
Parlists { a Generalization of Powerlists(extended version)Jacob KornerupDepartment of Computer SciencesThe University of Texas at AustinAustin, TX 78712E{mail: kornerup@cs.utexas.eduMay 29, 1997AbstractThe powerlist notation has been very successful in specifying a number of parallel algorithmsin a very elegant fashion. The major criticism of the notation was the restriction that inputlengths were limited to powers of two. In this paper we present ParList, an extension of thepowerlist notation to lists of arbitrary positive lengths. We use the ParList notation to describea pre�x-sum algorithm and to describe two addition circuits.0 IntroductionThe powerlist notation [Mis94] has proven to be a major step forward in describing parallel algo-rithms succinctly. It allows the programmer to work at a high level of abstraction, by avoidingindexing notations, leading towards e�cient implementations on parallel architectures [Kor95]. Thepowerlist data structure is a list whose length is a power of two. In the powerlist notation it ispossible to elegantly specify algorithms such as the Discrete Fast Fourier Transform without re-sorting to \index gymnastics" [Mis94]. For such algorithms this restriction on the lengths is notserious, as they are often presented this way in the literature. However, for most algorithms therestriction is unnatural. To remedy this, Jayadev Misra [Mis96] generalized the powerlist notationto lists of arbitrary length by adding constructs from linear list theory. In this paper we presentan extension of the powerlist notation to lists of arbitrary positive lengths0 and work through anumber of examples. This new data structure is called \ParList", which is short for parallel list.1 ParList TheoryA ParList is a non-empty list, whose elements are all of the same type, either scalars from the samebase type, or (recursively) ParLists that enjoy the same property. Two ParLists are similar if theyhave the same length and their elements are similar; two scalars are similar when they are from thesame base type. We categorize ParLists according to their length. The shortest ParList has length1, it is called a singleton. We denote the singleton containing the scalar x by hx i.0The theory presented in [Mis96] was incomplete. The author of this paper has completed the theory and workedout the examples presented in this paper. This paper is submitted with permission from Jayadev Misra.0



A non-singleton ParList v can be deconstructed into a single element and a ParList whose lengthis one less than that of v, using the . (\cons") and the / (\snoc") operator:v = a .p ^ v = q/ b (0)where a, b and the elements of p and q are similar to the elements of v, and p and q are similarParLists. In (0) a is the �rst element of v and b is the last element of v. This de�nition correspondsto standard list theory, which is well-known from sequential, functional languages like Miranda[Tur86], ML [MTH90] and Haskell [HJW+92].A ParList, p, of even length has the property that it can be deconstructed using the ./ (\zip")and the j (\tie") operator: p = u ./ v ^ p = r j s (1)where u is a ParList containing the elements of p at even positions, and v is the ParList containingthe elements of p at odd positions. Similarly, r is the ParList containing the �rst half of p and s isthe second half of p; the ParLists r; s; u and v are all similar.We formalize the involved types and lengths by introducing the type function ParList that takestwo arguments, a type and a positive integer and returns the type of all ParLists with elements ofthe given type and length equal to the given length. Let Type be the type of all types1 and Pos thetype of positive integers, we de�ne ParList as the functionParList : Type� Pos �! Type (2)which returns the type containing all ParLists with elements from Type, whose length is as speci�edby the second argument. Using ParList we can give the signature for the ParList operators (X is atype and n is in Pos, the positive natural numbers)h i : X �! ParList:X:1 (3). : X� ParList:X:n �! ParList:X:(n+ 1) (4)/ : ParList:X:n� X �! ParList:X:(n+ 1) (5)j : ParList:X:n� ParList:X:n �! ParList:X:(2�n) (6)./ : ParList:X:n� ParList:X:n �! ParList:X:(2�n) (7)We overload the name ParList, by having it denote the type of all parlists (corresponding toParList:X:n for all X and n) and naming the algebra we de�ne below. We further re�ne the typeParList, by introducing the subtype ParList.X that corresponds to all ParLists whose elements aretaken from X. Finally, we partition the type ParList.X into the subtypes Singleton.X, EvenParList.Xand OddParList.X, de�ned respectively as ParList:X:1; ParList:X:(2�k) and ParList:X:(2�k+1), wherek ranges over Pos. Note that powerlists is a subtype of ParList, corresponding to the lists whoselength is a power of two (ParList:X:(2k)).We will only write expressions that have a correct type as de�ned above; e.g. when we writep ./ q it is understood that p and q are similar ParLists, i.e. both members of ParList:X:n for someX and n; when we write a .p it follows that a is similar to the elements of p.We use the proof format and notation presented by Dijkstra and Scholten [DS90], this includeswriting function application using an in�x dot: f:x . To minimize the use of parenthesis, we givedi�erent binding powers to the operators (most will be de�ned later in the paper) as prescribedby the table below, where the operators are grouped in decreasing order from left to right, andoperators in the same group have equal binding power:1This is just a name. We will not do any reasoning based on types. The worried reader should skip the followingde�nition, as Type does not appear elsewhere in this paper1



: !  . / ./ j � + � ? � � mod = ) ^ _ �Remark The de�nitions that de�ne the constructors for ParList are similar to how one mightde�ne the function power : Real � Pos �! Real, that computes the value of its �rst argumentraised to the power of its second argument, i.e. power :x:n = xn. We can de�ne power recursivelyas follows: power :x:1 = x (8)power :x:(2�n+ 1) = x�power :x:(2�n) (9)power :x:(2�n) = (power :x:n)2 (10)the choices for inductive cases where rather arbitrary, as we could equally well have chosen:power :x:(2�n+ 1) = power :x:(2�n) � x (11)power :x:(2�n) = power :x2:n (12)Note how (10) and (12) corresponds to (1), and (9) and (11) corresponds to (0). End Remark1.0 AxiomsIn the following we extend the axioms of the powerlist theory [Mis94] to an axiomatization ofthe ParList algebra. The ParList algebra has �ve constructors: h i; j; ./; . and /. They are allisomorphisms on their respective domains, with the following laws as consequence, where p; q; u; v 2ParList.X:n ^ a; b; c 2 X: hai = hbi � a = b (13)p j q = u j v � p = u ^ q = v (14)p ./ q = u ./ v � p = u ^ q = v (15)a .p = b .q � a = b ^ p = q (16)p/ a = q/ b � a = b ^ p = q (17)(8t : t 2 ParList.X:1 : (9 a :: t = hai)) (18)(8t : t 2 ParList.X:(2�n) : (9 u; v :: t = u j v)) (19)(8t : t 2 ParList.X:(2�n) : (9 u; v :: t = u ./ v)) (20)(8t : t 2 ParList.X:(n+ 1) : (9 a; p :: t = a .p)) (21)(8t : t 2 ParList.X:(n+ 1) : (9 b; q :: t = q/ b)) (22)The following axioms are from the powerlist theory:hai ./ hbi = hai j hbi (23)(p j q) ./ (u j v) = (p ./ u) j (q ./ v) (24)The remaining axioms extends the powerlist algebra to de�ne the full ParList algebra.a .(p j q) ./ (u j v)/ b = a .(u ./ p) j (v ./ q)/ b (25)a .hbi = hai j hbi (26)2



hai/ b = hai j hbi (27)a .(p/ b) = (a .p)/ b (28)a .(p ./ q) = (u ./ p)/ b � a .q = u/ b (29)a .(p j q) = (u j v)/ c � (9 b :: a .p = u/ b ^ b .q = v/ c) (30)Note the symmetry between ./ and j in axiom (24). Without an operational model the roles of./ and j can be interchanged in the powerlist algebra. This is not the case when we consider theParList algebra. If we interpret . and / as prepending and appending an element to a ParList thenthe contrast between (29) and (30) and between (25) and (24) precisely capture the operationaldi�erence between ./ and j.Let � be a binary operator, de�ned on a scalar type. We lift � to operate on ParList overelements of that type with the following laws:hai � hbi = ha� bi (31)(a .p)� (b .q) = (a� b) .(p� q) (32)(p ./ q)� (u ./ v) = (p� u) ./ (q � v) (33)As alternatives to (32) and (33) we could have chosen (34) and (35) as they are interchangeable:(p/ a)� (q/ b) = (p� q)/ (a� b) (34)(p j q)� (u j v) = (p� u) j (q � v) (35)It is a worthwhile exercise to prove that (34) and (35) follows from (31), (32) and (33).From (29) and (22) we can derive the following lemma, that is useful in proofs of properties ofParLists.Lemma 0(8a; p; q :: (9 b; u; v :: a .(p ./ q) = (u ./ v)/ b ^ a .q = u/ b ^ p = v)) (36)(8b; u; v :: (9 a; p; q :: a .(p ./ q) = (u ./ v)/ b ^ a .q = u/ b ^ p = v)) (37)Proof of (36) ((37) is similar)true� f axiom (22) g(8a; q :: (9 b; u :: a .q = u/ b))� f axiom (29) g(8a; p; q :: (9 b; u :: a .(p ./ q) = (u ./ p)/ b ^ a .q = u/ b))� f one-point rule and trading g(8a; p; q :: (9 b; u; v :: a .(p ./ q) = (u ./ v)/ b ^ a .q = u/ b ^ p = v))End of Proof1.1 Functions in ParListFunctions over ParList are de�ned by three di�erent cases based on the length of the argumentParList: singleton, even length and odd length. Each case is de�ned using pattern-matching on theargument ParList: h i for singletons, ./ or j for even length lists, and . or / for odd length lists.3



Subtype AllowedConstructorsSingleton.X h iEvenParList.X ./ jOddParList.X . /We insist that . and / only be used for ParLists of odd length in function de�nitions, since we wantto exploit parallelism as much as possible. When the argument has an even length, the computationshould be expressed using a balanced divide-and-conquer strategy. Arguments of odd length shouldbe treated as an alignment step, introduced by necessity.As an example, we de�ne the function rev that reverses its argument.rev :hai = hai (38)rev :(p ./ q) = rev :q ./ rev :p (39)rev :(a .p) = rev :p / a (40)Note that the choice of ./ and . as destructors was arbitrary. A de�nition using j and/or / in theirplace yields the same function. This is similar to the observation after the de�nition of the lifting ofscalar operators to ParLists, (31) to (35). In the de�nition of rev , (39) expresses that each recursivecase is independent and can be evaluated in parallel. The step described by (40) corresponds toa sequential \alignment" step, necessary before a balanced recursive step can be performed. Inthe case of rev the \alignment" step does not have to be sequential; depending on the parallelarchitecture (and the concrete implementation of ParList) rev can be evaluated in constant time.This would be the case on a CREW PRAM with the straightforward implementation of ParList.A familiar property of rev is that it is its own inverse, which we prove below.rev :(rev :p) = p (41)Proof of (41), base case: Inductive even case:rev :(rev :hai) rev :(rev :(p ./ q))= f rev (38) g = f rev (39) grev :hai rev :(rev :q ./ rev :p)= f rev (38) g = f rev (39) ghai rev :(rev :p) ./ rev :(rev :q)= f induction (41) twice gp ./ qInductive odd case: Combining both sides of the odd case:rev :(rev :(a .(p ./ q))) a .(p ./ q) = (rev :v ./ rev :u)/ b= f rev (40) g � f Axiom (29) grev :(rev :(p ./ q)/ a) a .q = rev :v/ b ^ p = rev :u= f rev (39) g � f rev(40) grev :((rev :q ./ rev :p)/ a) a .q = rev :(b .v) ^ p = rev :u4



= f See (42) below g � f See (42) below grev :(b .(u ./ v)) a .q = rev :(rev :q/ a) ^ p = rev :(rev :p)= f rev (40) g � f rev(40), induction (41) grev :(u ./ v)/ b a .q = rev :(rev :(a .q))= f rev (39) g � f induction (41) g(rev :v ./ rev :u)/ b a .q = a .q� f predicate calculus gtrueEnd of ProofIn the above we used Lemma 0 and axiom (29) to establish(9 b; u; v :: b .(u ./ v) = (rev :q ./ rev :p)/ a ^ b .v = rev :q/ a ^ u = rev :p) (42)1.2 Broadcast SumWe turn to the de�nition of the function sum : ParList:Y:n �! ParList:Y:n, that returns a list whereeach element is the sum of all the elements of the argument list (a broadcast sum). Here Yis a type with the property that (Y;+) is a semigroup. It is necessary to de�ne the functionslast : ParList.X �! X, which returns the last element of a list, and [a+] : ParList:Y:n �! ParList:Y:n,which returns the list where a has been added to each element of the argument list.sum:hai = a (43)sum:(a .p) = (a+ last:t) . [a+]:t; where t = sum:p (44)sum:(p ./ q) = t ./ t; where t = sum:(p+ q) (45)last:hai = a (46)last:(p/ b) = b (47)last:(p j q) = last:q (48)[a+]:hbi = ha+ bi (49)[a+]:(b .p) = (a+ b) . [a+]:p (50)[a+]:(p j q) = [a+]:p j [a+]:q (51)�rst:hai = a (52)�rst:(a .p) = a (53)�rst:(p j q) = �rst:p (54)When sum is evaluated with an argument of length 2n � 1; n � 1 there are n� 1 deconstructionsusing . and n � 1 deconstructions using ./ . Each deconstruction takes one parallel time step, inorder to perform the sum. The total number of parallel steps thus becomes 2�n � 2. In contrast,if the argument is of length 2n, only n parallel steps are needed. Adding a su�cient number ofdummy elements (i.e. identity elements of +) to a list makes it into a powerlist. Thus, functionslike sum can be evaluated in parallel in fewer steps than with the original list.5



1.3 Reusing Powerlist Proofs in the ParList AlgebraOne of the advantages of the ParList algebra is that it is a conservative extension of the powerlistalgebra. As a consequence any result proven about a function de�ned in the powerlist algebra holdsfor those parlists that are also powerlists, i.e. whose length is a power of two.Moreover, when powerlist function de�nitions are extended with an odd case they becomeParList functions. Inductive proofs of properties done in the powerlist algebra can be reused inthe proof of the same property for the extended function in the ParList algebra. Depending on thestructure of the powerlist proof, the only remaining proof obligation may be to prove the odd case.Take as an example the function rev de�ned in the powerlist algebra by (38) and (39). A proofof (41) in the powerlist algebra consisting of the base and even cases is su�cient to prove (41) inthe powerlist algebra. When (40) is added to make rev a ParList function, the odd case is the onlymissing part of the proof; the two others can be reused. A requirement is that the reused proofdoes not use properties that are speci�c to powerlists, e.g. properties likelength:p is even ) length:p is a power of 2.1.4 Pre�x SumPre�x sum is a fundamental parallel algorithm; it is used in many algorithms as a building block,e.g. carry lookahead addition (see Sect. 2). The pre�x sum of a ParList p over a data type Y, withthe property that (Y;+; 0) is a monoid, can be de�ned [Mis94] as the (unique) solution to theequation (in u): u = (0!u) + p (55)where the operator ! takes a element and a ParList and \pushes" a scalar into the list from theleft and the rightmost element of the list is lost. ! has a higher binding power than that of ./; j; .and / ; it is de�ned as follows: a!hbi = hbi (56)a!(p/ b) = a .p (57)a!(p ./ q) = a!q ./ p (58)The dual operator : ParList:X:n� X �! ParList:X:n \pushes" a scalar into the list from the rightand the leftmost element of the list is lost.  has the same binding power as !; it is de�ned asfollows: hbi a = hbi (59)(b .p) a = p/ a (60)(p ./ q) a = q ./ p a (61)Exploring the de�ning equation for pre�x sum (55), we can derive a scheme for computing thepre�x sum, due to Ladner & Fischer [LF80]. Misra [Mis94] derived the base (62) and even (63)cases for powerlists, we present a version that is similar to his below and derive the odd case.Even caseps:(p ./ q)= f De�ning equation for ps (55) g0!ps:(p ./ q) + p ./ q 6



= f de�ne u; v := ps:(p ./ q) g0!(u ./ v) + p ./ q= f ! (58) g0!v ./ u+ p ./ q= f Axiom (31) g(0!v + p) ./ (u+ q)= f By de�nition of u; v gu ./ vSummarizing:u ./ v = (0!v + p) ./ (u+ q)� f Axiom (15) gu = 0!v + p ^ v = u+ q) f Solving for v gu = 0!v + p ^ v = 0!v + p+ q)� f De�ning equation for ps (55) gu = 0!v + p ^ v = ps:(p+ q)) f Solving for u gu = 0!ps:(p+ q) + p ^ v = ps:(p+ q)� f De�nition of u; v and axiom (15) gps:(p ./ q) = 0!ps:(p+ q) + p ./ ps:(p+ q)We explore the odd case. By introducing q and b such that ps:(p/ a) = q/ b we get:q/ b= f De�ning equation for ps (55) g0!(q/ b) + p/ a= f !(57) g0 .q + p/ a= f Lemma 1 (65), below g0!q/ last:q + p/ a= f Axiom (32) g(0!q + p)/ (last:q + a)Summarizing:q/ b = (0!q + p)/ (last:q + a)� f Axiom (17) gq = 0!q + p ^ b = last:q + a� f De�ning equation for ps (55), Leibnitz Rule g7



q = ps:p ^ b = last:(ps:p) + aFrom the above along with Misra's de�nition , we get the following de�nition of Ladner and Fischer'salgorithm: ps:hai = hai (62)ps:(p ./ q) = (0!t+ p) ./ t; where t = ps:(p+ q) (63)ps:(p/ a) = ps:p / (last:(ps:p) + a) (64)In the proof above we used Lemma 1Lemma 1 8a; p : a 2 X ^ p 2 ParList:X :a .p = a!p / last:p (65)p/ a = �rst:p . p  a (66)Proof of (65); the proof of (66) is similar. Even inductive case:a .(p ./ q) = a!(p ./ q) / last:(p ./ q)� f ! (58), last (48) ga .(p ./ q) = (a!q ./ p) / last:q� f Axiom (29) ga .q = a!q / last:q� f Induction (65) gtrueOdd inductive case:a .(p/ b) = a!(p/ b)/ b� f ! (58), last (48) ga .(p/ b) = (a .p)/ b� f Axiom (28) gtrueBase case:a!hx i / last:hx i= f ! (56) and last (46) ghai/ x= f (26) and (27) ga .hx iEnd of Proof1.5 ConcatenationA very useful operation on lists is to append one list onto another, regardless of the length of thelists. We de�ne the concatenation operator } : ParList:X:n� ParList:X:m �! ParList:X:(n+m) by8



the following equations. Note that } has a binding power that is between that of ./ and j and thescalar operators. hai } hbi = hai ./ hbi (67)hai } (p ./ q)/ b = a .p ./ q/ b (68)hai } (p ./ q) = a .(p ./ q) (69)(p ./ q)/ a } hbi = (p/ a) ./ (q/ b) (70)a .(p ./ q) } (u ./ v)/ b = a .(p}u) ./ (q} v)/ b (71)a .(p ./ q) } u ./ v = a .(p}u) ./ (q} v)/ b (72)p ./ q } hai = (p ./ q)/ a (73)p ./ q } (u ./ v)/ a = ((p}u) ./ (q} v))/ a (74)p ./ q } u ./ v = (p}u) ./ (q} v) (75)By its nature} is a generalization of j, so it is no surprise that} is de�ned using ./ as the construc-tor. It does not appear as though j can be used as the de�ning constructor. Note the similaritybetween (24) and (75); in fact, by remove the equations above where the arguments to } havedi�erent length (68), (69), (70), (72), (73) and (74) we are left with axioms that de�ne an operatorisomorphic to j. restricting the type of arguments of} to lists of equal length and only keepingthose equations that make sense under this restriction ((67), (71) and (75)) we have de�ned anoperator that is isomorphic to j.Since} is a generalization of j, one could ask why}was not chosen as one of the fundamentalconstructors for ParList. The arguments of j and ./ are of equal length, enforcing a balancedconstruction, which is essential to obtaining e�cient parallel implementations. Many propertiesthat hold for j hold for } as well; however, they are more tedious to prove since there are 9 de�ningcases to consider. We list a few properties of } below:�rst:(p} q) = �rst:p (76)last:(p} q) = last:q (77)a!(p} q) = a!p } last:p!q (78)(p} q) a = p �rst:q } q a (79)[a+]:(p} q) = [a+]:p } [a+]:q (80)sum:(p} q) = sum:p } sum:q (81)One important law that holds for j but not for } is (35), due to the ambiguity that arises whendeconstructing the arguments using } .2 Adder circuitsIn [Ada94] Will Adams presented powerlist descriptions for two arithmetic circuits that performaddition on natural numbers: the ripple carry adder and the carry lookahead adder. The ripplecarry adder performs addition as it is �rst taught in grade school; it is an inheritly sequentialmethod, yielding a linear time method in the number of bits to be added. The carry lookaheadadder uses a pre�x sum calculation to propagate carries, yielding a method that is logarithmic inthe number of bits to be added, in a setting where su�cient parallelism available.Adams proved that the ripple carry circuit correctly implements addition and that the carrylookahead and the ripple carry circuits are the same function. This result was achieved in the9



powerlist algebra. Since the powerlist algebra only contains lists whose length are a power of two,and there are no a priori restrictions on the length of either addition circuit, these circuits shouldbe speci�ed as ParList functions.In the following we extend the de�nition of the addition circuits and the equivalence result tothe ParList algebra. The ripple carry adder takes three arguments:rc : f0,1g � ParList:f0,1g:n� ParList:f0,1g:n �! ParList:f0,1g:n� f0,1gthe �rst argument is the carry-in bit and the second and third argument are the two ParLists of bitsthat are to be added. The result is a pair; the �rst component of the pair is a ParList containingthe result of the addition, and the second component is the carry-out bit from the addition. Thefollowing de�nes rc, where (82) and (83) are taken from [Ada94]:rc:b:hx i:hyi = (h(x+ y + b) mod 2i; (x+ y + b)� 2) (82)rc:b:(p j q):(r j s) = (t; d) (83)where t = u j v(u; c) = rc:b:p:r(v; d) = rc:c:q:src:c:(p/ a):(q/ b) = (u/ y; x) (84)where x = (a+ b+ d)� 2y = (a+ b+ d) mod 2(u; d) = rc:c:p:qThe carry lookahead adder has the following typecl : f0,1,�g � ParList:f0,1,�g:n� ParList:f0,1,�g:n �! ParList:f0,1,�g:n� f0,1,�gwhere � corresponds to a \propagate" action for the carry-in value to a position. To specify thecarry lookahead adder, Adams introduces the associative scalar operators �; ? and � de�ned by:� : f0,1,�g � f0,1,�g �! f0,1,�g x � y = ( x if x = y� if x 6= y (85)? : f0,1,�g � f0,1,�g �! f0,1,�g x ? y = ( y if y 6= �x if y = � (86)� : f0,1,�g � f0,1,�g �! f0,1,�g x� y = ( x if y 6= �:y if y = � (87)where :0 = 1:1 = 0:� = �Adams [Ada94] de�nes the carry lookahead adder bycl:b:p:q = (t; d) (88)where t = s� rd = last:s ? last:rr = p � qs = ps:(b!r)10



where ps is computed using the associative operator ? (that has � as its neutral element). Expandingthe odd case of the de�nition of cl we get:cl:c:(p/ x):(q/ y) = (a;w) (89)where w = u� va = last:u ? last:vv = (p/ x) � (q/ y)u = ps:(b!v)Comparing this with the quantities de�ned by cl:b:p:q (88) we getv u= f (89) g = f (89) gp/ x � q/ y ps:(b!v)= f � is scalar g = f calculation on the left g(p � q)/ (x � y) ps:(b!(r/ (x � y)))= f (88) g = f ! (57) gr/ (x � y) ps:(b .r)= f lemma 1 (65) gps:((b!r)/ last:r)= f ps (64) gps:(b!r)/ (last:(ps:(b!r)) ? last:r)= f (88) gs/ (last:s ? last:r)a w= f cl (89) g = f cl (89) glast:u ? last:v u� v= f calculations above g = f calculations above glast:(s/ (last:s ? last:r)) ? last:(r/ (x � y)) (s/ (last:s ? last:r))� (r/ (x � y))= f last (47) g = f Axiom (34) glast:s ? last:r ? (x � y) (s� r)/ ((last:s ? last:r)� (x � y))= f cl (88) g = f cl (88) gd ? (x � y) t/ (d� (x � y))in summary we have cl:c:(p/ x):(q/ y) = (t/ (d� (x � y)); d ? (x � y)) (90)where cl:b:p:q = (t; d)We can now prove the missing case in the proof of the equivalence of the ripple carry and carrylookahead adders. 11



Proofrc:c:(p/ a):(q/ b) = cl:c:(p/ a):(q/ b)� f rc (84) and cl (90) g(s/ ((a+ b+ d) mod 2); (a+ b+ d)� 2) = (t/ (e� (x � y)); e ? (x � y))^ (s; d) = rc:c:p:q ^ (t; e) = cl:c:p:q� f by induction (s; d) = (t; e) g(s/ ((a+ b+ d) mod 2); (a + b+ d)� 2) = (s/ (d� (x � y)); d ? (x � y))� f equality on pairs g(a+ b+ d)� 2 = d ? (x � y) ^ s/ ((a+ b+ d) mod 2) = s/ (d� (x � y))� f Axiom (17) g(a+ b+ d)� 2 = d ? (x � y) ^ s = s ^ (a+ b+ d) mod 2 = d� (x � y)� f (91) and (92) see below gtrueEnd of ProofIn the last hint we used the following identities established in [Ada94]:d ? (x � y) = (a+ b+ d)� 2 (91)d� (x � y) = (a+ b+ d) mod 2 (92)3 Related Work and ConclusionThis work is built on top of the work done on powerlists. Misra presented the theory and a numberof examples [Mis94]; Adams derived and veri�ed addition circuits [Ada94]; Kornerup presented amapping strategy for powerlist onto hypercubic architectures [Kor95] and derived the Odd-evensort in the powerlist notation [Kor97].The powerlist theory itself[Mis94] and many of Adam's results [Ada94] have been mechanicallyveri�ed by Kapur and Subramaniam [KS95] using the inductive theorem prover Rewrite RuleLaboratory. Gamboa [Gam97] has veri�ed many fundamental results about powerlists using theACL2 theorem prover. His work focuses on veri�cation of sorting algorithms.Mou and Hudak [MH88] presented Divacon, a very general notation for describing divide-and-conquer algorithms in a functional manner. The Divacon notation is meant to capture the entireclass of divide-and-conquer algorithms. Because of this generality it is di�cult to prove the kindsof properties that have been done in the powerlist and ParList notation.4 ConclusionParList appears to be an appropriate generalization of the powerlist notation. The powerlist ex-amples presented above had straightforward extensions to the ParList algebra. The set of sharedaxioms makes it possible to reuse proofs of properties of the corresponding powerlist functions whenproving the same properties of ParList functions.12
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A Omitted ProofsIn this appendix we prove properties that were stated in the text above, but whose proofs are toolong to be included in the main text of the paper.Proof (31) ^ (32) ^ (33) ) (34)Base case:hx i/ a � hyi/ b= f Axioms (27) and (26) gx .hai � y .hbi= f Axiom (32) g(x� y) . ha � bi= f Axioms (26) and (27) ghx � yi / (a� b)= f Axiom (31) g(hx i � hyi) / (a� b)Inductive odd case:(c .p)/ a � (d .q)/ b= f Axiom (28) twice gc .(p/ a) � d .(q/ b)= f Axiom (32) g(c� d) . (p/ a� q/ b)= f Induction (34) g(c� d) . ((p� q)/ (a� b))= f Axiom (28) g((c� d) .(p� q)) / (a� b)= f Axiom (32) g(c .p� d .q) / (a� b)Inductive even case:(p ./ q)/ a � (u ./ v)/ b = (p ./ q � u ./ v) / (a� b)( f Predicate calculus, see (93) and (94) below g((p ./ q)/ a � (u ./ v)/ b = (p ./ q � u ./ v) / (a� b)) ^ P ^ U� f Leibnitz' Rule using (93) and (94) g(c .(r ./ s) � d .(m ./ n) = (p ./ q � u ./ v) / (a� b)) ^ P ^ U� f Axiom (32) g((c� d) . ((r ./ s) � (m ./ n)) = (p ./ q � u ./ v) / (a� b)) ^ P ^ U� f Axiom (33) twice g 14



((c� d) . ((r �m) ./ (s� n)) = ((p� u) ./ (q � v)) / (a� b)) ^ P ^ U� f Axiom (29) g((c� d) .(s� n) = (p� u)/ (a� b)) ^ (r �m = q � v) ^ P ^ U� f Axiom (32), inductive hypothesis (34) g(c .s � d .n = p/ a � u/ b) ^ (r �m = q � v) ^ P ^ U� f Leibnitz' Rule using (93) and (94) g(p/ a � u/ b = p/ a � u/ b) ^ (q � v = q � v) ^ P ^ U� f predicate calculus gP ^ U( f lemma 0, see below gtrueEnd of ProofAs mentioned in the hints above, P ^ U follows from lemma 0, where the existence of c; d; r; s;m; nsatisfying P ^ U is establishedP � c .(r ./ s) = (p ./ q)/ a ^ c .s = p/ a ^ r = q (93)U � d .(m ./ n) = (u ./ v)/ b ^ d .n = u/ b ^ m = v (94)Next, we prove that (35) follows from the axioms.Proof (31) ^ (32) ^ (33) ^ (34) ) (35)Base case:hai j hbi � hci j hdi= f Axiom (23) ghai ./ hbi � hci ./ hdi= f Axiom (33) g(hai � hci) ./ (hbi � hdi)= f Axiom (31), twice gha� ci ./ hb� di= f Axiom (23) gha� ci j hb� di= f Axiom (31), twice g(hai � hci) j (hbi � hdi)Inductive even case:(p ./ q) j (u ./ v) � (r ./ s) j (m ./ n)= f Axiom (24) g(p j u) ./ (q j v) � (r j m) ./ (s j n) 15



= f Axiom (33) g(p j u � r j m) ./ (q j v � s j n)= f Induction hypothesis (35), twice g((p� r) j (u�m)) ./ ((q � s) j (v � n))= f Axiom (24) g((p� r) ./ (q � s)) j ((u�m) ./ (v � n))= f Axiom (33) g(p ./ q � (r ./ s)) j ((u ./ v) � (v ./ n))Inductive odd case:(a .(p ./ q) j (u ./ v)/ b) � (c .(r ./ s) j (m ./ n)/ d)= f Axiom (25) twice g(a .(q j v) ./ (p j u)/ b) � (c .(s j n) ./ (r j m)/ d)= f Axiom (33) g(a .(q j v)� c .(s j n)) ./ ((p j u)/ b� (r j m)/ d)= f Axioms (32) and (34) g(a� c) .((q j v)� (s j n)) ./ ((p j u)� (r j m))/ (b� d)= f Inductive hypothesis (35) twice g(a� c) .((q � s) j (v � n)) ./ ((p� r) j (u�m))/ (b� d)= f Axiom (25) g(a� c) .((p� r) ./ (q � s)) j ((u�m) ./ (v � n))/ (b� d)= f Axiom (33) twice g(a� c) .((p ./ q)� (r ./ s)) j ((u ./ v)� (m ./ n))/ (b� d)= f Axioms (32) and (34) g(a .(p ./ q) � c .(r ./ s)) j ((u ./ v)/ b � (m ./ n)/ d)End of Proof
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