
A GENERAL PURPOSE SHARED-MEMORY MODELFOR PARALLEL COMPUTATIONVIJAYA RAMACHANDRAN�June 2, 1997AbstractWe describe a general-purpose shared-memory model for parallel computation, called theqsm [21], which provides a high-level shared-memory abstraction for parallel algorithm design,as well as the ability to be emulated in an e�ective manner on the bsp, a lower-level, distributed-memory model. We present new emulation results that show that very little generality is lostby not having a `gap parameter' at memory.1 IntroductionThe design of general-purpose models of parallel computation has been a topic of much importanceand study. However, due to the diversity of architectures among parallel machine, this has alsoproved to be a very challenging task. The challenge here has been to �nd a model that is generalenough to encompass the wide variety of parallel machines available, while retaining enough of theessential features of these diverse machines in order to serve as a reasonably faithful model of them.Until recently there have been two approaches taken toward modeling parallel machines for thepurpose of algorithm design. The more popular of the two approaches has been to design parallelalgorithms on the pram, which is a synchronous, shared-memory model in which each processorcan perform a local computation or access a shared memory location in a unit-time step, and thereis global synchronization after each step. As a simple model at a high level of abstraction, the pramhas served an important role, and most of the basic paradigms for parallel algorithm design as wellas the basic ideas underlying the parallel algorithms for many problems have been developed onthis model (see, e.g., [26, 23, 39]).The other approach that has been used to design parallel algorithm has been to consider dis-tributed memory models, and tailor the parallel algorithm to a speci�c interconnection networkthat connects the processors and memory, e.g., mesh, hypercube, shu�e-exchange, cube-connectedcycles, etc. (see, e.g., [29]).Neither of the above approaches has been very satisfactory. On the one hand, the pram is toohigh-level a model, and it ignores completely the latency and bandwidth limitations of real parallelmachines. On the other hand, algorithms developed for a speci�c interconnection network are toospecialized to be of general applicability. Thus is not surprising that a variety of other models havebeen proposed in the literature, (e.g., [2, 5, 6, 7, 9, 12, 14, 17, 22, 27, 30, 32, 33, 36, 38, 43, 44]) toaddress speci�c drawbacks of the pram although none of these are general-purpose models.�Dept. of Computer Sciences, University of Texas at Austin, Austin TX 78712. email: vlr@cs.utexas.edu. Thiswork was supported in part by NSF grant CCR/GER-90-23059.1



In recent years, distributed-memory models that specify the interconnection network abstractlyby parameters that capture its performance have gained much attention. An early work alongthese lines is the CTA [40]. More recently, the bsp [41, 42] and the logp [13] have gained wideacceptance as general-purpose models of parallel computation. In these models the parallel machineis abstracted as a collection of processors with the shared memory distributed among the processingunits. The processors are interconnected by a network whose performance is characterized by alatency parameter L and a gap parameter g. The latency of the network is the time needed totransmit a message from one processor to another. The gap parameter g indicates that a processorcan send no more than one message every g steps. This parameter re
ects the bandwidth of thenetwork { the higher the bandwidth, the lower is the value of g. The models have some additionalparameters, such as the overhead in sending messages, and the time for synchronization (in a modelthat is not asynchronous). In contrast to earlier �xed interconnection network models, the bsp andlogp models do not take into consideration the exact topology of the interconnection network.The bsp and logp models have become very popular in recent years, and many algorithms havebeen designed and analyzed on these models and their extensions (see, e.g., [4, 8, 16, 24, 25, 34,45]). However, algorithms designed for these models tend to have rather complicated performanceanalyses, because of the number of parameters in the model as well as the need to keep track ofthe exact memory partition across the processors at each step.Very recently, in [21] the issue of whether there is merit in developing a general-purpose model ofparallel computation, starting with a shared-memory framework was explored. Certainly, shared-memory has been a widely-supported abstraction in parallel programming [28]. Additionally, thearchitectures of many parallel machines are either intrinsically shared-memory or support it usingsuitable hardware. The main issues addressed in [21] are the enhancements to be made to a simpleshared-memory model such as the pram, and the e�ectiveness of the resulting model in capturingthe essential features of parallel machines along the lines of the bsp and the logp models.The work reported in [21] builds on the results in [18] where a simple variant of the prammodels is described in which the read-write steps are required to be queuing; this model is calledthe qrqw pram. Prior to this work there were a variety of pram models that di�ered dependingon whether read or writes (or both) were exclusive, i.e., concurrent accesses to the same memorylocation in the same step are forbidden, or concurrent, i.e., such concurrent accesses are allowed.Thus earlier pram models were classi�ed as erew, crew, and crcw (see, e.g., [26]); the ercwpram was studied more recently [31]. The latter two models (crcw and ercw pram) have severalvariants depending on how a concurrent write is resolved. In all models a step took took unit time.In the qrqw pram model, concurrent memory accesses were allowed, but a step no longer tookunit time. The cost of a step was the maximum number of requests to any single memory location.A randomized work-preserving emulation of the qrqw pram on a special type of bsp is given in[18], with slowdown only logarithmic in the number of processors1.In [21], the qrqw model was extended to the qsm model, which incorporates a gap parameterat processors to capture limitations in bandwidth. It is shown in [21] that the qsm has a random-ized work-preserving emulation on the bsp that works with high probability2 with only a modest1An emulation is work-preserving if the processor-time bound on the emulated machine is the same as that onthe machine being emulated, to within a constant factor. Typically, the emulating machine has a smaller numberof processors and takes a proportionately larger amount of time to execute. The ratio of the running time on theemulating machine to the running time on the emulated machine is the slowdown of the emulation.2A probabilistic event occurs with high probability (w.h.p.), if, for any prespeci�ed constant � > 0, it occurs withprobability 1 � 1=n� , where n is the size of the input. Thus, we say a randomized algorithm runs in O(f(n)) timew.h.p. if for every prespeci�ed constant � > 0, there is a constant c such that for all n � 1, the algorithm runs inc � f(n) steps or less with probability at least 1� 1=n�. 2



slowdown. This is a strong validating point for the qsm as a general-purpose parallel computationmodel. Additionally, the qsm model has only two parameters { the number of processors p, andthe gap parameter g for shared-memory requests by processors. Thus, the qsm is a simpler modelthan either the bsp or the logp models.The qsm has a gap parameter at the processors to capture the limited bandwidth of parallelmachines, but it does not have a gap parameter at the memory. This fact is noted in [21], butis not explored further. In this paper we explore this issue by de�ning a generalization of theqsm that has (di�erent) gap parameters at the processors and at memory locations. We presenta work-preserving emulation of this generalized qsm on the bsp, and some related results. Theseresults establish that the gap parameter is not essential at memory locations, thus validating theoriginal qsm model.The rest of this paper is organized as follows. Section 2 reviews the de�nition of the qsm model.Section 3 summarizes algorithmic results for the qsm. Section 4 presents the work-preservingemulation result on the qsm on the bsp using the gap parameter at memory locations. Section 5concludes the paper with a discussion of some of the important features of the qsm.Since we will make several comparisons of the qsm model to the bsp model, we conclude thissection by presenting the de�nition of the Bulk-Synchronous Parallel (bsp) model [41, 42]. Thebsp model consists of p processor/memory components that communicate by sending point-to-point messages. The interconnection network supporting this communication is characterized bya bandwidth parameter g and a latency parameter L. A bsp computation consists of a sequenceof \supersteps" separated by bulk synchronizations. In each superstep the processors can performlocal computations and send and receive a set of messages. Messages are sent in a pipelined fashion,and messages sent in one superstep will arrive prior to the start of the next superstep. The timecharged for a superstep is calculated as follows. Let wi be the amount of local work performed byprocessor i in a given superstep. Let si (ri) be the number of messages sent (received) by processori, and let w = maxpi=1wi. Let h = maxpi=1(max(si; ri)); h is the maximum number of message sentor received by any processor, and the bsp is said to route an h-relation in this step. The cost, T ,of a superstep is de�ned to be T = max(w; g � h; L). The time taken by a bsp algorithm is thesum of the costs of the individual supersteps in the algorithm.2 The Queuing Shared Memory Model (QSM)In this section, we present the de�nition of the Queuing Shared Memory model.De�nition 2.1 [21] The Queuing Shared Memory (qsm) model consists of a number of identicalprocessors, each with its own private memory, communicating by reading and writing locations ina shared memory. Processors execute a sequence of synchronized phases, each consisting of anarbitrary interleaving of the following operations:1. Shared-memory reads: Each processor i copies the contents of ri shared-memory locationsinto its private memory. The value returned by a shared-memory read can only be used in asubsequent phase.2. Shared-memory writes: Each processor i writes to wi shared-memory locations.3. Local computation: Each processor i performs ci ram operations involving only its privatestate and private memory. 3



Concurrent reads or writes (but not both) to the same shared-memory location are permitted in aphase. In the case of multiple writers to a location x, an arbitrary write to x succeeds in writingthe value present in x at the end of the phase.The restrictions that (i) values returned by shared-memory reads cannot be used in the samephase and that (ii) the same shared-memory location cannot be both read and written in the samephase re
ect the intended emulation of the qsm model on a bsp. In this emulation, the sharedmemory reads and writes at a processor are issued in a pipelined manner, to amortize against thedelay (latency) in accessing the shared memory, and are not guaranteed to complete until the endof the phase. On the other hand, each of the local compute operations are assumed to take unittime in the intended emulation, and hence the values they compute can be used within the samephase.Each shared-memory location can be read or written by any number of processors in a phase,as in a concurrent-read concurrent-write pram model; however, in the qsm model, there is a costfor such contention. In particular, the cost for a phase will depend on the maximum contention toa location in the phase, de�ned as follows.De�nition 2.2 The maximum contention of a qsm phase is the maximum, over all locations x,of the number of processors reading x or the number of processors writing x. A phase with no readsor writes is de�ned to have maximum contention `one'.One can view the shared memory of the qsm model as a collection of queues, one per shared-memory location; requests to read or write a location queue up and are serviced one-at-a-time.The maximum contention is the maximum delay encountered in a queue. The cost for a phasedepends on the maximum contention, the maximum number of local operations by a processor,and the maximum number of shared-memory reads or writes by a processor. To re
ect the limitedcommunication bandwidth on most parallel machines, the qsm model provides a parameter, g � 1,that re
ects the gap between the local instruction rate and the communication rate.De�nition 2.3 Consider a qsm phase with maximum contention �. Let mop = maxifcig for thephase, i.e. the maximum over all processors i of its number of local operations, and let mrw =maxf1;maxifri; wigg for the phase. Then the time cost for the phase is max(mop; g �mrw; �).(Alternatively, the time cost could be mop+ g �mrw + ��; this a�ects the bounds by at most a factorof 3, and we choose to use the former de�nition.) The time of a qsm algorithm is the sum of thetime costs for its phases. The work of a qsm algorithm is its processor-time product.The particular instance of the Queuing Shared Memory model in which the gap parameter, g,equals 1 is essentially the Queue-Read Queue-Write (qrqw) pram model de�ned in [18].We note a couple of special features about the qsm model.� There is an asymmetry in the use of the gap parameter: The model charges g per shared-memory request at a given processor (the g �mrw term in the cost metric), but it only charges1 per shared-memory request at a given memory location (the � term in the cost metric). Thisappears to make the qsm model more powerful than real parallel machines, since bandwidthlimitations would normally dictate that there should be a gap parameter at memory as wellas at processor (the two gap parameters need not necessarily be the same).4



Summary of Algorithmic Resultsproblem (n = size of input) qsm result3 sourcepre�x sums, list ranking, etc.4 O(g lg n) time, �(gn)5 work erewlinear compaction O(pg lg n) time, O(gn) work qrqw [18]random permutation O(g lgn) time, �(gn) work w.h.p. qrqw [19]multiple compaction O(g lgn) time, �(gn) work w.h.p. qrqw [19]parallel hashing O(g lgn) time, �(gn) work w.h.p. qrqw [19]load balancing, max. load L O(gplgn lg lgL+ lgL) time, qrqw [19]�(gn) work w.h.p.broadcast to n mem. locations �(g lgn=(lg g)) time, �(ng) work qsm [1]sorting O(g lgn) time, O(gn lgn) work erew [3, 11]simple fast sorting O(g lgn + lg2 n=(lg lgn)) time, qsm [21](sample sort) O(gn lgn) work w.h.p.work-optimal sorting O(n� � (g + lgn)) time, � > 0, bsp [16](sample sort) �(gn+ n lg n) work w.h.p.Table 1: E�cient qsm algorithms for several fundamental problems.� The model considers contention only at individual memory locations, not at memory modules.In most machines, memory locations are organized in memory bank and access to each bankis queuing. Here again it appears that there is a mis-match between the qsm model and realmachines.Both of the features of the qsm highlighted above give more power to the qsm than wouldappear to be warranted by current technology. However, in Section 4 we show that we can obtaina work-preserving emulation of the qsm on the bsp with only a modest slowdown. Since the bspis considered to be a fairly good model of current parallel machines, this is a validation of the qsmas a general-purpose parallel computation model. It is also established in Section 4 that there isnot much loss in generality in having the gap parameter only at processors, and not at memorylocations.3 Algorithmic ResultsTable 1 summarizes the time and work bounds for qsm algorithms for several basic problems. Mostof these results are the consequence of the following four Observations, all of which are from [21].Observation 3.1 (Self-simulation) Given a qsm algorithm that runs in time t using p processors,the same algorithm can be made to run on a p0-processor qsm, where p0 < p, in time O(t � p=p0),i.e., while performing the same amount of work.In view of Observation 3.1 we will state the performance of a qsm algorithm as running in timet and work w (i.e., with �(w=t) processors); by the above Observation the same algorithm will run3The time bound stated is the fastest for the given work bound; by Observation 3.1, any slower time is possiblewithin the same work bound.4By Observation 3.2 any erew result maps on to the qsm with the work and time both increasing by a factor ofg. The two problems cited in this line are representatives of the large class of problems for which logarithmic time,linear work erew pram algorithms are known (see, e.g., [26, 23, 39]).5The use of � in the work or time bound implies that the result is the best possible, to within a constant factor.5



on any smaller number of processors in proportionately larger time so that the work remains thesame, to within a constant factor.Observation 3.2 (erew and qrqw algorithms on qsm) Consider a qsm with gap parameter g.1. An erew or qrqw pram algorithm that runs in time t with p processors is a qsm algorithmthat runs in time at most t � g with p processors.2. An erew or qrqw pram algorithm in the work-time framework that runs in time t whileperforming work w implies a qsm algorithm that runs in time at most t�g with w=t processors.Observation 3.3 (Simple lower bounds for qsm) Consider a qsm with gap parameter g.1. Any algorithm in which n distinct items need to be read from or written into global memorymust perform work 
(n � g).2. Any algorithm that needs to perform a read or write on n distinct global memory locationsmust perform work 
(n � g).There is a large collection of logarithmic time, linear work erew and qrqw pram algorithmsavailable in the literature. By Observation 3.2 these algorithms map on to the qsm with the timeand work both increased by a factor of g. By Observation 3.3 the resulting qsm algorithms arework-optimal (to within a constant factor).Observation 3.4 (bsp algorithms on qsm) Let A be an oblivious bsp algorithm, i.e., an algorithmin which the pattern of memory locations accessed by the algorithm is determined by the length ofthe input, and does not depend on the actual value(s) of the input. Then algorithm A can be mappedon to a qsm with the same gap parameter to run in the time and work bound corresponding to thecase when the latency L = 1 on the bsp.Since the bsp is a more low-level model than the qsm, it may seem surprising that not all bspalgorithms are amenable to being adapted on the qsm with the performance stated in Observa-tion 3.4. However, it turns out that the bsp model has some additional power over the qsm whichis seen as follows. A bsp processor � could write a value into the local memory of another processor�0 without �0 having explicitly requested that value. Then, at a later step, �0 could access thisvalue as a local unit-time computation. On a qsm the corresponding qsm processor �0Q would needto perform a read on global memory at the later step to access the value, thereby incurring a timecost of g. In [21] an explicit computation is given that runs faster on the bsp than on the qsm.One point to note regarding the fact that the bsp is in some ways more powerful than the qsm,is that it is not clear that we want a general-purpose bridging model to incorporate these features ofthe bsp. For instance, current designers of parallel processors often hide the memory partitioninginformation from the processors since this can be changed dynamically at runtime. As a result analgorithm that is designed using this additional power of the bsp over the qsm may not be thatwidely applicable.The paper [21] also presents a randomized work-preserving emulation of the bsp on the qsmthat incurs a slow-down that is only logarithmic in the number of processors. Thus, if a modestslow-down is acceptable, then in fact, any bsp algorithm can be mapped on to the qsm in a work-preserving manner. For completeness, we state here the result regarding the emulation of the bspon the qsm. The emulation algorithm and the proof of the following theorem can be found in fullversion of [21]. 6



Theorem 3.5 An algorithm that runs in time t(n) on an n-component bsp with gap parameter gand periodicity factor L, where t(n) is bounded by a polynomial in n, can be emulated with highprobability on a qsm with the same gap parameter g to run in time O(t(n) � lg n) with n= lgnprocessors.In summary, by Theorem 3.5, any bsp algorithm can be mapped on to the qsm in a work-preserving manner (w.h.p.) with only a modest slowdown. Additionally, by Observation 3.4, foroblivious bsp algorithms there is a very simple optimal step-by-step mapping of the oblivious bspalgorithm on to the qsm.4 QSM Emulation ResultsRecall that we de�ned the Bulk Synchronous Parallel (bsp) model of [41, 42] in Section 1. In thissection we present a work-preserving emulation of the qsm on the bsp.One unusual feature of the qsm model that we pointed out in Section 2 is the absence ofa gap parameter at the memory: Recall that the qsm model has a gap parameter g at eachprocessor attempting to access global memory, but accesses at individual global memory locationsare processed in unit time per access. In the following, we assume a more general model for the qsm,namely the qsm(g; d), where g is the gap parameter at the processors and d is the gap parameterat memory locations. We present a work-preserving emulation of the qsm(g; d) on the bsp, andthen demonstrate work-preserving emulations between qsm(g; d) and qsm(g; d0), for any d; d0 > 0.Thus, one can move freely between models of the qsm with di�erent gap parameters at the memorylocations. In particular this means that one can transform an algorithm for the qsm(g; 1), whichis the standard qsm, into an algorithm for qsm(g; d) in a work-preserving manner (and with onlya small increase in slowdown). Given this 
exibility, it is only appropriate that the standard qsmis de�ned as the `minimal' model with respect to the gap parameter at memory locations, i.e., themodel that sets the gap parameter at memory locations to 1.We compare the cost metrics of the bsp and the qsm(g; d) as follows. We can equate the gparameters in the two models, and the local computation wi on the ith bsp processor with thelocal computation ci on the ith qsm processor (and hence w with mop). Let hs = maxpi=1 si, themaximum number of read/write requests by any one bsp processor, and let hr = maxpi=1 ri, themaximum number of read/write requests to any one bsp processor. The bsp charges the maximumof w, g � hs, g � hr, and L. The qsm(g; d), on the other hand, charges the maximum of w, g � hs,and d � �, where � 2 [1::hr] is the maximum number of read/write requests to any one memorylocation. Despite the apparent mis-match between some of the parameters, we present below, awork-preserving emulation of the qsm(g; d) on the bsp.The proof of the emulation result requires the following result by Raghavan and Spencer.Theorem 4.1 [37] Let a1; : : : ; ar be reals in (0; 1]. Let x1; : : : ; xr be independent Bernoulli trialswith E (xj) = �j. Let S =Prj=1 ajxj. If E (S) > 0, then for any � > 0Prob (S > (1 + �)E (S)) < � e�(1 + �)(1+�)�E(S) :We now state and prove the work-preserving emulation result. A similar theorem is proved in[21], which presents an emulation of the qsm on a (d;x)-bsp. The (d;x)-bsp is a variant of thebsp that has di�erent gap parameters for requesting messages and for sending out the responses7



to the requests (this models the situation where the distributed memory is in a separate cluster ofmemory banks, rather than within the processors). In the emulation below, the bsp is the standardmodel, but the qsm has been generalized as a qsm(g; d), with a gap parameter d at the memorylocations.Theorem 4.2 A p0-processor qsm(g; d) algorithm that runs in time t0 can be emulated on a p-processor bsp in time t = t0 � p0p w.h.p. providedp � p0(L=g) + (g=d) lgpand t0 is bounded by a polynomial in p.Proof. The emulation algorithm is quite simple. The shared memory of the qsm(g; d) is hashedonto the p processors of the bsp so that any given memory location is equally likely to be mappedonto any one of the bsp processors. The p0 qsm processors are mapped on to the p bsp processorsin some arbitrary way so that each bsp processor has at most dp0=pe qsm processors mapped onto it. In each step, each bsp processor emulates the computation of the qsm processors that aremapped on to it.In the following we show that the above algorithm provides a work-preserving emulation of theqsm(g; d) on the bsp with the performance bounds stated in the theorem. In particular, if the ithstep of the qsm(g; d) algorithm has time cost ti, we show that this step can be emulated on thebsp in time O((p0=p)ti) w.h.p.Note that by the qsm cost metric, ti � g, and the maximum number of local operations at aprocessor in this step is ti. The local computation of the qsm processors can be performed on thep-processor bsp in time (p0=p) � ti, since each bsp processor emulates p0=p qsm processors.By the qsm(g; d) cost metric, we have that �, the maximum number of requests to the samelocation, is at most ti=d, and h, the maximum number of requests by any one qsm processor, isat most ti=g. For the sake of simplicity in the analysis, we add dummy memory requests to eachqsm processor as needed so that it sends exactly ti=g memory requests this step. The dummyrequests for a processor are to dummy memory locations, with each dummy location receiving upto � requests. In this way, the maximum number of requests to the same location remains �, andthe total number of requests is Z = p0ti=g.Let i1; i2; : : : ; ir be the di�erent memory locations accessed in this step (including dummylocations), and let �j be the number of accesses to location ij , 1 � j � r. Note that Prj=1 �j = Z.Consider a bsp processor �. For j = 1; : : : ; r, let xj be an indicator binary random variable whichis 1 if memory location ij is mapped onto processor �, and is 0 otherwise. Thus, Prob (xj = 1) is1=p.Let aj = �jd=ti; we view aj as the normalized contention to memory location ij . Since �j �d � ti,we have that aj 2 (0; 1].Let S� = Prj=1 ajxj ; S�, the normalized request load to processor �, is the weighted sum ofBernoulli trials. The expected value of S� isE (S�) = rXj=1 ajp = dp � ti rXj=1 �j = dp � ti �Z = dp � p0g = dg � p0p :We now use Theorem 4.1 to show that it is highly unlikely that S� > 2e �E (S�).We apply Theorem 4.1 with � = 2e� 1. Then,8



(1 + �)E (S�) = 2e � dg � p0p : (1)Therefore,Prob�S� > 2e � dg � p0p � < � e2e�2e�E(S�) = �12�2e� dg � p0p < �12�2e lgp = p�2esince p0=p > (g=d) lgp.Let h� be the number of requests to memory locations mapped to processor �. Then,h� = rXj=1 �jxj = tid rXj=1 ajxj = tid � S� :Thus Prob (h� > 2e � (ti=g) � (p0=p)) is O(1=p2e). Hence the probability that, at any one ofthe processors, the number of requests to memory locations mapped to that processor exceeds2e � (ti=g) � (p0=p) is O(1=p2e�1). Hence w.h.p. the number of memory requests to any processor isO((ti=g) � (p0=p).By de�nition, the time taken by the bsp to complete the emulation of the ith step is Ti =max(w; g � h; L), where w is the maximum number of local computation steps at each processor,and h is the maximum number of messages sent or received by any processor. As discussed atthe beginning of this proof, w � ti � (p0=p). Since the maximum number of messages sent byany processor is no more than (ti=g) � (p0=p) and the maximum number of requests to memorylocations mapped on to any given processor is no more than 2e � (ti=g) � (p0=p) w.h.p, it follows thatg � h = O(ti � (p0=p)) w.h.p. Finally, since ti � g and p0=p � L=g, it follows that ti � (p0=p) � L.Thus, w.h.p., the time taken by the bsp to execute step i isTi = O(ti � (p0=p))This completes the proof of the theorem.Note that the emulation given above is work-preserving since p�t = p0 �t0. Informally the proof ofthe theorem shows that an algorithm running in time t0 on a p0-processor qsm(g; d) can be executedin time t = (p0=p) � t0 on a p-processor bsp (where p has to be smaller than p0 by a factor of at least((L=g)+(g=d) lgp)) by assigning the memory locations and the qsm(g; d) processors randomly andequally among the p bsp processors, and then having each bsp processor execute the code for theqsm(g; d) processors assigned to it. (Actually the assignment of the qsm processors on the bspneed not be random { any �xed assignment that distributes the qsm processors equally among thebsp processors will do. The memory locations, however, should be distributed randomly.) Thefastest running time achievable on the bsp is somewhat smaller than the fastest time achievable onthe qsm(g; d) { smaller by the factor ((L=g)+(g=d) lgp). The L=g term in the factor arises becausethe bsp has to spend at least L units of time per superstep to send the �rst message, and in orderto execute this step in a work-preserving manner, it should send at least the number of messages itcan send in L units of time, namely L=g messages. The (g=d) lgp term comes from the probabilisticanalysis on the distribution of requested messages across the processors; the probabilistic analysisin the proof shows that the number of memory requests per processor (taking contention intoconsideration) is within a factor of 2 � e times the expected number of requests w.h.p. when thememory locations are distributed randomly across the p bsp processors, and p is smaller than p0by a factor of (g=d) � lg p. 9



We now give a deterministic work-preserving emulation of qsm(g; d0) on qsm(g; d), for anyd; d0 > 0.Observation 4.3 There is a deterministic work-preserving emulation of qsm(g; d0) on qsm(g; d)with slowdown O(d dd0 e).Proof. If d � d0 then clearly, each step on qsm(g; d0) will map on to qsm(g; d) without anyincrease in time (there could be a decrease in the running time through this mapping, but thatdoes not concern us here).If d > d0, let r = d dd0 e. Given a p0-processor algorithm on qsm(g; d0) we map it on to a p = p0rprocessor qsm(g; d) by mapping the p0 processors of qsm(g; d0) uniformly on to the p processorsof qsm(g; d). Now consider the ith step of the qsm(g; d0) algorithm. Let it have time cost t0i. Onqsm(g; d) the increase in time cost of this step arising from local computations and requests fromprocessors is no more than r � t0i since each processor in qsm(g; d) will have to emulate at most rprocessors of qsm(g; d0). The delay at the memory locations remains exactly the same in qsm(g; d0)and qsm(g; d), since the memory map is identical in both machines. Thus the increase in time coston the qsm(g; d) is no more than r � t0i, and hence this is a work-preserving emulation of qsm(g; d0)on qsm(g; d) with a slowdown of p0p = dd0 .Observation 4.3 validates the choice made in the qsm model not to have a gap parameter at thememory. Since the proof of this observation gives a simple method of moving between qsm(g; d)models with di�erent gap parameters at memory, it is only appropriate to choose the `minimal' oneas the canonical model, namely, the one with no gap parameter at memory locations.Note that there could be a slight increase in slowdown when one designs an algorithm onqsm(g; d0) which does not use the d parameter that most accurately models the machine underconsideration. In situations where this is an important consideration, one should tailor one'salgorithm to the correct d parameter.5 DiscussionIn this paper, we have described the qsm model of [21], reviewed algorithmic results for the model,and presented a randomized work-preserving emulation for a generalization of the qsm on the bsp.The emulation results validate the qsm as a general-purpose model of parallel computation, andthey also validate the choice made in the de�nition of the qsm not to have a gap parameter atmemory locations.We conclude this paper by highlighting some important features of the qsm model.� The qsm model is very simple { it has only two parameters, p, the number of processors, andg, the gap parameter at processors.� Section 3 summarizes algorithmic results for the qsm derived from a variety of sources { erewpram, qrqw pram, bsp { as well as algorithms tailored for the qsm. This is an indicationthat the qsm model is quite versatile, and that tools developed for other important parallelmodels map on to the qsm in an e�ective way.� The randomized work-preserving emulation of the qsm on the bsp presented in Section 4validates it as a general-purpose parallel computation model.10



� The qsm is a shared-memory model. Given the wide-spread use and popularity of theshared-memory abstraction, this makes the qsm a more attractive model than the distributed-memory bsp and logp models.� It can be argued that the qsm models a wider variety of parallel architectures than the bspor logp models. The distributed-memory feature of the latter two models causes a mis-matchto machines that have the shared-memory organized in a separate cluster of memory banks(e.g., the Cray C90 and J90, the SGI Power Challenge and the Tera MTA). In such casesthere would be no reason for the number of memory banks to equal the number of processors,which is the situation modeled by the bsp and logp models.� The queuing rule for concurrent memory accesses in the qsm is crucial in matching it to realmachines. In addition to the work-preserving emulation of the qsm on bsp given in Section 4,in Section 3 we stated a theorem that gives a randomized work-preserving emulation of thebsp on the qsm. Thus, there is a tight correspondence between the power of the qsm andthe power of the bsp. Such a correspondence is not available for any of the other memoryaccess rules for shared-memory (e.g., for exclusive memory access or for unit-cost concurrentmemory access)� The qsm is a bulk-synchronous model, i.e., a step consists of a sequence of pipe-lined requeststo memory, together with a sequence of local operations, and there is global synchronizationbetween successive steps. For a completely asynchronous general-purpose shared-memorymodel, a promising candidate is the qrqw asynchronous pram [20], augmented with thegap parameter.Acknowledgement I would like to thank Phil Gibbons and Yossi Matias for innumerable discus-sions on queuing shared memory models; this collaboration led to the results in [18, 19, 20, 21].References[1] M. Adler, P. B. Gibbons, Y. Matias, and V. Ramachandran. Modeling parallel bandwidth:Local vs. global restrictions. In Proc. 9th ACM Symp. on Parallel Algorithms and Architectures,June 1997. To appear.[2] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs. TheoreticalComputer Science, 71(1):3{28, 1990.[3] M. Ajtai, J. Komlos, and E. Szemeredi. Sorting in c lgn parallel steps. Combinatorica, 3(1):1{19, 1983.[4] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Sheiman. LogGP: Incorporating longmessages into the LogP model | one step closer towards a realistic model for parallel com-putation. In Proc. 7th ACM Symp. on Parallel Algorithms and Architectures, pages 95{105,July 1995.[5] B. Alpern, L. Carter, and E. Feig. Uniform memory hierarchies. In Proc. 31st IEEE Symp.on Foundations of Computer Science, pages 600{608, October 1990.11
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