminating internal computation
whose actions are not reflected in the sequence of events.
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with X as full input configuration and whose sequence of events is the same
as that of e.

(E3): Two successive events of an execution may be interchanged to yield another
erecution provided the events are associated to different processes and (1)
the events are both scans of shared memory, (2) the events are both writes
to shared memory, or (3) at least one of the events is internal to a process.

(E4): Let e be an execution, and let P be a set of processes that does not contain
all processes in NF.. For any event e. that does not follow the finishing
event of any process in P, there is an execution ¢’ such that (1) e} = e; for
i < ¢, (2) no process in P has an event in eLe, | ---, hence P C For, and
(3) NF, — P C NF...

(E5): Let e be an execution, and let p be a process in Fo whose last event in e is
e; (we understand j = —oo if p has no event in e). For any event e, with
r > j, there is an execution €' such that (1) e} = e; for i < r, (2) el is

an event associated to p, (3) processes other than p that have no event in

erery1 - have no event ineje,. -, and (4) NF, U {p} C NFe..

Loosely speaking, (E4) represents crashing all processes in P by the instant before
event e.. Since the failure of a process to write might allow another process to finish
more quickly, (E4)(3) allows processes in F,— P to become non-faulty in ¢/, although
such processes could be crashed by another application of (E4). Notice that (E4) can
be used to eliminate all events of processes that are participating but not effectively
participating in e. In the resulting execution e’, (X, Vo) = (X¢,Ye) and all
participating processes are effectively participating. (Eb) represents “resurrecting”
process p at the instant before event e,. (E5)(3) ensures that processes that crashed
before e, are not resurrected along with p. By suitably crashing and resurrecting
processes, these axioms can be used to obtain executions that reflect delays or
accelerations of the various processes.

DEFINITION 2.3.1: Let X be an input configuration. A protocol is wait-free ex-
ecutable on X if in any execution e of the protocol for which the effective input
configuration X, is extensible to X all non-faulty processes finish the protocol, 1.e.,
if

X, C X = ids(Ye) = NF. .

Notice that if a protocol is wait-free executable on X and if X is extensible to X,
then the protocol is wait-free executable on X;. A protocol is wait-free executable
on a complex of input configurations if it is wait-free executable on each simplex of
the complex.

DEFINITION 2.3.2: Let K be a complex of input configurations on which a protocol
is wait-free executable. By A (K) we mean the relation consisting of all pairs
(Xe,Ye) arising from executions of the protocol with X, a simplex of K. Ag(K) is
the executable relation that arises by applying the protocol to K.

DEFINITION 2.3.3: A protocol is a wait-free solution of a well-posed decision task
(Z,0,A)if (1) the protocol is wait-free executable on Z, and (2) the executable
relation Aex(Z) of the protocol is a subset of A.

Remark. In [HS3], the authors give different definitions of what it means for a
protocol to be a wait-free solution of a decision task (Z,0, Ang). (In [HS3], the
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input-output relation consists only of pairs (X,Y") for which ids(X) = ids(Y), and
we write Apg to emphasize this restriction.) On p. 6 of [HS3], the authors define
a protocol to be a wait-free solution of (Z,0, Ang) if (1) the protocol is wait-free
executable on Z, and (2) for any execution e in which the input configuration X
of participating processes is a simplex of Z, there is an extension Y of Y, such
that (X,Y) € Apg. Condition (2) amounts to allowing that if (X,Y) € Apg, then
any non-empty Y7 C Y also represents a satisfactory solution for input X. In other
words, the task should be treated as strongly reducible. The specification of X as an
input configuration of participating processes instead of just effectively participating
processes is unimportant if the task is also understood to be extensible, as in [HS3,
p. 4]. Tt is not difficult to check that if Ayg is extensible in the sense of [HS3, p. 4],
then there is a unique minimal extension A of Apg that is extensible and strongly
reducible, and a wait-free solution of (Z, 0, Apg) in the sense of [HS3, pp. 4-6] is
equivalent to a wait-free solution of (Z, 0, A) according to our definition. O

We can view the executable relation A (K) of a protocol on K as the input-
output relation of a decision task. We write O (K) for the associated output
complex. Notice that if the protocol is a wait-free solution of (Z, 0, A), then Oy (T)
is a subcomplex of 0.

Proposition 2.3.4: Let K be a pure n-dimensional complex of input configurations
on which a given protocol is wait-free executable. Then (K, Oex(K), Aex(K)) is a
well-posed, extensible, and reducible decision task of which the protocol is a wait-free
solution.

Proof: Throughout, we use the assumption that the protocol is wait-free executable
on K. The task satisfies (T1) because K is a pure complex. (T2) is satisfied because
ids(Ye) C ids(X,) for any execution e, and (T3) follows by applying (E1). Thus,
the task is well-posed. Let (X,Y) € A (K). Using (E4), there is an execution e
such that (X.,Y.) = (X,Y) and such that all participating processes are effectively
participating. Suppose that X’ is a simplex of K that extends X. By using (E2), we
can assume that the full input configuration for e is an extension of X’. Let e; be
the final scan event for a process in ids(Y:). Using (E5) successively to resurrect all
processes in ids(X') after e;, we obtain an execution e’ satisfying ids(Ye:) = NF.r =
ids(X'), Xoo = X', and such that Y, extends Y. Thus, (T4) is satisfied and the task
is extensible. Recall now the execution e such that (X¢,Y.) = (X,Y) and such that
all participating processes are effectively participating. We apply (E4) successively
to crash increasing sets of processes. Let p be the non-faulty process whose finish
event f occurs latest in e. We use (E4) to crash p and all processes in F, by the
instant before f. Let the resulting execution be ¢"~!, and write X,_; = X,-—1 and
Yro1 = Yeror. Then X,07 € X, Y,01 C VY, and ids(Y,—1) = ids(Ye) — {p}. (The
difference X — X, _; will be non-empty if the final scan s of p is the last among the
processes in NF, and there are processes with start events in e falling between s and
the preceding final scan of a process in NF..) Now we repeat this procedure with
¢"~%in place of e. Continuing in this fashion, we obtain the chains of configurations
required by (T5). Thus, the task is reducible. O

2.4 The protocol complex.
Consider a protocol and let e be an execution. A process that finishes the
protocol in e is understood to have as final view the view from the last scan it
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made of shared memory together with the output value it wrote before halting. We
can represent the fact that a process p achieves final view v by the pair z = (p, v).
For such a pair, we write p = id(z) and v = view(z), and we say that the pair is
derivable from e. We also write inval(z) and outval(z) to denote the input value
and output value (respectively) of process id(z). The same pair might be derivable
from many different executions of the protocol. A configuration of the protocol is a
non-empty set Z = {zp,..., 2} of pairs of process identifiers and final views such
that id(zg),...,1d(z,) are distinct and such that there exists a single execution e
from which all the pairs zg,..., 2. are derivable. In this case, we say that 7 is
derivable from e. Such a configuration can be thought of as a chromatic r-simplex.
If Z is derivable from e, then there are chromatic simplicial maps ¢: 7 — X, and

8: 7 — Y, defined by
¢z — (id(z),inval(z)) and d:z— (id(2), outval(z)) .

Notice that Z does not identify an execution e from which it is derivable. A given
configuration of the protocol may be derivable from many executions.

Let z be a pair associating a process and final view in some execution. Let
X (#) denote the input configuration of all processes and corresponding input values
that appear in view(z). Similarly, let Y(z) denote the output configuration of all
processes and corresponding output values that appear in view(z), including process
id(z). If z is derivable from the execution e, then X(z) C X., Y(2) C Ye, and

id(z) €ids(Y (2)) Cids(X(z)) .
For a configuration Z of the protocol, we write
X2y =JXx0), vy(2)=JY().
2€Z 2€Z
If 7 is derivable from e, then X(7) C X, Y(Z) CYe, and
ids(7) Cids(Y (7)) Cids(X (7)) .

The mazimal configuration for an execution e is the configuration consisting of all
final views of non-faulty processes. If 7 is the maximal configuration for e, then
X(Z)=X.,Y(Z) =Y, and

ids(7) =1ds(Y (7)) Cids(X (7)) .

If the protocol is wait-free executable on the input configuration X, then the
protocol complex P(X) is defined to be the complex consisting of all configurations
Z derivable from executions e satisfying X, C X. Similarly, if the protocol is
wait-free executable on the complex K of input configurations, then the protocol

complex P(K) is the union of the complexes P(X) as X runs through the simplices
of K. In this case, there are chromatic simplicial maps

P:P(K) =K and §:P(K) = Ox(K)
defined as above.

Proposition 2.4.1: Let K be a complex of input configurations, and consider a
protocol that is wait-free executable on K. Then

Ax(K)Y={(X(2),Y(2)): Z € P(K)} .
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Proof: If e 1s an execution with X, a simplex of K| let Z be the maximal configu-
ration for e. Then (X.,Y:) = (X(Z),Y (Z)). This proves the inclusion C.

Now let Z be a configuration in P(K). Then Z is derivable from an execution
e with X, a simplex of K. We have ids(7) C ids(Y (7)) C NF.. Let s be the
last scan event of any process in ids(Z). Then any process with finishing event
before s is in ids(Y (7)), and any process in ids(Y (7)) — ids(Z) has finishing event
before s. Since the protocol is deterministic and wait-free executable on K| failures
by processes not in ids(Y (7)) after s cannot prevent any process in ids(Z) from
finishing with the same output value as it would have otherwise. We can therefore
use (E4) to crash all processes not in ids(Y (7)) just after s, leaving the processes
in ids(Z) to finish. Let the resulting execution be ¢’. Then NF., = ids(Y (7)) and
Yo = Y (Z). Furthermore, any process that has not started by s does not start in
¢, 50 Xo = X (7). Therefore, (X(2),Y (7)) = (Xer,Yer) € Ax(K). O

Corollary 2.4.2: Let (Z,0, A) be a well-posed decision task, and consider a pro-
tocol that is wait-free executable on T. The protocol is a solution of the task if and
only if

{X(2),Y(2): ZeP(@)}CA.

Remark. On p. 25 of [HS3] the authors give the following definition of wait-free
solution of a task (Z,0, Aug): a protocol that is wait-free executable on 7 is a
solution of the task provided that, for every input configuration X in Z and every
protocol configuration Z in P(X),

ids(7) =1ids(X) = (X,d(2)) € Aps . (A)
For Z in P(X), though, X(7) C X and
ids(72) C ids(Y (7)) € ids(X (7)) C ids(X)
Thus, ids(Z) = ids(X) implies that each of these inclusions is an equality, and it

follows that Y(7) = 6(7) and X(Z) = X. The condition (A) is therefore equivalent
to the requirement that, for all X € 7 and for all 7 € P(X),

ids(7) = ids(X) = (X(7),Y(Z)) € Aus . (B)

If we understand A to be the the minimal extensible and strongly reducible exten-
sion of Apg, then the condition (B) is equivalent to the inclusion in the preceding
corollary. O

Notice that if ids(Z) = ids(Y (7)) in the second paragraph of the proof of the
proposition, then in fact 7 is the maximal configuration for the execution e’. Thus,
we have the

Corollary 2.4.3: Consider a protocol that is wait-free executable on a complex K
of input configurations. A configuration 7 in P(K) is mazimal for some execution

e with X, a simpler of K if and only ifids(Z) = ids(Y (7)).

2.5 Theorems of Herlihy—Shavit.
Throughout this subsection, we assume that the protocol considered is wait-
free executable on K. In citing and whenever using the results of Herlihy and
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Shavit, we assume without further remark that the protocol involved takes the
normalized full-information form assumed by those authors. Roughly speaking, in
a full-information protocol each process accumulates in private memory the entire
history of views that it has received from scans of shared memory, and in each write
to shared memory a process includes a copy of the history it has accumulated up to
that point. It would be interesting to investigate the extent to which their results
depend upon this assumption. A key theorem behind the work in [HS1, HS2, HS3]
is the following

Theorem on Spans 2.5.1 ([HS1]): Let K be a complex of input configurations,
and constder a protocol that is wait-free executable on K. Then there exists a chro-
matic subdivision x(K) and a chromatic simplicial map ¢: x(K) = P(K) satisfying
o(S) € P(carrier(S)) for all simplices S in x(K).

Following Herlihy and Shavit, we call the map ¢ given by the theorem a span
associated to the protocol on K. Let S be a simplex of x(K), so that ¢(S) is a
configuration of the protocol, and let e be an execution such that X, C carrier(S)
and ¢(S) is derivable from e. Then X (¢(S)) C X and Y (¢(S)) C Ye. Since ¢ is
chromatic, ids(S) = ids(¢(5)), and so

ids(S) Cids(Y(e(S))) Cids(X(¢(5))) Cids(Xe) C ids(carrier(S)) .

If S happens to be of full dimension in carrier(S), then ids(S) = ids(carrier(S)),
and so each inclusion above is an equality. In this case, it follows that X (¢(S)) =
carrier(S) and that ¢(S) is the maximal configuration for some execution e’ with
X = carrier(S).

If K is a chromatic complex and x(K) is a chromatic subdivision, then there
is a unique chromatic simplicial map f,: x(K) — K satistying f, (S) C carrier(95)
for every simplex S in x(K), and |fy| is homotopic to the identity map when we
identify |x(K)| with |K]. (See Subsection A.6.) If ¢: x(K) — P(K) is a span, then
pop: x(K) = K is chromatic simplicial and satisfies ¢ o p(S) C carrier(S) for every
simplex S € x(K). Thus,

1/)030:fxa

and || is a right homotopy inverse for |4].

Following [HS2], we define = d o . In general §(7) C Y (Z) for any configura-
tion Z of the protocol, and, according to Corollary 2.4.3, equality holds if and only
if Z is maximal for some execution. Thus, it follows that u(S) C Y (¢(S5)), with
equality if and only if S is of the same dimension as carrier(S). From Proposition
2.4.1 we also have

(X(#(9)), Y (¢(5))) € Aex(K) -

Since Aex(K) is extensible, there is an extension Y of Y (¢(S)), and hence also of
#(S), so that
(carrier(S),Y) € Ax(K) .

If S has the same dimension as carrier(S), then
(carrier(S), u(9)) € Ax(K) .

The following corollary, the necessary condition of the Asynchronous Computabil-
ity Theorem, now follows from the Theorem on Spans and the preceding discussion.
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Corollary 2.5.2 ([HS2]): Let K be a complex of inpul configurations, and consider
a protocol that s wait-free executable on K. Then there exist a chromatic subdivision
x(K) and a chromatic simplicial map p: x(K) = Ox(K) such that for each simplex
S in x(K) there exists an extension Y of p(S) such that (carrier(S),Y) € Ax(K).
If S has the same dimension as carrier(S), then (carrier(S), u(5)) € Aex(K).

In order to obtain the sufficient condition of the Asynchronous Computability
Theorem, one uses Borowsky and Gafni’s Participating Set Protocol for the simplex
agreement task [BG1] as a “universal” protocol. The existence of an iterated stan-
dard chromatic subdivision x(Z) and a simplicial map p: x(Z) — O respecting the
task relation A enables specialization of the universal protocol to solve (7,0, A).
There is a technical argument involved in allowing x(Z) to be an arbitrary chromatic

subdivision; see [BG3, HS3].

Theorem 2.5.3 ([HS2]): Let (Z,0,A) be a well-posed, extensible, and strongly
reducible decision task. Suppose that there is a chromatic subdivision x(Z) and a
chromatic simplicial map p: x(Z) — O such that (carrier(S), u(S)) € A for every
simplex S of x(Z). Then (Z,0, A) has a wait-free solution.

3. THE TAasKk COMPLEX

We define a simplicial complex from the input-output relation A of a well-posed
decision task. Our construction is quite simple and loses information about A. In
particular, the construction does not discriminate between A and the relation A’
obtained by extending A to be strongly reducible. More careful constructions that
better reflect the conditions imposed by A may be possible.

3.1 Definition and simple examples.

An input-output pair (X,Y) will be called matched if ids(X) = ids(Y). We can
think of a matched pair as a single simplex T as follows. For each p in ids(X), form a
triple t = (p, v, w), where (p,v) € X and (p,w) € Y. Then let T be the set of triples
t formed in this fashion from (X,Y). T can be thought of as a chromatic simplex
with ids(T') = ids(X) = ids(Y). For ¢ as above, we write p = id(¢), v = inval(?), and
w = outval(t). Having said carefully how to form the simplex T" from a matched
pair (X,Y), we will typically identify (X,Y) with 7" whenever convenient.

DEeFINITION 3.1.1: Let A be the input-output relation of a well-posed decision
task. The task compler T associated to A is the chromatic complex consisting of
all matched pairs (X,Y") for which there exist extensions X’ of X and Y’ of Y such
that (X', Y') € A.

Let Z and O be the input and output complexes associated to A. Then there
are chromatic simplicial maps

a:T =7 and w:T =0
defined by
a(t) = (id(t),inval(?)) and w(t) = (id(t), outval(?)) .
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Notice that o(X,Y) = X and w(X,Y) =Y. If A’ is the relation of another well-
posed task such that A C A’ then Z CZ', @ C @', and 7 C 7, all in the obvious
way.

ExAMPLE 3.1.2. Two-process binary consensus. Recall the input-output relation
A from Example 2.2.2. Each matched pair from A 1s itself a simplex of 7. These
pairs are

(0, 0%) (1, 1%) (%0, %0) (x1,%1)

(00, 00) (11,11) (01, 00) (01, 11) (10, 00) (10, 11)
In addition, 7 has the following matched pairs that are not in A but that are
extensible to pairs in A:

(0%, 1%) (L%, 0%) (%0, 1) (x1,%0)

Such pairs correspond to decisions by a single process that are allowed provided
the other process participates effectively and with the appropriate input value. For
example, (0%, 1) is an unacceptable input-output pair if ¢ does not participate
effectively, since p is not allowed to decide 1 when the only effective input, p’s own,
1s 0. This pair is acceptable, however, if ¢ writes input value 1 before the final scan
of p and then, perhaps, ¢ crashes and p finishes with output value 1.

| 7| separates into two components according to the output values of the sim-
plices. Each component is the realization of a three-edge path. Thus, |7 is homo-
topy equivalent to a two-point space, as is |O], and |w|: |T| — |@] is a homotopy
equivalence. On the other hand, |Z| is homeomorphic to a 1-sphere, and the map
|ee]: |7 = |Z] is homotopic to a constant map.

EXAMPLE 3.1.3. Two-process binary almost-consensus. In addition to the matched
pairs given in the preceding example, the task complex for binary almost-consensus
has the 1-simplices (01,10) and (10, 10). As a result, |7 is connected, and in fact
leae]: |T] = |Z| is a homotopy equivalence. Since |O] is now contractible to a point,
|w] is homotopic to a constant map.

3.2 Obstructions.

Consider a protocol that is wait-free executable on a complex K of inputs. We
write Tex(K) for the task complex associated to A (K). If z is a vertex of P(K),
representing a process and final view from some execution, we can define

¥:z = (id(z), inval(z), outval(z)) .

If 7 is a simplex of P(K), then ¥(7) is the matched pair (¢¥(7),d(Z)). Since
(¢¥(Z2),8(7)) is extensible to (X(7),Y (7)) € Aex(K), it follows that (¢(72),8(7))
is a simplex of Tex(K). Thus, ¥ defines a chromatic simplicial map from P(K) to
Tex(K) such that the following diagrams commute:

PK) —L— Tk (K) PK) —2— Tex(K)
[ N
K —— K O (K) —— 0 (K)

Now suppose that the protocol 1s a wait-free solution of the well-posed decision
task (Z,0, A) with task complex 7. Then A (Z) C A, and so Tex(Z) C 7 and

O (T) C O as subcomplexes. We therefore obtain commutative diagrams
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PI) s T PO T
N
I 5T 041 —=— 0

Applying the Theorem on Spans, there is a commutative diagram

(I —£— pz) —25 T

|5 [ EE (3.2.1)
I — I —— 1T

Thus, & o ¥ o ¢ = f,, and since |f,| is homotopic to the identity, | o ¢| is a right
homotopy inverse for |a|. The following theorem is now immediate.

Theorem 3.2.2: Let (Z,0, A) be a well-posed decision task that admits a wait-free
solution, and let T be the associated task complex.

(1) Let 3« be a covariant functor on the category of finite simplicial complezes
and simplicial maps, and assume that §. transforms any stmplicial map
whose realization 1s a homotopy equivalence wnto a surjection. Then the
morphism §.(a):F(T) = () is a surjection.

(2) Let §* be a contravariant functor on the category of finite simplicial com-
plexes and simplictal maps, and assume that §° transforms any simplicial
map whose realization is a homotopy equivalence into an ingection. Then
the morphism §*(«): F*(Z) — F*(T) is an ingection.

Note that the conditions on the covariant functor are satisfied when §, 1s sim-
plicial homology or the ordinary homotopy group functor; the conditions on the
contravariant functor are satisfied when §* is simplicial cohomology.

By an obstruction to wait-free computability of a well-posed task (Z,0, A), we
mean a mathematical object whose existence or “non-triviality” implies that no
wait-free solution for the task can exist. Non-trivial usually means non-zero. An ob-
struction is (effectively) computable if it is (effectively) computable from (Z, O, A).

Effectively computable obstructions to wait-free computability can be obtained
by choosing §. to be simplicial homology with field coefficients. When the coeffi-
cients are understood, it is customary to write §. (K) = H.(K) and Fu(a) = a,. If
a wait-free solution for the task exists, then

a: Ho(T) = Ho(2)

must surject, and so any element of H.(Z) not in the image im c.. is an obstruction
to wait-free computability. Equivalently, any non-zero element of the quotient

coker ar, = H*(I)/ima*

is an obstruction.
In the simple examples below, we use simplicial homology with coefficients in

the field IF.



COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 19

ExXAMPLE 3.2.3. Two-process binary consensus. From Example 3.1.2, the map
|ee]: |[T| = |Z] is homotopic to a constant map, and therefore the map a,: H. (7) —
H.(Z) induced in homology is zero in dimension one. But Hi(Z) = T, and so a
generator of this homology is an obstruction to wait-free computability.

EXAMPLE 3.2.4. Two-process binary almost-consensus. From Example 3.1.3, the
map |o|:|T| — |Z] is a homotopy equivalence, and therefore a,: H (T) = H.(Z) is
an isomorphism, hence a surjection. Thus, there are no obstructions to wait-free
computability. Consider the subcomplex 7’ of T consisting of the 1-simplices

(00,00)  (10,10)  (11,11)  (01,11)  (01,10)  (01,00)

and their vertices. 7 is isomorphic to a subdivision x(Z). Tt is not difficult to see
that an isomorphism f:x(Z) — 7' can be chosen so that p = w o f satisfies the
hypotheses of Theorem 2.5.3, and so this task admits wait-free solution. (See also
[HS2], where an explicit protocol is given.)

Less trivial applications of the obstruction method are given in Section 5.

4. SYMMETRIC COMPLEXES AND ANONYMOUS PROTOCOLS

In this section, complexes of configurations are enhanced by adding the action
of a group of symmetries that arise by permuting process identifiers. The objective
is to treat anonymous wait-free protocols. Theorem 4.2.1 generalizes the Theorem
on Spans and Theorem 4.2.2 generalizes Theorem 3.2.2 to this situation. Only the
renaming application in Subsection 5.3 uses the ideas from this section.

4.1 Group actions on complexes.

Let K be a finite simplicial complex, and let G be a group of permutations of
the vertices of K. If X = {xq,...,2,} is a simplex of K and ¢ € G, then we write
9X for the set {gaq,...,gz,}. We say that G acts simplicially on K, and that K
1s a G-complez, if for every g € G and every simplex X of K, ¢g.X is also a simplex
of K. In this case, g: K — K is a simplicial automorphism for every ¢ € G, and GG
can be thought of as a group of symmetries of K. The orbit of a simplex X under
the action of G is the set of simplices GX = {¢9X : ¢ € G}. Suppose K and L are
both G-complexes. A simplicial map f: K — £ 18 a G-equivariant map, or simply
a G-map, if f(gX) = ¢gf(X) for all ¢ € G and X € K. The action of G on K can
be extended piecewise-linearly to an action of G on the realization |[K|. A G-map
f:K — L then gives rise to a G-equivariant piecewise linear map |f]: |[K| = [L].
A homotopy F: K| x [0,1] — |L£] is called G-equivariant if for each fixed value
tg € [0, 1] of the homotopy parameter, F'(—,%p): |[K| = |£] is a G-equivariant map.

For the present work, it is useful to focus attention on a restricted class of actions
that induce no non-trivial self-maps of simplices. We say that G acts rigidly on K,
or that K is a rigid G-complex, if for any g € G and any simplex X = {«¢,...,z,}
of K, gX = X implies that gz; = x; for 0 < ¢ < r. In other words, if ¢ maps X
to itself, then it does so by the identity map. Assume that G acts rigidly and that
g,h € G are such that gX =Y = hX. Then ¢-'hX = X, so that g~ 'h restricts
to the identity map X — X. It follows that each of g and h restricts to the same
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simplicial map X — Y. Thus, for any simplex Y in the orbit G X, there i1s a unique
simplicial map X — Y induced by every g € (G that maps X to Y.

Lemma 4.1.1: Let K and £ be G-complexes and let f: K — L be a G-map such
that dim f(X) = dim X for every simplex X in K. If L is rigid, then K is rigid.

Proof: Suppose ¢X = X, where ¢ € G and X = {ag,...,2,} is a simplex of
K. Then f(X) = f(yX) = ¢gf(X). Since £ is rigid, it follows that the restric-
tion of ¢ to f(X) = {f(x0),..., f(z,)} is the identity. Thus gf(x;) = f(z;),
and hence f(gx;) = f(x;), for 0 < ¢ < r. The dimension condition ensures that
f(zo),. .., f(z,) are distinct, and it follows that gu; = ; for 0 < i <r. O

Notice that the dimension condition of the lemma is satisfied whenever K, £, and
f are all chromatic.

Let K be a G-complex. We say that a subdivision ¢(K) is a G-subdivision if o(K)
is a G-complex and carrier(gS) = g carrier(S) for any g € GG and S'in o(K). Because
of its uniformity, a barycentric or standard chromatic subdivision of a G-complex
can be given the structure of a G-subdivision. If K is a rigid G-complex, then
G-subdivisions can be generated inductively on the skeleta of K as follows. There
is no subdivision on the O-skeleton. Suppose X is a simplex of K that has not yet
been subdivided and that the lower dimensional skeleta have been G-subdivided.
Choose any subdivision of X that is consistent with the subdivision on the boundary
of X. By rigidity, for each Y in the orbit GX, there is a unique simplicial map
X — Y induced by elements of (G, and so the subdivision of X gives a well-defined
subdivision of Y. This subdivision of ¥ 1s consistent with the subdivision on the
boundary of Y because the lower skeleta are GG-subdivided. It is not difficult to see
that a subdivision constructed in this fashion is itself a rigid G-complex.

Lemma 4.1.2: Let K be a finite rigid G-complex, and let o(K) be a G-subdivision.
Then there exists a G-map f:0(K) = K such that f(S) C carrier(S) for every
simplex S in o(K). For any such f, the map |f|:|oc(K)| — |K| is G-equivariantly
homotopic to the identity map |o(K)| = |K| relative to the vertices of K.

Proof: We can assume |o(K)| = |K| and that the vertex set of K is contained in
the vertex set of ¢(K). A map f can be constructed as follows. First, let f map
any vertex of K to itself. The definition of f is G-equivariant so far. Now pick any
vertex # on which f has not yet been defined. Pick some vertex of carrier(x) and
let f map x to this vertex. Then extend f to be (G-equivariant over the orbit Gz
by letting f(gz) = gf(x). We need to check that this extension is well-defined. If
gx = hx, then, since ¢(K) is a G-subdivision,

g carrier(z) = carrier(ga) = carrier(hx) = hcarrier(z) .

By rigidity, ¢ and h induce the same simplicial map on carrier(z). Since f(z) is
chosen in carrier(z), gf(x) = hf(x), and this proves that the equivariant extension
of f to Gz is well-defined. Continuing in this fashion, f is defined and G-equivariant
on the entire vertex set of ¢(K). If S is a simplex of ¢(K), then for each vertex x of
S, carrier(z) is a face of carrier(S). Since f(z) is a vertex of carrier(z), f(z) is also
a vertex of carrier(S), and this ensures that f(S) is a face of carrier(S). Thus, f is
simplicial and satisfies the carrier requirement. Finally, since f is a simplicial map
that is G-equivariant on vertices, it follows that f is G-equivariant on simplices.



COMPUTABLE OBSTRUCTIONS TO WAIT-FREE COMPUTABILITY 21

For the homotopy, we let
Fr,t) =te + (1= 1)(|f|(=))
for # € |o(K)| and t € [0,1]. Note that # and |f|(z) both lie in |carrier(z)|, and
F(x,—) is simply a parameterization of the line segment joining these two points.
F is continuous and is therefore a homotopy from | f| to the identity. Since |f| maps
vertices of K to themselves, F is relative to these vertices (i.e., leaves them fixed).
Fix tg € [0,1], let ¢ € G, and let x € |o(K)|. Since |f| is G-equivariant, we have
|f1(gz) = g|f|(x). Since x and |f|(x) both lie in |carrier(z)|, gx and g|f|(x) both

lie in g |carrier(z)| = |carrier(gx)|. Tt follows that

F(gx,to) = to(gx) + (1= to) (g|f1(x)) = g(tox + (1 = to)(f](x))) = gF (x,t0) -
Thus, F' is a G-equivariant homotopy. O

If K is a rigid G-complex, then we can form a quotient space K /G by identifying
points that can be mapped to one another by the action of the group.’ The resulting
space may not be a simplicial complex, but will always be a more general cell
complex [Mu, §38]. If X is an r-simplex of K, then every simplex in the orbit
G X is an r-simplex that can be uniquely identified with X via a simplicial map
induced by G. We let the cell complex K /G have one r-dimensional cell for each
r-dimensional orbit. We write [X] for the cell associated to the orbit GX, and so
[X] = [YV]if and only if Y € GX. We think of [X] as an r-simplex whose faces
must be identified with (i.e., “glued” to) cells of lower dimension. The rigidity
condition ensures that the identification of the faces is well-defined. The reason
this construction may not yield a simplicial complex is that two distinct cells may
share the same boundary, or a single cell may have several of its boundary faces
glued together. With this construction there is a cellular projection map

K —=K/G

defined by n(X) = [X].
Notice that if f: K — £ is a G-map of rigid G-complexes, then f induces a
cellular map

f:K/G— L/G
defined by [f]([X]) = [f(X)], and the following diagram commutes:

kK —L 4 ¢

| |
k¢ Py 6
If F:|K| % [0,1] = |£] is a G-equivariant homotopy, then F' induces a homotopy
[Fl: K/Gx [0,1] = L/G .
If K is rigid, if ¢(K) is a rigid G-subdivision, and if f is as in Lemma 4.1.2, then
71 o(K)/G = K/G
is homotopic to the identity (when we identify o(K)/G with £/G).

°To be precise, we should probably write |K|/G, although we will always understand the
notations K/G and |K|/G to mean the same space. Quotient spaces of this sort can be defined
even if K is not rigid, but they may not be so well behaved.
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4.2 Anonymous protocols.

We now consider group actions on complexes of configurations that arise by
permuting processes. Let X be the symmetric group of all permutations of the
n+1 processes. An element g € X acts on a configuration (input, output, protocol,
or task) by permuting process identifiers. More precisely, if # = (p,v) is a pair
associating process and value, we define

gz = (gp,v) .

In other words, id(gz) = gid(x) and val(gz) = val(x). The same definition applies
when val represents an inval, outval, or view. The definition also applies to triples:
ift = (p, v, w), then gt = (gp,v,w). If (X,Y) is a pair of configurations satisfying
ids(Y) Cids(X), then ids(¢Y") C ids(¢X), so that (¢X,¢Y’) is also such a pair. We
write g(X,Y) = (¢X,¢Y). This definition is consistent with the identification of a
matched pair with a configuration of triples.

Let K be a complex of configurations and let I" be a subgroup of X. We say
that K is a I'-symmetric complex, or, briefly, a I'-complex, if the action of I" on K
is simplicial in the sense defined in the preceding section. In a similar fashion, we
say that the input-output relation A is a I'-relation if g(X,Y) € A whenever g € I’
and (X,Y) € A.

It is straightforward to check that if (Z,0, A) is a well-posed task and A is a
I'-relation, then Z, O, and T are I'-complexes. Furthermore, the maps « and w
are ['-maps.

Now consider a protocol that is wait-free executable on the I'-complex K of input
configurations. We say that the protocol is I'-anonymous on K if 1t satisfies the
following property of executions (compare with [HR1]).

(EB): Let e be an execution with X, a simplex of K and let ¢ € I'. Then there is
an execution ge such that (1) the full input configuration of ge is obtained
from the full input configuration of e by the action of g, and (2) the event
(ge); is the same as e; except that all processes are permuted by g.

Note that (FE6)(2) means not only that the process associated with the event is per-
muted, but, for example, that the permutation is also applied to the view returned
from a scan. From (E6) it follows that F,. = gF., NFg. = gNF., X, = gX., and
Yge = gYe. It is not difficult to see that if the protocol is wait-free executable and
I'-anonymous on K, then P(K) is a I'-complex and Ay (K) is a ['-relation, and
hence Oy (K) and Tex(K) are I'-complexes. Furthermore, ¢, §, and ¢ are I'-maps.

Let £ be a I'-complex of inputs and suppose that a protocol is wait-free ex-
ecutable and ['-anonymous on K. In order to complete the diagram 3.2.1 in a
I'-symmetric fashion, it remains to arrange a chromatic I'-subdivision x(K) and a
span ¢ that is a chromatic I'-map. We shall not pursue here the general conditions
under which I'-equivariant spans can be found, but, rather, remain content to show
that they can be found when K is a rigid I'-complex. A simple condition on K that
ensures rigidity of the action of I is the following.

(R): For any simplex X = {xq,..., 2.} of K, val(zg),...,val(x,) are distinct.

Suppose that K is a rigid I'-complex of inputs on which a protocol is wait-free
executable and ['-anonymous. Since chromatic maps preserve the dimensions of
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simplices, applying Lemma 4.1.1 to the I'-maps ¢: P(K) = K and a: Tex(K) = K
shows that each of P(K) and 7ex(K) is a rigid I'-complex. Similarly, if (Z, 0, A)
is a well-posed task with A a I'-relation, and if the action of I" on 7 is rigid, then
from a:T — 7 we infer that the action of I" on 7T is rigid.

We can now give the following generalization of the Theorem on Spans.

Theorem 4.2.1: Let K be a rigid I'-complex of inputs, and consider a protocol
that is wait-free erecutable and I'-anonymous on K. Then there s a chromatic
I'-subdivision x(K) that is a rigid I'-complex and a I'-equivariant span ¢: x(K) —
PK).

Proof: The reader is referred to the proof of the Theorem on Spans in [HS3, pp. 35—
36]. The structure of the proof is to construct the subdivision x(K) and the span
¢ inductively on the skeleta of K. The topology of P(K) guarantees that once the
subdivision and span have been defined on the boundary of a simplex X, they can be
extended over X itself. We need only modify the argument, as in the discussion of
G-subdivisions of a rigid G-complex and the proof of Lemma 4.1.2 in the preceding
section, so that whenever we extend the subdivision and span to X, we also extend
I'-equivariantly to all simplices in the orbit I'X. O

Under the hypotheses of the theorem, we obtain the commutative diagram

V(K) —= P(K) —— Tes(K)
kb
K — K —— K
of rigid I'-complexes and ['-maps. Passing to quotients, we obtain

K r A pieyr P k)

|t |t [t
K/r — K/IT —— K/T

where [f,] is homotopic to the identity. If (Z,0, A) is a well-posed task with A
a ['-relation, if 7 is a rigid I'-complex, and if the protocol is a wait-free and -
anonymous solution, then we obtain the commutative diagram

X7 2= r@) LT
ool b
I — I ——1I
of rigid I'-complexes and ['-maps. Passing to quotients gives

oy r s payr M rr

l[fx] l[wl l[a]

/) —— I/IT —— I/
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The following generalization of Theorem 3.2.2 is now immediate.

Theorem 4.2.2: Let (Z,0,A) be a well-posed decision task with A a I'-relation,
T a rigid I'-complex, and T the associated task complex. Suppose also that the task
admits a wait-free and I'-anonymous solution.

(1) If 3« is a covariant functor on the category of finite cellular complexes and
cellular maps and if §. transforms homotopy equivalences into surjections,
then the morphism F.([e]): 5u(T /) = F«(Z/T) is a surjection.

(2) If §* is a contravariant functor on the category of finite cellular complezes
and cellular maps and if F* transforms homotopy equivalences into injec-
tions, then the morphism F*([a]):3(Z/T") = F*(T/T") is an injection.

As in Subsection 3.2, we can associate obstructions to the wait-free and I'-
anonymous computability of a task with I'-symmetric input-output relation and
rigid I'-complex of inputs by choosing an appropriate functor §, or §*.

5. APPLICATIONS

In this section we give some non-trivial examples of well-posed decision tasks
that have associated to them non-zero obstructions and therefore admit no wait-
free solution. All of these tasks have been considered before in the literature, and
none of the impossibility results below is new. Nor is any claim made that the
proofs using obstructions are simpler than proofs given previously. The goal is,
rather, to show that the obstruction method is powerful enough to yield interesting
impossibility results.

For each of the examples below, obstructions will be obtained using homology
with coefficients in the F of integers mod-2.

5.1 Consensus.

In the consensus task, each of the n+1 processes begins with an input value from
the set Vi = {0,...,m}, where m > 0. All input configurations are allowed. All
processes that finish the task are required to reach consensus in the sense that they
all have the same output value. It is also required that the common output value
of the finishing processes be the input value of at least one effectively participating
process. The input-output relation A therefore consists of all pairs (X,Y) of input
and output configurations such that ids(Y) C ids(X), vals(X) C V7, and vals(Y) =
{v} for some v € vals(X).

We first explore the topology of the input complex. Fix v € V; and let X,, denote
the unique full input configuration in which every process has input value v. Let S,
be the closed star of X, in Z. In other words, &, is the subcomplex of 7 consisting
of all configurations that have or can be extended to have v as a value. Also, let £,
denote the subcomplex of Z consisting of all simplices that do not meet X,,. The
simplices of £, are precisely those configurations X for which v € vals(X). Notice
that £, has m™*?! full simplices. Also, notice that

S,NL, =L,

v
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where ﬁi”‘l) denotes the (n — 1)-skeleton of £,,.

The realization |Z| can be deformed to a homotopy equivalent space J by con-
tracting |Sy| to a point. The deformation can be defined in two stages. In the
first stage, all configurations that have only the value v are contracted to a single
base point, b. This amounts to contracting | X, | to the point b, which we can think
of as the barycenter of |X,|. Simplices of £, are unaffected by the first stage of
the deformation. The realization of a simplex X in &, that is not a face of X, is
deformed as follows. X can be written uniquely as a join

X = Xo * X1 s
where X i1s a face of X, and X is a simplex of ﬁfﬁ‘l). Since |Xj| is deformed to
the point b, | X| is deformed to
[{b} = X1 .

The result of the first stage of deformation i1s again the realization of a simplicial
complex, 7', and the structure of 7’ is

= {0 ) Lo

£

In other words, Z' is obtained from £, by joining the (n— 1)-skeleton £V 4o the

point b. In the second stage of deformation, we simply contract |{b} * ﬁ&”‘1)| to b.
The result 1s the space

I=1Z1 /1S~ b= 1L, /160D ~ b

But the last space, formed by collapsing the (n — 1)-skeleton of an n-dimensional
complex to a point, is a wedge of n-spheres, one for each n-simplex of the original

complex. Thus,
I=\/5",

1

where we have written N = m"*!. Each full input configuration from £, gives rise
to one of the n-spheres by collapsing its boundary to &.

The reduced homology of a wedge of spheres has one generator in dimension &
for each k-sphere. Thus, we have

Ho(T)= H,(3) =TV .

It is worth spending a moment to describe homology generators in terms of the
original complex Z. Let X be a full input configuration from £, , so that v ¢ vals(X).
X gives an n-sphere in J by collapsing 1ts boundary to . In order to obtain the
corresponding n-sphere in Z, which we denote by Sx, we need to “uncollapse” the
boundary. Notice that each proper face X; of X determines a unique proper face
Xy of X, such that ids(Xp) N ids(X7) is empty and ids(Xp) U ids(X7) is the set
of all process identifiers. Then the join Xy % X is an n-simplex of §,. The union
of all such n-simplices, together with X and X, gives the desired sphere Sx. The
number of choices for X 1s

" n+1 n
Z( . ):2 +_9.

k=1
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Thus, when we add X and X,, we have 27*! n-simplices in Sx.

Next, we turn to the task complex. For each v € V7, let 7, denote the subcomplex
of T consisting of matched pairs (X,Y") for which vals(Y) = {v}. Notice that |T|
separates into connected components |7,|. Once v is understood, the configuration
Y contributes no information to a matched pair (X,Y) of 7,, and we see that 7, is
isomorphic as a complex to S,. Since |S,| can be contracted to a point, as in the
construction of J, each component |7,| can be contracted to a point, and so |7 is
homotopy equivalent to a space consisting of m + 1 points. In particular,

Ho(T)=0.

This means that o, must be the zero map in dimension n, and so all of the non-zero
homology classes in H,(Z) are obstructions to wait-free solution of the consensus
task.

5.2 Set consensus.

The set consensus task of Chaudhuri [Ch] is a generalization of the consensus
task. In the k-set consensus task, each of the n 4+ 1 processes begins with an
input value from the set Vi = {0,...,m}, where m > n. All input configurations
are allowed. The finishing processes are required to choose output values from
among the input values of the effectively participating processes, and the set of all
output values of finishing processes is required to have no more than & elements.
The input-output relation A therefore consists of all pairs (X,Y) of input and
output configurations such that ids(Y) C ids(X), vals(Y) C vals(X) C V7, and
[vals(Y)| < k.

The task just described is also referred to as (m + 1, k)-consensus (see [HR1]).
The task admits trivial solution for £ > n+ 1, so we henceforth assume that & < n.
Tt is easy to see that any solution to (m—+1, k)-consensus for m > n will implement
a solution of (n + 1, k)-consensus. Also, any solution to (n + 1, k)-consensus for
k < n will implement a solution of (n+ 1, n)-consensus. Thus, we consider only the
(n+ 1, n)-consensus task below. The case n = 1 reduces to consensus as discussed
in the preceding subsection, so we assume n > 2.

It is known (see [SZ, BG2, HS1]) that the (n 4+ 1,n)-consensus task does not
admit wait-free solution. At present, we do not have a proof that the impossi-
bility of wait-free solution of (n + 1,n)-consensus is detected by the obstruction
method. Nevertheless, there seems to be good evidence that obstructions exist us-
ing homology with coefficients in F. In this subsection, we show one way to study
the homology map «. and report results of automated computations that show
the existence of obstructions to the wait-free solution of the (3,2)-, (4,3)-, and
(5,4)-consensus tasks.

The input complex for (n 4 1, n)-consensus is the same as the input complex for
consensus described in the preceding subsection with m = n. Thus,

N
Zl~3=\/ 5",
1

where N = n”*!. Obstructions can therefore exist only in dimension n, and we
have
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The output complex O can be viewed as the subcomplex of the input complex
consisting of simplices X for which |vals(X)| < n. Notice that

=Y c o,

and the simplices of Z — O are precisely the (n+ 1)! full configurations in which the
input values are distinct. Let us fix the process identifiers as 0,...,n. We can use
the symmetric group £ on {0,...,n} to index the full input configurations with
distinct input values by writing

X7 =1{(0,0(0)),...,(n,o(n))}
for o € 2. Tt follows that
Ho(Z,0) = Cy(Z,0) =TT
with basis the set {X%:0 € X}.
Lemma 5.2.1: The tmage of the projection map
pHp(Z) = Hp(Z,0)

is spanned by the set of all sums of the form X7 + X7, where o,7 € X¥. H,(O) is
of rank n"Tt — (n + 1)1+ 1; for any 0 € ¥, {0X°} is a basis for H,_1(Q), which
1s of rank one.

Proof: Since Hyp,_1(Z) = 0, the inclusion of @ in 7 gives rise to a long exact sequence
0= Ho(O) = Ho(T) B H (Z,0) D H\_1(0) -0 . (%)

We first show that every sum of the form X% 4+ X7 is in the image of p. Since
X is generated by transpositions, it suffices to prove the case when 7 is obtained
from o by a transposition. To ease notation, we assume, without loss of generality,
that o(¢) = 7(¢) for ¢ > 2, and we write

c(0)=v=7(1) and o(1)=w="7(0),
where v £ w. Let
F=X"NX"={(2,6(2)),...,(n,c(n))},
and let
X ={(0,w), (1,w)}« F .

Recall the notation from the discussion of consensus in the preceding subsection.
We have X € £,, and we can build an n-sphere Sx from X by joining faces of
X to faces of X,. Recall that Sx represents the homology class in H,(Z) that
is identified via isomorphism with the class in H,(J) obtained by collapsing the
boundary of X to a point. Notice that each of X7 and X7 is a simplex in Sx,
obtained as

X7 ={0,v)}* ({(1,w)}x F) and X~ ={(1,v)}* ({(0,w)}* F) .

Furthermore, every simplex of Sx apart from X7 and X7 has either the value v
repeated or the value w repeated. Thus,

p:Sx — X7+ X7 .
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Now we show that the image of p is generated by sums of the form X7 + X7.
Fix v and recall the notations from the discussion of consensus. A basis for H, (7)
is given by the set of homology classes represented by spheres Sx, where X ranges
over the full configurations from £,. If |vals(X)| < n, then no simplex of Sx
has distinct values. In this case, Sx C O, and we have p(Sx) = 0. Otherwise,
vals(X) ={0,...,n}—{v}, and X has one repeated value w. Then Sx is as in the
preceding paragraph, and so p(Sx) = X7 4+ X7 for appropriately chosen ¢ and 7.

The statements about H,,(O) and H,_1(O0) are now immediate from the exact
sequence (x). O

The task complex T consists of all matched pairs (X,Y") such that vals(Y) C
vals(X) and |vals(Y)| < n. The topology of 7 is more complicated than in the
case of consensus, and the dimension of H,(7) is large compared to that of Hy (7).
Many of the classes in H,(7T) map to H,(O), though. In order to make this precise,
we introduce a subcomplex § C 7. A matched pair (X,Y) is in § if and only if
it can be extended to a full matched pair (X', Y’) € A with X’ € O. In this case,
vals(X)Uvals(Y) C vals(X') and |vals(X')| < n, so a necessary condition for (X,Y)
to be in § is

[vals(X) Uvals(Y)| < n . (A)

If, in addition to (A), we have
[vals(Y) — vals(X)| <n + 1 — |ids(X)] , (B)

then we can find a full extension X’ of X satisfying vals(X”’) = vals(X) U vals(Y),
and it follows that (X,Y) € S.

We let o’ denote the restriction of a to §, and we let o’ denote the map of pairs
(T,8) — (Z,0) arising from «. Then we have the following commutative diagram
with exact rows.

0 —— Hp(S) —— H(T) —— Hu(T,S8)

la; la* lag (5.2.2)

0 —— H,(0) —— H,(I) —— H,(Z,0)

The map o), is actually a surjection. This follows because we can form an
embedding
5:0—=8

by A(Y) = (V,Y). Thus, o o 3 is the identity map on O, and surjectivity of o,
follows. From the diagram (5.2.2) we then have that the image of «, contains
H,(0) and, further, that . surjects only if the image of & contains the image of
p.

In fact, the behavior of o/ is rather restricted, as we shall see in Proposition 5.2.3
below. We first make some observations about the relative homology H, (T, S).
The relative chain group C,(7,S) has as basis the set of matched pairs of full
configurations from 7 that can be written in the form (X7?,Y). Since vals(X7)
contains all input values, ¥ can be any configuration with |vals(Y)| < n. It is not,
however, true that 9(X?,Y) is a chain from 8, and so (X?,Y") itself is not a relative
cycle.
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In order to understand which faces of (X?,Y) are in § and which are not, we
use the following face notation: for the configuration X = {(0, vg), ..., (n,v,)} and
for 0 <17 < n, we write

FZ'X =X — {(z,vl)} .
For a matched pair, F;(X,Y) = (F; X, F;Y). With this notation,
A(X7,Y) = (FoXT, FoY) + -+ (Fa X7, F,Y) .
Since |vals(F; X7)| = n, it follows that (F; X7, F;Y) satisfies (B), and thus (F; X7, F;Y)
isin 8 if and only if
[vals(F; X7) Uvals(F;Y)| < n. (A)
Since vals(F; X7) contains all values apart from o(i), (A’) holds if and only if
o(i) & vals(F;Y) . (©)

Since |vals(Y)| < n, (C) must hold for at least one ¢, 0 < i < n, and so (X7,Y)
has at least one face in &. On the other hand, ¥ must have at least one repeated
value, so (C) must fail for at least one ¢, 0 < ¢ < n. Thus, (X?,Y) has between 1
and n of its faces in §. Notice also that if & # 7, then matched pairs of the form
(X7,Y) and (X7,Y”) cannot share a face of dimension (n — 1).

Consider a chain T =T1 + -+ -+ T, in Cp(7,S), where T; = (X74,Y;). Tis a
relative cycle, and hence a homology class in H,(7,S), if and only if the faces of
the various 7} that do not lie in S cancel in pairs over the field IF. Suppose that T’
is a relative cycle. Since T; and T} can share a face of dimension n — 1 only if they
have the same input configuration, the chain

=27
g;=0
must itself be a relative cycle. We can therefore decompose T' as
=317,
ocelX
where each T is a relative cycle.
Proposition 5.2.3: The map o in dimension n is either the zero map or a

surjection on Hp(Z,0). If o is the zero map in dimension n, then a. has image
H,(0) in dimension n and therefore does not surject on Hy(T).

Proof: Suppose that o is not the zero map. Then of(7) is non-zero for some
relative cycle T € H,(7,S). Decompose T as

=) 17
ocelX
Then of(7?) must be non-zero for some ¢ € X. This means that X7 is in the
image of /. But then by symmetry it follows that «f surjects on H,(Z,O).
The statement concerning «. follows from the diagram (5.2.2). O

From the proof of the proposition and the preceding discussion, we see that in
order to show that o is zero in dimension n, it is enough to check that for a fixed
choice of o, any relative cycle T as above has an even number of simplices. Such a
computation is straightforward to automate, which we have done for n = 2, 3, and
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4. In each case, we have found that o/ is the zero map in dimension n, and therefore
the non-zero classes in H,(Z)/H,(O) are obstructions to wait-free solution of the
(n+ 1,n)-consensus task for these values of n. It seems reasonable to conjecture
that o is always the zero map in dimension n.

5.3 Renaming.

The renaming task was posed in [At+]. We follow the description of the task in
[HR1]. The n+ 1 processes begin with distinct names from V7 = {0, ..., N}, where
N > n. The processes are required to choose distinct output names from Vo =
{0,..., K}, where n < K < N. The input-output relation A therefore consists
of all pairs (X,Y) of input and output configurations such that ids(Y) C ids(X),
vals(X) C Vg, vals(Y) C Vo, and

[vals(X)| = [ids(X)| and |vals(Y)| = |ids(Y)] .

(The last equalities impose the distinctness requirements on the names.)

The task just described can be referred to more precisely as the (N, K) renaming
task. In order to avoid trivial protocols, some condition of anonymity or comparison
base with regard to process identifiers is appropriate. In [At+], the authors show
that a wait-free comparison-based solution exists in the message-passing model
when K > 2n 4+ 1, but not for K < n + 2. On the other hand, [HS1] shows
that there is no wait-free comparison-based solution in the read-write model when
K < 2n. Anonymous solutions for renaming are considered in [HR1], while [HS3]
treats comparison-based solutions.

In this subsection, we consider X-anonymous wait-free solutions for the (n+1, n)
renaming task with n > 1. X always denotes the symmetric group on the process
identifiers. The choices N = n + 1 and K = n are special and have been made
because they simplify the topology considerably. The distinctness requirements on
the names ensure that condition (R) is satisfied by the input and output complexes.
As pointed out in Section 4, it follows that the action of X' on each of the complexes
7,0, and T 1s nigid.

To simplify notation, we assume that the process identifiers are 0,...,n. The
output complex O has (n+1)! full configurations, obtained by permuting the output
values from Vo = {0,...,n} among the processes. As in the preceding subsection,
we use the elements of X to index these configurations. For o € X, we write

Y2 ={(0,0(0)),...,(n,o(n))}.

For o # 7, the dimension of the intersection Y7 NY7" is at most n — 2, with
equality if and only if 7 1s obtained from ¢ by a transposition. Notice that if Y is
an output configuration, the orbit XY consists of all configurations Y’ such that
vals(Y’) = vals(Y'). In particular, Y7 contains all the full output configurations.
It follows that the quotient space (3/X is a realization of the simplicial complex of
non-empty subsets of Vo, which is the complex of faces of a single n-simplex.

Next, we consider the input complex. We show first that Z is a connected pseudo
n-manifold [Mu, p. 261]. An (n—1)-dimensional input configuration X; determines
the unique process ¢ € ids(X7) and the two values v, w of V7 — vals(Xy). Tt follows
that X; can be extended to exactly two full input configurations, namely

{({,v)} * X1 and {({,w)}* Xy .
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Now suppose that X = {(0,vg),...,(n,v,)} is a full input configuration and pick
two processes, ¢ and j. Let

F=X- {(iavi)’ (ja v])} 5

let w be the unique value in V7 — vals(X), and define

E:{(i’w)’(j’vj)}*Fa E/:{(i’w)’(javi)}*Fa E//:{(i’vj)’(j’vi)}*F'

Then X N =, ZNE' and =/ N E" are all (n — 1)-simplices. =" results from X
by applying the transposition from X that interchanges ¢ and j. By repeating this
procedure, it follows that if X’ is in the orbit X' X, then X can be connected to X’ by
a sequence of full input configurations such that successive configurations intersect
inan (n—1)-simplex. In order to connect X similarly to a full configuration X’ from
a different orbit, we first connect X to some full configuration in XX’ by changing a
single value in X, as by the sequence X, = above. (Notice that = € XX’ if and only
if vals(=) = vals(X’), and this can be arranged by choosing (¢, w) appropriately.)
Then the preceding procedure can be used to find a sequence from = to X’. This
proves that Z is a connected pseudo n-manifold. Tt follows [Mu, p. 262] that

Ho(I) =T,

with generator the cycle that i1s the sum of all full input configurations.

Since the orbit of an input configuration X consists of all configurations X’ such
that vals(X’) = vals(X), it follows that the quotient space Z/X is a realization of
the simplicial complex of subsets S C V; satisfying 1 < |S| < n+1. The non-empty
subsets of V7 form the complex of faces of an (n + 1)-simplex, and so Z/X realizes
the subcomplex of proper faces. Z/X is therefore homeomorphic to an n-sphere. It
follows that

Ho(Z/X)=TF,

and the map m,, induced by the projection map
mI—=>I/%,

sends the generator of H,,(Z) to (n + 1)! times the generator of H,(Z/X). Since
(n+ 1)!is even, m, is the zero map in dimension n.

The task complex T consists of all matched pairs (X, Y") such that vals(X) C V7,
vals(Y) C Vo, and |vals(X)| = [ids(X)| = |ids(Y)| = |vals(Y)|. Fix a full output
configuration Yy, and let

@ = w_l(YO) )

the subcomplex of 7 consisting of pairs whose output configuration is a face of Yj.
We define a simplicial map

fo:T =9

as follows. For any matched pair (X', Y”) in 7, there is a unique matched pair
(X,Y) with Y C Y; such that (X7, Y”) is in the orbit X'(X,Y"). By rigidity, there is
a unique simplicial map (X', Y’) = (X,Y) induced by elements of X', and this map
is the definition of fx on (X’,Y’). The uniqueness ensured by rigidity guarantees
that the definition of fy is consistent. Let 7’ denote the restriction of the projection
T — T/X to Q). Since 9 contains exactly one simplex in each orbit of X it
follows that 7 /X is a a realization of a simplicial complex isomorphic to ), and
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7! determines this isomorphism. Furthermore, any pair (X,Y) in 9 is determined
by its input configuration X. Writing o’ for the restriction of « to ), o’ gives an
isomorphism of complexes ) =2 7. Summarizing, the following diagram commutes:

/7- fE @ o I

T/ = 7/x gy

We have shown already that 7:7 — Z/X induces the zero map in n-dimensional
homology. Since o' and #’ are isomorphisms of complexes, it follows that [«] also in-
duces the zero map in n-dimensional homology. Thus, the nonzero class in H, (Z/X)
is an obstruction to X-anonymous wait-free solution of the (n+1, n) renaming task.

APPENDIX: TOPOLOGICAL BACKGROUND

In this appendix, we attempt to give a quick introduction to the material from
algebraic topology that has been used to study questions of computability in models
of fault-tolerant distributed systems. We also highlight some facts that do not seem
to have been cited before in this line of research, but which are needed in the present

paper.

A.1 Topological spaces.

A topological space is a set X together with a specification of the family of subsets
of X that are open. The family of open subsets of X is required to include X, the
empty set, and to be closed under arbitrary union and finite intersection. Such a
family of open sets is called a topology for X. Intuitively, the topology determines
the way in which X is put together internally, what parts of X are “connected,”
a notion of “closeness” of points of X, and so on. A common way of generating
a topology for X is through a distance function (or metric) on X. A distance
function on X is a symmetric function d from X x X to the non-negative real
numbers that assigns zero distance from a point to itself (i.e., d(z, ) = 0), assigns
positive distance to a pair of distinct points, and satisfies the triangle rule:

d(z,z) < d(x,y)+d(y,z) .

From a distance function d, one can define the open e-neighborhood of a point
z € X to be
Bz, X) ={s € X:d(z,2') < e},

a generalization of open neighborhoods from calculus. One then defines a subset
Y C X to be open if and only if for every y € Y there is an € > 0 such that
Be(y, X)€Y .

The topology formed in this way is called the metric topology for X arising from d.
For example, any subset X of Fuclidean space R” can be topologized by restricting
the usual Euclidean distance function to X. In this way, one can obtain topologies
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for all the familiar hypersurfaces of multi-variable calculus. Common examples are
the unit n-sphere (the set of unit vectors from R"*1)  tori of various dimensions,
projective spaces, and so on. Every topological space considered in this paper can
be realized as a subset of an appropriate Euclidean space together with the metric
topology just described.

A.2 Continuity, homeomorphism, and homotopy.
If X and Y are spaces with metric topologies, then continuity of a function
f: X = Y is defined as in calculus: f is continuous if and only if

lim () = f(z0)

for every z#9 € X. Continuity 1s usually the minimum requirement for a function
between topological spaces to be of topological interest. A generalization of the
Intermediate Value Theorem from calculus shows that continuous images of con-
nected spaces are again connected. Similarly, a generalization of the Extremum
Principle from calculus shows that continuous images of compact spaces are again
compact. Continuous functions between topological spaces are often referred to
as continuous maps, or simply maps. Compositions of continuous maps are again
continuous, and the identity function from a space X to itself is continuous. A map
f: X =Y is called a homeomorphism if it is bijective and the inverse f~1:Y — X
1s also continuous. In this case X and Y are said to be homeomorphic. Homeomor-
phic spaces are regarded as topologically equivalent. For example, the surfaces of a
tetrahedron, a cube, and a solid circular cone of finite height are all homeomorphic
to the unit 2-sphere.

A weaker notion of equivalence of topological spaces can be obtained using con-
tinuous deformations, or homotopies. Two maps f,g: X — Y are homotopic, writ-
ten f ~ g, if there is a map

F: X x[0,1]>Y

satisfying F/(—,0) = f and F(—,1) = ¢g. Such F is called a homotopy from f to
g. Here [0, 1] denotes the unit interval of the real line, and the cartesian product
X % [0,1] can be thought of as a cylinder of unit height and with cross section X.
For each fixed t € [0,1], F'(—,¢): X — Y is a map, and as t moves from 0 to 1,
F(—,t) deforms continuously from f to g. Notice that by taking F(z,t) = f(x), it
follows that f is homotopic to itself.

ExaMPLE A.2.1. Let X be all of R let f: X — X by f(x) =0, and let g be the
identity map of X. Then f ~ ¢ via the homotopy

Faz,t) =tx.

ExaMPLE A.2.2. Let X be the space of non-zero vectors of R™, let f: X — X by
f(z) = x/|x|, the map sending a vector # to the unit vector in the same direction
as ¢, and let g be the identity map of X. Then f ~ ¢ via the homotopy

F(x,t):tx—i—(l—t)%.

(The reader should check that F'(x,t) # 0 for x € X and ¢ € [0, 1].)

If f:X - Y and g:Y — X are maps such that f o g i1s homotopic to the identity
map of Y, then ¢ is called a right homotopy inverse for f, and if g o f is homotopic
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to the identity map of X, then ¢ is called a left homotopy inverse for f. If g is
both a left and right homotopy inverse for f, then the same is true of f for g. In
this case, f and ¢ are called homotopy inverses of one another and the spaces X
and Y are said to be homotopy equivalent, which is written X ~ Y. Notice that if
f: X — Y is a homeomorphism, then f and f~' are homotopy inverses, and thus
homotopy equivalence is indeed a weaker notion than homeomorphism.

EXAMPLE A.2.3. Let X = R?”—{0} and let Y = {& € R": |z| = 1}, the unit (n—1)-
sphere. Define f: X = Y by f(#) = #/|z|, and define ¢: Y — X by g(y) = y. Then
the homotopy of Example A.2.2 shows that go f is homotopic to the identity map of
X, and the composition fog is the identity map of Y. Thus, f and ¢ are homotopy
inverses, and X ~ Y.

A.3 Categories and functors.

The goal of algebraic topology is to study topological spaces by systematically
associating to them algebraic objects that are topological invariants. By “topolog-
ical invariant” we mean an object that i1s the same, in an appropriate sense, for
homeomorphic spaces. The difference of the algebraic invariants associated to two
spaces then provides a measure of the topological difference of the spaces. The most
useful invariants are defined not only on spaces, but on maps as well. The formal
way to describe such invariants is with the language of categories and functors.

For concreteness, let us fix a field F and assume that the algebraic objects will be
taken from among the family of all IF vector spaces. The algebraic functions between
such vector spaces are the F-linear maps. The composition of two [F-linear maps is
F-linear, and the identity function on any F vector space is [F-linear. Formally, one
then says that the IF vector spaces and [F-linear maps form a category. Similarly,
the family of topological spaces and continuous maps form a category. A systematic
association of invariants to topological spaces and maps can then be expressed by
a functor § from the topological category to the category of F vector spaces. For
each topological space X, F(X) is an [ vector space, and for each continuous map
£ X =Y, 5(f) is an F-linear map from the vector space F(X) to the vector space
F(Y). The functor is required to send the identity map of X to the identity F-linear
map of F(X), and it is also required to respect compositions in the sense that

S(fog)=3(f)oF(g)

whenever fog is defined. Such a functor is called covariant because it preserves the
order of compositions of maps. An example of such a functor 1s singular homology
with coefficients in the field F. One can also consider functors that always reverse
the order of compositions, and such functors are called contravariant. An exam-
ple is singular cohomology with coefficients in IF. Contravariant functors typically
arise when a duality principle is applied, in which case the roles of injections and
surjections tend to be interchanged.

There is usually a trade off between how finely a functor detects topological dif-
ferences and how easily values of the functor can be calculated. Common functors,
such as singular homology, singular cohomology, and the homotopy group functor,
do not distinguish spaces that are homotopy equivalent. More precisely, if § is one
of these functors and if f, g: X — Y are homotopic maps of topological spaces, then
3(f) and F(g) are equal as maps from F(X) to §(Y). It follows that if X ~ V|
then F(X) and F(Y') are isomorphic as algebraic objects.
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A.4 Simplicial complexes and maps.

The topological spaces that arise in the study of computability in fault-tolerant
distributed systems are given by discrete data, such as configurations of input values
for the processes, and these spaces can be described as simplicial complexes. All
simplicial complexes considered in this paper are finite. A finite simplicial complex
is a finite family K of non-empty finite sets that satisfies the following hereditary
property: if S € K and S’ is a non-empty subset of S, then S’ € K. An element
S € K is called a simplex, and the points of S are its vertices. The dimension of
a simplex is one less than the number of its vertices, and a simplex of dimension &
is called a k-simplex. If S’ is a non-empty (proper) subset of S, then S’ is called a
(proper) face of S. The complex K is said to be a pure complex of dimension n if
for each simplex S € K there is an n-dimensional simplex S; € K such that S is a
face of S1. In this case, an n-simplex of K 1s said to be a full simplex. The union
of all simplices of a complex gives the vertex set V' of the complex. It is customary
to identify the vertex v with the O-simplex {v}. More generally, the collection of
all faces of a simplex S forms a simplicial complex §&. The distinction between S
and § 1s often blurred.

If K has no simplex of dimension greater than one, then (V| K) is an undirected
graph. By “drawing” a graph as a subset of R” in such a way that edges intersect
only at vertices, the graph is realized as a topological space. In a similar fashion,
any simplicial complex K can be realized suitably as a subset |K| of R™ for large
enough n. We will refer to such |K| as a realization of K.1° A simple way to obtain
|K]| is the following. Take n to be the number of elements of V' and to choose for
each vertex v a vector |v| € R”™ such that the set {|v|: v € V'} is linearly independent.
To a simplex S € K, one associates the convex hull |S| of {|v|:v € S}. If vg,. .., vp
are the vertices of S, then |S| is the set of points © € R™ that can be written in the

form
k
xr = Zti|vi| s
i=0

where the ¢; are non-negative real numbers satisfying Zf:o t; = 1. For any such
z, the corresponding tuple (¢g,...,%x) is unique, and these numbers are called the
barycentric coordinates of ®. The “central” point of |S| is obtained when each
t; = 1/(k+ 1), and this point is called the barycenter of |S|. The topological space
|K| is obtained as the union of the sets |S| for all simplices S € K. Notice that the
linear independence of {|v|: v € V'} ensures that

1S|A 18] = SN S (A4.1)

for any simplices S,.5” € K. This property generalizes the condition that in drawing
a graph, edges must intersect only at vertices. In general, any way of picking the
points |v| in R™ so that the convex hulls associated to simplices satisfy (A.4.1)
gives an admissible realization. Any two such realizations of K are homeomorphic
topological spaces. We abuse language by referring to the realization |K|, when
what is meant is any one of the possible homeomorphic choices for |K|.

If S is a 1-simplex, then |S| is a line segment; if S is a 2-simplex, then |S] is a
triangular face; if S is a 3-simplex, then |S]| is a solid tetrahedron; and so forth.

10The notation |K| for a realization is standard, although it conflicts with the common notation
for cardinality of a set. Context should always make clear the meaning of | - |.
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Thus, the convex hulls of the various simplices of K give a generalized triangular
decomposition, or triangulation, of |K|, which is the analog of the familiar notion
from geometry of triangular decomposition of a planar polygonal region.

Let K and £ be simplicial complexes with vertex sets V' and W, respectively. A
simplicial map from K to £ is a function f:V — W such that f(S) is a simplex
of £ whenever S is a simplex of K. Notice that f(S) has dimension no greater
than that of S. The simplicial map f determines a function K — £ by S+ f(5),
although not every function X — £ arises in this way. When we write f: KX — L,
we mean that f is a simplicial map. If a simplicial map f is bijective as a map
of vertex sets, then we say that f is an isomorphism of simplicial complexes. The
identity function V' — V determines the identity simplicial map X — K, which is
an isomorphism. The composition of two simplicial maps is simplicial. Thus, the
finite simplicial complexes and simplicial maps form a category.

A simplicial map f: K — £ gives rise to a continuous map |f|:|K| — |£] in the
following way. First define |f|(|v|) = |f(v)| for each vertex v € V. Then define
|f| on the convex hull |S| of a simplex S € K by extending piecewise-linearly.
More precisely, if vy, ..., v, are the vertices of |S|, then for a point z € |S| with
barycentric coordinates (%o, ...,t), define

@) = Y ulrt)

It is straightforward to check that the map |f| defined in this way is continuous. If
J is an isomorphism of simplicial complexes, then |f| is a homeomorphism.

Notice that if f is the identity simplicial map of K, then |f] is the identity
map of [K|. Tt is not difficult to check that if f and g are simplicial maps whose
composition fog is defined, then |fog| = |f|o]|g|. Thus, |-| can be interpreted as a
covariant functor from the category of simplicial complexes and simplicial maps to
the category of topological spaces and continuous maps.'! The distinction between
K and |K] is often blurred, and when we speak of topological properties of K, we
mean those of |K].

A simplicial complex K is a subcomplexr of the complex £ provided KX C L. In
this case, the inclusion ¢ of the vertex set of K in the vertex set of £ is a simplicial
map, and any realization |£| determines a unique realization |K| C |£| such that
this last inclusion is |¢|. Particularly important examples of subcomplexes are the
skeleta of a complex. For a simplicial complex K and a non-negative integer n, the
n-skeleton of K, denoted K" is the subcomplex of K consisting of all simplices of
dimension at most n. K(© is identified with the vertex set of K, while K(!) is an
undirected graph. If § the complex of faces of an (n + 1)-simplex, then |S()] is
homeomorphic to an n-sphere.

If S and T are disjoint simplices, then their union is given the special notation
S « T and called the join of S and T'. S % T 1s a simplex of dimension one more
than the sum of the dimensions of S and 7. If K and £ are disjoint complexes,
then the join K % £ is the complex of all simplices of the form S, T', or S x T, where
S 1s a simplex of K and 7' is a simplex of £. In the special case where £ consists

11 Strictly speaking, we must make a choice of realization |K| for each finite simplicial complex
K, or we must understand |K| to be an appropriate equivalence class.
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of a single vertex v, the join K x {v} is called a cone. The realization |K * {v}| has
the structure of a cone with vertex |v| and cross sections homeomorphic to |K|.

A.5 Chromatic complexes and maps.

The simplicial complexes that arise in the study of computability in fault-tolerant
distributed systems have additional data associated to the vertices. The vertices
give pairings of processes with associated values of an appropriate type, such as
input values or output values. Thus, each vertex can be thought of as having a
color, which is the identifier of the associated process. The vertex is also labelled
by a value, but we reserve the term “color” to mean the process identifier. A simplex
in such a complex represents a consistent and mutually compatible arrangement of
values among processes. The assignment of distinct values to a single process is
not consistent, and so for these complexes it is required that distinct vertices in a
simplex have distinct colors.

To make this requirement somewhat more precise, let us fix a simplex S, to be
thought of as the set of process identifiers, and let & be the complex of faces of S.
An S-chromatic complex 1s a simplicial complex K together with a simplicial map
cic: K — § such that cx(X) is a k-simplex of § whenever X is a k-simplex of K.
The map cx is the coloring of the complex. If £ is another S-chromatic complex,
then a simplicial map f: K — £ is called S-chromatic if ¢z o f = ¢x. In this case,
F(X) must be a k-simplex of £ whenever X is a k-simplex of K. When the simplex
S of colors is understood, it is dropped from the notation.

A.6 Subdivisions and simplicial approximation.

A simplicial map f: K — £ gives rise to a continuous map |f|: |[K| — |£|, but a
continuous map g: |K| — |£| need not be of the form | f| for any simplicial f. In fact,
¢ need not even be homotopic to any |f|. The reason is that | f| is severely restricted
by the condition of piecewise-linearity arising from the fixed simplicial structure of
K. A similar situation arises in calculus, when a smooth curve 4:[0,1] — R” is
approximated by a polygonal curve obtained by connecting the points y(z;) for a
partition {x;} of [0, 1]. The strategy for improving the polygonal approximation is
to refine the partition of [0,1]. The analogous refinement for X produces a finer
triangulation of |[K| and is called a subdivision.

To be precise, let K be a simplicial complex with realization |[K|. A subdivision
of K is a simplicial complex o(K) for which there is a realization |¢(K)| that is
equal to |K| and which satisfies the following properties.

(1) For every simplex S of o(K) there is a simplex X of K such that |S| C | X].
The minimal such X is called the carrier of S, written carrier(S).
(2) For every simplex X of K, there is a finite collection Sy, ..., S, of simplices
of ¢(K) such that | X|=[S1|U---U[S,].
The convex hulls |S1], ..., |Sr| of condition (2) give the refined triangulation, or
subdivision, of | X]|.

The barycentric subdivision of K is a uniform subdivision that ensures that every
simplex of K is divided non-trivially. This subdivision can be described inductively
on the skeleta. For each simplex X of K, we add the barycenter b of | X|, which is a
new vertex if X is of dimension greater than zero. If X is of dimension greater than
zero, then the proper faces of X are assumed already to have been subdivided, and
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each join of {b} to a simplex in the subdivision of a proper face of X is added as a
new simplex.

By iterating barycentric subdivision, one can obtain arbitrarily fine subdivisions
of K, which are analogous to partitions of arbitrarily fine mesh in calculus. It is
a theorem that if g:|K| — |£] is a continuous map, then for a sufficiently fine
subdivision ¢(K) of K there exists a simplicial map f:o(K) — £ that approximates
g in the sense that |f| ~ g. (See [Mu], §§14-16.)

Now fix a subdivision ¢(K) of £. We can identify the realizations |o(K)| = |K]|.
The identity map |o(K)| — |K| is continuous and therefore can be approximated
simplicially, perhaps after further subdividing ¢(K). Tt turns out that no further
subdivision 1s necessary, according to the following

Lemma A.6.1: Let K be a finite simplicial complex, and let o(K) be a subdivision.
There exists a simplicial map f:0(K) = K such that f(S) C carrier(S) for every
simplex S in o(K). For any such f, the map |f|:|c(K)| = |K| on the realizations
is homotopic to the identity map |o(K)| — |K| relative to the vertices of K.

See, for example, Lemma 3.4.2 of [S]. A generalization of this Lemma is proved in
Section 4.

If K is a chromatic complex, then a chromatic subdivision of K is a subdivision
X (K) of K that is itself a chromatic complex and for which the colors of the vertices
of any simplex S of x(K) form a subset of the colors of the vertices of carrier(S).
Standard chromatic subdivision is a construction similar to barycentric subdivision
that gives uniform chromatic subdivisions. When subdividing X, one adds a cluster
of vertices bearing all the colors appearing in X in an appropriate arrangement
about the barycenter and then makes the joins that are allowed by the chromatic
condition. See [HS2] for details.

Suppose K is a chromatic complex and x(K) is a chromatic subdivision. For
each simplex S in x(K), there is a unique face of carrier(S) whose vertices have
the same colors as S, and there 1s a unique color-preserving vertex map from S to
that face. It follows that there is a unique chromatic simplicial map f,: x(K) = K
satisfying f, (S) C carrier(S) for every simplex S in x(K). From Lemma A.6.1, it
follows that | f, | is homotopic to the identity map |x(K)| — |K].

A.7 Simplicial homology.

There are many different homology functors, defined on various categories and
tailored to detect various nuances of spaces. We describe one of the simplest of
these, the simplicial homology functor. We will use only coefficients in the two-
element field IF of integers mod-2. This restriction simplifies the presentation by
avoiding orientations. See [Mu] for a more general account.

Let K be a simplicial complex. An n-chain of K 1s a sum S; + -+ + Si, where
each S; is an n-simplex of K. Repeated occurrences of the same simplex in the
sum are understood to cancel in pairs. Such a sum can be thought of as a linear
combination with coefficients from F, where the simplices themselves are vectors.
The set of n-chains of K forms an [F vector space, denoted ), (K), and has as a basis
the set of n-simplices of K. If K has no simplex of dimension n, then C,(K) = 0.
The sequence of all C\,(K), n > 0, is called the simplicial chain complex of K and
is denoted Cy(K). There is a boundary operator d on Cy(K) defined as follows.
For n > 1, an n-simplex S € K has n + 1 faces of dimension n — 1, and 9, (S) is
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defined to be the chain that is the sum of these faces. For a vertex v, we understand
Jo(v) = 0. This definition of 9, on a basis of Cy,(K) extends uniquely to an F-linear
map p: Cp(K) = Cp—1(K), where we understand C'_1(K) = 0. A key property of
the boundary operator is that

O 0 pyr =0 (A7.1)

for n > 0.

An n-chain whose boundary is zero is called an n-cycle. The kernel of §,, is the
subspace of n-cycles, which is written as Z,(K). From (A.7.1), it follows that the
image of J,41 is a vector subspace of 7, (K), and the quotient vector space

Ho(K) = Zn(K) /im 8y 41

is defined to be the n-dimensional homology of K. If T € Z,(K), we write [T
for the coset in H,(K) represented by T'. Tt is customary to write H.(K) for the
sequence of all H,(K), n > 0. Some useful examples of homology are given in
Subsection A.9, after we describe the relationship between simplicial and singular
homologies.

Notice that the definition of simplicial homology relies critically on simplicial
structure. It is not obvious how the particular simplicial structure of a complex
K, and thus the corresponding triangulation of a realization |K|, affects H,(K).
In fact, two simplicial complexes with homeomorphic realizations have isomorphic
simplicial homology, and so simplicial homology is a topological invariant. One
strategy for the proof of this fact uses subdivision and simplicial approximation
(see Chapter 2 of [Mu]).

An attractive feature of the simplicial homology H.(K) is that it can be computed
effectively from K. Once K has been represented, the boundary operators are
easily calculated and can be represented by matrices. The homology H,(K) is then
computable by using Gaussian elimination. See [Mu, §11] for more details. Notice
that since K is finite, the dimensions of the simplices of K are bounded. If N is the
maximum dimension of any simplex of K, then C,,(K) = 0 for n > N. Tt follows

that H,(K) =0 for n > N, and
Hn(K)=2Zn(K) .

If f:K — £ is a simplicial map and if S is an n-simplex of X, then we define
fa(S) = f(S) if f(S) is an n-simplex, and f,(S) = 0 if f(S) is of dimension less
than n. This definition on the basis of C),(K) gives a unique extension to a linear
map fin: Cp(K) = Cpn (L), which is referred to as the map of n-chains induced by f.
The sequence of all such f,, n > 0, is denoted f;: C;(K) — Cy(£) and is called the
chain map induced by f. One checks that for n > 0,

an+1 °© fn+1 = fn °© an+1 5
where the boundary operator on the left is from Cy(£) and the boundary operator
on the right is from Cy(K). It follows that there is a well-defined linear map
Hy(K) = Hy (L)
in homology given by
[T] = [fn(T)]

for T € Z,(K). The sequence of these homology maps for n > 0 is called the
map induced by f in homology and is denoted f.: H.(K) — H.(L). The identity
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simplicial map K — K clearly induces the identity map on H,(K). It is not difficult
to show that if fog is a composition of simplicial maps, then (fog). = f.ogs. Thus,
simplicial homology with coefficients in IF 1s a covariant functor from the category of
finite simplicial complexes and simplicial maps to the category of finite-dimensional
IF vector spaces and F-linear maps.

If K is a subcomplex of £, then the inclusion «: K — £ gives an injective chain
map ¢:Cy(K) = Cy(£). The quotient Cy(L)/Cy(K) is denoted Cy(L,K) and is
called the relative simplicial chain complex associated to the pair (£, K). From this
definition, there is a short exact sequence!?

0— Cy(K) = Cy(L) B Cy(L,K) =0, (A7.2)

where p is projection on the quotient. The boundary operator 0 from Cy(L) gives
rise to a well-defined boundary operator on Cy(£, K), which we also denote by &.
The kernel of & on Cy, (L, K) is the subspace of relative n-cycles, denoted 7, (L, K).
Notice that a chain T' € C), (L) represents a relative n-cycle if and only if T €
Cy,—1(K). The relative homology H, (L, K) is defined as above:

Ho(L,K) = Za(£,K) /imd .

From the short exact sequence (A.7.2), one derives a long exact sequence in homol-
ogy:

B HL(K) L Ha (L) 25 Hoy(£,K) S Hy_y(K) 22 - (A.7.3)

The connecting map 0: Hy (L, K) = Hp—1(K) is defined as follows. For an element
T € Hp(L,K), let T € Cp(L) be a chain representing a relative n-cycle in the coset
7. Then 8T € Z,_1(K). The coset of 9T in H,_1(K) gives the value of dr. Of

course, there is some checking to be done to ensure that this map is well-defined.

A.8 Singular homology.

An alternative homology is obtained from the singular homology functor, which
is defined on the category of topological spaces and continuous maps. We assume
that singular homology is also computed with coefficients in F. For a definition of
singular homology, see Chapter 4 of [Mu]. Suffice it to say here that the definition
uses notions of chains and boundaries analogous to those introduced above, and
the singular homology functor has the exact sequence property (A.7.3).

A basic theorem in homology theory is that for any simplicial complex K and
realization |K|, there is an isomorphism

jt Ho(K) = H(IK]) - (A.8.1)

Here H.(|K]|) denotes the singular homology of the realization |K[, and the isomor-
phism is understood to be a sequence of isomorphisms, one for each dimension.
Furthermore, if f: K — £ is a simplicial map, then there is a commutative diagram

H.(K) —2— H.(K)
lf* lm* (A.8.2)
H(C) —22 H.(LC)

12 A sequence - - - i} vV 2 ... of linear maps is ezact if the kernel of g is equal to the image
of f. For a longer sequence, exactness means exactness at every junction.
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| f]« denotes the map induced in singular homology by |f]. (See [Mu, §34].)

A property of singular homology is that if o, 5: X — Y are homotopic maps,
then the induced maps ., fi: Ho(X) = H.(Y) are equal. In particular, maps
that are homotopy inverses of one another induce singular homology maps that are
inverses of one another, and thus X ~ Y implies H,(X) is isomorphic to H.(Y).
From the diagram (A.8.2) it follows that if f,¢: X — £ are simplicial maps such
that |f| ~ |g|, then the maps f. and g, induced in simplicial homology are equal.
Similarly, if |f| has a left/right/two-sided homotopy inverse, then f. must be an
injection/surjection /isomorphism.

As a simple application of these 1deas, we revisit the situation of a subdivision

a(K).

Lemma A.8.3: Let o(K) be a subdivision of K and let f:0(K) — K be as in
Lemma A.6.1. Then f.: H.(o(K)) = H.(K) is an isomorphism.

Proof: We have the commutative diagram

Ho(o(K)) 255 H.(|o(K)))

| 171
HA(K) —  H.(K)

from (A.8.2). According to Lemma A.6.1, |f| is homotopic to the identity map
|o(K)| — |K|, and it follows from the property of singular homology cited above
that |f|. is the identity map. Since the j maps are isomorphisms, f, is an isomor-
phism. 0O

A.9 Homology examples.

We give here a brief collection of homology examples that give ample background
for the applications in Section 5. All homology is with coefficients in [F, and for
simplicity we consider only topological spaces that are homotopy equivalent to
realizations of finite simplicial complexes. When speaking of H,(X), we refer to n
as the dimension of the homology and to dimy H, (X)) as the rank of the homology.

The rank of Hy(X) is equal to the number of path components of X. Thus,
X is path-connected if and only if Hy(X) = F. From the definition of simpli-
cial homology, it is easy to see that for a one-point space {x}, Ho({x}) = F and
H;({z}) = 0 for i # 0. The reduced homology of a space X, denoted fNI*(X), Is
the relative homology H.(X, {z}), where € X. From the exact sequence (A.7.3),
Hy(X) = lffo(X) @ TF, while H,(X) = lffn(X) for n > 0, and thus either of H,(X)
and lff* (X) can be obtained from the other. We use reduced homology when it is
convenient.

Let X and Y be digjoint spaces. If we write X LU'Y for the space that is the
disjoint union of X and Y, then

H.(XuY)y=zH(X)s H.(Y),
where we mean that there is an isomorphism in each dimension. Similarly, we can

form a product space X x Y| appropriately topologized, and the simplest form of
the Kiunneth Theorem gives

Ho (X x V)= H,(X)® H.(Y) .
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By X VY, we mean the one-point union, or wedge, of X and Y. This space is
obtained by identifying one point &y € X with one point yo € Y. Then

H (X VY)= H(X)® H(Y) .

The smash product X A'Y is obtained from X x Y by identifying the subspace
X x {yo} U{zo} x Y, which is homeomorphic to X VY, to a point. One has

H (X AY) = H (X)® Ho(Y) .

Each of these constructions is associative, up to homeomorphism, and can be iter-
ated. Furthermore, x distributes over U and A distributes over V, up to homeo-
morphism.

If S” is an n-sphere, then fNI*(S”) is non-zero only in dimension n, where the
homology has rank one: f]n(S”) = IF. The constructions of the preceding paragraph
can be applied to build spaces from spheres whose homology is easily computed.
For example, a 2-torus 77 is homeomorphic to the product S' x S! of 1-spheres,
and thus

H (T = H (ST @ Ho(SY) .

Explicitly, Ho(T?) and Hs(T?) are of rank one, while H1(T?) is of rank two. As
another example, let
x=\/s",

1

the m-fold wedge of n-spheres. Then lffn(X) is of rank m, while fNIZ(X) = 0 for
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