
Accessing Nearby Copies of Replicated Objectsin a Distributed EnvironmentC. Greg Plaxton 1 Rajmohan Rajaraman 1 Andr�ea W. Richa 2AbstractConsider a set of shared objects in a distributed network, where several copies of each object mayexist at any given time. To ensure both fast access to the objects as well as e�cient utilization of networkresources, it is desirable that each access request be satis�ed by a copy \close" to the requesting node.Unfortunately, it is not clear how to e�ciently achieve this goal in a dynamic, distributed environmentin which large numbers of objects are continuously being created, replicated, and destroyed.In this paper, we design a simple randomized algorithm for accessing shared objects that tends tosatisfy each access request with a nearby copy. The algorithm is based on a novel mechanism to main-tain and distribute information about object locations, and requires only a small amount of additionalmemory at each node. We analyze our access scheme for a class of cost functions that captures thehierarchical nature of wide-area networks. We show that under the particular cost model considered:(i) the expected cost of an individual access is asymptotically optimal, and (ii) if objects are su�cientlylarge, the memory used for objects dominates the additional memory used by our algorithm with highprobability. We also address dynamic changes in both the network as well as the set of object copies.1 IntroductionThe advent of high-speed networks has made it feasible for a large number of geographically dispersedcomputers to cooperate and share objects (e.g, �les, words of memory). This has resulted in the imple-mentation of large distributed databases like the World Wide Web on wide-area networks. The large size ofthe databases and the rapidly growing demands of the users has in turn overloaded the underlying networkresources. Hence, an important goal is to make e�cient use of network resources when providing access toshared objects.As one might expect, the task of designing e�cient algorithms for supporting access to shared objectsover wide-area networks is extremely challenging, both from a practical as well as a theoretical perspective.With respect to any interesting measure of performance (e.g., latency, throughput), the optimal boundachievable by a given network is a complex function of many parameters, including edge delays, edgecapacities, bu�er space, communication overhead, patterns of user communication, and so on. Ideally,we would like to take all of these factors into account when optimizing performance with respect to agiven measure. However, such a task may not be feasible in general because the many network parametersinteract in a fairly complex manner. For this reason, we adopt a simpli�ed model in which the combinede�ect of the detailed network parameter values is assumed to be captured by a single function that speci�esthe cost of communicating a �xed-length message between any given pair of nodes. We anticipate thatanalyzing algorithms under this model will signi�cantly aid in the design of practical algorithms for moderndistributed networks.Accessing shared objects. Consider a set A of m objects being shared by a network G, whereseveral copies of each object may exist. In this paper, we consider the basic problem of reading objects1Department of Computer Science, University of Texas at Austin, Austin, TX 78712. Supported by the National ScienceFoundation under Grant No. CCR{9504145. Email: fplaxton, rrajg@cs.utexas.edu.2School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213. Supported by Bruce Maggs's NationalYoung Investigator Award under Grant No. CCR-94-57766. Email: aricha@cs.cmu.edu.1

in A. Motivated by the need for e�cient network utilization, we seek algorithms that minimize the costof the read operation. We do not address the write operation, which involves the additional considerationof maintaining consistency among the various object copies. The problem of consistency, although animportant one, is separate from our main concern, namely, that of studying locality. Our results forthe read apply for the write in scenarios where consistency either is not required or is enforced by anindependent mechanism.We di�erentiate between shared and unshared copies of objects. A copy is shared if any node can readthis copy; it is unshared if only the node which holds the copy may read it. We say that a node u inserts(resp., deletes) a copy of object A (that u holds) if u declares the copy shared (resp., unshared).We refer to the set of algorithms for read, insert, and delete operations as an access scheme. Any accessscheme that e�ciently supports these operations incurs an overhead in memory. It is desirable that thisoverhead be small, not only because of space considerations, but also because low overhead usually impliesfast adaptability to changes in the network topology or in the set of object copies.The main di�culty in designing an access scheme that is e�cient with respect to both time and spaceis the competing considerations of these measures. For example, consider an access scheme in which eachnode stores the location of each copy of each object in the network. This allows very fast read operationssince a node can easily determine the location of the closest copy of any desired object. However, such anaccess scheme is impractical because: (i) it incurs a prohibitively large memory overhead, and (ii) everynode of the network has to be informed whenever a copy of an object is inserted or deleted. At the otherextreme, one might consider an access scheme using no additional memory. In this case insert and deleteoperations are fast, but read operations are costly since it may be necessary to search the entire networkin order to locate a copy of some desired object.Our access scheme. We design a simple randomized access scheme that exploits locality and dis-tributes control information to achieve low overhead in memory. The central part of our access schemeis a mechanism to maintain and locate the addresses of copies of objects. For a single object, say A, wecan provide such a mechanism by the following approach. We embed an n-node \virtual" height-balancedtree T one-to-one into the network. Each node u of the network maintains information associated with thecopies of A residing in the set of nodes that form the subtree of T rooted at u. Given the embedding ofT , the read operation may be easily de�ned as follows. When a node u attempts to read A, u �rst checksits local memory for a copy of A or information about copies of A in the subtree of T rooted at u. If u isunable to locate any copy on the basis of local information, it forwards its request to its parent in T .Naive extensions of the above approach to account for all objects require signi�cant overhead in memoryfor control information at individual nodes. We overcome this problem by designing a novel method toembed the di�erent trees associated with di�erent objects. Our embedding enables us to de�ne simplealgorithms for read, insert, and delete operations, and to prove their e�ciency for a class of cost functionsthat is appropriate for modeling wide-area networks.The cost model. As indicated above, we assume that a given function determines the cost of com-munication between each pair of nodes in the network. Our analysis is geared towards a restrictive classof cost functions which we believe to be of practical interest. The precise set of assumptions that we makewith respect to the cost function is stated in Section 2. Our primary assumption is that for all nodes xand costs r, the ratio of the number of nodes within cost 2r of node x to the number of nodes within costr of node x is bounded from above and below by constants greater than 1 (unless the entire network iswithin cost 2r of node x, in which case the ratio may be as low as 1).There are several important observations we can make concerning this primary assumption on the costfunction. First, a number of commonly studied �xed-connection network families lead naturally to costfunctions satisfying this assumption. For example, �xed-dimension meshes satisfy this assumption if thecost of communication between two nodes is de�ned as the minimum number of hops between them. Asanother example, fat-tree topologies can be made to satisfy our assumption if the cost of communication

between two nodes is determined by the total cost of a shortest path between them, where the costassigned to individual edges grows at an appropriate geometric rate as we move higher in the tree. Thelatter example is of particular interest here, because of all the most commonly studied �xed-connectionnetwork families, the fat-tree may provide the most plausible approximation to the structure of currentwide-area networks.Even so, it is probably inappropriate to attempt to model the Internet, say, with any kind of uniformtopology, including the fat-tree. Note that our assumption on the cost function is purely \local" in nature,and allows for the possibility of a network with a highly irregular global structure. This may be the mostimportant characteristic of our cost model.Performance bounds. We show that our access scheme achieves optimality or near-optimality interms of several important complexity measures for the restricted class of cost functions discussed above.In particular, our scheme achieves the following bounds:� The expected cost for any read request is asymptotically optimal.� If the number of objects that can be stored at each node is q, then the additional memory requiredis O(q log2 n) words whp1, where a word is an O(logn)-bit string. Thus, if the objects are su�cientlylarge, i.e.,
(log2 n) words, the memory for objects dominates the additional memory.� The number of nodes that need to be updated upon the addition or removal of a node is O(logn)expected and O(log2 n) whp.� The expected cost of an insert (resp., delete) operation at node u is O(C) (resp., O(C logn)), where Cis the maximum cost of communicating a single word message between any two nodes.An obvious shortcoming of our analysis is that it only applies to the restricted class of cost functionsdiscussed above. While we do not expect that all existing networks fall precisely within this restrictedclass, we stress that: (i) our access scheme is well-de�ned, and functions correctly, for arbitrary networks,and (ii) we expect that our access scheme would have good practical performance on any existing network.(Although we have not attempted to formalize any results along these lines, it seems clear that our perfor-mance bounds would only degrade signi�cantly in the presence of a large number of non-trivial violationsof our cost function assumptions.)Related work. The basic problem of sharing memory in distributed systems has been studied exten-sively in di�erent forms. Most of the earlier work in this area, e.g., emulations of PRAM on completely-connected distributed-memory machines (e.g., [10, 16]) or bounded-degree networks (e.g., [14]), and algo-rithms for providing concurrent access to a set of shared objects [13], assume that each of the nodes of thenetwork has knowledge of a hash function that indicates the location of any copy of any object.The basic problem of locating an object arises in every distributed system [11], and was formalizedby Mullender and Vit�anyi [12] as an instance of the distributed matchmaking problem. Awerbuch andPeleg [3], and subsequently Bartal et al. [4] and Awerbuch et al. [1], give near-optimal solutions in terms ofcost to a related problem by de�ning sparse-neighborhood covers of graphs. Their studies do not addressthe overhead due to control information and hence, natural extensions of their results to our problem mayrequire an additional memory of m words at some node. However, we note that their schemes are designedfor arbitrary cost functions, whereas we have focused on optimizing performance for a restricted class ofcost functions.In recent work, access schemes for certain Internet applications have been described in [8, 9, 17]. Someof the ideas in our scheme are similar to those in [17]; however, the two schemes di�er considerably inthe details. Moreover, the schemes of [8] and [17] have not been analyzed. As in our study, the results1We use the abbreviation \whp" throughout the paper to mean \with high probability" or, more precisely, \with probability1� n�c, where n is the number of nodes in the network and c is a constant that can be set arbitrarily large by appropriatelyadjusting other constants de�ned within the relevant context."

of [9] concerning locality assume a restricted cost model. However, their cost model, which is based on theultrametric, is di�erent from ours. Also, their algorithms are primarily designed for problems associatedwith \hot spots" (i.e., popular objects).A closely related problem is that of designing a dynamic routing scheme for networks [2, 6]. Such ascheme involves maintaining routing tables at di�erent nodes of the network in much the same way as ouradditional memory. However, in routing schemes the size of additional memory is a function of networksize, i.e., n, while in our problem the overhead is primarily a function of m. Straightforward generalizationsof routing schemes result in access schemes that require an additional memory of m words at each node.The remainder of this paper is organized as follows. Section 2 de�nes the model of computation.Section 3 formally describes our access scheme. Section 4 contains a formal statement of the main results.Section 5 analyzes the algorithm and establishes the main results. Section 6 discusses directions for futureresearch.2 Model of ComputationWe consider a set V of n nodes, each with its own local memory, sharing a set A of m = poly(n) objects.We de�ne our model of computation by characterizing the following aspects of the problem: (i) objects,(ii) communication, (iii) local memory, (iv) local computation, and (v) complexity measures.Objects. Each object A has a unique (logm)-bit identi�cation. For i in [logm], we denote the ith bitof the identi�cation of A by Ai. (For any positive integer x, we use [x] to denote the set f0; : : : ; x� 1g.)Each object A consists of `(A) words, where a word is an O(logn)-bit string.Communication. Nodes communicate with one another by means of messages; each message consistsof at least one word. We assume that the underlying network supports reliable communication.We de�ne the cost of communication by a function c : V 2 7! R. For any two nodes u and v in V ,c(u; v) is the cost of transmitting a single-word message from u to v. We assume that c is symmetric andsatis�es the triangle inequality. We also assume for simplicity that for u, v, and w in V , c(u; v) equalsc(u; w) i� v equals w.The cost of transmitting a message of length ` from node u to node v is given by f(`)c(u; v), wheref : N 7! R+ is any non-decreasing function such that f(1) equals 1.Given any u in V and any real r, let M(u; r) denote the set fv 2 V : c(u; v)� rg. We refer to M(u; r)as the ball of radius r around u. We assume that there exist real constants � > 8 and � such that for anynode u in V and any real r � 1, we have:minf�jM(u; r)j; ng � jM(u; 2r)j � �jM(u; r)j (1)Local Memory. We partition the local memory of each node u into two parts. The �rst part, the mainmemory , stores objects. The second part, the auxiliary memory , is for storing possible control information.Local Computation. There is no cost associated with local computation. (Although the model allowsan arbitrary amount of local computation at zero cost, our algorithm does not perform any particularlycomplex local operations.)Complexity measures. We evaluate any solution on the basis of four di�erent complexity measures.The �rst measure is the cost of reading an object. The second measure is the size of the auxiliary memoryat any node. The remaining two measures concern the dynamic nature of the problem, where we addressthe complexity of inserting or deleting a copy of an object and adding or removing a network node. Thethird measure is the cost of inserting or deleting a copy of an object. The fourth measure is adaptability ,which is de�ned as the number of nodes whose auxiliary memory is updated upon the addition or removalof a node. (Our notion of adaptability is analogous to that of [6].)

3 The Access SchemeIn this section, we present our access scheme for shared objects. We assume that n is a power of 2b, whereb is a �xed positive integer to be speci�ed later. For each node x in V , we assign a label independentlyand uniformly at random from [n]. For i in [logn], let xi denote the ith bit of the label of x. Note thatthe label of a node x is independent of the (logn)-bit unique identi�cation of the node. For all x in V(resp., A in A), we de�ne x[i] = x(i+1)b�1 � � �xib (resp., A[i] = A(i+1)b�1 � � �Aib), for i in [(logn)=b]. Wealso assign a total order to the nodes in V , given by the bijection � : V ! [n]. We partition the auxiliarymemory of each node into two parts, namely the neighbor table and the pointer list of the node.Neighbor table. For each node x, the neighbor table of x consists of (logn)=b levels. The ith level ofthe table, i in [(logn)=b], consists of primary, secondary, and reverse (i; j)-neighbors, for all j in [2b]. Theprimary (i; j)-neighbor y of x is such that y[k] = x[k] for all k in [i], and either: (i) i < (logn)=b� 1 andy is the node of minimum c(x; y) such that y[i] = j, if such a node exists, or (ii) y is the node with largest�(y) among all nodes z such that z[i] matches j in the largest number of rightmost bits. Let d be a �xedpositive integer, to be speci�ed later. Let y be the primary (i; j)-neighbor of x. If y[i] = j, then let Wi;jdenote the set of nodes w in V n fyg such that w[k] = x[k]; for k in [i], w[i] = j, and c(x; w) is at mostd � c(x; y). Otherwise, let Wi;j be the empty set. The set of secondary (i; j)-neighbors of x is the subset Uof minfd; jWi;jjg nodes u with minimum c(x; u) in Wi;j ; that is, c(x; u) is at most c(x; w), for all w in Wi;j ,and for all u in U . A node w is a reverse (i; j)-neighbor of x i� x is a primary (i; j)-neighbor of w.Pointer list. Each node x also maintains a pointer list Ptr(x) with pointers to copies of some objectsin the network. Formally, Ptr(x) is a set of triples (A; y; k), where A is in A, y is a node that holds a copyof A, and k is an upper bound on the cost c(x; y). We maintain the invariant that there is at most onetriple associated with any object in Ptr(x). The pointer list of x may only be updated as a result of insertand delete operations. All the pointer lists can be initialized by inserting each shared copy in the networkat the start of the computation. We do not address the cost of initializing the auxiliary memories of thenodes.Let r be the node with highest �(r) such that there exists i in [(logn)=b] satisfying: (i) r[k] = A[k] forall k in [i], (ii) r[i] matches A[i] in the largest number of rightmost bits, and (iii) if i < (logn)=b� 1, thereis no node y with y[k] = A[k] for all k in [i+ 1]. We call r the root node for object A. The uniqueness ofthe root node for each A in A is crucial to guarantee the success of every read operation.In this section and throughout the paper, we use the notation h�ik to denote the sequence (of lengthk + 1) �0; �1; : : : ; �k (of length k + 1). When clear from the context, k will be omitted. In particular, aprimary neighbor sequence for A is a maximal sequence huik such that u0 is in V , uk is the root node forA, and ui+1 is the primary (i; A[i])-neighbor of ui, for all i. It is worth noting that the sequence hui issuch that the label of node ui satis�es (ui[i� 1]; : : : ; ui[0]) = (A[i� 1]; : : : ; A[0]), for all i. We now give anoverview of the read, insert, and delete operations.Read. Consider a node x attempting to read an object A. The read operation proceeds by successivelyforwarding the read request for object A originating at node x along the primary neighbor sequence hxi forA with x0 = x. When forwarding the read request, node xi�1 also informs xi of the current best upperbound k on the cost of sending a copy of A to x. On receiving the read request with associated upper boundk, node xi proceeds as follows. If xi is the root node for A, then xi requests that the copy of A associatedwith k be sent to x. Otherwise, xi communicates with its primary and secondary (i; A[i])-neighbors tocheck whether the pointer list of any of these neighbors has an entry (A; z; k1) such that k1 is at most k.Then, xi updates k to be minimum of k and the smallest value of k1 thus obtained (if any). If k is within aconstant factor of the cost of following hxi up to xi, that is, k is O(Pi�1j=0 c(xj ; xj+1)), then xi requests thatthe copy of A associated with the upper bound k be sent to x. Otherwise, xi forwards the read request toxi+1.Insert. An insert request for object A generated by node y updates the pointer lists of some nodes

that form a pre�x subsequence of the primary neighbor sequence hyi for A with y0 = y. When such anupdate arrives at a node yi by means of an insert message, yi updates its pointer list if the upper boundPi�1j=0 c(yj ; yj+1) on the cost of getting object A from y, is smaller than the current upper bound associatedwith A in this list. In other words, yi updates Ptr(yi) if (A; �; �) is not in this list, or if (A; �; k) is in Ptr(yi)and k is greater than Pi�1j=0 c(yj ; yj+1). Node yi forwards the insert request to node yi+1 only if Ptr(yi) isupdated.Delete. A delete request for object A generated by node y eventually removes all triples of the form(A; y; �) from the pointer lists Ptr(yi), where hyi is the primary neighbor sequence for A with y0 = y,making the copy of A at y unavailable to other nodes in the network. Upon receiving such a request bymeans of a delete message, node yi checks whether the entry associated with A in its pointer list is ofthe form (A; y; �). In case it is not, the delete procedure is completed and we need to proceed no furtherin updating the pointer lists in hyi. Otherwise, yi deletes this entry from its pointer list, and checks forentries associated with A in the pointer lists of its reverse (i�1; A[i�1])-neighbors. If an entry is found, yiupdates Ptr(yi) by adding the entry (A;w; k+ c(w; yi)), where w is the reverse (i� 1; A[i� 1])-neighbor ofyi with minimum upper bound k associated with A in its pointer list. A delete message is then forwardedto yi+1.The read, insert, and delete procedures for an object A are formally described in Figure 1. The messagesand requests in the �gure are all with respect to object A. A read request is generated by node x when x(= x0) sends a message Read(x;1; �) to itself, if x does not hold a copy of A. A read message Read(x; k; y)indicates a read request for object A generated at node x, and that the current best upper bound on thecost of reading Ais k and such a copy resides at y. An insert (resp., delete) request is generated when nodey (= y0) sends a message Insert(y; 0) (resp., Delete(y)) to itself. An insert message Insert(y; k) indicatesto its recipient node z that the best known upper bound on the cost incurred by z to read the copy of Alocated at y is k. We assume that y holds a copy of A and that this copy is unshared (resp., shared) whenan insert (resp., delete) request for A is generated at y.The correctness of our access scheme follows from the two points below:(1) The insert and delete procedures maintain the following invariants. For any A in A and any y in V ,there is at most one entry associated with A in the pointer list of y. If y holds a shared copy of A andhyi is the primary neighbor sequence for A with y0 = y, then: (i) there is an entry associated withA in the pointer list of every node in hyi, and (ii) the nodes that have a pointer list entry associatedwith the copy of A at y form a pre�x subsequence of hyi. The preceding claims follow directly fromthe insert and delete procedures as described.(2) Every read request for any object A by any node x is successful. That is, it locates and brings to xa shared copy of A, if such a copy is currently available. The read operation proceeds by followingthe primary neighbor sequence hxi for A with x0 = x, until either a copy of A is located or the rootfor A is reached. By point (1), there exists a shared copy of A in the network if and only if the rootfor A has a pointer to it.4 ResultsIn this section, we formally state the main results of our access scheme. In Theorems 1, 2, 3, and 4, weprove bounds on the cost of a read, the cost of an insert or delete, the size of auxiliary memory, and theadaptability of our access scheme. Let C denote maxfc(u; v) : u; v 2 V g.Theorem 1 Let x be any node in V and let A be any object in A. If y is the nearest node to x that holdsa shared copy of A, then the expected cost of a read operation is O(f(`(A))c(x; y)).When a node x tries to read an object A which has currently no shared copy in the network, then theexpected cost of the associated operation is O(C).

Action of xi on receiving a message Read(x; k; y):If i > 0 and xi[i{1] 6= A[i{1], or i = (logn)=b� 1 (thatis, xi is the root for A) then:� Node xi sends a message Satisfy(x) to node v suchthat (A; v; �) is in Ptr(xi), requesting it to send a copyof A to x. If Ptr(xi) has no such entry, then there areno shared copies of A.Otherwise:� Let U be the set of secondary (i; A[i])-neighbors of xi.Node xi requests a copy of A with associated upperbound at most k from each node in U [fxi+1g.� Each node u in U [fxi+1g responds to the requestmessage received from xi as follows: if there exists anentry (A; v; qv) in Ptr(u) and if q0v = qv + c(xi; u) +Pi�1j=0 c(xj; xj+1) is at most k, then u sends a successmessage Success(v; q0v) to xi.� Let U 0 be the set of nodes u from which xi receives aresponse message Success(u; ku). If U 0 is not empty,then xi updates (k; y) to be (kz; z), where z is a nodewith minimum ku over all u in U 0.� If k = O(Pi�1j=0 c(xj; xj+1)) then xi sends a messageSatisfy(x) to node y, requesting y to send a copy of Ato x. Otherwise, xi forwards a message Read(x; k; y)to xi+1.
Action of yi on receiving a message Delete(y):If (A; y; �) is in Ptr(yi), then:� Let U be the set of reverse (i{1; A[i{1])-neighborsof yi. Node yi removes (A; y; �) from Ptr(yi), andrequests a copy of A from each u in U .� Each u in U responds to the request message fromyi by sending a message Success(v; qv + c(yi; u)) toyi i� (A; v; qv) is in Ptr(u).� Let U 0 be the set of nodes u such that yi receivesa message Success(u; ku) in response to the requestmessage it sent. If jU 0j > 0 then yi inserts (A;w; kw)into Ptr(yi), where w is the node in U 0 such thatkw � ku, for all u in U 0.� If yi[i{1] = A[i{1] then yi sends a message Delete(y)to yi+1.Action of yi on receiving a message Insert(y; k):If (A; �; �) is not in Ptr(yi), or (A; �; k0) is in Ptr(yi)and k0 > k, then:� Node yi accordingly creates or replaces the entryassociated with A in Ptr(yi) by inserting (A; y; k)into this list.� If yi[i{1] = A[i{1] then yi sends a messageInsert(y; k + c(yi; yi+1)) to yi+1.Figure 1: Actions on receiving messages Read, Insert, and Delete for object A.Theorem 2 The expected cost of an insert operation is O(C), and that of a delete operation is O(C log n).Theorem 3 Let q be the number of objects that can be stored in the main memory of each node. The sizeof the auxiliary memory at each node is O(q log2 n) words whp.Theorem 4 The adaptability of our scheme is O(logn) expected and O(log2 n) whp.5 AnalysisIn this section, we analyze the access scheme described in Section 3, and establish the main results describedin Section 4. Section 5.1 presents some useful properties of balls. Section 5.2 presents properties of primaryand secondary neighbors. Section 5.3 presents the proofs of Theorems 1 and 2. Sections 5.4 and 5.5 presentthe proofs of Theorems 3 and 4, respectively.Several constants appear in the model, the algorithms, and the analysis: � and � appear in the model,b and d appear in the algorithms, and " appear in the analysis. We choose b, d, , and " such that thefollowing inequalities hold: � maxf�2; 4�g (2)2b � maxf�23; 42�; 2�(+ 1)g (3)" � maxf6�=; 4e�=4�; 6(d+ 1)=2b; 6(2e=2b)d=2; 6(e�2=d)dg; (4)" < (10 � 2b log� 2)�1 (5)One assignment of values to the constants , b, d, and " that satis�es the above inequalities is the following.Set equal to 2b=3=�2=3, d equal to e22b=3+1=�1=3 and " equal to 6e�5=3=2b=3. The preceding assignmentsatis�es Equations 3 and 4 if b is set su�ciently large. Equations 2 and 5 can be satis�ed by setting b largeenough so that 2b � �8 and 2b(1=3�log� 2) > 60e�5=3.

5.1 Properties of BallsGiven any u in V and any integer k in [1; n], let N(u; k) denote the unique set of k nodes such that for anyv in N(u; k) and w not in N(u; k), c(u; v) is less than c(u; w). (For integers a and b, we let [a; b] denotethe set fk 2 Z : a � k � bg.) We refer to N(u; k) as the ball of size k around u. For convenience, if k isgreater than n, we let N(u; k) be V .Lemma 5.1 Let u, v, and w be in V and let k0 and k1 be positive integers. If v is in N(u; k0) and w isin N(v; k1), then w is in N(u;�k0+�2k1).Proof: Let r0 and r1 denote c(u; v) and c(v; w) respectively. The node w is contained in the ballM(u; c(u; w)). If r0 is at least r1, then jM(u; c(u; w))j is at most jM(u; r0 + r1)j, which by Equation 1, isat most �k0. Otherwise, jM(u; r0 + r1)j is at most jM(v; 4r1)j, which by Equation 1, is at most �2k1.Therefore, w belongs to N(u;�k0+�2k1).Given any subset S of V and some node u in S, let q(u; S) (resp., r(u; S)) denote the largest (resp.,smallest) integer k such that N(u; k) is a subset (resp., superset) of S. Let Q(u; S) and R(u; S) denoteN(u; q(u; S)) and N(u; r(u; S)), respectively.Lemma 5.2 Let u be in V , let S be a subset of V , and let k be in [1; n]. Then N(u; k) is a subset (resp.,superset) of S i� N(u; k) is a subset of Q(u; S) (resp., superset of R(u; S)).Proof: If N(u; k) is a subset of S then q(u; S) is at least k; hence, N(u; k) is a subset of Q(u; S). IfN(u; k) is a subset of Q(u; S) then N(u; k) is a subset of S because Q(u; S) is a subset of S. If N(u; k) isa superset of S then r(u; S) is at most k; hence, N(u; k) is a superset of R(u; S). If N(u; k) is a supersetof R(u; S) then N(u; k) is a superset of S because R(u; S) is a superset of S.Lemma 5.3 Let u belong to V , and let k0 and k1 denote positive integers such that k1 � �2k0. For anyv in N(u; k0), q(v;N(u; k1)) is at least k1=� and R(v;N(u; k1)) is a subset of N(u;�k1).Proof: Let r0 (resp., r1) denote the radius of N(u; k0) (resp., N(u; k1)). Since k1 � �2k0, by Equation 1,we obtain r1 � r0 � (r1 + r0)=2.Let w be the node in Q(v;N(u; k1)) such that c(v; w) is maximum. By the de�nitions of N and Q,we have: r1 � r0 � c(v; w). It follows that 2c(v; w) is at least r1 + r0 and M(v; 2c(v; w)) is a superset ofN(u; k1). We now obtain a lower bound on q(v;N(u; k1)) as follows:q(v;N(u; k1)) = jM(v; c(v;w))j� jM(v; 2c(v;w))j=�� k1=�:We now place an upper bound on r(v;N(u; k1)). Let w be the node in R(v;N(u; k1)) such that c(v; w) ismaximum. By the de�nitions of N and R, we have: r1 � r0 � c(v; w)� r1 + r0. It follows that 2(r1 � r0)is at least c(v; w) and M(v; c(v; w)) is a subset of M(u; 2r1). Therefore,r(v;N(u; k1)) = jM(v; c(v; w))j� jM(u; 2r1)j� �k1:We refer to any predicate on V that only depends on the label of v as a label predicate. Given anynode u in V and a label predicate P on V , let p(u;P) denote the node v such that: (i) P(v) holds, and

(ii) for any node w such that P(w) holds, c(u; v) is at most c(u; w). (We let p(u;P) be null if such a v isnot de�ned.) Let P (u;P) be M(u; c(u; p(u;P))), if p(u;P) is not null, and V , otherwise.For u in V and i in [(logn)=b], let ��i(u) denote the string of (logn � ib) bits given by u[(logn)=b�1] � � �u[i+1]u[i]. For convenience, we let �>i(u) denote ��i+1(u). For all i and all u in V , let Pi(u) hold i�u[i] = A[i]. For all i and all u in V , let P<i(u) denote ^j2[i]Pj(u). Let P�i(u), P>i(u), and P�i(u) be de�nedsimilarly. (We note that for u and v in V and nonnegative integers i and j, if (u 6= v)_ ((u = v)^ (i 6= j)),then Pi(u) and Pj(v) are independent random variables. Also, each of the predicates de�ned above is alabel predicate.)Lemma 5.4 Let S and S0 be subsets of V and let u belong to S. Let P be a label predicate on V and foreach v in S0, let ��0(v) be chosen independently and uniformly at random.1. Given that P (u;P) � S, we have: (i) for each node v in S0 n P (u;P), ��0(v) is independently anduniformly random, and (ii) for each node v in P (u;P) n fp(u;P)g, P(v) is false.2. Given that P (u;P) 6� S, we have: (i) for each node v in S0 n Q(u; S), ��0(v) is independently anduniformly random, and (ii) for each node v in Q(u; S), P(v) is false.3. Given that P (u;P) � S, we have: (i) for each node v in S0 n R(u; S), ��0(v) is independently anduniformly random, and (ii) for each node v in R(u; S) n fp(u;P)g, P(v) is false.Proof: We �rst consider Part 1 of the lemma. Part 1(i) follows from the independence of P(v) andP(w) for any two distinct nodes. By the de�nition of P , P(p(u;P)) holds and for each node v in P (u;P),P(v) is false. This proves Part 1(ii). Parts 2 and 3 follow similarly. For Part 2, we note that the eventP (u;P) 6� S is equivalent to the event that for each node v in Q(u; S), P(v) is false. For Part 3, we notethat the event P (u;P) � S is equivalent to the event that for each node in R(u; S) n fr(u; S)g, P(v) isfalse.The following claim follows from repeated application of Part 1 of Lemma 5.4.Corollary 5.4.1 Let S be an arbitrary subset of V , let i be in [(logn)=b � 1], and let S0 be a subset ofV such that ��0(u) is independently and uniformly random for each u in S0. Given a sequence of nodesu0; u1; : : : ; ui such that for all j in [i], uj+1 = p(uj ;P�j) and P (uj ;P�j) � S, we have:1. For each node u in S0 n [j2[i]P (u;P�j), ��0(u) is independently and uniformly random.2. The random variable �>i(ui) is independently and uniformly random and for each node u in[j2[i]P (uj ;P�j) n fuig, P�i(u) is false;5.2 Properties of NeighborsIn this section, we establish certain claims concerning the di�erent types of neighbors that are de�nedin Section 3. We di�erentiate between root and nonroot primary (i; j)-neighbors. A root primary (i; j)-neighbor w of v is a primary (i; j)-neighbor w of v such that w[i] 6= j or i = (logn)=b � 1. A primaryneighbor that is not a root primary neighbor is a nonroot primary neighbor.Lemma 5.5 Let u and v be in V , and let k denote jM(u; c(u; v))j. For any j in [2b], we have: (i) for anyi in [(logn)=b� 1], the probability that u is a primary (i; j)-neighbor of v is at most e�((k=�)�2)=2(i+1)b, and(ii) for any i in [(logn)=b], the probability that u is a root primary (i; j)-neighbor of v is at most e�n=2(i+1)b .

Proof: Consider the ball M(v; c(v; u)). By Equation 1, jM(v; c(v; u))j is at least jM(v; 2c(v; u))j=�.Since M(v; 2c(v; u)) is a superset of N(u; k), we obtain that jM(v; c(v; u))j is at least k=�. Since i is lessthan (logn)=b� 1, the probability that u is a primary (i; j) neighbor of v is at most:(1� 1=2(i+1)b)(k=�)�2� e�((k=�)�2)=2(i+1)b:If u is a root primary (i; j)-neighbor of v, then u[`] equals v[`] for each ` in [i] and there does not exist anynode w in V such that w[i] equals j and w[`] equals v[`] for each ` in [i]. Therefore, the probability that uis a root primary (i; j)-neighbor of v is at most:(1=2ib)(1� 1=2(i+1)b)n�1(1� 1=2b)� (1=2ib)(1� 1=2(i+1)b)n� (1=2ib)e�n=2(i+1)b :Corollary 5.5.1 Let u and v be in V , let i be in [(logn)=b], and let j be in [2b]. If u is a primary(i; j)-neighbor of v, then v is in N(u;O(2ib log n)) whp.For any u in V , let au denote the total number of triples (i; j; v) such that i belongs to [(logn)=b], jbelongs to [2b], v belongs to V , and u is a primary or secondary (i; j)-neighbor of v. Lemma 5.6 is used inthe proof of Theorem 4, while Corollary 5.6.1 is used in the proofs of Theorems 2 and 3.Lemma 5.6 Let u be in V and let i be in [(logn)=b]. Then, the number of nodes of which u is an ith levelprimary neighbor is O(logn) whp. Also, E[au] = O(logn) and au is O(log2 n) whp.Proof: Given a node v in V , i in [(logn)=b � 1], and j in [2b], it follows from Lemma 5.5 that theprobability that u is a root primary (i; j)-neighbor of v is at most (1=2ib)e�n=2(i+1)b . Given a node v in Vand j in [2b], the probability that u is a root ((logn)=b; j)-primary neighbor of v is at most 1=n.Fix j in [2b]. Let ` equal (logn � log logn)=b �
(1), where the constant in the
(1) term is chosenappropriately. We consider two cases: i is less than `, and otherwise. If i is at most `, then the probabilitythat there exists v in V such that u is a root primary (i; j)-neighbor of v is at most:n(1=2ib)e�n=2(i+1)b� ne�
(log n)= O(1=poly(n)):If i is at least `, then given v in V , the probability that u is a root primary (i; j)-neighbor of v is atmost 1=2`b = O((logn)=n). It follows from Cherno� bounds [5] that the number of nodes for which u is aroot primary (i; j)-neighbor is O(logn) whp.We now consider secondary and nonroot primary neighbors. For any i in [(logn)=b], u is a secondary ornonroot primary (i; j)-neighbor of v only if j is u[i] and u is one of the (d+1) nodes w in V with minimumc(v; w) whose lowest ib bits match those of v. We now �x u and i, set j to u[i], and obtain an upper boundon the probability that u is one of the at most (d+ 1) nodes w with minimum c(v; w) and whose �rst ibbits match those of v.Consider a node v in N(u; �k+12(i+1)b)nN(u; �k2(i+1)b), where � is a real constant that will be speci�edlater. If k equals zero, then the probability that u is a primary or secondary (i; j)-neighbor of v is at most

1=2ib. Otherwise, consider the ball M(v; c(v; u)). By the low-expansion condition, jM(v; c(v; u))j is at leastjM(v; 2c(v; u))j=�. We are given that M(u; c(u; v)) is a superset of N(u; �k2(i+1)b). Since M(v; 2c(v; u))is a superset of M(u; c(u; v)), we obtain that jM(v; c(v; u))j is at least �k2(i+1)b=�. The probability thatu is a primary or secondary (i; j)-neighbor of v is at most:d �k2(i+1)b=�d !(1� 1=2(i+1)b)(�k2(i+1)b=�)�d=(2ib2(i+1)bd)� d(e�k2(i+1)b=(�d))de��k=�(1� 1=2(i+1)b)�d=(2ib2(i+1)bd)� 4d(e�k=(�d))d(e��k=�=2ib)� 1=((2�)k2ib):(The third inequality holds since d � 2b � 2ib and (1 � 1=2ib)�2ib is at most 4. The fourth inequalityfollows by choosing � large enough with respect to � and d such that e�k=� � (2k�k=dd�1)(�k=�)d+1 forall k � 1.)Thus, the expected number of nodes for which u is a secondary or nonroot primary neighbor is at most:Xi2[(logn)=b];j=u[i] Xk�0 Xv2N(u;�k+12(i+1)b)nN(u;�k2(i+1)b) 1=((2�)k2ib)� Xi2[(logn)=b];j=u[i] 2b�= O(logn):To obtain a high probability bound on the number of nodes for which u is a secondary or nonrootprimary neighbor, we proceed as follows. For any v not in N(u;�(2(i+1)b log n)), it follows from Lemma 5.5that the probability that u is a secondary or nonroot primary (i; j)-neighbor of v is O(1=poly(n)). For anyv in N(u;�(2(i+1)b logn)), the probability that u is a secondary or nonroot primary (i; j)-neighbor of v isat most 1=2(i+1)b. Therefore, the number of nodes for which u is a secondary or nonroot primary neighboris O(log2 n) whp.The bounds on expectation and the high probability bounds together establish that E[au] is O(logn)and au is O(log2 n) whp.Corollary 5.6.1 For any u in V , the total number of reverse neighbors of u is O(log2 n) whp, and expectedO(logn).Proof: The desired claim follows directly from Lemma 5.6 since v is a reverse (i; j)-neighbor of u only ifu is a primary (i; j)-neighbor of v.For any u and v in V and i in [(logn)=b], v is said to be an i-leaf of u if there exists a sequencev = v0; v1; : : : ; vi�1; vi = u, such that for all j in [i], vj+1 is a primary (j; vj+1[j])-neighbor of vj . Lemma 5.7is used in the proof of Theorem 3.Lemma 5.7 Let u belong to V , and let i be in [(logn)=b]. Then the number of i-leaves of u is O(2ib log n)whp.Proof: We will establish the lemma by showing that if v is an i-leaf of u, then v is in N(u; c02ib log n)whp, where c0 is a real constant that is speci�ed later. By Corollary 5.5.1, we have that for all j in [i], vjis in N(vj+1; c12(j+1)b log n) whp for some real constant c1. We will prove by induction on j in [i+ 1] thatv = v0 is in N(vj ; c02jb logn) whp.

The induction base follows trivially. For the induction step, let us assume that v belongs toN(vj ; c02jb logn).By Corollary 5.5.1, vj belongs to N(vj+1; c12jb logn) whp. Applying Lemma 5.1 with the substitution(vj+1; vj; v) for (u; v; w), we obtain that v is in N(vj+1; (�c1 + �2c0)2jb logn). Since �2 � 2b, we canchoose c0 large enough such that c0(2b��2) is at least �c1. It thus follows that v is in N(vj+1; c02(j+1)b).Applying the above inductive claim with j = i, we obtain that v is in N(u;O(2ib logn)) whp. Thedesired claim follows.5.3 Cost of operationsConsider a read request originating at node x for an object A. Let y denote a node that has a copy of A.In the following, we show that the expected cost of a read operation is O(f(`(A))c(x; y)). Letting y to bethe node with minimum c(x; y) among the set of nodes that have a copy of A, this bound implies that theexpected cost is asymptotically optimal.Let hxi and hyi be the primary neighbor sequences for A with x0 = x and y0 = y, respectively. For anynonnegative integer i, let Ai (resp.,Di) denote the ball of smallest radius around xi (resp., yi) that containsxi+1 (resp., yi+1). Let Bi (resp., Ei) denote the set [0�j�iAj (resp., [0�j�iDj). Let Ci denote the ball ofsmallest radius around xi that contains all of the secondary (i; A[i])-neighbors of xi. For convenience, wede�ne B�1 = E�1 = ;.It is useful to consider an alternative view of xi, yi, Ai, and Di. For any nonnegative i, if xi+1 (resp.,yi+1) is not the root node for A, then xi+1 (resp., yi+1) is p(xi;P�i) (resp., p(yi;P�i)) and Ai (resp., Di)is P (xi;P�i) (resp., P (yi;P�i)).Let be an integer constant that is chosen later appropriately. For any nonnegative integer i and anyinteger j, let Xji (resp., Y ji) denote the ball N(x; j2(i+1)b) (resp., N(y; j2(i+1)b)). Let i� denote the leastinteger such that the radius of X1i� is at least c(x; y). Let ai (resp., bi) denote the radius of X1i (resp., Y 1i).Lemma 5.8 For all i such that i � i�, X2i is a superset of Y 1i .Proof: By the de�nition of i�, ai is at least c(x; y). Therefore, M(y; 2ai) is a superset of X1i . Hence,M(y; 2ai) contains at least 2(i+1)b nodes and is a superset of Y 1i .By Equation 1, jM(x; 3ai)j is at most �2jM(x; ai)j � �22(i+1)b � 22(i+1)b. Thus, M(x; 3ai) is asubset of X2i . Since M(x; 3ai) is a superset of M(y; 2ai), which is a superset of Y 1i , the claim holds.Lemma 5.9 For all i in [(logn)=b � 2], we have 2b log� 2ai � ai+1 � 2b log� 2ai and 2b log� 2bi � bi+1 �2b log� 2bi. For i = (logn)=b� 2, we have ai+1 � 2b log� 2ai and bi+1 � 2b log� 2bi. Also, ai� and bi� are bothO(c(x; y)).Proof: Since � 2b, for all i in [(logn)=b � 2], we have jX1i+1j = 2bjX1i j (resp., jY 1i+1j = 2bjY 1i j).Therefore, for all i in [(logn)=b� 2], it follows from Equation 1 that 2b log� 2ai � ai+1 � 2b log� 2ai (resp.,2b log� 2bi � bi+1 � 2b log� 2bi). For i = (logn)=b � 2, jX1i+1j � 2bjX1i j (resp., jY 1i+1j � 2bjY 1i j), and hence,ai+1 � 2b log� 2ai (resp., bi+1 � 2b log� 2bi).If i� > 0, then ai� (resp., bi�) is at most 2b log� 2c(x; y). Otherwise, ai� (resp., bi�) is O(2log�) =O(c(x; y)), since � and are constants.We de�ne two sequences hsii and htii of nonnegative integers as follows:si = 8>>><>>>: 0 if Bi � X1i , Ai � X�1i , Ci � X2i ,1 if Bi � X1i , Ai � X�1i , Ci 6� X2i ,2 if Bi � X1i , Ai 6� X�1i , and3 + j if 0 � j � i, Bi�j 6� X1i , Bi�j�1 � X1i .

ti = (0 if Ei � Y 1i , and1 + j if 0 � j � i, Ei�j 6� Y 1i , Ei�j�1 � Y 1i .Lemma 5.10 If si is in f0; 1; 2g, then c(xi; xi+1) is O(ai). If ti is 0, then c(yi; yi+1) is O(bi).Proof: The proof of the �rst claim follows from the observation that if si is in f0; 1; 2g then Ai � Bi � X1i .The proof of the second claim follows from the observation that if ti is 0 then Di � Ei � Y 1i .We now determine an upper bound on the cost of read for A as follows. Let � be the smallest integeri � i� such that (si; ti) = (0; 0). By Lemma 5.8, C� is a superset of D� , implying that a copy of A is locatedwithin � forwarding steps along hxi. By the de�nition of the primary and secondary neighbors, the cost ofany request (resp., forward) message sent by node xi is at most d � c(xi; xi+1) (resp., c(xi; xi+1)). Since acopy of A is located within � forwarding steps, by the de�nition of the algorithm, the cost of all messagesneeded in locating the particular copy of A that is read is at most O(P0�j<� (d2c(xj; xj+1) + c(yj ; yj+1))).The cost of reading the copy is at most f(`(A)) times the preceding cost. Since d is a constant, the costof reading A is at most: X0�j<� O(f(`(A))(c(xj; xj+1) + c(yj ; yj+1)) (6)The remainder of the proof concerns the task of showing that E[P0�j<� (c(xj; xj+1) + c(yj ; yj+1))] isO(c(x; y)). A key idea is to establish that the sequence hsi; tii corresponds to a two-dimensional randomwalk that is biased towards (0; 0). Lemmas 5.11 and 5.12 below provide the important �rst step towardsformalizing this notion.Lemma 5.11 Let i be in [(logn)=b� 1]. Given arbitrary well de�ned values for sj and tj for all j in [i]such that si�1 is at least 3, the probability that si is less than si�1 is at least 1� "2. Given arbitrary valuesfor sj and tj for all j in [i] such that ti�1 is at least 1, the probability that ti is less than ti�1 is at least1� "2.Lemma 5.12 Let i be in [(logn)=b� 1]. Given arbitrary well de�ned values for sj and tj for all j in [i]such that si�1 is at most 3, the probability that si is 0 is at least 1 � ". Given arbitrary values for sj andtj for all j in [i] such that ti�1 is at most 1, the probability that ti is 0 is at least 1� ".In order to establish the above lemmas, we introduce some additional notation. For each i � �1, wede�ne Si and Ti as follows. Let S�1 = T�1 = ;. For nonnegative i, we have:Si = 8><>: Si�1 [Bi [(Ci \R(xi; X2i)) if si 2 f0; 1g,Si�1 [Bi if si = 2,Si�1 [Bi�si+2 [Q(xi�si+3; X1i) otherwise.Ti = (Ti�1 [Ei if ti = 0,Ti�1 [Ei�ti [Q(yi�ti+1; Y 1i) otherwise.Lemmas 5.13, 5.14, and 5.15 are used in the proofs of Lemmas 5.11 and 5.12.Lemma 5.13 Let i be in [(logn)=b� 1]. Given arbitrary values for sj and tj for all j in [i], we have:1. For each node u not in Si [Ti, each bit of ��0(u) is independently and uniformly drawn from f0; 1g.2. There exists a subset S0i of Si of size at most d+ 1 such that: (i) for each node u in S0i, each bit of�>i(u) is independently and uniformly random, and (ii) for each node u in Si n S0i, P�i(u) is false.

3. There exists at most one node v in Ti such that: (i) each bit of �>i(v) is independently and uniformlyrandom, and (ii) for each node u in Ti n fvg, P<i(u) is false.Proof: We prove Parts 1, 2, and 3 for all i � �1. The proof is by induction. For the induction base weset i = �1. Part 1 follows directly from the random assignment of labels. For Part 2, we set S0�1 to ;, andthe desired claim holds since S�1 is ;. The claim of Part 3 holds vacuously since T�1 is ;.For the induction hypothesis, we assume that Parts 1, 2, and 3 of the lemma hold for i � 1. We �rstconsider di�erent cases depending on the value of si.(a) si = 3 + j, j 2 [i]: The event si = 3 + j is equivalent to the event (Bi�j�1 � X1i) ^ (Ai�j 6� X1i).We �rst condition on the event Bi�j�1 � X1i by invoking Corollary 5.4.1 with the substitution(X1i ; V n (Si�1 [Ti�1); i � j) for (S; S 0; i). We next condition on the event Ai�j 6� by invokingPart 2 of Lemma 5.4 with the substitution (xi�j ; X1i ; V n (Si�1[Ti�1[Bi�j�1);P�i) for (u; S; S 0;P).By combining Part (i) of both invocations, we have: (a.i) for each node v not in Si�1 [Ti�1 [Bi�j�1 [Q(xi�j ; X1i), ��0(v) is independently and uniformly random. By combining Part (ii) ofboth invocations, we have: (a.ii) for each node v in Bi�j�1 [Q(xi�j ; X1i), P�i(v) is false.We set S 0i to S0i�1 n (Bi�j�1 [Q(xi�j ; X1i)).(b) si = 2: The event si = 2 is equivalent to the event (Bi � X1i) ^ (Ai 6� X�1i). We �rst condition onthe event Bi � X1i by invoking Corollary 5.4.1 with the substitution (X1i ; V n (Si�1 [Ti�1); i) for(S; S0; i). It follows from the preceding invocation and the de�nition of Bi that: (b.i) for each nodenot in Si�1 [Ti�1 [Bi, ��0(v) is independently and uniformly random, and (b.ii) for each node v inBi n fxi+1g, P�i(v) is false.We set S 0i to S0i�1 n (Bi n fxi+1g).(c) si 2 f0; 1g: The event si 2 f0; 1g is equivalent to the event (Bi � X1i) ^ (Ai � X�1i). We conditionon the event Bi � X1i by invoking Corollary 5.4 with the substitution (X1i ; V n (Si�1 [Ti�1); i) for(S; S0; i). It follows from the preceding invocation and the de�nition of Bi that: (i) for each node vnot in Si�1 [Ti�1 [Bi, ��0(v) is independently and uniformly random, and (ii) for each node v inBi n fxi+1g, P�i(v) is false.Let S0i equal the set fv 2 Ci \ R(xi; X2i) : P�i(v)g. By the de�nition of Ci, jS 0ij is at most d + 1.If Ci 6� X2i , then Ci � R(xi; X2i) and it follows from the de�nition of Ci that: (c.i) for each nodev not in Si�1 [Ti�1 [Bi [Ci, ��0(v) is independently and uniformly random, and (c.ii) for eachnode v in S0i, �>i(v) is independently and uniformly random, and for each node v in (Bi [Ci) n S0i,P�i(v) is false. If Ci � X2i then Ci � R(xi; X2i) and it follows from Part 3 of Lemma 5.4 that: (c.i)for each node v not in Si�1 [Ti�1 [Bi [R(xi; X2i), ��0(v) is independently and uniformly random,(c.ii) for each node v in S0i, �>i(v) is independently and uniformly random, and for each node v in(Bi [R(xi; X2i)) n S 0i, P�i(v) is false.We thus obtain from (a.i), (b.i), and (c.i) and the de�nition of Si that: (i) for each node u not inSi [Ti�1, ��0(u) is independently and uniformly random. We obtain from (a.ii), (b.ii), and (c.ii) and thede�nition of S0i that: (ii) for each node u in S0i, �>i(u) is independently and uniformly random, and foreach node in Si n S 0i, P�i(u) is false. We next consider two cases depending on the value of ti.(d) ti = 1 + j, j 2 [i]: This case is similar to Case (a). The event ti = 1 + j is equivalent to theevent (Ei�j�1 � Y 1i) ^ (Di�j 6� Y 1i). We �rst condition on the event Ei�j�1 � Y 1i by invokingCorollary 5.4.1 with the substitution (Y 1i ; V n (Si [Ti�1); i� j) for (S; S0; i). We next condition onthe event Di�j 6� Y 1i by invoking Part 2 of Lemma 5.4 with the substitution (yi�j ; Y 1i ; V n(Si[Ti�1[Ei�j�1);P�i) for (u; S; S0;P).

By combining Part (i) of both invocations, we have: (d.i) for each node v not in Si [Ti�1 [Ei�j�1 [Q(yi�j ; Y 1i), ��0(v) is independently and uniformly random. By combining Part (ii) of both invoca-tions, we have: (d.ii) for each node v in Ei�j�1 [Q(yi�j ; Y 1i), P�i(v) is false.(e) ti = 0: This case is similar to Case (b). The event ti = 2 is equivalent to the event Ei � Y 1i . Weinvoke Corollary 5.4.1 with the substitution (Y 1i ; V n (Si [Ti�1); i) for (S; S 0; i) to obtain that: (e.i)for each node not in Si [Ti�1 [Ei, ��0(v) is independently and uniformly random, and (e.ii) foreach node v in Ei n fyi+1g, P�i(v) is false.To complete the induction step, we consider each part of the statement of the lemma separately:1. By (i), (d.i), and (e.i) and the de�nition of Ti, it follows that given arbitrary values for sj and tj ,j 2 [i], for each node u not in Si [Ti, P�0(u) is independently and uniformly random.2. This part follows directly from (ii) above.3. By (d.ii) and (e.ii), it follows that given arbitrary values for sj and tj , j 2 [i]: (i) �>i(()yi+1) isindependently and uniformly random, and (ii) for each node u in Ti n fyi+1g, P�i(u) is false.Lemma 5.14 Let i be a nonnegative integer. If si is in f0; 1g, jSij is at most jX3i j; otherwise, jSij is atmost jX1i j. The size of Ti is at most jY 1i j.Proof: The proof follows from the relevant de�nitions and the inequality �2 � .Lemma 5.15 Let i be in [(logn=b)� 1]. Given arbitrary values for sk and tk for all k in [i] such that si�1is 3 + j for some j in [i+ 1], the probability that Bi�j�1 is a subset of X2i�1 is at least 1 � "2=2. Givenarbitrary values for sk and tk for all k in [i] such that ti�1 is 1 + j for some j in [i + 1], the probabilitythat Ei�j�1 is a subset of Y 2i�1 is at least 1� "2=2.Proof: Let E denote the event that the random variables sk , tk , k 2 [i], take the respective arbitraryvalues. Let us assume that E holds. We begin with the proof of the �rst claim. Since si is 3+ j, Bi�j�1 isnot a subset of X1i�1, and Bi�j�2 is a subset of X1i�1.By Part 1 of Lemma 5.13, it follows that given E , for each node u not in Si�1 [Ti�1, ��0(u) isindependently and uniformly random. By Lemma 5.14, jSi�1 [Ti�1j is at most 2ib+1. By Lemma 5.3,since � �2, q(xi�j�1; X2i�1) is at least 22ib=�. Therefore, the probability that Ai�j�1 is not a subsetof Q(xi�j�1; X2i�1) is at most (1� 1=2(i�j)b)(2=��2)2ib � e�(2=��2)2jb� "2=2:(The last inequality follows from the inequalities � 4� and e�=� � "2=2.)The proof of the second claim is analogous to the above proof and is obtained by substituting (t; D;E; y; Y)for (s; A; B; x;X).Proof of Lemma 5.11: Let E denote the event that the random variables sj , tj , j 2 [i], take therespective arbitrary values. Let us assume that E holds. We begin with the proof of the �rst claim. Letsi�1 be 3 + j for some j in [i]. Thus, Bi�j�1 is not a subset of X1i�1, and Bi�j�2 is a subset of X1i�1. Weshow that given E , with probability at least 1� "2, Bi�j is a subset of X1i .It follows from Lemma 5.15 that: (a) Bi�j�1 is a subset of X2i�1 with probability at least 1 � "2=2.Let us now assume that E and the event that Bi�j�1 is a subset of X2i�1 hold. We now show: (b) the

probability that Bi�j is a subset of X1i is at least 1 � "=2. By Lemma 5.14, jX2i�1 [Ti�1j is at most(+ 1)2ib. By Lemma 5.3, since � �2, q(xi�j ; X1i) is at least 2(i+1)b=�. Therefore, the probabilitythat Ai�j�1 is not a subset of Q(xi�j�2; X2i�1) is at most(1� 1=2(i�j+1)b)(=��2=2b�=2b)2(i+1)b � e�(=��2=2b�=2b)2jb� "2=2:(The last inequality follows from the inequalities 2�(+ 1) � 2b and e�=2� � "2=2.)It follows from (a) and (b) above that with probability at least (1 � "2), si is less than si�1, thusestablishing the �rst claim of the lemma. The proof of the second claim is analogous to the above proofand is obtained by substituting (t; D;E; y; Y) for (s; A; B; x;X).Proof of Lemma 5.12: Let E denote the event that the random variables sj , tj , j 2 [i], take therespective arbitrary values. Let us assume that E holds. We begin with the proof of the �rst claim. If si�1is in f0; 1; 2g, Bi�1 is a subset of X1i�1. If si�1 is 3, then by Lemma 5.15, Bi�1 is a subset of X2i�1 withprobability at least 1� "2=2. We now assume that Bi�1 is a subset of X2i�1.We �rst show: (a) the probability that Bi is a subset of X1i is at least 1 � "=3 + "2=2. By Part 1of Lemma 5.13, it follows that given E , for each node u not in Si�1 [Ti�1, ��0(u) is independently anduniformly random. By Lemma 5.14, jSi�1[Ti�1j is at most 32ib+1. By Lemma 5.3, since xi is in X2i�1 and2b � �2, q(xi; X1i) is at least 2(i+1)b=�. Therefore, the probability that Ai is not a subset of Q(xi; X1i)is at most (1� 1=2(i+1)b)2(i+1)b(=��23=2b) � e�(=��23=2b)� e�=2�� "=3� "2=2:(The second inequality follows from the inequality 42� � 2b and the last inequality holds since e�=2� �"=4 � "=3� "2=2.)We next show: (b) the probability that Ai is a superset of X�1i is at least 1 � "=3. By Lemma 5.3,since �23 � 2b, r(xi; X�1i) is at most �2(i+1)b=. By Lemma 5.13: (i) for each node u not in Si�1 [Ti�1,��0(u) is uniformly random, and (ii) there are at most d+ 1 nodes in Si�1 [Ti�1 for which the predicateP<i holds. Therefore, the probability that Ai is a subset of R(xi; X�1i) is at most d=2b +�=, which is atmost "=3. It follows that with probability at least 1� "=3, Ai is a superset of X�1i .We �nally show: (c) given that Bi is a subset of X1i and Ai is a superset of X�1i , the probabilitythat Ci is a superset of X2i is at least 1 � "=3. Let r0 (resp., r1) denote the radius of R(xi; X�1i) (resp.,R(xi; X2i)). By de�nition, r(xi; X�1i) is at least 2(i+1)b=. By Lemma 5.3, r(xi; X2i) is at most �22(i+1)b.By Lemma 5.13: (i) for each node u not in Si�1 [Ti�1, ��0(u) is independently and uniformly random,and (ii) there are at most d+ 1 nodes in Si�1 [Ti�1 for which the predicate P<i holds.Before calculating the probability that Ci is not a superset of X2i , we need to show that the nodes inR(xi; X2i) are within a cost of d � c(xi; xi+1). We �rst note that c(xi; xi+1) is at least the di�erence of theradii of X�1i and X2i�1. Moreover, since R(xi; X2i) is a subset of X3i , the radius of R(xi; X2i) is at most thesum of the radii of X3i and X2i�1. Since (44)log� 2 � 2 � d, the nodes in R(xi; X2i) are within a cost ofd � c(xi; xi+1) from xi.It now follows that the probability that Ci is not a superset of X2i is at most d+ 1d=2 !(1=2b)d=2 + �22(i+1)bd !(1=2(i+1)b)d � (2e=2b)d=2 + (e�2=d)d� "=3:(The last inequality follows from the inequalities: (2e=2b)d=2 � "=6 and (e�2=d)d � "=6.)

It follows from (a), (b), and (c) above that with probability at least 1� ", si is 0, thus establishing the�rst claim of the lemma. The proof of the second claim is analogous to the proof of (a) and is obtained bysubstituting (t; D;E; y; Y) for (s; A; B; x;X).By the de�nitions of si and ti, it follows that 0 � si+1 � 3 if si � 2, and 0 � si+1 � si + 1 otherwise.In addition, 0 � ti+1 � ti + 1, for all i. Let s0i equal 0 if si = 0, equal 1 if si 2 f1; 2; 3g, and equalsi � 2 otherwise. Hence 0 � maxfs0i+1; ti+1g � maxfs0i; tig+ 1, for all i. We now analyze the random walkcorresponding to the sequence hmaxfs0; tgi.Random Walks. Let W (U; F) be a directed graph in which U is the set of nodes and F is the set of edges.For all u in U , let Du be a probability distribution over the set f(u; v) 2 Fg (let PrDu [(u; v) : (u; v) 62 F] = 0,for convenience). A random walk on W starting at v0 and according to fDu : u 2 Ug is a random sequencehvi such that: (i) vi is in U and (vi; vi+1) is in F , for all i, and (ii) given any �xed (not necessarily simple)path u0; : : : ; ui in W and any �xed ui+1 in U , Pr[vi+1 = ui+1 j (v0; : : : ; vi) = (u0; : : : ; ui)] = Pr[vi+1 =ui+1 j vi = ui] = PrDui [(ui; ui+1)].Let H be the directed graph with node set N and edge set f(i; j) : i 2 N; 0 � j � i+1g. Let H 0 be thesubgraph of H induced by the edges f(i+ 1; i); (i; i+ 1) : i 2 Ng [f(0; 0); (1; 1)g.Let p and q be reals in (0; 1]. We now de�ne two random walks, !p;q and !0p;q, on graphs H andH 0, respectively. The walk !p;q = hwi is characterized by: (i) Pr[wi+1 � j � 1 jwi = j] � p, for anyinteger j > 1, (ii) Pr[wi+1 = 0 j wi = j] � q, for j equal 0 or 1, and (iii) Pr[wi+1 = 2 j wi = 1] � 1 � p.The walk !0p;q = hw0i is characterized by: (i) Pr[w0i+1 = j � 1 j w0i = j] = p, for all integer j > 1, (ii)Pr[w0i+1 = 0 j w0i = j] = q, for j equal 0 or 1, and (iii) Pr[w0i+1 = 2 j w0i = 1] = 1 � p. We note that thesequence hmaxfs0; tgi represents the random walk !p;q with appropriate values for p and q, as determinedby Lemmas 5.11 and 5.12. We analyze random walk !p;q by �rst showing that !p;q \dominates" !0p;q withrespect to the properties of interest. The random walk !0p;q is easier to analyze as it is exactly characterizedby p and q. Lemmas 5.16 and 5.18 show that the bias of !p;q towards 0 is more than that of !0p;q.Lemma 5.16 For all i and k in N, for random walks !p;q and !0p;q, we have Pr[wi � k] � Pr[w0i � k].Proof: We prove the claim by induction on i. The base case i = 0 is trivial. Assume the claim holds fori and any k.Let k � 2. Then Pr[w0i+1 � k] = Pr[w0i � k � 1] + pPr[k � w0i � k + 1]= (1� p) Pr[w0i � k � 1] + pPr[w0i � k + 1]Pr[wi+1 � k] � Pr[wi � k � 1] + pPr[k � wi � k + 1]= (1� p) Pr[wi � k � 1] + pPr[wi � k + 1]:If k = 1 or 0, respectively, thenPr[w0i+1 � 1] = Pr[w0i � 0] + pPr[1 � w0i � 2]= (1� p) Pr[w0i � 0] + pPr[w0i � 2]Pr[wi+1 � 1] � Pr[wi � 0] + pPr[1 � wi � 2]= (1� p) Pr[wi � 0] + pPr[wi � 2]:Pr[w0i+1 � 0] = q Pr[w0i � 0] + q Pr[w0i = 1]= q Pr[w0i � 1]Pr[wi+1 � 0] � q Pr[wi � 0] + q Pr[wi = 1]= q Pr[wi � 1]:

The lemma follows by induction.Let zi(!) be the random variable denoting the number of steps taken to reach node 0 starting fromnode i, for a random walk !. An excursion of length ` in a graph W with node set N is a walk that startsat node 0 and �rst returns to the start node at time `, for all ` in N. For all i such that wi = 0, let `i(!)be the random variable that gives the length of the excursion in ! starting at time i. We note that for alli, `i(!) equals z0(!).Lemma 5.17 Pr[zi(!0p;q) � `] � Pr[zi�1(!0p;q) � `], for all ` and all i > 0.Proof: We omit the subscript p; q for convenience. We use induction on `. The base case ` = 0 is trivial.Let ` � 1. If i > 2 then:Pr[zi�1(!0) � `] = pPr[zi�2(!0) � `� 1] + (1� p) Pr[zi(!0) � `� 1]� pPr[zi�1(!0) � `� 1] + (1� p) Pr[zi+1(!0) � `� 1] = Pr[zi(!0) � `]where the inequality follows by induction. If i = 2 or 1, then we have, respectively:Pr[z1(!0) � `] = q + (1� q � (1� p)) Pr[z1(!0) � ` � 1] + (1� p) Pr[z2(!0) � `� 1]� pPr[z1(!0) � `� 1] + (1� p) Pr[z2(!0) � ` � 1]� pPr[z1(!0) � `� 1] + (1� p) Pr[z3(!0) � ` � 1] = Pr[z2(!0) � `]Pr[z0(!0) � `] = q + (1� q) Pr[z1(!0) � `� 1]� q Pr[z0(!0) � `� 1] + (p� q) Pr[z1(!0) � `� 1] + (1� p) Pr[z2(!0) � `� 1]= Pr[z1(!0) � `]where the last inequalities in both calculations also follow by induction.Lemma 5.18 For all i and ` in N, we have Pr[zi(!p;q) � `] � Pr[zi(!0p;q) � `].Proof: We omit the subscript p; q for convenience. Let pj = Pr[wi+1 � j � 1 j wi = j], for j > 1, andhj = Pr[wi+1 = j jwi = j], for all j in N. Note that p � pj , for all j > 1, q � minfp1; h0g, and p � q.If i � 2 then:Pr[zi(!0) � `] = pPr[zi�1(!0) � ` � 1] + (1� p) Pr[zi+1(!0) � `� 1]� piPr[zi�1(!0) � `� 1] + (1� pi) Pr[zi+1(!0) � `� 1]� piPr[zi�1(!0) � `� 1] + hi Pr[zi(!0) � `� 1] + (1� pi � hi) Pr[zi+1(!0) � `� 1]The inequalities above follow from Lemma 5.17 and the fact that p � pi. If i = 1 or 0 thenPr[z1(!0) � `] = q + (1� q � (1� p)) Pr[z1(!0) � `� 1] + (1� p) Pr[z2(!0) � `� 1]� p1 + h1Pr[z1(!0) � `� 1] + (1� p1 � h1) Pr[z2(!0) � ` � 1]Pr[z0(!0) � `] = q + (1� q) Pr[z1(!0) � `� 1]� h0 + (1� h0) Pr[z1(!0) � `� 1]where we use Lemma 5.17, and the inequalities q � minfp1; h0g and p � q.By induction on `, we have that Pr[zi(!0) � `] � Pr[zi(!) � `], for all i.We now formalize the notion of the domination of !p;q over !0p;q. For any i, let �i (resp., � 0i) denote thesmallest j � 0 such that wi+j = 0 (resp., w0i+j = 0). We note that by letting hwi represent hmaxfs0; tgi,the terminating step � is given by i� + �i� .

Lemma 5.19 For any i and j � i, we have Pr[�i � j] � Pr[� 0i � j].Proof: In the following, we omit the subscript p; q for convenience. By the de�nitions of �i, zi(!), � 0i ,and zi(!0) we have: Pr[�i � j] = X0�k�iPr[wi = k] Pr[zk(!) � j]; andPr[� 0i � j] = X0�k�iPr[w0i = k] Pr[zk(!0) � j]:We now prove the desired claim as follows:Pr[�i � j] = X0�k�iPr[wi = k] Pr[zk(!) � j]� X0�k�iPr[wi = k] Pr[zk(!0) � j]� X0�k�iPr[w0i = k] Pr[zk(!0) � j]:(In the second step, we use Lemma 5.18. For the third step we �rst invoke Lemma 5.16 and then invokeLemma A.1 with the substitution (i; k;Pr[wi = k];Pr[w0i = k];Pr[zk(!0) � j]) for (m; i; pi; qi; ni). We notethat one of the conditions for the latter invocation, namely, Pr[zk(!0) � j] is non-increasing with k, followsfrom Lemma 5.17.)The following claim is proved using Raney's lemma [7, 15].Lemma 5.20 For all i and ` in N, we have Pr[`i(!0p;q) = `+1 jw0i = 0] � maxf1�q; 5(p�q)gPr[`i(!0p;q) =` jw0i = 0].Proof: Since !0 is a random walk, Pr[`i(!0) = ` j (w00; : : : ; w0i�1; w0i) = (u0; : : : ; ui�1; 0)] = Pr[`0(!0) =` jw00 = 0], for any u0; : : : ; ui�1 in N. For the remainder of the proof, we assume that w00 is 0.For ` = 1, the desired claim holds since Pr[`0(!0) = 2]=Pr[`0(!0) = 1] = (1 � q). We now consider` � 2. Let Ej denote the event that the random walk does not reach node 0 in the �rst j steps. That is,Ej is the event that w0k is non-zero for all k in [1; j]. For all j, let �j denote the probability that w0j+1 is 1and Ej+1 holds, given that w01 is 1. For convenience, we assume that ��1 equals 1=(p� q). We obtain that:Pr[`0(!0) = `] = (1� q) � �`�2 � q (7)It thus follows that the ratio of Pr[`0(!0) = `+ 1] and Pr[`0(!0) = `] equals �`�1=�`�2. The remainderof the proof is devoted to obtaining an upper bound on �j+1=�j for all j � 0.For m � 0, let �m denote the probability that E2m+1 holds and w02m+1 = 1 and the edge (1; 1) is nottraversed in any of the �rst 2m+ 1 steps, given that w01 is 1. Using Raney's lemma [7, 15], we obtain that�m equals 12m+1�2m+1m �(p(1� p))m. By the de�nitions of �j and �m, it follows that:�j = X0�m�bj=2c�m � (p� q) � �j�2m�1= X0�m�bj=2c 12m+ 1 2m+ 1m !(p(1� p))m � (p� q) � �j�2m�1:We now prove by induction on j � 2 that �j+1=�j is at most (p� q). The induction base holds since�0 is 1 and �1 is 5(p� q). For the induction hypothesis, we assume that �j+1=�j is at most 5(p� q) for

all j � k � 1. If k is even, then we have:�k+1=�k � max0�m�k=2�k�2m=�k�2m�1� 5(p� q);where the last inequality follows from the induction hypothesis. If k is odd, then we have:�k+1=�k � max(1k k(k � 1)=2!(p� q)2 + 1k + 2 k + 2(k + 1)=2!p! = 1k k(k � 1)=2!(p� q)! ;max0�m�(k�3)=2c�k�2m=�k�2m�1)� maxf5(p� q); 5(p� q)g= 5(p� q);where the second inequality follows from the induction hypothesis and the inequalities 1 � p � (p � q)2,and � k+2(k+1)=2� � 4� k(k�1)=2�. The desired claim of the lemma follows from the upper bound on �k+1=�k andEquation 7.We now let ! and !0 denote the random walks !p;q and !0p;q, respectively, where p = 1 � 2"2 andq = 1 � 2". Lemmas 5.12 and 5.11 imply that ! characterizes the random walk corresponding to thesequence hmaxfs0; tgi. Consider the random walk !0. Assume that at each step we only reveal whetherw0i = 0 or not. We can de�ne a sequence hvi associated with hw0i as follows: vj = G i� w0j = 0, and vj = Botherwise.Lemma 5.21 Let i be in [(logn=b)� 1]. Given any �xed sequence hvii�1 of B;G values, the probabilitythat w0i is 0 is at least 1� 10".Proof: Assume that vj = G. What is the probability that vi = G, i > j, if we know that vk = B, for allinteger k in the interval [j+1; i) ? From Lemma 5.20, it follows that this probability is at least 1�10", sincethis is a lower bound on the probability that there is an excursion of length i� j starting at j in H 0, giventhat there is an excursion of length at least i� j starting at j in H 0. Given any �xed B;G sequence huij�1,Pr[vi = G j (v0; : : : ; vi�1) = (u0; : : : ; uj�1; G; B; : : :; B) = Pr[vi = G j (vj ; : : : ; vi�1) = (G;B; : : :; B)]. Sincethis holds for any j > 0 and since w0i = 0 i� vi = G, we have Pr[w0i j (v0; : : : ; vi�1) = (u0; : : : ; ui�1)] � 1�10".Our main claim about the random walk ! follows from Lemmas 5.19 and 5.21.Lemma 5.22 For any i in [(logn)=b� 1] and any nonnegative integer j, the probability that �i is at leastj is at most (10")j.Proof: By Lemma 5.21, the probability that � 0i is at least j is at most (10")j. The desired claim followsfrom Lemma 5.19.Using Lemma 5.22, we derive an upper bound on E[c(xi; xi+1)] and E[c(yi; yi+1)] for all i.Lemma 5.23 For any i in [(logn)=b� 1], E[c(xi; xi+1)] and E[c(yi; yi+1)] are both O(ai).Proof: We �rst observe that c(xi; xi+1) (resp., c(yi; yi+1)) is at most ak (resp., bk), where k is the leastj � i such that sj (resp., tj) belongs to f0; 1; 2g (resp., f0g); if such a j does not exist, then k is (logn)=b�1.Thus, k is at most i + �i. By Lemma 5.22, it follows that for any j � i, the probability that k � j is atmost (10")j�i. By Lemma 5.9, we thus have:E[c(xi; xi+1)] �Pj�i ai(10")j�i2b log� 2(j�i) = O(ai) andE[c(yi:yi+1)] �Pj�i bi(10")j�i2b log� 2(j�i) = O(bi);

since 10"2b log� 2 < 1.We now use Lemmas 5.9, 5.22, and 5.23 to establish Theorem 1.Proof of Theorem 1: By Equation 6, the expected cost of the read operation is bounded by the expectedvalue of f(`(A))P0�i<� O(c(xi; xi+1)+c(yi; yi+1)). We separately place bounds on E[P0�i<i�(c(xi; xi+1)+c(yi; yi+1))] and E[Pi��i<� (c(xi; xi+1)+c(yi; yi+1))]. By Lemmas 5.9 and 5.23, the �rst term is O(ai�+bi�).We place a bound on E[Pi��i<� (c(xi; xi+1)+c(yi; yi+1))] as follows. Since � is i�+�i� , by Lemma 5.22,we obtain that for any j � 0, the probability that � � i�+j is at most (10")j . Therefore,E[Pi��i<� (c(xi; xi+1)+c(yi; yi+1))] is at most: Xj�0 j(10")j(ai�+j + bi�+j)� Xj�0 j(10")j2jb log� 2(ai� + bi�)= O(ai� + bi�);since 10"2b log� 2 < 1. By Lemma 5.9, the claim of the theorem follows.Proof of Theorem 2: Consider an insert operation executed by x for any object. The expected cost ofthe operation is bounded by E[P0�i<logn=b c(xi; xi+1)], which by Lemmas 5.9 and 5.23 is O(a(logn)=b�1) =O(C).We now consider the cost of the delete operation. By Lemma 5.6, for each i, the number of reverse(i; j)-neighbors of xi for any j is O(logn) whp, where xi is the ith node in the primary neighbor sequenceof x. Therefore, the expected cost of the delete operation executed by x is bounded by the product ofE[P0�i<logn=b c(xi; xi+1)] and O(logn). By Lemma 5.23, it follows that the expected cost of a deleteoperation is O(C logn).5.4 Auxiliary MemoryProof of Theorem 3: We �rst place an upper bound on the size of the neighbor table of any u in V .By de�nition, the number of primary and secondary neighbors of u is at most (d+ 1)2b(logn)=b, which isO(logn). By Corollary 5.6.1, the number of reverse neighbors of u is O(log2 n) whp.We next place an upper bound on the size of the pointer list of any u in V . The size of Ptr(u) is atmost the number of triples of the form (A; v; �), where A is in A and v is in V such that: (i) there exists iin [(logn)=b] such that v is an i-leaf of u, (ii) A[j] = u[j] for all j in [i], and (iii) A is in the main memoryof v.By Lemma 5.7, the number of i-leaves of u is O(2ib logn) whp. The probability that A[j] = u[j], forall j in [i], is at most 1=2ib. Since the number of objects in the main memory of any node is at most `, itfollows that whp, jPtr(u)j is at most Pi2[logn=b]O(` logn) which is O(` log2 n).Combining the bounds on the sizes of the neighbor table and pointer list, we obtain that the size ofthe auxiliary memory of u is O(` log2 n) whp.5.5 AdaptabilityProof of Theorem 4: By Lemma 5.6, for any node u, the number of nodes of which u is a primary orsecondary neighbor is O(logn) expected and O(log2 n) whp. Moreover, u is a reverse neighbor of O(logn)nodes since u has O(logn) primary neighbors. Therefore, the adaptability of our scheme is O(logn)expected and O(log2 n) whp.6 Future WorkWe would like to extend our study to more general classes of cost functions and determine tradeo�s amongthe various complexity measures. It would also be interesting to consider models that allow faults in the

network. We believe that our access scheme can be extended to perform well in the presence of faults, asthe distribution of control information in our scheme is balanced among the nodes of the network.AcknowledgmentsThe authors would like to thank Madhukar Korupolu and Satish Rao for several helpful discussions.References[1] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networks. In Proceedings of the7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 574{583, January 1996.[2] B. Awerbuch and D. Peleg. Routing with polynomial communication space tradeo�. SIAM Journalof Discrete Mathematics, 5:151{162, 1990.[3] B. Awerbuch and D. Peleg. Sparse partitions. In Proceedings of the 31st Annual IEEE Symposium onFoundations of Computer Science, pages 503{513, 1990.[4] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management. InProceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 39{47, May 1992.[5] H. Cherno�. A measure of the asymptotic e�ciency for tests of a hypothesis based on the sum ofobservations. Annals of Mathematical Statistics, 23:493{509, 1952.[6] S. Dolev, E. Kranakis, D. Krizanc, and D. Peleg. Bubbles: Adaptative routing scheme for high-speeddynamic networks. In Proceedings of the 27th Annual ACM Symposium on the Theory of Computing,pages 528{537, 1995.[7] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, Reading,MA, 1989.[8] J. D. Guyton and M. F. Schwartz. Locating nearby copies of replicated Internet servers. In Proceedingsof ACM SIGCOMM, pages 288{298, 1995.[9] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Relieving hot spotson the World Wide Web. In Proceedings of the 29th Annual ACM Symposium on the Theory ofComputing, May 1997.[10] R. Karp, M. Luby, and F. Meyer auf der Heide. E�cient PRAM simulation on a distributed memorymachine. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 318{326,May 1992.[11] S. J. Mullender, editor. Distributed Systems. Addison-Wesley, 1993.[12] S. J. Mullender and P. M. B. Vit�anyi. Distributed match-making. Algorithmica, 3:367{391, 1988.[13] C. G. Plaxton and R. Rajaraman. Fast fault-tolerant concurrent access to shared objects. In Pro-ceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, pages 570{579,October 1996.[14] A. G. Ranade. How to emulate shared memory. Journal of Computer and System Sciences, 42:307{326,1991.[15] G. N. Raney. Functional composition patterns and power series reversion. Transactions AmericanMathematical Society, 94:441{451, 1960.

[16] E. Upfal and A. Wigderson. How to share memory in a distributed system. JACM, 34:116{127, 1987.[17] M. Van Steen, F. J. Hauck, and A. S. Tanenbaum. A model for worldwide tracking of distributedobjects. In Proceedings of TINA'96, pages 203{212, September 1996.A A technical lemmaLemma A.1 Let m be a nonnegative integer and let hnim be a sequence of non-increasing reals. Lethpim and hqim be two sequences of reals such that: (i) for all j in [m], P0�i�j pi � P0�i�j qi and (ii)P0�i�m pi =P0�i�m qi. Then, we have: X0�i�m pini � X0�i�m qini:Proof: The proof is by induction on m. The induction basis is trivial. For the induction hypothesis, weassume that the statement of the lemma holds for m. We now establish the claim for m+ 1.X0�i�m+1 pini = q0n0 + (p0 � q0)n0 + X1�i�m+1 pini� q0n0 + (p0 � q0 + p1)n1 + X2�i�m+1 pini� q0n0 + X1�i�m+1 qini= X0�i�m qini:(The third step follows from the inequalities n0 � n1 and p0 � q0, and the induction hypothesis. We notethat the induction hypothesis can be invoked since p0� q0+ p1+P2�i�j pi �P1�i�j qi and p0� q0+ p1+P2�i�m+1 =P1�i�m+1 qi.)

