
SDL Speci�cation and Veri�cation of a Distributed AccessGeneric Optical Network Interface for SMDS NetworksSharif M. Shahriery Roy M. JeneveinzyDepartment of Electrical and Computer EngineeringzDepartment of Computer SciencesUniversity of Texas at AustinAustin, TX 78712-1014AbstractThis paper presents the design and speci�cation of a BISDN user-to-network interface (UNI)named DRAGON (Distributed Access Generic Optical Network) for SMDS networks. The UNIallows clusters of nodes to be connected to an SMDS network via �ber-optic lines. The capacityof each line is shared by all the nodes in the cluster to make more e�cient use of bandwidth.Within each cluster, transmissions are scheduled on �rst-come-�rst-served (FCFS) orderof message arrivals, by considering a globally distributed queue. A novel scheme is proposedfor controlling access to the �ber-optic transmission network. By using two logically separatesubnetworks called the reservation channel and the reservation ring Slot reservations and mes-sage transmissions can proceed independently and concurrently. The reservation channel is abroadcast channel for notifying nodes within the cluster when to reserve a slot. Access to thereservation channel is controlled by the reservation ring: a token ring network. All accesses forthe queue slots are completely fair and the bandwidth attainable is independent of the posi-tion of the node within the cluster. Unlike previous distributed queue protocols, the DRAGONfacilitates both �xed-sized and variable sized transmissions.We constructed an extended �nite state model (EFSM) of the DRAGON using ITU stan-dard Speci�cation and Description Language (SDL). The model was simulated and validatedusing the SDT 3.02 toolset from Telelogic. An extensive set of simulations were conducted toacertain correct logical behavior. The model was then independently veri�ed using two di�erentalgorithms: bit-state and random walk. The results showed that the design was veri�ed to ahigh degree of coverage.Index Terms { computer networks, BISDN, SMDS, UNI, SDL.

1 IntroductionBroadband Integrated Services Digital Networks (BISDN) have been an active area of research overthe last decade. Both local and metropolitan area networks (LANs & MANs) have appeared ingreat proliferation in the marketplace, and a large number have been deployed in commercial andacademic sites. To support the diverse applications required of BISDN networks, a large number ofprotocols have been developed, for example ATM [1], SONET [2], SMDS [3], frame relay [4], X.25 [5],and many others. Optical �bers provide the transmission infrastructure for BISDN networks toallow transmission at hundreds of megabytes per second. Recently, international standards forBISDN has been produced by the International Telecommunications Union (ITU) so that equipmentproduced by di�erent manufacturers were compatible with one another.An important part of broadband networks is the the user-to-network interface (UNI) [6]: theinterface between the host node and the broadband network. In this paper, we designed a SwitchedMultimegabit Data Services (SMDS) UNI called DRAGON (Distributed Access Generic OpticalNetwork). The DRAGON allows a cluster of nodes to share the same transmission medium at theUNI, by scheduling transmissions in a globally distributed First-Come-First-Served (FCFS) orderof message arrivals. This is an optimal transmission policy in the sense that it has the smallestdelay and delay variance of all other transmission policies [7]. Thus, it maximizes the throughputand minimizes the delay and delay jitter. It is also possible to determine the upper delay bound ofcells. One method is to estimate the mean and variance of the cell delay and then use Chebyshev'sinequality to estimate the upper delay bound. This had been illustrated in [8].The distributed queue in the DRAGON is called a reservation queue (RESVQ). Other variantsof this scheme have been implemented in other networks, for example DQDB [9], Hangman [10] andS++ [11]. One of our main objective was to improve on the previous distributed queue designs.Recently, there had not been a great deal of interest in the DQDB type of protocols. We hope thatthe improvements we've proposed to the distributed queue architecture will generate more interest.Most of the previous distributed queue protocols were developed for dual slotted-bus networksand cannot be applied directly to multiple node clusters connected to a single high-speed �ber-opticline, as is the case in our design. Our design is also di�erent in that slot reservations and messagetransmissions can proceed independently and concurrently on separate logical channels, by sharingthe same optical medium, by means of Wavelength Division Multiplexing (WDM). This means allthe transmission bandwidth can be utilized for transmitting messages, and none of it is utilized fortransporting slot reservation information. DQDB and S++ uses the same channel for transmissionsand slot reservations. Access to the slots in the DRAGON are completely fair and is independentof the nodes position within the cluster, whereas in DQDB the nodes closest to the slot generatorshave a greater chance of reserving a slot. Hence, downstream nodes have fewer chances of acquiringa slot, and consequently the bandwidth attainable to a node is dependent on its position in thenetwork. This problem does not arise with the DRAGON.DQDB and S++ transmits only �xed-sized synchronous packets. Thus, they cannot be useddirectly for transmitting variable-sized packets such as X.25 and frame relay. The DRAGON, how-ever, is suitable for both �xed-sized packet and variable-sized packet transfers. We have developeda SMDS and frame relay versions of the DRAGON to illustrate this point, and performance results1

are presented in [12]. And �nally, we included a reservation FIFO within the DRAGON so thatslot reservations for multiple number of messages can be made. This feature was not supported bythe DQDB and S++ protocols, thus they can only reserve one message slot at a time.An SMDS network architecture is shown in Fig. 1. Data is transmitted in the network in theform of �xed sized cells. The SMDS interface protocol (SIP) converts data into cells and transmitsthem to the SONET/SMDS interface (SSI) at a rate of 49.54 Mbits/sec, i.e. the capacity of theSONET/STS-1 payload. The cells are then transported via SONET to an SMDS switching network.The SIP is organized into three layers. The highest layer, layer 3, accepts data from the higherlayer protocols and converts it into variable sized frames referred to as AAL3/4 CS-PDU (ATMAdaptation Layer 3/4 Convergence Sublayer-Protocol Data Unit). Layer 2 takes these framesand converts it into �xed sized cells of 48 byte payload and 5 byte header referred to as AAL3/4SAR-PDU (ATM Adaptation Layer 3/4 Segmentation And Reassembly-Protocol Data Unit). TheAAL3/4 cells are encapsulated onto a STS-1 payload by the SSI and transmitted over the �ber-optic line at a rate of 51.84 Mbits/sec to the SMDS network. At the switching network, the cellsare extracted from the STS-1 payload and routed via the switches. Before leaving the network, thecells are again remapped onto the STS-1 payload and transported over the �ber-optic line to thedestination cluster.
layers
Upper

SIP

layers
Upper

SIP

layers
Upper

SIP

layers
Upper

SIP

layers
Upper

SIP

layers
Upper

SIP

SSI

SSI

SSI

SSI

SMDS switches
SMDS network with

layers
Upper

SIP

layers
Upper

SIP

layers
Upper

SIP

layers
Upper

SIP

layers
Upper

SIP

layers
Upper

SIP

SMDS

SONET

SMDS

SMDS

SMDS

SM
DS

SM
DS

SO
NE
T

SMDS

SM
DS

SMDS

SO
NE
T

SONET
SM
DS

SMDS

SMDS

RE
SE

RV
A

TI
O

N
 R

IN
G

RE
SE

RV
A

TI
O

N
 R

IN
G

RE
SE

RV
A

TI
O

N
 R

IN
G

RE
SE

RV
A

TI
O

N
 R

IN
G

RE
SE

RV
A

TI
O

N
 B

U
S

RE
SE

RV
A

TI
O

N
 B

U
S

RE
SE

RV
A

TI
O

N
 B

U
S

RE
SE

RV
A

TI
O

N
 B

U
SFigure 1: SMDS network with 4 node clustersA diagram depicting the development steps of the DRAGON is shown in Fig. 2. The developmentcycle consists of a dual track approach. In the �rst phase, a formal speci�cation of DRAGONwas presented in SDL (Speci�cation and Description Language) [13, 14, 15, 16]. This is a non-proprietary international standard notation based on Extended Finite State Machines. Thereare several tools for SDL, but we entered a complete set of SDL/GR (Graphical Representation)diagrams into the SDT (SDL Design Tool) from Telelogic. Finally, conformance and validationtesting were performed to ensure that the design functioned correctly. Conformance testing was toensure that the SDL model of the DRAGON conforms to the original speci�cation. This was done bysimulating the SDL system using a known set of inputs and observing the outputs. Validation wasperformed using two well established algorithms called bit-state and random-walk [17, 18]. Thesemethods were provided by the SDL validator. The second phase of development consists of anRTL implementation model of DRAGON in VHDL. Extensive timing simulations were performed2

using concurrent video and data tra�c. Trace driven performance simulation was performed usingan integrated mix of video and data tra�c using actual traces provided by Bellcore. This paperis concerned with the SDL modeling and validation of DRAGON. The RTL development aspectswere treated in a separate publication [8, 19]. The remainder of the paper is organized as follows.Section 2 provides an informal description of the DRAGON architecture. Section 3 presents acomplete set of SDL speci�cation diagrams of the DRAGON. Section 4 provides a description ofthe two validation methods used in this work. The conformance test and validation coverage resultsare presented in section 5. The paper is concluded in section 6.
SPECIFICATION

USER

CONFORMANCE
TESTING

SDL MODEL

CONFORMANCE
TESTING

VHDL MODEL

PERFORMANCE
ANALYSIS

VALIDATIONFigure 2: Development steps of the DRAGON in SDL2 The DRAGON Overview2.1 The Cluster OrganizationThis section provides an informal presentation of the DRAGON architecture for the clarity ofunderstanding. The interconnection of the nodes within a cluster is shown in Fig. 3. All accesses tothe network must be controlled so that there are no collisions. This is done in part by two di�erentsubnetworks: the reservation bus and the reservation ring. The reservation bus is a single-bitbroadcast channel used for notifying all nodes when to reserve one slot in the reservation queue(RESVQ). Only one node at a time can send on the reservation bus. Thus, to prevent more than 1node transmitting simultaneously, a reservation ring is used. The reservation ring is a high-speed,single-bit token ring network for controlling access to the reservation channel. The channels operateas follows.The reservation ring has basically a single-bit token ring architecture. The di�erence is thatafter the token is received, the node is only allowed to reserve a slot in the RESVQ; it cannot3

RESERVATION RING

NODE NODE NODE

/SMDS FR

TO/FROM

RESERVATION BUS

SOFIFigure 3: LAN con�gurationtransmit packets immediately after receiving the token as in normal token ring networks. A signalcalled TOKen circulates around the reservation ring, passing from one node to the next. If nonew messages have arrived at a node, the node doesn't reserve any slots in the RESVQ. It simplypasses the TOKen to its successor node. If however, a message has arrived at a node, the nodewaits for the TOKen, reserves a slot in its RESVQ and noti�es all other nodes to also reservea slot by transmitting a RESV signal on the reservation channel. The TOKen is then passedto its successor. Hence, by requiring a node to own the TOKen before broadcasting RESV willguarantee that there will be no multiple simultaneous transmissions of RESV on the reservationchannel, and thus no collisions. The reservation channel and the reservation ring are independentsubnetworks and may share the same �ber-optic medium by WDM technique.2.2 The DRAGON Prototype and DatapathWe shall now provide the layout of the individual functional units within the DRAGON. A blockdiagram of the DRAGON prototype and its datapath signals are shown in Fig. 4. Signals areindicated by the signal names placed inside squared brackets. The direction of the signal is indicatedby arrow heads. Some of the signal routes have arrow heads at both ends, in which case these signalroutes are bidirectional. The SONET transmit and receive links to and from the switching networkare called SONETxmt and SONETrcv respectively. The transmit and receive lines connectingthe DRAGON to the SOFI are labeled PKTxmt and PKTrcv respectively. Next, we shall discusseach of the functional units within the DRAGON prototype. A complete description of the signalsand transition tables for the �nite state machines are provided in [8].2.3 The Reservation Queue (RESVQ) OperationEvery node in the network contains a reservation queue. As explained previously, after a messagearrives, a slot must be reserved in the reservation queue. Consequently, the RESVQs of all thenodes must be updated. The basic blocks of the RESVQ consist of the reservation queue, thereservation queue controller, the reservation ring controller and the transmitter/receiver. There isalso an external interface named SOFI which is shared by all the nodes in the cluster.4

NTX

TOKin
ACKin

TOKout
ACKout

HEADstat

FIFOstat

TAILstat

TAILctrl

RESV

START
RESET

VidReq
DatReq

PKTrcv

PKTinp

PKTout

RING
CONTROLLER

RESERVATION
QUEUE

CONTROLLER

DRAGON

RESV_
FIFO

HEAD_CTR

TAIL_CTR

FIFOctrl

Connections to/from other
nodes in the cluster.

SONET/STS-1 fiber
optic line.

HEADctrl

RESV.chl

RESV

SLOTgnt

SONETrcv

SONETxmt

PKTxmt

TRANSMITTER
AND

RECEIVER

SOFI

SNTX

Figure 4: The DRAGON prototype and its datapath� Reservation Queue: Reserves FCFS slots pertaining to the order of message transmissions.Contains an up/down counter named TAIL CTR, a down counter named HEAD CTR and aFIFO named RESV FIFO.� Reservation Queue Controller: FSM for controlling the operation of the RESVQ, includ-ing assigning transmission slots and updating the queue for scheduling the next transmission.� Reservation Ring Controller: FSM to perform all functions of the token access control.Contains up/down slot COUNTER.� Transmitter/Receiver: Transmits and receives messages to and from the SONET/STS-Nnetwork. Messages may consist of a sequence of SMDS cells or FR frame.� SONET Fiber-Optic Interface (SOFI): External interface shared by all the cluster nodes.It performs mapping and demapping of message packets onto SONET frames [20]. It insetsstu� (idle) bytes into the SONET payload when necessary. It also broadcasts signal SNTXto all the nodes at the end of every message transmission.In the following sections, we shall provide an overview of each functional unit. But �rst, weprovide an overview of the entire system. 5

2.4 Systems OverviewA
ow diagram depicting the entire operation of the slot reservation procedure is shown in Fig 5.Initially, every node in the cluster waits to receive a TOKen. After it is received, the node checkswhether it has any messages waiting to be scheduled for transmission. If it doesn't, the TOKenis simply passed on to its successor. If, however, a message is waiting, the interface broadcasts thesignal RESV to all the other nodes in the cluster over the reservation bus. Every node monitorsthe reservation bus, and when it detects the RESV, the RESVQ is updated and a slot is reservedfor the message. The TOKen is then sent to the successor node, and the process repeats.If a TOKen isn't received, the interface checks whether the signal SNTX had been sent by theSOFI. SNTX is broadcast to the cluster at the end of every message transmission. If SNTX isreceived, the nodes update the RESVQ to determine which node is to transmit next. Whichevernode is the next to transmit, its RESVQ will send the signal NTX to its Transmitter. TheTransmitter will then begin sending cells/frames to the SOFI. In the following sections, we shalldescribe each of the 4 functional units of DRAGON and the SOFI using
ow-charts. The RESVQand the RESVQ controller has been grouped together into a single
owchart, and likewise theTransmitter/Receiver and SOFI have also been grouped together.2.5 The Reservation Ring ControllerThe
owchart for the reservation ring (RESV RING) controller is shown in 6. Each node waitsto receive a TOKen from its predecessor. It then acknowledges its predecessor by sending theacknowledgement ACK signal. The node then checks whether its COUNTER is larger than zero.The COUNTER registers the number of outstanding messages waiting to be allocated a RESVQslot. When a new message arrives at the DRAGON, the COUNTER is incremented by 1, andanytime it is zero it means there are no pending messages so the TOKen simply passed to the suc-cessor node. Otherwise, the controller sends signal SLOTgnt to the RESVQ and the COUNTERis decremented. The reservation bus is monitored, and after signal RESV had been broadcast bythe RESVQ, TOKen signal is sent to the successor node.2.6 The Reservation Queue2.6.1 Reserving a SlotThe
ow chart for reserving a slot is shown in Fig. 7. Every node in the cluster checks whether ithad received SLOTgnt from the RESV RING controller, and if so, it broadcasts RESV over thereservation bus. Subsequently, it increments its TAIL CTR, writes the TAIL CTR contents intothe RESV FIFO and clears the TAIL CTR. The down counter named HEAD CTR value plus thecomposite values of all the RESV FIFO elements is the number of messages which must be servicedbefore the currently reserved message can transmit.For example, suppose that all the messages have equal priority. Further, suppose that at this6

Receive
TOKen?

message
waiting?

Receive
SNTX?

Broadcast
RESV

Update
RESVQ

Detect
RESV

Receive
NTX?

Update
RESVQ

transmit
message

Send
TOKen

true

false

false

false
true true

false

true

Figure 5: The DRAGON systems overview
7

Receive
TOKen?

Send ACK to
predecessor

COUNTER>0

Send
SLOTgnt to

RESVQ

Decrement
COUNTER

Monitor
reservation

bus

Detect
RESV?

Send TOKen
to

successor

false

true

true

false

true

false

Figure 6: Reservation ring controller
8

instant HEAD CTR=5 and RESV FIFO=f3,7,2g, where `2' is the head element and `3' is the tailelement. Thus, the newly arrived message will have to wait until 17 (3+ 7+ 2+5) messages whichhad arrived before it to be serviced before it can transmit. In the example, the node had scheduled4 messages for transmission. This is given by the number of RESV FIFO elements plus one, if theHEAD CTR>0.Now, if there were two di�erent priorities of messages, as in the case of video and data, slot reser-vations are still made in the usual way: but the higher priority message will always be transmittedahead of all the lower priority messages. For instance, if the tail element `3' in the RESV FIFO isa slot allocated to a high priority message and the remaining 3 are low priority messages, the highpriority message will be transmitted when the HEAD CTR counts down to zero, irrespective of thefact that the slot was allocated to a low priority message. Further, suppose that the node doesn'treceive SLOTgnt, but detects RESV on the reservation bus: it will increment its TAIL CTR,thereby reserving a slot for some other node within the cluster.
Receive

SLOTgnt?

Send
RESV

Increment
TAIL_CTR

Write
TAIL_CTR to
RESV_FIFO

Clear
TAIL_CTR

Detect
RESV?

Increment
TAIL_CTR

true false

false

true

Figure 7: Reserving a slot2.6.2 Scheduling a TransmissionThe
ow chart for scheduling a message for transmission is shown in 8. The protocol initiates bychecking the value of the HEAD CTR. First, consider the previous example where HEAD CTR=5and RESV FIFO=f3,7,2g. The RESVQ checks whether it has received SNTX from the SOFI,and if so, it decrements the HEAD CTR. The new HEAD CTR value is now 4 and it signi�esthe number of other nodes that must be serviced before this node can transmit. Thus, after the9

HEAD CTR reaches zero, signal NTX is sent to the Transmitter/Receiver block informing it tobegin transmission.Next, consider the case where HEAD CTR is equal to zero. The RESV FIFO is checked, andsince its not empty, the top element `2' is loaded into the HEAD CTR. As before, this value isthe number of transmissions that must be made by the other nodes within the cluster before thisnode can transmit. If RESV FIFO is empty and HEAD CTR is zero and SNTX is true, theTAIL CTR is decremented if its value is non-zero. When HEAD CTR and RESV FIFO are bothempty, a non-zero TAIL CTR signi�es the number of messages scheduled for other cluster nodes:but not this node.
HEAD_CTR

Receive
SNTX?

Decrement
HEAD_CTR

HEAD_CTR

Send
NTX to

Transmitter

RESV_FIFO

Receive
SNTX?

TAIL_CTR

Decrement
TAIL_CTR

Load
HEAD_CTR

>(0)

false

true

>(0)

=(0)

=(0)

empty

false

true

=(0)

>(0)

not_empty

Figure 8: Scheduling a transmission2.7 The Transmitter/ReceiverThe
ow chart de�ning the Transmitter/Receiver and SOFI combination is shown in Fig. 9 and 10.The
ow chart in Fig. 9 shows how the SOFI interacts with the nodes for scheduling the trans-mission of packets. Fig. 10 describes how packets are extracted from incoming SONET frames andtransported to the destination cluster node.2.7.1 Transmitting PacketsFig. 9 shows the procedure for transmitting packets. After the SOFI receives a message packet froma cluster node, it checks whether the message consists of SMDS cells or FR frame. If the message10

is SMDS, then each cell of the message is transmitted to the SOFI, where it is mapped ontothe Synchronous Payload Envelope (SPE) of a SONET frame and transmitted over the SONETnetwork. For every cell, its type as indicated by the ST �eld in the payload is checked. If the celltype is BOM or COM, it means that the message transfer is not complete. Thus, the next cell istransmitted.If the cell type is SSM or EOM it means that the message transmission is complete, and sothe SOFI broadcasts the signal SNTX to the nodes to notify them of this condition. Each nodewill then update its RESVQ by decrementing their respective HEAD CTRs or the TAIL CTRs asexplained earlier. The node whose HEAD CTR decrements from 1 ! 0 will issue an NTX to itsTransmitter, and the next message transfer will begin. A similar sequence of events occurs whenthe message type is FR.
Receive
NTX?

message
type?

point to next
(first) message

cell

transmit cell
to SOFI

map cell onto
SONET SPE

transmit over
SONET network

cell type?

Send SNTX
to all

RESVQs

transmit frame
to SOFI

map frame onto
SONET SPE

transmit over
SONET network

Send SNTX
to all

RESVQs

false

true

SMDS

BOM/COM
SSM/EOM

FR

Figure 9: Transmitting packets11

2.7.2 Receiving PacketsThe
ow chart describing the method for receiving packets is shown in Fig. 10. After a SONETframe is received from the switching network, the SOFI demaps the packets from the SPE of theincoming frame. All the stu� bytes are ignored and valid packets are broadcast to all the nodes.The nodes can determine whether it is the recepient of the packet by: (a) SMDS: comparing itsID with the Multiplexing Identi�er (MID) value of the cells, (b) FR: comparing its ID with theData Link Connection Identi�er (DLCI) of the frame. If a match occurs the packet is accepted,otherwise it is rejected.
conn monitor SONET

network

SONET
frame?

message
type?

Demap cell(s)
from SONET

SPE

Demap frame(s)
from SONET

SPE

Broadcast cells to
cluster nodes

Broadcast frame
to cluster nodes

ID=MID? ID=DLCI?

Reject cells Accept cells Accept frame Reject frame

conn

false

true

SMDS

FR

false

true true

false

Figure 10: Receiving packets3 DRAGON Prototype SDL Speci�cationA complete set of SDL diagrams of the DRAGON prototype is provided in Figs. 3 to 16. Thesediagrams specify the behavior of the system in a top down manner; starting with the system12

de�nition, then to the level of the blocks, and �nally down to the process de�nitions using ExtendedFinite State Machine (EFSMs) notation. Each node has its own DRAGON block type. The systemCLUSTER consists of the block set DRAGONs containing a number of blocks of type DRAGON.The number of instances of DRAGON is speci�ed by the parameter called NoOfNodes. TheCLUSTER also contains the SMDS/SONET interface (SSI) and the BROADCAST block responsiblefor transmitting signals RESV and TOKen to all the blocks within the DRAGONs block set.The set of channels S1 and S2 are called the reservation bus and the reservation ring respectively.There are NoOfNodes of channels within each channel set. Whenever a RESV signal is sent, it isbroadcast over all the S1 channels, and likewise the TOKen is broadcast over all the S2 channels.The reservation ring is modeled as an IEEE 8802-4 token bus [21], because it was easier to do itthis way in SDL.The SDL protocol for broadcasting the RESV signal consists of two stages. In the �rst stage,one of the RESVQ CTLR processes sends signal SLOT to the Broadcast process. After that, theBroadcast process broadcasts the RESV signal to each of the RESVQ CTLR processes within theDRAGONs. In order to address each RESVQ CTLR process individually, its PId must be known. ThePIds were obtained after consuming the Id1 signals and then applying the PId-expression sender.Each RESVQ CTLR process instances sends Id1 to the Broadcast process immediately after it hasexecuted the start symbol. The Broadcast process stores the PId values in array IdArray1.The SDL procedure for passing the TOKen signal around the reservation ring works in asimilar way to above. As mentioned earlier, the TOKen passing scheme was implemented inSDL using the token bus protocol. This works by broadcasting the TOKen signals to all theRING CTLR processes within the DRAGONs block set. The TOKen conveys the PId of the nextRING CTLR process which is designated the TOKen. After consuming the TOKen signal, eachof the RING CTLR processes checks whether this PId matches its own PId value. If a match occursthen the TOKen is accepted, otherwise the TOKen is rejected. As with the RESVQ CTLR process,the PIds of the RING CTLR processes must also be known by the Broadcast process, and likewisethey are extracted after consuming the signal Id2. The RING CTLR process PIs are stored in arrayIdArray2.The DRAGON block type contains the main components of the SMDS user-to-network interface.These consists of the reservation queue (RESVQ) and the cell transmitter/receiver (TX RCV) blocks.SMDS cells enter the TX RCV block in sequential order over the SMDSinp channel. Receivedcells which are destined for the node are accepted and sent via SMDSout channel for reassembly.Although the DRAGON has been modeled for the SMDS protocol, it can be adapted for otherprotocols also such as ATM, X.25 and frame relay. This merely involves respecifying the TX RCVblock for the desired transmission protocol. The RESVQ block remains unchanged.The RESVQ block is shown in Fig. (a). It contains three basic elements: an up/down counternamed tail counter (TAIL CTR), a down counter named head counter (HEAD CTR) and a FIFOnamed reservation FIFO (RESV FIFO). When a new message arrives at the Transmitter, a SLOTreqsignal is generated to request the reservation of a slot in RESVQ for the message. This operation iscontrolled by two �nite state machines named the reservation queue controller (RESVQ CTLR) andthe reservation ring controller (RING CTLR).A part of the slot reservation is the TOKen access control and this is performed by the13

RING CTLR process. After the RING CTLR process receives the TOKen, it checks if the PIdit conveys is equal to the processes own PId. If it is, it implies that the node is the next one toaccess the TOKen and so the TOKen is accepted, otherwise the TOKen is rejected. After ac-cepting the TOKen, if the process has a SLOTreq signal pending, the SLOTgnt signal is issuedto the RESVQ CTLR process. The NxtTokRnd (Next Token Round) signal is then sent to theBroadcast process so that it can start the next token bus operation.The RESVQ CTLR process controls the operations of the HEAD CTR and the TAIL CTR. Afterit receives a SLOTgnt signal from the RING CTLR, the RESV signal is broadcast to all the nodes.This is done by the Broadcast process as described earlier. After consuming the RESV signal, thenodes increment their TAIL CTRs. In addition to this, the node that had issued the SLOT signalalso pushes the contents of its TAIL CTR into the RESV FIFO. The TAIL CTR is then cleared.After the transmission of a message cell sequence is completed, the Fiber-Optic TransmitterInterface (FIOT) sends the signal STX to all the RESVQ CTLR processes. Following this, theHEAD CTRs are decremented if its value is greater than zero, otherwise the TAIL CTR is decre-mented if its value is greater than zero. If at this stage, the HEAD CTR counts down from \1" to\0" the signal NTX is sent to the Transmitter process, informing it to begin transmission.The transmission and reception of cells to and from the SONET channels is performed by theFIOT and FIOR processes respectively. Both these processes reside within the SSI block. We �rstconsider the actions of the FIOT processes. This process starts o� by recording the PId values of allthe RESVQ CTLR processes in array IdArray1. As before, the PIds are extracted after consumingthe Id1 signals. After this, the process enters the Xmitcell state. Then, one of two events mayoccur. Firstly, the timeout signal may be received from theTimer process. This will occur if thetimer expires due to inactivity in the SMDSxmt channel over a time duration D. This results in atransition whereby the STX signal is broadcast to all the RESVQ CTLR processes. Subsequently,the reservation queue is updated and the next message (if any) is scheduled for transmission. Theother possible event is that a cell may be received via the SMDSxmt channel. This cell is consumedand retransmitted over the SONETxmt channel: the SONET transmit channel. The timer is then\freezed" until the �nal cell of the message has been transmitted, after which it is again restarted.Finally, the Scheduler broadcasts STX to all the nodes to schedule the next transmission.The FIOR process starts o� by storing the PIds of the Receiver process in array IdArray3. It thengoes to the RcvCell state and waits for cells to arrive via the SONET receive channel SONETrcv.After receiving each cell, it is broadcast to all the Receiver processes within the DRAGONs blockset. To determine if a particular Receiver process is the destination of the cell, each one of them isassigned an identi�cation number called MyId. The assignment is done by the remote procedurenamed Server which returns a distinct integer value to each calling process. The integers are distinctbecause the calls to the remote procedure are serialized in SDL, and thus it is implied that eachcalling process will returned a di�erent integer. The MID �eld extracted from each incoming celland checked whether it matches the node's MyId value. If it does, the cell is accepted and sentout via the SMDSout channel for reassembly. In case of a mismatch, the cell is rejected.14

HEAD_CTR

RESV_FIFO

RESVQ_CTLR

RING_CTLR

TAIL_CTR

RESVQ

Receiver

Transmitter

TX_RCV

DRAGON

Broadcast

Broadcast

Server

NodeIdServer

NodeIdServer

FIOR

Scheduler

FIOT

theTimer

SSI

x:y DRAGONs (...) : DRAGON

CLUSTER

(a) System tree organization
System CLUSTER 1(2)

/*System CLUSTER consists of "NooNodes" node elements, each with its own
 DRAGON interface block connected to a SONET network via the
 SMDS/SONET Interface (SSI).*/

signal SLOT,RESV, /*slot reservation signals*/
 STX, /*schedule transmission*/
 Id1,Id2,Id3, /*PId notification signals*/
 NxtTokRnd, /*next token passing round*/
 TOKen(PId), /*token signal*/
 SONETxmt(Celltype),SONETrcv(Celltype), /*SONET transmit & receive*/
 SMDSxmt(Celltype),SMDSrcv(Celltype), /*SMDS transmit & receive*/
 SMDSinp(Celltype),SMDSout(Celltype); /*SMDS input & output*/

remote procedure Server; returns Natural; /*remote procedure definition*/

synonym NoOfNodes Natural=10; /*Total node elements*/
synonym D Duration=6; /*Timer cycle duration*/

SSI

DRAGONs
(NoOfNodes):
DRAGON

NodeIdServer

DRAGON

Broadcast

s10SONETrcv

s11SONETxmt

s6
STX

Id1

i

s7 Id3

h

s8 SMDSxmt

g

s4SMDSout
d

s9 SMDSrcv

f
s5SMDSinp

e
s1

RESV
SLOT,
Id1

a

s2 TOKen

NxtTokRnd,
Id2

b(b) Cluster system
System CLUSTER 2(2)

syntype TwoBits =Natural constants 0:3 endsyntype TwoBits;
syntype FourBits =Natural constants 0:15 endsyntype FourBits;
syntype SixBits =Natural constants 0:63 endsyntype SixBits;
syntype EightBits =Natural constants 0:255 endsyntype EightBits;
syntype TenBits =Natural constants 0:1023 endsyntype TenBits;

synonym PayloadSize Natural=44;
syntype idx=Natural constants 0:PayloadSize endsyntype idx;
newtype PayloadType array(idx,EightBits) endnewtype PayloadType;

synonym COM TwoBits=0; /*Continuation of Message*/
synonym EOM TwoBits=1; /*End of Message*/
synonym BOM TwoBits=2; /*Beginning of Message*/
synonym SSM TwoBits=3; /*Single Segment Message*/

newtype Celltype /*SMDS cell definition*/
struct ST TwoBits; /*segment type*/
 SN FourBits; /*sequence number*/
 MID TenBits; /*multiplexing identifier*/
 PAYLOAD PayloadType; /*SAR-PDU payload*/
 LI SixBits; /*length indicator*/
 CRC TenBits; /*cyclic redundancy checksum*/
endnewtype Celltype; (c) Cluster system

Block Type DRAGON 1(1)

 signal SLOTreq, /*slot request*/
 NTX; /*Next-To-Transmit*/

TX_RCVRESVQ

i

Id1

STX

i

h
Id3

h

g
SMDSxmt

g

f
SMDSrcv

f

s9 SMDSrcvs14
Id3

s8

SMDSxmt

s6

SMDSout

d

SMDSout
ds13

SLOTreq

s11

Id1

STX

s1 SLOT,Id1

a

SLOT,Id1

RESV
a

s2 RESV s12
NTX

s3 NxtTokRnd,Id2

b
NxtTokRnd,Id2

TOKen
b

s4 TOKen

e
SMDSinp

es7
SMDSinp

(d) DRAGON blockFigure 11: SDL speci�cation diagrams15

Block RESVQ 1(1)

signal FIFOin(Natural),FIFOout(Natural), /*FIFO input & output*/
 inc,dec,incout, /*TAIL_CTR control*/
 read, /*FIFO read*/
 SLOTgnt; /*reservation queue slot grant*/

remote DCNTR Integer; /*exported HEAD_CTR value*/

signallist Action=inc,dec,incout; /*HEAD & TAIL counter control signals*/

RING_CTLRRESVQ_CTLR

TAIL_CTR RESV_FIFO HEAD_CTR s12

s13s12
SLOTreq

s8
SLOTgnt

s5
(Action)

s6
FIFOin

s7
dec

s9read

FIFOout

s11
NTX

s3

SLOT,
Id1

s1
s13

NxtTokRnd,
Id2

s3

s11

s2
STX

Id1

s2
s4

RESV

s4
s14

TOKen(a) Reservation queue block
Block TX_RCV 1(1)

Receiver Transmitter

s14 s9

s9
SMDSrcv

s14Id3

s6
SMDSout

s6

s8

s12
s12
NTX

s8
SMDSxmt

s13
SLOTreq

s13

s7

s7SMDSinp(b) Transmitter/Receiver block
Process HEAD_CTR 1(1)

/*When HEAD_CTR is zero, the RESV_FIFO is pop-
 ped and the value is loaded into HEAD_CTR.
 When HEAD_CTR counts from "1" to "0", signal
 NTX is issued, indicating the node is next to transmit.*/

dcl CTR Integer:=0; /*counter valuue*/

dcl exported CNTR as DCNTR Integer;

ready LDC

FIFOout dec load_ctr

CNTR:=
CNTR-1

 FIFOout
 (CTR) *

export
(CNTR) CNTR:=CTR

CNTR export
(CNTR)

ready NTX
 via s11 ready

 read
 via s9

LDC

>(0)

<=(0)(c) Head counter
Process TAIL_CTR 1(1)

/*TAIL_CTR is an up/down counter.
 It performs selected counting
 operations based on the value of
 the signallist "Action".

 inc: Increment counter.
 dec: Decrement counter.
 incout: Increment counter,
 push its contents to FIFO,
 and clear counter.*/

dcl CNT Integer:=0; /*counter value*/ idle

 inc incout dec

CNT:=CNT+1 CNT:=CNT+1 CNT

idle FIFOin(CNT)
 via s6 CNT:=CNT-1

CNT:=0 idle

idle

else

(0)

(d) Tail counterFigure 12: SDL speci�cation diagrams (cont.'d)16

Process RESV_FIFO 1(1)

/*The FIFO queue is implemented as an array, indexed by HEAD
 and TAIL pointers. HEAD points to the front of the queue, TAIL
 points to the end of the queue. Operations on HEAD and TAIL
 pointers are modulo MAX, where MAX is the maximum size of
 the queue. SIZE is the current queue size*/

syntype idx=Integer
 constants 0:1000
endsyntype idx;

newtype FIFOMEM /*FIFO memory type*/
 array(idx,Integer)
endnewtype FIFOMEM;

dcl FIFO FIFOMEM, /*reservation FIFO*/
 SIZE Integer:=0, /*current FIFO depth*/
 DINP,DOUT Integer, /*FIFO input & output*/
 HEAD,TAIL idx:=0; /*element head & tail pointers*/

idleing

 FIFOin
 (DINP) read

SIZE
<1000 SIZE>0

FIFO(TAIL)
:=DINP

DOUT:=
FIFO(HEAD)

SIZE:=
SIZE+1

 FIFOout
 (DOUT)

TAIL:=
(TAIL+1)
mod 1000

SIZE:=
SIZE-1

idleing
HEAD:=

(HEAD+1)
mod 1000

idleing(a) Reservation FIFO
Process RESVQ_CTLR 1(1)

/*Finite state machine to control the HEAD_CTR
 and TAIL_CTR operations.*/

dcl MyRESV Boolean:=false; /*set to 1 after process
 outputs RESV signal*/

imported DCNTR Integer; Id1 via s2

Enables "Broadcast" block to
determine sender process PId by
consuming Id1 and then access-
ing "sender" PId-expression.

 Id1 via s3

WaitEvent

 SLOTgnt Reservation queue
slot granted. RESV

Sent by the
"Broadcast"
block.

 STX
TX_RCV sends sig-
nal STX to schedule
next transmission.

 SLOT
Send RESV to "Broad-
cast" block which broad-
casts it to all the nodes.

MyRESV import
(DCNTR)

If HEAD_CTR>0,
decrement HEAD-
_CTR, else decre-
ment TAIL_CTR.

 incout
RESVQ counters
already updated.
Thus, no action.

MyRESV:=
false inc dec via s7 dec via s5

MyRESV:=
true WaitEvent WaitEvent WaitEvent WaitEvent

WaitEvent

true >(0)

false <=(0)

(b) Reservation queue controller
Process RING_CTLR 1(1)

/*Implementation is similar to the IEEE 802.4
 Token Bus Access protocol.*/

dcl count Integer:=0;
dcl ID PId; /*TOKen PId value*/

AcceptTOK

Enables "Broadcast" block to
determine sender process PId by
consuming Id2 and then access-
ing "sender" PId-expression.

 Id2 via s13 SLOTreq true

WaitTOK SLOTgnt
 via s8

TOKen received with
PId of next node to
access the TOKen.

 TOKen
 (ID) SLOTreq NxtTokRnd

 via s13

ID=self WaitTOK

TOKen PId matches
node’s PId. Thus,
TOKen is accepted.

AcceptTOK WaitTOK
TOKen PId does not
 match node’s PId. Thus,
TOKen is rejected.

(true)

(false)(c) Reservation ring controller
Process Receiver 1(1)

dcl cell Celltype, /*SMDS cell*/
 MyId Natural; /*PId of this process*/

imported procedure Server; /*NodeId Server*/
returns Natural;

Enables "theSSI" block to determine
sender process PId by consuming
Id3 and then acessing "sender"
 PId-Expression.

 Id3 via s14

MyId:=
call Server

Assign an unique
ID to the node.

monitor

 SMDSrcv
 (cell)

SMDS cell receiv-
ed via SONET net-
work.

cell!MID
=MyId

If cell MID value matches the
node’s ID, then cell is accept-
ed. Otherwise cell is rejected.

 SMDSout
 (cell)

monitor

(true)

(false)(d) Receiver processFigure 13: SDL speci�cation diagrams (cont.'d)17

Process Transmitter 1(1)

dcl cell Celltype;

WaitForCell

 SMDSinp
 (cell) NTX

cell!ST

 SLOTreq
 via s13

transmit

 NTX SMDSinp

 SMDSxmt
 (cell)

WaitForCell

(BOM,SSM)

(COM,EOM)

(a) Transmitter process
Block Broadcast 1(1)

/*Receives RESV and TOKen signals
 from a specific node and broadcasts
 it to every node in the cluster.*/

Broadcast

s1

s2

r1 RESV

SLOT,Id1

r2 TOKen

NxtTokRnd,Id2(b) Broadcast block
Process Broadcast 1(2)

syntype Index=Natural
 constants 1:NoOfNodes
endsyntype Index;

newtype IdArrayType /*process PId array*/
 Array(Index,PId)
endnewtype IdArrayType;

dcl IdArray1 IdArrayType, /*RESVQ_CTLR process PIds*/
 IdArray2 IdArrayType, /*RING_CTLR process PIds*/
 idx Natural:=1; /*PId array index*/

RcvId2s

RcvId1s

 Id2

 Id1 Id2

IId of each RING_CTLR
process is extracted and
stored in array IdArray2.

IdArray2(idx)
:=senderPId of each RESVQ_CTLR

process is extracted and
stored in array IdArray1.

IdArray1(idx)
:=sender

idx:=idx+1

idx:=idx+1

idx

idx

RcvId2s idx:=1

RcvId1s idx:=1

SndTOKen

RcvId2s

<(NoOfNodes+1)

=(NoOfNodes+1)

<(NoOfNodes+1)

=(NoOfNodes+1)(c) Broadcast process (1)
Process Broadcast 2(2)

dcl K,L Natural:=1, /*PId array index of the next
 node designated the TOKen*/
 ID PId; /*PId of the next node desig-
 nated the TOKen*/

wait

RESV signal received
from the "Broadcast"
process.

 SLOT NxtTokRnd
TOKen signal received
from the "Broadcast"
process.

SndRESV SndTOKen

SLOT,
NxtTokRnd true true SLOT,

NxtTokRnd

RESV is sent to the RESVQ-
_CTLR processes within every
node using the PId values
stored in IdArray1.

 RESV to
IdArray1(K)

 TOKen
(IdArray2(L)) to
IdArray2(K)

K:=K+1 K:=K+1

K K

SndRESV K:=1 K:=1 SndTOKen

wait L:=L+1

L

wait L:=1

wait

<(NoOfNodes+1) <(NoOfNodes+1)

=(NoOfNodes+1) =(NoOfNodes+1)

<(NoOfNodes+1)

=(NoOfNodes+1)(d) Broadcast process (2)Figure 14: SDL speci�cation diagrams (cont.'d)18

Block NodeIdServer 1(1)

NodeIdServer

(a) Node ID server block
 ;signalset dummy;

Process NodeIdServer 1(1)

 signal dummy;
 /*never used*/

 dcl ID Natural:=0;

Exported
 Server

wait

 dummy

 dummy

wait(b) Node ID server process
Exported Procedure Server;
returns Natural

1(1)

ID:=ID+1

ID(c) Node ID server procedure
Block SSI 1(1)

/*The SMDS/SONET Interface accepts SMDS
 cells sent by a cluster node and transmits them
 over the SONET network. It also receives cells
 sent over the SONET network and broadcasts
 them to all the nodes. The SSI also monitors the
 Timer and whenever it expires, broadcasts STX
 to the nodes to update the reservation queue and
 determine the next node for transmission.*/

signal hold, /*Timer is frozen and held*/
 restart, /*Timer is restarted*/
 timeout; /*Timeout after Timer expires*/

theTimer

FIOT

FIOR

s6
s6

STXId1

s8
SMDSxmt

s8

s2

hold,
restart timeout

s11
SONETxmt

s11

s9
SMDSrcv

s9

s10
SONETrcv

s10

s7
id3

s7(d) SMDS/SONET Interface (SSI) blockFigure 15: SDL speci�cation diagrams (cont.`d)19

Process FIOT 1(1)

syntype Index=Natural
 constants 1:NoOfNodes
endsyntype Index;

newtype IdArrayType /*process PId array*/
Array(Index,Pid);
endnewtype IdArrayType;

dcl IdArray1 IdArrayType, /*RESVQ_CTLR process PIDs*/
 cell Celltype, /*transmitted cell*/
 idx Natural:=1; /*PId array index*/

Scheduler

Rcv_Id1s XmitCell

 Id1 SMDSxmt timeout SMDSxmt
 (cell)

PId of each RESVQ_CTLR
process is extracted and
stored in array IdArray1.

IdArray1(idx)
:=sender Scheduler SONETxmt

 (cell)
Cell is transmitted over the
SONET link, at the STS-N
SPE capacity.

idx:=idx+1 XmitCell cell!ST

idx HoldTimer TimerOff

Rcv_Id1s idx:=1 SMDSxmt true true SMDSxmt

XmitCell
Freeze the timer until
the complete message
cells are sent.

 hold
 via s2

 restart
 via s2

End of message trans-
mission. Restart the Timer.

XmitCell Scheduler

XmitCell

(BOM,COM)

(SSM,EOM)

<(NoOfNodes+1)

=(NoOfNodes+1)

(a) Fiber-Optic Transmitter (FIOT) process
Process FIOR 1(1)

syntype Index=Natural
 constants 1:NoOfNodes
endsyntype Index;

newtype IdArrayType /*process PId array*/
Array(Index,Pid);
endnewtype IdArrayType;

dcl IdArray3 IdArrayType, /*TX_RCV process PIDs*/
 cell Celltype, /*received cell*/
 idx Natural:=1; /*PId array index*/

RcvCell

Rcv_Id3s SONETrcv
 (cell)

 Id3 SONETrcv idx:=1

IdArray3(idx)
:=sender

PId of each TX_RCV
process is extracted and
stored in array IdArray3.

SndCell

idx:=idx+1 true SONETrcv

idx
 SMDSrcv
 (cell) to
IdArray3(idx)

SMDS cell is trsnamitted
to every node.

Rcv_Id3s RcvCell idx:=idx+1

idx

SndCell RcvCell

<(NoOfNodes+1)

=(NoOfNodes+1)

<(NoOfNodes+1)

=(NoOfNodes+1)(b) Fiber-Optic Receiver (FIOR) process
Procedure Scheduler 1(1)

/*Broadcasts STX to all
 the cluster nodes.*/

idx:=1

SndSTX

true SMDSxmt

 STX to
IdArray1(idx)

idx:=idx+1

idx

SndSTX

=(NoOfNodes+1)

<(NoOfNodes+1)(c) Reservation queue scheduler
Process theTimer 1(1)

 Timer T:=D;

Set(T) Timer set to the current
plus the cycle time.

TimerOn

 restart T Timer expires and
generates timeout. hold

 timeout freeze

Timer "frozen" until mess-
age transfer ends. Then
Timer is restarted.

 restart

Set(T)

TimerOn(d) Timer processFigure 16: SDL speci�cation diagrams (cont.`d)20

4 SDL Validation MethodsIn this section we shall describe two algorithms that are most commonly used for validations.Both of them has been implemented in the SDT validator. Before proceeding we shall de�ne someterminology. The state space of a system is the composite of all �nite state machine states, variablesand queue states together with all the combinations of local state transitions. The state space isdivided into two disjoint classes: reachable states and unreachable states, Unreachable states areunexecutable states, and all errors should be limited to within these states. Reachable states are theexecutable states. All these states must meet a veri�cation criteria consisting of a conformance testand validation criteria. Validation criteria consists of checking the states against a set of correctnessrules: no deadlocks, no looping, no range and array index errors, no implicit signal consumptionand so on.4.1 Bit-StateBit-state is a useful technique for validating large systems of up to 108 states. The algorithm usesa storage technique called hashing. Initially, all the bits in the hash table are set to `0'. Next, usinga depth-�rst procedure, the state space of the system is generated. For each state, a hash valueis computed. if the hash value position in the table is `0', the algorithm changes it to a `1' andcontinues by investigating the successors of the new state. If the value is already a `1', then it isassumed that the state has already been searched and thus the subtree eminating from that stateis pruned. The algorithm backs up one state and continues with the search.4.2 Random-WalkThe random-walk is used for validating very large systems. It performs the search of the state spaceby randomly selecting a node from the current level of the subtree and then performing validationup to a given maximum depth. The procedure is repeated at the next level subtree, and so on, upto a speci�ed maximum number of repetitions. The algorithm then backs up to the top of the treeand starts all over again. The advantage of this technique is that is doesn't need to store the statespace at all, and consequently leads to a considerable savings in memory.5 SDL Validation Results5.1 Conformance TestThis section discusses the conformance test results obtained from simulations of the DRAGONcluster using the SDT. The input and output signals to the system is shown in Fig. 3 (b). There aretwo input signals named SMDSinp and SONETrcv, and two output signals named SMDSoutand SONETxmt. All of these signals take a parameter of the type Celltype, i.e. an SMDScell. The number of DRAGON block instances were limited to 5 in order to be consistent with21

the number used in the validations. The test values for the inputs were split into two classes:single cell messages (SSM) and multiple cell messages (BOM,� � �COM� � �,EOM). Both of the systeminputs were provided with at least one message from each class. To verify that the cells werereceived correctly at the outputs and in the proper order, we monitored the outputs SMDSoutand SONETxmt.The simulator also provided results of transition coverage and symbol coverage. Transition andsymbol coverages denotes the proportion of the transitions and symbols that have been executed sofar. Each transition in the transition coverage tree (Fig. 17) has a number allocated to it to indicatethe number of times the transition had been executed. Also indicated in parenthesis beside thestate symbols are the maximum and minimum transition frequencies in the subtree. The coveragetrees show that all the transitions and symbols have been executed at least once, except for thosein process NodeIdServer. This is expected because the dummy signal is never used by this process.5.2 ValidationIn this section, we shall discuss the results of our validation experiments. We performed twoindependent validations on a cluster of 5 nodes using the bit-state and random-walk methods.Each validation was executed for a CPU time of 24 hours. The results obtained were comparedagainst the total number of states generated, the size of memory utilized by each algorithm, theaverage rates at which the states were analyzed and the coverage. Our results are summerized inTable 1.The random-walk generated more than twice the number of states of the bit-state method.However, not all the states in the random-walk are unique. The bit-state algorithm saves the statespace in a hash table, so that if a state had been visited once before, the subtree eminating fromthat state is not explored again. This saves search time, and guarantees that every bit that is setwithin the hash table corresponds to a unique state. However, the random-walk does not save thestate space. It randomly traverses a speci�c number of times through the state space, disregardingif the same (unique) state is visited more than once. Hence, the random-walk is likely to traversethrough far more \duplicated" states than the bit-state method over the same period of time.The random-walk method was also twice as fast as the bit-state method as indicated by thee�ciency values. The coverage value indicates the percentage of the total symbols executed byeach algorithm. They are approximately equal at 96.67 and 97 percent respectively for the bit-state and random-walk. Most of the remaining 3 percent coverage is due to the fact that thedummy signal in Fig. (b) is never used, so the transition is never executed. So 3 symbols ineach of the 10 instances of DRAGON are not executed at all, thus totaling 30 symbols. If theseunexecutable symbols are ignored, the coverage should be closer to 100 percent. Also, the memorysize used up by the processes of each algorithm were was larger for the bit-state. This is because therandom-walk does not use storage for the state space, and thus utilized considerably less memory.22

Sta
rt 1

Id1 5

Rcv
_Id

1s
5

rpc

Co
ntin

uou
s si

gna
l

20

Ho
ldT

ime
r

20

SM
DS

xm
t

43
tim

eou
t

20

Xm
itC

ell
63

(20
 - 4

3)

rpc

Co
ntin

uou
s si

gna
l

22

Tim
erO

ff
22

Sta
rt

(42
)

rpc

Co
ntin

uou
s si

gna
l

210Snd
ST

X
210

Sch
edu

ler
210

FIO
T

321
 (1

- 21
0)

Sta
rt 1

hol
d 10

res
tart 12

T 20

Tim
erO

n
42

(10
 - 2

0)

res
tart 10free
ze 10

the
Tim

er
53

(1 -
 20

)

Sta
rt 1

Id3 5

Rcv
_Id

3s
5

SO
NE

Trc
v

11

Rcv
Cel

l
11

rpc

Co
ntin

uou
s si

gna
l

55Snd
Cel

l
55

FIO
R

72
(1 -

 55
)

SSI
446

 (1
- 21

0)

Sta
rt 1

Id4 5

Rcv
Id4

s
5

Cel
linp 43Inp
Cel

l
43

Inp
utB

uff
er

49
(1 -

 43
)

Sta
rt 1

SM
DS

out
11InO

ut 11

Ou
tpu

tBu
ffer

12
(1 -

 11
)

Bu
ffer

61
(1 -

 43
)

Sta
rt 1

dum
my 0

rpc

pC
AL

L_S
erv

er
5

wa
it

5 (0
 - 5

)

Sta
rt (5)Ser

ver 0

No
deI

dSe
rve

r
6 (0

 - 5
)

No
deI

dSe
rve

r
6 (0

 - 5
)

Sta
rt 1

Id1 5

Rcv
Id1

s
5

Id2 5

Rcv
Id2

s
5

SL
OT 23

Nx
tTo

kR
nd

434
53

wa
it

434
76

(23
 - 4

345
3)

rpc

Co
ntin

uou
s si

gna
l

115

Snd
RE

SV
115

rpc

Co
ntin

uou
s si

gna
l

217
266

Snd
TO

Ke
n

217
266

Bro
adc

ast
260

868
 (1

- 21
726

6)

Bro
adc

ast
260

868
 (1

- 21
726

6)

TX
_R

CV 0
RE

SV
Q

0

DR
AG

ON
s

0

Sta
rt 10

SM
DS

rcv
55mo
nito

r
55

Rec
eiv

er
65

(10
 - 5

5)

Sta
rt 5

SM
DS

inp
43

Wa
itFo

rCe
ll

43

NT
X 23

tran
sm

it
23

Tra
nsm

itte
r

71
(5 -

 43
)

TX
_R

CV
136

 (5
- 55

)

Sta
rt 5

TO
Ke

n
217

265

Wa
itT

OK
217

265

SL
OT

req
23

rpc

Co
ntin

uou
s si

gna
l

434
30

Ac
cep

tTO
K

434
53

(23
 - 4

343
0)

RIN
G_

CT
LR

260
723

 (5
- 21

726
5)

Sta
rt 5

SL
OT

gnt
23

ST
X 210

RE
SV 115

Wa
itE

ven
t

348
 (23

 - 2
10)

RE
SV

Q_
CT

LR
353

 (5
- 21

0)

Sta
rt 5

inc 92
dec 184

inc
out 23

idle
299

 (23
 - 1

84)

TA
IL_

CT
R

304
 (5

- 18
4)

Sta
rt 5

FIF
Oin 23

rea
d 23

idle
ing

46
(23

 - 2
3)

RE
SV

_FI
FO

51
(5 -

 23
)

Sta
rt 5

dec 25

rpc

Co
ntin

uou
s si

gna
l

28

rea
dy

53
(25

 - 2
8)

FIF
Oo

ut
23

loa
d_c

tr
23

HE
AD

_C
TR

81
(5 -

 28
)

RE
SV

Q
261

512
 (5

- 21
726

5)

DR
AG

ON
261

648
 (5

- 21
726

5)

DR
AG

ON
261

648
 (5

- 21
726

5)

CL
US

TE
R

523
029

 (0
- 21

726
6) (a)Transitioncoveragetree

42
210

42
42

210
210

210
42

168

Sch
edu

ler
117

6 (4
2 -

210
)

1
5

20
20

43
22

20
22

1
5

5
5

4
1

1
20

20
20

43
43

20
22

22
22

FIO
T

158
3 (1

 - 2
10)

1
12

20
10

10
1

1
42

42
20

10

theT
ime

r
169

 (1
- 42

)

1
5

11
55

1
5

5
5

4
1

11
11

55
55

55
44

11

FIO
R

335
 (1

- 55
)

SSI
208

7 (1
 - 2

10)

1
5

43
1

5
5

5
4

1
43

43
43

Inp
utB

uffe
r

199
 (1

- 43
)

1
11

1
11

11

Out
put

Buf
fer

35 (
1 -

11)

Buf
fer

234
 (1

- 43
)

5
5

5

Ser
ver

15 (
5 -

5)

1
0

1
0

0

Nod
eId

Ser
ver

17 (
0 -

5)

Nod
eId

Ser
ver

17 (
0 -

5)

1
5

5
23

434
531

152
172

66
1

5
5

5
4

1
1

5
5

5
4

1
1

23
434

531
151

151
15

92
23

23
217

266
217

266
217

266
217

266
434

534
345

343
453

347
638

690
869

017
381

3

Bro
adc

ast
153

024
9 (1

 - 2
172

66)

Bro
adc

ast
153

024
9 (1

 - 2
172

66)

TX
_RC

V
0

RE
SV

Q 0

DR
AG

ON
s

0

5
55

5
5

5
55

11
55

Rec
eive

r
196

 (5
- 55

)

5
43

23
5

5
43

23
23

43
43

Tra
nsm

itte
r

256
 (5

- 43
)

TX
_RC

V
452

 (5
- 55

)

52
172

65
23

434
30

5
5

52
172

654
345

343
453

173
812

23
434

534
345

3

RIN
G_C

TLR
825

650
 (5

- 21
726

5)

5
23

115
210

5
5

5
23

23
23

23
115

23
23

92
92

210
25

25
185

185

RE
SV

Q_C
TLR

143
5 (5

 - 2
10)

5
92

23
184

5
92

92
23

23
23

23
184

89
184

TA
IL_

CT
R

104
2 (5

 - 1
84)

5
23

23
5

23
23

23
23

23
23

23
23

23

RE
SV

_FI
FO

263
 (5

- 23
)

5
25

28
23

5
25

25
25

23
25

28
28

23
23

23

HE
AD

_CT
R

334
 (5

- 28
)

RE
SV

Q
828

724
 (5

- 21
726

5)

DR
AG

ON
829

176
 (5

- 21
726

5)

DR
AG

ON
829

176
 (5

- 21
726

5)

CL
US

TER
236

176
3 (0

 - 2
172

66) (b)Symbolcoveragetree Figure17:Simulationpro
�lefora5nodecluster

23

ALGORITHM UNIQUE STATES MEMORY SIZE RUN TIME EFFICIENCY COVERAGENAME (�106) (megabytes) (�103secs.) (states/sec.) (percent)BIT-STATE 6.93 99.46 86.44 80.17 96.67RANDOM-WALK 14.50 38.44 86.41 167.61 97.0Table 1: Validation results for a 5 node cluster6 ConclusionIn this paper, we developed a novel user-to-network interface for BISDN networks. The interfaceuses an improved form of distributed queue to schedule messages from transmissions. Access to thenetwork by the cluster nodes are completely fair and is independent of the position of the node inthe cluster. Also, unlike DQDB and other similar protocols, the DRAGON is equally suitable for�xed-sized cell transmission (SMDS) as well as variable length packet transmission (frame relay).We presented a complete set of SDL speci�cations for a cluster of DRAGON interfaces connectedto a broadband network. We focused primarily on the interface segment. The design was extensivelysimulated using the SDT simulator and the results showed that the system was functionally correct.That is to say, the system generated the correct outputs for numerous combination of test inputs.The transition and symbol coverage showed that virtually every transition and symbol. elementwithin the system had been executed at least once, thus further augmenting the fact that all partsof the system had functioned correctly.The system was then independently validated using 2 di�erent algorithms. Both methods pro-duced a high coverage, meaning that the system was verifyable to a high degree of probability. Ina separate publication [8], we presented an implementation model of the DRAGON cluster usingVHDL. Performance studies were done using an integrated mixture of video and data tra�c. Fi-nally, it should be noted that creating a complete and correct SDL speci�cation is a ardious taskand several incorrect versions had to be modi�ed, but the language and tool proved a very e�ectiveway to produce a formal and understandable speci�cation in which we have a high con�dence.7 AcknowledgementsWe would like to thank Rick Reed, TSE Ltd., Lutterworth, U.K. for his help, constructive sugges-tions and feedback on the SDL modeling part of this manuscript. We also thank Gerard Holzmann,Bell-Laborotories, Princeton, New Jersey, U.S.A. for his comments on the validation section of thispaper.References[1] M. dePrycker, Asynchronous Transfer Mode: Solution for Broadband ISDN, 2nd. ed. EllisHorwood, 1993. 24

[2] R. Ballat and Y. Ching, \SONET: Now it's the Standard Optical Network," IEEE Commu-nications Magazine, pp. 8{15, March 1989.[3] R. Klessig, SMDS: Wide-Area Data Networking with Switched Multi-Megabit Data Service.Prentice Hall, 1995.[4] U. Black, Frame Relay Networks: Speci�cations and Implementations. McGraw-Hill, 1994.[5] R. Deasington, X.25 Explained: Protocols for Packet Switching Networks. Ellis Horwood, 1986.[6] ITU-T Recommendation I.413, BISDN User-Network Interface. March 1993.[7] D. K. Sharma and S. R. Ahuja, \A First-Come-First-Serve Bus Allocation Scheme Using TicketAssignments," The Bell System Technical Journal, pp. 1257{1269, September 1981.[8] S. M. Shahrier and R. M. Jenevein, \A Distributed Access Generic Optical Network Interfacefor Cell-Relay Networks," accepted IEEE International Performance, Computing and Commu-nications Conference, February 1997.[9] IEEE Standard Distributed Queue Dual Bus (DQDB) Metropolitan Area Network (MAN),P802.6. 1988.[10] G. Watson and S. Ooi, \What Should a Gbit/s Network Interface Look Like," Protocols forHigh-Speed Networks, pp. 237{250, November 1990.[11] G. C. Watson and S. Tohme, \S++ { a new mac protocol for gb/s local area networks," IEEEJournal on Selected Areas in Communications, pp. 531{539, May 1993.[12] S. M. Shahrier and R. M. Jenevein, \A Performance Comparision of SMDS and Frame RelayProtocols at the DRAGON User-to-Network Interface," submitted SUPERCOMM, June 1997.[13] ITU-T Recommendation Z.100, CCITT Speci�cation and Description Language. March 1993.[14] B. Sarikaya, Principles of Protocol Engineering and Conformance Testing. Ellis HorwoodLimited, 1993.[15] K. J. Turner, Using Formal Description Techniques: An Introduction to Estelle, LOTOS andSDL. Wiley, 1993.[16] A. Olsen et. al., Systems Engineering Using SDL{92. North Holland, 1994.[17] G. Holzmann, Design and Validation of Computer Protocols. Prentice Hall, 1991.[18] G. J. Holzmann, \Algorithms for Automated Protocol Veri�cation," AT&T Technical Journal,pp. 32{44, January 1990.[19] S. M. Shahrier and R. M. Jenevein, \A Distributed Access Generic Optical Network Interfacefor SMDS Networks," submitted Computer Networks and ISDN Systems, October 1996.[20] B. Kumar, Broadband Communications: A Professional's Guide to ATM, Frame Relay, SMDS,SONET and BISDN. McGraw-Hill, 1995.[21] IEEE Standard 8802-4 Token Bus Access Method and Physical Layer Speci�cations. 1993.25

