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Abstract

This paper presents the design and specification of a BISDN user-to-network interface (UNT)
named DRAGON (Distributed Access Generic Optical Network) for SMDS networks. The UNI
allows clusters of nodes to be connected to an SMDS network via fiber-optic lines. The capacity
of each line is shared by all the nodes in the cluster to make more efficient use of bandwidth.

Within each cluster, transmissions are scheduled on first-come-first-served (FCFS) order
of message arrivals, by considering a globally distributed queue. A novel scheme is proposed
for controlling access to the fiber-optic transmission network. By using two logically separate
subnetworks called the reservation channel and the reservation ring Slot reservations and mes-
sage transmissions can proceed independently and concurrently. The reservation channel is a
broadcast channel for notifying nodes within the cluster when to reserve a slot. Access to the
reservation channel is controlled by the reservation ring: a token ring network. All accesses for
the queue slots are completely fair and the bandwidth attainable is independent of the posi-
tion of the node within the cluster. Unlike previous distributed queue protocols, the DRAGON
facilitates both fixed-sized and variable sized transmissions.

We constructed an extended finite state model (EFSM) of the DRAGON using ITU stan-
dard Specification and Description Language (SDL). The model was simulated and validated
using the SDT 3.02 toolset from Telelogic. An extensive set of simulations were conducted to
acertain correct logical behavior. The model was then independently verified using two different
algorithms: bit-state and random walk. The results showed that the design was verified to a
high degree of coverage.

Index Terms — computer networks, BISDN, SMDS, UNI, SDL.



1 Introduction

Broadband Integrated Services Digital Networks (BISDN) have been an active area of research over
the last decade. Both local and metropolitan area networks (LANs & MANSs) have appeared in
great proliferation in the marketplace, and a large number have been deployed in commercial and
academic sites. To support the diverse applications required of BISDN networks, a large number of
protocols have been developed, for example ATM [1], SONET [2], SMDS [3], frame relay [4], X.25 [5],
and many others. Optical fibers provide the transmission infrastructure for BISDN networks to
allow transmission at hundreds of megabytes per second. Recently, international standards for
BISDN has been produced by the International Telecommunications Union (ITU) so that equipment
produced by different manufacturers were compatible with one another.

An important part of broadband networks is the the user-to-network interface (UNI) [6]: the
interface between the host node and the broadband network. In this paper, we designed a Switched
Multimegabit Data Services (SMDS) UNI called DRAGON (Distributed Access Generic Optical
Network). The DRAGON allows a cluster of nodes to share the same transmission medium at the
UNI, by scheduling transmissions in a globally distributed First-Come-First-Served (FCFS) order
of message arrivals. This is an optimal transmission policy in the sense that it has the smallest
delay and delay variance of all other transmission policies [7]. Thus, it maximizes the throughput
and minimizes the delay and delay jitter. It is also possible to determine the upper delay bound of
cells. One method is to estimate the mean and variance of the cell delay and then use Chebyshev’s
inequality to estimate the upper delay bound. This had been illustrated in [8].

The distributed queue in the DRAGON is called a reservation queue (RESV(Q)). Other variants
of this scheme have been implemented in other networks, for example DQDB [9], Hangman [10] and
S+4 [11]. One of our main objective was to improve on the previous distributed queue designs.
Recently, there had not been a great deal of interest in the DQDB type of protocols. We hope that
the improvements we’ve proposed to the distributed queue architecture will generate more interest.

Most of the previous distributed queue protocols were developed for dual slotted-bus networks
and cannot be applied directly to multiple node clusters connected to a single high-speed fiber-optic
line, as is the case in our design. Our design is also different in that slot reservations and message
transmissions can proceed independently and concurrently on separate logical channels, by sharing
the same optical medium, by means of Wavelength Division Multiplexing (WDM). This means all
the transmission bandwidth can be utilized for transmitting messages, and none of it is utilized for
transporting slot reservation information. DQDB and S++4 uses the same channel for transmissions
and slot reservations. Access to the slots in the DRAGON are completely fair and is independent
of the nodes position within the cluster, whereas in DQDB the nodes closest to the slot generators
have a greater chance of reserving a slot. Hence, downstream nodes have fewer chances of acquiring
a slot, and consequently the bandwidth attainable to a node is dependent on its position in the
network. This problem does not arise with the DRAGON.

DQDB and S++ transmits only fixed-sized synchronous packets. Thus, they cannot be used
directly for transmitting variable-sized packets such as X.25 and frame relay. The DRAGON, how-
ever, is suitable for both fixed-sized packet and variable-sized packet transfers. We have developed
a SMDS and frame relay versions of the DRAGON to illustrate this point, and performance results



are presented in [12]. And finally, we included a reservation FIFO within the DRAGON so that
slot reservations for multiple number of messages can be made. This feature was not supported by
the DQDB and S++4 protocols, thus they can only reserve one message slot at a time.

An SMDS network architecture is shown in Fig. 1. Data is transmitted in the network in the
form of fixed sized cells. The SMDS interface protocol (SIP) converts data into cells and transmits
them to the SONET/SMDS interface (SSI) at a rate of 49.54 Mbits/sec, i.e. the capacity of the
SONET/STS-1 payload. The cells are then transported via SONET to an SMDS switching network.
The SIP is organized into three layers. The highest layer, layer 3, accepts data from the higher
layer protocols and converts it into variable sized frames referred to as AAL3/4 CS-PDU (ATM
Adaptation Layer 3/4 Convergence Sublayer-Protocol Data Unit). Layer 2 takes these frames
and converts it into fixed sized cells of 48 byte payload and 5 byte header referred to as AAL3/4
SAR-PDU (ATM Adaptation Layer 3/4 Segmentation And Reassembly-Protocol Data Unit). The
AAL3/4 cells are encapsulated onto a STS-1 payload by the SSI and transmitted over the fiber-
optic line at a rate of 51.84 Mbits/sec to the SMDS network. At the switching network, the cells
are extracted from the STS-1 payload and routed via the switches. Before leaving the network, the
cells are again remapped onto the STS-1 payload and transported over the fiber-optic line to the
destination cluster.
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Figure 1: SMDS network with 4 node clusters

A diagram depicting the development steps of the DRAGON is shown in Fig. 2. The development
cycle consists of a dual track approach. In the first phase, a formal specification of DRAGON
was presented in SDL (Specification and Description Language) [13, 14, 15, 16]. This is a non-
proprietary international standard notation based on Extended Finite State Machines. There
are several tools for SDL, but we entered a complete set of SDL/GR (Graphical Representation)
diagrams into the SDT (SDL Design Tool) from Telelogic. Finally, conformance and validation
testing were performed to ensure that the design functioned correctly. Conformance testing was to
ensure that the SDL model of the DRAGON conforms to the original specification. This was done by
simulating the SDL system using a known set of inputs and observing the outputs. Validation was
performed using two well established algorithms called bit-state and random-walk [17, 18]. These
methods were provided by the SDL validator. The second phase of development consists of an
RTL implementation model of DRAGON in VHDL. Extensive timing simulations were performed



using concurrent video and data traffic. Trace driven performance simulation was performed using
an integrated mix of video and data traffic using actual traces provided by Bellcore. This paper
is concerned with the SDL modeling and validation of DRAGON. The RTL development aspects
were treated in a separate publication [8, 19]. The remainder of the paper is organized as follows.
Section 2 provides an informal description of the DRAGON architecture. Section 3 presents a
complete set of SDL specification diagrams of the DRAGON. Section 4 provides a description of
the two validation methods used in this work. The conformance test and validation coverage results
are presented in section 5. The paper is concluded in section 6.
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Figure 2: Development steps of the DRAGON in SDL

2 The DRAGON Overview

2.1 The Cluster Organization

This section provides an informal presentation of the DRAGON architecture for the clarity of
understanding. The interconnection of the nodes within a cluster is shown in Fig. 3. All accesses to
the network must be controlled so that there are no collisions. This is done in part by two different
subnetworks: the reservation bus and the reservation ring. The reservation bus is a single-bit
broadcast channel used for notifying all nodes when to reserve one slot in the reservation queue
(RESVQ). Only one node at a time can send on the reservation bus. Thus, to prevent more than 1
node transmitting simultaneously, a reservation ring is used. The reservation ring is a high-speed,
single-bit token ring network for controlling access to the reservation channel. The channels operate
as follows.

The reservation ring has basically a single-bit token ring architecture. The difference is that
after the token is received, the node is only allowed to reserve a slot in the RESVQ); it cannot
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Figure 3: LAN configuration

transmit packets immediately after receiving the token as in normal token ring networks. A signal
called TOKen circulates around the reservation ring, passing from one node to the next. If no
new messages have arrived at a node, the node doesn’t reserve any slots in the RESVQ. It simply
passes the TOKen to its successor node. If however, a message has arrived at a node, the node
waits for the TOKen, reserves a slot in its RESVQ and notifies all other nodes to also reserve
a slot by transmitting a RESV signal on the reservation channel. The TOKen is then passed
to its successor. Hence, by requiring a node to own the TOKen before broadcasting RESV will
guarantee that there will be no multiple simultaneous transmissions of RESV on the reservation
channel, and thus no collisions. The reservation channel and the reservation ring are independent
subnetworks and may share the same fiber-optic medium by WDM technique.

2.2 The DRAGON Prototype and Datapath

We shall now provide the layout of the individual functional units within the DRAGON. A block
diagram of the DRAGON prototype and its datapath signals are shown in Fig. 4. Signals are
indicated by the signal names placed inside squared brackets. The direction of the signal is indicated
by arrow heads. Some of the signal routes have arrow heads at both ends, in which case these signal
routes are bidirectional. The SONET transmit and receive links to and from the switching network
are called SONETxmt and SONETrev respectively. The transmit and receive lines connecting
the DRAGON to the SOFI are labeled PKTxmt and PKTrcv respectively. Next, we shall discuss
each of the functional units within the DRAGON prototype. A complete description of the signals
and transition tables for the finite state machines are provided in [8].

2.3 The Reservation Queue (RESVQ) Operation

Every node in the network contains a reservation queue. As explained previously, after a message
arrives, a slot must be reserved in the reservation queue. Consequently, the RESVQs of all the
nodes must be updated. The basic blocks of the RESVQ consist of the reservation queue, the
reservation queue controller, the reservation ring controller and the transmitter/receiver. There is
also an external interface named SOFI which is shared by all the nodes in the cluster.
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Figure 4: The DRAGON prototype and its datapath

e Reservation Queue: Reserves FCFS slots pertaining to the order of message transmissions.
Contains an up/down counter named TAIL_CTR, a down counter named HEAD_CTR and a
FIFO named RESV_FIFO.

e Reservation Queue Controller: FSM for controlling the operation of the RESVQ, includ-
ing assigning transmission slots and updating the queue for scheduling the next transmission.

e Reservation Ring Controller: FSM to perform all functions of the token access control.

Contains up/down slot COUNTER.

e Transmitter/Receiver: Transmits and receives messages to and from the SONET /STS-N
network. Messages may consist of a sequence of SMDS cells or FR frame.

e SONET Fiber-Optic Interface (SOFI): External interface shared by all the cluster nodes.
It performs mapping and demapping of message packets onto SONET frames [20]. It insets
stuff (idle) bytes into the SONET payload when necessary. It also broadcasts signal SNTX
to all the nodes at the end of every message transmission.

In the following sections, we shall provide an overview of each functional unit. But first, we
provide an overview of the entire system.



2.4 Systems Overview

A flow diagram depicting the entire operation of the slot reservation procedure is shown in Fig 5.
Initially, every node in the cluster waits to receive a TOKen. After it is received, the node checks
whether it has any messages waiting to be scheduled for transmission. If it doesn’t, the TOKen
is simply passed on to its successor. If, however, a message is waiting, the interface broadcasts the
signal RESV to all the other nodes in the cluster over the reservation bus. Every node monitors
the reservation bus, and when it detects the RESV, the RESVQ is updated and a slot is reserved
for the message. The TOKen is then sent to the successor node, and the process repeats.

If a TOKen isn’t received, the interface checks whether the signal SNTX had been sent by the
SOFI. SNTX is broadcast to the cluster at the end of every message transmission. If SNTX is
received, the nodes update the RESVQ to determine which node is to transmit next. Whichever
node is the next to transmit, its RESVQ will send the signal NTX to its Transmitter. The
Transmitter will then begin sending cells/frames to the SOFI. In the following sections, we shall
describe each of the 4 functional units of DRAGON and the SOFI using flow-charts. The RESVQ
and the RESVQ controller has been grouped together into a single flowchart, and likewise the
Transmitter /Receiver and SOFI have also been grouped together.

2.5 The Reservation Ring Controller

The flowchart for the reservation ring (RESV_RING) controller is shown in 6. Each node waits
to receive a TOKen from its predecessor. It then acknowledges its predecessor by sending the
acknowledgement ACK signal. The node then checks whether its COUNTER is larger than zero.
The COUNTER registers the number of outstanding messages waiting to be allocated a RESVQ
slot. When a new message arrives at the DRAGON, the COUNTER is incremented by 1, and
anytime it is zero it means there are no pending messages so the TOKen simply passed to the suc-
cessor node. Otherwise, the controller sends signal SLOTgnt to the RESVQ and the COUNTER
is decremented. The reservation bus is monitored, and after signal RESV had been broadcast by
the RESVQ, TOKen signal is sent to the successor node.

2.6 The Reservation Queue
2.6.1 Reserving a Slot

The flow chart for reserving a slot is shown in Fig. 7. Every node in the cluster checks whether it
had received SLOTgnt from the RESV_RING controller, and if so, it broadcasts RESV over the
reservation bus. Subsequently, it increments its TAIL_CTR, writes the TAIL_CTR contents into
the RESV_FIFO and clears the TAIL_CTR. The down counter named HEAD_CTR value plus the
composite values of all the RESV_FIFO elements is the number of messages which must be serviced
before the currently reserved message can transmit.

For example, suppose that all the messages have equal priority. Further, suppose that at this
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instant HEAD_CTR=5 and RESV_FIFO={3,7,2}, where ‘2’ is the head element and ‘3" is the tail
element. Thus, the newly arrived message will have to wait until 17 (3+ 74 2+ 5) messages which
had arrived before it to be serviced before it can transmit. In the example, the node had scheduled
4 messages for transmission. This is given by the number of RESV_FIFO elements plus one, if the
HEAD_CTR,;0.

Now, if there were two different priorities of messages, as in the case of video and data, slot reser-
vations are still made in the usual way: but the higher priority message will always be transmitted
ahead of all the lower priority messages. For instance, if the tail element ‘3’ in the RESV_FIFO is
a slot allocated to a high priority message and the remaining 3 are low priority messages, the high
priority message will be transmitted when the HEAD_CTR counts down to zero, irrespective of the
fact that the slot was allocated to a low priority message. Further, suppose that the node doesn’t
receive SLOTgnt, but detects RESV on the reservation bus: it will increment its TAIL_CTR,
thereby reserving a slot for some other node within the cluster.
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Figure 7: Reserving a slot

2.6.2 Scheduling a Transmission

The flow chart for scheduling a message for transmission is shown in 8. The protocol initiates by
checking the value of the HEAD_CTR. First, consider the previous example where HEAD _CTR=5
and RESV_FIFO={3,7,2}. The RESVQ checks whether it has received SNTX from the SOFI,
and if so, it decrements the HEAD_CTR. The new HEAD_CTR value is now 4 and it signifies
the number of other nodes that must be serviced before this node can transmit. Thus, after the



HEAD_CTR reaches zero, signal NTX is sent to the Transmitter/Receiver block informing it to
begin transmission.

Next, consider the case where HEAD_CTR, is equal to zero. The RESV_FIFO is checked, and
since its not empty, the top element 2’ is loaded into the HEAD_CTR. As before, this value is
the number of transmissions that must be made by the other nodes within the cluster before this
node can transmit. If RESV_FIFO is empty and HEAD_CTR is zero and SNTX is true, the
TAIL_CTR is decremented if its value is non-zero. When HEAD_CTR, and RESV_FIFO are both

empty, a non-zero TAIL_CTR signifies the number of messages scheduled for other cluster nodes:

but not this node.
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Figure 8: Scheduling a transmission

2.7 The Transmitter/Receiver

The flow chart defining the Transmitter/Receiver and SOFI combination is shown in Fig. 9 and 10.
The flow chart in Fig. 9 shows how the SOFI interacts with the nodes for scheduling the trans-
mission of packets. Fig. 10 describes how packets are extracted from incoming SONET frames and
transported to the destination cluster node.

2.7.1 Transmitting Packets

Fig. 9 shows the procedure for transmitting packets. After the SOFI receives a message packet from
a cluster node, it checks whether the message consists of SMDS cells or FR frame. If the message

10



is SMDS, then each cell of the message is transmitted to the SOFI, where it is mapped onto
the Synchronous Payload Envelope (SPE) of a SONET frame and transmitted over the SONET
network. For every cell, its type as indicated by the ST field in the payload is checked. If the cell
type is BOM or COM, it means that the message transfer is not complete. Thus, the next cell is
transmitted.

If the cell type is SSM or EOM it means that the message transmission is complete, and so
the SOFT broadcasts the signal SNTX to the nodes to notify them of this condition. Each node
will then update its RESVQ by decrementing their respective HEAD_CTRs or the TAIL_CTRs as
explained earlier. The node whose HEAD_CTR decrements from 1 — 0 will issue an NTX to its
Transmitter, and the next message transfer will begin. A similar sequence of events occurs when
the message type is FR.
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Figure 9: Transmitting packets
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2.7.2 Receiving Packets

The flow chart describing the method for receiving packets is shown in Fig. 10. After a SONET
frame is received from the switching network, the SOFI demaps the packets from the SPE of the
incoming frame. All the stuff bytes are ignored and valid packets are broadcast to all the nodes.
The nodes can determine whether it is the recepient of the packet by: (a) SMDS: comparing its
ID with the Multiplexing Identifier (MID) value of the cells, (b) FR: comparing its ID with the
Data Link Connection Identifier (DLCI) of the frame. If a match occurs the packet is accepted,

otherwise it is rejected.
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Figure 10: Receiving packets

3 DRAGON Prototype SDL Specification

A complete set of SDL diagrams of the DRAGON prototype is provided in Figs. 3 to 16. These
diagrams specify the behavior of the system in a top down manner; starting with the system




definition, then to the level of the blocks, and finally down to the process definitions using Extended
Finite State Machine (EFSMs) notation. Each node has its own DRAGON block type. The system
CLUSTER consists of the block set DRAGONs containing a number of blocks of type DRAGON.
The number of instances of DRAGON is specified by the parameter called NOOFNoDEs. The
CLUSTER also contains the SMDS/SONET interface (SSI) and the BROADCAST block responsible
for transmitting signals RESV and TOKen to all the blocks within the DRAGONs block set.
The set of channels S; and S, are called the reservation bus and the reservation ring respectively.
There are NoOfNodes of channels within each channel set. Whenever a RESV signal is sent, it is
broadcast over all the .51 channels, and likewise the TOKen is broadcast over all the S5 channels.
The reservation ring is modeled as an IFEE 8802-4 token bus [21], because it was easier to do it
this way in SDL.

The SDL protocol for broadcasting the RESV signal consists of two stages. In the first stage,
one of the RESVQ_CTLR processes sends signal SLOT to the Broadcast process. After that, the
Broadcast process broadcasts the RESV signal to each of the RESVQ_CTLR processes within the
DRAGONs. In order to address each RESVQ_CTLR process individually, its PId must be known. The
Plds were obtained after consuming the Id1 signals and then applying the Pld-expression sender.
Each RESVQ_CTLR process instances sends Id1 to the Broadcast process immediately after it has
executed the start symbol. The Broadcast process stores the Pld values in array IdArrayl.

The SDL procedure for passing the TOKen signal around the reservation ring works in a
similar way to above. As mentioned earlier, the TOKen passing scheme was implemented in
SDL using the token bus protocol. This works by broadcasting the TOKen signals to all the
RING_CTLR processes within the DRAGONs block set. The TOKen conveys the PId of the next
RING_CTLR process which is designated the TOKen. After consuming the TOKen signal, each
of the RING_CTLR processes checks whether this PId matches its own PId value. If a match occurs
then the TOKen is accepted, otherwise the TOKen is rejected. As with the RESVQ_CTLR process,
the Plds of the RING_CTLR processes must also be known by the Broadcast process, and likewise
they are extracted after consuming the signal 1d2. The RING_CTLR process Pls are stored in array
IdArray2.

The DRAGON block type contains the main components of the SMDS user-to-network interface.
These consists of the reservation queue (RESVQ) and the cell transmitter/receiver (TX_RCV) blocks.
SMDS cells enter the TX_RCV block in sequential order over the SMDSinp channel. Received
cells which are destined for the node are accepted and sent via SMDSout channel for reassembly.
Although the DRAGON has been modeled for the SMDS protocol, it can be adapted for other
protocols also such as ATM, X.25 and frame relay. This merely involves respecifying the TX_RCV
block for the desired transmission protocol. The RESVQ block remains unchanged.

The RESVQ block is shown in Fig. (a). It contains three basic elements: an up/down counter
named tail counter (TAIL_.CTR), a down counter named head counter (HEAD_CTR) and a FIFO
named reservation FIFO (RESV_FIFO). When a new message arrives at the Transmitter, a SLOTreq
signal is generated to request the reservation of a slot in RESVQ for the message. This operation is
controlled by two finite state machines named the reservation queue controller (RESVQ_CTLR) and
the reservation ring controller (RING_CTLR).

A part of the slot reservation is the TOKen access control and this is performed by the
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RING_CTLR process. After the RING_.CTLR process receives the TOKen, it checks if the Pld
it conveys is equal to the processes own PId. If it is, it implies that the node is the next one to
access the TOKen and so the TOKen is accepted, otherwise the TOKen is rejected. After ac-
cepting the TOKen, if the process has a SLOTreq signal pending, the SLOTgnt signal is issued
to the RESVQ_CTLR process. The NxtTokRnd (Next Token Round) signal is then sent to the
Broadcast process so that it can start the next token bus operation.

The RESVQ_CTLR process controls the operations of the HEAD_CTR and the TAIL_CTR. After
it receives a SLOTgnt signal from the RING_.CTLR, the RESV signal is broadcast to all the nodes.
This is done by the Broadcast process as described earlier. After consuming the RESV signal, the
nodes increment their TAIL_CTRs. In addition to this, the node that had issued the SLOT signal
also pushes the contents of its TAIL_.CTR into the RESV_FIFO. The TAIL_.CTR is then cleared.

After the transmission of a message cell sequence is completed, the Fiber-Optic Transmitter
Interface (FIOT) sends the signal STX to all the RESVQ_CTLR processes. Following this, the
HEAD_CTRs are decremented if its value is greater than zero, otherwise the TAIL_.CTR is decre-
mented if its value is greater than zero. If at this stage, the HEAD_CTR counts down from “1” to
“0” the signal NTX is sent to the Transmitter process, informing it to begin transmission.

The transmission and reception of cells to and from the SONET channels is performed by the
FIOT and FIOR processes respectively. Both these processes reside within the SSI block. We first
consider the actions of the FIOT processes. This process starts off by recording the PId values of all
the RESVQ_CTLR processes in array IdArrayl. As before, the Plds are extracted after consuming
the Id1 signals. After this, the process enters the Xmitcell state. Then, one of two events may
occur. Firstly, the timeout signal may be received from theTimer process. This will occur if the
timer expires due to inactivity in the SMDSxmt channel over a time duration D. This results in a
transition whereby the STX signal is broadcast to all the RESVQ_CTLR processes. Subsequently,
the reservation queue is updated and the next message (if any) is scheduled for transmission. The
other possible event is that a cell may be received via the SMDSxmt channel. This cell is consumed
and retransmitted over the SONETxmt channel: the SONET transmit channel. The timer is then
“freezed” until the final cell of the message has been transmitted, after which it is again restarted.
Finally, the Scheduler broadcasts STX to all the nodes to schedule the next transmission.

The FIOR process starts off by storing the Plds of the Receiver process in array IdArray3. It then
goes to the RevCell state and waits for cells to arrive via the SONET receive channel SONETrev.
After receiving each cell, it is broadcast to all the Receiver processes within the DRAGONSs block
set. To determine if a particular Receiver process is the destination of the cell, each one of them is
assigned an identification number called Myld. The assignment is done by the remote procedure
named Server which returns a distinct integer value to each calling process. The integers are distinct
because the calls to the remote procedure are serialized in SDL, and thus it is implied that each
calling process will returned a different integer. The MID field extracted from each incoming cell
and checked whether it matches the node’s Myld value. If it does, the cell is accepted and sent
out via the SMDSout channel for reassembly. In case of a mismatch, the cell is rejected.
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syntype TwoBits ~ =Natural constants 0:3 endsyntype TwoBits;
syntype FourBits ~ =Natural constants 0:15 endsyntype FourBits;
syntype SixBits =Natural constants 0:63 endsyntype SixBits;
syntype EightBits =Natural constants 0:255  endsyntype EightBits;
syntype TenBits =Natural constants 0:1023 endsyntype TenBits;

synonym PayloadSize Natural=44;
syntype idx=Natural constants 0:PayloadSize  endsyntype idx;
newtype PayloadType array(idx,EightBits) endnewtype PayloadType;

synonym COM
synonym EOM
synonym BOM
synonym SSM

CRC
endnewtype Celltype;

TwoBIts=0; /*Continuation of Message*/
TwoBits=1; /*End of Message*/
TwoBits=2; /*Beginning of Message*/
TwoBits=3; /*Single Segment Message*/

newtype Celltype /*SMDS cell definition*/
ST

struct TwoBIts; [*segment type*/
SN FourBits; *sequence number*/
MID TenBits; [*multiplexing identifier*/
PAYLOAD PayloadType; /*SAR-PDU payload*/
LI SixBits; [*length indicator*/
TenBits; *cyclic redundancy checksum®*/

(c) Cluster system

System CLUSTER

NodeldServer

DRAGON

12)

/*System CLUSTER consists of “NooNodes" node elements, each with its own B
DRAGON interface block connected to a SONET network via the
SMDS/SONET Interface (SSI).*/

[*slot reservation signals*/

! [*schedule transmission*/
1d1,1d2,Id3, [*PId notification signals*/
NxtTokRnd, *next token passing round*/
TOKen(PId), [*token signal*/
SONETxmt(Celltype), SONETrcv(Celltype), /*SONET transmit & receive*/
SMDSxmt(Celltype), SMDSrcv(Celltype),  /*SMDS transmit & receive*/
SMDSinp(Celltype), SMDSout(Celltype);  /*SMDS input & output*/

signal  SLOT,RESV,
STX

remote procedure Server; returns Natural; /*remote procedure definition*/

synonym NoOfNodes Natural=10; /*Total node elements*/

synonym D Duration=6; /*Timer cycle duration*/

[%LlOT'] [RESV]

[SONETme] s11

SSI

[SONETrcv] s10

6 Ei]s'f [isks ISMDsm]sg

prm—

SMDSrcv]

DRAGO?\IS [swosim] 55

Broadcast

s2 [TO‘Ken]

sl (NoOfNodes):

DRAGON [SMDSOUI] s4

1d2

[NxtTokRnd]

i STX]

(b) Cluster system

1) ]
h

[SMD xmt] [SMDSrcv]
gf

sl [SLOT,Idl]

SLoTon
[ ] N [RESV]

Block Type DRAGON

[#] [swosin]

514 3s9|[swosi]

[sm]

[NTX]
12

[SMDSin] SHDSin
57 e |

TX ROV sl

s13 ]
[SLOTreq] [SMDSoutr [SMDSol)JiI

[RESV
B
a
TOKen
b
[y

[NxtTokRnd‘\dZ]

3 [NxtTokRnd‘IdZ] RESVQ

st [TOKen]

signal SLOTreq, /*slot request/
NTX;  Next-To-Transmitt/

(d) DRAGON block

Figure 11: SDL specification diagrams
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Block RESVQ 1(1)

sl4 9 s8

11

sl

s2

| BOkTXROV [ oy [stosrev] $8 1(1)
R N 59 [SMDSxmt
1 (Y
(Action) 1 1 N
[101] [ s12 | s13 : : NTX
[storreq) b | ST) s12
Receiver Transmitter [SLOTreq
NxtTokRnd, s13
Id2 s13
RING_CTLR —s3 s3 _
9 S7
o [SMDSout] [SMDSmp]
s6
signal - FIFOin(Natural),FIFOout(Natural), /*FIFO input & output*/
inc,dec,incout, TAIL_CTR control*/ s4 Sb S
read, *FIFO read*/
SLOTgnt; [rreservation queue slot grant*/
remote DCNTR Integer; *exported HEAD_CTR value*/
signallist Action=inc,dec,incout; [*HEAD & TAIL counter control signals*/
(a) Reservation queue block (b) Transmitter/Receiver block
Process HEAD_CTR 1(1)
fommmmmmeem N Process TAIL_CTR 11
1 [ -
S
| N i
b ! 7~When HEAD_CTR s zero, the RESV_FIFO 1S pop- E -E‘_\ *TAIL_CTR is an up/down counter. B
ped and the Value is loaded into HEAD_CTR. i 1 It performs selected counting
R e TS a nGieatng the hbde 18 next T rahsmit./ Lo J ?hpeefs?“r?glﬁsﬁ%ii‘fig#.‘he value of
dcl CTR Integer:=0; /*counter valuue*/ 9 ’
dcl exported CNTR as DCNTR Integer; inc:  Increment counter.

dec:  Decrement counter.
incout: Increment counter,
push its contents to FIFO,
and clear counter.*/

dcl CNT Integer:=0; /*counter value*/ “

@

| prrr— / . / CNT:=CNT+1] CNT:=CNT+1]

(CTR)

inc incout dec

Q
]
0

/ FIFOout / |

else
,
(CNTR) FlFO.'n(CN CNT:=CNT-1

via s6

D
CNT:=0
(reewy ) [ AEGL “

read
via s9

export
(CNTR)

(c) Head counter (d) Tail counter

Figure 12: SDL specification diagrams (cont.’d)
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Process RESV_FIFO 1(1)
Process RESVQ_CTLR 1(1)

| N /*The FIFO queue is implemented as an array, indexed by HEAD
! 3 and TAIL ﬁninters. HEAD points to the front of the queue, TAIL - N
S ) DOIarS Are oo MAK. whro VA & ha i Size B [*Finite state machine to control the HEAD_CTR
the queue. SIZE is the current queue size*/ H and TAIL_CTR operations.*/
i |
Symcygfs'tdaﬁé"é:eflgéo """"" ! dcl MyRESV Boolean:=false; /*setto 1 after process
endsyntype idx; outputs RESV signal*/
e ntegen) O memer e/ d1 via s2 imported DCNTR Integer;
endnewtype FIFOMEM;
dcl FIFO FIFOMEM, /*reservation FIFO*/
Sikbpour e LRSS SRt ; :
PEADTAIL 120, Treloment head & il pointers*/ S_gg?lnﬁisneBsrgﬁgg??)trogelgng}% by - 1d1vias3
consuming Id1 and then access-
ing "sender" Pld-expression.
WaitEvent
[ 1 o 1 g
Sent by the TX_RCV sends sig-
SLOTgnte -—--‘ng;‘g‘t‘gg queue RESV  {-—--"Broadcast" STX ¢-—-4nal STX to schedule
) block. next transmission.
FIFOin
|
Send RESV to "Broad- true (IFHEAD_CTR>0,
SIZE SLoT -cast" block which broad- decrement HEAD-
< <1000 casts it to all the nodes. _CTR, else decre-
| false ment TAIL_CTR.
FIFO(TAIL) RESVQ counters -
incout Malready updated. - MyfRaiSeV" inc dec via s7 dec via s5
Thus, no action.
| g i ni—
. Myﬁgv; WaitEvent WaitEvent WaitEvent WaitEvent
mod 1000
WaitEvent
(a) Reservation FIFO (b) Reservation queue controller
Process Receiver 1(1
Process RING_CTLR ___ 1) @
- *Implementation is similar to the IEEE 802.4 Fo---m--- N
Token Bus Access protocol.*/ i -3
1 I dcl cell Celltype, /*SMDS cell*/
R J Myld Natural; /*Pld of this process*/

dcl  count Integer:=0;
dcl 1D PId; /*TOKen PId value*/ imported procedure Server; /*Nodeld Server*/
returns Natural;

AcceptTOK

Enables "theSSI block to determine |

sender process Pld by consuming +

< 1d3 and then acessing "sender"
true >

Enables "Broadcast' blockto 1
determine sender process Pld by -
consuming 1d2 and then access- |
ing "sender" PId-expression. _E

Pld-Expression.

ld2vias3 ~ |SLOTreq( ¢ tue » [ |  _PldExpression.

fmmmmmmmmmmmmme o
IAssign an unique
11D to the node
L

WaitTOK

Tokenteevedwint o 7 7 oo N | e SuS e

PId of next node to -
access the TOKen. _E

NxtTokRnd
via s13

TOKen

SLOTreq

WaitTOK

f ceil MiD value matches the’
node’s ID, then cell is accept-}--- Sl\(/(l:lgﬁ)out
---------------- ed. Otherwise cell is rejected.:

‘TOKenPlddoesnot | S ISnURS TEIISIAISTEC
>

-~ match node's Pld. Thus,

_____________ 1

TOKen Pld matches:
node’s Pld. Thus,
TOKen is accepted.

AcceptTOK WaitTOK

i_TOKen is rejected.

i
J

(c) Reservation ring controller (d) Receiver process

Figure 13: SDL specification diagrams (cont.’d)
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Process Transmitter 1(1)

A Y P—— Block Broadcast 1(1)

A N [Receives RESV and TOKen signals
Y e
i from a specific node and broadcasts
J

it to every node in the cluster.*/

sese [ e/
/ N0 e

(BOM,SSM)

SLOTreq
via s13

NTX < /SMDSinp/

Broadcast [SLOT'Idl]

[2 [TOKen]

\ Y [NxtTokRnd,IdZ]

WaitForCell

(a) Transmitter process (b) Broadcast block
Process Broadcast 1(2) Process Broadcast 2(2)
fmmmmmmmm - Voo ™ dcl K.L Natural:)=1, /*PId array index of the next
Y syntype Index=Natural node designated the TOKen*/
H constants 1:NoOfNodes ID PId; /*PId of the next node desig-
LI J endsyntype Index; | | 7T nated the TOKen*/

newtype IdArrayType [*process Pld array*/
Array(Index,PId)
IdArrayType;

dcl IdArrayl IdArrayType, *RESVQ_CTLR process Plds*/
IdArray2 IdArrayType, *RING_CTLR process Plds*/
idx Natural:=1; /*Pld array index*/

I
SLOT

L -
I

1
TOKen signal received
NxtTokRn& - - --<4from the “Broadcast"

\process.
SndTOKen

RESV signal received |
from the “Broadcast” --

process !

Revld2s

RESV is sent to the RESVQ- |
142 _CTLR processes within every-=-
i

RESV to
IdArray1(K;
fiode using the Pid values 1<)

Id of each RING_CTLR} i
process is extracted and:Lf ‘“ﬁ’g’;ﬁgﬂx)
stored in array IdArray2.1 i

process is extracted and  --4 .
stored in array IdArrayl. i sender

Pid of each RESVQ_CTLR! +|dArray1(|dx)

idx:=idx+1

idx:=idx+1

=(NoOfNodes+1)
=(NoOfNodes+1)

(NoOfNodes+1)

Revldls

Revld2s

Revid2s

(c) Broadcast process (1) (d) Broadcast process (2)

Figure 14: SDL specification diagrams (cont.’d)
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Process NodeldServer 1(1)
Block NodeldServer 1(1)
signal dummy;
fm—————— _:\\ e _t‘_\ I*never used*/
: Ly i ;signalset  dummy; ! dcl ID Natural:=0;
1 - 4
| |
L J
Exported
Server
NodeldServer
(a) Node ID server block (b) Node ID server process
. Block SSI 1(1
Exported Procedure Server; 1(1) [ [%%S )
returns Natural | N
[ ™ FThe SMDSISONET Inferface accepts SMDS
I LA cells sent by a cluster node and transmits them
1 1 over the SONET network. It also receives cells
] 1 sent over the SONET network and broadcasts
1 ] them to all the nodes. The SSI also monitors the
-------- Timer and whenever it expires, broadcasts STX
to the nodes to update the reservation queue and
determine the next node for transmission.*/
signal hold,  /*Timer is frozen and held*/
restart, /*Timer is restarted*/
timeout; /*Timeout after Timer expires*/
[1a1] [s7]
ID:=ID+1 [ouesm] | g
S
FloT [soNETxm] 1
siz|
theTimer
ID [smpsrc] I
s9
FIOR SONETIeY] 10
SN
id3
[] s7
S
(c¢) Node ID server procedure (d) SMDS/SONET Interface (SSI) block

Figure 15: SDL specification diagrams (cont.‘d)
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Process FIOT 1(1) Process FIOR 1(1)

| Y " 70; Syntype Indelx’:\‘N%t;J’\r‘ald
i 1 ! constants  1:NoOfNodes
P | [syntype ~ Index=Natural ! i .
D 3 constants  1:NoOfNodes | : endsyntype Index;
fendsyntype - Index; newtype IdArrayType /*process PId array*/
newtype IdArmayType Fprocess PId array*/ :ﬂﬁage%%ﬁé%rawype'
Pid); ;
Scheduler endnewtype IdAmayType; dcl IdArray3 IdArrayType, /*TX_RCV process PIDs*/
cell Cellty I*received cell*/
idcl 1dArrayl IdArrayType, *RESVQ_CTLR process PIDs*/| -lq- » *)
cell Celltype,  /transmitted cell¥/ ldx Natiral:=1; /*Pld array index*/
id¢  Nawrah=1; /*Pidarray index*/

RcvCell
SONETrcy,
(cell)

Rev_ld3s

Scheduler

Pid of each RESVQ_CTLR!
ety L,{dﬁggﬁgex)

{Cell s transmitied over the
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(BOM,COM) 'di';?ﬂl_?‘) ff%process is extracted and Sndcell
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ito every node.

HoldTimer
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Come S Cme
restart
via s2

Scheduler

- S
{End of message trans-
~Imission. Restart the Timer.

Freeze the timer until |
XmitCell the complete messaget--

cells are sent.

XmitCell

SndCell RevCell

XmitCell

(a) Fiber-Optic Transmitter (FIOT) process (b) Fiber-Optic Receiver (FIOR) process

Procedure Scheduler 1(2) Process theTimer 1(2)

Broadcasts STX to all
the cluster node

u

r
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L
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[
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- TimerOn
(c) Reservation queue scheduler (d) Timer process

Figure 16: SDL specification diagrams (cont.‘d)
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4 SDL Validation Methods

In this section we shall describe two algorithms that are most commonly used for validations.
Both of them has been implemented in the SDT validator. Before proceeding we shall define some
terminology. The state space of a system is the composite of all finite state machine states, variables
and queue states together with all the combinations of local state transitions. The state space is
divided into two disjoint classes: reachable states and unreachable states, Unreachable states are
unexecutable states, and all errors should be limited to within these states. Reachable states are the
executable states. All these states must meet a verification criteria consisting of a conformance test
and validation criteria. Validation criteria consists of checking the states against a set of correctness
rules: no deadlocks, no looping, no range and array index errors, no implicit signal consumption
and so on.

4.1 Bit-State

Bit-state is a useful technique for validating large systems of up to 10% states. The algorithm uses
a storage technique called hashing. Initially, all the bits in the hash table are set to ‘0’. Next, using
a depth-first procedure, the state space of the system is generated. For each state, a hash value
is computed. if the hash value position in the table is ‘0’, the algorithm changes it to a ‘1’ and
continues by investigating the successors of the new state. If the value is already a ‘1°, then it is
assumed that the state has already been searched and thus the subtree eminating from that state
is pruned. The algorithm backs up one state and continues with the search.

4.2 Random-Walk

The random-walk is used for validating very large systems. It performs the search of the state space
by randomly selecting a node from the current level of the subtree and then performing validation
up to a given maximum depth. The procedure is repeated at the next level subtree, and so on, up
to a specified maximum number of repetitions. The algorithm then backs up to the top of the tree
and starts all over again. The advantage of this technique is that is doesn’t need to store the state
space at all, and consequently leads to a considerable savings in memory.

5 SDL Validation Results

5.1 Conformance Test

This section discusses the conformance test results obtained from simulations of the DRAGON
cluster using the SDT. The input and output signals to the system is shown in Fig. 3 (b). There are
two input signals named SMDSinp and SONETrcv, and two output signals named SMDSout
and SONETxmt. All of these signals take a parameter of the type CELLTYPE, i.e. an SMDS
cell. The number of DRAGON block instances were limited to 5 in order to be consistent with
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the number used in the validations. The test values for the inputs were split into two classes:
single cell messages (SSM) and multiple cell messages (BOM,: - -COM. - . EOM). Both of the system
inputs were provided with at least one message from each class. To verify that the cells were
received correctly at the outputs and in the proper order, we monitored the outputs SMDSout
and SONETxmt.

The simulator also provided results of transition coverage and symbol coverage. Transition and
symbol coverages denotes the proportion of the transitions and symbols that have been executed so
far. Each transition in the transition coverage tree (Fig. 17) has a number allocated to it to indicate
the number of times the transition had been executed. Also indicated in parenthesis beside the
state symbols are the maximum and minimum transition frequencies in the subtree. The coverage
trees show that all the transitions and symbols have been executed at least once, except for those
in process NodeldServer. This is expected because the dummy signal is never used by this process.

5.2 Validation

In this section, we shall discuss the results of our validation experiments. We performed two
independent validations on a cluster of 5 nodes using the bit-state and random-walk methods.
Each validation was executed for a CPU time of 24 hours. The results obtained were compared
against the total number of states generated, the size of memory utilized by each algorithm, the

average rates at which the states were analyzed and the coverage. Our results are summerized in
Table 1.

The random-walk generated more than twice the number of states of the bit-state method.
However, not all the states in the random-walk are unique. The bit-state algorithm saves the state
space in a hash table, so that if a state had been visited once before, the subtree eminating from
that state is not explored again. This saves search time, and guarantees that every bit that is set
within the hash table corresponds to a unique state. However, the random-walk does not save the
state space. It randomly traverses a specific number of times through the state space, disregarding
if the same (unique) state is visited more than once. Hence, the random-walk is likely to traverse
through far more “duplicated” states than the bit-state method over the same period of time.

The random-walk method was also twice as fast as the bit-state method as indicated by the
efficiency values. The coverage value indicates the percentage of the total symbols executed by
each algorithm. They are approximately equal at 96.67 and 97 percent respectively for the bit-
state and random-walk. Most of the remaining 3 percent coverage is due to the fact that the
dummy signal in Fig. (b) is never used, so the transition is never executed. So 3 symbols in
each of the 10 instances of DRAGON are not executed at all, thus totaling 30 symbols. If these
unexecutable symbols are ignored, the coverage should be closer to 100 percent. Also, the memory
size used up by the processes of each algorithm were was larger for the bit-state. This is because the
random-walk does not use storage for the state space, and thus utilized considerably less memory.
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ALGORITHM UNIQUE STATES | MEMORY SIZE | RUN TIME | EFFICIENCY | COVERAGE
NAME (x10) (megabytes) (x10%secs.) | (states/sec.) (percent)
BIT-STATE 6.93 99.46 86.44 80.17 96.67
RANDOM-WALK | 14.50 38.44 86.41 167.61 97.0

Table 1: Validation results for a 5 node cluster

6 Conclusion

In this paper, we developed a novel user-to-network interface for BISDN networks. The interface
uses an improved form of distributed queue to schedule messages from transmissions. Access to the
network by the cluster nodes are completely fair and is independent of the position of the node in
the cluster. Also, unlike DQDB and other similar protocols, the DRAGON is equally suitable for
fixed-sized cell transmission (SMDS) as well as variable length packet transmission (frame relay).

We presented a complete set of SDL specifications for a cluster of DRAGON interfaces connected
to a broadband network. We focused primarily on the interface segment. The design was extensively
simulated using the SDT simulator and the results showed that the system was functionally correct.
That is to say, the system generated the correct outputs for numerous combination of test inputs.
The transition and symbol coverage showed that virtually every transition and symbol. element
within the system had been executed at least once, thus further augmenting the fact that all parts
of the system had functioned correctly.

The system was then independently validated using 2 different algorithms. Both methods pro-
duced a high coverage, meaning that the system was verifyable to a high degree of probability. In
a separate publication [8], we presented an implementation model of the DRAGON cluster using
VHDL. Performance studies were done using an integrated mixture of video and data traffic. Fi-
nally, it should be noted that creating a complete and correct SDL specification is a ardious task
and several incorrect versions had to be modified, but the language and tool proved a very effective
way to produce a formal and understandable specification in which we have a high confidence.

7 Acknowledgements

We would like to thank Rick Reed, TSE Ltd., Lutterworth, U.K. for his help, constructive sugges-
tions and feedback on the SDL modeling part of this manuscript. We also thank Gerard Holzmann,
Bell-Laborotories, Princeton, New Jersey, U.S.A. for his comments on the validation section of this

paper.
References

[1] M. dePrycker, Asynchronous Transfer Mode: Solution for Broadband ISDN, 2nd. ed. Ellis
Horwood, 1993.

24



[2] R. Ballat and Y. Ching, “SONET: Now it’s the Standard Optical Network,” IEEE Commu-
nications Magazine, pp. 8-15, March 1989.

[3] R. Klessig, SMDS: Wide-Area Data Networking with Switched Multi-Megabit Data Service.
Prentice Hall, 1995.

[4] U. Black, Frame Relay Networks: Specifications and Implementations. McGraw-Hill, 1994.
[5] R. Deasington, X.25 Fxplained: Protocols for Packet Switching Networks. Ellis Horwood, 1986.
[6] ITU-T Recommendation 1.413, BISDN User-Network Interface. March 1993.

[7]

7] D. K. Sharma and S. R. Ahuja, “A First-Come-First-Serve Bus Allocation Scheme Using Ticket
Assignments,” The Bell System Technical Journal, pp. 1257-1269, September 1981.

[8] S. M. Shahrier and R. M. Jenevein, “A Distributed Access Generic Optical Network Interface
for Cell-Relay Networks,” accepted IFEE International Performance, Computing and Commu-
nications Conference, February 1997.

[9] IEEE Standard Distributed Queue Dual Bus (DQDB) Metropolitan Area Network (MAN),
P802.6. 1988.

[10] G. Watson and S. Ooi, “What Should a Gbit/s Network Interface Look Like,” Protocols for
High-Speed Networks, pp. 237-250, November 1990.

[11] G. C. Watson and S. Tohme, “S4++ — a new mac protocol for gh/s local area networks,” IEEE
Journal on Selected Areas in Communications, pp. 531-539, May 1993.

[12] S. M. Shahrier and R. M. Jenevein, “A Performance Comparision of SMDS and Frame Relay
Protocols at the DRAGON User-to-Network Interface,” submitted SUPERCOMM, June 1997.

[13] ITU-T Recommendation Z.100, CCITT Specification and Description Language. March 1993.

[14] B. Sarikaya, Principles of Protocol Engineering and Conformance Testing. Ellis Horwood
Limited, 1993.

[15] K. J. Turner, Using Formal Description Techniques: An Introduction to Estelle, LOTOS and
SDL. Wiley, 1993.

[16] A. Olsen et. al., Systems Engineering Using SDL-92. North Holland, 1994.
[17] G. Holzmann, Design and Validation of Computer Protocols. Prentice Hall, 1991.

[18] G.J. Holzmann, “Algorithms for Automated Protocol Verification,” ATET Technical Journal,
pp- 32-44, January 1990.

[19] S. M. Shahrier and R. M. Jenevein, “A Distributed Access Generic Optical Network Interface
for SMDS Networks,” submitted Computer Networks and ISDN Systems, October 1996.

[20] B. Kumar, Broadband Communications: A Professional’s Guide to ATM, Frame Relay, SMDS,
SONET and BISDN. McGraw-Hill, 1995.

[21] IFFEFE Standard 8802-/ Token Bus Access Method and Physical Layer Specifications. 1993.

25



