
On the Construction ofUniversal Series-Parallel Functions forLogic Module DesignF.Y. Young and D.F. WongDepartment of Computer SciencesThe University of Texas at Austinfyyoung@cs.utexas.edu and wong@cs.utexas.eduAbstractThe structural tree-based mapping algorithm is an e�cient and popular techniquefor technology mapping. In order to make good use of this mapping technique, it isdesirable to design logic modules based on Boolean functions which can be representedby a tree of gates (i.e. series-parallel or SP functions). In FPGA-96, Thakur and Wong[5] studied this issue and demonstrated the advantages of designing logic modules asuniversal SP functions, i.e. SP functions which can implement all SP functions witha certain number of inputs. However, the universal SP functions presented in [5] weredesigned manually and an automatic generation of universal SP functions was still leftas an open problem. In this report, we present an algorithm to generate, for eachn > 0, a universal SP function for implementing all n-input SP functions. We will alsopresent an e�cient Boolean matching algorithm for matching functions to the universalSP functions that we constructed. As it is important to have alternative universal SPfunctions from which logic-module designers can choose a design taking other criteria(e.g. area, delay, or power) into consideration, we developed an algorithm to generatealternative universal SP functions. In particular, we have found characterized all theuniversal SP functions for n-input SP functions, when n � 6.
1

1 IntroductionDesigning a logic module that can implement many di�erent functions is a good idea onlyif one can come up with a mapping algorithm that can utilize the functionality. Recently,high-functionality logic modules based on universal logic modules (ULMs) have been reported[1, 2, 3, 6, 4], but current technology mappers cannot exploit all the functionality o�erred.Typically, the best mapping algorithm for logic modules are discovered after the architecturedesign has been done. Exploration of logic module architectures revolves around establisheddesigns with incremental modi�cations. In FPGA-96, Thakur and Wong [5] took a dual ap-proach; they began with a known mapping algorithm and designed logic modules for whichthe mapping algorithm can perform well. The structural tree-based mapping algorithm isan e�cient and popular technique for technology mapping. Due to the decomposition ofunmapped logic networks into trees, matches will be identi�ed only for those library cellsthat have a representation in the form of a tree of gates. The mapping algorithm is opti-mal for libraries restricted to such functions (which will be referred to as series-parallel orSP functions). For a FPGA logic module, the library is the set of functions that can beimplemented using one logic module. In order to make good use of this mapping technique,Thakur and Wong [5] designed logic modules as universal SP functions, i.e. SP functionswhich can implement all SP functions with a certain number of inputs. However, the uni-versal SP functions presented in [5] were designed manually and an automatic generation ofuniversal SP functions was still left as an open problem.In this report, we present an algorithm to generate, for each n > 0, a universal SPfunction for implementing all n-input SP functions. We will also present an e�cient booleanmatching algorithm for matching functions to the universal SP functions we constructed. Asit is important to have alternative universal SP functions from which logic-module designerscan choose a design taking other criteria (e.g. area, delay, or power) into consideration,we developed an algorithm to generate alternative universal SP functions with minimumnumber of inputs. In particular, we have found all the universal SP functions for n-input SPfunctions, when n � 6.The rest of the report is organized as follows. In Section 2, we formally introduce theproblem of constructing universal SP functions with minimum number of inputs and showits equivalence to the problem of �nding universal trees with minimum number of leaves.We present an algorithm to construct universal trees (and hence universal SP functions) inSection 3 and give the boolean matching algorithm in Section 4. Finally, in Section 5, wepresent an algorithm to generate alternative universal SP functions and show all universalSP functions for n-input SP functions, when n � 6.2 Formulation of ProblemWe denote the complement of a boolean function f as f 0. We now formally de�ne series-parallel (SP) functions and the notion of a function f implements another function g as2

follows:De�nition 1 Any function of at most one input is an SP function. If f and g are two SPfunctions with disjoint supports, then f + g and f � g are SP functions.De�nition 2 For any m � n, we say that a function f(z1; z2; � � � ; zm) can implementa function g(x1; x2; � � � ; xn) if f can be transformed to g by: (i) Assigning a value fromf0; 1; x1; x01; � � � ; xn; x0ng to each of the z1; z2; � � � ; zm; and (ii) optionally complementing theoutput of f .Example 1 Let f = ((x1 + x2)x03 + x04)x5x6 and g1 = y1y2y3 + y4. Both f and g1 are SPfunctions. Putting x1 = y01, x2 = y02, x3 = 0, x4 = y3, x5 = y04 and x6 = 1 and taking thecomplement of the output in f gives (((y01+ y02)1 + y03)y04 � 1)0 = y1y2y3+ y4 = g1. Therefore,f can implement g1.De�nition 3 Two functions f and g are NPN-equivalent if and only if f can be transformedto g by some combination of input permutations, input complementations and output com-plementation.We call an SP function n-universal if it can implement all SP functions with at most ninputs. The goal of our work is to construct n-universal SP functions for all n > 0. It wasproved in [5] that if a function f can implement an SP function g, then f can implementevery SP function which is NPN-equivalent to g. Therefore, to construct a n-universal SPfunction, it su�ces to construct a function which can implement one function from eachNPN-equivalent class.Example 2 Let f = ((x1 + x2)x03 + x04)x5x6, g1 = y1y2y3 + y4 and g2 = (y02 + y3 + y04)y01.Putting y1 = y2, y2 = y03, y3 = y4 and y4 = y1 and taking the complement of the output ing1 gives (y2y03y4 + y1)0 = (y02 + y3 + y04)y01 = g2. Therefore, g1 and g2 are NPN-equivalent.From Example 1, we know that f can implement g1. Since g1 and g2 are NPN-equivalent,f should also be able to implement g2. This is true since putting x1 = y02, x2 = y3, x3 = 0,x4 = y4, x5 = y01 and x6 = 1 in f gives ((y02 + y3)1 + y04)y01 � 1 = (y02 + y3 + y04)y01 = g2.An SP function with m inputs can be represented by a labelled tree with the followingproperties:1. The internal nodes are labelled AND (*) or OR (+) and have at least two childreneach. The node labels alternate between AND and OR on any path from the root tothe leaves.2. The tree has m leaf nodes. Each leaf node is labelled by one of fx1; x01; � � � ; xm; x0mgsuch that each variable appears exactly once in some phase.The unlabelled tree of an SP function f is the tree obtained by removing the node labels.Figure 1 shows an SP function and its labelled and unlabelled tree representations. Clearly3

f = ((x1 + x2) x3’ + x4’) x5 x6

*

+

x1 x2

x3’

x4’

x5 x6

*
+

Unlabeled tree of fLabeled tree of fFigure 1: An SP function and its labelled and unlabelled tree representations
g2 = (y2’ + y3 + y4’) y1’

+

*
y1 y2 y3

y4

Unlabeled tree of g1

*
y1’+

y4’y3y2’

Unlabeled tree of g2

trees are isomorphic
so their unlabeled
NPN-equivalent,

g1 and g2 are

g1 = y1 y2 y3 + y4

Figure 2: Isomorphism between the unlabelled trees of two NPN-equivalent SP functions4

implement

Cut

These two nodes are
removed during
contraction

g, so the
unlabeled

tree of f can

f can implement

the unlabeled
tree of g

f = ((x1 + x2) x3’ + x4’) x5 x6

g1 = y1 y2 y3 + y4

Unlabeled tree of f after
cuttings and contractionsUnlabeled tree of f

Unlabeled tree of gFigure 3: Illustration of the cutting and contraction operationsany SP function yields a unique unlabelled tree (up to isomorphism), but an unlabelled treemay correspond to many di�erent SP functions (by labeling the nodes di�erently). It wasproved in [5] that two SP functions are NPN-equivalent if and only if their unlabelled treesare identical up to isomorphism. This is illustrated by an example in Figure 2. It followsimmediately that there is a one-to-one correspondence between the unlabelled trees withm leaves and the NPN-equivalent classes of all m-input SP functions. We now de�ne twooperations, cutting and contraction, on unlabelled trees:Cutting: Two nodes a and b, such that a is a child of b, are selected. The entire subtreerooted at a and the edge between a and b are removed.Contraction: An internal node b, which has parent a and a single child c, is selected. Nodeb is removed. If c is an internal node, the children of c are made children of a and c isremoved. If c is a leaf, it becomes a child of a.Let t and t0 be two unlabelled trees. We say that t implements t0 if t0 can be obtainedby applying a sequence of cutting or contraction operations to t. Let f and g be two SPfunctions and let t and t0 be their respective unlabelled trees. It was proved in [5] that fimplements g if and only if t implements t0. (For example, in Figure 3, we have f implementsg1 and the unlabelled tree of f can also implement the unlabelled tree of g1.) As a result,the following two problems are equivalent.Logic Module Design Problem: Given an integer n > 0, �nd an SP function f with theminimum number of inputs which can implement all SP functions with at most n inputs.Universal Tree Design Problem: Given an integer n > 0, construct an unlabelled treeTn with the minimum number of leaf nodes which can implement all unlabelled tree with atmost n leaves. 5

n-1 Tn-1T n/2T n/2

(a) n = 3 (b) n = 4, 5 (c) n = 2 or n > 5

TFigure 4: Construction of universal treesSince the above two problems are equivalent, we will work on the second one from nowonwards. Unless otherwise stated, all trees in the following are unlabelled. A tree is n-universal if it can implement all unlabelled trees with at most n leaf nodes. The size of atree is de�ned as the number of leaf nodes.3 Constructing Universal Trees3.1 ConstructionThe universal tree Tn for n-leaf trees is constructed recursively from Tbn2 c and Tn�1:Algorithm U-TREE: Construct a tree Tn which is n-universal.Input: A positive integer n.Output: A tree Tn which is n-universal.Construction:1. If n = 1, construct Tn as a single node tree.2. Else if n = 3, construct Tn as in Figure 4(a).3. Else if n = 4; 5, construct Tn as in Figure 4(b).4. Otherwise, construct Tn as in Figure 4(c).3.2 Proof of CorrectnessIt is obvious that T1 and T2 are correct, so we consider n > 2 only. Let t be a tree with nleaves. Let t1; t2; :::; tj be the subtrees at the root of t where j � 2. We consider the followingthree cases:Case 1: One subtree has only one leaf while the other has n� 1 leaves.It is obvious that Tn can implement t in this case.6

a

to implement t-g

Tn-1

(a) Use T n-1

n/2T

a

d

b c

t-g

g

g

c

t-g

a

(c) t is obtained(b) Cut(b,d) and Contract(b)

Since t-g has less than

be implemented by T
n-1 leaves, this can

n-1Figure 5: Use Tn�1 to implement t� gCase 2: There exists one subtree g of m leaves where 2 � m � bn2c.This case does not apply to n = 3 since bn2c < 2 when n = 3. Let t� g denotes the setof subtrees at the root of t save g. Since g has more than one leaf, t� g has less thann � 1 leaves. Thus we can implement t � g by Tn�1 (Figure 5), and implement g byTbn2 c (or by the left subtree at the root of the tree shown in Figure 4(b) when n = 4; 5).Case 3: Otherwise.There must be at least two single-leaf subtrees, g1 and g2, at the root of t. Whenn = 3, it is the case when the root has three single-leaf children and it is obvious thatT3 can implement this. Consider the case when n > 3. Let t � g1 � g2 denotes theset of subtrees at the root of t except g1 and g2. Since g1 and g2 has one leaf each,t � g1 � g2 has less than n � 1 leaves. Hence we can implement t � g1 � g2 by Tn�1,and implement g1 and g2 by Tbn2 c (or the left subtree at the root of the tree shown inFigure 4(b) when n = 4; 5).3.3 AnalysisLet f(n) be the size of the universal tree Tn constructed by U-TREE. We will show thatf(n) lies between n lg n4 and n lg n+12 when n is large. From the construction, we know thatf(1) = 1, f(2) = 2, f(3) = 4, f(4) = 7, f(5) = 10 andf(n) = f(bn2 c) + f(n� 1) when n > 5So, for n > 5, f(n) = f(5) + 2Pbn2 ci=3 f(i) when n is oddf(n) = f(5) + f(bn2 c) + 2Pbn2 c�1i=3 f(i) when n is even7

Therefore 2Pbn2 c�1i=1 f(i) � f(n) � 4 + 2Pbn2 ci=1 f(i) for all nFor simplicity, lets assume that n is a positive power of 2. Thenf(n) � 2� n4 � f(n4) = n2 � f(n4) � n2 � n8 � f(n16) � � � � � n lg n4f(n) � 2� n2 � f(n2) = n� f(n2) � n� n2 � f(n4) � � � � � n lg n+12Therefore n lg n4 � f(n) � n lg n+123.4 Comparison with Lower BoundsWe have proved the following theorem which gives a lower bound on the size of a universaltree:Theorem 1 The size of a n-universal tree is at leastbn2 cXi=1bni c+ bn�12 cXi=1 bn� 1i c � bn2 c � bn� 12 c+ 1Table 1 compares the size of the universal trees constructed by U-TREE with the lowerbound from Theorem 1. We can see that U-TREE gives optimal universal trees up to nequals 7 and the solution is o� from optimal by at most 5 when n is less than 10.4 Boolean MatchingIn boolean matching, we are given two boolean functions f and g. We want to know whetherfunction g can implement function f and to construct f from g in case it is possible. In thissection, we describe a polynomial time algorithm which, when given a boolean function fexpressed as a tree t and a universal tree Tn constructed by U-TREE, can determine whetherTn can implement t by some sequence of cuttings or contractions in O(m logD) time wherem is the number of leaves in t and D is the largest fan-in in t. This problem is non-trivialwhen m > n. The construction will also be found if the answer is yes. In this section, weonly consider the universal trees Tk'sconstructed by U-TREE. We need the following twoclaims in the algorithm. 8

n Size from U-TREE Lower Bound1 1 12 2 23 4 44 7 75 10 106 14 147 18 188 25 229 32 27Table 1: Comparison between U-TREE and the lower boundLemma 1 If i > j, Ti can implement Tj.Proof The proof is done by induction. It is easy to verify that Tk can implement Tk�1for k � 6. Consider the construction of Tk for k > 6. By the inductive hypothesis, its leftsubtree Tb k2 c can implement Tb k�12 c and its right subtree Tk�1 can implement Tk�2. ThereforeTk can implement Tk�1. 2Lemma 2 Given t with d subtrees at the root. Let Tn1; Tn2; � � � ; Tnd be the smallest universaltrees to implement these subtrees. (According to Lemma 1, they are well de�ned.) If Tz isthe smallest universal tree to implement t, then p � z � p + 2d where p = maxf2y; x+ 1g,x is the largest ni and y is the second largest ni.Proof Consider a tree t rooted at a node v. Assume that v has d children subtrees,g1; g2; : : : gd and that g1 and g2 are the largest and the second largest children subtreesrespectively. Let Tx and Ty be the smallest universal trees to implement g1 and g2 respec-tively. We want to show that p � z � p + 2d where Tz is the smallest universal tree toimplement t and p = maxf2y; x+ 1g. We consider two di�erent cases:Case 1: x+ 1 � 2y, so p = x+ 1.We want to show that x+ 1 � z � (x+ 1) + 2d.Consider Tz where z < x + 1. The two subtrees at the root are Tz�1 and Tb z2 c. Sincez < x+ 1, neither Tz�1 nor Tb z2 c can implement g1. Thus z � x+ 1.Consider Tz where z = (x+ 1) + 2d. The two subtrees at the root are Tz�1 and Tb z2 c.If we expand Tz�1 to Tz�2 and Tb z�12 c, cut the subtree Tb z�12 c and do contraction, weget Tz�3, Tb z2 c�1 and Tb z2 c at the root. We can repeat this process d times and obtaind+2 subtrees at the root: Tz�1�2d, Tb z2 c�d, Tb z2 c�d+1, � � �, Tb z2 c. Since z = (x+1) + 2d,9

z � 1� 2d = x and b z2c � d = bx+12 c � y. Thus the Tz�1�2d can implement g1 and theTb z2 c�d can implement g2. Since g2 is already the second largest subtree in t, g3, g4, � � �,gd in t can be implemented by the remaining d subtrees in Tz.Case 2: 2y � x+ 1, so p = 2y.We want to show that 2y � z � 2y + 2d.Consider Tz where z < 2y. The two subtrees at the root are Tz�1 and Tb z2 c. Sincez < 2y, Tb z2 c cannot implement g2. The only possibility is to expand Tz�1 giving Tz�3,Tb z2 c�1 and Tb z2 c. However neither Tb z2 c�1 nor Tb z2 c can implement g2 and the onlypossibility is to expand Tz�3. Repeating the same argument, we �nally get a subtreejust large enough to implement g1 but none of the others can implement g2. Thusz � 2y.Consider Tz where z = 2y +2d. The two subtrees at the root are Tz�1 and Tb z2 c. If weexpand Tz�1, we get Tz�3, Tb z2 c�1 and Tb z2 c at the root. We can repeat this process dtimes and obtain d+ 2 subtrees at the root: Tz�1�2d, Tb z2 c�d, Tb z2 c�d+1, � � �, Tb z2 c. Sincez = 2y+2d, z�1�2d = 2y�1 � x and b z2c�d = y. Thus the Tz�1�2d can implementg1 and the Tb z2 c�d can implement g2. Since g2 is already the second largest subtree int, g3, g4, � � �, gd in t can be implemented by the remaining d subtrees in Tz. 24.1 Boolean Matching AlgorithmAccording to Lemma 1, we can determine whether Tn can implement an m-leaf tree t by�nding the smallest index k such that Tk can implement t. The algorithm works bottom-upfrom the leaves to the root. Assuming that we know already the smallest universal trees toimplement the dv children subtrees of a node v, we can do binary search on Tp; � � � ; Tp+2dvto �nd the smallest universal tree to implement the tree rooted at v, where, according toLemma 2, p is maxf2y; x+1g, x is the largest index among the universal trees for v's childrensubtrees and y the second largest. This can be done by the following algorithm MATCH. Wecan apply this algorithm recursively from the leaves up to the root until we �nd the smallestTk to implement the entire tree t at the root. In the following, decomposing a universal treemeans the sequence of steps shown in Figure 6 to obtain smaller universal trees at the samelevel.Algorithm MATCHInput: A tree t with d subtrees t1; t2; : : : ; td at the root such that Tn1 ; Tn2 ; : : : ; Tnd are the smallestuniversal trees to implement these subtrees. An integer n.Output: Check if Tm can implement t. If yes, give construction.1. Let A = fn1; n2; : : : ; ndg. 10

Tn-1

(a) Replace T n-1 by Tn-2

and T (n-1)/2

2

a

1

2

6

T
T

: a

5

Tn-2

n-3

Gives Tn-3

(c) Replace T n-2 by Tn-3

n/2 -1

t

and T (n-2)/2 .
and T n/2 -1 at the root.

We can repeat the same process to Tn-3 .

t Tn-2

2
1

a

3

T
(n-1)/2T

n-1T

b

t
4

n-2 t

a

2

(b) Cut edge 4. Contract at node b.
Gives Tn-2 at the root.

Decompose Tn-1

Figure 6: Decomposing a universal tree2. Let B = fm� 1; bm2 cg.3. While A is not empty(a) Let i be the largest index in A, corresponding to subtree ti at the root of t.(b) Let j be the largest index in B with the same parity of i.(c) Let k be the largest index in B with the opposite parity of i.(d) If (j < i) and (k < i), exit and output FAIL(e) Else if (j � i):i. Decompose Tj into smaller universal trees until getting Ti. Use this Ti to implementti.ii. Let B0 be the set of indices of the universal trees obtained by decomposing Tj .iii. B = B � fjg+B0 � figiv. Output the construction.(f) Else if (k � i) and (bk2c < i):i. Decompose Tk into smaller universal trees until getting Ti+1. Use this Ti+1 toimplement ti.ii. Let B0 be the set of indices of the universal trees obtained by decomposing Tk.iii. B = B � fkg+B0 � fi+ 1giv. Output the construction.(g) Else if (k � i) and (bk2c � i):i. Decompose Tk into smaller universal trees until getting Ti. Use this Ti to implementti.ii. Let B0 be the set of indices of the universal trees obtained by decomposing Tk.iii. B = B � fkg+B0 � figiv. Output the construction. 11

(h) A = A� fig(i) End fwhileg4. End fMATCHgAn example is shown in Figure 7. In the algorithm, A keeps a set of indices of thesubtrees which we need to implement while B is a set of indices of the available subtrees.The while-loop examines the subtrees corresponding to the indices in A in a non-increasingorder. In each iteration, the largest index i in A is picked and we want to check whetherthere is an available subtree whose index is at least i. Thus we pick the largest odd indexand the largest even index from B. If both are smaller than i, we know that ti cannot beimplemented by any available subtree. Otherwise, we prefer implementing ti by Tj, whoseindex j has the same parity as i, because decomposing Tj will give Ti exactly. However ifj < i, we must use Tk, whose index k has the opposite parity as i. If bk2c � i we can stillimplement ti exactly by decomposing Tk to give Ti. Otherwise we must waste some resourcesby implementing ti by Ti+1 obtained by decomposing Tk. Notice that Tk can never give Tiunless bk2c � i. After that, we need to update A and B by removing i from A, removing j(or k) from B and adding back B0�fig (or B0�fi+1g) to B where B0 is the set of indicesobtained by decomposing Tj (or Tk). This process repeats until either there is a subtreein A which cannot be implemented or A is empty. Since we examine the indices in A indecreasing order, we will not mistakenly decompose a universal tree in B which is neededin some later steps. Thus the algorithm is correct. As a minor implementation detail, weneed some special data structure for the sets A and B such that the largest element can bepicked quickly in each step.Let TIME(v; j) denotes the time to check whether a universal tree Tj can implement atree rooted at v, given the smallest universal trees to implement v's children subtrees. Fromthe above algorithm, we know that TIME(v; j) = O(dv) where dv is the in-degree of v.Thus the total time spent at node v will be log dv�O(dv) where the logarithmic term comesfrom the binary search. Let D be the largest fan-in in t, thenTOTAL TIME = Pv O(dv log dv) = O(logDPv dv) = O(m logD)5 Alternative Universal TreesDuring the design process, it is advantageous to have alternative universal trees so that thedesigners have options to choose from. The �nal choice may be based on functionality, area,delay, power or any other considerations. When n is small (1 � n � 6), we can generate alloptimal (smallest number of leaves) n-universal trees Since algorithm 1 constructs universaltrees recursively from smaller ones, we can generate many alternatives for large n from thosealternatives for small n. 12

B = { 6, 5, 4 }

t

t
t

t

t1

2
3

4

5

T

T T
T

T8

6
3

3

3

y = 6
x = 8

p = max { x+1, 2y } = 12

where Tz is the smallest universal tree to implement t
12 + 2d = 22z12Thus

t

(i)

A = { 8, 6, 3, 3, 3 }

12 6

B = { 12, 6 }

68 5 4

A = { 8, 6, 3, 3, 3 }

(ii)

5 6
4

A = { 6, 3, 3, 3 }
B = { 8, 6, 5, 4 }

(iii)

5 4

(iv)

B = { 5, 4 }
A = { 3, 3, 3 } A = { 3, 3, 3 }

B = { 4, 3, 2 }

3 2 4

(v)

2 4

B = { 4, 2 }
A = { 3, 3 }

(vi)

Decompose T12 Remove 8 from A and B

Decompose T5

Remove 6

Remove 3 Remove 4 from B
Remove 3 from A

(b) Check if z = 14

(i)

A = { 8, 6, 3, 3, 3 }

13 7

B = { 13, 7 }

9 76 5

B = { 9, 7, 6, 5 }
A = { 8, 6, 3, 3, 3 }

(iii)

6 5 7

A = { 6, 3, 3, 3 }

(iv)

B = { 7, 6, 5 }

5 7

B = { 7, 5 }
A = { 3, 3, 3 }

5 5 3

B = { 5, 5, 3 }
A = { 3, 3, 3 }

(v)

(ii)

5 5

B = { 5, 5 }
A = { 3, 3 }

(vi)

53
2

(vii)

B = { 5, 3, 2 }
A = { 3, 3 }

2 5

A = { 3 }
B = { 5, 2 }

(viii)

2 2
3

A = { 3 }
B = { 3, 2, 2 }

Success

(ix)

Fail

Decompose T13
Remove 8 from A
Remove 9 from B Remove 6

Decompose T7 Remove 3 Decompose T5

Remove 3 Decompose T5 Remove 3

(a) Check if z = 13

The original tree

Figure 7: Running the algorithm MATCH on an example13

The problem of generating all optimal universal trees is non-trivial. The running timeis unbearably long even when n is small. For example, a universal tree for 6-leaf trees hasat least 14 leaf nodes and there are 8005 of them. We need to check, for each one, whetherit can generate all possible 6-leaf trees. In order to get the results in a reasonable amountof time, we need a good representation of the trees and an e�cient strategy to eliminatenon-universal trees. In the following, we will describe the data structures we used and givea brief outline of the algorithm.5.1 Data StructuresWe use 0-1 bit strings to represent trees. Each node is represented by a pair of 0 and 1. Toobtain a binary representation of a tree t, we traverse t in a depth-�rst order. We write a 1when we �rst visit a node and write a 0 when we backtrack from it (see Figure 8(a)). Thisgives a compact representation for the trees, and, more importantly, it allows us to make useof some fast bitwise operations (e.g. AND, OR, SHIFT) in the C programming language.The drawback of this representation is that the maximum size of the trees on which we canoperate is bounded by the wordsize of the computer used. However a 64-bit (type long longin C) wordsize is already enough to generate universal trees for practical purposes and wecan also simulate the bitwise operations on an array of words for large trees. The followingtwo procedures are examples on how we can operate on the trees e�ciently using this kindof representation:||||||||||||||{ ||||||||||||||{Cut a subtree in tree t and count Find all the single-child internalthe number of edges in the nodes in tree t and mark them asremoved subtree. \0" in the
ag r||||||||||||||{ ||||||||||||||{int CutSubtree(t) int FindContractableEdge(t,r)unsigned long *t; unsigned long *t, *r;f int count=1, edge=0; f int count=0, type=0;while (count>0) f if (*t&0x00000001) return 0;*t>>=1; *t>>=1;if (*t&0x00000001) count|; while (!(*t&0x00000001)) felse count++, edge++; type = FindContractableEdge(t,r);g count += (type==2)?type:1;return edge; gg *t>>=1;if (count==0) f*r=(*r<<=1)j0x00000001; return 0;gif (count> 1) f*r=(*r<<=1)j0x00000001; return 1;gif (count==1) f*r=(type==0)?((*r<<=1)&0x���fe):((*r<<=1)&0x���fd);return (type==0)?0:2;ggIn order to give unique representations (up to isomorphism), we require that the chil-dren subtrees at any node v must be arranged in a non-increasing order of their binaryrepresentations (Figure 8(b)). In this way, every tree t will correspond to one single binary14

of their binary representations

1
1

1

1

1 1

0

0

0

0
1

1
0

0

0

111010011011010000

0
0

1

1

1

10

0
1

1

1 0 0
1

0 1 10

0

00

111101001001101000

(a) A binary representation of the tree (b) A unique representation by arranging
the subtrees in a non-increasing orderFigure 8: Example of a unique binary representation of a treerepresentation only. This makes the process of removing duplicate trees easy. To removeduplicates, we can treat the binary strings as integers, sort them and scan the list to removeadjacent duplicate strings.5.2 Algorithm OutlineThe following algorithm generates all optimal n-universal trees given an arbitrary integer n.Algorithm ALL-U-TREEInput: An integer nOutput: Generate all n-universal trees with the smallest number of leaves.1. Generate a list of all n-leaf trees in L1.2. Let m be the size of the smallest possible n-universal trees. Generate all m-leaf trees in L2.3. L = fg.4. For each tree t in L2:(a) Count the number of nodes at the odd levels and the even levels of t to see if it canpossibly be an n-universal tree. If it is impossible, go back to the beginning of this loopand check the next tree in L2.(b) L3 = fg.(c) Consider all possible combinations of cutting and not cutting at each edge of t:i. Do cutting in t.ii. Do contraction in t. 15

iii. Rewrite the binary representation of t in such way that subtrees are arranged in anon-increasing order of their binary representations.iv. Put t in L3.(d) Remove duplicates in L3.(e) Compare L1 with L3. If L1 = L3, put t into L.5. Output L.There are several places in the algorithm where it is needed to generate all k-leaf trees.To do this, we start with a list of all possible 0-1 bit strings of length 4k � 2 (a k-leaf treehas at most 2k� 1 nodes), and we select from this list those valid ones by checking whether:� The number of leaves (\10" strings) is k.� The 1's and 0's are balanced.� All nodes have at least two children.� Children subtrees are arranged in a non-increasing order of their binary representations.In case of generating universal trees, we can have one more checking which counts thenumber of nodes at the odd levels and the number of nodes at the even levels (root is atlevel 0) because of the following theorem:Theorem 2 A n-universal tree must have at least n+Pbn�12 ci=2 bn�1i c nodes at the odd levelsand at least n� 1 +Pbn2 ci=2bni c nodes at the even levels.The proof is very similar to that of Theorem 1 and the proof will be given in anotherpiece of work. When k is large, it is impossible to start with a list of all possible 0-1 bitstrings of length 4k�2. For example, when n is 6, according to Theorem 1 and the algorithmU-TREE, we know that an optimal 6-universal tree has 14 leaf nodes. There are 254 possiblecombinations of 0-1 bit strings of length 54. It is impossible to start with this in�nite listto generate universal trees. In real cases, we do prunings at the beginning of the search tothrow away a lot of impossible choices. The rules are based on some simple observationsof the balancing of the 0's and 1's in the binary representations. In step 4(c), we considerall possible combinations of cutting and not cutting at the edges of t. This number lookstremendous but it can be reduced signi�cantly if we notice that cutting an edge allows us toneglect all the edges inside the removed subtree.16

5.3 ResultsTable 2 shows the number of optimal n-universal trees when 1 � n � 6. We see that therecan be many di�erent choices among the universal trees and they di�er in many aspects likenumber of levels, number of gates, number of wires, number of fan-in of the gates and, themost important of all, the number of functions covered (functionality). Table 3 shows thenumber of optimal universal trees which can cover a large number of functions for n fromone to six. Their structures are shown in Figure 9.To convert a tree back to a corresponding SP function, we can choose either an ANDor OR at the root of the tree, alternate these labels between levels and assign a variable toeach leaf node such that each variable appears exactly once in some phase, e.g. a possibleSP function corresponding to the �rst tree in the list of T4 in Figure 9 is (((x1 + x02)x3 +x04)x5 + x6x07).n No. of Optimal Universal Trees No. of Functions Implemented1 1 12 1 23 2 54 12 17-235 70 64-1076 325 349-853Table 2: Number of optimal universal treesn No. of Optimal Universal Trees No. of Functions Implementedof High Functionality1 1 12 1 13 2 54 7 above 205 5 above 1006 7 above 800Table 3: Number of optimal universal trees of high functionality17

References[1] C. Lin, M. Marek-Sadowska, and D. Gatlin. Universal logic gate for FPGA design.Proceedings of the IEEE/ACM International Conference on Computer Aided Design,1994.[2] Y.N. Patt. Optimal and near-optimal universal logic modules with interconnected exter-nal terminals. IEEE Transactions on Computers, 22(10):903{907, 1973.[3] F.P. Preparata. On the design of universal boolean functions. IEEE Transactions onComputers, 20(4):418{423, 1971.[4] S. Thakur and D.F. Wong. On designing ULM-based FPGA logic modules. Proceedingsof SCM/SIGDA FPGA-95, pages 3{9, 1995.[5] S. Thakur and D.F. Wong. Universal logic modules for series-parallel functions. Proceed-ings of ACM/SIGDA FPGA-96, pages 31{37, 1996.[6] Z. Zilic and Z.G. Vranesic. Using BDDs to design ULMs for FPGAs. Proceedings ofACM/SIGDA FPGA-96, pages 24{30, 1996.

18

Implements 5 trees

T4(iv)

1T(i) (ii) T2 (iii) T3

T5(v)

Implements 102 trees Implements 101 trees

Implements 107 trees Implements 106 trees Implements 103 trees

Implements 21 trees Implements 21 trees Implements 20 trees Implements 20 trees

Implements 23 trees Implements 22 trees Implements 22 trees

Implements 1 tree Implements 2 trees

19

Implements 827 trees

T(vi) 6

Implements 811 trees

Implements 815 treesImplements 815 treesImplements 818 trees

Implements 853 trees Implements 844 trees

Figure 9: Optimal universal trees of high functionality20

