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Chapter 1IntroductionNatural language processing in general and machine translation in particular face many di�culties.Consider for example the following sentences:(1) He had the right to go. (`right' is a noun)(2) He was right in deciding not to go. (adjective)(3) The exit door was right in the line of �re. (adverb)(4) Should he wait until the problem might right itself? (verb)(5) I ate the pasta with a fork. (PP attaches to verb)(6) I ate the pasta with a delicious tomato sauce. (PP attaches to preced. NP)(7) I sent a package to New York. (PP attaches to verb)(8) I booked a ight to New York. (PP attaches to preceding NP)(9) I saw the Grand Canyon ying to New York. (semantics vs. syntactic bias)(10) I will pick up the car at the airport. (attachment unclear and irrelevant)(11) I know your friend in New York. (\to know" ! \conocer")(12) I know your friend is in New York. (\to know" ! \saber")A parser1 has to cope with ambiguous words like \right" (sentences 1-4), proper structuralattachment (sentences 5-8), even if the preposition phrases are identical (sentences 7&8). Sometimesthe existence of ambiguity is relatively obvious to the human reader, particularly when syntacticand semantic clues point in opposite directions (sentence 9), while in other cases the ambiguity ismore subtle and possibly irrelevant (sentence 10). Even when there seems to be little ambiguity forwords like \to know", other languages often make distinctions, depending on how exactly a wordis used. In the case of sentences 11&12, \to know" has di�erent translations for most languages,e.g. \conocer"/\saber" in Spanish.1A parser is a program that analyses text to �nd structural descriptions of the text that encode useful informationof some kind about it. The term parser is used for the analysis of both source code of computer programs and naturallanguages, such as English and Swedish. In natural language understanding, the structural descriptions built by theparser typically include a tree reecting the syntactic structure of the text, but can also contain semantic and otherinformation. A good introductory textbook on natural language understanding is (Allen, 1995).1



(13) The statue of liberty in New York, which was sent to the United States asa gift from France, was dedicated in 1886.(14) The airline said that it would report a loss for the �rst quarter, but thatit would be less than $100 million.Sentences 13&14 demonstrate the problem of anaphora resolution2. The German translationof the second occurrence of the personal pronoun `it' in sentence 14 for example depends on whetherthat pronoun refers to \the airline", \a loss", or \the �rst quarter", because the grammaticalgender of the translated German pronoun (\sie", \er" or \es") has to agree with the grammaticalgender of its antecedent (\the airline"! \die Fluggesellschaft" (feminine), \a loss"! \ein Verlust"(masculine), or \the �rst quarter"! \das erste Quartal" (neuter)). The same holds for the relativepronoun \which" in sentence 13.These few examples already show that an automatic parsing and machine translation sys-tem has to make many di�cult decisions, including part of speech assignment, proper structuralanalysis, word sense disambiguation and anaphora resolution. Natural language processing is atruly formidable task.1.1 Previous Approaches1.1.1 Traditional ApproachesThe parsing of unrestricted text, with its enormous lexical and structural ambiguity, still posesa great challenge in natural language processing (NLP). Traditional approaches try to master thecomplexity of parse grammars with hand-crafted rules, as in augmented transition networks (Bates,1978), de�nite clause grammars (Pereira & Warren, 1980), lexical functional grammars (Kaplan& Bresnan, 1982), functional uni�cation grammars (Kay, 1982), tree-adjoining grammars3 (Joshi,1985), or generalized phrase structure grammars (Gazdar, Klein, Pullum, & Sag, 1982). The manualconstruction of broad-coverage grammars turned out to be much more di�cult than expected, if notimpossible. In his Machine Translation `forum' lead paper, Somers (1993) reects on the relativelymodest advancement in natural language processing in the 70's and 80's by asking \What's wrongwith classical second generation4 architecture?".1.1.2 Empirical ApproachesIn recent years, there has been a trend towards more empirical approaches that augment or replacethe hand-coded rule paradigm with statistical and machine learning techniques. These techniquesautomatically derive parse grammars and other classi�cation structures from examples.2An anaphor is an expression which cannot have independent reference, but refers to another expression, theso-called antecedent (Radford, 1988). Examples of anaphora in sentences 13&14 are the pronouns \which" and \it"(both occurrences), which refer to the antecents \the statue of liberty", \the airline", and \a loss". The process of�nding the proper antecedent of an anaphor is called anaphora resolution.3Tree-adjoining grammars are based on hand-coded trees instead of rules.4By second generation architecture Somers refers to systems which incorporate most of the typical design featuressuch as \linguistic rule-writing formalisms with software implemented independently of the linguistic procedures,strati�cational analysis [in particular morphology - surface syntax - deep syntax] and generation, and an intermediatelinguistically motivated representation which may or may not involve the direct application of contrastive linguisticknowledge." 2



A number of researchers have already applied machine learning techniques to various NLPtasks like accent restoration by Yarowsky (1994), who achieves 99% accuracy, relative pronoundisambiguation (Cardie, 1992, 1993, 1996), (Japanese) anaphora resolution (Aone & Bennett, 1995),part of speech tagging (Weischedel & al., 1993; Brill, 1995; Daelemans, Zavrel, Berck, & Gillis,1996), where tagging accuracies between 96% and 97% are achieved, cue phrase classi�cation (Siegel& McKeown, 1994; Litman, 1996), and word sense disambiguation (Yarowsky, 1992, 1995; Ng &Lee, 1996; Mooney, 1996).Many of the statistical approaches have been made possible by the increased availabilityof large corpora of natural language data like the Brown corpus (Francis & Kucera, 1982), whichconsists of about a million words, all labeled with their parts of speech, or the 4.5 million word PennTreebank (Marcus, Santorini, & Marcinkiewicz, 1993), in which more than half of the sentenceshave been annotated for their skeletal syntactic structure.Newer treebank-based probabilistic approaches (Magerman, 1995; Collins, 1996) have pro-duced encouraging results. It is however not clear how these systems can still be improved signif-icantly, because (1) using about 40,000 training sentences, they have already exhausted the largePenn Treebank corpus and (2) they still use a fairly limited context and sharply restrict the amountof background knowledge.To cope with the complexity of unrestricted text, parse rules in any kind of formalism willhave to consider a complex context with many di�erent morphological, syntactic, semantic andpossibly other features to make good parsing decisions. This can present a signi�cant problem,because even linguistically trained natural language developers have great di�culties writing andeven more so extending explicit parse grammars covering a wide range of natural language. On theother hand it is much easier for humans to decide how speci�c sentences should be analyzed andwhat feature might discriminate a pair of speci�c parse states.1.2 A Context-Oriented Machine Learning ApproachWe therefore propose an approach to parsing based on learning from examples with a very strongemphasis on context, integrating morphological, syntactic, semantic and other aspects relevantto making good parse decisions, thereby also allowing the parsing to be deterministic. In orderto reduce the complexity of the learning task, we break the parsing process into a sequence ofsmaller steps, so-called parse actions. This reduces parsing to a decision problem, where thesystem has to learn which parse action to perform next. As we have shown at the beginning ofthis introduction, these decisions can be quite di�cult. We therefore provide (1) a rich context,encoded by currently 205 morphological, syntactic and semantic features and (2) some backgroundknowledge, in particular dictionaries, a concept hierarchy, and a subcategorization table.As our parsing model we choose a deterministic shift-reduce type parser, which not onlymakes parsing very e�cient, but also assures transparency during the example acquisition, whenparse action examples are collected interactively: the partially trained parser proposes the nextparse action and a human supervisor con�rms or overwrites the proposal. Compared to the originalshift-reduce parser (Marcus, 1980), our parser includes additional types of operations and allowsadditional operation parameters, so that the parser can produce a deeper analysis of the sentence.The parse tree integrates semantic information, phrase-structure and case-frames. Not only does3



this lead to a �nal parse tree that is powerful enough to be fed into a transfer and a generationmodule to complete the full process of machine translation, it also provides much richer intermediateresults, which are used to improve the quality of parsing decisions.Applying machine learning techniques, the system uses the acquired parse action examplesto generate a parse grammar in the form of an advanced decision structure, an extension of decisiontrees (Quinlan, 1987, 1993). Such a parse grammar can be used to parse previously unseen sentencesinto parse trees. Based on such parse trees, our system translates the sentences, re-using theempirical methods developed for parsing with only minor adaptations.Following this corpus based approach, we relieve the NL-developer from the hard if notimpossible task of writing explicit grammar rules and make grammar coverage increases very man-ageable. Compared with recently published probabilistic methods, our system relies on some back-ground knowledge, a rich context, a deeper analysis and more supervision per sentence, but radicallyfewer examples, currently 2565, as opposed to 40,000 sentences for the treebank-based approachescited above.1.3 Summary of Experimental ResultsWe tested our parser on lexically limited sentences from the Wall Street Journal and achievedaccuracy rates of 89.8% for labeled precision6, 98.4% for part of speech tagging and 56.3% of testsentences without any crossing brackets. Our accuracy results are about as good as for competingprobabilistic systems trained on 40,000 sentences. Based on our learning curve, we expect that,when increasing the number of our training sentences from 256, but still staying far below the40,000 training sentences used by probabilistic systems, our results will be signi�cantly better thanfor those treebank-based probabilistic system.Machine translations of 32 randomly selected Wall Street Journal sentences from Englishto German have been evaluated by 10 bilingual volunteers and been graded as 2.4 on a 1.0 (best)to 6.0 (worst) scale for both grammatical correctness and meaning preservation. Our system hasbeen trained and tested on the same lexically limited corpus, but despite this advantage we believethat it is quite an achievement that after only very limited training, our system already producesbetter translations than all three competing commercial systems. The translation quality was onlyminimally better (2.2) when starting each translation with the correct parse tree, indicating thatthe parser is quite robust and that its errors have only a moderate impact on �nal translationquality.1.4 Organization of DissertationChapter 2 presents the task de�nition and gives an overview of the architecture of the system andits major components. Chapter 3 describes the background knowledge we use, namely the knowl-edge base, the monolingual lexicons, the bilingual dictionary, the subcategorization table, and theso-called morphological pipelines. Chapter 4 briey explains the two pre-parsing modules, segmen-tation, and morphological analysis. The key chapter 5 on parsing explains our parsing paradigm5Note however that these 256 sentences contain some 11,000 individual parse action examples.6See chapter 6.2 for exact de�nitions of parsing metrics.4



and presents the details of parse actions, features, the training of the parser and the decision struc-tures we use for learning. Chapter 6 evaluates the parser, including a series of `ablation' teststo investigate the practical contributions of various system components. Chapter 7 describes howthe techniques used for parsing can be applied to the parse tree transfer to the target language.Chapter 8 explains how that target language tree is reordered and morphologically propagated inorder to compute the surface forms of words and phrases in the target language. Chapter 9 reportsthe results of our translation experiments, including comparisons to three commercial systems.Chapter 10 describes related work and chapter 11 discusses several potential future extensions ofour system, before chapter 12 concludes.
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Chapter 2System Architecture2.1 Task De�nitionOur goal is to parse and translate natural language. In this dissertation, we investigate how machinelearning techniques can be used to �rst parse input text into a parse tree and subsequently, basedon this parse tree, translate the text into another language.To develop a parser for English and a translator from English to German, we use trainingsentences from the Wall Street Journal. We evaluate the parser by testing it on sentences fromthe Wall Street Journal that were not used for training. We use standard evaluation criteria forparsing, including precision, recall and violations of constituent boundaries (\crossing brackets").The German translations are graded by outside bilingual evaluators.2.1.1 CorpusThe WSJ corpus used in our work is a subset of sentences from Wall Street Journal articles from1987, as provided on the ACL data-disc. In order to limit the size of the required lexicon, wework on a reduced corpus that includes all those sentences that are fully covered by the 3000 mostfrequently occurring words (ignoring numbers etc.) in the entire corpus. The lexically reducedcorpus contains 105,356 sentences, a tenth of the full corpus.For our training and testing we use the �rst 272 sentences from this lexically restrictedcorpus. They vary in length from 4 to 45 words, averaging at 17.1 words. We believe that it isimportant to use sentences from the \real world" instead of arti�cially generated sentences in orderto capture the full complexity of natural language. A complete listing of the 272 training andtesting sentences can be found in appendix A and a more detailed discussion of the testing andtraining corpus is presented in section 6.1 of the chapter on \Parsing Experiments".2.2 Transfer-Based vs. Interlingua ApproachThe overall system architecture follows the classical subdivision of parsing, transfer and generation,thereby rejecting a pure interlingua approach (see �gure 2.1). As the authors and interlinguaproponents of (Nirenburg, Carbonell, Tomita, & Goodman, 1992) point out, the major distinctionbetween the interlingua- and transfer-based systems is the \attitude toward comprehensive analysis6



of meaning". While the pure interlingua approach might be quite appealing academically, we believethat the transfer approach is easier and more practical to handle and can demonstrate the mainparadigm and ideas introduced by our system equally well.An interlingua is a formal language which has to represent the meaning of source text fullyand unambiguously. The task to extract all information contained in natural language text and toresolve all shades of ambiguity is so complex and would require such an amount of world knowledgethat it would overburden any system development.
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a generation module that reorders the tree and generates the proper surface words and phrases inthe target language.The key data structure that the deterministic parser uses to decide what the next parseaction should be is the parse decision structure. This structure, a hybrid extension of decision treesand lists, is learnt from parse action examples. Parse action examples are collected by interactivelyrunning training sentences through the parser. Initially, when there are no parse action examplesand hence no parse decision structure yet, a human supervisor provides the full and correct sequenceof parse actions for a sentence. These are collected in a log �le, which, together with the featureset, is used to construct a set of full parse action examples. The feature set is provided by thesupervisor and describes the context of a parse state. The same feature set is used for all parseaction examples. For each parse step, the parse action example generator makes the parse engineof the deterministic parser automatically determine the values for all features in the feature setand then complements the feature vector with the correct parse action from the log �le as theclassi�cation of the parse action example. The resulting parse action examples are then used bya machine learning program, an extension of the classic decision tree constructor ID3 (Quinlan,1987), to build the parse decision structure. Starting with the second sentence, this parse decisionstructure can be used by the deterministic parser to propose the next parse action to the supervisor.As the number of parse action examples grows and the parse decision structure becomes more andmore re�ned, the supervisor has to correct fewer and fewer of the proposed parse actions.Note that we directly use the proper parse action sequence to train our parser, whereasin most empirical methods, the example input consists of the �nal parse trees only. By provid-ing examples with actual parse actions to the machine learning unit, our system provides moreinformation and a more direct and therefore better guidance. The various types of backgroundknowledge that support the parsing process (lexicons, morphological pipelines, knowledge base andsubcategorization table) are described in the chapter 3.2.3.1 FeaturesTo make good parse decisions, a rich context in the form of a wide range of features at variousdegrees of abstraction have to be considered. To express such a wide range of features, we de�neda feature language. The following examples, for easier understanding rendered in English and notin feature language syntax, further illustrate the expressiveness of the feature language:� the general syntactic class of frame�1 (the top frame of the parse stack1): e.g. verb, adj, np,� whether or not frame�1 could be a nominal degree adverb,� the semantic role of frame�1 with respect to frame�2: e.g. agent, time; this involves patternmatching with corresponding entries in the verb subcategorization table,� whether or not frame�2 and frame�1 agree as np and vp.The feature collection is basically independent from the supervised parse action acquisition.Before learning a decision structure for the �rst time, the supervisor has to provide an initialset of features that can be considered obviously relevant. Later, the feature set can be extended1The parse stack and the input list form the parse structure. For more details, see section 5.2.9



as needed. All concepts and methods introduced in this overview are described in detail in thefollowing chapters, notably features in section 5.6.
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Chapter 3Background KnowledgeIn our approach to natural language processing, learning is complemented by some prespeci�edknowledge. This knowledge can be accessed both indirectly through the use of features when learn-ing and using decision structures for parsing and transfer, as well as directly, as happens for examplewith the morphological knowledge during generation. The background knowledge is organized in ageneral knowledge base (KB), monolingual lexicons, a bilingual dictionary, subcategorization tablesand what we call morphological pipelines.Much of the background knowledge is used at various stages of the translation process, e.g.the general KB at virtually all stages and the morphological pipelines for both pre-parsing analysisand generation, while other knowledge is used exclusively in a single phase, as e.g. the bilingualdictionary in transfer.Before describing in further detail what background knowledge we use, we �rst want to givereasons why we use it. In chapter 1 we have already explained why we use machine learning inmaking parse and transfer decisions: essentially because the lexical and structural ambiguity ofunrestricted natural language is so complex that hand-crafted approaches as tried in the past havefailed. Why then not learn everything, and do without any background knowledge? Statisticalapproaches such as SPATTER (Magerman, 1995) or the Bigram Lexical Dependency based parser(Collins, 1996) produce parsers on very limited linguistic background information and InductiveLogic Programming systems such as CHILL (Zelle & Mooney, 1994; Zelle, 1995) have even generatedlinguistically relevant categories such as animate.In short, the background knowledge we use is at least qualitatively easy to provide andmostly already conceptually available in the form of traditional (paper) dictionaries and grammarbooks; using available background knowledge, we can let the learning focus better on core decisionproblems in parsing and transfer, on decisions that are known to be extremely hard if not impossibleto make using hand-written rules. With a better focus, training sizes can be smaller, because lesshas to be learnt; no wheels need to be reinvented.The nature of the background knowledge we use is much simpler than what we try to learn,because it is what we call micromodular. We use the term micromodular for knowledge that iscomposed of very small pieces that are very independent of each other, e.g. single entries in amonolingual lexicon, a bilingual dictionary, or a subcategorization table. These entries are withoutany claim of completeness: the nominal lexical entry for high for example only asserts that thereis a concept which can manifest itself as a noun with the stem form high, but does not preclude11



any other interpretations for high or indicate which interpretation might be most appropriate ina given context. Similarly, subcategorization table entries and other elementary assertions makeno claim about the existence or preferences of potentially competing entries. This micromodularnature of the background knowledge makes it easy for humans to express it. The acquisition ofbackground knowledge is therefore mostly a quantitative problem, calling for tools and methodsthat allow rapid information acquisition. In contrast to this micromodular background knowledge,the knowledge encompassing parse grammars is qualitatively very complex; it is this knowledgethat has to disambiguate natural language text with all its regularities, sub-regularities, pockets ofexceptions, and idiosyncratic exceptions.The following sections describe the di�erent types of background knowledge in detail. Sec-tion 3.3 shows how additions to the KB and lexicon are supported.3.1 Knowledge BaseThe knowledge base (KB) consists of concepts linked by relations. The vast majority of its currently4356 concepts are semantic or syntactic.Most semantic concepts represent a speci�c word in a speci�c language. A separate notionof a concept is necessary, because words are too ambiguous. Not only can words have di�erentmeanings in di�erent languages, e.g. gift can mean poison in Swedish; some words, called homonyms,have unrelated meanings, e.g. go, a common verb and a Japanese board game, or have relatedmeanings, but di�er in their syntactic function, in which case the word is sometimes also referredto as a homomorph, as e.g. for increase which can be both a verb and a noun. Finally, conceptsallow to distinguish between di�erent shades of meanings of a word.Even if two words from the same or di�erent language basically share the same meaning, theyare still represented by di�erent concepts, because their meanings typically never match perfectlydue to possibly ever so slight di�erent connotations.Semantic concepts are typically represented by identi�ers of the formI-<language-tag><part-of-speech-tag>-<speci�c-tag>, e.g. I-EN-PILOT, I-EN-TANGIBLE-OB-JECT or I-GADJ-DEUTSCH, where the `I' stands for internal concept, the `E' for English, the `G'for German, the `N' for noun, the `ADJ' for adjective. Other semantic concepts include semanticroles, e.g. R-AGENT or R-TO-LOCATION.Syntactic concepts include parts of speech, pre�xed by \S-", e.g. S-VERB or S-TR-VERB,for verbs and, more speci�cally, transitive verbs respectively. Other syntactic concepts includeforms, e.g. F-NUMBER, F-PLURAL, F-TENSE, F-FINITE-TENSE, F-PAST-TENSE and syntac-tic roles such as R-SUBJ.In its current form, there is only one relation in the KB, the binary is-a. 4518 such is-a linksconnect the 4356 concepts to form an acyclic graph. More than 95% of the network is semantics,the rest syntax (90 links), forms (to express concepts for case, tense etc.; 52 links), roles (46 links)and miscellaneous (10 links).While speci�c words are represented by one or more concepts speci�cally tied to the languagethe word is from, many generalizations such as I-EN-TANGIBLE-OBJECT are shared as super-concepts for concepts representing words from di�erent languages.More than 90% of the KB concepts are leaves that lexical entries refer to. The granularity12
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� grade for superlative and comparative forms of adjectives� prob-rank a relative rank of a priori likelihood for ambiguous words (see explanation below)� dummy-index, class, restriction and forms for dummy words (see explanation below)� components for contracted words (e.g. German \im" = \in dem")� connective-form for German noun compounds (as explained later)� gender, genetive-type, plural-type for German nouns� separable-pre�x, has-inseparable-pre�x, is-strong-verb, perfect-auxiliary for German verbsThe attribute prob-rank a�ects the order of morphological analyses of words with ambiguouspart of speech at the beginning of parsing, after morphological processing. Based on the followingexcerpt from the English lexicon, the English word \man" will be recognized as both a noun anda verb. With a default prob-rank of 1, the nominal analysis will be placed at the �rst position ofthe list of alternatives, and the verbal analysis at place two, since it has a prob-rank value of 2,indicating that it is a priori less likely.The English lexicon currently contains 3015 entries, fully covering the restricted WSJ vo-cabulary. The German stands at 1039 entries, su�cient to cover all words that could occur in ourtranslation training and test sentences.From the English lexicon:((LEX "man") (CONCEPT I-EN-MAN) (SYNT S-COUNT-NOUN)(IRR-FORMS ("men" (NUMBER F-PLURAL))))((LEX "man") (CONCEPT I-EV-MAN) (SYNT S-TR-VERB)(PROPS (PROB-RANK 2)))((LEX "Sen") (CONCEPT I-EN-SENATOR-TITLE) (SYNT S-COUNT-NOUN)(PROPS (IS-ABBREVIATION TRUE)))((LEX "sixty") (CONCEPT I-ENUM-SIXTY) (SYNT S-CARDINAL)(PROPS (VALUE 60)))((LEX "be") (CONCEPT I-EV-BE) (SYNT S-AUX)(IRR-FORMS("am" (TENSE F-PRES-TENSE) (PERSON F-FIRST-P) (NUMBER F-SING))("are" (TENSE F-PRES-TENSE) (PERSON F-SECOND-P) (NUMBER F-SING))("is" (TENSE F-PRES-TENSE) (PERSON F-THIRD-P) (NUMBER F-SING))("are" (TENSE F-PRES-TENSE) (NUMBER F-PLURAL))("was" (TENSE F-PAST-TENSE) (PERSON F-FIRST-P) (NUMBER F-SING))("were" (TENSE F-PAST-TENSE) (PERSON F-SECOND-P) (NUMBER F-SING))("was" (TENSE F-PAST-TENSE) (PERSON F-THIRD-P) (NUMBER F-SING))("were" (TENSE F-PAST-TENSE) (NUMBER F-PLURAL))("been" (TENSE F-PAST-PART))("being" (TENSE F-PRES-PART)))) 14



((LEX "'be") (CONCEPT I-EV-BE) (SYNT S-AUX) ;;; contracted form(IRR-FORMS("'m" (TENSE F-PRES-TENSE) (PERSON F-FIRST-P) (NUMBER F-SING))("'re" (TENSE F-PRES-TENSE) (PERSON F-SECOND-P) (NUMBER F-SING))("'s" (TENSE F-PRES-TENSE) (PERSON F-THIRD-P) (NUMBER F-SING))("'re" (TENSE F-PRES-TENSE) (NUMBER F-PLURAL))(NO-FORM (TENSE F-PRES-INF))(NO-FORM (TENSE F-PAST-TENSE))(NO-FORM (TENSE F-PAST-PART))(NO-FORM (TENSE F-PRES-PART)))(PROPS (IS-SHORT-FORM TRUE)))((LEX "better") (CONCEPT I-EADJ-GOOD) (SYNT S-ADJ)(PROPS (GRADE COMPARATIVE)))((LEX "SOMEBODY_1") (SYNT S-NP)(PROPS (DUMMY-INDEX 1) (CLASS I-EN-PERSON)))The lexicon does not only contain normal word entries, but also dummies. These wordswill not occur in any normal text to be processed, but only in the bilingual dictionaries, wherethey mark the place for words or phrases. A typical English component of such a dictionary entryis the verb phrase \to get SOMEBODY 1 TO DO SOMETHING 2". The English lexi-con describes SOMEBODY 1 as a dummy for a noun phrase semantically restricted to be of classI-EN-PERSON. The possible restriction attributes forms and restriction o�er alternative ways toindicate restrictions by respectively providing limitations on forms, e.g. tense or number, or throughthe reference to the name of a hard-coded predicate.From the German lexicon((LEX "Mann") (CONCEPT I-GN-MANN) (SYNT S-COUNT-NOUN)(PROPS (PLURAL-TYPE F-INFL+ER)(GENETIVE-TYPE F-INFL-ES)(GENDER F-MASC)))((LEX "abbestellen") (CONCEPT I-GV-ABBESTELLEN) (SYNT S-TR-VERB)(PROPS (IS-STRONG-VERB :FALSE)(SEPARABLE-PREFIX "ab")(HAS-INSEPARABLE-PREFIX :TRUE)(HAS-SEPARABLE-PREFIX :TRUE)))((LEX "im") (CONCEPT I-GP-IM) (SYNT S-PREP-PLUS-ART)(PROPS (COMPONENTS ("in" "dem"))(HAS-COMPONENTS TRUE)))((LEX "Westen") (CONCEPT I-GN-WESTEN) (SYNT S-COUNT-NOUN)(PROPS (GENETIVE-TYPE F-INFL-S)(PLURAL-TYPE F-INFL-)(GENDER F-MASC)(CONNECTIVE-FORM "West"))) 15



The identi�ers for the genetive and plural types (\F-INFL...") already indicate the way inwhich the respective forms are constructed. The sign following F-INFL, + or -, indicates whetheror not the form requires an umlaut and the rest of the identi�er represents the respective ending.In the case of Mann (which means man), the (singular) genetive form is Mannes and the plural(nominative) form is M�anner. Other forms can be constructed in a regular way from these forms.All German nouns possess a grammatical gender (masculine, feminine or neuter).German nouns can take on a special connective forms in noun compounds. The head noun (at thelast position) remains in the usual form with the appropriate number and case, whereas modifyingnouns appear in their connective forms, typically not separated by any spaces, e.g. Westafrika.3.3 Acquisition of Lexicon and KBThe entries in the KB and the lexicons are basically entered manually, facilitated by some usefultools though. So, to get the above entries for \Mann" and \abbestellen" (to cancel), along withsome others, one can just enterAquisition example 1:e "der Mann -es +er" nc spec I-EN-MALE-PERSON "der Junge -n -n""der Bruder -s +"Junge: \boy"; Bruder: \brother"; nc stands for count noun, -es etc. for genetive and plural endingsThis entry command produces the following system feedback:To lex:((LEX "Mann") (CONCEPT I-GN-MANN) (SYNT S-COUNT-NOUN)(GENDER F-MASC) (PLURAL-TYPE F-INFL+ER)(GENETIVE-TYPE F-INFL-ES))((LEX "Junge") (CONCEPT I-GN-JUNGE) (SYNT S-COUNT-NOUN)(GENDER F-MASC) (PLURAL-TYPE F-INFL-N)(GENETIVE-TYPE F-INFL-N))((LEX "Bruder") (CONCEPT I-GN-BRUDER) (SYNT S-COUNT-NOUN)(GENDER F-MASC) (PLURAL-TYPE F-INFL+)(GENETIVE-TYPE F-INFL-S))To KB:(I-GN-MANN IS-A I-EN-MALE-PERSON)(I-GN-JUNGE IS-A I-EN-MALE-PERSON)(I-GN-BRUDER IS-A I-EN-MALE-PERSON)OK [y n l k]?For German verbs, the double dash as used in the following example is not part of the word,but indicates that the preceding pre�x is separable; similarly, a single dash indicates an inseparablepre�x. 16



Aquisition example 2:e "ab--be-stellen" vt spec I-EV-PROCESS "ab--stellen""be-stellen" "stellen"This entry command produces the following system feedback:To lex:((LEX "abbestellen")(CONCEPT I-GV-ABBESTELLEN) (SYNT S-TR-VERB)(SEPARABLE-PREFIX "ab") (HAS-SEPARABLE-PREFIX TRUE)(HAS-INSEPARABLE-PREFIX TRUE) (IS-STRONG-VERB FALSE))((LEX "abstellen")(CONCEPT I-GV-ABSTELLEN) (SYNT S-TR-VERB)(SEPARABLE-PREFIX "ab") (HAS-SEPARABLE-PREFIX TRUE)(HAS-INSEPARABLE-PREFIX FALSE) (IS-STRONG-VERB FALSE))((LEX "bestellen")(CONCEPT I-GV-BESTELLEN) (SYNT S-TR-VERB)(HAS-SEPARABLE-PREFIX FALSE) (HAS-INSEPARABLE-PREFIX TRUE)(IS-STRONG-VERB FALSE))((LEX "stellen")(CONCEPT I-GV-STELLEN) (SYNT S-TR-VERB)(HAS-SEPARABLE-PREFIX FALSE) (HAS-INSEPARABLE-PREFIX FALSE)(IS-STRONG-VERB FALSE))To KB:(I-GV-ABSTELLEN IS-A I-EV-PROCESS)(I-GV-ABBESTELLEN IS-A I-EV-PROCESS)(I-GV-BESTELLEN IS-A I-EV-PROCESS)(I-GV-STELLEN IS-A I-EV-PROCESS)OK [y n l k]?Entries for English verbs and nouns are simpler because English nouns don't have a gram-matical gender or case and the English equivalent of a pre�x is always separate (e.g. \take o�").There are special tables for irregular nouns and verbs. The irregular forms contained in these tablesare automatically added to the lexical entries.The part of speech of a word, as well as applicable information about grammatical gender,inectional class, pre�xes etc., are commonly listed in traditional (paper) dictionaries, but willtypically be obvious to the educated speaker of a language.Section 11.1.2 in the chapter on future work sketches how the lexical acquisition processcould be further automated.3.4 Bilingual DictionaryA bilingual dictionary links words and expressions between di�erent languages and is used for trans-lation. The surface dictionary is a listing of words and phrases very similar to as one would �nd them17



in a traditional (paper) dictionary. Its format was designed to be very intuitive and user-friendlyso that additions (or changes) can be made very easily. The following samples from the English-German transfer lexicon is presented in a table for better legibility and closely follows the actualformat of the surface dictionary �le, which, for the �rst table entry would be (\be" S-VERB \sein").\be" S-VERB\sein"\to be dissatis�ed with SOMETHING 1" S-VP\mit ETWAS 1 unzufrieden sein"\to be lucky" S-VP\Gl�uck haben"\because" S-CONJ\weil"\book" S-NOUN\Buch"\downtown PLACENAME 1" S-ADV\im Stadtzentrum von ORTSNAME 1" S-PP\know" S-VERB\kennen"\know" S-VERB\wissen"\to make SOMETHING 1 equal to SOMETHING 2" S-VP\ETWAS ACC 1 auf ETWAS ACC 2 bringen"\primarily" S-ADV\in erster Linie" S-PP\some" S-ADJ\einige"\some" S-ADJnil\up QUANTITY 1" S-PARTICLE-PHRASE\ein Plus von QUANTITAET 1 " S-NP\it takes SOMEBODY 3 SOMETHING 1 S-CLAUSETO DO SOMETHING 2"\JEMAND 3 braucht ETWAS ACC 1,um ETWAS ZU MACHEN 2\I-EART-INDEF-ARTI-GART-INDEF-ARTI-EN-PERSONAL-PRONOUNI-GN-PERSONAL-PRONOUNI-EPRT-'SI-GP-GEN-CASE-MARKER 18



A typical dictionary entry consists of a pair of words or phrases along with part of speech re-strictions. Note that the parts of speech don't necessarily have to be the same (e.g. \primarily"/\inerster Linie").Phrases can contain variables, e.g. SOMETHING 1, PLACENAME 1, or ETWAS ZU MA-CHEN 2. Variables in the source and target phrase are linked by a common index. They havespecial entries in their respective monolingual lexicons, which list any syntactic, semantic or formrestrictions. The German lexicon for example restricts JEMAND 3 to be a noun phrase (SYNTS-NP), a person (CLASS I-EN-PERSON), and nominative case (CASE F-NOM).The dictionary can also contain a pair of concepts, e.g. I-EART-INDEF-ART/I-GART-INDEF-ART. There are only relatively few such direct concept pair entries, but these entries allowsthe pairing of concepts whose level of abstraction can not easily be captured by speci�c words.Note that a word or phrase can have multiple translations (e.g. \know"$\kennen"/\wissen")or an empty one (e.g. \some" $ \eingige"/nil). (Chapter 7 will describe how the system learns tomake the proper choice.)When a surface dictionary is loaded, it is compiled into an internal dictionary. All stringsare parsed (in their respective languages) and mapped to a KB concept or a complex parse tree.So the internal dictionary does not map from surface word or phrase to surface word or phrase,but from parse tree to parse tree.The transformation of transfer entries from surface strings to their parse trees can be accom-plished by using the same parsers that are used for the parsing of normal input surface sentences.Of course parsers for both the source and the target language are necessary, but since the phrasesin the lexicon are not anywhere as complex and ambiguous as normal input surface sentences, the`parsing power' requirements for the bilingual dictionary are relatively small, so that fairly few parseexamples are necessary for a language that is only used as a machine translation target language.The intuitive surface representation, which closely follows the format of good traditionaldictionaries, enormously facilitates the building of the transfer lexicon; it is very transparent, canbe built, extended and checked easily, and is not very susceptible to errors.3.5 Subcategorization TablesConsider the following two sentences:1. I booked a ight to New York.2. I sent a letter to New York.Super�cially, both sentences look very similar, but in sentence 1, the prepositional phrase to NewYork has to attach to the preceding noun phrase a ight, whereas in sentence 2, it belongs directlyto the predicate sent. When deciding where to attach the prepositional phrase, an analysis of theparts of speech will not su�ce, because it will not discriminate between the two sentences.The fundamental di�erence lies in the di�erent argument structure of the verbs and nouns.While both take a direct object, to send also allows an indirect object or a to-location argument.Additionally, the noun ight, a nominal form of to y, allows a to-location argument.19



This argument information can be represented in subcategorization tables. The following isa subset of the currently 242 entries in the English Verb Patterns. The asterisk (*) indicatesthat the following argument is optional.("to book SOMETHING")("to decline *I-EN-QUANTITY *C-TO-QUANT"(SUBJ = THEME) (OBJ = DIFF-QUANT))("to decline by I-EN-QUANTITY *C-TO-QUANT"(SUBJ = THEME) (APP = DIFF-QUANT))("to decline TO-DO-SOMETHING"(INF-COMPL = THEME))("to get SOMETHING"(SUBJ = BEN))("to get SOMEBODY TO-DO-SOMETHING"(OBJ = BEN) (INF-COMPL = THEME))("to get out of SOMETHING"(APP = THEME))("to get through SOMETHING"(SUBJ = THEME) (APP = PRED-COMPL))("to get under way"(SUBJ = THEME) (APP = PRED-COMPL))("to send *SOMEBODY SOMETHING")("to send SOMETHING C-TO-LOCATION")Each subcategorization table entry consists of a phrase, e.g. a verb phrase in a verb subcat-egorization table, plus a mapping of syntactic to semantic roles for the phrase pattern. The defaultmappings are� subject (SUBJ) ! agent� object (OBJ) ! theme� indirect object (IOBJ) ! bene�ciary (BEN)� in�nitival complement (INF-COMPL) ! purpose� adjective complement (ADJ) ! predicate complement (PRED-COMPL)� C-TO-LOCATION ! TO-LOCATION� C-TO-QUANT ! TO-QUANTWith this information, the subcategorization tables can not only be used to decide whereto attach phrases, but also help in �nding the proper semantic role of the new sub-component inthe larger phrase. 20



Assuming that the two sentences at the beginning of this section have been partiallyparsed into a noun phrase, verb, noun phrase and prepositional phrase, i.e. (I) (sent/booked)(a ight/letter) (to New York), the parser could now exploit the verb subcategorization table byevaluating the feature \(SEMROLE OF -1 OF -3)". As explained in more detail in section 5.6,this feature is interpreted as \what is the semantic role of the last item (at position -1; here to NewYork) with respect to the item at position -3 (in our examples the verb)?". After matching thepartially parsed phrase to the best verb pattern, the system would return feature values `UNAVAIL'for (I) (booked) (a ight) (to New York) and `R-TO-LOCATION' for (I) (sent) (a letter) (to NewYork). Using this discriminating feature, a parser can make the decision that will properly attachthe prepositional phrase to New York.The currently 242 entries of the verb subcategorization table have been entered manually.Some dictionaries and grammar books such as (Hornby, 1974; Engel, 1988) contain verb patternsthat could serve as a basis for subcategorization tables, but the entries were actually made withoutany such support, because the micromodular nature of the knowledge and its intuitive format al-ready made the task easy. In future extensions it might be useful to have a similar subcategorizationtable for nouns.3.6 MorphologyAt least from a pragmatic computational standpoint, morphological processing has basically alreadybeen solved for English as well as other Germanic and Romance languages, Japanese, and, we sus-pect, all other languages. Morphology is computationally much simpler than syntax or semantics,because it operates only very locally.Some approaches might be more elegant or linguistically motivated than others, but inec-tion tables, regardless of how many classes, cases, tenses, numbers, genders, voices, and levels ofde�niteness or politeness etc. have to be considered, pose no problem to computational processing,nor do irregular forms, and any approach can be made fast by caching results.In our system, the symmetric morpholgy module is used for both analysis and generation.For analysis, given the surface form of a word, say ((\increases")), it �nds its annotated stem-forms,e.g.(((lex "increase")(surf "increases")(synt s-count-noun)(forms (((number f-plural))))(concept i-en-increase))((lex "increase")(surf "increases")(synt s-tr-verb)(forms (((tense f-pres-tense) (person f-third-p) (number f-sing))))(concept i-ev-increase))) 21



In the other direction, given the annotated stem-form, e.g.(("increase"(synt s-noun)(number f-plural)(concept i-en-increase)))it �nds the corresponding surface form, here ((\increases")).Such generation is done by sending the annotated forms through a morphological pipeline, adata structure with elements that are interpreted to manipulate these annotated forms. A morpho-logical pipeline can automatically be inverted. A generation pipeline thus implicitely also de�nesan analysis pipeline, which can then be used to gradually manipulate initially unannotated formsto become fully annotated stem forms.A morphological pipeline is a sequence of pipeline elements. Each of these elements manip-ulates or �lters an annoted form, yielding a set of annotated output forms. Manipulations includethe replacement of a word-ending string by another string, change of stems, the addition or deletionof umlauts (for German) or the addition of an annotation; �lters include tests whether or not theword has a certain ending or whether or not it has a certain pre�x. Finally the pipeline elementcan be a set of parallel sub-pipelines, a so-called fork element.The following �gures illustrate this morphological generation and analysis. Morphologicalpipelines are represented by polygons, the annotated forms at various stages of processing by circles.
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FLOW SURFACEFigure 3.2: Generating the plural form of \car"Figure 3.2 depicts a simpli�ed noun pipeline. With \car" annotated by the restrictionnumber plural as input, the pipeline forks, passing along the data to both sub-pipelines. While therestrict number singular element �lters out the data because of the conicting number, the plural�lter element passes the data on to the next element, which adds an \s" to the word. The closingfork bracket combines the result of both sub-pipelines, in this case only the \cars" from the pluralsub-pipeline. 22



The pipeline depicted in �gure 3.2 is textually represented as`((fork ((restrict number f-sing))((restrict number f-plural)(repl "" "s"))))
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above replace-ending \" ! \s", since it also has to cover like bush/bushes, baby/babies, e.g. closelyresembles the third person singular present tense formation with push/pushes and cry/cries.When a pipeline element such as replace-ending \s" ! \" encounters a data unit that itcan not operate on, e.g. \car", where no �nal \s" can be deleted, that pipeline just �lters out thatnon-applicable data unit.(Very) irregular forms are handled by forking o� a special sub-pipeline that basically per-forms an irregular form table lookup; and the \regular" sub-pipeline �lters out any forms thatconict with the irregular form table. Special pipeline elements for German handle umlauts andstem changes for strong verbs, in the latter case with access to irregular verb tables.3.6.1 Speci�c Pipeline ElementsThe replacement of a word-ending string by another string, e.g. the pipeline element (repl \e"\ed") 1 would modify a form with \increase" to one with \increased"; if the incoming word doesnot match the �rst ending, the output is empty.There are pipeline elements to add or delete umlauts (in German), e.g. (add-umlaut) changes\Apfel" to \�Apfel" and (delete-umlaut) does the opposite.(double-last-letter) and (undouble-last-letter) do what their names suggest, e.g. \run" ischanged to \runn" and vice versa.Restrictions add annotations, and automatically �lter out annotated forms with conict-ing annotations. E.g. (restrict number f-plural) changes an incoming (\increase") to (\increase"(number f-plural)), leaves an incoming (\increase" (number f-plural)) as is, and returns an emptyoutput for an incoming (\increase" (number f-sing)).Other specialized pipeline elements can perform stem changes or take care of irregularforms using lookup-tables.Filters, which return a set containing the incoming annotated form or an emtpy set, checkword-endings, e.g. (ends-in \ed"), (not-ends-in \ing") or (memb (nth-last-letter x n) <set ofcharacters>), which checks whether or not the nth last letter is a member of the given charac-ter set.The last important pipeline element of a pipeline is a fork, which channels incoming inputforms into parallel sub-pipelines.
1Since the system is implemented in Lisp and morphological changes tend to occur at the end of words, words areactually represented as their reversed character lists, e.g. \increases" is represented as (#ns #ne #ns #na #ne #nr#nc #nn #ni). For easier reading, strings are left as such in the following descriptions of the morphological module.24



Using a previously de�ned sub-pipeline needs-doubling the following sub-pipeline describesthe formation of the regular past tense and past participle for English: 2`((fork ((repl "e" "ed")) ;;; like, liked((not-memb (nth-last-letter x 2)'(#\a #\e #\i #\o #\u)) ;;; pray, prayed(repl "y" "ied")) ;;; cry, cried(,needs-doubling ;; prev. def. sub-pipeline(double-last-letter) ;;; stop, stopped(repl "" "ed"))((not-ends-in x "e") ;;; push, pushed(or (not-ends-in x "y")(memb (nth-last-letter x 2)'(#\a #\e #\i #\o #\u)))(not ,needs-doubling) ;; prev. def. sub-pipeline(repl "" "ed"))))A major advantage of these pipelines is that they can easily be inverted automatically, sothat the preceding sub-pipeline could also be used to �nd stem forms for regular past tense orparticple forms. The inverse for (repl \e" \ed") for example is (repl \ed" \e") and inverting otherpipeline elements and pipelines is equally straightforward:element inv(element)replace-ending s1 s2 replace-ending s2 s1any �lter stays the samedouble-last-letter undouble-last-letterundouble-last-letter double-last-lettersequence (s1 ... sn) sequence (inv(sn) ... inv(s1))fork (s1 ... sn) fork (inv(s1) ... inv(sn))Referring to the just de�ned pipeline as pv-ed, and given similarly de�ned sub-pipelines forpresent tense (pv-prt) and present participle (pv-prp) forms, a pipeline for regular English verbswould then be3`((fork ((restrict tense f-pres-inf))(append '((restrict tense f-past-tense))pv-ed) ;;; previously defined sub-pipeline(append '((restrict tense f-past-part))pv-ed) ;;; previously defined sub-pipeline(append '((restrict tense f-pres-tense))pv-prt) ;;; previously defined sub-pipeline(append '((restrict tense f-pres-part))pv-prp))) ;;; previously defined sub-pipeline2The x is de�ned to refer to the word without its annotations.3append concatenates two morphological pipelines 25



If we call this sub-pipeline pv, and with a similarly de�ned sub-pipelines for nouns, pn, thetop-level pipeline for regular words looks like:`((fork ,(append '((restrict synt s-verb))pv),(append '((restrict synt s-noun))'((restrict person f-third-p))pn)((restrict synt s-prep))((restrict synt s-adv))...))The monolingual lexicon is used to link stem-forms to actual lexicon entries which thenprovide more detailed information like (semantic) concept, a more detailed syntactic category andother annotations.A morphological pipeline for English was de�ned in a �le with 178 lines, whereas the Germanequivalent needed 640 lines.
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Chapter 4Segmentation and MorphologicalAnalysisBefore the actual parsing starts, the input text is preprocessed. The text, already segmentedinto sentences in the original corpus, is �rst segmented into words and punctuation marks; theresulting words are then morphologically analyzed. The list of morphologically analyzed words andpunctuation marks serves as input to the parser.Segmentation and morphological analysis are not particularly challenging, because bothsteps need to consider only very local properties of substrings and words (at least for Germanicand Romance languages, at least from a pragmatic perspective, and at least qualitatively). Seg-mentation is fairly simple and morphology is well described in the literature (Lederer, 1969; Quirk,Greenbaum, Leech, & Svartvik, 1985).4.1 SegmentationGiven a string of text, e.g. a sentence, the �rst task is to segment the string into a list of words,numbers and punctuation marks. E.g. the string \In the 1970s, the St. Louis-based 'company'traded at $2.45." gets segmented into((\In" 0 0 2 2) (\the" 2 3 6 6) (1970 6 7 11 11) (\s" 11 11 12 13 ,)(D-COMMA 12 12 13 13) (\the" 13 14 17 17) (\St" 17 18 20 21 .)(D-PERIOD 20 20 21 21) (\Louis" 21 22 27 27) (D-DASH 27 27 28 28)(\based" 28 28 33 33) (D-APOSTROPHE 33 34 35 35) (\company" 35 35 42 43 ')(D-APOSTROPHE 42 42 43 43) (\traded" 43 44 50 50) (\at" 50 51 53 53)(D-DOLLAR-SIGN 53 54 55 55) (2.45 55 55 59 60 .) (D-PERIOD 59 59 60 60))The four integers following the word, number or punctuation tokens indicate the soft andhard boundary positions of a token. The hard boundaries include only the token itself, whereas thesoft boundaries include preceding whitespaces and some following punctuation.This spacing information is maintained and used in later stages of parsing to reproduceprecisely the surface strings associated with partially parsed sentence segments. Consider for27



example the two sentences \The new Japans - Taiwan and South Korea - were thriving econom-ically." and \In tests it has worked for many heart-attack victims." The character `-' servesas a dash in the �rst example and as a hyphen in the second. Since spaces are not part of thesegmented words per se, we attach the spacing information to the segmented words so that theoriginal surface string can easily be reconstructed, as in the display of partially parsed sentences.The spacing information also allows the surface string associated with partially parsed treesto be kept in the proper order, which is not trivial, because of discontinuous elements. E.g.when reducing the sentence elements \has been" + \always", we want to represent the resultingtree, even if it is structured [[has been] always], by its portion of the original surface string\has always been" for easier legibility. Finally, the spacing information is also used to properlyrepresent so-called empty categories (see 5.3.5).In many languages, including English, segmentation is relatively simple, since words arefairly easily identi�able as such. For languages with signi�cant compounding, such as German orSwedish, where noun compounds are typically written as one word, an advanced segmenter needsto break noun compounds down into its components. Yet more di�cult, in languages such asJapanese, where words are generally not separated by spaces, sophisticated segmentation tools,such as JUMAN (Matsumoto, Kurohashi, Utsuro, Myoki, & Nagao, 1994), have to be used. Sincewe currently only translate from English, and therefore only need to parse general text in English,a relatively simple segmenter is su�cient and so that's all we have implemented at this point.4.2 Morphological Analysis and Parse EntriesThe words put out by the segmenter are then morphologically analyzed. As already described inmore detail in section 3.6, the morphological analyzer, given the surface form of a word, computesa list of parse entries, i.e. frames containing information about the lexical and surface form of aword, its syntactic and semantic category, form restrictions such as number, person, tense andother attributes that apply to certain types of words only, such as a value attribute for numerals.Complex parse entries have subentries, i.e. parse entries annotated by one or more roles, that canbe syntactic or semantic, and describe the function of the subentry with respect to the super-entry. Simple parse entries, which is what the morphological analyzer returns, do not have suchsubentries. Given for example the word \increases", the morphological analyzer returns two simpleparse entries, one for the nominal and one for the verbal interpretation of the word:(((lex "increase")(surf "increases")(synt s-count-noun)(forms (((number f-plural))))(concept i-en-increase))((lex "increase")(surf "increases")(synt s-tr-verb)(forms (((tense f-pres-tense) (person f-third-p) (number f-sing))))(concept i-ev-increase))) 28



Note:� \lex" is the lexical root form of the head of the entry.� \surf" is the surface string associated with an entry.� \ssurf", not displayed here, contains spacing information.� \synt" is the part of speech.� \forms" displays any restrictions with respect to person, number, tense, etc. The followingsubsection contains a full list of these forms and their values.� \concept" is the semantic class.� \subs" denotes the list of sub-entries.� \props" includes any other properties.Morphological ambiguity is captured within a parse entry. E.g. the verb "put" would be analyzedas(((lex "put")(surf "put")(synt s-tr-verb)(forms (((person f-first-p) (number f-sing) (tense f-pres-tense))((person f-second-p) (number f-sing) (tense f-pres-tense))((number f-plural) (tense f-pres-tense))((tense f-pres-inf))((tense f-past-part))((tense f-past-tense))))(concept i-ev-put)))The forms present di�erent morphological alternatives. Each form consists of a set of form restric-tions. Note that the attribute value pair \(forms nil)" indicates that there are no morphologicalalternatives, which, in pathological cases, can sometimes result when incompatible forms are uni-�ed, as for example when determining the number of the noun phrase \a cats", where the articleimposes singular and the noun plural. On the other hand \(forms (nil))" indicates that there is onealternative without any restrictions. Words from syntactic categories without any morphologicalvariation, e.g. adverbs, typically have this form.
29



4.2.1 List of Morphological FormsIn our system, we use the following morphological forms. Possible values, as they might arise inEnglish or German, are given in parentheses.� person (�rst, second, third)� number (singular, plural)� case (nominative, genitive, dative, accusative, object)� voice (active, passive)� tense (present, past, present perfect, past perfect, future, future perfect, past participle,present participle, present in�nitive, present `to'-in�nitive, past in�nitive, past `to'-in�nitive)� gender (masculine, feminine, neuter)� mood (indicative, subjunctive)� mode (declaration, wh-question, yn-question, imperative, exclamation)� aspect (continuous, non-continuous)� det-adj-ending (primary, secondary, uninected) [for German adjectives]� you-caps (true, false) [for politeness capitalization of German pronouns]� ref-number (singular, plural) [number of the noun phrase that a pronoun refers to]� ref-person (�rst, second, third)� ref-gender (masculine, feminine, neuter)
30



Chapter 5ParsingThe parsing of unrestricted text, with its enormous lexical and structural ambiguity, still poses agreat challenge in natural language processing. The traditional approach of trying to master thecomplexity of parse grammars with hand-crafted rules turned out to be much more di�cult thanexpected, if not impossible. Many parsers leave ambiguity largely unresolved and just focus on ane�cient administration of ambiguity. The Tomita parser (Tomita, 1986) for example, when runningthe sentence \Labels can be assigned to a particular instruction step in a source program to identifythat step as an entry point for use in subsequent instructions." on a relatively moderate sizedgrammar with 220 hand-coded rules returns a parse forest representing 309 parsing alternatives.For a more detailed grammar of 400 rules, the number of alternatives increases to 127,338.Newer probabilistic approaches, often with only relatively restricted context sensitivity, haveachieved only limited success even when trained on very large corpora. Magerman (1995) andCollins (1996) for example train on 40,000 sentences from the Penn Treebank Wall Street Journalcorpus and it is doubtful whether the results can be further signi�cantly increased by furtherenlarging the training corpus, because (1) a parsing accuracy ceiling might have been reached dueto model limitations1 and (2) a further signi�cant enlargement of the manually annotated corpusis very expensive.To cope with the complexity of unrestricted text, parse rules in any kind of formalismwill have to consider a complex context with many di�erent morphological, syntactic and semanticfeatures. This can present a signi�cant problem, because even linguistically trained natural languagedevelopers have great di�culties writing explicit parse grammars covering a wide range of naturallanguage. On the other hand it is much easier for humans to decide how speci�c sentences shouldbe analyzed.5.1 Basic Parsing ParadigmWe therefore propose an approach to parsing based on example-based learning with a very strongemphasis on context. After the segmentation of the sentence into words and punctuation marks,and a morphological analysis of the words, the parser transforms the resulting word sequence intoan integrated phrase-structure and case-frame tree, powerful enough to be fed into a transfer and1For a more detailed discussion, see chapter 10, \Related Work".31



a generation module to complete the full process of machine translation.The parser is trained on parse examples acquired under supervision. Since during thetraining phase, the system is to be guided by a human supervisor, it is extremely important that theparsing process has a very transparent control structure that is intuitive to a human. As recent workin cognitive science, e.g. (Tanenhaus & al., 1996), has con�rmed again, the human mind performs acontinuous and deep interpretation of natural language input. A sentence is processed `left-to-right'in a single pass, integrating part-of-speech selection and syntactic and semantic analysis.As the basic mechanism for parsing text we therefore choose a shift-reduce type parser(Marcus, 1980). It breaks parsing into an ordered sequence of small and manageable parse actionssuch as shift and reduce. With the parse sequence basically mimicking the order people processsentences, we don't only make the parsing process intuitive to the supervisor during the trainingphase, but, with this paradigm, we also can be con�dent that at any point during the parse, thecurrent morphological, syntactic and semantic context information of a partially parsed sentencewill be su�cient for the computer program to make good decisions as to what parse action toperform next.Like for humans, this approach also has the advantage of a single path, i.e. deterministicparsing2, eliminating computation on `dead end' alternatives and resulting in a temporal processingcomplexity that is linear in the length of a sentence, making parsing very fast.Applying machine learning techniques, the system uses parse examples acquired under su-pervision to generate a deterministic shift-reduce type parser in the form of a decision structure.This decision structure's classi�cation of a given parse state is the parse action to be performednext. The parse state used by the decision structure is described by its context features.Relieving the NL-developer from the hard if not impossible task of writing an explicit gram-mar, the focus on relevant features at the same time requires a relatively modest number of trainingexamples when compared to more statistically oriented approaches like for example (Magerman,1995; Collins, 1996), where the parser is trained on 40,000 WSJ sentences. Our system is currentlytrained on only 256 WSJ sentences. The following chapter discusses parsing experiments and theinuence of the number of features in detail.The approach we take provides a high degree of manageability of the `grammar' whenincreasing its coverage. All that is necessary, is to add more examples. The advantage of examplesis that they are much more modular than rules. All we assert for an individual example is the nextparse action that has to be taken for the speci�c parse state of a speci�c sentence, regardless of howdi�erent that parse action might be for a similar parse state of another sentence. We therefore don'thave to change old examples when we try to increase coverage to include new sentences, howevermuch a decision structure based on the old examples might have misparsed the new sentences bymisclassifying new parse states. After new examples have been added, we automatically computea new, more re�ned decision structure that will also cover the new sentences.On the other hand, when increasing coverage in a rule-based system, it is typically notsu�cient to add more rules. Old rules will often have to be modi�ed, e.g. by specializing theirantecedents. Given the enormous complexity of natural language, it can easily happen that sen-tences that were parsed properly before a rule modi�cation no longer work afterwards. To makesure that the modi�ed rules work, testing becomes necessary, and with that, examples. So we see2For a brief discussion of the problem of garden path sentences, see section 5.9 later in this chapter.32



that extending rule sets is not only qualitatively more di�cult than extending example sets, but,at least in practise, examples are indispensable in some form or other anyway.5.2 The Core Parsing MechanismAs just described, we choose a shift-reduce type parser as our basic mechanism for parsing textinto a shallow semantic representation. Parsing is broken down into an ordered sequence of smalland manageable parse actions such as shift and reduce.
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Figure 5.1: A typical parse action (simpli�ed); boxes represent parse entriesThe central data structure for the parser contains a parse stack and an input list. The parsestack and the input list contain trees of parse entries of words or phrases. Core slots of parse entriesare surface and lexical form, syntactic and semantic category, subentries (of type parse entry) withsyntactic and semantic roles, and form restrictions such as number, person, and tense. Other slotscan include information like the numerical value of number words, ags whether or not a (German)verb has a separable or inseparable pre�x etc.Initially, the parse stack is empty and the input list contains the simple parse entries pro-duced by the morphological analyzer. After initialization, the deterministic parser applies a se-quence of parse actions to the parse structure. The most frequent parse actions are shift, whichshifts a parse entry from the input list onto the parse stack or vice versa, and reduce, which com-bines one or several parse entries on the parse stack into one new parse entry. The parse entries33



to be combined are typically, but not necessarily, next to each other at the top of the stack. Asshown in �gure 5.1, the action(R 2 TO VP AS PRED (OBJ PAT))for example reduces the two top parse entries of the stack into a new parse entry that is markedas a verb phrase and contains the next-to-the-top parse entry as its predicate (or head) and thetop parse entry of the stack as its object and patient. Other parse actions include `add-into' whichadds parse entries arbitrarily deep into an existing parse entry tree, `mark' that marks some slot ofsome parse entry with some value and operations to introduce empty categories (traces and `PRO',as in \Shei wanted PROi to win."). Parse actions can have numerous arguments, making the parseaction language very powerful. In particular, when shifting in a new word, the mandatory argumentof shift speci�es the part-of-speech of the possibly ambiguous word that is being shifted in, therebye�ectively performing the so-called tagging as part of the parsing.5.3 The Parse Actions in DetailThis section describes the various parse action in more detail. We present the various basic types ofparse action (shift, reduce, add-into, empty category instantiation, co-index, mark, expand as wellas the pseudo-action `done'). Many of these parse actions allow a sophisticated parameterization.Often these parameters designate parse entries that participate in an operation.In the English parsing training examples, we use seven basic types of parse actions (allexcept `expand' which is only used for German) with a current total of 265 di�erent individual parseactions. These are quite unevenly distributed with the 10 most frequent parse actions accountingfor 53% of all examples and 78 parse actions occurring only once, accounting for 0.66% of allexamples.The various parse actions are not preselected in any way. Instead, during training, as furtherexplained in section 5.7, each parse action example is assigned the parse action that the supervisordeems to be appropriate in the context of a speci�c, partially parsed text. The range of parseactions therefore depends directly and exclusively on the speci�c set of training examples.The �rst of the following subsections describes how parse entries that are referred to infeatures can be identi�ed. The description of the individual parse action types is then followedby subsections on how these can be combined into multiple parse actions and how they implicitlytrigger a number of internal computations.5.3.1 Parse Entry PathsMany parse actions have parameters that refer to parse entries on the parse stack or the inputlist. The participating parse entries are identi�ed by parse entry paths with various degrees ofcomplexity. Parse entries that are elements of the input list are identi�ed by positive integers. ndesignates the nth element on the input list. Parse entries that are elements of the parse stack areidenti�ed by negative integers such that n designates the jnjth element of the parse stack. The toprow of numbers in �gure 5.2 illustrates this scheme. The numbers in parentheses indicate positions34



between parse entries. Note that the active ends of the parse stack and the input list3 face eachother. The active position (\0") of a partially parsed sentence is marked by an asterisk (*).
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PRED Figure 5.2: Parse stack and input listSub entries are described by paths such as (DET OF -3), in the current example the parseentry for `The'; (AUX OF -2), the parse entry for `has been'; and (PRED OF AUX OF -2), theparse entry for `been'. PRED* designates the `ultimate' predicate of a parse entry, i.e. the parseentry that is reached by repeatedly descending to sub-entry PRED until this is no longer possible.In �gure 5.2, (AUX* OF -2) would designate the parse entry for `has', but the asterisk-extensionis only used for predicates (\PRED").Besides these concrete path descriptions, the system allows abstract paths that contain pre-de�ned elements such as NP-1, ACTIVE-FILLER-1 and (SURF-NP -2 BEFORE -1). Descriptorsof form <restr>-<n> designate the nth last parse entry on the parse stack for which <restr>holds. NP-1 is the top (= rightmost) noun phrase parse entry on the parse stack, in the current�gure `The car'. ACTIVE-FILLER-1 is the top parse entry on the parse stack that has a slot gapwith the value `active �ller'. (SURF-NP -2 BEFORE -1) is the penultimate surface noun phrasebefore position -1; for the SURF-NP construction, all right-branching embedded phrases of the lastelement before the position marked by the BEFORE argument count.Path descriptions with such abstract elements can often better describe the essence of thepath that leads to the involved path entry. Consider for example these two sentence fragments, sep-arated by a `+': I know the artist of this masterpiece, + which was painted 200 years ago. Relativephrases like in this example often refer to the last surface noun phrase, here this masterpiece.To express this relationship, no matter how deep this noun phrase is already embedded in aparse stack parse entry, we use (SURF-NP -1 BEFORE -1), indicating the last surface noun phrasebefore position -1. We could have used (PRED-COMPL OF MOD OF OBJ OF -2), the predicatecomplement of the modi�er of this masterpiece of the object the artist of this masterpiece of the3The input `list' is actually a stack too, since the shift operation, as described in section 5.9, can also shift parseentries back onto the input `list'. 35



second highest parse entry on the parse stack, but descriptions like that last concrete path can varyenormously from example to example and would not lend themselves very well to generalization.In order to learn parse actions well, it is important that essentially similar contexts should callfor the same action to be taken. Abstract paths such as (SURF-NP -1 BEFORE -1) allow thisparse action stability and therefore makes it easier for the machine learning component to learnappropriate parse actions.5.3.2 ShiftParse entries can be shifted from the input-list to the parse-stack and vice versa. The by far morecommon type of shift is from the input-list to the parse-stack (examples (1) and (2) below). Outputproducts from morphological processing, i.e. parse entries in the input-list, can still be ambiguous,e.g. `left' can be interpreted as both a verb or an adjective. Since further processing on the parsestack requires syntactically disambiguated parse entries, this shift requires an argument identifyingthe proper alternative. When shifting in an ambiguous parse entry, the shift operation eliminatesall alternatives that are not covered by the shift operation argument. Assigning a speci�c part-of-speech to a word is called tagging. Note that in our system, tagging is naturally integrated into theparsing process, whereas for some other parsers, tagging is required as a separate preliminary step.In the current system, only syntactic restrictor arguments are used, as in example (1), butsemantic restrictors as in example (2) could be used to make a yet more speci�c choice, such as fora word like buck.(1) (S S-VERB) shifts parse-entry of syntactic type verb from input-list to parse-stack(2) (S I-EN-ANIMATE) shifts parse-entry of semantic type animate from input-list toparse-stack(3) (S -2) shifts two parse entries from the parse-stack back onto the input-listThe other type of shift (example (3)) shifts parse entries back onto the input list. Theabsolute value of the �rst argument indicates how many parse entries are to be shifted back. Tobetter understand the purpose of this reverse shifting, consider the case of a noun phrase followedby a preposition. The prepositional phrase that this preposition probably starts might or mightnot belong to the preceding noun phrase. Making an attachment decision already at this pointis typically still premature, because the decision would have to be based on the yet unprocessedcomponents of the prepositional phrase. So instead of making an early PP attachment decision,the system shifts in the components of the prepositional phrase, processes it, and upon completion,decides whether or not an attachment to the preceding noun phrase is appropriate. If so, itperforms the attachment through a reduce operation. Otherwise, it shifts the prepositional phrase,that turned out not to attach to the noun phrase after all, back onto the input-list so that thesystem can process the noun phrase otherwise, e.g. by attaching it to the preceding verb. Mostshift-back actions involve a single parse entry, but some of them move two or even three parseentries at a time. 36



5.3.3 ReduceThe reduce operation typically combines one or more parse entries into a new parse entry. A typ-ical parse action was already presented in �gure 5.1. In the following examples, the plus sign (+)denotes the boundary between two adjacent parse stack elements.(1) (R 2 TO S-PP AS PRED PRED-COMPL CLASS C-BY-AGENT)reduces the top two parse-stack parse entries to a prepositional phrase of class C-BY-AGENT with roles pred and pred-compl respectively. Example: by + a shareholder(2) (R 3 AS MOD DUMMY PRED)reduces the top three parse-stack parse entries to a parse-entry with roles mod, dummyand pred respectively. Example: heart + `-' + attackFor the parser, `dummy' is treated like any other role. We use it to mark componentswithout any semantic meaning, mostly punctuation, that can later be discarded duringtransfer.(3) (R (-3 -1) AS AUX PRED)reduces the �rst and third parse entry of the parse-stack. Example: have + clearly + put(4) (R (-3 -1) AS AUX PRED AT -2)does the same, but places the result at position 2 of the parse stack.(5) (R 2 AS SAME (OBJ QUANT))merges the top parse entry into the second parse entry with roles obj and quant. Example:will cost + $15(6) (R (-2) AS SAME)moves the second parse entry on the parse stack to the top.(7) (R 2 TO LEXICAL)reduces the two top parse-stack parse entries to a parse entry that is listed in the lexicon.Example: because + of.(8) (R 1 TO S-NP AS PRED)upgrades the �rst parse entry on the parse stack to a noun phrase.Often, the parse entries to be reduced are next to each other at the top of the parse tree(examples (1) (2) (5) (7) (8)). Disjoint constituents, e.g. has and been in \has always been", typicallyrequire a disjoint reduction such as in examples (3) and (4). Constituents also don't necessarilyhave to be at the top of the parse tree (example 6). Unless otherwise speci�ed, as in example (4),the resulting parse entry is placed at the top of the parse stack. Also, unless otherwise speci�ed,as in example (1), the new parse entry inherits properties like part-of-speech and semantic classfrom the component marked as predicate (pred or same). Sub parse entries can have one or moreroles in the super parse entry. The second component in example (5) for example has the rolesobj and quant. Reductions like the one in example (7), e.g. New York or because of reduce thecomponents to a parse entry with an entry in the lexicon. The entry in the lexicon then determinesthe part-of-speech and semantic class of the new parse entry.When reducing elements, a new level of hierarchy can be created (indicated by the keyword`PRED'), or non-head elements are just added as extra sub-parse-entries to an existing complexparse entry, keeping the hierarchy at (indicated by the keyword `SAME' instead of `PRED'), asillustrated in �gure 5.3. 37
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Figure 5.3: Di�erence between keywords 'pred' and 'same'5.3.4 Add IntoJust like the \reduce" action, the \add into" action is used to combine parse entries. It is used toadd more sub-entries to parse entries that are no longer at the top level of the parse stack, butrather (already) embedded underneath.When reaching a comma while parsing sentences, it is often a good heuristic to use it as asignal to reduce all of what has been encountered so far before proceeding. In the following example(1), the main clause up to the comma is parsed into a sentence, before anything to the right ofthe comma is processed. When the sentence fragments or and 89 cents a share are ready, theyneed to be added to the preceding disjunction element a record $9.9 million, the object of the thirdparse entry on the parse stack. The add-into action of example (1) accomplishes just that. Likefor reduce actions, the as-clause provides the roles of the newly added sub-entries in the super entry.(1) (A (-2 -1) TO (SURF-NP -1 BEFORE -2) AS CONJ COORD))adds the top two parse-stack parse entries into the last surface noun phrase before position-2 with roles conj and coord respectively. Example: In �scal 1986, it earned a record $9.9million, + or + 89 cents a share(2) (A -1 TO (PRED* OF -2) AS PARTICLE)adds the top parse-stack parse entry into the ultimate predicate of the second parse-stackentry as a particle. Example: had already been taken + out(3) (A (-2 -1) TO (THAT-CLAUSE -1 BEFORE -2) AS CONJ COORD)adds the top two parse-stack parse entries into the last `that-clause' before position -2 withroles conj and coord respectively. Example: U.S. o�cials estimate that the move will resultin $85 million in additional U. S. sales this year, + and + that such sales eventually couldgrow to $300 million annually 38



(4) (A -1 TO (INDEXED-NP -1 BEFORE -1) AS MOD)adds the top parse-stack parse entry into the last noun phrase to the before position -1 thathas a matching index with a role of mod. Example: The sales totaled < $100million >1,+ [< $100million >1] compared with $90 million a year beforeExample (2) di�ers from the other examples in that the PARTICLE role triggers a specialtreatment. The particle (out) is merged with its verb (taken) at the deepest level, updating theverb concept from I-EV-TAKE to I-EV-TAKE-OUT.5.3.5 Empty Category InstantiationEmpty categories (Chomsky, 1988; Lasnik & Uriagereka, 1988) are phonologically unrealized nounphrases including NP-traces such as t in \Johni was believed ti to be clever.", variables, such as thewh-trace t in \Whati are you looking at ti?" and PROs such as in \Hei wanted PROi to win.".Empty categories are useful tools to describe sentences where noun phrases have a semantic role inmore than one clause (PRO) or where they are realized in a phrase other than the one where theyhave a semantic role (traces).In order to have enough noun phrase representatives for noun phrases that play a role inmore than one phrase, empty category tokens are created from noun phrase parse entries whennecessary. The newly created parse entry is automatically co-indexed with the parse entry it isderived from. With several parse entries representing a noun phrase with a single phonologicalrealization, these parse entries can now be assigned di�erent roles in di�erent phrases. E.g. inthe sentence \Hei wanted PROi to win.", `He' will be assigned the roles subject and experiencer,whereas the corresponding `PRO' will be assigned the role agent. In a sentence like \Salesi areexpected ti to increase.", `Sales' will be assigned the roles subject and dummy, whereas `ti' will bethe theme in the embedded clause.(1) (EMPTY-CAT FROM ACTIVE-FILLER-1 AT 0)creates an empty-category parse entry from the last entry marked as an `active �ller', e.g.where in the following example, and places it at the top of the stack. Example: He asked+ where + I + came + from(2) (EMPTY-CAT FROM NP-1 AT -1)creates an empty-category parse entry from the highest parse-stack parse entry that is anoun phrase and places it at position -1. Example: Sales + are expected + to increase
39



5.3.6 Co-IndexThis action co-indexes the top parse entry on the parse-stack with the parse entry speci�ed in theWITH clause. This is used particularly for co-indexing phonologically realized relative pronounswith their antecedents. In the representation the co-indexing is realized by annotating the primaryparse entry with (INDEX <index>) and by annotating all other entries that refer to it with (REF<index>), where <index> is a system generated integer. When an empty category parse entryis created, this is performed automatically. Non-relative pronoun resolution is currently done in aspecial phase at the end of parsing (see section 5.4).(1) (CO-INDEX WITH -2)co-indexes the top parse entry of the parse-stack with the parse entry to its left. Example:someone + who(2) (CO-INDEX WITH (SURF-NP -2 BEFORE -1))co-indexes the top parse entry of the parse-stack with the penultimate noun phrase on thesurface to the left of position -1. Example: The owner of the car, + who, where who wouldbe co-indexed with the owner.5.3.7 MarkThe parse action (M <path> <slot> <value>) assigns slot <slot> of the parse entry speci�edby <path> the value <value>. This parse action is typically part of a complex parse action, i.e.mark actions typically occur in a list of two basic parse actions starting with a shift, reduce, or anempty category instantiation, followed by a mark action.(1) (M -1 GAP ACTIVE-FILLER)marks the top parse-stack parse entry as being an active gap. Example: What * do youwant ... This mark-up can later be exploited for proper empty category instantiation (seesubsection 5.3.5).(2) (M -1 IN-PARENTHESES TRUE)marks the top parse-stack parse entry as being being in parentheses.5.3.8 ExpandThe parse action (EXPAND) expands contractions of two or more words. An example in Englishis `won't', a contraction of will and not. Examples from other languages are im = in + dem inGerman, aux = �a + les in French, al = a + le in Spanish and nel = in + il in Italian, all ofwhich are contractions of a preposition with a de�nite article. In our system, the English verbalcontractions are however already handled in the segmentation and morphology module, while theGerman contractions are expanded during parsing. The expand action does not take any argumentsand always applies to the top parse-stack entry.40



5.3.9 DoneThe parameterless (DONE) parse `action' signals that parsing is complete. Normally, this shouldonly occur when there is a single item left on the parse stack and the input list is empty. That oneparse entry is then returned as the result of the parse.This parse action is also used in the case of serious problems during the parse, e.g. whenstrong symptoms of a potential endless loop are detected or when regularly proposed parse actionsare overruled by the sanity checker, which tests whether a parse action can actually be performedin a speci�c context (more details in section 5.5). The DONE parse action is the only one thatcan always be used as a last resort, because it can be `executed' in any parse state. When reachingsuch a pathological case, the system combines all remaining items on the parse stack and the inputlist into a new `holding' parse entry.5.3.10 Multiple Parse ActionsThe parser decides what to do next by classifying the current partially parsed text. The classi�ca-tion is technically a list of parse actions. In most cases (99.8%), this parse action list contains onlya single parse action, but sometimes multiple parse actions are used:1. ((S S-ADV) (M -1 GAP ACTIVE-FILLER))Example: I know * where he is.Example: I know * where he is from.2. ((EMPTY-CAT FROM NP-1 AT 0) (M -1 GAP ACTIVE-FILLER))Example: I know the restaurant * you were talking about.3. ((EMPTY-CATFROMACTIVE-FILLER-1 AT 0) (MACTIVE-FILLER-1 GAP SATURAT-ED-FILLER))Example: I know the restauranti PROi you were talking about *.4. ((R 2 TO S-ADJP AS COMP PRED) (M -1 GRADE SUPERLATIVE))Example: the most famous * buildingMultiple parse actions are used when shifting in interrogative pronouns or adverbs, as inexample (1), in relative phrases without a phonologically realized relative pronoun, as in example(2), when resolving wh-traces, as in example (3), or when reducing periphrastic comparatives orsuperlatives, as in example (4). As usual, the asterisk (*) marks the current parse position.Even though the parse action language allows an arbitrary number of elementary parseactions and does not have any restrictions on combinations, we only use up to two elementaryparse action, and this only in a few cases (0.2%), all involving an `empty-category' or `mark'action. Mark actions often set parse entry slots that are only used in a few special circumstances.Theoretically the parser could of course learn to perform the mark action in a separate step. Butsince the mark actions are conceptually closely tied to their preceding action, it is simpler to learnthe combination. 41



5.3.11 Triggered ComputationsIt is important that the supervisor does not get overwhelmed when providing the correct parseaction. The actions should be as simple as possible. This is partly achieved by providing defaults,e.g. by letting a new parse entry inherit properties like its semantic class and its part of speechfrom its predicate sub-parse-entry.In other cases, like compound verbs, the notion of inheritance is less useful. Consider forexample the need to determine the form of a compound verb (e.g. \has" + \given"). The parserneeds to know the tense, voice, aspect etc. of the compound. One way to gain this informationwould be to let the supervisor provide this information as part of the action of reducing an auxiliaryand a main verb to a compound verb. A more elegant and less burdensome way for the supervisoris to let the reduction of an auxiliary and a main verb trigger the computation of the form of thecomplex verb. These computations don't depend on a lot of context and can therefore be performedusing straightforward algorithms that don't involve any learning.As another example, the reduction of the subject noun phrase and a verb phrase, e.g. \The�sh + were alive.", triggers the computation of the form of a sentence (third person plural).Currently, triggered computations are limited to determine the forms (e.g. tense or number)of new parse entries. Word sense disambiguation within a speci�c part of speech is currentlysuccessfully `delegated' to the transfer process and anaphora resolution is performed at the end ofcore parsing. If, in a later extension, these tasks have to be moved up into core parsing, they couldalso be performed as a triggered computation, a solution superior to explicit parse actions, becausethe triggered computations would not only keep the parse action sequence simpler, but also keepparse action sequences impervious to lexicon additions that might turn a previously `unambiguous'word like pen into an ambiguous one, necessitating a modi�cation of all parse action sequences withsuch a `newly ambiguous' word. Since such potential modi�cations of parse action sequences arehighly undesirable, a triggered action is clearly preferable. The computations could be triggeredby the evaluation of a feature that is used in the parse action decision making process and dependson the speci�c sense of a word or its antecedent.Such additional triggered computations could principally be so complex that they couldbene�t from machine learning. However, this wasn't found to be necessary for the currently imple-mented triggered computations.5.4 Anaphora ResolutionWhile the computations described in the last section can easily be linked to triggering parse actions,another computation, anaphora resolution, could be performed at several points during the parseprocess. For convenience's sake, we choose to perform it at the end of the parse action sequence.Even in closely related languages such as English and German, which both di�erentiate pro-nouns with respect to number (singular/plural), person (1-3) and gender (masculine/feminine/neu-ter), pronouns don't match one to one. Compared to English, German has a much stronger notionof an independent grammatical gender, so that for example der L�o�el (the spoon) is masculine, dieGabel (the fork) is feminine, and das Messer (the knife) is neuter. Now consider the translation ofthe English pronoun it. The gender of its equivalent German pronoun depends on the grammaticalgender of its German antecedent, which is the translation of the antecedent of it in English. So,42



to pick up on the previous example, when translating the English sentence \The spoon/fork/knifeis expensive, because it is made out of silver.", the English pronoun it would have to be translatedas er (masc.), sie (fem.), or es (neuter), depending on what eating utensil it referred to. As thisexample shows, anaphora resolution is necessary for proper translation.To identify the antecedent of an anaphor, the system �rst �nds the syntactically permis-sible antecedent candidates, using for example number agreement and the linguistic relationshipc-command (for details see for example (van Riemsdijk & Williams, 1986)). It then eliminatessome candidates by using a few simple semantic restrictions, e.g. that a pronoun that �lls the roleof an agent must have an antecedent that semantically can be an agent. Consider for examplethe pronoun in the sentence \The airline bought the plane because it had already decided to do soearlier". Syntactically, both The airline and the plane qualify as an antecedent for it, but the planeis ruled out, because it can not be an agent as required for subjects of \to decide" (in the activevoice). Finally, among any remaining candidates, the syntactically closest is picked.Relatively simple heuristics were su�cient to cover all anaphora cases in the 48 trainingsentences. In a more advanced anaphora resolver, these heuristics have to be elaborated further.With enough complexity, machine learning might again prove useful in deciding which antecedentto pick. Previous work in this area includes (Aone & Bennett, 1995), which describes an anaphoraresolution system trained on examples from Japanese newspaper articles.5.5 Parsing SafeguardsThe parser contains a few safeguards that suppress the attempt to execute unexecutable parseactions, detect potential endless loops and handle incomplete parses.Before a proposed parse action is actually executed, the sanity checker tests whether thiscan actually be done. If it is impossible, e.g. in the case of a reduction of n elements on a parsestack that actually contains less than n elements or a shift-in on an empty input list, the sanitychecker forces another action to be chosen. The sanity checker also suppresses a shift-in that wouldimmediately follow a shift-out.If the decision structure can naturally provide an alternative acceptable parse action, thataction is chosen, otherwise, a new word is shifted in, or, if the input list is empty, the parse action`done' is selected.Another source of potential complications are endless loops. While the simple shift-in shift-out loop is already suppressed by the sanity-checker, other loops are still possible, e.g. a loop withthe iteration (M -1 GAP ACTIVE-FILLER) (EMPTY-CAT FROM NP-1 AT 0) (R 2 AS QUANTSAME).To detect a loop, the parser limits the number of allowed remaining parse actions to fourtimes the number of elements on the parse stack and the input list, about twice the amount ofparse actions typically expected. Since the number of remaining parse actions allowed is limited,all actual loops are detected. All suspected loops actually turned out to be loops, as inspectionsshowed. When a loop is detected, the parse is terminated by choosing the action `done'. Fortunately,when the system is trained on at least a few dozen sentences, loops become quite rare.If parsing is terminated before all words have been combined into a single parse entry, e.g.due to a `done' parse action prescribed by the sanity checker, the endless loop detector or just43



an incorrect classi�cation, all remaining elements on the parse stack and input list are lumpedinto a holding parse entry with uncommitted syntactic and semantic class (S-SYNT-ELEM andI-EN-THING) and uncommitted roles (CONC ) for the elements. This operation allows the parsedsentences to be further processed. Obviously, we expect subsequent evaluations to yield substandardresults, particularly in recall and translation, but it is important that parsing quality can also bemeasured for pathological cases.5.6 FeaturesTo make good parse decisions, a wide range of features at various degrees of abstraction have tobe considered. To express such a wide range of features, we de�ne a feature language. Given aparticular parse state and a feature, the system can interpret the feature and compute its value forthe given parse state, often using additional knowledge resources such as1. a general knowledge base (KB), which currently consists of a directed acyclic graph of con-cepts, with currently 3608 is-a-relationship links,e.g. \CARNOUN�CONCEPT is-a VEHICLENOUN�CONCEPT"; for more details see sec-tion 3.12. subcategorization tables that describe the syntactic and semantic role structure(s) for verbsand nouns with currently a total of close to 200 entries; for more details see section 3.5The following examples, for easier understanding rendered in English and not in featurelanguage syntax, illustrate the expressiveness of the feature language:� the general syntactic class of the top element of the stack (e.g. adjective, noun phrase),� the speci�c �nite tense of the second stack element (e.g. present tense, past tense),� whether or not some element could be a nominal degree adverb,� whether or not some phrase already contains a subject,� the semantic role of some noun phrase with respect to some verb phrase (e.g. agent, time; thisinvolves pattern matching with corresponding entries in the verb subcategorization table),� whether or not some noun and verb phrase agree.Features can in principal refer to any element on the parse stack or input list, and any oftheir subelements, at any depth. Since all of the currently 205 features are supposed to bear somelinguistic relevance, none of them actually refer to anything too far removed from the current focusof a parse state. A complete list of all 205 features can be found in appendix section B.1. The setof features is used for all parse examples for a speci�c language and can easily be extended whenthe need arises.The current set of 205 features has been collected manually. The feature collection is basi-cally independent from the supervised parse action acquisition. Before learning a decision structurefor the �rst time, the supervisor has to provide an initial set of features that can be consideredobviously relevant. During early development phases of our system, this set was increased whenever44



parse examples had identical values for all features (so far) but nevertheless demanded di�erentparse actions. Given a speci�c conict pair of partially parsed sentences, which is signaled duringthe machine learning process if it occurs, the supervisor would add a new feature that relevantlydiscriminates between the two examples. Such an addition requires fairly little supervisor e�ort.Relevant context features refer to parse entries that are shifted, reduced or otherwise directlyparticipate in an operation, as well as parse entries that describe context in the narrow sense.As explained further in the next section, parse examples are generated from parse statesand parse actions. Given the state of a partially parsed sentences, the system computes the valuesfor all features in the parsing feature list of a speci�c language. These values are then combinedinto a feature vector, a list of values, which, together with the parse action, form the core of aparse example. If the set of features changes, the parse examples have to be recomputed, becausethe feature vectors change. However, this can be done fully automatically since parse actions havebeen recorded in log �les.The feature sets for parsing in English and German are by and large the same. However,a few features, such as \Is the second word on the parse stack `there'?", as it might be useful tocharacterize expressions like \there is"/\there are", are language speci�c. We expect the featureset to grow, possibly to 300 features, when many more training examples from the Wall StreetJournal are added, and probably even more when expanding into new domains, but this does notappear to be very critical, because adding new features is easy and requires little time and becausethe subsequent parse action generation update is fully automatic.The following subsections explain in detail how features can be de�ned.5.6.1 General Feature StructureThe typical structure for a feature is(<predicate> of <path> at <super-hierarchy-level>)E.g. the feature (tense of pred of -2 at f-�nite-tense) describes the tense of the sub-parse-entry with role pred of the second element of the parse stack at hierarchy-level f-�nite-tense. Possiblevalues for this feature are f-pres-tense, f-past-tense, f-perf-tense, f-past-perf-tense, f-fut-tense andf-fut-perf-tense.Values are hierarchical. Consider a parse stack with a parse entry for \to read" at its top.While the value of feature (synt of -1 at s-synt-elem)4 is s-verb in this example, the value for feature(synt of -1 at s-verb) would be s-tr-verb, meaning that the parse entry stands for a transitive verb.The `super-hierarchy-level' �eld in the above feature template is hence used to specify the hierarchylevel of the value. When evaluating a feature, the system will return the proper value directly belowthe `super-hierarchy-level' node, if there is any, and, otherwise, the special value unavail.For parsing, the reference point for the paths is the current position. Many paths justconsist of a negative or positive integer, denoting a parse entry on the parse stack or the inputlist respectively. From any parse entry, one can further navigate into sub-parse-entries using roles,either syntactic or semantic. The feature (class of pred-compl of co-theme of -1 at i-en-quantity)for example explores the type of quantity of the predicate complement of the co-theme of the4s-synt-elem denotes the top level of any syntactic category45



top element on the parse stack. There is no set limit for the length of the path, but reasonablelinguistically relevant features tend to have a limited path length, up to 3 in our current system.Besides roles, the positional path elements �rst, last, last-mod and last-coord are available.E.g. �rst accesses the �rst sub-parse-entry of a parse entry, and last-mod accesses the last sub-entrywith role mod.The path element parent accesses the parent entry. It is useful for describing paths thathave their reference points somewhere in a parse entry tree, as is the case for describing featuresin the transfer module (see chapter 7).PRED* designates the `ultimate' PRED of a parse entry, i.e. the parse entry that is reachedby repeatedly descending to sub-entry PRED until this is no longer possible. npp-1 designates thelast noun phrase or noun phrase within a prepositional phrase of a sentence.Elements on the input list can have several alternatives, typically when a word has severalparts of speech. Unless otherwise speci�ed, paths always select the �rst alternative. Using pathelements alt2, alt3, alt-nom, alt-adv, e.g. as in (synt of alt2 of 1 at s-synt-elem) or (classp ofi-en-agent of alt-nom of 2 at m-boolean), select the second, third, nominal or adverbial alternative.Obviously, some paths don't lead to any parse entry. In that case, the system returns avalue of unavail for the feature.5.6.2 Syntactic and Semantic Category Features(synt of <path> at <super-hierarchy-level>) denotes the syntactic class of the parse entry accessedthrough <path> at <super-hierarchy-level>. (synt of -1 at s-synt-elem), the general part of speechof the top parse stack element, is the most often feature.(class of <path> at <super-hierarchy-level>) provides the same for the semantic class.(syntp of <syntactic class> of <path> at m-boolean) is a boolean feature that holds i� the parseentry at the end of <path> is of the right <syntactic class>.5(classp of <semantic class> of <path> at m-boolean) is the corresponding semantic binary feature.5.6.3 Syntactic and Semantic Role FeaturesThe four features in this subsection draw on the background knowledge of the subcategorizationtable, as described in section 3.5.(semrole of <position1> of <position2>) is the feature to describe the semantic role of theparse entry at position 1 in a pattern best matched by the parse entry at position 2. If for examplethe two top parse stack entries are (The student) + (read a book), the feature (semrole of -2 of -1)would have a value of agent.The corresponding binary feature type (semrolep of <position1> of <position2>) checks if theparse entry at position 1 has some role in a pattern best matched by the parse entry at position2. If for example the three top parse stack elements are (sent) (a book) (to New York), the feature(semrolep of -1 of -3) would be true, indicating that (to New York) can have a meaningful role ina sentence with the predicate to send, which in turn suggests that (to New York) should probablybe attached to the verb and not to the preceding noun phrase.5`m-boolean' is the direct super concept of `true' and `false'; the `m' pre�x (`mathematical concept') is used todistinguish it clearly from the concept representing the adjective `boolean'.46



(semrole of <syntactic role> of <position2>) describes the semantic role of the argumentwith <syntactic role> in the pattern best matched by the parse entry at <position2>. If forexample the top element of the parse stack is (ate potatoes), the feature (semrole of subj of -1)would be AGENT. (semrolep of <syntactic role> of <position2>) checks whether <syntactic role>is meaningful for the pattern best matched by position 2.For verbal patterns, the parse entry at <position2> can be a verb, a verb phrase or asentence. The verbal parse entry can be without any arguments, already have some attached, oreven all attached. When assigning values to such role features, the system �rst compares the verbstructure with the patterns in the verb subcategorization table and identi�es the pattern that �tsbest, using a scoring system in which reward and penalty points are given for various types ofmatches and mismatches of individual components:� -10,000 for each missing mandatory component� -1,000 for each spurious primary (i.e. non-advp/pp) component� +100 for each mandatory component covered before any spurious component� +70 for each mandatory component covered after spurious advp/pp component� +30 for each mandatory component covered after spurious primary component� +10 for each optional component covered before any spurious component� +7 for each optional component covered after spurious advp/pp component� +3 for each optional component covered after spurious primary component� -1 for each spurious app/pp componentThe components of each pattern, whether mandatory or optional, have syntactic and semanticroles. A more detailed description of subcategorization tables can be found in section 3.5.The same holds in principle for nominal patterns, but they are currently not used. \synt-role" and \syntrolep" are interpreted analogously.5.6.4 Form FeaturesThese features can be used to access the tense, aspect, person, number, case, gender, mode, voiceand mood of a parse entry. The boolean features of examples 1-4 check whether a particular formvalue is compatible with the parse entry. Examples 5 and 6 can have vales f-active or f-passive andf-masc, f-fem or f-neut respectively.1. (f-�nite-tense of -1 at m-boolean)2. (f-part of 1 at m-boolean)3. (f-pres-part of 1 at m-boolean)4. (f-third-p of -1 at m-boolean)5. (voice of -1 at f-voice)6. (gender of -2 at f-gender) 47



5.6.5 Other Unary Boolean FeaturesThe following features check whether or not the parse entry referenced by <path> is an abbreviatedword, whether it is indexed (antecedent) or a referent (anaphor), whether it is capitalized, ormarkedly capitalized (i.e. the capitalization is not due to the placement of the word at the beginningof a sentence), or whether or not the parse entry is lexical, i.e. represents a single word or anotherlexical unit such as New York.1. (is-abbreviation of <path> at m-boolean)2. (is-indexed of <path> at m-boolean)3. (is-ref of <path> at m-boolean)4. (capitalization of <path> at m-boolean)5. (marked-capitalization of <path> at m-boolean)6. (lexical of <path> at m-boolean)5.6.6 Binary Boolean FeaturesThe following features are special in that they involve two di�erent parse entries. They checkwhether the parse entry pair described by <path1> and <path2> are compatible in terms ofnumber, person and case as subject and verb phrase of a sentence (example 1), whether they arecompatible to form a compound verb as auxiliary and main verb (example 2), and whether or notthe concepts of the two parse entries are similar in that they both represent agents, places, temporalintervals, or compatible types of quantities (example 3).1. (np-vp-match of <path1> with <path2> at m-boolean)2. (compl-v-match of <path1> with <path2> at m-boolean)3. (similar of <path1> with <path2> at m-boolean)5.6.7 Other FeaturesThe �rst two example features show how optional parse entry slots such as gap can be used. Noticethe abstract path in example 2, which refers to the last parse stack entry that has an active �ller.Since the �ller status can only be active-�ller, saturated-�ller or unavail, example 2 is used to checkwhether there exists an active �ller on the parse stack. The third example feature checks, whetheran integer is more likely to designate the day of a month (1-31) or a year (e.g. 1997), which can beuseful to distinguish between July 4 and July 1776.1. (gap of -2 at m-�ller-status)2. (gap of active-�ller-1 at m-�ller-status)3. (day-or-year of -1 at i-enum-cardinal) 48



5.7 Training the ParserThe decision structure that is used to parse sentences by deciding what parse action(s) to take nextis learnt from parse action examples. The acquisition of these examples is a central task and isdone in interactive training with a supervisor.For each training sentence, the system and the supervisor parse the sentence step by step,starting with segmented and morphologically analyzed words on the input list and an empty stack,e.g. \* The senators left ."6 At the beginning, when there are no parse action examples and thusno decision structure, the supervisor has to enter all parse actions by hand. In the given example,the �rst parse action would be (S S-ART), which shifts The from the input list to the parse stack,represented by \(The) * senators left ." The representation of the elements on the parse stack usesbrackets, because the parse entries can consist of complex parse entries that contain several words.The complete parse action sequence for the given example is shown in table 5.1. A detailedParse state parse action* The senators left . (S S-ART)(The) * senators left . (S S-NOUN)(The) (senators) * left . (R 1 TO S-NP AS PRED)(The) (senators) * left . (R 2 AS DET SAME)(The senators) * left . (S S-ADJ)(The senators) (left) * . (R 1 TO S-VP AS PRED)(The senators) (left) * . (R 2 TO S-SNT AS (SUBJ THEME) SAME)(The senators left) * . (S D-DELIMITER)(The senators left) (.) * (R 2 AS SAME DUMMY)(The senators left.) * (DONE)Table 5.1: The complete parse action sequence for a very simple sentence. See page 50 for theresulting parse tree.parse action sequence for a more interesting sentence is shown in appendix C.The system records the parse action sequence for a trained sentence in a log �le. Later,the system can automatically generate parse action examples from such log �les. This separationis very useful, because it allows examples to be regenerated automatically if the set of features ischanged.After the system records the parse action, it interprets the command, executes it, anddisplays the resulting parse state. During the training phase, the parse states are displayed in shortform, just as indicated in the table above. Internally of course, each element is a full edged parseentry, or, on the input list, a list of alternative parse entries, e.g. the following for left:6As usual, the asterisk * denotes the current position, between the parse stack and the input list.49



(OR"left":synt: S-ADJclass: I-EADJ-LEFTforms: (NIL)lex: "left"props: ((ADJ-TYPE S-NON-DEMONSTR-ADJ))"left":synt: S-VERBclass: I-EV-LEAVEforms: (((TENSE F-PAST-PART)) ((TENSE F-PAST-TENSE)))lex: "leave"The system repeats recording and interpreting parse actions until it reaches the parse actiondone. For the above example, at that point, the system contains this �nal parse result on the parsestack:"The senators left.":synt: S-SNTclass: I-EV-LEAVEforms: (((PERSON F-THIRD-P) (NUMBER F-PLURAL)(CASE F-NOM) (TENSE F-PAST-TENSE)))lex: "leave"subs:(SUBJ THEME) "The senators":synt: S-NPclass: I-EN-SENATORforms: (((NUMBER F-PLURAL) (PERSON F-THIRD-P)))lex: "senator"subs:(DET) "The":synt: S-DEF-ARTclass: I-EART-DEF-ARTforms: (NIL)lex: "the"props: ((CAPITALIZATION TRUE))(PRED) "senators":synt: S-COUNT-NOUNclass: I-EN-SENATORforms: (((NUMBER F-PLURAL) (PERSON F-THIRD-P)))lex: "senator"(PRED) "left":synt: S-VERBclass: I-EV-LEAVEforms: (((TENSE F-PAST-PART)) ((TENSE F-PAST-TENSE)))lex: "leave"(DUMMY) ".":synt: D-PERIODlex: "." 50



To generate parse action examples from parse action sequences recorded in a log �le, thesystem steps through the parse sequence of a sentence again. At each step, the system �rst computesthe values for all parse features, as described in the previous section. The resulting feature vectorplus the parse action provided by the supervisor form the core of the parse action example. Otherparse action example components include an identi�er, e.g. `(LOBBY 3 20 \(The) * senators left.")', which links the example back to a speci�c partially parsed sentence, e.g. sentence 3 from corpusLOBBY step 20.As described in the next section, parse action examples can be used to build a decisionstructure, which can be used to predict the parse action for a given parse state. Even with only a fewparse action examples, e.g. from a single phrase, such decision structures immensely support furtherparse action acquisition. For new training sentences, the decision structure proposes the parseaction as a default, and for those that the system predicted right, the supervisor can just con�rmthe default by hitting the return key, thereby no longer having to type it in. The learning curveof the decision structure is initially so steep, that already for the second sentence, the supervisorcan expect to enter more than half of the parse actions by con�rming the system proposed parseaction default.The more parse action examples are acquired, the better the resulting decision structurewill be, so that the supervisor has to overrule the system with decreasing frequency. Soon, theactual work of typing in parse action becomes almost negligible compared to the supervisor's e�ortto decide what the proper parse action of a sentence should be.5.8 Learning Decision StructuresTraditional statistical techniques also use features, but often have to sharply limit their number(for trigram approaches to three fairly simple features) to avoid the loss of statistical signi�cance.Given that we use more than 200 features, it is obviously very critical to choose a decisionstructure and corresponding construction algorithm that match the application well by exploitingdomain knowledge to limit and/or bias the selection of discriminating features or rules.In parsing, only a very small number of features are crucial over a wide range of examples,while most features are critical in only a few examples, being used to `�ne-tune' the decisionstructure for special cases.In order to overcome the antagonism between the importance of having a large numberof features and the need to control the number of examples required for learning, particularlywhen acquiring examples under supervision, we choose a decision-tree based learning algorithm,which recursively selects the most discriminating feature of the corresponding subset of trainingexamples, eventually ignoring all locally irrelevant features, thereby tailoring the size of the �naldecision structure to the complexity of the training data. Our decision structure is a hybrid thatcombines elements of decision trees, decision lists and decision hierarchies.5.8.1 Review of Decision Trees and ListsBased on a training set of classi�ed examples, algorithms like ID3 (Quinlan, 1986) and C4.5 (Quin-lan, 1993) build so-called decision trees that can classify further (yet unclassi�ed) cases. Consider51
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the small training set with 14 examples in table 5.2. In each example, the weather is classi�ed as\Play" or \Don't Play".Outlook Temp (�F ) Humidity (%) Windy? Classsunny 75 70 true Playsunny 80 90 true Don't Playsunny 85 85 false Don't Playsunny 72 95 false Don't Playsunny 69 70 false Playovercast 69 90 true Playovercast 83 78 false Playovercast 64 65 true Playovercast 81 75 false Playrain 71 80 true Don't Playrain 65 70 true Don't Playrain 75 80 false Playrain 68 80 false Playrain 70 96 false PlayTable 5.2: A small training set; from (Quinlan, 1993).
<= 75 > 75

windy?

true false

cast

outlook

Play
humidity

sunny rain

Play Don’t Play Don’t Play Play

over

Figure 5.5: Decision tree built from training set shown in �gure 5.2Given the examples of table 5.2, the programC4.5 builds the decision tree shown in �gure 5.5.This tree can not only be used to reproduce the classes of the examples used to build it, but alsoto classify new examples, e.g. (overcast/75�F/40% humidity/not windy) as \Play". The algorithmbuilds the decision tree recursively top down. At each node, it selects the feature with the highestgain ratio, and repeats the decision tree building for each value (or value interval) of the selectedfeature along with the corresponding example subset. The algorithm terminates when all remainingtraining examples share the same class.The gain ratio, as de�ned in table 5.3 is a measure that describes how well a feature divides53



gain ratio(X) = gain(X)=split info(X)split info(X) = � nXi=1 jTijjT j � log2 jTijjT jgain(X) = info(T )� infoX(T )infoX(T ) = nXi=1 jTijjT j � info(Ti)info(T ) = � kXj=1 freq(Cj ; T )jT j � log2freq(Cj ; T )jT j bitswhere freq(Cj; T ) is the frequency of the j-th class in example set T and the Ti'sare the di�erent example subsets of T according to partitioning test X.Table 5.3: De�nition of gain ratio. For a detailed motivation and explanation of the gain ratio, see(Quinlan, 1993), pp. 20 �.the example set into subsets that are to be as homogeneous as possible with respect to their classes.We chose to use the gain ratio and not the plain gain, because the gain tends to bias feature selectiontowards features with many values over those with only a few, and because the feature set of oursystem has features with two to over 30 values, indeed a considerable variation.In our example, when computing the gain ratios for all four features (outlook, temperature,humidity, windy) at the top level, the highest gain ratio turns out to be for the `outlook' feature,which partitions the example set into subsets for `sunny', `overcast', and `rain'. All examples for`overcast' are classi�ed as `Play', so the subtree for `overcast' is a single node marked `Play'. Theother two example subsets have to be split one more time before all example subsets share the sameclass. Alternatively, decision list algorithms (Rivest, 1987) generate a list of conjunctive rules,where rules are tested in order and the �rst one that matches an instance is used to classify it.Figure 5.6 shows the resulting decision list for the same weather training set.5.8.2 Decision HierarchiesOur �rst extension to the standard algorithms for decision trees and decision lists is the concept ofa decision hierarchy. Recall that while parse actions might be complex for the action interpreter,they are atomic with respect to the decision structure learner; e.g. \(R 2 TO VP AS PRED (OBJPAT))" would be such an atomic classi�cation. However, di�erent parse actions are often relatedand apply in very similar contexts. Consider for example the parse actions (R 2 TO S-SNT AS(SUBJ AGENT) SAME) and (R 2 TO S-SNT AS (SUBJ THEME) SAME). Both parse actionsare used in a very similar context: a noun phrase and a verb phrase are combined into a sentence,54
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Figure 5.6: Decision list built from training set shown in �gure 5.2which then contains all the components of the verb the same way as in the verb phrase, plus thenoun phrase as a subject. The only di�erence is that in the �rst case, the subject plays the semanticrole of `agent', whereas in the second case it plays the semantic role of `theme'.The knowledge of this type of similarity of parse actions can be exploited by de�ning setsof similarity classes for parse actions, e.g. the set of all parse actions that reduce a noun phraseand a verb phrase to a sentence with the noun phrase as the subject, regardless of the subject'ssemantic role. Decision structures can then be constructed in two steps. During the �rst step, adecision structure is built as usual except that all parse actions belonging to the same similarityclass are treated as if the were the same. In a second step, a special decision structure is built forthe parse actions within each similarity class.This allows the decision structure to split up the classi�cation process into a coarse classi-�cation and a �ne classi�cation step as illustrated in �gure 5.7. The advantage of this approachis that the system can `bundle' examples that are associated with di�erent leaves of the coarsedecision structure and thereby gain a stronger example base for the �ne classi�cation. In principal,a decision structure can be split up into an arbitrary number of levels of such decision hierarchies.The similarity classes are de�ned by predicates on parse actions; all parse actions for which thepredicate holds are de�ned to be members of the corresponding similarity class. The predicates arede�ned manually. In our best-performing decision structure, we use two such decision hierarchysimilarity classes: the one already mentioned in the preceding example and one which contains allparse actions that reduce a preposition and a noun phrase into a preposition phrase.55
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shift s-verb shift s-adjFigure 5.7: A two level decision hierarchy, where all shift parse actions have been grouped together.5.8.3 Syntax of Decision Structure De�nitionsIt is not only possible to de�ne decision trees of decision trees, as illustrated in �gure 5.7, but infact any decision structure (e.g. trees or lists) can have any type of sub-decision-structure, at anynumber of levels. In order to describe such a complex multi-level hybrid structure, we introduce aformal syntax:Entity De�nition CommentPRED: <a parse action predicate>DSTRUCT: (PRED ftree DSTRUCT �g) decision tree(PRED dlist DSTRUCT �) decision list(PRED slist DSTRUCT+) decision structure listTable 5.4: Syntax of decision structures.Parse action predicates (\PRED") are implemented functions that map parse actions totrue or false. Examples are any-operation-p, which holds for all parse actions; reduce-2-to-snt-operation-p, which holds for all parse actions of the form (R 2 TO S-SNT ...); and reduce-2-to-lexical-operation-p, which only holds for the single parse action (R 2 TO LEXICAL).A decision structure (\DSTRUCT") is a hybrid multi-layer structure composed of decisiontrees, lists, and structure lists (as further explained in the following subsection). Decision trees andlists can have any type of decision structure as a sub-component; for decision structure lists, thespeci�cation of such sub-components is required. The top level predicate (PRED) should be theall inclusive any-operation-p. Table 5.5 gives examples of decision structure de�nitions.56



de�nition description(any-operation-p) simple (non-hierarchical) decision tree(any-operation-p tree) same as above(any-operation-p dlist) simple decision list(any-operation-p tree de�nes a hierarchical decision tree with(reduce-operation-p) sub-decision-trees for reduce and shift(shift-operation-p)) parse actions(any-operation-p dlist de�nes a hierarchical decision list with(reduce-operation-p dlist) a sub-decision-list for reduce parse actions(shift-operation-p)) a sub-decision-tree for shift parse actions(any-operation-p slist de�nes the decision structure list(done-operation-p) shown in �gure 5.8(reduce-operation-p)(shift-operation-p))Table 5.5: Examples of decision structures. Note: `any-operation-p', `shift-operation-p', `reduce-operation-p', and `done-operation-p' are prede�ned predicates for similarity classes, containing allparse actions, all shift parse actions, all reduce parse actions, and all done parse actions respectively.5.8.4 Decision Structure ListsThe �nal extension to decision trees and lists we introduce is the decision structure list. Recallthat the major motivation for decision hierarchies was that we wanted to exploit our knowledgethat some of the currently 265 di�erent parse actions are quite related to each other; using decisionhierarchies, we can split the decision structure learning into a coarse and a �ne learning part withthe advantage that the examples within a similarity class, no matter where in a coarser tree theymight end up, are bundled back together, thereby providing a larger example base for `�ne-tuning'.Another piece of linguistic background knowledge that we can exploit is the notion of excep-tionality vs. generality of parse actions. Natural language exhibits a complex pattern of regularities,sub-regularities, pockets of exceptions, and idiosyncratic exceptions. Consider for example the nounphrase \New York exchanges". We don't want to treat \New" like a normal adjective, and in par-ticular, we don't want to attach it as a standard modi�er to the noun-compound \York exchanges".Instead, we want to take advantage of a special lexicon entry for \New York" and perform a specialreduction (\R 2 TO LEXICAL") that is principally lexically motivated. Since parse actions oftenreect this notion of degree of exceptionality, we can steer the more exceptional types of parse ac-tions towards an early treatment, so that they later don't `confuse' the more normal parse actionslike shift and reduce. We achieve this by de�ning a list of similarity classes that we order suchthat more exceptional types of parse actions come �rst and more standard ones later. Figure 5.8gives an example. The system �rst separates the relatively special `done' operations from the restof the ock, and then proceeds with `reduce' operations before �nally dealing with the fairly stan-dard `shift' operations. When building the decision structure, all `done' examples are discardedwhen subsequent decision structure list sub-structures are built. We basically aim for a decrease ofexceptional examples that are likely to `pollute' the patterns of more regular types of parse actions.57



De�nition of Decision Structure ListsMore formally, a decision structure list is a list of element decision structures each of which classi�esexamples by assigning normal classes or the special class OTHER. If an element decision structureassigns a normal class, that class also becomes the class of the entire decision structure list; otherwisethe example is classi�ed by the next element decision structure in the decision structure list. Thisis repeated until the example is assigned a normal class. The last element decision structure shouldnever assign a class other, because it would be unde�ned. As mentioned before, �gure 5.8 givesan example of a decision structure list; it is generated from the de�nition (any-operation-p slist(done-operation-p) (reduce-operation-p) (shift-in-operation-p)).
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their corresponding sub-decision-structures to be arranged side by side, the various elements of adecision structure list are arranged in sequence.Example of a Hybrid Decision StructureFigure 5.9 shows a hybrid decision structure that is similar to the one depicted in �gure 5.8. Itintroduces an additional level of decision hierarchy under the reduce-operation-p tree, reducing thenumber of di�erent classi�cations in that tree to two, `reduce' and `other'. Since there is only asingle `done' operation anyway, a similar sub-tree wouldn't have made sense for the done-operation-p tree.
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The Hybrid Decision Structure Used For ParsingThe decision structure list shown in table 5.6 de�nes the hybrid decision structure used in ourparsing experiments. The structure has been constructed manually, following two principles:1. Group similar parse actions together, e.g. all `co-index' parse actions or all those of the form\(r 2 to s-pp ...)".2. Sort the resulting groups such that the more exceptional and specialized ones precede themore general groups.Since the sub-decision-structures are built sequentially, with all examples covered by a previouslylisted predicate discarded, the more exceptional examples are no longer around when the moregeneral sub-decision-structures are built.(any-operation-p slist(reduce-2-to-lexical-operation-p)(reduce-3-to-lexical-operation-p)(reduce-5-to-lexical-operation-p)(done-operation-p)(expand-operation-p)(co-index-operation-p)(add-operation-p)(empty-cat-operation-p)(mark-operation-p)(shift-out-operation-p)(reduce-4-operation-p)(reduce--3--1-operation-p)(reduce--4--1-operation-p)(reduce-non-contiguous-operation-p)(reduce-3-as-dummy-pred-operation-p)(reduce-3-as-comp-conj-pred-operation-p)(reduce-3-as-same-operation-p)(reduce-3-operation-p)(reduce-1-operation-p)(reduce-2-as-pred-or-same-dummy-operation-p)(reduce-2-to-pp-operation-p tree(reduce-2-to-pp-operation-p))(reduce-2-to-snt-operation-p tree(reduce-2-to-snt-operation-p))(reduce-2-operation-p)(shift-in-operation-p))Table 5.6: De�nition of the hybrid decision structure used in parsing experiments.Based on the decision structure list de�nition in table 5.6, the system �rst builds a decisiontree (default) that classi�es all examples as some reduce-2-to-lexical-operation-p parse action or60



OTHER. Then, using all examples that have previously been classi�ed as other, it builds the nextdecision tree and so forth. The union of decision structure list parse action classes should alwaysbe the full set of parse examples, but the classes are allowed to overlap.Note that the predicates partitioning the examples are not necessarily disjoint. In particu-lar, all examples covered by reduce-3-as-comp-conj-pred-operation-p are also covered by reduce-3-operation-p, but this is no problem, because all examples by the former are �ltered out, so thatthe sub-decision-structure for reduce-3-operation-p is trained only on all remaining examples. Itis important however that the disjunction of all sub-decision-structure predicates cover the entireexample space.Notice further the double occurrence of reduce-2-to-pp-operation-p. The �rst occurrencecauses all non-reduce-2-to-pp-operation-p parse actions to be lumped together as \other", whereasthe second occurrence groups all reduce-2-to-pp-operation-p parse actions together. As a result,the corresponding decision tree has exactly two classi�cations: a token representing reduce-2-to-pp-operation-p, and \other". A lower level decision tree then separates the di�erent parse actionswithin reduce-2-to-pp-operation-p.After initially obtaining a signi�cant improvement using a decision structure list along thetwo principles outlined above, further variation did not yield signi�cant additional improvement.This seems to indicate that the two basic principles above have merit, but that the results don'tdepend very much on the detailed con�guration of the decision structure list.5.8.5 Feature Selection Bias in Decision TreesIn parsing, certain features are much more specialized than others. For example, consider the feature(CLASSP OF I-EN-INTERR-PRONOUN OF -2 AT M-BOOLEAN), which checks whether or notthe second element on the parse stack is an interrogative pronoun, and (SYNT OF -2 AT S-SYNT-ELEM), which checks the general part of speech of the same element. For better generalizationwhen building decision trees and also for a potentially faster learning time, we want to restrictor discourage the selection of very specialized features before certain more general features havealready been used higher up in the decision structure. For this we de�ne a feature dependencygraph, which for each feature speci�es which other features should have been used before whenbuilding a sub-decision-structure.In our system, the use of a feature is discouraged, if the feature(s) describing the generalpart(s) of speech of the one or more parse stack or input list elements that are accessed in thefeature have not been used yet. The use of feature (CLASSP OF I-EN-INTERR-PRONOUN OF-2 AT M-BOOLEAN) for example would be discouraged until (SYNT OF -2 AT S-SYNT-ELEM)has been used.Features checking the general part of speech are discouraged if there is still a feature for thepart of speech of some element closer to position 0 that has not been used yet. This means that theonly features that are always without any such bias are (SYNT OF -1 AT S-SYNT-ELEM) and(SYNT OF 1 AT S-SYNT-ELEM). Features that have the same value for all remaining exampleshave an information gain of 0 and are considered to have been used, regardless of whether or notthey actually have been. 61



Features are discouraged by dividing the \raw" gain-ratio by1 + c1 � dc2where d is the degree of dependency violation (e.g. 2 for (SYNT OF -4 AT S-SYNT-ELEM) if(SYNT OF -1 AT S-SYNT-ELEM), but neither (SYNT OF -2 AT S-SYNT-ELEM) nor (SYNTOF -3 AT S-SYNT-ELEM) had been used before. c1 and c2 are constants.Experiments varying the strength of this bias towards more general features by choosingdi�erent values for c1 and c2, from `no bias' (c1 = 0) over several intermediate values to `very strongbias' (high values for both c1 and c2) have shown that stronger generalization biases produce betterdecision structures. In fact, the extreme bias of not considering any feature with any dependencyviolation leads to the best results. This allows the decision tree builder to ignore many (yet too)specialized features before even computing a gain ratio, thus considerably accelerating the decisiontree building process.5.8.6 Feature Selection PreferencesThe supervisor can optionally mark a parse example with one or more features indicating that theseare relevant for the speci�c example. Later on, this information can be used to bias the featureselection towards those features which have been marked as relevant in the example set that aremaining decision tree is built from. This bias is implemented by increasing the \raw" gain ratioin a way similar to the one we described in the last subsection.To a degree this option is a remnant of our previous approach of collecting, from selectedexamples, features that were explicitly designated as relevant, instead of full feature vectors forall examples. Out of a total of 11,822 parse action examples, 702 or 5.9% contain such individualfeature selection preference indications, with a total of 812 preference indications.Simple decision trees, simple decision lists, hierarchical decision trees and hybrid decisionstructures containing hierarchical decision trees were all used in our parsing experiments. Theresults are compared in section 6.4.4.5.9 Garden PathsGarden path sentences are sentences that initially mislead the reader in their syntactic analysis.Classical examples (Marcus, 1980) are:1. The horse raced past the barn fell.2. Cotton clothing is made of grows in Mississippi.Since local parsing preferences, e.g. the preference to interpret raced in example (1) as a �niteverb or to interpret Cotton clothing in example (2) as a compound noun, aren't recognized asincorrect until much later in a left-to-right deterministic parse, these garden path sentences presenta di�culty, which is not surprising, because the deterministic parser basically mimics a humanreader in the way it processes sentences and human readers experience these problems as well.62



With regard to attachment decisions, our parser follows a relatively `conservative' policy andmakes the attachments relatively late (because the supervisor trained it that way). For example, itpostpones reducing subject and verb until the entire verb phrase has been processed. This allowsit to circumnavigate the trap laid out by garden path sentence (1). In other garden path sentences,such as (2), where our system will interpret Cotton clothing as a complex noun, a locally preferredchoice later turns out to be wrong.Good writers can avoid garden path sentences. \The horse which was raced past the barnfell." and \Cotton that clothing is made of grows in Mississippi." read much more easily. Poorwriting will never disappear, but garden path sentences are rare enough in practical environmentsthat quantitatively their nuisance is minor compared to other parse errors.Nevertheless there are solutions to cope with garden path sentences in a deterministic parsingparadigm. The system can learn to recognize when it has been misled, even if it is already toolate for the `proper' parse. Many garden path sentences are based on a few types of structuralambiguity, caused for example by phonologically unrealized relative pronouns. When training aparser on garden path traps, the parser could either be guided to directly repair the current partialpath, which would typically have to include some sort of `unreduce' operations, or it might somehowmark the trouble spot and use this mark when reaching the critical point of the sentence againafter a parsing restart. This method certainly somewhat breaks out of the normal deterministicparadigm, but that should be acceptable, because human readers have to resort to this as well.During the testing of parsing and translation of WSJ sentences, the parser in one caseactually followed a wrong path: The Federal Farm Credit Banks Funding Corp. plans to o�er $1.7billion of bonds Thursday. It is questionable whether or not this is a true garden path sentence,since the local choice of whether plans is a noun or a verb might have a preference for a verbalinterpretation anyway; however, even though the system recognizes a part of speech ambiguity forplans, it chooses the nominal interpretation, because none of the comparable training instancesthat the parser was trained on called for a verbal interpretation. (When training the system on 256sentences, which includes 40 examples where a new word is shifted in that could be both a noun ora verb and that has a noun at position -1, i.e. at the top of the parse stack, all those 40 examplesselect noun as the proper part of speech.)
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Chapter 6Parsing ExperimentsThis chapter presents results on training and testing a prototype implementation of our systemwith sentences from the Wall Street Journal, a prominent corpus of `real' text, as collected on theACL-CD.6.1 CorpusIn order to limit the size of the required lexicon, we work on a reduced corpus that includes all thosesentences that are fully covered by the 3000 most frequently occurring words (ignoring numbersetc.) in the entire corpus. The lexically reduced corpus contains 105,356 sentences, a tenth of thefull corpus. 3000 words is typically considered to be the size of the basic vocabulary of a language.The lexical size is small enough to build a lexicon and corresponding KB entries with moderate toolsin reasonable time, while still allowing a su�ciently large number of sentences that still include arich linguistic diversity.For our training and testing we use the �rst 272 of the 105,356 sentences. They vary in lengthfrom 4 to 45 words, averaging at 17.1 words and 43.5 parse actions per sentence. These 272 sentencesare from a section of the Wall Street Journal dated March 23/24, 1987. One of these sentence is\Canadian manufacturers' new orders fell to $20.80 billion (Canadian) in January, down 4% fromDecember's $21.67 billion on a seasonally adjusted basis, Statistics Canada, a federal agency, said.".A complete listing of the 272 training and testing sentences can be found in appendix A.6.2 Test Methodology and Evaluation CriteriaAs a result of supervised acquisition, as described in section 5.7, the correct parse action sequencesfor the 272 WSJ sentences have been recorded. For the following parsing test series, the corpusof these 272 sentences is divided into 17 blocks of 16 sentences each. The 17 blocks are thenconsecutively used for testing. For each of the 17 sub-tests, a varying number of sentences fromthe other blocks is used for training the parse decision structure, so that within a sub-test, noneof the training sentences are ever used as a test sentence. The results of the 17 sub-tests of eachseries are then averaged. Such a test is also referred to as a 17-fold cross-validation.The following standard (Goodman, 1996) evaluation criteria are used:64



Precision = CsystemNsystem Labeled precision = LsystemNsystemRecall = CsystemNlogged Labeled recall = LsystemNloggedwhereNsystem = number of constituents in system parseNlogged = number of constituents in logged parseCsystem = number of correct constituents in system parseLsystem = number of correct constituents with correct syntactic label in system parseTagging accuracy: percentage of words with correct part of speech assignment.Crossing brackets: number of constituents in system parse which violate constituent boundarieswith a constituent in the logged parse.Correct operations measures the number of correct operations during a parse that is continuouslycorrected based on the logged sequence. A sentence has a correct operating sequence,OpSequence,if the system fully predicts the logged parse action sequence, and a correct structure and labeling,Struct&Label, if the structure and syntactic labeling of the �nal system parse of a sentence is100% correct, regardless of the operations leading to it.6.3 Accuracy on Seen SentencesThe current set of 205 features was su�cient to always discriminate examples with di�erent parseactions. This guarantees an 100% accuracy on sentences already seen during training. While thatpercentage is certainly less important than the accuracy �gures for unseen sentences, it neverthelessrepresents an upper ceiling, which for many statistical systems lies signi�cantly below 100%.6.4 Testing on Unseen SentencesThe �rst test series was done with a varying number of training sentences. Here, as well as inall other test series, results are for training with all 205 features and using the hybrid decisionstructure list described in subsection 5.8.4.In some test cases, parsing could not be fully completed. This can happen, when the decisionstructure prematurely selects \done" as the next parse action. This happens in particular whenthe system proposes a parse action that is actually unde�ned in the speci�c current parse stateand therefore overruled by the sanity checker; if the decision structure can naturally provide analternative legal parse action, e.g. in a decision list, by proceeding through the remainder of thelist, that action is chosen; otherwise, the system resorts to \done" as a last resort. In that case, allelements on the parse stack and input list are lumped together under a new parse entry node withthe generic syntactic label S-SYNT-ELEM and the generic semantic label I-EN-THING and withthe unspeci�ed roles CONC for its components. This way, there is at least formally a parse treethat can be evaluated or passed on to transfer for full translation.65



The other anomaly is the `endless' loop in which the system spins into a repetitive parseaction sequence, in which the parser for example keeps inserting empty categories, or keeps reducingthe same single parse entry over and over again. This occurs only very rarely when the systemhas been trained on su�cient data, an adequate feature set and an appropriate type of decisionstructure. Nevertheless, the parser is equipped with an `endless' loop detector, that basicallymeasures parsing progress in terms of the number of elements on the parse stack and input list,which gradually decreases, though not necessarily monotonically. By allowing up to four moreparse steps for each remaining parse stack or input list element, the `endless' loop detector was ableto detect all loops fairly quickly and never terminated any parsing sequence that was in fact stillpromising. When an `endless' loop is detected, the parsing is stopped by selecting the parse action\done" and by then proceeding as described in the previous paragraph.These pathological cases are fully included in the following test data, not surprisingly withan overall negative impact. The number of test sentences caught in an `endless' loop is explicitlyincluded in the following tables. Prematurely terminated sentences obviously produce a lower recallscore and have no chance at scoring as a fully correct operation sequence or even produce a parsetree with correct structure and labeling. However they can also lead to lower crossings, since theconstituent structure is often still incomplete.Table 6.1 clearly shows a continuous positive trend for all criteria. The accuracy for an individualNumber of training sentences 16 32 64 128 256Precision 85.1% 86.6% 87.7% 90.4% 92.7%Recall 82.8% 85.3% 87.7% 89.9% 92.8%Labeled precision 77.2% 80.4% 82.5% 86.6% 89.8%Labeled recall 75.0% 77.7% 81.6% 85.3% 89.6%Tagging accuracy 96.6% 96.5% 97.1% 97.5% 98.4%Crossings per sentence 2.5 2.1 1.9 1.3 1.0Sent. with 0 crossings 27.6% 35.3% 35.7% 50.4% 56.3%Sent. with up to 1 crossing 44.1% 50.7% 54.8% 68.4% 73.5%Sent. with up to 2 crossings 61.4% 65.1% 66.9% 80.9% 84.9%Sent. with up to 3 crossings 72.4% 77.2% 79.4% 87.1% 93.0%Sent. with up to 4 crossings 84.9% 86.4% 89.7% 93.0% 94.9%Correct operations 79.1% 82.9% 86.8% 89.1% 91.7%Sent. with correct OpSequence 1.8% 4.4% 5.9% 10.7% 16.5%Sent. with correct Struct&Label 5.5% 8.8% 10.3% 18.8% 26.8%Sentences with endless loop 13 6 0 1 1Table 6.1: Evaluation results with varying number of training sentences; with 205 featuresparse action is 91.7% for 256 training sentences. Even though the number appears to be good at �rstglance, the fact that there are an average of 43.5 parse actions per sentence means, that, assumingindependence of parse action errors, the probability of a completely correct operations sequencefor an average length sentence is as low as :91743:5 = 2.3%. The much higher percentages of testsentences with correct operation sequence or at least correct structure and labeling already showthat this independence assumption fortunately does not hold. An individual analysis of parsing66
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Figure 6.1: Learning curve for labeled precision (see table 6.1)Number of training sentences 16 32 64 128 256Precision 84.6% 86.6% 88.3% 90.5% 91.5%Recall 82.3% 85.2% 88.1% 90.3% 91.6%Labeled precision 76.5% 79.6% 82.9% 86.2% 87.9%Labeled recall 74.0% 77.9% 82.2% 85.4% 87.7%Tagging accuracy 96.5% 96.7% 97.0% 97.9% 98.2%Crossings per sentence 2.6 2.1 1.7 1.4 1.2Sent. with 0 crossings 26.1% 33.8% 39.3% 46.3% 53.3%Sent. with up to 1 crossing 43.8% 50.7% 57.4% 67.7% 69.5%Sent. with up to 2 crossings 60.7% 64.0% 72.4% 80.9% 81.3%Sent. with up to 3 crossings 73.9% 76.9% 84.2% 87.9% 90.8%Sent. with up to 4 crossings 80.9% 85.7% 90.8% 91.9% 94.1%Correct operations 78.3% 81.9% 85.8% 88.5% 90.7%Sent. with correct OpSequence 2.2% 1.5% 5.1% 10.3% 14.3%Sent. with correct Struct&Label 3.7% 6.6% 12.1% 17.3% 22.1%Sentences with endless loop 7 15 2 0 1Table 6.2: Evaluation results without using relevant feature information from individual examples67



errors shows that many mistakes are due to encountering constructions that just have not beenseen before at all, typically causing several erroneous parse decisions in a row. This observationalso supports our hope that with more training sentences, the accuracy for unseen sentences willstill rise signi�cantly.6.4.1 Contribution of Individual Feature Selection PreferencesRecall that the supervisor can optionally mark a parse example with one or more features indicatingthat these are relevant for the speci�c example, as already described in subsection 5.8.6. Table 6.2shows the relatively modest contribution of these individual feature selection preferences. Withoutthese individual feature preferences, the parse action accuracy drops by about 1%, regardless oftraining size.6.4.2 Contribution of the Subcategorization TableTable 6.3 shows the contribution of the subcategorization table. The 10 features that access theNumber of training sentences 16 32 64 128 256Precision 85.1% 86.4% 88.6% 90.6% 92.4%Recall 83.1% 85.0% 88.2% 90.5% 92.4%Labeled precision 78.1% 79.8% 83.5% 86.9% 89.8%Labeled recall 75.2% 77.6% 82.1% 85.8% 89.3%Tagging accuracy 96.4% 96.5% 97.1% 97.9% 98.3%Crossings per sentence 2.6 2.2 1.8 1.3 1.1Sent. with 0 crossings 28.7% 32.4% 37.9% 48.5% 57.0%Sent. with up to 1 crossing 42.7% 49.3% 57.4% 67.7% 73.2%Sent. with up to 2 crossings 60.3% 64.7% 70.2% 80.9% 84.6%Sent. with up to 3 crossings 75.4% 77.9% 81.3% 87.9% 91.5%Sent. with up to 4 crossings 83.1% 87.1% 89.0% 94.1% 95.2%Correct operations 78.8% 82.0% 85.6% 87.6% 90.1%Sent. with correct OpSequence 1.5% 3.3% 4.0% 7.7% 10.3%Sent. with correct Struct&Label 5.5% 7.4% 10.7% 20.2% 27.9%Sentences with endless loop 13 8 0 1 2Table 6.3: Evaluation results without subcategorization featuressubcategorization module have been discarded in this test series. While the �gures for precision,recall, tagging accuracy and crossings hardly degrade at all, we observe a signi�cant deterioration incorrect operations, however not in structure and label correctness of the �nal parse tree. This meansthat so far the primary bene�t from the subcategorization table lies in the assignment of properroles to phrase components, which on one side is not a surprise, because the subcategorization tablequite explicitly lists which semantic roles are to be assigned to various syntactic components. Onthe other side this means that the contribution towards the resolution of structural ambiguity doesnot depend as much on the subcategorization table as might have been expected.68



6.4.3 Contribution of Rich ContextThe following tables (6.4, 6.5, 6.6, 6.7, 6.8) show the impact of reducing the feature set to a setof n core features. We always chose those n features that appeared to be the most important nfeatures, relying on older smaller versions of feature lists and general experience acquired duringthe development process. When 25 or fewer features are used, all of them are of a syntactic nature.As table 6.4 show, the reduction of features to 100 has no signi�cant impact on any criterion whenNumber of training sentences 16 32 64 128 256Precision 85.4% 86.4% 88.5% 90.1% 91.7%Recall 83.1% 85.6% 88.5% 89.7% 91.7%Labeled precision 77.7% 79.8% 83.4% 85.8% 88.6%Labeled recall 75.1% 78.5% 82.3% 85.1% 88.1%Tagging accuracy 96.5% 96.5% 96.9% 97.4% 98.2%Crossings per sentence 2.5 2.3 1.8 1.4 1.1Sent. with 0 crossings 26.8% 32.4% 38.6% 47.8% 54.0%Sent. with up to 1 crossing 43.0% 51.1% 57.0% 68.4% 72.1%Sent. with up to 2 crossings 62.5% 63.2% 71.7% 80.9% 84.2%Sent. with up to 3 crossings 73.5% 75.0% 81.6% 87.5% 92.3%Sent. with up to 4 crossings 84.2% 84.2% 89.3% 91.2% 94.5%Correct operations 78.9% 82.8% 86.6% 88.7% 90.7%Sent. with correct OpSequence 1.8% 4.8% 5.1% 8.1% 13.6%Sent. with correct Struct&Label 5.9% 8.5% 9.6% 15.4% 23.5%Sentences with endless loop 11 1 2 2 2Table 6.4: Evaluation results using only 100 featurestraining with under 100 sentences. When training on 256 sentences, precision and recall drop 1%and compound test characteristics, i.e. the percentage of sentences with a totally correct operationsequence, or at least the correct �nal structure and labeling, decrease by about 3%.Cutting the number of features in half again, table 6.5, basically continues this trend. Com-pound test characteristics start to deteriorate for medium numbers of training sentences and, fortraining on 256 sentences, are only little more than half of when using all features.When using 25 (or fewer features), table 6.6, all remaining features are syntactic. Crossingbrackets have increased signi�cantly and now only little over 1% of the sentences achieve a perfectoperation sequence.With only 12 features, table 6.7, we notice a dramatic increase of sentences whose parsinghas to be prematurely stopped because loops have been detected. This problem also causes amultitude of bad nodes, as particularly manifested in low labeled precisions; such bad nodes areoften `hordes' of incorrect empty category tokens etc.Cutting the number of features one �nal time, table 6.8, produces relatively little furtherdegradation. Let us now compare the results when using 6 features to those using the full com-plement of 205. For small training sizes, e.g. 6, we see only a very modest drop in precision (from85.1% to 83.8%) and even a slight increase of labeled recall (from 75.0% to 77.4%), no loss oftagging accuracy (still 96.6%), a modestly higher number of crossings (from 2.5 per sentence to69



Number of training sentences 16 32 64 128 256Precision 84.6% 85.7% 87.9% 89.6% 90.8%Recall 82.6% 85.2% 88.0% 89.4% 90.8%Labeled precision 76.9% 79.0% 82.5% 84.7% 87.2%Labeled recall 75.1% 78.0% 82.2% 84.2% 86.9%Tagging accuracy 96.4% 96.4% 97.1% 97.3% 98.1%Crossings per sentence 2.7 2.3 1.9 1.5 1.3Sent. with 0 crossings 25.4% 30.9% 36.0% 46.0% 50.4%Sent. with up to 1 crossing 42.3% 48.2% 56.6% 62.1% 70.6%Sent. with up to 2 crossings 59.6% 65.8% 69.5% 78.7% 80.5%Sent. with up to 3 crossings 72.8% 76.5% 80.9% 84.9% 88.6%Sent. with up to 4 crossings 82.7% 83.5% 88.6% 91.5% 93.8%Correct operations 78.5% 81.7% 85.3% 87.0% 88.9%Sent. with correct OpSequence 2.2% 3.7% 4.4% 7.0% 8.8%Sent. with correct Struct&Label 5.5% 7.4% 8.5% 12.9% 15.1%Sentences with endless loop 4 0 0 2 2Table 6.5: Evaluation results using only 50 featuresNumber of training sentences 16 32 64 128 256Precision 84.7% 85.7% 86.8% 87.4% 88.7%Recall 82.3% 84.3% 86.4% 87.4% 88.7%Labeled precision 76.9% 78.5% 77.0% 82.4% 86.7%Labeled recall 74.5% 76.9% 79.8% 81.8% 84.1%Tagging accuracy 96.3% 96.4% 97.1% 97.5% 97.9%Crossings per sentence 2.7 2.4 2.1 2.0 1.7Sent. with 0 crossings 24.3% 29.4% 33.1% 36.0% 43.4%Sent. with up to 1 crossing 43.4% 48.9% 52.6% 52.9% 59.6%Sent. with up to 2 crossings 59.9% 61.8% 65.4% 70.6% 73.9%Sent. with up to 3 crossings 72.4% 73.9% 77.2% 80.9% 84.9%Sent. with up to 4 crossings 82.4% 83.5% 88.2% 88.2% 89.7%Correct operations 74.8% 76.8% 79.2% 81.0% 81.9%Sent. with correct OpSequence 0.0% 1.1% 1.1% 1.1% 1.5%Sent. with correct Struct&Label 3.7% 5.5% 6.3% 7.0% 9.2%Sentences with endless loop 5 12 8 3 2Table 6.6: Evaluation results using only 25 features, all of them syntactic70



Number of training sentences 16 32 64 128 256Precision 84.0% 82.5% 85.4% 85.2% 86.4%Recall 81.3% 83.6% 85.5% 86.3% 87.4%Labeled precision 66.6% 17.9% 36.2% 26.0% 27.6%Labeled recall 72.7% 75.2% 78.3% 79.9% 82.0%Tagging accuracy 96.4% 96.5% 97.0% 97.5% 97.9%Crossings per sentence 2.7 2.5 2.1 2.0 1.7Sent. with 0 crossings 25.7% 26.8% 32.7% 33.8% 43.0%Sent. with up to 1 crossing 43.0% 44.1% 52.9% 52.9% 58.8%Sent. with up to 2 crossings 59.9% 58.8% 64.3% 68.4% 74.6%Sent. with up to 3 crossings 69.5% 71.0% 77.2% 80.5% 84.6%Sent. with up to 4 crossings 79.4% 82.7% 86.8% 87.5% 89.3%Correct operations 74.2% 76.3% 78.5% 80.1% 80.9%Sent. with correct OpSequence 1.1% 1.1% 1.1% 1.5% 1.5%Sent. with correct Struct&Label 3.7% 4.0% 5.9% 7.0% 8.5%Sentences with endless loop 16 17 20 17 11Table 6.7: Evaluation results using only 12 features, all of them syntacticNumber of training sentences 16 32 64 128 256Precision 83.8% 83.6% 85.1% 86.1% 88.0%Recall 81.5% 83.5% 85.1% 85.9% 87.3%Labeled precision 59.8% 24.6% 46.9% 69.9% 79.8%Labeled recall 73.3% 75.5% 77.9% 79.5% 81.5%Tagging accuracy 96.6% 96.7% 96.8% 97.2% 97.6%Crossings per sentence 2.7 2.5 2.2 2.1 1.8Sent. with 0 crossings 24.3% 26.1% 30.2% 32.4% 39.0%Sent. with up to 1 crossing 43.0% 44.9% 48.5% 51.8% 57.4%Sent. with up to 2 crossings 57.7% 60.3% 63.2% 65.8% 72.1%Sent. with up to 3 crossings 72.4% 70.2% 77.9% 79.4% 82.7%Sent. with up to 4 crossings 80.9% 83.1% 86.8% 86.0% 89.0%Correct operations 73.7% 75.6% 78.0% 79.3% 80.6%Sent. with correct OpSequence 1.1% 1.1% 1.1% 1.1% 2.6%Sent. with correct Struct&Label 4.0% 4.0% 4.8% 5.9% 8.8%Sentences with endless loop 19 14 15 14 8Table 6.8: Evaluation results using only 6 features, all of them syntactic71



2.7) and even for compound test characteristics a relatively moderate drop (e.g. from 5.5% to 4.0%for the percentage of sentences with perfect structure and labeling after parsing). For the full com-plement of 256 training sentences on the other hand, we observe a roughly 5% drop in labeled andunlabeled precision and recall, almost twice as many crossings, and a sharp decrease in compoundtest characteristics (from 16.7% to 2.6% totally correct parse sequences and from 26.8% to 8.8%for parse sequences leading to the proper structure and labeling).So, while the loss of a few specialized features will not cause a major degradation, therelatively high number of features used in our system �nds a clear justi�cation when evaluatingcompound test characteristics. When comparing the decrease of parsing accuracy for the varioustraining sizes, we observe that the accuracy loss is much more pronounced for higher numberof training sentences. As one might have expected, this means that larger training corpora canexploit our rich feature set better. When the training size is increased beyond 256, we can thereforerightfully expect the advantage of a rich context to increase even further.6.4.4 Contribution of Decision Structure TypeType of decision structure simple simple hier. hybriddecision decision decision decisiontree list list structurePrecision 87.6% 87.8% 91.0% 92.7%Recall 89.7% 89.9% 88.2% 92.8%Labeled precision 38.5% 28.6% 87.4% 89.8%Labeled recall 85.6% 86.1% 84.7% 89.6%Tagging accuracy 97.9% 97.9% 96.0% 98.4%Crossings per sentence 1.3 1.2 1.3 1.0Sent. with 0 crossings 51.5% 55.2% 52.9% 56.3%Sent. with up to 1 crossing 65.8% 72.8% 71.0% 73.5%Sent. with up to 2 crossings 81.6% 82.7% 82.7% 84.9%Sent. with up to 3 crossings 90.1% 89.0% 89.0% 93.0%Sent. with up to 4 crossings 93.4% 93.4% 93.4% 94.9%Correct operations 90.2% 86.5% 90.3% 91.7%Sent. with correct OpSequence 13.6% 12.9% 11.8% 16.5%Sent. with correct Struct&Label 21.7% 22.4% 22.8% 26.8%Sentences with endless loop 32 26 23 1Table 6.9: Evaluation results comparing di�erent types of decision structuresTable 6.9 compares four di�erent machine learning variants: a plain decision tree, a plaindecision list, a hierarchical decision list, and �nally a hybrid decision structure, namely a decisionlist of hierarchical decision trees, as sketched in �gure 5.9. The results show that extensions to thebasic decision tree model can signi�cantly improve learning results. The hybrid decision structureis superior to the other three models with respect to each and every criterion. While the threesimpler decision structure have parsing loop problems for around 10% of the 272 sentences, thehybrid decision structure has only one such problem sentence. For compound test characteristics,72



sentences with the perfect operation sequence or at least the correct �nal structure and labeling,the decision structure list scores 3% and 4% respectively higher than any other decision structure.
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Chapter 7TransferThe transfer module maps the �nal source language parse tree to a corresponding target languagetree. Before the actual transfer, the parse tree is normalized and some language speci�c morphologi-cal and syntactic information is discarded. The normalization includes the addition of back-pointersto parent nodes and the backpropagation of forms. To understand what this backpropagation does,consider for example the sentence \The deer are hungry.", where the number of the noun phraseand the person and number of the verb are locally ambiguous. After constraint uni�cation duringparsing, form information such as number and person, unambiguous at the sentence level, is nowpropagated back to the individual components of the sentence, so that the deer is marked as pluraland are as third person plural.The other part of pre-transfer processing is the deletion of the inner structure of a compoundverb, punctuation and other syntactic dummy components like for example the empty or `prop'it1 in English. The inner structure of verbs, e.g. [[AUX: [AUX: had] [PRED: been]] [PRED:dissatis�ed]], is quite language speci�c and is therefore eliminated, leaving just the verb concept(I-EV-DISSATISFY) along with form information (past perfect, passive, etc.). Punctuation is alsodiscarded. The main purpose of punctuation is to help structure sentences, something that canand should be exploited during parsing, but once the parse tree has been formed and the sentencehas been assigned a structure, punctuation no longer carries any additional information, and sinceits usage is also language speci�c, it is not transferred to the target parse tree.So the main information transferred to a target language tree is the structure of the sentence,its concepts and forms (such as tense), and roles of components in their respective phrases. The taskof determining the correct word order, �nding the speci�c surface words for the various conceptsand punctuation is left to the generation module.Bilingual dictionaries are fully symmetric and can be used for translations in either direction.7.1 Simple TransferThe structure of the parse tree and the roles are basically preserved, leaving the transfer of con-cepts as the core task. This concept transfer can happen for both individual concepts as well asconcept clusters, representing phrases such as \to reach [an] agreement" or \to comment on SOME-1as e.g. in \It rained.", \What time is it?" 74



THING 1". This is done using a bilingual dictionary, which was already described in section 3.4in the chapter on background knowledge. Recall that the surface dictionary, which has a veryuser friendly and intuitive format similar to traditional (paper) dictionaries, is compiled into aninternal dictionary, which links concepts (for individual words) or parse trees (for phrases) betweenlanguages. In the simplest case, an individual source language concept will correspond to exactlyone target language concept, in which case that concept is selected.One could ask, why in such a case the words from the respective languages aren't just linkedto the same KB concept in the �rst place. The answer is that we don't want to certify that a speci�cword pair has a perfect conceptual match. While two words might appear to have a one-to-onecorrespondence, there might be an obscure case or context where this does not hold after all. Wewant to keep the information contained in the lexical entries micromodular and be able to dealwith any unforeseen mismatches by just adding another entry to the bilingual dictionary.7.2 Ambiguous TransferThe much more interesting and fairly frequently occurring case is when words and phrases do notcorrespond one-to-one between languages. Consider for example the two dictionary entries for\know": \know" S-VERB\kennen"\know" S-VERB\wissen"Depending on whether the object of \know" is a person, a place, etc., or a fact, \know"maps to \kennen" or \wissen" in German (and \conocer"/\saber" in Spanish; \connâ�tre"/\savoir"in French). Lexical ambiguity can be divided into three levels: part of speech ambiguity, andheterogeneous and homogeneous ambiguity within the same part of speech. The transfer moduleassumes that the word has already been disambiguated with respect to the part of speech. Adisambiguation of heterogeneous (homonymous) meanings (e.g. pen (for writing) vs. pen (to keepanimals)) is currently not done during parsing, because it hasn't found to be necessary for ourWSJ sentences. When such disambiguation should turn out to become necessary, e.g. to resolvestructural ambiguity or case role assignment, it could be added, but so far in our research it hasbeen su�cient to delay decisions on heterogeneous meanings until transfer. The partitioning offairly homogeneous (polysemous) senses, like \know", is very language dependent though. It ishard, if not impossible, to do a proper partitioning without having a particular target languagein mind. This type of disambiguation is clearly more appropriate to be resolved in the transfermodule. So, ambiguous transfer currently has to resolve both heterogeneous and homogeneousambiguity within the same part of speech. This however does not present any additional di�culty,because from the perspective of transfer, there is no substantive di�erence between heterogeneousand homogeneous ambiguity.For choosing the appropriate target concept, we reuse the methods developed for parsingwith only minor adaptations. Again, we provide examples and features, from which we computecomplete examples that include a full feature vector plus classi�cation, and feed these into our75



machine learning module. While there is one large example collection and one big feature set forparsing, there are separate sets of examples and features for each concept to be disambiguated.Consider the following three transfer entries:(I-EV-KNOW((SYNTP OF S-SUB-CLAUSE OF THEME OF PARENT AT M-BOOLEAN)(CLASSP OF I-EN-TANGIBLE-OBJECT OF THEME OF PARENT AT M-BOOLEAN))((I-GV-KENNEN "I know the old man." (SHORT 5 1) 10)(I-GV-WISSEN "I know that the old man bought a car."(SHORT 7 1) 20)))(I-EP-BY((SYNT OF PARENT OF PARENT AT S-SYNT-ELEM) ;;; S-CLAUSE, S-NP(CLASSP OF I-EN-AGENT OF PRED-COMPL OF PARENT AT M-BOOLEAN)(CLASSP OF C-AT-TIME OF PARENT AT M-BOOLEAN))((I-GP-VON "It will be sold by a shareholder." nil 10)(I-GP-BIS "The transaction will be finished by May 10." nil 20)(I-GP-DURCH "Sales will be hurt by the losses." nil 30)(I-GP-GEN-CASE-MARKER"The estimates by the bureau were published in May."nil 40)))(I-EN-FUTURE((NUMBER AT F-NUMBER))((I-GN-ZUKUNFT "future" nil 10)(I-GN-TERMINGESCHAEFT "He bought futures." nil 20)))Each transfer entry consists of the source concept, a list of features, and a set of examples.The transfer examples consist of a target concept, an example text, an optional example referenceand an example identi�er. The example text is often a sentence, but can basically be anything thatprovides enough context for the features. The optional reference, e.g. (SHORT 5 1), contains botha corpus reference, here sentence 5 of corpus SHORT, and an occurrence identi�er, here 1.The transfer examples are processed by �rst parsing the example text. This is done usingthe same parser as for ordinary text. If a corpus reference is included and there is a log entry,i.e. a supervisor-provided parse action sequence, that parse action sequence is used, because it hasalready been certi�ed as correct. Otherwise the parse is `free', but since the examples are typicallyconcise, the error potential is very small in the �rst place and only errors that would change any ofthe transfer entry features would be problematic. If example texts must approach or surpass thelimits of the parser coverage, it is advised to store the text in some corpus and provide a log entryfor it. The occurrence identi�er, which has a default of 1, selects which of the potentially multipleoccurrences of the source concept in the example text should serve as a reference point.After the parse tree has been computed for the example text and the reference point isidenti�ed, the system computes values for all features listed in the transfer entry. The featurelanguage is the same as for parsing. Note again though that the reference point here is not the76



current parse state with parse stack and input list, but a speci�c parse entry. Therefore the accesspaths of the transfer entry features (e.g. THEME OF PARENT) typically do not contain an integer,as the parsing features (e.g. THEME OF -1) typically do.Once all examples in a transfer entry have been expanded to include their full feature-valuevector, standard decision tree learning is applied. The number of examples and features tends to befairly small per source concept, so compared to parsing, which uses a single huge decision structure,we use many (one for each ambiguous concept) small decision trees for ambiguous transfer.Since, for each source concept, there are relatively few target concepts (classi�cations),examples, and features compared to parsing, a hand coded approach would be more feasible thanin parsing. For several reasons we nevertheless believe that machine learning is better suited.Features would have to be provided for both learning and hand-coding, for learning though onlyonce, whereas in hand-coding a feature might have to appear several times. While examples areexplicitly required for learning they are practically also required for hand-coding, namely for testingand documentation purposes; the examples needed, typically short, unannotated sentences, cannormally be provided fairly easily. With learning, the decision structures are built automatically;coverage of the examples is guaranteed unless there is an unresolvable example conict, which thesystem signals automatically. \Testing the test sentences" is in a sense done implicitly. Hand-codingon the other side would require explicit rule construction and, in practise, repeated testing.7.3 Complex Transfer
"to be lucky" "Glueck haben (to have luck)"

Bilingual translation dictionary entry.

pattern matching

"He was lucky."
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"Er hatte Glueck. (He had luck.)"

target sentence

direct transferFigure 7.1: Complex transfer with pattern matching\Structural mismatches" present another major issue. Often, the structures of the source andtarget language parse trees don't match. To handle such cases, the bilingual dictionary contains77



potentially complex phrases, represented as parse trees in the internal dictionary. During transfer,a pattern matching module tries to match source sentences subtrees to dictionary source trees and,if successful, maps the source sentence tree to a target sentence tree using the dictionary targettree linked to the successfully matched dictionary source tree as illustrated in �gure 7.1.The parse tree pair in the dashed box is an entry in the internal dictionary. To translate theEnglish sentence \He was lucky.", we �rst parse it to get a parse tree as depicted in the lower leftarea of �gure 7.1. The source sentence tree is transferred recursively. At each level we check whetherthe current subtree matches a pattern in the dictionary. For a valid match, all components of thedictionary source tree have to be covered, but the inverse does not need to hold. In our examplefor example the source sentence parse tree contains an additional subject component. Dictionaryentries have been stripped of many of their forms, e.g. their in�nitive tense, since such forms weremeant to represent the word generically. As a consequence, the past tense form of \He was lucky."can be considered an additional component as well.In case of a match, the target sentence tree is built based on the dictionary target tree.Additional components from the source sentence tree (here He and past-tense) are then transferredseparately and the resulting target components are �nally properly attached to the target sentencetree. \to be lucky" S-VP\Gl�uck haben"\downtown PLACENAME 1" S-ADV\im Stadtzentrum von ORTSNAME 1"2 S-PP\it takes SOMEBODY 3 SOMETHING 1 S-CLAUSETO DO SOMETHING 2"\JEMAND 3 braucht ETWAS ACC 1,um ETWAS ZU MACHEN 2\\to reach SOME 1 agreement" S-VP\zu EINER 1 �Ubereinkunft kommen"\interest rate" S-NOUN\Zinssatz"The patterns can contain partially restricted variables, e.g. \PLACENAME 1" in the selectionabove.3 Subtrees from the source sentence tree can match such variables if they ful�ll the restrictionsthat are the lexicon associates with these variables, typically reected in the name of the variable.In case of a match such subtrees are then transferred separately and the resulting target trees are�nally properly attached to the target sentence tree at the place marked by the target variable withthe same index.The dummies of the form SOME i are special `collectors' which can be matched to a wholeset of noun modi�ers. This allows the tree for \to reach SOME 1 agreement" to match all of thefollowing:3This phrase literally means in the towncenter of PLACENAME 178



� We reached an agreement.� We didn't reach any agreement.� No agreement was reached.� We reached many new tra�c agreements of great importance.� Candidates Reached AgreementA dictionary entry with \to reach an agreement" would only match in the �rst example.The search for possibly matching patterns is sped up through the use of the head conceptas an index and a quick pre-check, in which the cached set of all other obligatory leaf concepts inthe dictionary source tree has to be covered by the source sentence tree.If no complex match is found for a source sentence subtree, the various components of thatsubtree are transferred separately in further recursion and put together using the same structureas the source sentence tree.Even if there is no structural mismatch, as for example in the last entry of the last table,where there is a complex noun consisting of two nouns in both English and German4, complextransfer can be used as a simple tool for disambiguation, reducing the need for examples andfeatures. In English, both interest and rate are semantically ambiguous, as also reected by di�erentGerman translations, e.g. Interesse, Zins(en), Anteil for interest and Rate, Satz, Kurs for rate. As acompound however, interest rate unambiguously maps to Zinssatz. Since complex transfer precludesany individual and possibly ambiguous transfer at a lower level, no ambiguous transfer examplesand features are necessary for interest or rate when they occur in a joint compound.7.4 Added ConceptsIt can sometimes become necessary to add a concept to the target parse tree that is not basedon any speci�c concept or group of concepts in the source parse tree. Examples for such addedconcepts are articles, pronouns or adverbs. Japanese, which does not have articles, for exampledoes not mark its noun phrases as de�nite or inde�nite. It also often omits pronouns that wouldbe obligatory in English. When performing parse tree transfer to a language that requires overtcomponents that don't have some overt corresponding concept in the source parse tree, we have tobreak through the basic transfer paradigm and basically have to create \something out of nothing".Certain source parse tree patterns have to trigger a context based decision making process that willadd any appropriate concept to the target parse tree. Even though this process depends stronglyon the target language and therefore might conceivably be included as an early step in generation,we deal with this issue at the end of transfer, because the work that is actually necessary alsostrongly depends on the speci�c source language.English and German both require overt pronouns and generally share the same notion ofde�niteness, including the usage of de�nite and inde�nite articles. The di�erences in article usageare however strong enough that they manifested themselves several time in the WSJ translation4Zinssatz is a compound of Zins and Satz 79



development corpus. The noun phrase in \Life can be di�cult." for example must be de�nite inGerman and French.In our system, at the end of the core transfer, we traverse the parse tree and determinefor each noun phrase whether an additional de�nite article is necessary. While this is currentlyhard-coded, we could possibly see machine learning as a useful tool when further re�ning thisprocess.The reverse process, deleting concepts, can be handled more easily by using the marker \nil"in the bilingual dictionary entry. According to the following example, the English word \some" canbe translated by \einige" or by nothing5. Unlike all other dictionary entries, which can be usedin both directions, those dictionary entries that contain \nil" can only be used with \nil" as a target.\some" S-ADJ\einige"\some" S-ADJnilIn English to German transfer, only few minor concepts have to be added to cover the `nil tosomething' direction, but for other language pairs, in particular for less related languages, conceptsmight have to be added in more cases and also require more context.

5As in \Did you bring some records?" ! \Hast Du Schallplatten mitgebracht?"80



Chapter 8GenerationFollowing parsing and transfer, generation completes the process of machine translation by orderingthe components of phrases, adding appropriate punctuation, propagating morphologically relevantinformation, and �nally generating the proper surface words and phrases in the target language.In many natural language applications, generation can be quite formidable, because it in-volves tasks such as selecting the contents of a text and planning the discourse structure of theselected material. Such strategic generation, as it is often referred to, is however not necessaryin machine translation, because the contents and overall discourse structure can be copied fromthe source text. This leaves the so called tactical generation, consisting of the above mentionedsubtasks.1Further reasons for the relative simplicity of tactical generation as we need it for our systemare that� ordering basically depends on only fairly local syntactic properties of the phrase components,� the actual surface words basically depend on only fairly local morphological properties,� a single good output is su�cient while the parser has to be able to cope with all good andsometimes even not so good formulation alternatives of a sentence,� di�cult decision issues, like for example idiomatic expressions, have already been handled intransfer.Since the steps necessary for generation are already linguistically well researched and described indetail in grammar books, e.g. in (Lederer, 1969; Engel, 1988) for German, we don't use any learningfor generation, but rather follow standard phrase constructions from literature.The input to generation is a transfer tree, an integrated phrase-structure and case-frame tree,very similar to a parse tree, but typically not ordered, without punctuation, with less morphologicalinformation and no surface forms. The generation module then manipulates the transfer tree byreordering subtrees and propagating morphological information. It gradually adds surface forms,the target character string associated with each subtree. The tree that is �nally formed after these1When translating between very di�erent languages, it might be necessary to precede the generation steps describedin this chapter by an additional operational generation step to bridge general structural di�erences that can not belinked to speci�c lexical items in the mismatching phrases and therefore can not be covered by the transfer module.81



manipulations then contains the translation result at the surface form slot of the top node. Thefollowing sections now describe the ordering and the morphological propagation and generation inmore detail.8.1 OrderingFor each type of phrase of a given language to be ordered, the system uses a speci�c and determin-istic scheme. For German sentences or verbal clauses, the most complex case in that language, thesystem for example �rst determines whether the clause is �nite, passive, a relative phrase, a mainclause, and whether it needs a \prop" es2 as a subject, needs to be enclosed by commas or needsto have the conjugated part of the verb split o�.Based on this information, it arranges the sentence in a speci�c order:1. coordinate conjunction2. subordinate conjunctions3. topic4. the conjugated part of the verb (if the verb has to be split)5. interrogative pronoun6. pronominal or de�nite subject7. pronominal direct object8. pronominal indirect object9. (inde�nite) subject10. de�nite indirect object11. de�nite direct object12. pronominal genitive complement13. assessorial adjuncts14. situational adjuncts15. negational adjunct16. other quanti�ers17. (inde�nite) indirect object18. (inde�nite) direct object19. (de�nite or inde�nite) genitive complement2as in \Es regnete.", the English equivalent of \It rained."82



20. misc. other modi�ers21. other complements22. adverbial complement23. adjectival complement24. nominal complement*25. predicate26. severed (\heavy") relative clause27. in�nitival complement28. particle phrase clauses*29. other subclauses*30. plus possibly enclosing commas3Every speci�c clause contains of course only some of these components; so the preceding list onlyprescribes in which order the existing components are to be arranged with respect to each other.The structure of the generated sentence thus follows a syntactical pattern that can becharacterized as `canonical', `safe' and `mainstream', but does not necessarily reect all the variancethat is acceptable. Similar schemes have be written for noun phrases, prepositional phrases, particlephrases, and complex nouns.Figure 8.1 illustrates this ordering process. The target tree output from the transfer modulestill reects the word order of the source sentence \Yesterday, Thomas read a good book.". Asusual in German main clauses, the verb needs to split into the conjugated part and the remainder.This is done by creating a special verb-head unit that points to the full verb and symbolizes theconjugated part of the verb it points to; the full verb entry is marked as head-referenced to indicatethat it is being pointed to by such a special verb-head unit.(Severed (\heavy") relative clauses that have to separated from the noun phrases they belongto are treated the same way.)The components in the bottom tree of �gure 8.1 follow the order given in the above scheme:topic (time can qualify as such), the conjugated part of the verb, de�nite subject, (inde�nite)direct object, and predicate. After the tree is ordered at the sentence level, the ordering recursivelyproceeds to the individual sentence components.8.2 Morphological Propagation and GenerationDuring morphological propagation, the carriers of gender, number, case, tense etc. (nouns, prepo-sitions, verbs etc.) propagate their forms to the constituents that they morphologically control.3If a sentence element �ts more than one of these categories, it is placed at the �rst applicable position, unless anapplicable category is marked by star (*), in which case it is placed at the last such position.83
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Figure 8.2: Morphological propagationIn �gure 8.2, we show how this is done for a portion of the graph from �gure 8.1. Inorder to form surface words, the tree nodes need to contain complete form information. In ourexample from German, the adjective I-GADJ-GUT for example needs case, number, gender and aprimary/secondary indicator. Case for noun phrases is assigned by the verbs or prepositions thatgovern them, i.e. through the roles in the verbal clause they are a direct component of, or by thepreposition with which they share a prepositional phrase. In German, the subject is assigned thenominative case and the (direct) object is assigned the accusative case. Many prepositions alwaysassign the same speci�c case, e.g. \wegen" (\because of") should always assign genitive case, butsome assign di�erent cases, depending on the semantics of the prepositional phrase (e.g. in assignsaccusative for C-TO-LOCATION and dative for C-AT-LOCATION). The case of a noun phrase ispassed on to its components. Number is carried over from the source tree in the transfer process. Itis propagated to all parts of the noun phrase, including adjectives, because in German, the numberinformation is needed everywhere. All German nouns have a speci�c grammatical gender, whichis listed in the (monolingual) lexicon. The German word Buch is neuter, and so this informationgets passed up to the dominating noun phrase and then back down to the other components of thenoun phrase. Finally, based on the article I-GART-INDEF-ART, the system signals the adjectiveto carry the primary ending, because this speci�c article does not have a primary ending itself4.Once all forms are propagated, the morphological module determines the surface forms ofall words. Starting with the leaves of the tree, surface forms are computed using the morphologymodule. In a bottom up fashion, strings are then basically concatenated until the full targetsentence is stored at the surface form slot of the top node. The string in that very slot is the �naltranslation of the original source sentence.4While de�nite articles always carry a primary ending, therefore causing the form secondary to be sent to anyfollowing adjectives, inde�nite singular articles of certain cases and genders, incl. the one in our example, do not havesuch primary ending and therefore have the form primary sent to any following adjectives.85
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Figure 8.3: Generating the surface stringsAs one can see in �gure 8.3, disjoint components like split verbs need a little bit of a specialtreatment. The verb-head unit, pointing to a full verb complex, and representing the conjugatedpart of the verb, takes the surface string of the conjugated part of the verb, here \hat" of theGerman auxiliary verb \haben". In the main verb entry, the ag head-referenced indicates that theconjugated part of the verb is already been used by some verb-head unit, so that the surface stringof that part does not get included in the surface string of the main verb component.So, in contrast to parsing and transfer, the generation module in our system does not requireany learning. Standard recursive techniques turned out to be su�cient, at least so far. Duringfurther re�nement, it might turn out that for relatively small subtasks in generation, such as in thedecision what case a speci�c preposition should assign to the noun phrase it governs, learning mightbe useful after all, but we expect that in the overall control of the generation module, learning willremain inexpedient.
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Chapter 9Translation Experiments9.1 Test Methodology and Evaluation CriteriaFor training and testing the transfer and generation modules for translations from English toGerman, we use sentences from the same Wall Street Journal corpus as for parsing.The development of the transfer and generation modules including the selection of examplesentences and features for ambiguous translation was largely corpus driven and based on the �rst48 sentences (WSJ 0-47). The goal was to re�ne the transfer and generation modules to thepoint that the system could produce both syntactically and lexically good translations for all 48\training" sentences. It is important to note that the expression \training sentence" here is notused in the strict sense of machine learning, but rather as a sub-corpus that provides guidance asto what linguistic phenomena need to be covered. Since the sub-corpus also already contains anumber of words with ambiguous translation targets, it also drove the selection of succinct examplesentences and corresponding features for the transfer entries that were used to build decision treesfor ambiguous concept transfer.Section 7.2 in the chapter on transfer already included examples of transfer entries. A listof the various features used in English to German translation disambiguation decision structurescan be found in section B.2.When the system, based on correct parse trees for the 48 \training sentences", eventuallyproduced good translations, we then tested the entire system on the following 32 sentences (WSJ48-79). The system input was an English sentence in the form of a simple character string, withoutany annotation. The output was a German sentence, again as a simple character string.In order to better be able to evaluate the contribution of the parser on one side and thetransfer and generation modules on the other side, we tested our system in two versions. In oneversion, the parser was trained on 256 sentences excluding the test sentences1, thereby performing\full" test translations on sentences that had been used for neither training the parser nor anyother module. In the other version, the parser was trained on the test sentences, meaning thatthe system by construction basically started with a correct parse, subjecting only the transfer andgeneration modules to sentences that those modules had not been exposed to before. Comparingthe results of both versions helped us to better understand the contributions of the di�erent phases1(training sentences WSJ 0-47 & 64-271 for test sentences WSJ 48-63 and training sentences WSJ 0-63 & 80-271for test sentences WSJ 64-79) 87



of translation.9.1.1 Comparative TranslationsTo obtain some interesting comparisons, we used the same 32 test sentences on three commerciallyavailable systems, Logos, SYSTRAN, and Globalink. The translation with these systems weremade over the Internet, all in October 1996.Globalink's Web site at http://www.globalink.com/ o�ers free translations for text of limitedlength from English to French, Spanish, German and Italian and vice versa. The source text istyped into a multiline text �eld form of the Web page and the translation results are sent back byemail. We had to split up the 32 sentences into three subsets because our text was longer than theWeb interface accepted at any one time.SYSTRAN's Web site at http://systranmt.com/ o�ers free translation of Web pages. Giventhe fully quali�ed URL of a source page, the system allows translations from English to French,Spanish, German, Italian, Portuguese and vice versa as well as Russian to English. The translatedWeb page is displayed in a new browser window. We created a Web page with the 32 test sentencesand had them translated to German.Logos' Web site at http://www.logos-ca.com/ did not provide free translation to the generalpublic, but the company was kind enough to provide a con�dential Web site and let us use theirsystem free of charge for our 32 test sentences. Logos o�ers to translate from English or German toGerman, French, Spanish, Italian or English. As an additional input parameter, the system askedfor a domain choice, o�ering General, Computers, Telecommunication and Business as alternatives.We chose the last option as the clearly most appropriate for our Wall Street Journal sentences.Two details about these three comparative translations:� Since in testing our system, we translated one sentence at a time, we ensured that the com-mercial systems were at no disadvantage in this respect by separating input sentences byblank lines, if needed.� The results from SYSTRAN and Logos were returned so promptly that any human postediting can be excluded just based on time. Based on the quality of the results from Globalink,plus given that the translations were free of charge, human post editing is also most unlikelyfor that system.Recall that the subcorpus we use is lexically limited to the 3000 words most frequentlyoccurring in the Wall Street Journal. This allowed us to have a complete monolingual lexicon forparsing and bilingual dictionary for transfer, so that in the tests, our system was not confrontedwith unknown words. The commercial translation systems were designed for a wider range of do-mains and they also have signi�cantly larger lexicons and dictionaries. The only English words inthe 32 test sentences that apparently were unknown were seasonally (Logos) and nationwide (Logosand Globalink). Globalink also `translated' \holiday schedule" as \holidayschedule", \currency ex-change" as \currencyexchange", \economic policy" as \economicpolicy", and \[over] the counter"as \[�uber] thecounter", but since for example \exchange" was actually translated in another sen-tence, we conclude that there are entries for presumably at least most of the individual words in thelexicon and that these translation failures are primarily due to some shortcoming in the Globalink88



translation algorithm. SYSTRAN, a veteran of machine translation systems, did not exhibit anylexical gaps. So, with an average of one unknown word for all 32 test sentences, the commercialsystems were at no signi�cant disadvantage with respect to unknown words.As an additional comparison, the author of this dissertation, with a minor degree in businessand previous experience as a professional translator from English to German, translated the 32 testsentences \by hand".9.1.2 Evaluators and Evaluation CriteriaThe translations were evaluated by ten bilingual graduate students at the University of Texasat Austin. Seven of the volunteers were native speakers of German, two were native speakersof English teaching German at the university and one was a native speakers of English who haslived in Germany for many years, speaks German without an accent and has at least the Germanpro�ciency of the two teaching German. Professional translations and proofreading of translationsis normally performed by native speakers of the target language, in our case German. This certainlyjusti�es the dominance of native German speakers in our group of evaluators.Each of the 10 evaluators was given a list of the 32 original sentences (in English) along withup to six German translations for each original sentence. The translations always included thosefrom the two versions of our system and the three commercial systems. The human translationswere given only to half of the evaluators. This was done to control any possible inuence of thattranslation on the evaluation of the machine translations. When two or more translations wereidentical, the translation was presented only once. The translations were listed in randomizedorder, separately randomized for each WSJ sentence, and without identi�cation.For each of the translations, the evaluators were asked to assign two grades, one for thegrammatical correctness and the other for meaning preservation. Table 9.1 and the followingexample were given as a guideline to ensure a relative uniform standard.(EXAMPLE)Yesterday, I ate a red apple.(a) G�astern, ich haben essen Ap-rot. Grammar: 5 Meaning: 2(b) Meine roten �Apfel haben viel gegessen. Grammar: 1 Meaning: 6The scale is like the one used in the German education system: 1 = sehr gut (excellent);2 = gut (good); 3 = befriedigend (satisfactory); 4 = ausreichend (passing); 5 = mangelhaft (poor);6 = ungen�ugend (unsatisfactory).The following is one of the 32 translation evaluation blocks of the questionnaire, incidentlythe one with the funniest2 machine translations:2Back translations: (a) He said that Pan Am currently has " over $150 million " in the cash. Note: `Million'should have been `Millionen' (plural). (b) He said Pan Am currently has over 150 million dollars in cash. (c) He saidthat frying-pan-in-the-morning currently has "more than 150 million dollars" in cash. (d) He said that frying-pan is,has currently-" in surplus of $150 million" in in cash. Note: `million' should have been `Millionen' (capitalized andplural). 89



Grammar (syntax and morphology)Grade Usage1 Correct grammar, including word order, word endings; the sentence reads uently.2 Basically correct grammar, but not very uent.3 Mostly correct grammar, but with signi�cant shortcomings.4 The grammar is acceptable only in parts of the sentence.5 The grammar is generally so bad that the entire sentence becomes very hard to read.6 The grammar is so bad that the sentence becomes totally incomprehensible.Meaning (semantics)Grade Usage1 The meaning is fully preserved and can easily be understood.2 The meaning is mostly preserved and can be understood fairly well.3 The general idea of the sentence is preserved.4 Contains some useful information from the original sentence.5 A reader of the translated sentence can guess what the sentence is about, but the sentenceprovides hardly any useful information.6 The sentence is totally incomprehensible or totally misleading.Table 9.1: Grading guidelines for the syntax and semantics(WSJ 75)He said Pan Am currently has "in excess of $150 million" in cash.(a) Er sagte, da� Pan Am z.Z. " �uber $150 Million " im Bargeldhat. Grammar:Meaning:(b) Er sagte, Pan Am habe gegenw�artig �uber 150 Mio. Dollarin Bargeld. Grammar:Meaning:(c) Er sagte, da� Pfannenvormittags zur Zeit "mehr als 150 Mil-lionen Dollar" in Bargeld hat. Grammar:Meaning:(d) Er sagte, da� Pfanne ist, hat gegenw�artig-" in �Uberschu�von $150 million" in in bar. Grammar:Meaning:The questionnaires handed out for translation evaluation were hardcopies of the two Webpages http://www.cs.utexas.edu/users/ulf/eval tegm.html, the version that always includes humantranslations, and http://www.cs.utexas.edu/users/ulf/ eval tego.html, the version that does not in-clude human translations, unless it happens to match one of the machine translations. Appendix Dcontains the questionnaire including human translations in dissertation format.9.2 Test Results9.2.1 OverviewTable 9.2 summarizes the evaluation results of translating 32 sentences from the Wall Street Journalfrom English to German.Our system performed signi�cantly better than the commercial systems, but this has to90



System Syntax SemanticsHuman translation 1.18 1.41Contex on correct parse 2.20 2.19Contex (full translation) 2.36 2.38Logos 2.57 3.24SYSTRAN 2.68 3.35Globalink 3.30 3.83Table 9.2: Summary of translation evaluation results (best possible = 1.00, worst possible = 6.00)be interpreted with caution, since our system was trained and tested on sentences from the samelexically limited corpus (but of course without overlap), whereas the other systems were developedon and for texts from a larger variety of domains, making lexical choices more di�cult in particular.Additionally, the syntactic style varies from to domain to domain, but we believe that this is lesscritical for this translation quality evaluation, because the Wall Street Journal already covers awide range of syntactic constructs.Note that the translation results using our parser are fairly close to those starting witha correct parse. This means that the errors made by the parser have had a relatively moderateimpact on translation quality. The transfer and generation modules were developed and trainedbased on only 48 sentences, so we expect a signi�cant translation quality improvement by furtherdevelopment of those modules.Recall that Logos required a translation domain as an extra input parameter. To get an ideaof the inuence of this parameter, we repeated the translation with a domain choice of `general' asopposed to `business'. In 32 sentences, only four words/expressions were translated di�erently, oneequally bad, one better for `business' and two better for `general'. The di�erence is statisticallyinsigni�cant so that for our test sentences, the domain parameter apparently did not play a crucialrole. The impact of parse errors on the �nal translation quality depends of course greatly onthe speci�c language pair. Germanic and Romance languages like English, German, French andSpanish are not only linked by springing from the same Western branch within the Indo-Europeanlanguage family; due to intensive political, commercial and cultural contacts of the native speakersof these languages throughout history, the languages continuously kept inuencing each other.Many ambiguities, like for example \with"-clauses, which in the instrumental case (\eatpasta with a fork") attach to the verb and which in the complementary case (\eat pasta withsauce") attach to the preceding noun phrase, are lexically and structurally homomorphic amongthese languages, so that an incorrect attachment would not be visible in the �nal translation,whereas other languages, as for example Japanese, make a clear lexical distinction in this case.3Therefore we would clearly expect a higher impact of parse errors on translation quality for anEnglish to Japanese translation. On the other hand, translations between more closely relatedlanguages, e.g. between Swedish, Norwegian and Danish, would su�er even less from parse errors.Despite the relative proximity of English and German, the impact of parse errors in our3The complementary with translates as \to", whereas the instrumental with translates as \de".91



system on translations is certainly smaller than had been expected. This seems to indicate thatour parser is already fairly robust where it counts.9.2.2 Variation AnalysisIn a more detailed analysis of the evaluation results, we computed standard deviations for thevarious grades and grade di�erences as shown in table 9.3.System Syntax Semanticsaverage stand.dev. average stand.dev.Human translation 1.18 0.29 1.41 0.31di�erence 1.02 0.41 0.78 0.39Contex starting on correct parse 2.20 0.45 2.19 0.46di�erence 0.16 0.08 0.19 0.09Contex (full translation) 2.36 0.43 2.38 0.47di�erence 0.21 0.25 0.86 0.72Logos 2.57 0.60 3.24 0.82di�erence 0.11 0.21 0.12 0.17SYSTRAN 2.68 0.52 3.35 0.86di�erence 0.62 0.13 0.48 0.25Globalink 3.30 0.60 3.83 0.73Table 9.3: Standard deviation analysis of translation evaluation resultsFor machine translations, we �nd standard deviations in the range of 0.43 to 0.60 for syntaxand 0.46 to 0.86 for semantics. However, the standard deviations for di�erences between adjacentlyranking machine translations are much lower (0.08 to 0.25 for syntax and 0.09 to 0.72 for semantics).This means that while there are considerable di�erences in grading from one evaluator to another,the relative grading di�erences between systems are relatively small across di�erent evaluators. So,while some evaluators graded more strictly than others, they all came up with fairly similar relativeratings.Note in particular that while the di�erence in both syntax and semantics between thetwo versions of our system is quite small (0.16 and 0.19 respectively), the corresponding standarddeviations are even smaller (0.08 and 0.09) indicating that while the evaluators rank the translationsbased on a correct parse only a little better than the full translations, this di�erence is quiteconsistent; in fact all evaluators graded the Contex translations starting on a correct parse to bebetter for both syntax and semantics.Note that on the other hand the small di�erences between Logos and Systran (0.11 and 0.12)are accompanied by relatively big standard deviations (0.21 and 0.17); this is reected by the factthat a minority of evaluators ranked SYSTRAN better than Logos. By and large the results fromnative English and German speaking evaluators are similar. However, the Americans tended togive worse grades. The most striking di�erence is for the syntax of the manual translations, which,relative to the best possible grade (1.00), are almost four times as negative for the native Englishspeakers than for the countrymen of the translator. However, the data has to be interpreted very92



Evaluators American (3) German (7)System Syntax Semantics Syntax SemanticsHuman translation 1.39 1.54 1.10 1.36Contex starting on correct parse 2.30 2.34 2.16 2.13Contex (full translation) 2.44 2.55 2.33 2.30Logos 2.83 3.32 2.45 3.20SYSTRAN 2.71 3.36 2.67 3.35Globalink 3.30 3.75 3.30 3.87Table 9.4: Evaluation results di�erentiated by nationality of evaluatorcautiously, because the sub-sample sizes are quite small.Another somewhat unexpected result was the grade for meaning preservation for the humancontrol translation (1.41). A closer analysis revealed that more than a third of the di�erence fromthe optimal 1.00 resulted from disagreement over a single sentence (WSJ 53). All except oneevaluator interpreted the sentence \The St. Louis-based bank holding company previously tradedon the American Stock Exchange." as meaning that the bank holding company was the agentof the trading, and therefore gave extremely bad grades to the human control translation whichinterpreted the sentence such that stocks of the bank holding company were traded on the AmericanStock Exchange. Monolingual domain experts (incl. from the University of Texas Business School),who were given this sentence without context, however con�rm the passive reading of traded. Thepassive reading is further corroborated by the context of the WSJ article, which, of course, had notbeen available to the translation programs, the translator or the evaluators.While such a misunderstanding has occurred in only one sentence to such an extent, and toa lesser degree also in a second sentence, and the overall consequences appear to be fairly limited,the evaluation of the control translations nevertheless demonstrates that translations can be quitehard to evaluate, even for bilingual speakers. Evaluators sometimes don't agree on substantialsemantic issues, which results in evaluation di�erences.4 Optimally, translators and evaluatorsshould have top competency not only in the languages involved, but also in the translation subjectdomain area. Such a strong triple competency requirement greatly reduces the number of wellquali�ed professional translators and reviewers, which, incidentally, is one of the main reasons whytranslation support by computers is so important: it can free the relatively scarce expert translatorsfrom the routine aspects of translation and thereby make them more e�cient.9.2.3 Correlation AnalysisGiven evaluations on both parsing and full translation, an interesting question is whether the parsingevaluation criteria we used are a useful predictor for actual translation quality. To investigate thisissue, we computed a matrix of correlation coe�cients between our parsing evaluation criteria andthe syntactic and semantic grades of the �nal (full) translation and show the results in table 9.5.4However in the case just discussed, all machine translation programs selected the active reading for \traded" andtherefore did not bene�t or su�er from the controversial evaluations relative to each other.93



pr rec l pr l rec t acc cross ops opseq match str l synt sempr 1.00 0.91 0.84 0.88 0.48 -0.87 0.42 0.49 0.94 0.69 -0.63 -0.63rec 0.91 1.00 0.86 0.95 0.39 -0.84 0.53 0.57 0.97 0.80 -0.64 -0.66l pr 0.84 0.86 1.00 0.92 0.64 -0.66 0.56 0.57 0.95 0.80 -0.75 -0.78l rec 0.88 0.95 0.92 1.00 0.54 -0.71 0.54 0.55 0.98 0.78 -0.65 -0.65t acc 0.48 0.39 0.64 0.54 1.00 -0.25 0.21 0.20 0.54 0.28 -0.66 -0.56cross -0.87 -0.84 -0.66 -0.71 -0.25 1.00 -0.42 -0.47 -0.79 -0.66 0.58 0.54ops 0.42 0.53 0.56 0.54 0.21 -0.42 1.00 0.77 0.54 0.72 -0.45 -0.41opseq 0.49 0.57 0.57 0.55 0.20 -0.47 0.77 1.00 0.57 0.71 -0.39 -0.36match 0.94 0.97 0.95 0.98 0.54 -0.79 0.54 0.57 1.00 0.80 -0.70 -0.71str l 0.69 0.80 0.80 0.78 0.28 -0.66 0.72 0.71 0.80 1.00 -0.62 -0.62synt -0.63 -0.64 -0.75 -0.65 -0.66 0.58 -0.45 -0.39 -0.70 -0.62 1.00 0.67sem -0.63 -0.66 -0.78 -0.65 -0.56 0.54 -0.41 -0.36 -0.71 -0.62 0.67 1.00Table 9.5: Correlation matrix between various parsing and translation metrics. (pr = precision, rec= recall, l pr = labeled precision, l rec = labeled recall, t acc = tagging accuracy, cross = numberof crossing constituents, ops = number of correct operations, opseq = whether or not the entireoperation sequence is correct, match = mixed index including precision, recall, labeled precisionand labeled recall, str l = whether or not the parse tree has the proper structure and labeling, synt= syntactic grade of the translated sentence, sem = semantic grade of the translated sentence)Assuming an approximate linear correlation between two variables x and y, the correlationcoe�cient c indicates the strength of the correlation between the two variables. jcj near 1.00indicates a very strong correlation, whereas jcj near 0.00 indicates a weak or no correlation. Apositive c indicates that y tends to increase with an increasing x whereas a negative c indicates thaty tends to decrease with an increasing x.The correlation coe�cient of a variable with itself is always 1.00. Correlation coe�cientsare symmetrical with respect to their two variables. An example for a high correlation is the onebetween match and precision, recall, labeled precision and labeled recall (0.94, 0.97, 0.95, and 0.98respectively), which is no big surprise because match is an index composed of just those criteria. Anexample for a low correlation is between tagging accuracy and the number of crossing constituents,-0.25 (not because of the minus sign, but because of the low absolute value).As it turns out, the best predictor for translation quality is labeled precision, with correlationcoe�cients of -0.75 and -0.78 for syntax and semantics respectively. Recall that on the Germangrading scale, 1 is the best possible and 6 the worst possible grade. Therefore a negative correlationcoe�cient here means that the better the labeled precision, the better the expected syntactic andsemantic quality of the translation. A more detailed analysis has shown that labeled precision isalso more strongly correlated to translation quality than any combination of labeled and unlabeledprecision. The various parsing metrics have about the same correlation with the syntactic andsemantic grades. Only tagging accuracy has a noticeably larger impact on syntax than on semantics(-0.66 and -0.56 respectively).Figures 9.1 and 9.2 show the detailed distribution of labeled precision and the syntacticand semantic grades. The correlations are clearly visible, but by no means overwhelming, which94
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Chapter 10Related WorkIn the introductory chapter, we already mentioned a number of papers representing the traditionalapproach to parsing with hand-crafted rules, as well as a number of references to learning-orientedapproaches of `sub-parsing' tasks. We now describe related empirical work on parsing.10.1 Simmons and YuOur basic deterministic parsing and interactive training paradigm is based on (Simmons & Yu,1992). Their \context-dependent grammar" (CDG) has the following characteristics:� It uses 10 features, the �ve syntactic categories to the left and the �ve to the right of thecurrent parse position.� It has two parse actions, \shift" and \reduce <new syntactic category>".� Words are pre-tagged, based on a context-sensitive dictionary, which examines a context ofplus and minus three words for part of speech assignment.� Output is a binary syntactic phrase structure; a separate system produces case structures.� For a given partially parsed state, the system proposes the next parse action based on the`closest' example, namely the one that maximizesXf 2 feature set( weight(f) if examples have matching values for feature f0 otherwisewhere weight(f) is is the distance of syntactic element referred to by feature f from the contextwindow, i.e. 5 for the top element of the stack and the next input list element, and 1 less foreach position that an element is further removed from the `current position'.1We have extended their work by� signi�cantly increasing the expressiveness of the feature language, in particular by moving farbeyond the 10 simple features that were limited to syntax only;1Since the examples are stored in a hash table using the top two parse stack elements as a key, examples thatdon't match these two features are actually not considered at all.97



� signi�cantly increasing the expressiveness of the parse action language by adding six newtypes of operations, adding (further) arguments to the shift and reduce operations, thereby,among other things, allowing discontinuous constituents and `empty categories';� adding background knowledge, in particular a KB and a subcategorization table;� building a much richer internal structure, including both phrase-structure and case-frameinformation;� providing morphological pre-processing;� introducing a sophisticated machine learning component.10.2 Parsers Learning From Treebank ExamplesSeveral researchers have now used the Penn Treebank (Marcus et al., 1993) to develop parsers. ThePenn Treebank is a corpus of over 4.5 million words of American English that has been annotatedwith part of speech. In addition, over half of it has been annotated for skeletal syntactic structure.For a better comparison of the systems, we �rst describe some representational di�erences betweenthe Penn Treebank and our system, argue that parse action sequences carry more information, and�nally discuss and compare speci�c treebank based parsers.10.2.1 Comparison between Penn Treebank and Contex Parse TreesThe Penn Treebank provides only a skeletal syntactic structure, in which, most prominently, allinternal structure of the noun phrase up through the head and including any single-word post-head modi�ers is left unannotated. Experiments at the University of Pennsylvania have shownthat this format increases the productivity (per word) of human annotators, a crucial aspect whenannotating such a large corpus.The output of Contex on the other hand provides a much more detailed integrated phrase-structure and case-frame tree that contains both syntactic and semantic classes and roles for thevarious constituents. Consider for example the representations of the noun phrase \the October1987 stock market crash" as shown in table 10.1.In the Contex representation, there is full syntactic and semantic class information plusmorphological, lexical and other applicable values at all levels. (However, in these examples, only areduced level of detail is actually displayed at lower levels to keep the outputs from quantitativelyoverwhelming the reader.) Appendix section C.3 gives an example for a complete parse tree.The second example (see tables 10.2 and 10.3/10.4) shows the di�erent representations fora full sentence (\She wanted to avoid the morale-damaging public disclosure that a trial wouldbring."). The asterisk (*) in the Penn Treebank representation stands for an \understood" sub-ject, and corresponds to the \<REF>2" in the Contex representation. Notice that the Contexrepresentation provides syntactic and semantic roles, semantic classes, co-indexing and miscella-neous morphological and lexical information, but most important of all, once again, a more detailedstructure. 98



Penn Treebank:(NP the October 1987 stock market crash)Contex:"the October 1987 stock market crash":synt: S-NPclass: I-EN-CRASHforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "crash"subs:(DET) "the":synt/class: S-DEF-ART/I-EART-DEF-ARTforms: unrestricted(TIME) "October 1987":synt/class: S-NP/C-AT-TIMEforms: (SING 3P)(PRED) "October 1987":(PRED) "October"(MOD) "1987"(PRED) "stock market crash":synt/class: S-COUNT-NOUN/I-EN-CRASHforms: (SING 3P)(MOD) "stock market":(MOD) "stock"(PRED) "market"(PRED) "crash"Table 10.1: Comparison of the syntactic structure of a complex NP as provided by the PennTreebank and Contex.Penn Treebank:(S (NP she)(VP wanted(S (NP *)to(VP avoid(NP (NP the morale-damaging public disclosure)(SBAR that(S (NP a trial)would(VP bring))))))))Table 10.2: Penn Treebank representation of the sentence \She wanted to avoid the morale-damagingpublic disclosure that a trial would bring.". 99



Contex:"<She>2 wanted <REF>2 to avoid <the morale-damaging public disclosure<that>1 a trial would bring>1.":synt: S-SNTclass: I-EV-WANTforms: (((GENDER F-FEM) (PERSON F-THIRD-P) (NUMBER F-SING)(CASE F-NOM) (TENSE F-PAST-TENSE)))lex: "want"subs:(SUBJ EXP) <>2 "<She>2":synt/class: S-NP/I-EN-PERSONAL-PRONOUNforms: (SING 3P NOM FEM)props: ((INDEX 2) (ORIG-SURF "She") (INDEXED TRUE))(PRED) "She"(PRED) "wanted":synt/class: S-VERB/I-EV-WANTforms: (PAST or PAST-PART)(INF-COMPLTHEME) "<REF>2 to avoid <the morale-damaging public disclosure<that>1 a trial would bring>1":synt/class: S-SNT/I-EV-AVOIDforms: (TO-INF SING 3P NOM FEM)(SUBJ AGENT) <REF>2"<REF>2":(PRED) "to avoid":(AUX) "to"(PRED) "avoid"(OBJTHEME) <>1"<the morale-damaging public disclosure <that>1 atrial would bring>1":(DET) "the"(MOD) "morale-damaging":(MOD) "morale"(DUMMY) "-"(PRED) "damaging"(MOD) "public":(PRED) "public"(PRED) "disclosure"Continued in table 10.4Table 10.3: Contex representation of the sentence \She wanted to avoid the morale-damagingpublic disclosure that a trial would bring.". 100



Continued from table 10.3(PRED) "disclosure"(MOD) "<that>1 a trial would bring":(OBJ THEME) "<that>1":(PRED) <>1 "<that>1"(SUBJ INSTR) "a trial":(DET) "a"(PRED) "trial"(PRED) "would bring":(AUX) "would"(PRED) "bring"(DUMMY) ".":synt: D-PERIODTable 10.4: Contex representation, continued from table 10.3In neither system are the parse trees actually entered from scratch. For the Penn Treebanksentences, a team of humans corrected automatically computed trees, while for Contex, a hu-man corrected automatically computed parse actions2 based on which the correct parse tree wascontinuously and automatically constructed.10.2.2 Declarative vs. Operational Parse InformationThis brings us to another essential di�erence with respect to parse information. The Penn Treebankis actually a collection of trees, whereas our system is based on parse action sequences. Since wecan easily and automatically derive a parse tree from a parse action sequence, the later obviouslycarries at least as much `linguistic' information. We believe that it carries in fact more informationand is much better suited for training a parser, which has to break down the parsing of a sentenceinto smaller pieces anyway. Consider the example in table 10.5 with the sentence pair (\I ate thepasta with the expensive cheese/fork.") as represented in Penn Treebank format.Despite the super�cially similar surface structure of the sentences, the prepositional phraseshave very di�erent functions and accordingly attach di�erently: the complementational PP is anadjunct to the preceding noun phrase, whereas the instrumental PP is an adjunct to the verb.Deriving the proper parse action sequences from a parse tree can now be quite tricky. Ifthe parse action sequence just follows the bottom-up, left-to-right order of the parse tree, we canencounter problems as illustrated in the following example3:1. I + ate + the pasta * with + the + expensive + cheese + .2. I + ate + the pasta * with + the + expensive + fork + .Following the parse tree order, the parser should, in the �rst example, shift in the preposition,because the prepositional phrase is part of the pasta noun phrase, whereas in the second case, the2Except for the very �rst sentence, for which a complete parse action sequence had to be entered by hand; for allother sentences, a bootstrapping approach limited the manual entry to corrections; see section 5.7 for more details.3As usual, the asterisk (*) indicates the current position, the pluses (+) separate the current partially parsedcomponents. 101



(S (NP I)(VP ate(NP the pasta(PP with(NP the expensive cheese)))))(S (NP I)(VP ate(NP the pasta)(PP with(NP the expensive fork))))Table 10.5: Penn Treebank representation of \I ate the pasta with the expensive cheese/fork."pasta noun phrase should now be combined with the verb. Assuming that the di�erentiating word(cheese/fork) is still out of the context window, the contexts of the two examples are identical andthe parser must process both cases equally. This does not only pose a problem for a deterministicparser, but also for a statistical model, which would check both alternatives, noting the probabilitiesassociated with each choice. But since the rest of the parse is unambiguous, there won't be anymore probabilities below 1, resulting in total parse probabilities equal to the probabilities at thecritical point, and thus attaching the PP the same way in both cases.In our system on the other hand, we �rst parse the PP in both cases and then make anattachment decision when the parse is advanced to \I + ate + the pasta + with the expensivecheese/fork * ." Then the parser decides whether or not to attach the PP to the preceding nounphrase. If not, the PP is shifted back out onto the input list, the object is combined with the verb,the PP is shifted back in and combined with the verb phrase. This type of strategy is not includedin a parse tree, but is automatically part of a parse action sequence, just by virtue of the supervisorguiding the parser that way during training.10.2.3 SPATTERMagerman (1994, 1995) uses a statistical decision tree model, training his system SPATTER withparse action sequences for 40,000 Wall Street Journal sentences derived from the Penn Treebank.Questioning the traditional n-grams, Magerman already advocates a heavier reliance on contextualinformation. Going beyond Magerman's still relatively rigid set of a little over 36 features, wepropose a yet richer, basically unlimited feature language set. Our parse action sequences are toocomplex to be derived from a treebank like Penn's. Not only do our parse trees contain semanticannotations, roles and more syntactic detail, we also rely on the more informative parse actionsequence. While this necessitates the involvement of a parsing supervisor for training, we areable to perform deterministic parsing and get already very good test results for only 256 trainingsentences. 102



10.2.4 IBM Language Modeling GroupMagerman's work was signi�cantly inuenced by the IBM Language Modeling Group. Black, Laf-ferty, and Roukos (1992) show how, using a treebank, the various parse rules of a hand-codedbroad-coverage context-free phrase-structure grammar can automatically be assigned probabilitiesin order to better identify the parse tree that is most likely correct. Their \history-based gram-mar" (HBG) system (Black, Jelineck, La�erty, Magerman, Mercer, & Roukos, 1993) enhances theprobabilistic context-free grammar approach by providing more detailed (incl. semantic) linguisticinformation to resolve ambiguity.Finally, the Candide system (Brown & et al., 1990; Berger & al., 1994) presents a statisticalapproach to machine translation. A target sentence is built word by word from left to right.The system keeps a hypothesis set of ranked partial target sentences. A partial target sentence(hypothesis) is extended by adding one word, and then re-ranked by estimating the probability thatthe new partial target sentence corresponds to the source sentence and that the new partial targetsentence would occur like that in the target language. Recent additions to the system include (1)pre-processing of the source text, including part-of-speech tagging, morphological analysis, specialtreatment for numbers and names, and some local word reordering and normalizations, (2) a reversepost-processing of the target text, and (3) the introduction of context sensitivity to translationprobabilities.There is however no structural analysis of the source sentence. It seems that as a conse-quence, Candide works relatively well with short sentences4, but it is not clear how much it can beimproved to produce good translations for longer sentences without incorporating at least a shallowstructural analysis. Reported results from an ARPA evaluation show that Candide's uency ofthe target language was better than Systran's, that its adequacy was remarkable (.67 on a 0 to 1scale compared to .743 for Systran) and that Candide could at least serve as a time-saving toolto produce translations that can be manually post-edited faster than a manual translation fromscratch would take.10.2.5 Bigram Lexical DependenciesAnother treebank based statistical parser, the bigram lexical dependencies (BLD) system (Collins,1996), is based on probabilities between head-words in the parse tree, enhanced by additionaldistance features that check for order and adjacency of dependency candidates as well as interveningverbs, and intervening or surrounding commas. Trained on the same 40,000 sentences as SPATTER,it relies on a much more limited type of context than our system and needs little backgroundknowledge.10.2.6 Comparison of ResultsThe results in table 10.6 have to be interpreted cautiously since they are not based onthe exact same sentences and detail of bracketing. Due to lexical restrictions, our average sentencelength (17.1) is below the one used in SPATTER and BLD for a similar comparable sentence lengthrange. While the Penn Treebank leaves many phrases such as \the New York Stock Exchange"4In (Berger & al., 1994), the authors report that their \in-house evaluation methodology consists of fully-automatictranslation of 100 sentences of 15 words or less". 103



System Spatter Spatter BLD Contex ContexTraining Sentences 40,000 40,000 40,000 64 256Background Knowledge little little little much muchTest Sentence Length Range 4-25 4-40 � 40 4-45 4-45Test Sentence Length Average 16.8 22.3 � 22 17.1 17.1Labeled precision 88.1% 84.5% 86.3% 82.5% 89.8%Labeled recall 87.6% 84.0% 85.8% 81.6% 89.6%Crossings per sentence 0.63 1.33 1.14 1.87 1.02Sent. with 0 crossings 69.8% 55.4% 59.9% 35.7% 56.3%Sent. with � 2 crossings 92.1% 80.2% 83.6% 66.9% 84.9%Table 10.6: Comparing Contex with Magerman's SPATTER and Collins' BLD, all trained andtested on sentences from the Wall Street Journal.without internal structure, our system performs a complete bracketing, thereby increasing the riskof crossing brackets.The labeled precision and recall for Contex (trained on 256 sentences) surpass the ratesfor Spatter and BLD, even when compared to Spatter limited on sentences up to 25 words. This ispartly due to the �ner granularity of our parse trees, because precision and recall rates tend to behigher within the core5 noun phrases. With respect to the three crossing criteria, Contex faresbetter when compared with longer sentences, and worse when compared with the shorter sentences.While the average sentence length for the shorter sentences (16.8) is only slightly shorter then ouraverage of 17.1, the �ner granularity that we use is now a disadvantage, because additional crossingsare possible within core noun phrases.However, the results are very encouraging, in particular since we can still expect signi�cantimprovement by increasing the number of our training sentences.
5By core noun phrases, we here mean those noun phrases that the Penn Treebank does not sub-structure anyfurther. 104



Chapter 11Future WorkThe ways to extend our system are numerous and promising. Future work could further scale upthe system, deal with incomplete knowledge, move beyond `English to German', and improve therun time of the system.11.1 Scaling Up FurtherThe analysis of the evaluation results revealed that the grades for translations that started with acorrect parse are only very moderately better than those for a fully automated translation. As aconsequence, the largest potential for improvement in translation quality lies in the stages beyondparsing. An investigation of the type of translation errors that occur when the system starts ona correct parse shows that it is clearly the generation module that is most responsible. Mistakesincluded wrong case assignment in prepositional phrases governed by prepositions that can assignboth the dative and accusative case, and incorrect word order within a participle phrase and itsplace in the superior phrase. There are many other types of errors and it seems that the generationexhibits the need for modest �ne-tuning in a multitude of places, rather than the resolution of a fewprinciple problems. An example of a `small', yet quite damaging shortcoming was the translationof mixed fractions, as often used in stock market notations. The parser correctly analyzed thefour tokens `3', `1', `/', and `4' as the number representing 3 + 14 , which it stored as the value ofthe number. In generation, this mixed fraction was however printed as `13/4', the default formatof the programming language used in the implementation (Lisp). Even though 314 = 134 , mostevaluators counted the uni�ed fraction as a very serious semantic error. One extra line of code cansolve this problem, but it becomes clear that generation has to consider a host of smaller issues.Fortunately, the resolutions of the various problems seem to be relatively independent. Overall,the shortcomings of the generation module are actually quite understandable, given that it wasdeveloped based on only 48 sentences.Considering that the parser was trained on 256 sentences, it already exhibits an amazingdegree of robustness. The learning `curve' of parsing quality, based on the number of trainingsentences, as shown in table 6.1, strongly suggests that more training examples will most likelystill signi�cantly improve parsing quality. This estimate is corroborated by the observation thatmany parse errors are due to obviously novel syntactic constructions that have not occurred in thetraining set. 105



11.1.1 New DomainsAnother important avenue of future work is the extension of the current Wall Street Journaldomain to others, in particular to text based on spoken language, which often includes quite peculiaror even technically ill-formed constructions.We have used our parser to process a few sentences that other authors have used to makea point about their systems and found our system to be quite competitive. Consider for examplethe parse tree and translation of the ill-formed sentence shown in table 11.1. Even though suchanecdotal evidence already suggests a degree of robustness in parsing when moving to sentencesthat are ill-formed or from other domains, adding additional examples from other domains might bequite bene�cial, in particular when text other than well-formed complete sentences is used. Alongwith more examples, we might also add more features, particularly when moving to a new domain.We expect the number of `specialized' features to be relatively limited though. In our current featureset, the most business oriented features are (classp of i-en-currency-unit of -1 at m-boolean)1 and(classp of i-en-monetarily-quanti�able-abstract of -n at m-boolean)2 for n = 1, 2, 3. It might bebene�cial to have features indicating the domain, which might improve especially the quality ofchoice of alternative transfer concepts. The domain can probably be identi�ed automatically bymatching the vocabulary of the text to be translated with a typical domain vocabulary pro�le.Eventually, subcategorization tables might be added for nouns or even prepositions.11.1.2 Lexical ExpansionEven though the amount of work to increase the coverage of lexicon and KB is quite small perword, the task to increase the currently slightly over 3000 entries of the English lexicon by oneorder of magnitude for an advanced vocabulary or two orders of magnitude to match Webster'sEncyclopedic Unabridged Dictionary would have good use for further automation.Rilo� (1996) describes research in dictionary construction automation. The techniquesdescribed for information extraction applications can be adapted for our system. A key idea ofsuccessful information mining is to look for patterns that are typical for certain word classes andthen have a supervisor con�rm or reject likely candidates.The bilingual dictionary is a prime candidate for automated acquisition. Bilingual corporalike the Canadian Hansards (parliamentary proceedings) or articles from the Scienti�c Americanalong with their German translations in Spektrum der Wissenschaft can be exploited to identifyco-occurrences of sentences (Gale & Church, 1991), words and expressions. Kay and Roescheisen(1993) even have been able to extract a word alignment table containing German/English wordpairs based solely on the internal evidence of the bilingual corpus. As for the monolingual lexicon,alignment programs could propose likely candidates to a supervisor for approval or rejection.The Champollion program (Smadja, McKeown, & Hatzivassiloglou, 1996) for example, usingaligned text from the Canadian Hansards and given a multi-word English collocation, can identifythe equivalent collocation in French with a precision of up to 78%. Champollion is limited to astatistical analysis of sets of words. The use of parsers and moderate background knowledge cancertainly further improve the accuracy. Wu and Xia (1995) use similar statistical techniques to1\Is the top element on the stack a currency unit?"2\Is the nth element on the stack a monetarily quanti�able abstract?"106



Parse tree for \On February 27 I I in school.":"On February 27 I I in school.":synt: S-SYNT-ELEMclass: I-EN-THINGsubs:(CONC) "On February 27 I I":synt/class/roles: S-PP/C-AT-TIME/(CONC)forms: unrestricted(PRED) "On"(PRED-COMPL) "February 27":(PRED) "February 27":(MOD) "February"(PRED) "27"(PRED-COMPL) "I I":(MOD) "I":(PRED) "I"(PRED) "I"(CONC) "in school.":synt/class/roles: S-PP/C-IN-PP/(CONC)forms: unrestricted(PRED) "in"(PRED-COMPL) "school":(PRED) "school"(DUMMY) "."Subsequent translation to German, based on above parse tree:"Am 27. Februar ich ich in der Schule."Table 11.1: Parse tree and subsequent translation of an ill-formed sentence.The sentence is a `noisy' variation of \On February 27 I was in school.", both based on a Germansentence pair from (Wermter & Weber, 1997). As usual, the parse tree is printed with decreasingdetail at lower levels.The parse tree is somewhat pathological (see section 5.5 for an explanation of CONC etc.), butadequately preserves the \healthy" parts of the input sentence. The German translation (whichis based on the parse tree) precisely reects the English original. It is encouraging to �nd thisrobustness even though Contex was never trained on any ill-formed sentences.107



automatically extract an English-Chinese dictionary with 6429 English entries and report precisionrates from 86% to 96%.Finally, online dictionaries and other resources like lists of proper names can be used forlexical expansion. Even if the knowledge encoded in these resources is not deep enough, it isprobably better than having no entry at all for a word or expression. The following section describeshow such incomplete knowledge might be handled.11.1.3 Considering Context Beyond the Sentence BoundaryAn extension of the feature-encoded context beyond the sentence boundary is simpler than it mightseem. The parse structure would just need additional slots for previous and following sentencesand the feature language could easily be extended to access these slots. This might be useful foranaphora resolution, which sometimes depends on previous sentences, and for a better identi�cationof the general type of text, e.g. business, science, sports, weather. Such topic features could then beused to make better decisions for ambiguous transfer. The relative ease of such an extension showshow useful it is that Contex very naturally integrates features of very di�erent types and that itcan automatically recompute the parse action examples and the decision structure to incorporatenew features.11.2 Incomplete KnowledgeWe have used a lexically limited corpus for our research. While the restriction to 3000 words stillallowed sentences with a very diverse cross-section of text, representing the enormous complex-ity of natural language, the problem of incomplete knowledge, like lexically unknown words, andcorresponding missing entries in the subcategorization tables and the knowledge base, has beeneliminated. For truly free text, any assumption of complete knowledge will always be unrealistic.We believe however that our paradigm of learning from examples lends itself particularly well forhandling incomplete knowledge.11.2.1 Unknown WordsWebster's Encyclopedic Unabridged Dictionary of the English Language (Webster's, 1994) containsover 250,000 lexical entries. Nevertheless, many technical terms like \to disambiguate" as well asmost proper names are not included. Even if unknown words are unavoidable in free text, wenevertheless want to proceed with parsing, so that, for example, a sentence could still be translated,even if some individual words have to be left in the source language. To do proper parsing, we needto assign a part of speech to the unknown word. Since this is just another classi�cation problem,machine learning seems to be the natural solution again. The context of the current parse statebefore shifting3 in the unknown word can provide features, just like for `normal' parsing itself.Additional features that access word endings or try to decompose a word into su�xes and knownwords will probably be useful. The ending \-ated" as in \disambiguated" for example is a typicalverbal ending (past tense or past participle), and \unrealistic" could be identi�ed as an adjective3Recall that the shift-in operation includes an argument designating the part of speech; a shift-in operationtherefore performs the so-called tagging. 108



composed of the pre�x \un-" and the lexically known adjective \realistic". The syntactic contextwill certainly help as well to identify the proper part of speech of the unknown word. Endingsmight also be used to identify forms, such as tense for verbs and number for nouns. Weischedeland al. (1993) used features like these in a probabilistic model and were able to achieve a taggingaccuracy rate of 85% for unknown words.Examples for unknown word classi�cation can be obtained by temporarily disabling someentries in the lexicon and thus rendering previously known words in already acquired parse actionexamples `unknown'. Disabling entries that were added to the lexicon more recently is probablybetter than disabling lexicon entries at random, because the more recent lexicon additions typicallypresent a better cross-section of words that have not been covered yet. While the ten most frequentlyoccurring words of the full WSJ corpus (the, of, to, a, in, and, that, for, is, said) contain mostlywords from closed word classes, i.e. word classes with a limited, often fairly small number ofmembers, like for example articles, prepositions and conjunctions, later additions will at somepoint exclusively belong to open word classes like nouns (in particular proper names), verbs andadjectives. The 10 least frequent words of the 3000 most frequent WSJ words for example aresluggish, repeatedly, Lewis, Caesars, quotas, Dominion, Lake, F, volatile and Wells. Currently, thesystem just assumes that any unknown word is a noun. To obtain these additional examples, welet our parser run over the logged training sentences with part of the lexicon disabled and collectonly those examples where some feature(s) in the current feature set accesses the unknown word;all other examples have already been collected during the regular automatic full parse examplegeneration process (as described in section 5.7).11.2.2 Incomplete Subcategorization TableSubcategorization entries can be missing for some verbs that are in the lexicon and presumablyjust about all verbs that are not in the lexicon. In analogy to lexically unknown words, we cantemporarily disable some subcategorization table entries and gain examples that lack any match inthe subcategorization table. It is however important to distinguish this case from a situation wherea match has been found, but no role is available for a speci�c potential phrase component. Usingtechniques described in (Manning, 1993), we could at least partially automate the acquisition ofsubcategorization entries from corpora.11.2.3 Incomplete Knowledge BaseWhen unknown words get assigned a part of speech, they also need to be assigned a semanticconcept from the knowledge base. Unless the context can provide some more speci�c semanticrestrictions, this will have to be one of the very generic concepts, e.g. `I-EADJ-ADJECTIVE' (someadjective), `I-EV-PROCESS-STATE' (some process or state, for verbs), `I-EN-THING' (some thing,for nouns). The entry for the unknown word should also be marked as semantically un(der)speci�ed,to distinguish cases of lexically covered and uncovered words. Consider for example a test in whichwe check whether or not an entity can be an agent. While a negative result for the lexically coveredword `table' should, using the closed world assumption, be treated at face value, an equally negativetest result for an unknown word should probably yield a special value like `don't know'. A featurevalue `don't know' can then be used like any other value in the decision structure building process.109



11.3 Moving Beyond `English to German'In terms of functionality, our system could be expanded in several ways. Besides adding thecapability to also translate from German to English, other languages could be added and oursystem might be used for other tasks such as a grammar checking.11.3.1 German to EnglishFor a translation in the opposite direction, much of the current system could be reused.The only essential component that is totally missing for translation from German to Englishis the English generation module. It would not be very hard and time consuming to add such amodule, because the basic program structure would be exactly the same. Starting with the duplicateof the German generation module, we would have to make a number of modi�cations, particularlywith respect to the order of components in sentences and noun phrases; in the morphologicalpropagation part, most of the changes would be deletions, since English is morphologically muchsimpler than German.The transfer component is bidirectional and basically does not require any extensions. Theonly exception is the set of the ambiguous transfer examples, because transfer ambiguity is notsymmetric. The current English to German ambiguous transfer example �le with only 62 lines isshort enough to justify our estimate that the corresponding German to English example �le couldbe developed in a relatively short period of time.A German parser already exists. It was trained to parse the German entries of the bilingualdictionary. Since the phrases in dictionary entries typically exhibit signi�cantly less ambiguity andvariation, fewer training examples were needed. In fact, the log �le for the German examples isabout 5% of the size of the log �le containing the parse action sequences for the 272 Wall StreetJournal sentences. For parsing quality comparable to the current English parser, the number oftraining examples would have to be increased to a similar level as for English. This would mostlikely be the most labor intensive aspect of an extension to translate from German to English.Furthermore the German lexicon currently has fewer entries than the English lexicon (1039 asopposed to 3015) and there aren't any subcategorization tables for German yet. The morphologicalprocessing is fully bidirectional and thus does not need any further work.11.3.2 Adding More LanguagesFor each additional language, a new morphological processor, a lexicon, a parse example trainingset, and a generation module would be required. Our dictionaries are bilingual, but we don't nec-essarily have to develop a full matrix of bilingual dictionaries from scratch. Obviously, we need atleast a set of dictionaries that link the languages that we want to translate to and from. For En-glish/German/French/Spanish, we might for example have an German/English, an English/French,and a French/Spanish dictionary. When translating, we can then parse the source text using thesource language parser, then perform a series of tree transfers, based on the dictionary `graph', andthen compute the �nal output using the target language generation module. This is far better thanmaking full translations to intermediate languages, because we save both generation and parsingfor each intermediate language, steps that can introduce a host of errors.110



A more e�cient approach though might be the `compilation' of a dictionary for languagesA and B and one for languages B and C into a dictionary for languages A and C. For each pairof matching entry pairs Ai/Bj and Bj/Ck, one could create an entry pair Ai/Ck in the compileddictionary. For example, based on the entries \EINEN 1 Kompromi� erreichen"/\to reach SOME 1compromise" and \to reach SOME 1 compromise"/\aboutir �a UN 1 compromis", we would add\EINEN 1 Kompromi� erreichen"/\aboutir �a UN 1 compromis" to the German/French dictionary.This can lead to overgeneration for ambiguous entries. Given the dictionary pairs \wissen"/\toknow", \kennen"/\to know", \to know"/\savoir", and \to know"/\connâ�tre", we would get fourword pairs for German/French, even though only \wissen"/\savoir" and \kennen"/\connâ�tre" areactually valid. These spurious dictionary entries can be deleted manually, or, based on ambiguoustransfer decision structures from English to German and English to French, automatically.Finally, the corresponding ambiguous transfer examples should be compiled into direct trans-fer examples, using the ambiguous transfer decision structures, and combining the sets of relevantfeatures. To minimize these ambiguity mismatches, it is apparently wise to choose the originaldictionary language pairs giving preference to related languages. E.g. given that Danish and Nor-wegian are very close to each other, Danish/Norwegian and Norwegian/Japanese are better thanDanish/Japanese and Japanese/Norwegian when compiling a dictionary for the remaining languagepair.11.3.3 Grammar CheckingFor any type of automatic grammar checker, it is hard to distinguish between the insu�cienciesof the grammar checker and the text to be checked. For our system, the robustness of our parser,a bene�t when it comes to machine translation, can present an additional disadvantage when itcomes to grammar checking. In a sentence like \A dogs eats a bone." for example, our parserwould probably not even check the number agreement within the subject or between subject andverb, because it does not help the system in making parse decisions. Both the general and thespeci�c problem can be handled by actively training the system to �nd grammatical errors by alsoproviding grammatically incorrect examples along with the error classi�cation.Two variants on how to do this come to mind:1. The sentence is �rst parsed as usual and then the `error examples' classify nodes of the parsetree. This resembles the decision making in transfer, which also operates on parse tree nodes.2. `Error examples' operate on parse states representing partially parsed sentences. This resem-bles the decision making in parsing, which also operates on parse states.It seems that the �rst alternative is conceptually somewhat simpler, because it might be hard tolink an error to a speci�c parse state, but the second alternative could possibly interact better withthe actual parsing, by not only signaling a grammar problem, but also passing this information onto the `running' parser, which might in some `obvious' cases then automatically correct the errorand thereby avoid follow-up problems. 111



11.4 Speed-UpsDue to the deterministic nature of the parser, which keeps its time complexity linear with respectto the length of the sentence, the system is already very fast. On the hardware we use (a 70 MhzSparcStation 5 with 32 MB of memory), our current system needs about 2.4 sec in total CPU time(2.9 sec real time) to translate an average sentence with 17 words from English to German (incl.segmentation, morphological analysis, parsing, transfer and generation). To train our parser on11,822 examples, acquired under supervision from 272 sentences from the Wall Street Journal, thesystem needs 20 minutes in total CPU time (4.3 hours of real time).We estimate4 that the system can be sped up by a factor of 10 to 100 by measures includingthe following steps:� reimplementation of the Lisp system in C++� caching of information that is used repeatedly� a more compressed format of examples� adding a new parse mode that would allow parse actions to be destructive, i.e. don't force theparser to preserve all intermediate parse states; during supervised example acquisition it canbe useful to `backstep' to a previous parse state, but in actual applications of parsing such`backstepping' is not needed anyway.These speed-ups would result in virtually instantaneous translations of sentences and short texts.
4This estimate is based on previous experience of the author of this dissertation from work in the KnowledgeBased Natural Language (KBNL) group at the Microelectronics and Computer Technology Corporation (MCC) inAustin, Texas, where the author reimplemented major parts of a Lisp parser in C++, achieving a speed-up of one totwo orders of magnitude, and speeding up the JUMAN Japanese language segmenter (Matsumoto et al., 1994) by afactor of 60, mostly by caching information that was used repeatedly.112



Chapter 12ConclusionsGuided by the goal to advance the technology of robust and e�cient parsers and machine transla-tion systems for free text, we try to bridge the gap between the typically hard-to-scale hand-craftedapproach and the typically large-scale but context-poor probabilistic approach.Using� a rich and uni�ed context with 205 features,� a complex parse action language that allows integrated part of speech tagging and syntacticand semantic processing,� a sophisticated decision structure that generalizes traditional decision trees and lists,� a balanced use of micromodular background knowledge and machine learning,� a modest number of interactively acquired examples from the Wall Street Journal,our system Contex� computes parse trees and translations fast, because it uses a deterministic single-pass parser,� shows good robustness when encountering novel constructions,� produces good parsing results comparable to those of the leading probabilistic methods, and� delivers competitive results for machine translations.Finally, given that so far we trained our parser on examples from only 256 sentences, anddeveloped our generation module based on only 48 sentences, we can still expect to improve ourresults very signi�cantly, because the learning curve hasn't attened out yet and adding substan-tially more examples is still very feasible. Besides scaling up further, extensions in other directions,such as more languages and grammar checking, are numerous and very promising.113



Question: So when will the general purpose machine translation systemwith 100% accuracy be ready?Short answer: Never.As many scientists have already pointed out, natural language processing in general and machinelearning in particular are \AI-complete", i.e. NLP and MT can not be fully solved until arti�cialintelligence with all its other subdisciplines like knowledge representation and problem solving havebeen solved as well | until the computer has become omniscient. We recommend that you don'thold your breath for that.The good news is that the relation between knowledge and accuracy is not linear. Webelieve that it is safe to assume that with less than \1% knowledge" we can achieve more than\99% accuracy" and that even within that fraction of one percent, a minute sub-fraction will yielda \90% accuracy". We believe that this strongly unbalanced nature of knowledge suggests a hybridapproach to machine translation. Since the \core knowledge" is relatively small yet critical foraccuracy, it seems reasonable to acquire it under very careful human supervision or even provideit manually. The more we move away from the \core knowledge", the lower the rate of returnwill be. With increasingly larger quantities of additional knowledge necessary to reduce the errorrate by a speci�c factor, it becomes more and more acceptable to allow rough approximationsof knowledge. Probabilistic methods that can operate on large corpora of texts with little or nohuman intervention at all become more and more attractive. Even if the knowledge they build isnot as \perfect" as if built under careful human supervision, it will still be useful, given that verylarge scale manual knowledge support becomes prohibitive and assuming that the �nal accuracyis still better than without such machine generated knowledge. The natural combination of moremanually acquired \core knowledge" and more automatically acquired vast \outer knowledge"manifests itself in a tendency of signi�cant MT systems to move towards more hybrid solutions asthe systems are developed. While for example the originally extremely probabilistic Candide system(Brown & et al., 1990; Berger & al., 1994) has been augmented by a number of manual heuristics,the originally fairly manual-knowledge-based Pangloss Mark I/II/III system (Frederking & al.,1994) has incorporated less dogmatic example-based and transfer-based approaches.Following the same trend, our system Contex, when scaled up further, will have to includeever more automatically acquired knowledge, but we believe that Contex already incorporatesmany characteristics of the successful hybrid system of the future: its machine learning can providecritical robustness, \real corpus"-based development can provide the necessary focus on criticalknowledge, and a uni�ed context of diverse features easily integrates knowledge from di�erentsources.
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Appendix AWSJ CorpusThe WSJ corpus used in this work is a subset of the sentences fromWall Street Journal articles from1987, as provided on the ACL data-disc. The WSJ corpus consists of the 272 �rst sentences thatare fully covered by the 3000 most frequently occurring words of the entire corpus. These sentencesare also available on the WWW at http://www.cs.utexas.edu/users/ulf/diss/wsj corpus272.html .(WSJ 0) Industry sources put the value of the proposed acquisition at more than $100 million.(WSJ 1) A seat on the Chicago Board Options Exchange was sold for $340,000, up $5,000 fromthe previous sale March 11.(WSJ 2) Of the total, 15 million shares will be sold by the company and the rest by a shareholder.(WSJ 3) The securities are convertible at a rate of $27.61 of debentures for each common share.(WSJ 4) The utility said it expects an additional $109 million (Canadian) in 1987 revenue fromthe rate increase.(WSJ 5) It was cause to wonder.(WSJ 6) The gold mines rose 12 points to 362.4.(WSJ 7) The airline said that it would report a loss for the �rst quarter but that it would be"substantially less" than the $118.4 million de�cit it posted in the �rst quarter of 1986.(WSJ 8) In 1986, while general ination was only 2%, hospital expenses grew 8%.(WSJ 9) Banks will be o�ered a slightly higher interest-rate margin if they accept the notes thanif they take a cash payment.(WSJ 10) "It's a real high," said one.(WSJ 11) "You can't get out of a falling market if you're in an index fund."(WSJ 12) We're part of our own problem.(WSJ 13) The average increase is about 1.8%, Toyota said.(WSJ 14) This gave Japanese manufacturers a huge cost advantage over U.S. companies.(WSJ 15) He said that this was the �rst he had heard about any such deal.(WSJ 16) No one is particularly happy about the situation.(WSJ 17) South Korea posted a surplus on its current account of $419 million in February, incontrast to a de�cit of $112 million a year earlier, the government said.(WSJ 18) Seats currently are quoted at $330,000 bid, $345,000 asked.(WSJ 19) Sales are expected to increase about 10% to $40 million from $36.6 million in 1986.(WSJ 20) In over-the-counter trading Friday, On-Line common closed at $22.25, down 50 cents.115



(WSJ 21) The issue is one of Germany's biggest.(WSJ 22) He said no.(WSJ 23) The stock exchange index rose 2.39 to 1860.70.(WSJ 24) For all of 1986, Pan Am reported a loss of $462.8 million, compared with 1985 netincome of $51.8 million, or 45 cents a share.(WSJ 25) The for-pro�t hospital, in contrast, has a powerful social voice in the form of equitymarkets.(WSJ 26) Major U.S. accounting �rms are split on how to value the notes.(WSJ 27) "It's like you're king of the hill."(WSJ 28) That makes index funds equal to 15% of institutional equity holdings, or about 7% ofthe entire stock market.(WSJ 29) American industry can't just keep running to government for relief.(WSJ 30) Toyota said the prices of 16 1987 models weren't increased.(WSJ 31) But by the end of January, Japanese compensation costs had risen to 79% of the U.S.level, according to estimates by the Bureau of Labor Statistics.(WSJ 32) The statement reported total assets of $40 million, net worth of $39 million and annualincome of $908,000.(WSJ 33) There's nothing he can say.(WSJ 34) Industrial production in Italy declined 3.4% in January from a year earlier, the govern-ment said.(WSJ 35) The record price of $342,000 for a full membership on the exchange was set Feb. 27.(WSJ 36) The company said it doesn't expect the ruling to have a major impact on earningsbecause it had already set aside about $14 million in reserves to cover the judgment and reachedan agreement for a bank loan to pay the balance.(WSJ 37) The previous terms weren't ever disclosed.(WSJ 38) That would have valued the holding at between $1.49 billion and $1.71 billion.(WSJ 39) Others in Washington don't much care where new revenues come from.(WSJ 40) Volume was about 1.5 billion shares, up from 1.4 billion Thursday.(WSJ 41) Revenue declined 13% to $3.04 billion from $3.47 billion.(WSJ 42) They represent only 17% of U.S. hospitals, and some of them are run on a for-pro�tbasis.(WSJ 43) But he declined to comment on the issue of the notes.(WSJ 44) The S&P-500 stock index �nished up 4.09 at 298.17 and the New York Stock Exchangecomposite index gained 2.09 to 169.37.(WSJ 45) By 10 a.m., he was done.(WSJ 46) It's a chance to get some improvement here.(WSJ 47) "What would it take to get people to pick this up?"(WSJ 48) Largely because of the falling dollar, West German labor costs rose to 120% of thosefor U.S. production workers from 75% in 1985.(WSJ 49) In high school, he was a member of the speech team.(WSJ 50) But the immediate concern is the short-term credits.(WSJ 51) Canadian manufacturers' new orders fell to $20.80 billion (Canadian) in January, down4% from December's $21.67 billion on a seasonally adjusted basis, Statistics Canada, a federal116



agency, said.(WSJ 52) The Federal Farm Credit Banks Funding Corp. plans to o�er $1.7 billion of bondsThursday.(WSJ 53) The St. Louis-based bank holding company previously traded on the American StockExchange.(WSJ 54) The transaction is expected to be completed by May 1.(WSJ 55) A successor for him hasn't been named.(WSJ 56) The president's news conference was a much-needed step in that direction.(WSJ 57) The Tokyo exchange was closed Saturday as part of its regular holiday schedule.(WSJ 58) Pan Am said its full-year results were hurt by foreign currency exchange losses of $46.8million, primarily related to Japanese yen debt, compared with $11.1 million in 1985.(WSJ 59) The American hospital sector spent $181 billion in 1986.(WSJ 60) But the company inquiry, which began a few months ago, changed everything.(WSJ 61) Texas Instruments rose 3 1/4 to 175 1/2.(WSJ 62) If futures fell more than 0.20 point below the stocks, he would buy futures and sellstocks instead.(WSJ 63) "I'm willing to work for a foreign company," says the father of two.(WSJ 64) It estimated that sales totaled $217 million, compared with the year-earlier $257 mil-lion.(WSJ 65) With the falling dollar, U.S. manufacturers are in a pretty good position to competeon world markets.(WSJ 66) You go on to Bank B and get another loan, using some of Bank B's proceeds to payback some of your debt to Bank A.(WSJ 67) The critical point is to know when Brazil will produce an economic policy to generateforeign exchange to pay its interest.(WSJ 68) Manufacturers' shipments followed the same trend, falling 1.5% in January to $21.08billion, after a 2.8% increase the previous month.(WSJ 69) The o�erings will be made through the corporation and a nationwide group of securitiesdealers and dealer banks.(WSJ 70) The real estate services company formerly traded over the counter.(WSJ 71) The shares are convertible at a rate of $9.50 of preferred for each common share.(WSJ 72) He continues as president of the company's corporate division.(WSJ 73) In tests it has worked for many heart-attack victims.(WSJ 74) The percentage change is since year-end.(WSJ 75) He said Pan Am currently has "in excess of $150 million" in cash.(WSJ 76) These revenues could then have been used for many purposes, such as funding thosepeople without medical insurance.(WSJ 77) The case continues in U.S. Bankruptcy Court in St. Louis.(WSJ 78) American Express fell 1 1/2 to 77 1/4 on more than 2.1 million shares.(WSJ 79) His typical trade involved $30 million.(WSJ 80) Other voters reect the divisions between their two senators.(WSJ 81) However, the indicated fourth-quarter net loss is about $10 million.(WSJ 82) In fact, unit labor costs have risen less in the U.S. than in other industrial countries.117



(WSJ 83) First Interstate Bank of Denver { $5 million.(WSJ 84) "He knows when to act and when to do nothing."(WSJ 85) The company said it isn't aware of any takeover interest.(WSJ 86) Earnings included a $615,000 write-down of an investment.(WSJ 87) The $1.4375 Series A preferred stock is convertible at the rate of 1.0593 common sharesfor each preferred share.(WSJ 88) In fact, no investigation was completed, but one is under way.(WSJ 89) His approach never seems to fail.(WSJ 90) It should be approved.(WSJ 91) The card will cost $15 a year, in addition to the $45 that American Express chargesfor its regular card.(WSJ 92) At the end of 1986, long-term debt totaled $830 million.(WSJ 93) Construction is to begin immediately, with completion expected in late 1989.(WSJ 94) Whatever the case, the three executives left within two days of one another.(WSJ 95) The company �led an o�ering of 15.7 million shares.(WSJ 96) You have to look for the hand at the other end.(WSJ 97) But other voters think the issue is more complex.(WSJ 98) The credit of about $44 million made net income $38.2 million, or $5.26 a share.(WSJ 99) A look at Japan shows why.(WSJ 100) That, too, was just �ne with Mr. Clark, because Hutton also had an o�ce in thebuilding.(WSJ 101) "They've clearly put the company up for sale."(WSJ 102) Terms weren't disclosed, but the industry sources said the price was about $2.5 mil-lion.(WSJ 103) The company expects the sale to be completed later this month, but said it still re-quires a de�nitive agreement.(WSJ 104) It has 5,225,000 units outstanding.(WSJ 105) In �scal 1986, it earned a record $9.9 million, or 89 cents a share, on record revenueof $138.5 million.(WSJ 106) Financial regulators closed several thrifts and banks over the weekend, including aTexas savings and loan association with $1.4 billion in assets.(WSJ 107) That was two years ago.(WSJ 108) But it will extend 13.5% credit.(WSJ 109) Pan Am's unions, meanwhile, are trying to �nd another merger partner for the com-pany.(WSJ 110) "We needed someone who would be in it for the long run."(WSJ 111) Has there been any improvement since then?(WSJ 112) Pan Am was unchanged at 4 3/8 in active trading.(WSJ 113) "It isn't an emergency situation where people have to trade at all costs," he says.(WSJ 114) "It could help steel, but it would hurt coal because they have to sell out of the coun-try."(WSJ 115) The company currently has 10 million shares outstanding.(WSJ 116) But when the yen wages are converted to dollars to show the impact of exchange rates,118



compensation rose 47% to the equivalent of $9.50 in 1986 from $6.45 in 1985.(WSJ 117) "Banks are highly competitive in trying to place good loans," he says.(WSJ 118) He declined to elaborate.(WSJ 119) The plant will be used by Texas Instruments' Defense Systems and Electronics Groupto produce electronic equipment.(WSJ 120) Canada's seasonally adjusted consumer price index rose 0.3% in February, StatisticsCanada, a federal agency, said.(WSJ 121) It said then that it would make a �nal decision by late March.(WSJ 122) There is quite a di�erence.(WSJ 123) It had assets of $115 million.(WSJ 124) Yet last year Congress approved $900 million in grant military aid, the highest levelsince the end of the Vietnam War.(WSJ 125) American Express says only a limited number of existing customers will be o�ered thenew card.(WSJ 126) They have made their own cost-cutting proposals, but the two sides haven't reachedany agreements.(WSJ 127) In December, the company sold six radio stations for $65.5 million.(WSJ 128) Right on target, for 1979 or 1981.(WSJ 129) A bankruptcy judge approved the company's $100 million �nancing agreement, animportant step in its bankruptcy reorganization.(WSJ 130) Growth in such investing was slow in the 1970s.(WSJ 131) The only thing all voters seem to agree on is that something must be done.(WSJ 132) It didn't give a reason for the sales.(WSJ 133) Although the dollar began to fall two years ago, U.S. trade performance is just begin-ning to turn around.(WSJ 134) The banking system, he says, "is built on trust."(WSJ 135) He suggested that the two executives' interests might not reect shareholders' inter-ests.(WSJ 136) But the company wouldn't elaborate.(WSJ 137) The February rise followed increases of 0.2% in January and 0.4% in December.(WSJ 138) It has 5.8 million units outstanding.(WSJ 139) For the fourth quarter, the insurance-brokerage company posted a loss of $26.3 million,compared with a loss of $87.4 million in the year-earlier quarter.(WSJ 140) First American will assume deposits of about $37 million in 7,200 accounts.(WSJ 141) Of the administration's proposed $20 billion foreign-a�airs budget for 1988, $15 billionwould go to foreign aid.(WSJ 142) Banks also believe that the American Express estimates are too modest, and somefear a plastic rate war.(WSJ 143) We all had to take out second mortgages to help �nance our investments in Stanley.(WSJ 144) Per-share earnings were adjusted to reect a 2-for-1 stock split paid in January.(WSJ 145) "Reform" is not "revolution".(WSJ 146) The next few days may determine whether the small, closely held airline has �nallyrun out of fuel. 119



(WSJ 147) That's when they really decided to let it grow.(WSJ 148) "There's no guarantee for anything in global competition."(WSJ 149) Allegheny International makes consumer and industrial products.(WSJ 150) About $184 million of debt is a�ected.(WSJ 151) And a person intent on bank fraud "is going to get it done."(WSJ 152) They did not give us any response to our o�er.(WSJ 153) Terms of the contract haven't been disclosed.(WSJ 154) First Federal, which has about $270 million in assets, currently has 566,100 commonshares outstanding.(WSJ 155) Details about the proceeds weren't immediately available.(WSJ 156) Revenue rose 11% to $99.3 million from $89.4 million.(WSJ 157) New City had assets of about $21 million.(WSJ 158) Of that $15 billion, 38% is for development aid, up from the administration's requestof 33% last year.(WSJ 159) Card rates haven't fallen nearly as sharply as other interest rates since 1980.(WSJ 160) This came to a head during an early planning session when a production managerasked what the company policy was on a particular matter.(WSJ 161) Industry o�cials said any combination probably would be the �rst step toward amerger of all �ve New York exchanges.(WSJ 162) He had led her to believe it was worth more than $1 million.(WSJ 163) Air Atlanta o�cials said the company may be able to get through the week with cashon hand.(WSJ 164) It's expensive.(WSJ 165) But it is likely that its economy won't expand this year at even the modest 2% rateforecast only a few months ago { and that it will actually decline in the current quarter.(WSJ 166) "This means that, to a signi�cant degree, we're using up the inventory found prior to1970 at an increasing rate," he said.(WSJ 167) S&P cited "expectations of continued pro�t pressures" for the company.(WSJ 168) Mr. Lewis couldn't be reached for comment.(WSJ 169) The truck maker said the group agreed not to buy Clark voting stock for 10 years.(WSJ 170) Merrill Lynch also has an option to extend the agreement through February 1993.(WSJ 171) "We now have a relatively small presence there."(WSJ 172) As it happened, Far Eastern interest was limited.(WSJ 173) Latest results included $24.2 million in losses from discontinued operations.(WSJ 174) Hardly any of the participants in the tax debate, however, are taking account of thepositive revenue e�ects of lower tax rates.(WSJ 175) The total cost of those proposed issues to shareholders will be about the equivalentof $897.3 million.(WSJ 176) In a Securities and Exchange Commission �ling, the group including the New Yorkinvestment company said it holds 555,057 shares, including 59,800 purchased Jan. 23 through Feb.6 for $14 to $14.37 each.(WSJ 177) "I don't know," I said.(WSJ 178) Moreover, any merger would take time; industry executives suggested it would take120



more than two years to work out.(WSJ 179) Then the rally will continue, he said.(WSJ 180) Despite the airline's problems, company o�cials say they believe Air Atlanta will getthe capital needed to put it on its feet.(WSJ 181) "It doesn't take much to realize that we have a very big problem."(WSJ 182) Germany's ination-adjusted growth of 2.4% last year was its worst showing since theeconomy climbed out of recession in 1983.(WSJ 183) The coming period is a very critical economic period.(WSJ 184) Data General couldn't be reached for comment.(WSJ 185) Mr. Smith, who is a former partner of Bear, Stearns & Co., didn't return phone calls.(WSJ 186) In composite trading on the Big Board, Clark common shares closed at $25, down$1.875.(WSJ 187) The suit seeks class-action status on behalf of other company shareholders.(WSJ 188) Ohio Power Co., a unit of American Electric Power Co., said it will redeem $34.4million of its �rst mortgage bonds June 1.(WSJ 189) The securities are convertible at a rate of $44.25 of debentures for each common share.(WSJ 190) Revenue rose 8.4% to $390.9 million from $360.5 million in 1985.(WSJ 191) Recent events have served to focus the debate.(WSJ 192) London shares advanced to a record close Friday in moderate trading.(WSJ 193) The company's shares rose 12.5 cents a share, to $14.125, in American Stock Exchangecomposite trading Friday.(WSJ 194) "It's our company now; we have to create the policy."(WSJ 195) But Sen. Dole announced Friday that he decided against o�ering the amendment.(WSJ 196) In Chicago, the June contract on the Standard & Poor's 500-stock index soared to arecord high of 299.80, up 3.80 for the day.(WSJ 197) One reason the company is negotiating with potential investors is to provide moneyto lease additional aircraft.(WSJ 198) It's a price we had to charge to stay in business.(WSJ 199) That happened, to some extent.(WSJ 200) It's an improvement over the �rst proposal, all right, but that's not saying very muchat all.(WSJ 201) The issue next goes to the cabinet-level Economic Policy Council, which has scheduleda meeting for mid-week.(WSJ 202) The company previously declared a 3-for-2 split in November 1986.(WSJ 203) In late New York trading Friday, the pound stood at $1.6042, up from $1.6003 Thurs-day, but eased to 2.9333 marks, from 2.9338.(WSJ 204) The transaction is subject to regulatory approval.(WSJ 205) Ohio Edison owns about 30% of the unit.(WSJ 206) In composite trading on the New York Stock Exchange Friday, the company's commonshares closed at $35.125, down 25 cents.(WSJ 207) The de�cit in January was $2.17 billion.(WSJ 208) No doubt taxes are easier to reform in times of high economic growth.(WSJ 209) The Financial Times industrial-share index rose 17.3 to 1598.9.121



(WSJ 210) Pan Am Corp. reported a $197.5 million fourth-quarter loss, worse than it had pre-dicted, and said it expects to post a de�cit in the �rst quarter.(WSJ 211) Soon, they were no longer talking about what they had to have, but about what theyno longer needed.(WSJ 212) President Reagan suggested Friday that he would accept the earlier Senate version.(WSJ 213) Stock prices started to rise as trading got under way Friday.(WSJ 214) "What looks to the public like we were acting late was actually a situation in whichwe thought we were acting fast," the executive said.(WSJ 215) The government has to take a lead role.(WSJ 216) Export volume grew less than 1% last year, compared with a 6% increase in 1985.(WSJ 217) Currently, there's still some air around Wright's museum.(WSJ 218) Current practices require U.S. o�cials to draw up a list of potential targets and allowa�ected parties here to comment on their likely impact.(WSJ 219) Attorneys for Mr. Boesky declined to comment.(WSJ 220) Gold was quoted at $406 an ounce in early trading Monday in Hong Kong.(WSJ 221) The �nancial services company said about 100 employees of American Health will losetheir jobs after the sale is completed in August.(WSJ 222) Ohio Edison said the investors will pay it $509 million for the stake, then lease it backfor 29 years at a rate estimated at 8.5% to 9% of the cash payment.(WSJ 223) Both the government and the opposition have refused to compromise on election re-form.(WSJ 224) The Reagan administration's most recent estimate for the �scal 1987 de�cit is $143.91billion.(WSJ 225) The next move is up to the opposition Liberal-National coalition, which has still notannounced its tax policy.(WSJ 226) They expect retail issues to bene�t from the budget's personal-tax cuts and the dropin British banks' lending rates, a trader said.(WSJ 227) In the 1985 fourth quarter, Pan Am had net income of $241.4 million, or $1.79 a share,which included a $341 million gain from the Paci�c division sale.(WSJ 228) The bank holding company is expected to make the announcement today.(WSJ 229) "I am in full support of reasonable funding levels for these programs similar to thelegislation passed by the Senate," he said in a statement put out by the White House.(WSJ 230) Airline, drug, oil, technology, and some brokerage �rm stocks took o�.(WSJ 231) He predicted that the break-even level will be reached in 1987's second half.(WSJ 232) We have a lot of poor patients, and I would like to see them on the drug.(WSJ 233) Capital spending by German �rms this year is expected to run only slightly ahead of1986 levels, after gains of 9% in 1985 and 5% last year.(WSJ 234) The addition doesn't, of course, need to be this high.(WSJ 235) U.S. o�cials estimate that the move will result in $85 million in additional U.S. salesthis year, and that such sales eventually could grow to $300 million annually.(WSJ 236) Competitors have recently supported the company's e�orts to get regulation removed.(WSJ 237) Every one-cent rise in the gasoline tax would raise $900 million to $1 billion a year.(WSJ 238) Substantially all the delayed shipments should be made in the second quarter, the122



company said.(WSJ 239) Ohio Edison said the transaction will allow the equity investors to take advantage offederal tax bene�ts.(WSJ 240) The company had 32.9 million shares outstanding at Dec. 31.(WSJ 241) The de�cit for all of �scal 1986 was $220.7 billion.(WSJ 242) We view it in one way.(WSJ 243) And the bene�ts of lower mortgage costs, resulting from falling interest rates, a dropin money supply and stable ination, will be "larger than the gains" from tax cuts, the trader said.(WSJ 244) Without that gain, Pan Am would have reported a 1985 fourth-quarter loss of about$100 million.(WSJ 245) Approval of the agreement between the Dallas-based aerospace, energy and steel con-cern and its 22-member bank group had been delayed since January.(WSJ 246) It also raises the accounting question of how banks will value such notes.(WSJ 247) Morgan Stanley & Co. reported shortly after 3 p.m. that it had blue-chip stock buyorders totaling $1.1 billion.(WSJ 248) Now managing more than $60 billion for clients, mainly big pension funds, the �rmhas become the biggest single investor in the stock market.(WSJ 249) We expect that they will.(WSJ 250) The bureau said the number of housing units in the country will reach 100 million bythe end of March.(WSJ 251) We do this kind of work every day.(WSJ 252) It also called on Japan to allow U.S. producers a larger share of Japan's own market.(WSJ 253) Brazil's short-term �nancing from foreign banks could soon be cut by as much as $3billion, according to bankers in the U.S. and Brazil.(WSJ 254) The tax boost would be part of a $36 billion de�cit-reduction package the HouseDemocratic leadership seeks for the coming �scal year.(WSJ 255) Under the plan, the holder of each common share will receive on March 31 the rightto buy one additional share for $3.(WSJ 256) The following issues recently were �led with the Securities and Exchange Commission:(WSJ 257) Holders are to vote at the April 23 annual meeting.(WSJ 258) The government paid $13.7 billion in interest on the federal debt in February, up from$13.49 billion in January.(WSJ 259) We're sure we can reach a compromise.(WSJ 260) Foreign demand, Wall Street's performance Thursday and buying ahead of the newtrading quarter, which starts today, helped as well, traders said.(WSJ 261) In the 1986 fourth quarter, revenue declined 12%, to $797.3 million from $906.7 millionin the year-earlier quarter.(WSJ 262) No one at the unit could be reached for comment.(WSJ 263) Talks on those issues will resume later this week.(WSJ 264) It's not going to be up that much.(WSJ 265) In contrast, conventional managers usually hold some cash reserves, which have hurttheir performance recently.(WSJ 266) Why didn't you set it at $100,000?123



(WSJ 267) "There is a lot of housing out there," Mr. Young said.(WSJ 268) Let's keep it the way Wright built it.(WSJ 269) It raised more money from British institutions and took out its �rst major bank loans.(WSJ 270) About $10 billion of trade credits and $5 billion of money-market deposits fall dueMarch 31.(WSJ 271) An additional $18 billion would come from spending cuts.
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Appendix BFeaturesFor an explanation of the structure of the following 205 features, please refer to section 5.6.B.1 Features Used for Parsing English[1] (synt of -5 at s-synt-elem)[2] (synt of -4 at s-synt-elem)[3] (synt of -3 at s-synt-elem)[4] (synt of -2 at s-synt-elem)[5] (synt of -1 at s-synt-elem)[6] (synt of 1 at s-synt-elem)[7] (synt of 2 at s-synt-elem)[8] (synt of 3 at s-synt-elem)[9] (similar of -3 with -1 at m-boolean)[10] (class of -2 at c-app)[11] (class of -1 at c-app)[12] (class of 1 at c-app)[13] (class of -2 at c-clause)[14] (class of -1 at c-clause)[15] (synt of -3 at d-other-delimiter)[16] (synt of -2 at d-other-delimiter)[17] (synt of last of -2 at d-dividing-delimiter)[18] (synt of det of -1 at s-synt-elem)[19] (synt of time of -2 at s-synt-elem)[20] (synt of -1 at d-dividing-delimiter)[21] (synt of -1 at d-other-delimiter)[22] (synt of 1 at d-dividing-delimiter)[23] (synt of 1 at d-other-delimiter)[24] (f-�nite-tense of -1 at m-boolean)[25] (f-non-�nite-tense of -1 at m-boolean)[26] (f-part of -1 at m-boolean)[27] (f-part of 1 at m-boolean) 125



[28] (f-pres-part of -1 at m-boolean)[29] (f-pres-part of 1 at m-boolean)[30] (f-inf of -1 at m-boolean)[31] (f-to-inf of -1 at m-boolean)[32] (f-passive of -1 at m-boolean)[33] (class of -2 at i-ec-conjunction)[34] (class of 1 at i-en-agent)[35] (class of subj of -1 at i-en-interrogative)[36] (class of -2 at i-en-quantity)[37] (class of -1 at i-en-quantity)[38] (class of pred-compl of co-theme of -1 at i-en-quantity)[39] (classp of i-ec-conjunction-introducing-correlative-apposition of -2 at m-boolean)[40] (classp of i-eart-indef-art of -2 at m-boolean)[41] (classp of i-en-prename-title of -1 at m-boolean)[42] (classp of i-en-prename-title of -2 at m-boolean)[43] (classp of i-eadv-verbal-degree-adverb of -2 at m-boolean)[44] (classp of i-eadv-adverbial-degree-adverb of -2 at m-boolean)[45] (classp of i-eadv-adjectival-degree-adverb of -2 at m-boolean)[46] (classp of i-eadv-nominal-degree-adverb of -2 at m-boolean)[47] (classp of i-eadv-verbal-degree-adverb of -1 at m-boolean)[48] (classp of i-eadv-adverbial-degree-adverb of -1 at m-boolean)[49] (classp of i-eadv-adjectival-degree-adverb of -1 at m-boolean)[50] (classp of i-eadv-adjectival-degree-adverb of alt-adv of 1 at m-boolean)[51] (classp of i-eadv-nominal-degree-adverb of -1 at m-boolean)[52] (classp of i-en-temporal-unit of alt-nom of 2 at m-boolean)[53] (classp of i-en-temporal-concept of -1 at m-boolean)[54] (classp of i-en-temporal-interval of -1 at m-boolean)[55] (classp of i-en-temporal-interval of -2 at m-boolean)[56] (classp of i-en-process of -1 at m-boolean)[57] (class of pred-compl of -1 at i-en-process)[58] (classp of i-e-process of -2 at m-boolean)[59] (classp of i-en-reason of -1 at m-boolean)[60] (class of -1 at i-en-unit)[61] (day-or-year of -1 at i-enum-cardinal)[62] (day-or-year of 1 at i-enum-cardinal)[63] (classp of i-en-month-of-the-year of -1 at m-boolean)[64] (class of -4 at i-ep-preposition)[65] (class of -3 at i-ep-preposition)[66] (class of -2 at i-ep-preposition)[67] (class of 2 at i-ep-preposition)[68] (class of 1 at i-ev-process-state)[69] (is-abbreviation of -1 at m-boolean)[70] (is-indexed of -1 at m-boolean) 126



[71] (capitalization of pred* of -2 at m-boolean)[72] (capitalization of pred* of -1 at m-boolean)[73] (capitalization of pred* of 1 at m-boolean)[74] (marked-capitalization of pred* of -1 at m-boolean)[75] (is-abbreviation of -2 at m-boolean)[76] (is-ref of -1 at m-boolean)[77] (is-ref of subj of -1 at m-boolean)[78] (is-ref of subj of inf-compl of -1 at m-boolean)[79] (is-ref of -2 at m-boolean)[80] (np-vp-match of -2 with -1 at m-boolean)[81] (np-vp-match of -1 with 1 at m-boolean)[82] (compl-v-match of -2 with -1 at m-boolean)[83] (compl-v-match of -1 with 1 at m-boolean)[84] (marked-capitalization of 1 at m-boolean)[85] (syntp of unavail of lexical of 5 at m-boolean)[86] (syntp of unavail of lexical of 3 at m-boolean)[87] (syntp of unavail of lexical of 2 at m-boolean)[88] (syntp of unavail of lexical of ((pred* of -2) -1) at m-boolean)[89] (syntp of unavail of lexical of (-1 1) at m-boolean)[90] (syntp of unavail of lexical of (-1 1 2) at m-boolean)[91] (syntp of unavail of lexical of (-2 -1 1) at m-boolean)[92] (semrole of -1 of -2)[93] (semrole of -1 of -4)[94] (semrole of 1 of -1)[95] (semrole of -1 of -3)[96] (semrolep of -1 of -3)[97] (semrole of -2 of -3)[98] (semrolep of -2 of -3)[99] (semrolep of obj of -1)[100] (semrole of subj of -1)[101] (syntrole of -2 of -1)[102] (synt of -1 at s-clause)[103] (synt of -2 at s-clause)[104] (classp of i-en-interr-pronoun-whatever of -2 at m-boolean)[105] (classp of i-eprt-adv-particle of -1 at m-boolean)[106] (classp of i-en-letter-character of -1 at m-boolean)[107] (classp of i-en-day-of-the-week of -1 at m-boolean)[108] (classp of i-en-day-of-the-week of alt-nom of 1 at m-boolean)[109] (classp of i-eadj-able of -1 at m-boolean)[110] (classp of i-eadj-able of 1 at m-boolean)[111] (synt of -1 at s-particle)[112] (synt of 1 at s-particle)[113] (syntp of unavail of vp-1 at m-boolean)127



[114] (syntp of unavail of npp-1 of -2 at m-boolean)[115] (syntp of unavail of npp-1 of -3 at m-boolean)[116] (syntp of unavail of conj of -1 at m-boolean)[117] (syntp of unavail of pred of -1 at m-boolean)[118] (syntp of unavail of pred of -2 at m-boolean)[119] (syntp of unavail of from-quant of -2 at m-boolean)[120] (syntp of unavail of pred-compl of -1 at m-boolean)[121] (syntp of unavail of time of pred-compl of -1 at m-boolean)[122] (syntp of d-dividing-delimiter of last of -1 at m-boolean)[123] (syntp of unavail of obj of -1 at m-boolean)[124] (syntp of unavail of inf-compl of -1 at m-boolean)[125] (synt of alt2 of 1 at s-synt-elem)[126] (synt of alt3 of 1 at s-synt-elem)[127] (synt of -3 at s-verb)[128] (syntp of s-aux of -1 at m-boolean)[129] (classp of i-en-point of -1 at m-boolean)[130] (classp of c-at-time of -1 at m-boolean)[131] (classp of c-at-time of -2 at m-boolean)[132] (classp of i-eadv-there of -2 at m-boolean)[133] (classp of i-ev-be of -1 at m-boolean)[134] (classp of i-ep-to of -1 at m-boolean)[135] (classp of i-ep-to of 1 at m-boolean)[136] (classp of i-en-agent of -5 at m-boolean)[137] (classp of i-en-place of -5 at m-boolean)[138] (classp of i-en-quantity of -5 at m-boolean)[139] (classp of i-en-quantity of -4 at m-boolean)[140] (classp of i-en-agent of -3 at m-boolean)[141] (classp of i-en-place of -3 at m-boolean)[142] (classp of i-en-quantity of -3 at m-boolean)[143] (classp of i-en-tangible-object of -3 at m-boolean)[144] (classp of i-en-pronoun of -3 at m-boolean)[145] (classp of i-en-pronoun of -2 at m-boolean)[146] (classp of i-en-interr-pronoun of -2 at m-boolean)[147] (classp of i-en-agent of -2 at m-boolean)[148] (classp of i-en-proper-place of -2 at m-boolean)[149] (classp of i-en-place of -2 at m-boolean)[150] (classp of i-en-quantity of -2 at m-boolean)[151] (classp of i-en-temporal-entity of -2 at m-boolean)[152] (classp of i-en-currency-unit of -1 at m-boolean)[153] (classp of i-en-agent of -1 at m-boolean)[154] (classp of i-en-place of -1 at m-boolean)[155] (classp of i-en-percent of -1 at m-boolean)[156] (classp of i-en-percentage of -1 at m-boolean)128



[157] (classp of i-en-pronoun of -1 at m-boolean)[158] (classp of i-en-personal-pronoun of -1 at m-boolean)[159] (classp of i-en-personal-pronoun of -2 at m-boolean)[160] (classp of i-en-monetarily-quanti�able-abstract of -1 at m-boolean)[161] (classp of i-en-monetarily-quanti�able-abstract of -2 at m-boolean)[162] (classp of i-eadv-quanti�er of -2 at m-boolean)[163] (classp of i-en-mod-abstract of -3 at m-boolean)[164] (classp of i-en-monetarily-quanti�able-abstract of -3 at m-boolean)[165] (classp of i-en-quantifying-abstract of -3 at m-boolean)[166] (syntp of s-indef-pron of pred* of -3 at m-boolean)[167] (syntp of d-delimiter of last of -3 at m-boolean)[168] (synt of -2 at s-conj)[169] (classp of i-eadv-temporal-quanti�er of -1 at m-boolean)[170] (classp of i-en-tangible-object of -1 at m-boolean)[171] (classp of i-en-quantity of -1 at m-boolean)[172] (classp of i-en-temporal-entity of -1 at m-boolean)[173] (classp of i-en-unit of -1 at m-boolean)[174] (classp of i-en-agent of subj of -1 at m-boolean)[175] (classp of i-en-place of subj of -1 at m-boolean)[176] (classp of i-en-tangible-object of alt-nom of 1 at m-boolean)[177] (classp of i-en-agent of alt-nom of 1 at m-boolean)[178] (classp of i-en-place of alt-nom of 1 at m-boolean)[179] (classp of i-en-temporal-entity of 1 at m-boolean)[180] (classp of i-en-unit of alt-nom of 1 at m-boolean)[181] (classp of i-en-agent of alt-nom of 2 at m-boolean)[182] (classp of i-en-place of alt-nom of 2 at m-boolean)[183] (classp of i-en-tangible-object of alt-nom of 2 at m-boolean)[184] (classp of i-en-tangible-object of -2 at m-boolean)[185] (classp of i-en-temporal-entity of 2 at m-boolean)[186] (classp of i-en-unit of alt-nom of 2 at m-boolean)[187] (classp of i-en-interrogative of active-�ller-1 at m-boolean)[188] (classp of i-en-interrogative of -2 at m-boolean)[189] (classp of i-en-interrogative of -1 at m-boolean)[190] (classp of i-en-interr-pronoun of -1 at m-boolean)[191] (classp of i-en-interrogative of 1 at m-boolean)[192] (classp of i-eadv-at-location of -1 at m-boolean)[193] (classp of i-eadv-at-location of alt-adv of 1 at m-boolean)[194] (classp of i-eadv-to-location of alt-adv of 1 at m-boolean)[195] (gap of active-�ller-1 at m-�ller-status)[196] (gap of -2 at m-�ller-status)[197] (synt of -2 at s-app)[198] (synt of -1 at s-app)[199] (synt of 1 at s-app) 129



[200] (synt of -3 at s-numeral)[201] (synt of -2 at s-numeral)[202] (synt of -1 at s-numeral)[203] (synt of 1 at s-numeral)[204] (synt of 1 at s-conj)[205] (classp of i-en-demonstr-pronoun of -2 at m-boolean)B.2 Features Used in English to German Translation Disambigua-tion Decision StructuresThe following is a list of features used for English to German translation disambiguation. Recallthat the transfer examples and features are organized in transfer entries, each of which containsthe example phrases and features for a speci�c source concept. For each individual transfer entry,only a small subset of the following features is used.[1] (class of parent of parent at c-app)[2] (classp of c-at-time of parent at m-boolean)[3] (classp of c-to-quant of parent at m-boolean)[4] (classp of i-eadv-neg-adverb of quanti�er of parent at m-boolean)[5] (classp of i-en-agent of pred-compl of parent at m-boolean)[6] (classp of i-en-agent of theme of parent at m-boolean)[7] (classp of i-en-exchange-boerse of pred-compl of parent at m-boolean)[8] (classp of i-en-proper-place of mod of parent at m-boolean)[9] (classp of i-en-proper-place of pred-compl of parent at m-boolean)[10] (classp of i-en-tangible-object of theme of parent at m-boolean)[11] (number at f-number)[12] (synt of agent of parent at s-synt-elem)[13] (synt of parent of parent at s-synt-elem)[14] (syntp of s-np of theme of parent at m-boolean)[15] (syntp of s-sub-clause of theme of parent at m-boolean)[16] (syntp of unavail of det of pred-compl of parent at m-boolean)[17] (syntp of unavail of obj of parent at m-boolean)[18] (voice of parent at f-voice)
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Appendix CParse ExampleThe following sections show the sentence \I like the house Mr. Miller built." after segmentationand morphological analysis, the complete sequence of partial parse states and parse actions, and�nally the resulting parse tree.C.1 After Segmentation and Morphological Processing"I":synt: S-PRONclass: I-EN-PERSONAL-PRONOUNforms: (((NUMBER F-SING) (PERSON F-FIRST-P) (CASE F-NOM)))lex: "PRON"props: ((CAPITALIZATION TRUE))(OR"like":synt: S-PREPclass: I-EP-LIKEforms: (NIL)lex: "like""like":synt: S-VERBclass: I-EV-LIKEforms: (((PERSON F-SECOND-P) (NUMBER F-SING)(TENSE F-PRES-TENSE))((PERSON F-FIRST-P) (NUMBER F-SING) (TENSE F-PRES-TENSE))((NUMBER F-PLURAL) (TENSE F-PRES-TENSE))((TENSE F-PRES-INF)))lex: "like")"the":synt: S-DEF-ARTclass: I-EART-DEF-ARTforms: (NIL)lex: "the""new":synt: S-ADJclass: I-EADJ-NEWforms: (NIL)lex: "new" 131



props: ((ADJ-TYPE S-NON-DEMONSTR-ADJ))"house":synt: S-COUNT-NOUNclass: I-EN-HOUSEforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "house""Mr":synt: S-COUNT-NOUNclass: I-EN-MISTER-TITLEforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "Mr"props: ((CAPITALIZATION TRUE) (IS-ABBREVIATION TRUE))".":synt: D-PERIODlex: ".""Miller":synt: S-PROPER-NAMEclass: I-EN-MILLERforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "Miller"props: ((CAPITALIZATION TRUE))"Miller":synt: S-PROPER-NAMEclass: I-EN-MILLERforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "Miller"props: ((CAPITALIZATION TRUE))"built":synt: S-VERBclass: I-EV-BUILDforms: (((TENSE F-PAST-PART)) ((TENSE F-PAST-TENSE)))lex: "build"".":synt: D-PERIODlex: "."C.2 Parse State and Actions Step by Step* I like the new house Mr . Miller built .(S S-PRON)(I) * like the new house Mr . Miller built .(R 1 TO S-NP AS PRED)(I) * like the new house Mr . Miller built .(S S-VERB)(I) (like) * the new house Mr . Miller built .(R 1 TO S-VP AS PRED)(I) (like) * the new house Mr . Miller built .(S S-ART)(I) (like) (the) * new house Mr . Miller built .(S S-ADJ)(I) (like) (the) (new) * house Mr . Miller built .(R 1 TO S-ADJP AS PRED)(I) (like) (the) (new) * house Mr . Miller built .132



(S S-NOUN)(I) (like) (the) (new) (house) * Mr . Miller built .(R 1 TO S-NP AS PRED)(I) (like) (the) (new) (house) * Mr . Miller built .(R 2 AS MOD SAME(I) (like) (the) (new house) * Mr . Miller built .(R 2 AS DET SAME)(I) (like) (the new house) * Mr . Miller built .(EMPTY-CAT FROM NP-1 AT 0) (M -1 GAP ACTIVE-FILLER)(I) (like) (<the new house>1) (<REF>1) * Mr . Miller built .(S S-NOUN)(I) (like) (<the new house>1) (<REF>1) (Mr) * . Miller built .(S D-DELIMITER)(I) (like) (<the new house>1) (<REF>1) (Mr) (.) * Miller built .(R 2 AS PRED DUMMY)(I) (like) (<the new house>1) (<REF>1) (Mr.) * Miller built .(S S-NOUN)(I) (like) (<the new house>1) (<REF>1) (Mr.) (Miller) * built .(R 2 AS MOD PRED)(I) (like) (<the new house>1) (<REF>1) (Mr. Miller) * built .(R 1 TO S-NP AS PRED)(I) (like) (<the new house>1) (<REF>1) (Mr. Miller) * built .(S S-VERB)(I) (like) (<the new house>1) (<REF>1) (Mr. Miller) (built) * .(R 1 TO S-VP AS PRED)(I) (like) (<the new house>1) (<REF>1) (Mr. Miller) (built) * .(R 2 TO S-SNT AS (SUBJ AGENT) SAME)(I) (like) (<the new house>1) (<REF>1) (Mr. Miller built) * .(R 2 TO S-REL-CLAUSE AS (OBJ THEME) SAME)(I) (like) (<the new house>1) (<REF>1 Mr. Miller built) * .(R 2 AS SAME MOD)(I) (like) (<the new house <REF>1 Mr. Miller built>1) * .(R 2 AS SAME (OBJ THEME))(I) (like <the new house <REF>1 Mr. Miller built>1) * .(R 2 TO S-SNT AS (SUBJ EXP) SAME)(I like <the new house <REF>1 Mr. Miller built>1) * .(S D-DELIMITER)(I like <the new house <REF>1 Mr. Miller built>1) (.) *(R 2 AS SAME DUMMY)(I like <the new house <REF>1 Mr. Miller built>1.) *(DONE)C.3 Resulting Parse Tree"I like <the new house <REF>1 Mr. Miller built>1.":synt: S-SNTclass: I-EV-LIKEforms: (((CASE F-NOM) (TENSE F-PRES-TENSE) (PERSON F-FIRST-P)(NUMBER F-SING)))lex: "like"props: ((CACHED-BEST-PATTERN 25(((SUBJ EXP (I-EN-AGENT)) (OBJ THEME (I-EN-THING)))(( <>1 "<the new house <REF>1 Mr. Miller built>1" 1)133



( "I" 0)))))subs:(SUBJ EXP) "I":synt: S-NPclass: I-EN-PERSONAL-PRONOUNforms: (((NUMBER F-SING) (PERSON F-FIRST-P) (CASE F-NOM)))lex: "PRON"subs:(PRED) "I":synt: S-PRONclass: I-EN-PERSONAL-PRONOUNforms: (((NUMBER F-SING) (PERSON F-FIRST-P) (CASE F-NOM)))lex: "PRON"props: ((CAPITALIZATION TRUE))(PRED) "like":synt: S-VERBclass: I-EV-LIKEforms: (((PERSON F-SECOND-P) (NUMBER F-SING)(TENSE F-PRES-TENSE))((PERSON F-FIRST-P) (NUMBER F-SING)(TENSE F-PRES-TENSE))((NUMBER F-PLURAL) (TENSE F-PRES-TENSE))((TENSE F-PRES-INF)))lex: "like"(OBJ THEME) "<the new house <REF>1 Mr. Miller built>1":synt: S-NPclass: I-EN-HOUSEforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "house"props: ((INDEX 1) (ORIG-SURF "the new house") (INDEXED TRUE))subs:(DET) "the":synt: S-DEF-ARTclass: I-EART-DEF-ARTforms: (NIL)lex: "the"(MOD) "new":synt: S-ADJPclass: I-EADJ-NEWforms: (NIL)lex: "new"subs:(PRED) "new":synt: S-ADJclass: I-EADJ-NEWforms: (NIL)lex: "new"props: ((ADJ-TYPE S-NON-DEMONSTR-ADJ))(PRED) "house":synt: S-COUNT-NOUNclass: I-EN-HOUSEforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "house" 134



(MOD) "<REF>1 Mr. Miller built":synt: S-REL-CLAUSEclass: I-EV-BUILDforms: (((PERSON F-THIRD-P) (NUMBER F-SING) (CASE F-NOM)(TENSE F-PAST-TENSE)))lex: "build"subs:(OBJ THEME) "<REF>1":synt: S-NPclass: I-EN-HOUSEforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "house"props: ((GAP ACTIVE-FILLER) (INDEXED TRUE) (REF 1)(ORIG-SURF "the new house"))subs:(DET) "the":synt: S-DEF-ARTclass: I-EART-DEF-ARTforms: (NIL)lex: "the"(MOD) "new":synt: S-ADJPclass: I-EADJ-NEWforms: (NIL)lex: "new"subs:(PRED) "new":synt: S-ADJclass: I-EADJ-NEWforms: (NIL)lex: "new"props: ((ADJ-TYPE S-NON-DEMONSTR-ADJ))(PRED) "house":synt: S-COUNT-NOUNclass: I-EN-HOUSEforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "house"(SUBJ AGENT) "Mr. Miller":synt: S-NPclass: I-EN-MILLERforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "Miller"subs:(PRED) "Mr. Miller":synt: S-PROPER-NAMEclass: I-EN-MILLERforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "Miller"subs:(MOD) "Mr.":synt: S-COUNT-NOUNclass: I-EN-MISTER-TITLEforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))135



lex: "Mr"subs:(PRED) "Mr":synt: S-COUNT-NOUNclass: I-EN-MISTER-TITLEforms: (((NUMBER F-SING)(PERSON F-THIRD-P)))lex: "Mr"props: ((CAPITALIZATION TRUE)(IS-ABBREVIATION TRUE))(DUMMY) ".":synt: D-PERIODlex: "."(PRED) "Miller":synt: S-PROPER-NAMEclass: I-EN-MILLERforms: (((NUMBER F-SING) (PERSON F-THIRD-P)))lex: "Miller"props: ((CAPITALIZATION TRUE))(PRED) "built":synt: S-VERBclass: I-EV-BUILDforms: (((TENSE F-PAST-PART)) ((TENSE F-PAST-TENSE)))lex: "build"(DUMMY) ".":synt: D-PERIODlex: "."
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Appendix DTranslation Evaluation Questionnaireand KeyD.1 Translation Evaluation QuestionnaireThe questionnaires handed out for translation evaluation were hardcopies of the two Web pageshttp://www.cs.utexas.edu/users/ulf/diss/eval tegm.html, the version that always includeshuman translations, and http://www.cs.utexas.edu/users/ulf/diss/eval tego.html, the ver-sion that does not include human translations, unless it happens to match any of the machinetranslations.The questionnaire starting on the next page is the dissertation format version ofhttp://www.cs.utexas.edu/users/ulf/diss/eval tegm.html .
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Translation Evaluation of Wall Street Journal sentences 48-79October 1996http://www.cs.utexas.edu/users/ulf/diss/eval tegm.htmlHello! This evaluation will help the research of a dissertation in the area of natural languageprocessing. The following includes the results of computer programs that translated sentences fromthe Wall Street Journal from English to German.Please evaluate the following translations by assigning grades for both grammatical correctnessand meaning preservation using the following tables as a guideline. Note that the scale is like theone used in the German education system (1 = sehr gut; 2 = gut; 3 = befriedigend; 4 = ausre-ichend; 5 = mangelhaft; 6 = ungen�ugend).Grammar (syntax and morphology)Grade Usage1 Correct grammar, including word order, word endings; the sentencereads uently.2 Basically correct grammar, but not very uent.3 Mostly correct grammar, but with signi�cant shortcomings.4 The grammar is acceptable only in parts of the sentence.5 The grammar is generally so bad that the entire sentence becomes veryhard to read.6 The grammar is so bad that the sentence becomes totallyincomprehensible.Meaning (semantics)Grade Usage1 The meaning is fully preserved and can easily be understood.2 The meaning is mostly preserved and can be understood fairly well.3 The general idea of the sentence is preserved.4 Contains some useful information from the original sentence.5 A reader of the translated sentence can guess what the sentence is about,but the sentence provides hardly any useful information.6 The sentence is totally incomprehensible or totally misleading.(EXAMPLE)Yesterday, I ate a red apple.(a) G�astern, ich haben essen Ap-rot. Grammar: 5 Meaning: 2(b) Meine roten �Apfel haben viel gegessen. Grammar: 1 Meaning: 6138



The evaluation of the translations will take you about 45-60 minutes, or about 1-3 minutes foreach of the 32 English sentences and their German translations. If you have any questions, pleasedon't hesitate to contact Ulf at� +1 (512) 320-0650 (home; voice & fax)� +1 (512) 471-9777 (o�ce)� ulf@cs.utexas.eduPlease return the evaluations to:� Campus mail: Ulf Hermjakob - Dept. of Computer Sciences - Mail code C0500� Postal address: Ulf Hermjakob - 600 W26th St #A308 - Austin, TX 78705� O�ce location: Taylor Hall 150B (with 24 hour accessible mailbox)� or call or email Ulf for pick-up
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(WSJ 48)Largely because of the falling dollar, West German labor costs rose to 120% of thosefor U.S. production workers from 75% in 1985.(a) Im gro�en und ganzen wegen des fallenden Dollars stiegen Westlichedeutsche Arbeitskosten 1985 zu 120% von denen f�ur die Produktionsarbeiterder USA von 75%. Grammar:Meaning:(b) Gro� wegen des fallenden Dollars, stiegen westdeutsche Lohnkosten zu 120%von denen f�ur US-Produktionsarbeiter von 75% 1985. Grammar:Meaning:(c) Zum gr�o�ten Teil wegen des fallenden Dollars stiegen westdeutsche Arbeit-skosten auf 120% von denen f�ur US Produktionsarbeiter von 75% 1985. Grammar:Meaning:(d) Zum gr�o�ten Teil wegen des fallend Dollar, Westdeutscher wirtschaftlichePreise Rosen to120% von jenen f�ur AMERIKANISCHE Produktion-Arbeiter von 75% in 1985. Grammar:Meaning:(e) Zum gr�o�ten Teil wegen des fallenden Dollars stiegen westdeutscheLohnkosten auf 120% von denen f�ur US-Industriearbeiter von 75% im Jahre1985. Grammar:Meaning:(f) Zum gr�o�ten Teil wegen des fallenden Dollars stiegen westdeutsche Arbeit-skosten f�ur US Produktionsarbeiter auf 120% von denen von 75% 1985. Grammar:Meaning:(WSJ 49)In high school, he was a member of the speech team.(a) Im Gymnasium war er ein Mitglied der Redemannschaft. Grammar:Meaning:(b) In Gymnasium war er ein Mitglied der Rede-Mannschaft. Grammar:Meaning:(c) Auf dem Gymnasium war er ein Mitglied der Redemannschaft. Grammar:Meaning:(d) In der hohen Schule war er ein Mitglied der Redemannschaft. Grammar:Meaning:(e) In High School war er ein Mitglied des Redeteams. Grammar:Meaning:(WSJ 50)But the immediate concern is the short-term credits.(a) Aber das unmittelbare Anliegen ist die kurzfristigen Kredite. Grammar:Meaning:(b) Aber das unmittelbare Anliegen sind die kurzfristigen Kredite. Grammar:Meaning:(c) Aber die unmittelbare Angelegenheit ist die kurzfristigen Kredite. Grammar:Meaning:(d) Aber das sofortige Interesse ist die kurzfristigen Gutschriften. Grammar:Meaning:(e) Aber die unmittelbare Sorge ist die kurzfristigen Kredite. Grammar:Meaning:140



(WSJ 51)Canadian manufacturers' new orders fell to $20.80 billion (Canadian) in January, down4% from December's $21.67 billion on a seasonally adjusted basis, Statistics Canada,a federal agency, said.(a) Neue Auftr�age der kanadischen Hersteller �elen auf $20,80 Milliarde(Kanadier) im Januar, unten 4% von Dezembers $21,67 Milliarde auf einerjahreszeitlichen Grundlage, Statistiken Kanada, ein Bundesamt, gesagt. Grammar:Meaning:(b) Kanadischer Hersteller neue Auftr�age seien im Januar auf 20.8 Mrd.(kanadische) Dollar gefallen, ein Minus von 4% von Dezembers 21.67 Mrd.Dollar auf einer saisonal bereinige Basis, sagte Statistik-Kanada eine Bun-desbeh�orde. Grammar:Meaning:(c) Neuen Auftr�age kanadischer Hersteller f�allten zu 20,80 Milliarden Dollar(Kanadier) in Januar, herunter 4% vom $. Dezember 21,67 Milliarde aufeiner von seasonally eingestellten Grundlage, statistische Angaben Kanada,eine Bundesagentur sagte. Grammar:Meaning:(d) Die neuen Disziplinen kanadischer Hersteller �elen zu $20.80 milliard(kanadisch) in Januar, besiegen Sie 4% von Dezembers $21.67 milliard aufeiner saisongem�a� eingestellt Basis, Statistiken, die Kanada, eine BundesAgentur, sagte. Grammar:Meaning:(e) Neue Auftr�age kanadischer Hersteller seien im Januar auf 20.8 Mrd.(kanadische) Dollar gefallen, ein Minus von 4% im Vergleich zu 21.67 Mrd.Dollar im Dezember auf einer saisonal bereinigten Basis, sagte Statistik-Kanada, eine Bundesbeh�orde. Grammar:Meaning:(f) Kanadischer Hersteller neue Auftr�age seien im Januar auf 20.8 Mrd. Dollar(kanadisch) gefallen, ein Minus von 4% aus Dezember 21.67 Mrd. Dollar aufeiner saisonal bereinige Basis, sagte Statistik-Kanada eine Bundesbeh�orde. Grammar:Meaning:(WSJ 52)The Federal Farm Credit Banks Funding Corp. plans to o�er $1.7 billion of bondsThursday.(a) Federal Farm Credit Banks Funding Corp. plant, $1,7 Milliarde von Bindun-gen Donnerstag anzubieten. Grammar:Meaning:(b) Die Bundes Bauernhof-Kredit-Banken, die �nanzieren, AG plant, $1.7 mil-liard von Banden Donnerstag anzubieten. Grammar:Meaning:(c) Die Federal Farm Credit Banks Funding Corp. plant, Donnerstag 1.7 Mrd.Dollar in Obligationen anzubieten. Grammar:Meaning:(d) Die Bundesstaatlichen Bauernhofkreditbank�nanzierungs Corp. Pl�ane zuAngebot 1,7 Milliarden Dollar �Ubereinkommen-Donnerstags. Grammar:Meaning:(e) Die Bundesbauernhofkreditbanken�nanzgesellschaftpl�ane, Donnerstag 1.7Mrd. Dollar in Obligationen anzubieten. Grammar:Meaning:(f) Die Bundesbauernhofkreditbanken�nanzgesellschaft plant, Donnerstag 1.7Mrd. Dollar in Obligationen anzubieten. Grammar:Meaning:141



(WSJ 53)The St. Louis-based bank holding company previously traded on the American StockExchange.(a) Die Str. Louis-gest�utzte Bankholdinggesellschaft n�utzte vorher dieamerikanische B�orse aus. Grammar:Meaning:(b) Die der Sankt Louis basierte Bankholdinggesellschaft handelte fr�uher an dieamerikanische B�orse. Grammar:Meaning:(c) Die in St. Louis basierte Bankholdinggesellschaft wurde zuvor an deramerikanischen B�orse gehandelt. Grammar:Meaning:(d) Die St. Louis basierte Bankholdinggesellschaft handelte fr�uher an dieamerikanische B�orse. Grammar:Meaning:(e) Die Str. Louis-louis-based Bank, die Firma tauschte h�alt vorher, auf deramerikanischen B�orse. Grammar:Meaning:(f) Die Str. Louis-based, die Bank, die Gesellschaft vorher h�alt, auf deramerikanischen B�orse tauschte. Grammar:Meaning:(WSJ 54)The transaction is expected to be completed by May 1.(a) Die Verhandlung wird erwartet, durch den 1. Mai vervollst�andigt zu werden. Grammar:Meaning:(b) Die Verhandlung wird erwartet, bis Mai 1 durchgef�uhrt zu werden. Grammar:Meaning:(c) Es wird erwartet, da� die Transaktion bis zum erstem Mai abgeschlossenwird. Grammar:Meaning:(d) Es wird bis zum erstem Mai erwartet, da� die Transaktion abgeschlossenist. Grammar:Meaning:(e) Die Transaktion soll im 1. Mai beendet werden. Grammar:Meaning:(f) Es wird erwartet, da� die Transaktion bis zum 1. Mai abgeschlossen wird. Grammar:Meaning:(WSJ 55)A successor for him hasn't been named.(a) Ein Nachfolger f�ur ihn ist nicht genannt worden. Grammar:Meaning:(WSJ 56)The president's news conference was a much-needed step in that direction.(a) Die Nachrichtenkonferenz des Pr�asidenten war ein sehr notwendig Schrittin jener Richtung. Grammar:Meaning:(b) Die Nachricht-Konferenz des Pr�asidenten war ein viel-gebraucht Schritt injenem direction. Grammar:Meaning:(c) Des Pr�asidenten Nachrichtenkonferenz war ein dringend notwendiger Schrittin dieser Richtung. Grammar:Meaning:142



(d) Die Nachrichtenkonferenz des Pr�asidenten war ein dringend notwendigerSchritt in diese Richtung. Grammar:Meaning:(e) Die Nachrichtenkonferenz des Pr�asidenten war ein dringend ben�otigterSchritt in dieser Richtung. Grammar:Meaning:(WSJ 57)The Tokyo exchange was closed Saturday as part of its regular holiday schedule.(a) Die Tokyo-B�orse wurde Sonnabend als Teil seines normalen Feiertagzeit-plans geschlossen. Grammar:Meaning:(b) Der Tokyoaustausch war geschlossener Samstag als Teil seines regelm�a�igenFeiertagzeitplanes. Grammar:Meaning:(c) Der Tokio Austausch wurde Samstag als Teil seines regelm�a�igen Feiertag-planes geschlossen. Grammar:Meaning:(d) The, Tokyo Tausch wurde Samstag als Teil seines regul�aren holidayschedulegeschlossen. Grammar:Meaning:(e) Die Tokyoter B�orse wurde Sonnabend als Teil ihres normalen Feiertagszeit-plans geschlossen. Grammar:Meaning:(WSJ 58) Pan Am said its full-year results were hurt by foreign currency exchangelosses of $46.8 million, primarily related to Japanese yen debt, compared with $11.1million in 1985.(a) Pan Am sagte, seine Ganzjahresresultate seien durch 46.8 Mio.Dollar, verglichen mit 11.1 Mio. Dollar 1985, in ausl�andischenW�ahrungswechselverlusten in erster Linie zur japanischer Yenschuld bezo-gen geschadet worden. Grammar:Meaning:(b) Pan Am, die seine Volljahr-Resultate besagt ist, wurden durch die Aus-tauschverluste der ausl�andischen W�ahrung von $46,8 Million verletzt,haupts�achlich bezogen auf der japanischen Yenschuld, verglichen mit $11,1Million 1985. Grammar:Meaning:(c) Pfanne wird gesagt, da� seine voll-Jahr-Ergebnisse durch fremdecurrencyexchange-Verluste von $46.8 million verletzt wurden, haupts�achlicherz�ahlt zu Japanisch Yen-Schuld, die mit $11.1 million in 1985 verglichenwurde. Grammar:Meaning:(d) Pan Am sagte, seine vollen Jahrresultate seien durch 46.8 Mio.Dollar, verglichen 1985 mit 11.1 Mio. Dollar, in ausl�andischenW�ahrungswechselverlusten in erster Linie zur japanischer Yenschuld bezo-gen geschadet worden. Grammar:Meaning:(e) Pfanne wird gesagt, da� seine voll-Jahr-Ergebnisse von Devisen-Austausch-Verlusten von 46,8 Millionen Dollar weh getan wurde, vorwiegend mitjapanischer Yenschuld zusammenhing, verglichen 1985 mit 11,1 MillionenDollar. Grammar:Meaning:(f) Pan Am sagte, seine Ganzjahresresultate seien durch ausl�andischeW�ahrungswechselverluste in H�ohe von 46.8 Mio. Dollar beeintr�achtigt wor-den, insbesondere durch Schulden in japanischen Yen, verglichen mit 11.1Mio. Dollar im Jahre 1985. Grammar:Meaning:143



(WSJ 59)The American hospital sector spent $181 billion in 1986.(a) Der amerikanische Krankenhaussektor gab 1986 181 Mrd. Dollar aus. Grammar:Meaning:(b) Der amerikanische Krankenhaussektor gab 181 Milliarden Dollar 1986 aus. Grammar:Meaning:(c) Der amerikanische Krankenhaussektor wendete $181 Milliarde 1986 auf. Grammar:Meaning:(d) Der amerikanische Krankenhaus-Sektor gab $181 milliard in 1986 aus. Grammar:Meaning:(WSJ 60)But the company inquiry, which began a few months ago, changed everything.(a) Aber die Firmenanfrage, die vor einigem Monaten an�ng, �anderte alles. Grammar:Meaning:(b) Aber die Gesellschaftsanfrage, es einem wenigen Monat vor begann, �andertealles. Grammar:Meaning:(c) Aber die Firmenuntersuchung, die vor wenigen Monaten begann, �andertealles. Grammar:Meaning:(d) Aber die Gesellschaftsanfrage, die es einem wenigen Monat vor begann,�anderte alles. Grammar:Meaning:(e) Aber die Firmaanfrage, die vor einigen Monaten an�ng, �anderte alles. Grammar:Meaning:(f) Aber die Gesellschaft-Anfrage, die vor einigen Monaten an�ng, ver�andertealles. Grammar:Meaning:(WSJ 61)Texas Instruments rose 3 1/4 to 175 1/2.(a) Texas Instruments stieg um 13/4 auf 351/2. Grammar:Meaning:(b) Texas Instrumente standen 3 1/4 bis 175 1/2 auf. Grammar:Meaning:(c) Texas Instruments stieg 3 1/4 bis 175 1/2. Grammar:Meaning:(d) Texas Instruments stiegen um 13/4 auf 351/2. Grammar:Meaning:(e) Texas Instruments stieg um 3 1/4 auf 175 1/2. Grammar:Meaning:(f) Texas Instrumente, die rosarot sind, 3 1/4 bis 175 1/2. Grammar:Meaning:144



(WSJ 62)If futures fell more than 0.20 point below the stocks, he would buy futures and sellstocks instead.(a) Wenn Zukunft mehr als 0.20 Punkt unter den Aktien f�allten, w�urdete erkaufen Sie Zukunft und verkaufen Sie Aktien stattdessen. Grammar:Meaning:(b) Wenn Terminpapiere mehr als 0.2 Punkte unter die Aktien �elen, w�urde erTerminpapiere kaufen, und Aktien stattdessen verkaufen. Grammar:Meaning:(c) Wenn Zukunft mehr als 0,20 Punkt unter die Vorr�ate �el, w�urde er Zukunftkaufen und Vorr�ate anstatt verkaufen. Grammar:Meaning:(d) Wenn Termingesch�afte mehr als 0.2 Punkt unter die Aktien �elen, w�urdeer Termingesch�afte kaufen, und Aktien stattdessen verkaufen. Grammar:Meaning:(e) Wenn Termingesch�afte mehr als 0.2 Punkt unter den Aktien �elen, w�urdeer Termingesch�afte kaufen, und Aktien stattdessen verkaufen. Grammar:Meaning:(f) Wenn Zukunft mehr f�allt als 0,20 unter den Anteilen richten, w�urde erZukunft kaufen und Anteile stattdessen verkaufen. Grammar:Meaning:(WSJ 63)"I'm willing to work for a foreign company," says the father of two.(a) "Ich bin bereit, f�ur eine fremde Firma zu arbeiten," sage den Vater vonzwei. Grammar:Meaning:(b) Ich bin bereit zu arbeiten f�ur eine ausl�andische Gesellschaft sagt der Vatervon 2. Grammar:Meaning:(c) Ich sei bereit, f�ur eine ausl�andische Gesellschaft zu arbeiten, sagt der Vatervom 2. Grammar:Meaning:(d) "Ich, der wollen arbeiten f�ur eine fremde Gesellschaft," sagt den Vater vonzwei. Grammar:Meaning:(e) " ich bin bereit, f�ur eine Auslandsgesellschaft zu arbeiten, " sagt den Vatervon zwei. Grammar:Meaning:(f) "Ich bin bereit, f�ur eine ausl�andische Gesellschaft zu arbeiten", sagt derVater von zweien. Grammar:Meaning:(WSJ 64)It estimated that sales totaled $217 million, compared with the year-earlier $257 mil-lion.(a) Es sch�atzte ab, da� Verk�aufe zusammen 217 Millionen Dollar z�ahlten, ver-glichen 257 Million mit den jahresfr�uheren $. Grammar:Meaning:(b) Es sch�atzte, da� Verk�aufe $217 million zusammenz�ahlten, verglich mit dasJahr-fr�uher $257 million. Grammar:Meaning:(c) Es sch�atzte, da� Verk�aufe 217 Mio. Dollar, verglichen mit dem 257 Mio.Dollar im Jahr zuvor, betrugen. Grammar:Meaning:(d) Sie sch�atzte, da� Verk�aufe $217 Million zusammenz�ahlten, mit dem Jahr-fr�uh $257 Million verglichen. Grammar:Meaning:(e) Es sch�atzte, da� Verk�aufe insgesamt 217 Mio. Dollar betrugen, verglichenmit 257 Mio. Dollar im Jahr zuvor. Grammar:Meaning:145



(WSJ 65)With the falling dollar, U.S. manufacturers are in a pretty good position to competeon world markets.(a) Mit dem fallenden Dollar sind US Hersteller in einer ziemlich guten Position,um auf Weltm�arkte zu konkurrieren. Grammar:Meaning:(b) Mit dem fallenden Dollar sind die Hersteller der USA in der ziemlich gutenLage, auf Weltm�arkten zu konkurrieren. Grammar:Meaning:(c) Mit dem fallend Dollar sind AMERIKANISCHE Hersteller in einer ganzguten Position, auf Welt-M�arkten zu konkurrieren. Grammar:Meaning:(d) Mit dem fallenden Dollar sind{ US-Hersteller in einer h�ubschen guten Po-sition zum Konkurrieren in den Weltm�arkten. Grammar:Meaning:(e) Mit dem fallenden Dollar sind US-Hersteller in einer ziemlich guten Position,auf Weltm�arkten zu konkurrieren. Grammar:Meaning:(f) Mit dem fallenden Dollar sind US Hersteller in einer ziemlich guten Position,auf Weltm�arkte zu konkurrieren. Grammar:Meaning:(WSJ 66)You go on to Bank B and get another loan, using some of Bank B's proceeds to payback some of your debt to Bank A.(a) Sie gehen zu Bank B �uber und bekommen ein anderes Darlehen, waseinige von Bank B Erl�osen benutzt, um etwas von Ihrer Schuld zu BankA zur�uckzuzahlen. Grammar:Meaning:(b) Sie gehen weiter, B zu �uberh�ohen und noch einen Kredit zu bekommen,das Benutzen von einigen von Bank B's geht weiter, einige Ihrer Schuldzur�uckzuzahlen, um A. zu �uberh�ohen Grammar:Meaning:(c) **abend** Sie fortfahren on zu haben b und erhalten ein Darlehen, miteinig von Ertrag der Bank b zu zahlen zur�uck etwas von Ihr Schuld zu Banka. Grammar:Meaning:(d) Man f�ahrt auf Bank-b fort, und bekommt ein weiter Kredit einige von Bank-bs Ertr�age, einige von deiner Schuld zur zur�uckzuzahlen, benutzend. Grammar:Meaning:(e) Man f�ahrt zur Bank b fort, und bekommt ein weiter Kredit, um einigevon deiner Schuld zur Bank a zur�uckzuzahlen, einige von Bank-bs Ertr�agebenutzend. Grammar:Meaning:(f) Man wendet sich dann an Bank B und bekommt dort einen weiteren Kredit,den man dann teilweise dazu benutzt, einen Teil der Schulden bei Bank Azur�uckzuzahlen. Grammar:Meaning:
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(WSJ 67)The critical point is to know when Brazil will produce an economic policy to generateforeign exchange to pay its interest.(a) Der kritische Punkt soll wissen, wann Brasilien eine Wirtschaftspolitik pro-duziert, um Devisenkurs zu erzeugen, um sein Interesse zu zahlen. Grammar:Meaning:(b) Der kritische Punkt ist, um zu kennen, wann Brasilien eine Wirtschaftspoli-tik produzieren wird, um ausl�andischen Wechsel zu erzeugen, um seinenZins zu zahlen. Grammar:Meaning:(c) Der kritische Punkt sollte wissen, wenn Brasilien einen economicpolicy pro-duzieren wird, um fremden Tausch zu erzeugen, um sein Interesse zu zahlen. Grammar:Meaning:(d) Der kritische Punkt ist, zu wissen, wann Brazil, um, um seinen Zins zuzahlen, ausl�andischen Wechsel zu erzeugen, eine Wirtschaftspolitik pro-duzieren wird. Grammar:Meaning:(e) Der kritische Punkt ist zu wissen, wann Brasilien eine Wirtschaftspolitikaufstellen wird, um Au�enhandel zu erzeugen, um seine Zinsen zu zahlen. Grammar:Meaning:(f) Der kritische Punkt ist, zu wissen, wann Brasilien eine wirtschaftliche Politikproduziert, um Devisen zu generieren, um seine Zinsen zu bezahlen. Grammar:Meaning:(WSJ 68)Manufacturers' shipments followed the same trend, falling 1.5% in January to $21.08billion, after a 2.8% increase the previous month.(a) Die Sendungen von Herstellern folgten der gleichen Tendenz, fallenden 1,5%im Januar zu 21,08Milliarden Dollar, nachdem ein 2,8% den vorhergehendenMonat vergr�o�ert. Grammar:Meaning:(b) Herstellersendungen folgten dem gleichen Trend und �elen im Januar um1.5% auf 21.08 Mrd. Dollar nach einer 2.8% Zunahme im vorherigen Monat. Grammar:Meaning:(c) Die Sendungen Hersteller folgten dem gleichen Trend, beim Fallen, 1.5% inJanuar zu $21.08 milliard, nach einem 2.8% Zunahme der vorausgehendeMonat. Grammar:Meaning:(d) Hersteller Sendungen folgten den gleichen Trend in Januar auf 21.08 Mrd.Dollar 1.5% fallend nach einer 2.8% Zunahme dem vorherig Monat. Grammar:Meaning:(e) Hersteller Sendungen im Januar 1.5% auf 21.08 Mrd. Dollar fallend folgtenden gleichen Trend nach einer 2.8% Zunahme der vorherige Monat. Grammar:Meaning:(f) Versand der Hersteller folgte der gleichen Tendenz, fallenden 1,5% im Jan-uar bis $21,08 Milliarde, nachdem eine Zunahme 2,8% der vorhergehendeMonat. Grammar:Meaning:
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(WSJ 69)The o�erings will be made through the corporation and a nationwide group of secu-rities dealers and dealer banks.(a) Die Angebote werden durch die Gesellschaft und eine landesweit Gruppevon Wertpapierh�andlern und H�andler Banken gemacht werden. Grammar:Meaning:(b) Die Gaben werden durch die Firma gemacht werden, und anationwide grup-pieren von Sicherheiten-H�andlern und H�andler-Banken. Grammar:Meaning:(c) Zu den Angeboten wird durch das Unternehmen und eine nationwideGruppe von Wertpapierh�andlern und H�andlerbanken gemacht. Grammar:Meaning:(d) Die Angebote werden durch die Gesellschaft und eine landesweite Gruppevon Wertpapierh�andlern und H�andlerbanken gemacht werden. Grammar:Meaning:(e) Die Opfer werden durch die Corporation und eine allgemein Gruppe Wert-papierh�andler und H�andlerbanken gebildet. Grammar:Meaning:(WSJ 70)The real estate services company formerly traded over the counter.(a) Die wirkliche Gut-Dienste-Gesellschaft tauschte �uber thecounter ehemals. Grammar:Meaning:(b) Die Immobilienservicegesellschaft handelte fr�uher im Freiverkehr. Grammar:Meaning:(c) Die Immobilienservicegesellschaft wurde fr�uher im Freiverkehr gehandelt. Grammar:Meaning:(d) Die Immobilien warten Firma, die fr�uher �uber dem Z�ahler getauscht war. Grammar:Meaning:(e) Die Immobilienservice-Firma tauschte fr�uher �uber dem Kostenz�ahler. Grammar:Meaning:(WSJ 71)The shares are convertible at a rate of $9.50 of preferred for each common share.(a) Die Anteile sind mit einer Rate von $9,50 von bevorzugt f�ur jeden allge-meinen Anteil umwandelbar. Grammar:Meaning:(b) Die Anteile sind umwandelbar bei einer Rate von $9.50 von, zog vor f�urjeden gew�ohnlichen Anteil. Grammar:Meaning:(c) Die Aktien sind zu einem Kurs von 9.5 Dollar in bevorzugter pro Stammak-tie konvertierbar. Grammar:Meaning:(d) Die Aktien sind zu einem Kurs von 9.50 Dollar in Vorz�ugen pro Stammaktiekonvertierbar. Grammar:Meaning:(e) Die Anteile sind bei einer Geschwindigkeit von 9,50 Dollar f�ur jeden weitver-breiteten Anteil konvertibel von vorgezogen. Grammar:Meaning:(f) Die Aktien sind konvertierbar zu einem Kurs von 9.5 Dollar von bevorzugtpro Stammaktie. Grammar:Meaning:148



(WSJ 72)He continues as president of the company's corporate division.(a) Er setzt als Pr�asident von der korporativen Teilung der Gesellschaft fort. Grammar:Meaning:(b) Er macht als Pr�asident der Gesellschaft Firmenabteilung weiter. Grammar:Meaning:(c) Er macht als Pr�asident der k�orperschaftlichen Division der Firma weiter. Grammar:Meaning:(d) Er macht als Pr�asident der Firmenabteilung des Unternehmens weiter. Grammar:Meaning:(e) Er f�ahrt als Pr�asident der korporativen Abteilung der Firma fort. Grammar:Meaning:(WSJ 73)In tests it has worked for many heart-attack victims.(a) In den Tests, die es f�ur viele funktioniert hat, Opfer Herz-angreifen. Grammar:Meaning:(b) In Pr�ufungen hat es f�ur viele Herz-Angri�s-Opfer gearbeitet. Grammar:Meaning:(c) In Tests hat es f�ur viele Herzinfarktopfer funktioniert. Grammar:Meaning:(d) In Pr�ufungen hat es f�ur viele Herz-Angri�-Opfer gearbeitet. Grammar:Meaning:(e) In Tests hat es f�ur viele Herzinfarktopfer gearbeitet. Grammar:Meaning:(WSJ 74)The percentage change is since year-end.(a) Die Prozentsatz�Anderung ist seit Jahresende. Grammar:Meaning:(b) Die Prozentsatz�anderung ist seit Jahresende. Grammar:Meaning:(c) Die Prozent �Anderung ist seit Jahr-Spitze. Grammar:Meaning:(d) Die Prozentsatz�anderung ist seit year-end. Grammar:Meaning:(e) Die Prozentsatz�anderung ist seit Jahres-Ende. Grammar:Meaning:
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(WSJ 75)He said Pan Am currently has "in excess of $150 million" in cash.(a) Er sagte, da� Pan Am z.Z. " �uber $150 Million " im Bargeld hat. Grammar:Meaning:(b) Er sagte, Pan Am habe gegenw�artig �uber 150 Mio. Dollar in Bargeld. Grammar:Meaning:(c) Er sagte, da� Pfannenvormittags zur Zeit "mehr als 150 Millionen Dollar"in Bargeld hat. Grammar:Meaning:(d) Er sagte, da� Pfanne ist, hat gegenw�artig-" in �Uberschu� von $150 million"in in bar. Grammar:Meaning:(WSJ 76)These revenues could then have been used for many purposes, such as funding thosepeople without medical insurance.(a) Diese Einkommen h�atten dann f�ur viele Zwecke benutzt werden k�onnen, wiedie Finanzierung jener Menschen ohne medizinische Versicherung. Grammar:Meaning:(b) Diese Einkommen konnten f�ur viele Zwecke, wie Finanzierung jener Leuteohne medizinische Versicherung dann benutzt worden sein. Grammar:Meaning:(c) Diese Einnahmen h�atten dann f�ur viele Zwecke benutzt werden k�onnen, wiez.B. der Bezuschussung von Leuten ohne Krankenversicherung. Grammar:Meaning:(d) Diese Einnahmen gekonnt werden dann f�ur viele Zwecke benutzt werden wieFinanzen diese Leute ohne die Krankenversicherung. Grammar:Meaning:(e) Diese Einnahmen gekonnt werden dann f�ur viele Zwecke wie �nanzierenddiese Leute ohne Krankenversicherung benutzt werden. Grammar:Meaning:(f) Diese Einnahmen k�onnten f�ur viel purposes,such als das Finanzieren jenerLeute ohne medizinische Versicherung dann benutzt worden sein. Grammar:Meaning:(WSJ 77)The case continues in U.S. Bankruptcy Court in St. Louis.(a) Der Fall macht im US Konkursgericht in St. Louis weiter. Grammar:Meaning:(b) Der Fall macht in USA weiter. Konkurs-Hof in Str. Louis. Grammar:Meaning:(c) Der Fall macht in das US Konkursgericht in St. Louis weiter. Grammar:Meaning:(d) Der Fall wird am Konkursgericht in St. Louis fortgesetzt. Grammar:Meaning:(e) Der Fall setzt in AMERIKANISCHEM Bankrott-Gericht in Str. Louis fort. Grammar:Meaning:(f) Der Fall f�ahrt in US fort. Konkursgericht in St. Louis. Grammar:Meaning:150



(WSJ 78)American Express fell 1 1/2 to 77 1/4 on more than 2.1 million shares.(a) Amerikanischer Expre� f�allt 1 1/2 bis 77 1/4 auf mehr als 2,1 MillionenAnteilen. Grammar:Meaning:(b) Amerikanischer Bestimmter kahle Berg 1 1/2 bis 77 1/4 auf mehr als 2.1millionshares. Grammar:Meaning:(c) American Express �el 3/2 auf 309/4 auf mehr als 2.1 Mio. Aktien. Grammar:Meaning:(d) Der ausdr�uckliche Amerikaner �el 1 1/2 bis 77 1/4 auf mehr als 2,1 MillionAnteilen. Grammar:Meaning:(e) American Express �el 3/2 auf mehr als 2.1 Mio. Aktien auf 309/4. Grammar:Meaning:(f) American Express �el um 1 1/2 auf 77 1/4 bei mehr als 2.1 Mio. Aktien. Grammar:Meaning:(WSJ 79)His typical trade involved $30 million.(a) Sein typischer Handel umfa�te 30 Mio. Dollar. Grammar:Meaning:(b) Sein typischer Handel bezog $30 Million mit ein. Grammar:Meaning:(c) Sein typischer Beruf brachte $30 million mit sich. Grammar:Meaning:(d) Sein typischer Handel betraf 30 Millionen Dollar. Grammar:Meaning:Thank you!
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D.2 Translation Evaluation KeyThe two numbers in parentheses associated with each translation are the averages of the syntacticand semantic grades that the evaluators have assigned to that speci�c translation.(WSJ 48)(a): Logos (2.1, 3.3)(b): Systran (2.8, 2.9)(c): Contex on correct parse (2.0, 2.1)(d): Globalink (4.6, 4.4)(e): human translation (1.5, 1.2)(f): Contex (full translation) (1.7, 4.2)(WSJ 49)(a): Contex (full translation), Contex on correct parse (1.0, 1.5)(b): Globalink (2.1, 1.4)(c): human translation (1.0, 1.0)(d): Systran (1.1, 2.8)(e): Logos (2.1, 1.9)(WSJ 50)(a): Contex (full translation), Contex on correct parse (2.3, 1.9)(b): human translation (1.0, 1.5)(c): Logos (2.4, 2.9)(d): Systran (2.3, 4.5)(e): Globalink (2.3, 2.2)(WSJ 51)(a): Systran (3.7, 3.1)(b): Contex on correct parse (3.4, 2.3)(c): Logos (4.1, 3.5)(d): Globalink (4.5, 4.9)(e): human translation (1.5, 1.2)(f): Contex (full translation) (3.4, 2.3)(WSJ 52)(a): Systran (2.3, 3.4)(b): Globalink (4.0, 5.3)(c): human translation (1.7, 1.5)(d): Logos (5.3, 5.5)(e): Contex (full translation) (4.3, 3.5)(f): Contex on correct parse (1.7, 2.3) 152



(WSJ 53)(a): Logos (1.8, 5.3)(b): Contex (full translation) (3.1, 3.3)(c): human translation (1.2, 4.5)(d): Contex on correct parse (2.5, 2.3)(e): Systran (5.0, 5.2)(f): Globalink (4.8, 5.0)(WSJ 54)(a): Globalink (2.3, 4.4)(b): Systran (2.5, 3.1)(c): Contex on correct parse (1.5, 1.2)(d): Contex (full translation) (1.6, 2.7)(e): Logos (2.2, 2.2)(f): human translation (1.0, 1.0)(WSJ 55)(a): Contex (full translation), Contex on correct parse, Logos,Systran, Globalink, human translation (1.4, 1.5)(WSJ 56)(a): Logos (2.2, 1.5)(b): Globalink (3.8, 2.9)(c): Contex (full translation), Contex on correct parse (2.0, 1.8)(d): human translation (1.0, 1.2)(e): Systran (1.3, 1.7)(WSJ 57)(a): Contex (full translation), Contex on correct parse (1.8, 1.7)(b): Systran (2.4, 4.1)(c): Logos (1.4, 2.9)(d): Globalink (3.7, 3.6)(e): human translation (1.2, 1.0)(WSJ 58)(a): Contex on correct parse (2.9, 2.9)(b): Systran (3.6, 3.7)(c): Globalink (4.0, 5.3)(d): Contex (full translation) (2.9, 3.0)(e): Logos (3.8, 4.9)(f): human translation (1.6, 1.7) 153



(WSJ 59)(a): Contex (full translation), Contex on correct parse, humantranslation (1.1, 1.3)(b): Logos (1.9, 1.4)(c): Systran (2.0, 2.1)(d): Globalink (3.0, 1.8)(WSJ 60)(a): Logos (2.1, 1.9)(b): Contex on correct parse (4.1, 3.5)(c): human translation (1.0, 1.2)(d): Contex (full translation) (3.7, 3.4)(e): Systran (1.5, 2.0)(f): Globalink (1.6, 2.5)(WSJ 61)(a): Contex on correct parse (1.1, 3.1)(b): Globalink (2.8, 4.8)(c): Systran (2.3, 2.4)(d): Contex (full translation) (1.5, 3.1)(e): human translation (1.0, 1.0)(f): Logos (3.9, 5.8)(WSJ 62)(a): Globalink (4.5, 4.7)(b): human translation (1.5, 1.5)(c): Systran (2.9, 4.7)(d): Contex on correct parse (2.0, 1.7)(e): Contex (full translation) (2.4, 1.7)(f): Logos (3.6, 4.8)(WSJ 63)(a): Logos (2.3, 2.5)(b): Contex (full translation) (2.6, 2.0)(c): Contex on correct parse (2.5, 3.2)(d): Globalink (4.0, 3.9)(e): Systran (2.6, 2.2)(f): human translation (1.0, 1.2)(WSJ 64)(a): Logos (3.3, 3.5)(b): Globalink (3.5, 2.7)(c): Contex (full translation), Contex on correct parse (2.6, 2.1)154



(d): Systran (3.6, 3.3)(e): human translation (1.0, 1.0)(WSJ 65)(a): Contex (full translation) (2.0, 1.2)(b): Logos (1.5, 2.1)(c): Globalink (2.8, 1.8)(d): Systran (2.9, 2.4)(e): human translation (1.2, 1.0)(f): Contex on correct parse (1.8, 1.7)(WSJ 66)(a): Logos (2.8, 2.5)(b): Globalink (3.7, 5.3)(c): Systran (5.3, 4.8)(d): Contex (full translation) (4.9, 5.0)(e): Contex on correct parse (3.8, 3.2)(f): human translation (1.0, 1.2)(WSJ 67)(a): Systran (2.5, 4.3)(b): Contex (full translation) (2.5, 3.0)(c): Globalink (3.2, 4.3)(d): Contex on correct parse (3.3, 3.6)(e): human translation (1.2, 1.5)(f): Logos (2.1, 2.8)(WSJ 68)(a): Logos (3.4, 3.0)(b): human translation (1.3, 1.0)(c): Globalink (3.8, 3.0)(d): Contex (full translation) (3.6, 2.5)(e): Contex on correct parse (3.6, 3.0)(f): Systran (3.6, 3.0)(WSJ 69)(a): Contex (full translation), Contex on correct parse (2.3, 1.8)(b): Globalink (3.8, 4.5)(c): Logos (3.6, 4.5)(d): human translation (1.0, 1.0)(e): Systran (3.1, 5.2) 155



(WSJ 70)(a): Globalink (3.4, 4.5)(b): Contex (full translation), Contex on correct parse (1.3, 2.1)(c): human translation (1.0, 3.7)(d): Logos (3.9, 5.6)(e): Systran (1.8, 4.9)(WSJ 71)(a): Systran (2.8, 3.2)(b): Globalink (3.7, 4.3)(c): Contex on correct parse (2.3, 2.3)(d): human translation (1.0, 1.0)(e): Logos (2.8, 4.6)(f): Contex (full translation) (2.5, 2.7)(WSJ 72)(a): Globalink (1.9, 4.1)(b): Contex (full translation), Contex on correct parse (1.9, 2.2)(c): Logos (1.4, 2.7)(d): human translation (1.0, 1.7)(e): Systran (1.3, 3.2)(WSJ 73)(a): Systran (4.3, 5.0)(b): Logos (2.1, 3.1)(c): Contex on correct parse, human translation (1.1, 1.1)(d): Globalink (1.8, 2.9)(e): Contex (full translation) (1.1, 2.1)(WSJ 74)(a): Contex (full translation), Contex on correct parse (2.1, 1.2)(b): human translation (1.0, 1.0)(c): Globalink (2.8, 4.2)(d): Systran (2.4, 2.9)(e): Logos (1.7, 1.2)(WSJ 75)(a): Systran (2.0, 1.6)(b): Contex (full translation), Contex on correct parse, humantranslation (1.3, 1.2)(c): Logos (1.8, 5.2)(d): Globalink (4.4, 5.2) 156



(WSJ 76)(a): Logos (1.3, 1.5)(b): Systran (2.8, 2.7)(c): human translation (1.2, 1.6)(d): Contex (full translation) (4.3, 3.8)(e): Contex on correct parse (4.5, 3.7)(f): Globalink (3.9, 3.6)(WSJ 77)(a): Contex on correct parse (1.5, 2.1)(b): Logos (3.8, 4.1)(c): Contex (full translation) (2.8, 2.3)(d): human translation (1.0, 1.0)(e): Globalink (3.3, 3.2)(f): Systran (3.6, 3.5)(WSJ 78)(a): Logos (2.7, 2.8)(b): Globalink (5.0, 5.7)(c): Contex (full translation) (2.4, 2.5)(d): Systran (2.7, 5.1)(e): Contex on correct parse (2.6, 2.9)(f): human translation (1.2, 1.2)(WSJ 79)(a): Contex (full translation), Contex on correct parse, humantranslation (1.1, 1.5)(b): Systran (1.3, 2.7)(c): Globalink (1.4, 4.7)(d): Logos (1.3, 2.5)
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Appendix EAbbreviationsA add (operation)ACL Association for Computational LinguisticsADJ adjectiveADJP adjective phraseADV adverbADVP adverbial phraseAI arti�cial intelligenceAMTA Association for Machine Translation in the AmericasAPP adverbial or prepositional phraseARPA Advanced Research Projects Agency (a United States Department ofDefense agency for advanced technology research)ART articleAUX auxiliary (verb)BEN bene�ciaryCAT categoryCOMPL complementCONC concatenate, concatenated elementCONJ conjunctionD-... delimiterDEF de�nite...-E... EnglishELEM elementF-... formFEM feminine...-G... GermanI-... internal conceptINDEF inde�niteINF in�nitive/in�nitivalINFL inectionINTR intransitiveIOBJ indirect object 158



IRR irregularKB knowledge baseKBMT knowledge based machine translationLEX lexicon/lexicalM-... mathematical (concept)MASC masculineMT machine translationN nounnc count nounNEUT neuterNL natural languageNLP natural language processingNP noun phraseOBJ objectP personPART participlepat patient (a semantic role)pn proper namePP prepositional phrasePRED predicatePREP prepositionPRES present (tense)R reduce (operation)R-... roleQUANT quantityS shift (operation)S-... syntacticSEM semanticSEMROLE semantic roleSING singularSUBJ subjectSYNT syntacticSYNTROLE syntactic roleTR transitiveUNAVAIL unavailableURL universal resource locator (World Wide Web address)V verbVP verb phraseWSJ Wall Street Journal 159
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