On the Construction of
Universal Series-Parallel Functions for
Logic Module Design

F.Y. Young and D.F. Wong
Department of Computer Sciences
The University of Texas at Austin
fyyoung@cs.utexas.edu and wong@cs.utexas.edu

Abstract

The structural tree-based mapping algorithm is an efficient and popular technique
for technology mapping. In order to make good use of this mapping technique, it is
desirable to design logic modules based on Boolean functions which can be represented
by a tree of gates (i.e. series-parallel or SP functions). In FPGA-96, Thakur and Wong
[5] studied this issue and demonstrated the advantages of designing logic modules as
universal SP functions, i.e. SP functions which can implement all SP functions with
a certain number of inputs. However, the universal SP functions presented in [5] were
designed manually and an automatic generation of universal SP functions was still left
as an open problem. In this report, we present an algorithm to generate, for each
n > 0, a universal SP function for implementing all n-input SP functions. We will also
present an efficient Boolean matching algorithm for matching functions to the universal
SP functions that we constructed. As it is important to have alternative universal SP
functions from which logic-module designers can choose a design taking other criteria
(e.g. area, delay, or power) into consideration, we developed an algorithm to generate
alternative universal SP functions. In particular, we have found characterized all the
universal SP functions for n-input SP functions, when n < 6.

1 Introduction

Designing a logic module that can implement many different functions is a good idea only
if one can come up with a mapping algorithm that can utilize the functionality. Recently,
high-functionality logic modules based on universal logic modules (ULMs) have been reported
[1, 2, 3, 6, 4], but current technology mappers cannot exploit all the functionality offerred.
Typically, the best mapping algorithm for logic modules are discovered after the architecture
design has been done. Exploration of logic module architectures revolves around established
designs with incremental modifications. In FPGA-96, Thakur and Wong [5] took a dual ap-
proach; they began with a known mapping algorithm and designed logic modules for which
the mapping algorithm can perform well. The structural tree-based mapping algorithm is
an efficient and popular technique for technology mapping. Due to the decomposition of
unmapped logic networks into trees, matches will be identified only for those library cells
that have a representation in the form of a tree of gates. The mapping algorithm is opti-
mal for libraries restricted to such functions (which will be referred to as series-parallel or
SP functions). For a FPGA logic module, the library is the set of functions that can be
implemented using one logic module. In order to make good use of this mapping technique,
Thakur and Wong [5] designed logic modules as universal SP functions, i.e. SP functions
which can implement all SP functions with a certain number of inputs. However, the uni-
versal SP functions presented in [5] were designed manually and an automatic generation of
universal SP functions was still left as an open problem.

In this report, we present an algorithm to generate, for each n > 0, a universal SP
function for implementing all n-input SP functions. We will also present an efficient boolean
matching algorithm for matching functions to the universal SP functions we constructed. As
it is important to have alternative universal SP functions from which logic-module designers
can choose a design taking other criteria (e.g. area, delay, or power) into consideration,
we developed an algorithm to generate alternative universal SP functions with minimum
number of inputs. In particular, we have found all the universal SP functions for n-input SP
functions, when n < 6.

The rest of the report is organized as follows. In Section 2, we formally introduce the
problem of constructing universal SP functions with minimum number of inputs and show
its equivalence to the problem of finding universal trees with minimum number of leaves.
We present an algorithm to construct universal trees (and hence universal SP functions) in
Section 3 and give the boolean matching algorithm in Section 4. Finally, in Section 5, we
present an algorithm to generate alternative universal SP functions and show all universal
SP functions for n-input SP functions, when n < 6.

2 Formulation of Problem

We denote the complement of a boolean function f as f’. We now formally define series-
parallel (SP) functions and the notion of a function f implements another function ¢ as

follows:

Definition 1 Any function of at most one input is an SP function. If f and ¢ are two SP
functions with disjoint supports, then f + g and f * g are SP functions.

Definition 2 For any m > n, we say that a function f(z1,22, -+, z,) can implement
a function g(xy,xq,---,x,) if f can be transformed to ¢ by: (i) Assigning a value from
{0, 1, 2,2, -, xn, 2} to each of the z1, 29, -+, z,; and (ii) optionally complementing the
output of f.

Example 1 Let f = ((#1 4+ x2)25 + 2))asze and g1 = y1y2y3 + ya. Both f and ¢, are SP
functions. Putting =; = y1, 2 = v}, 3 = 0, 24 = y3, 5 = y; and x¢ = 1 and taking the
complement of the output in f gives (((y; + y5)1 +y3)ys - 1)’ = v1y2ys + ya = gi1. Therefore,
f can implement ¢;.

Definition 3 Two functions f and g are NPN-equivalent if and only if f can be transformed
to g by some combination of input permutations, input complementations and output com-
plementation.

We call an SP function n-universal if it can implement all SP functions with at most n
inputs. The goal of our work is to construct n-universal SP functions for all n > 0. It was
proved in [5] that if a function [can implement an SP function ¢, then f can implement
every SP function which is NPN-equivalent to g. Therefore, to construct a n-universal SP
function, it suffices to construct a function which can implement one function from each
NPN-equivalent class.

Example 2 Let f = ((z1 + @2)vs + 242576, 01 = Y1y2ys +ya and g2 = (y5 + Yz + y)y;-
Putting y1 = y2, y2 = ¥4, y3 = y4 and y4 = y; and taking the complement of the output in
g1 gives (yaysys + v1) = (Y4 + ys + vy, = g2. Therefore, g; and gy are NPN-equivalent.
From Example 1, we know that f can implement ¢g;. Since ¢g; and ¢, are NPN-equivalent,
f should also be able to implement g,. This is true since putting x; = yj, x9 = ys3, x5 = 0,

vy =ya, v5s =y and xg = Lin f gives ((y3 +ys)l +y)ys - 1 = (43 + ys + yi)yi = g2
An SP function with m inputs can be represented by a labelled tree with the following

properties:

1. The internal nodes are labelled AND (*) or OR (+) and have at least two children
each. The node labels alternate between AND and OR on any path from the root to
the leaves.

2. The tree has m leaf nodes. Each leaf node is labelled by one of {zq, 2, -, &n, 2] }
such that each variable appears exactly once in some phase.

The unlabelled tree of an SP function f is the tree obtained by removing the node labels.
Figure 1 shows an SP function and its labelled and unlabelled tree representations. Clearly

f=((x1+x2)x3 +x4)x5x6

Labeled tree of f Unlabeled tree of f

Figure 1: An SP function and its labelled and unlabelled tree representations

gl=yly2y3+y4 92=(y2 +y3+y4)yl
gland g2 are
G NPN-equivalent, °
Q @’ E:> so their unlabeled ‘5 @ E>
trees are isomorphic
(vd (2 (43 (2 (3 (v9
Unlabeled tree of g1 Unlabeled tree of g2

Figure 2: Isomorphism between the unlabelled trees of two NPN-equivalent SP functions

f=((x1+x2)x3 +x4') x5x6

_ These two nodes are
gl=yly2y3+y4 removed during
contractlon
O f can implement
g, sothe < S
N unlabeled Q
O tree of f can

implement
the unlabeled \
treeof g 6

Unlabeled tree of g Unlabeled tree of f after
Unlabeled tree of f cuttings and contractions

Figure 3: Illustration of the cutting and contraction operations

any SP function yields a unique unlabelled tree (up to isomorphism), but an unlabelled tree
may correspond to many different SP functions (by labeling the nodes differently). It was
proved in [5] that two SP functions are NPN-equivalent if and only if their unlabelled trees
are identical up to isomorphism. This is illustrated by an example in Figure 2. It follows
immediately that there is a one-to-one correspondence between the unlabelled trees with
m leaves and the NPN-equivalent classes of all m-input SP functions. We now define two
operations, cutting and contraction, on unlabelled trees:

Cutting: Two nodes a and b, such that « is a child of b, are selected. The entire subtree
rooted at a and the edge between a and b are removed.

Contraction: An internal node b, which has parent a and a single child ¢, is selected. Node
b is removed. If ¢ is an internal node, the children of ¢ are made children of a and c¢ is
removed. If ¢ is a leaf, it becomes a child of «.

Let t and ' be two unlabelled trees. We say that ¢ implements ¢ if ¢ can be obtained
by applying a sequence of cutting or contraction operations to t. Let f and g be two SP
functions and let ¢ and ' be their respective unlabelled trees. It was proved in [5] that f
implements ¢ if and only if £ implements ¢. (For example, in Figure 3, we have f implements
gl and the unlabelled tree of f can also implement the unlabelled tree of gl.) As a result,
the following two problems are equivalent.

Logic Module Design Problem: Given an integer n > 0, find an SP function f with the
minimum number of inputs which can implement all SP functions with at most n inputs.

Universal Tree Design Problem: Given an integer n > 0, construct an unlabelled tree
T, with the minimum number of leaf nodes which can implement all unlabelled tree with at
most n leaves.

ShAE @ e

@n=3 (byn=4,5 (9n=2o0rn>5

Figure 4: Construction of universal trees

Since the above two problems are equivalent, we will work on the second one from now
onwards. Unless otherwise stated, all trees in the following are unlabelled. A tree is n-
universal if it can implement all unlabelled trees with at most n leaf nodes. The size of a
tree is defined as the number of leaf nodes.

3 Constructing Universal Trees

3.1 Construction
The universal tree T, for n-leaf trees is constructed recursively from Tng and 7T,,_q:

Algorithm U-TREE: Construct a tree T, which is n-universal.
Input: A positive integer n.

Output: A tree T, which is n-universal.

Construction:

1. If n =1, construct T,, as a single node tree.
2. Else if n = 3, construct T}, as in Figure 4(a).

3. Else if n = 4,5, construct T, as in Figure 4(b).

4. Otherwise, construct T, as in Figure 4(c).

3.2 Proof of Correctness

It is obvious that 77 and T, are correct, so we consider n > 2 only. Let ¢ be a tree with n
leaves. Let 11,15, ...,1; be the subtrees at the root of { where 7 > 2. We consider the following
three cases:

Case 1: One subtree has only one leaf while the other has n — 1 leaves.

It is obvious that T}, can implement ¢ in this case.

‘/ t_g \ ,’l g |
," Since t-g has less than e o
n-1leaves, this can
""" be implemented by T n-1
(8) Use T, toimplement t-g (b) Cut(b,d) and Contract(b) (c) tisobtained

Figure 5: Use T,,_y to implement ¢t — g

Case 2: There exists one subtree ¢ of m leaves where 2 < m < L%J

This case does not apply to n = 3 since [%] < 2 when n = 3. Let ¢ — g denotes the set
of subtrees at the root of ¢ save g. Since ¢ has more than one leaf, { — ¢ has less than
n — 1 leaves. Thus we can implement ¢t — g by T, (Figure 5), and implement g by

Tz (or by the left subtree at the root of the tree shown in Figure 4(b) when n = 4,5).

Case 3: Otherwise.

There must be at least two single-leaf subtrees, ¢; and gy, at the root of . When
n = 3, it is the case when the root has three single-leaf children and it is obvious that
T5 can implement this. Consider the case when n > 3. Let t — g; — ¢g» denotes the
set of subtrees at the root of ¢ except ¢; and ¢o. Since g; and ¢y has one leaf each,
t — g1 — g2 has less than n — 1 leaves. Hence we can implement ¢t — g; — go by T),_1,
and implement g; and gz by T}z (or the left subtree at the root of the tree shown in
Figure 4(b) when n = 4,5).

3.3 Analysis
Let f(n) be the size of the universal tree T, constructed by U-TREE. We will show that

f(n) lies between R and 05 when n is large. From the construction, we know that

1) =1 f(2) = 2, f(3) =4, f(4) = T, f(5) = 10 and
fn) = F12) +f(n—1) whenn>5

So, forn > 5,
f(n)=f(5)+ ZZZL:% (1) when n is odd
fn)=f5)+ f(5])+ QZZL:%_I f(@) when n is even

7

Therefore

o BT ry < fn)y <41 2B F6) foralln

For simplicity, lets assume that n is a positive power of 2. Then

Therefore

lgnt+1
2

n < f(n)<n

3.4 Comparison with Lower Bounds

We have proved the following theorem which gives a lower bound on the size of a universal
tree:

Theorem 1 The size of a n-universal tree is at least

Table 1 compares the size of the universal trees constructed by U-TREE with the lower
bound from Theorem 1. We can see that U-TREE gives optimal universal trees up to n
equals 7 and the solution is off from optimal by at most 5 when n is less than 10.

4 Boolean Matching

In boolean matching, we are given two boolean functions f and g. We want to know whether
function g can implement function f and to construct f from ¢ in case it is possible. In this
section, we describe a polynomial time algorithm which, when given a boolean function f
expressed as a tree t and a universal tree T, constructed by U-TREE, can determine whether
T, can implement ¢ by some sequence of cuttings or contractions in O(mlog D) time where
m is the number of leaves in ¢ and D is the largest fan-in in ¢. This problem is non-trivial
when m > n. The construction will also be found if the answer is yes. In this section, we
only consider the universal trees T}y ’sconstructed by U-TREE. We need the following two
claims in the algorithm.

Size from U-TREE | Lower Bound

n
1 1 1
2 2 2
3 4 4
4 7 7
5 10 10
6 14 14
7 18 18
8 25 22
9 32 27

Table 1: Comparison between U-TREE and the lower bound

Lemma 1 Ifi >3, T; can implement T;.

Proof The proof is done by induction. It is easy to verify that T) can implement T} _;

for £ < 6. Consider the construction of Ty for £ > 6. By the inductive hypothesis, its left

subtree TLEJ can implement TLEJ and its right subtree T;_; can implement T} _,. Therefore
2 2

T}, can implement Tj_;.

Lemma 2 Given t with d subtrees at the root. LetT,,,T,,. -, T,, be the smallest universal
trees to implement these subtrees. (According to Lemma 1, they are well defined.) If T, is
the smallest universal tree to implement t, then p < z < p+ 2d where p = max{2y,z + 1},
x is the largest n; and y is the second largest n;.

Proof Consider a tree ¢ rooted at a node v. Assume that v has d children subtrees,
1,62, ..94 and that g, and ¢y are the largest and the second largest children subtrees
respectively. Let T, and T}, be the smallest universal trees to implement ¢; and ¢, respec-
tively. We want to show that p < z < p + 2d where T, is the smallest universal tree to
implement ¢ and p = max{2y,x + 1}. We consider two different cases:

Case 1: z+12>2y,sop=a—+1.
We want to show that # + 1 < z < (a4 1) + 2d.

Consider T, where z < z 4+ 1. The two subtrees at the root are 7,_; and TL%J' Since
z < x + 1, neither T,_; nor TL%J can implement ¢;. Thus z > x + 1.

Consider T, where z = (# + 1) + 2d. The two subtrees at the root are T,_; and TL%J'
If we expand T,_; to T._5 and TLZT—lj, cut the subtree TLZT—lj and do contraction, we
get T3, T)z)-1 and Tz at the root. We can repeat this process d times and obtain
d + 2 subtrees at the root: T,_1_2q, T\z)-4, T\ z]-a+1, - -+, T|z). Since z = (x4 1)+ 2d,

z—=1-2d=wxand || —d = L%J > y. Thus the T._i_4 can implement ¢; and the
T|zj-q can implement g;. Since g, is already the second largest subtree in ¢, gs, g4, - -,
gq in t can be implemented by the remaining d subtrees in T,.

Case 2: 2y > x4+ 1, so p = 2y.
We want to show that 2y < 2 < 2y + 2d.

Consider T, where z < 2y. The two subtrees at the root are T._; and TL%J' Since
z <2y, T|z) cannot implement g. The only possibility is to expand T’ giving T’._s,
T\zj-1 and T|zj. However neither Tz nor 7|z can implement g, and the only
possibility is to expand T,_3. Repeating the same argument, we finally get a subtree
just large enough to implement g; but none of the others can implement ¢;. Thus
z > 2y.

Consider T, where z = 2y + 2d. The two subtrees at the root are T,_; and T@. If we
expand 1._1, we get T._5, T2y and T|z) at the root. We can repeat this process d
times and obtain d + 2 subtrees at the root: T,_1_s4, TL;J—d, Tng_d_H, e TL%J' Since
2=2y+2d, 2—1-2d =2y—12> 2z and | 5| —d =y. Thus the T._;_54 can implement
g1 and the T|z)_4 can implement g;. Since g» is already the second largest subtree in
t, g3, G4, - -+, g4 In t can be implemented by the remaining d subtrees in 7.

4.1 Boolean Matching Algorithm

According to Lemma 1, we can determine whether 7}, can implement an m-leaf tree ¢ by
finding the smallest index &k such that T} can implement ¢. The algorithm works bottom-up
from the leaves to the root. Assuming that we know already the smallest universal trees to
implement the d, children subtrees of a node v, we can do binary search on T,,,---, 7,124,
to find the smallest universal tree to implement the tree rooted at v, where, according to
Lemma 2, p is max{2y, x+ 1}, is the largest index among the universal trees for v’s children
subtrees and y the second largest. This can be done by the following algorithm MATCH. We
can apply this algorithm recursively from the leaves up to the root until we find the smallest
Ty to implement the entire tree ¢ at the root. In the following, decomposing a universal tree
means the sequence of steps shown in Figure 6 to obtain smaller universal trees at the same
level.

Algorithm MATCH

Input: A tree ¢ with d subtrees ¢,¢q,...,¢; at the root such that T}, ,T,,,,...,T),, are the smallest
universal trees to implement these subtrees. An integer n.

Output: Check if 7,, can implement ¢. If yes, give construction.

1. Let A ={ny,ng,...,nq}.

10

Decompose Tn-1 : a

a

\\\ . Tn-2
(8) Replace Tnt by Tne . g
and T| (112 Tnl
(c) Replace Tn2 by Ths and T (22 |.
(b) Cut edge 4. Contract at node b. GivesTna and T|n2|-1 at theroot.
GivesTh2 at the root. We can repeat the same processto Tn-3 .

Figure 6: Decomposing a universal tree
2. Let B={m~—1,[%]}.

3. While A is not empty

(a) Let ¢ be the largest index in A, corresponding to subtree ¢; at the root of ¢.
(b) Let j be the largest index in B with the same parity of i.
(

(c
d

(e

If (j <) and (k <), exit and output FAIL

)
)
) Let k be the largest index in B with the opposite parity of i.
)
) Else if (5 >):

i. Decompose T} into smaller universal trees until getting 7;. Use this T; to implement
t;.
ii. Let B’ be the set of indices of the universal trees obtained by decomposing T}.
iii. B=B-{j}+ B —{i}
iv. Output the construction.
(f) Else if (k > i) and (L%J <)
i. Decompose Ty into smaller universal trees until getting T;47. Use this T;y1 to
implement ¢;.
ii. Let B’ be the set of indices of the universal trees obtained by decomposing T}.
iii. B=B—-{k}+B —{i+1}
iv. Output the construction.
(g) Else if (k> i) and (|£] > 4):
i. Decompose T} into smaller universal trees until getting 7T;. Use this T; to implement
t;.
ii. Let B’ be the set of indices of the universal trees obtained by decomposing T}.
ili. B=B—-{k}+ B —{i}

iv. Output the construction.

11

() A=A-{i)
(i) End {while}

4. End {MATCH}

An example is shown in Figure 7. In the algorithm, A keeps a set of indices of the
subtrees which we need to implement while B is a set of indices of the available subtrees.
The while-loop examines the subtrees corresponding to the indices in A in a non-increasing
order. In each iteration, the largest index ¢ in A is picked and we want to check whether
there is an available subtree whose index is at least 7. Thus we pick the largest odd index
and the largest even index from B. If both are smaller than 7, we know that ¢; cannot be
implemented by any available subtree. Otherwise, we prefer implementing ¢; by 7T}, whose
index 7 has the same parity as i, because decomposing T will give T; exactly. However if
J < 1, we must use Ty, whose index k has the opposite parity as 7. If L%J > 1 we can still
implement ¢; exactly by decomposing T} to give T;. Otherwise we must waste some resources
by implementing ¢; by T;11 obtained by decomposing Ty. Notice that T} can never give T;
unless L%J > 1. After that, we need to update A and B by removing 7 from A, removing j
(or k) from B and adding back B’ — {i} (or B'— {1+ 1}) to B where B’ is the set of indices
obtained by decomposing T; (or Ty). This process repeats until either there is a subtree
in A which cannot be implemented or A is empty. Since we examine the indices in A in
decreasing order, we will not mistakenly decompose a universal tree in B which is needed
in some later steps. Thus the algorithm is correct. As a minor implementation detail, we
need some special data structure for the sets A and B such that the largest element can be
picked quickly in each step.

Let TIME(v,j) denotes the time to check whether a universal tree T; can implement a
tree rooted at v, given the smallest universal trees to implement v’s children subtrees. From
the above algorithm, we know that TIMFE(v,j) = O(d,) where d, is the in-degree of v.
Thus the total time spent at node v will be log d, x O(d,) where the logarithmic term comes
from the binary search. Let D be the largest fan-in in ¢, then

TOTALTIME =Y,0(d,logd,) = O(log D2.%) = O(mlog D)

5 Alternative Universal Trees

During the design process, it is advantageous to have alternative universal trees so that the
designers have options to choose from. The final choice may be based on functionality, area,
delay, power or any other considerations. When n is small (1 <n < 6), we can generate all
optimal (smallest number of leaves) n-universal trees Since algorithm 1 constructs universal
trees recursively from smaller ones, we can generate many alternatives for large n from those
alternatives for small n.

12

The original tree

(a) Check if z=13

(0]

B={12 6}
A={86,3 33}

Decompose T12
_

(iv)
e ° Decompose T5
B={54}
A={333}

(b) Check if z = 14

I

:137}
={8,6,33 3}

Decompose T13
_ =

(V)

Decompose T7

B={75}
A={333}

(vii)

Remove 3

B={5 2}
A={3,3}

x=8
y=6
p=max{ x+1,2y} =12

Thus 12 < z<

(in)

12+2d=22
where T, isthe smallest universal tree to implement t

(|||)

@ e ° e RernoveSfromAandB@ @

B={8654}
A={%6,3,3,3}

v

B={4)8 2}
A={3 3,3}

(i)

Remove 3

Remove 8 from A

Remove 9 from B
_ =

B={%,54}
A={%3,3,3}

(vi)

B={%2}
A={3 3}

(iii)

B={976,5} B={7%6,5}
A={%86,3,33} A={%3,3,3}
V) (vi)
Remove 3 @
B={553} B={55}
A={333} A={33}
(viii) (ix)
Decompose T5 e e °
B={52} B={%,22}
A={3} A={3}

Remove 6

Remove 3 from A
Remove 4 from B
B

Remove 6

Decompose TS
_

Remove 3

Figure 7: Running the algorithm MATCH on an example
13

Fail

Success

The problem of generating all optimal universal trees is non-trivial. The running time
is unbearably long even when n is small. For example, a universal tree for 6-leaf trees has
at least 14 leaf nodes and there are 8005 of them. We need to check, for each one, whether
it can generate all possible 6-leaf trees. In order to get the results in a reasonable amount
of time, we need a good representation of the trees and an efficient strategy to eliminate
non-universal trees. In the following, we will describe the data structures we used and give
a brief outline of the algorithm.

5.1 Data Structures

We use 0-1 bit strings to represent trees. Each node is represented by a pair of 0 and 1. To
obtain a binary representation of a tree ¢, we traverse ¢ in a depth-first order. We write a 1
when we first visit a node and write a 0 when we backtrack from it (see Figure 8(a)). This
gives a compact representation for the trees, and, more importantly, it allows us to make use
of some fast bitwise operations (e.g. AND, OR, SHIFT) in the C programming language.
The drawback of this representation is that the maximum size of the trees on which we can
operate is bounded by the wordsize of the computer used. However a 64-bit (type long long
in C) wordsize is already enough to generate universal trees for practical purposes and we
can also simulate the bitwise operations on an array of words for large trees. The following
two procedures are examples on how we can operate on the trees efficiently using this kind
of representation:

Cut a subtree in tree t and count Find all the single-child internal
the number of edges in the nodes in tree t and mark them as
removed subtree. “0” in the flag r
int CutSubtree(t) int FindContractableEdge(t,r)
unsigned long *t; unsigned long *t, *r;
{ int count=1, edge=0; { int count=0, type=0;
while (count>0) { if (*t&0x00000001) return 0;
*t>>=1; *t>>=1;
if (*t&0x00000001) count—; while (!(*t&0x00000001)) {
else count++, edge++; type = FindContractableEdge(t,r);
count += (type==2)7type:1;
return edge; }
} *t>>=1;

if (count==0) {*r=(*r<<=1)|0x00000001; return 0;}

if (count> 1) {*r=(*r<<=1)|0x00000001; return 1;}

if (count==1) {*r=(type==0)?
((*r<<=1)&O0xfttfe): ((*r< <=1)&0x{ITEd);
return (type==0)70:2;

In order to give unique representations (up to isomorphism), we require that the chil-
dren subtrees at any node v must be arranged in a non-increasing order of their binary
representations (Figure 8(b)). In this way, every tree ¢t will correspond to one single binary

14

111010011011010000 111101001001101000

(a) A binary representation of the tree (b) A unique representation by arranging
the subtrees in a non-increasing order

of their binary representations

Figure 8: Example of a unique binary representation of a tree

representation only. This makes the process of removing duplicate trees easy. To remove
duplicates, we can treat the binary strings as integers, sort them and scan the list to remove
adjacent duplicate strings.

5.2 Algorithm Outline
The following algorithm generates all optimal n-universal trees given an arbitrary integer n.

Algorithm ALL-U-TREE
Input: An integer n
Output: Generate all n-universal trees with the smallest number of leaves.

1. Generate a list of all n-leaf trees in Lq.
2. Let m be the size of the smallest possible n-universal trees. Generate all m-leaf trees in L.
3. L=A{}.

4. For each tree ¢t in Lo:

(a) Count the number of nodes at the odd levels and the even levels of ¢ to see if it can
possibly be an n-universal tree. If it is impossible, go back to the beginning of this loop
and check the next tree in Ls.

(b) Lz ={}.
(c) Consider all possible combinations of cutting and not cutting at each edge of ¢:

i. Do cutting in ¢.

ii. Do contraction in ¢.

15

iii. Rewrite the binary representation of ¢ in such way that subtrees are arranged in a
non-increasing order of their binary representations.

iv. Put tin Ls.
(d) Remove duplicates in Ls.
(e) Compare Ly with Ls. If L1 = L3, put ¢ into L.

5. Qutput L.

There are several places in the algorithm where it is needed to generate all k-leaf trees.
To do this, we start with a list of all possible 0-1 bit strings of length 4k — 2 (a k-leaf tree
has at most 2k — 1 nodes), and we select from this list those valid ones by checking whether:

e The number of leaves (“10” strings) is k.
e The 1’s and 0’s are balanced.

e All nodes have at least two children.

o Children subtrees are arranged in a non-increasing order of their binary representations.

In case of generating universal trees, we can have one more checking which counts the
number of nodes at the odd levels and the number of nodes at the even levels (root is at
level 0) because of the following theorem:

n—1
Theorem 2 A n-universal tree must have at least n + ZZ»ng JL”Z;IJ nodes at the odd levels

and at least n — 1 + ZZL:% | %] nodes at the even levels.

The proof is very similar to that of Theorem 1 and the proof will be given in another
piece of work. When £ is large, it is impossible to start with a list of all possible 0-1 bit
strings of length 4k —2. For example, when n is 6, according to Theorem 1 and the algorithm
U-TREE, we know that an optimal 6-universal tree has 14 leaf nodes. There are 2°* possible
combinations of 0-1 bit strings of length 54. It is impossible to start with this infinite list
to generate universal trees. In real cases, we do prunings at the beginning of the search to
throw away a lot of impossible choices. The rules are based on some simple observations
of the balancing of the 0’s and 1’s in the binary representations. In step 4(c), we consider
all possible combinations of cutting and not cutting at the edges of ¢. This number looks
tremendous but it can be reduced significantly if we notice that cutting an edge allows us to
neglect all the edges inside the removed subtree.

16

5.3 Results

Table 2 shows the number of optimal n-universal trees when 1 < n < 6. We see that there
can be many different choices among the universal trees and they differ in many aspects like
number of levels, number of gates, number of wires, number of fan-in of the gates and, the
most important of all, the number of functions covered (functionality). Table 3 shows the
number of optimal universal trees which can cover a large number of functions for n from
one to six. Their structures are shown in Figure 9.

To convert a tree back to a corresponding SP function, we can choose either an AND
or OR at the root of the tree, alternate these labels between levels and assign a variable to
each leaf node such that each variable appears exactly once in some phase, e.g. a possible
SP function corresponding to the first tree in the list of Ty in Figure 9 is (((z1 + @})xs +

xh)rs + xert).

n | No. of Optimal Universal Trees | No. of Functions Implemented
1 1 1
2 1 2
3 2 5
4 12 17-23
5 70 64-107
6 325 349-853
Table 2: Number of optimal universal trees
n | No. of Optimal Universal Trees | No. of Functions Implemented
of High Functionality
1 1 1
2 1 1
3 2 5
4 7 above 20
5 5 above 100
6 7 above 800

Table 3: Number of optimal universal trees of high functionality

17

References

1]

C. Lin, M. Marek-Sadowska, and D. Gatlin. Universal logic gate for FPGA design.
Proceedings of the IEEE/ACM International Conference on Computer Aided Design,
1994.

Y.N. Patt. Optimal and near-optimal universal logic modules with interconnected exter-

nal terminals. IEEE Transactions on Computers, 22(10):903-907, 1973.

F.P. Preparata. On the design of universal boolean functions. IEFEE Transactions on

Computers, 20(4):418-423, 1971.

S. Thakur and D.F. Wong. On designing ULM-based FPGA logic modules. Proceedings
of SCM/SIGDA FPGA-95, pages 3-9, 1995.

S. Thakur and D.F. Wong. Universal logic modules for series-parallel functions. Proceed-

ings of ACM/SIGDA FPGA-96, pages 31-37, 1996.

7. Zilic and 7Z.G. Vranesic. Using BDDs to design ULMs for FPGAs. Proceedings of
ACM/SIGDA FPGA-96, pages 24-30, 1996.

18

i T, ° (i) T, /\. (iii) Tﬁ‘
Implements 1 tree Implements 2 trees ﬁ‘

Implements 5 trees

(iv) T,
Implements 23 trees Implements 22 trees Implements 22 trees
Implements 21 trees Implements 21 trees Implements20trees Implements 20 trees
v) T
Implements 107 trees Implements 106 trees Implements 103 trees

Implements 102 trees Implements 101 trees

19

(Vi) T

SR

Implements 853 trees Implements 844 trees Implements 827 trees
Implements 818 trees Implements 815 trees Implements 815 trees

Implements 811 trees

Figure 9: Optimal universal trees of high functionality

20

