Paper Id 86

Rule-Based Query Optimization, Revisited"

Lane B. Warshaw Daniel P. Miranker
Department of Computer Sciences and The Applied Research Laboratories
The University of Texas at Austin
Taylor Hall 2.124
Austin, TX 78712-1188
Telephone: 512-835-3840
Fax: 512-835-3100
{warshaw, miranker} @cs.utexas.edu

Abstract

We present an overview and initial performance sswent of a rule-based query optimizer written en¥sDB.
VenusDB is an active-database rule language emdetideC++. Following the developments in extensible
database query optimizers, first in rule-based ftmthowed by optimizers written as object-orientgegrams, the
VenusDB optimizer avails the advantages of both.date, development of rule-based query optimizergeh
included the definition and implementation of custoule languages. Thus, extensibility requiredaiied
understanding and often further development of uhderlying search mechanism of the rule system.jecdb
oriented query optimizers appear to have achielveid goals with respect to a clear organization emchpsulation
of an optimizer's elements. They do not, howeyenvide for the concise, declarative expressiordamain
specific heuristics.

Our experience demonstrates that a rule-based qmimyizer developed in VenusDB can be well strrexdy
flexible, and demonstrate good performance. Wepaoma relational optimizer developed with Volcama a
functionally identical optimizer developed with esDB. The results demonstrate comparable perfaenan
small queries with few joins, while the VenusDB iopter scales better and outperforms Volcano ogelajoin-
arity queries. Since we did not have to developpecilized rule language or consider applicatioacsj
programming constructs, the source code for thamiger is small and straightforward, about onedHine size.
Similar code comparisons with an object-based apiimthe VenusDB optimizer reveals similar benefit

" This research is partially funded by DARPA, coatraumber: F30602-96-2-0226 and the Applied Re$earc
Laboratories, University of Texas, Internal Reshamed Development Program

1.0INTRODUCTION

The ability to express a query optimizer concisely and extensiblpéas an ongoing goal of experimental
database research. The first generation of this research sethgrinumber of rule-based query optimizers
[GRD87, GRM93, DID95, PHH92]. Rule-based representation is atteasiince it closes the semantic gap
between the specification of an optimizer and its implementatynvirtue of a declarative specification, it
follows that rule-based optimizers are much easier to extendhbeirpredecessors. However, each of these
first generation optimizers considered using the general-purpose rek-Jaaguages that were available at
the time and determined that they were unsuitable as the basis of a gireizedpt These languages suffered
from a lack of embeddability, execution speed and/or a lack of control over avpdmeid to tightly regulate
general-purpose search mechanisms for rule evaluation. Thus, eadt gesjeloped a rule language and
execution environment for the single purpose of developing their optimiZEnese specialized rule
environments contain features that go beyond the use found in general purpose ralgegbgtincluding ad-
hoc elements for controlling search and limiting the scope and dgfiticaf rules, all in an effort to increase
speed. Development of query optimizers in these systems often madhmorate knowledge of both the rule
language and its underlying execution engine comprising engineering at both @eetequently, rule-based
optimizers have been successful in providing environments friendly todéxtethe search space by easily
adding new transformation rules, but “they do not allow for extensibilityhiaratimensions,” often fixing the
search strategies [OZM96].

Subsequent developers have moved to object oriented technologies [KABE96D These systems boast a
well-encapsulated and structured environment by defining the query reptiegerind cost model as first

class objects and procedures respectively. Hence, defining new statberators often only involves

deriving a class from the designated super-class and speciatingthods. Though it may be true that
interchanging searches and transformations are easy in thesmssyttese features are not declaratively
expressed. Therefore, defining new searches or refining existinthesawrith additional heuristics is not

nearly as straightforward as in the rule domain. We develop quastisdftware metrics that supports this
claim.

The need for extensibility and modification of search strategiesobas magnified by the extension of
relational database management systems into arbitrary dataf8p®87]. Given this renewed need and a

number of developments in rule-based execution, we have developed the hypbtitesifective query

! We agree with those findings.

.2 12/03/97

optimizers may be built using a general-purpose rule language, VenugPusDB is an active database
extension of Venus. Unique features of VenusDB that suggested ngyvigig issue of rule-based query

optimizers include,

* Embeddability in C++ and thus embeddability in database systenmisWB’ data definition language is
precisely C++. Thus, OO benefits seen in the optimizers developg€Zo6, KAB94] with respect to

the representation of operator trees can be exploited identically.

* A well-structured (modular) rule environment that allows a usesisgert some procedurally inspired

control over the execution while maintaining fixed-point semantics [BRG94].

» The addition of theventqualification in the condition-action rules which enables further structuring of the

search, but not as an ad-hoc mechanism.

» Improvements in the implementation techniques of general-purpose rufglemsnthat commonly yield
better than 100 times faster execution speeds over the general-peopuskers available at the time of
the earlier work (on identical hardware). An irony is that moicthis performance gain is precisely due
to the introduction of relational query optimization techniques in ruleugirecengines [OBE95, MIR90,
WAN92].

At this juncture we have written a number of query optimizers ugamusDB. A general organization is
emerging as well as substantially overlapping code segments frorh whiexpect to define a library of
design patterns from which an extensible set of search strategiebe refined [GAM95]. In this paper we
describe the core organizational elements and report in detail ooptanizer we developed that is
operationally equivalent to the sample relational optimizer provided thi¢ Volcano distribution. The
evaluation of optimization times and plans returned by the VenusDBipgticompares quite favorably to its
Volcano counterpart. In fact, while returning similar plans, the VeBugiimizer actually executes faster on
large queries. Given the success of OO optimizers, we also mhop@pt++ [KAB94]. Since that system
itself has been shown to perform comparably to Volcano, our compaisenkimited to organizational
aspects. Though it is difficult to compare systems writtenffardint programming language methodologies,
we have quantitative results and can speak to the ease of ekitgnsilthh respect to the introduction of

additional search heuristics.

23 12/03/97

module Optimize(TREE_NODE OptTable[], TREE_NODE Tr ansformsCont([])
{
rule join_logical_transformations priority 10;
from OptTable[?] node;
event modify node;
none OptTable;
if(node.nodeOp() == JOIN)

/I call join_T_rules module
join_T_rules(node, OptTable, TransformsCont);

rule join_physical_transformations priority 9;
from OptTable[?] node;

OptTable[*] all_nodes;
if(node.promise() >= all_nodes.promise())

/I call join_1_rules module
join_I_rules(node, OptTable, TransformsCont);

Figurel. Sample VenusDB Modulewith M odule Calls

3.0 The VenusDB Rule Language

Many of the aforementioned deficiencies of early general-purposdanggiages are not unique to their
application to query engines. Besides slower implementation technifjass systems used LISP and LISP-
like data structures which make it difficult to embed them igdasystems. Venus is just one of a number of

object-embedded rule languages that have been developed to address these is95gs [PAC

3.1 Venus and VenusDB Syntax

Venus rules are organized into parameterized groups called modules. Sed Fupdeles are designated by
the key wordmodule followed by a list of formal parameters and a list of locaiades. The formal
parameters and the local variable list are made up of contandrprimitive variables. A container is
Venus’s set data type used for inferencing. Containers are distieguby the use of square brackets "[]",
and their elements are defined as C++ class instancesitirivariables are inferable object instances that

are semantically treated as a container of size one.

A Venus rule is made up of three partieader acondition and amaction The header contains the keyword
rule followed by a rule name, an optional priority and a declaratiotioeed he declaration section begins
with the keywordrom , followed by a list of container names and quantified cursor déolasaCursors can

be quantified both existentially and universally. An existentially quadtifiersor is represented by a "?"

4. 12/03/97

within the square brackets. A universally quantified cursor is represented bwighih the square brackets.

VenusDB is an extension of Venus such thakaentclausehas been added to the declaration section. In
effect, this introduces refinements concerning the more focussed iereoehavior of active-database ECA
(event, condition, action) rules [OBE96]. The event clause is usdefitte precisely which events trigger a
reevaluation of the rule, and is typical of other active-databaséangaages. If an event is not specified, the
specification defaults to all events and results in behavior egoitv@lé/enus. The other difference between
Venus and VenusDB is an API facility for mapping Venus’s main-mgroontainers to tables or extents in
databases. We have previously reported on an application developed by exploitinggehetars integration

of VenusDB with multiple databases [OBE96].

A rule condition is a C++ boolean expression. C++ functions and me#iisdcan be executed from within
the rule condition provided they return a boolean value and executefsictefrefle. A rule's action is a list of
C++ expressions, possibly including the name of a Venus module aauiiitd parameters. C++ statements
and function calls can be made modifying data elements without angierplification to the rule system.
The Venus compiler, either directly or with the help of the tagg¢dbases trigger mechanism, produces an
optimal trigger filter [OBE97].

3.2 Modularity and Semantics

The entire action of a Venus rule is defined to be a single atoamisition in a state-space (a transaction), and
rules fire by a fair non-deterministic policy. Control remainshimita Venus module untfixed pointis
reached [CHM88]. Modules may be listed in the action of a rule ande nested arbitrarily deep. If a rule
fires and its action lists module calls, then the rules withim#dsted modules must achieve fixed point before

the action of the rule commits. Thus, Venus semantics and nested transactiagnarediesely related.

Though incorrect, it is often convenient to think of the condition of athalelists modules as being conjoined
with the conditions of the rules within the nested modules, in effect, factoringcoutraon condition. This is
incorrect because once a single rule fires, all rules in that moolust fire until fixed point is reached, despite
the value of the condition in thealling rule. These definitions yield a lotus of rule execution that quorets

to a depth first traversal of thmodule-call graph Though declaratively defined, the behavior is consistent

with procedural intuition.

5. 12/03/97

3.3 Procedural Control

In some circumstances, a hon-deterministic selection of sedtisfles makes programming difficult. When the
paradigm has been strictly enforced by a rule language, program desebtdfen introduce additional
conditions, coinedecret-messageg) force sequencing. This has been shown to result in poor quality code
[MCD93]. Thus, despite fixed point semantics, Venus includes seveaalycprocedural constructs. Such
constructs are admitted to the language only if there is ardear and an obvious macro-like expansion into

an equivalent, (if not slow and cumbersome), non-deterministic program.

The most critical of these procedural constructs is prioritiBalles with higher priorities will be given
precedence over rules of lower priorities. Satisfied rules with same priority are selected non-
deterministically. Other procedural constructs include a retutanséat which forces a module to fixed point.

The event clause also falls into this category.

3.4 An Example

As an example of how these declarative constructs interact aasidgeconsider the module in Figure 1. The
Optimize module contains two rules, join_logical_transformations and
join_physical_transformations . Thejoin_logical_transformations rule defines an
existential cursor over th@ptTable container calleshode. Thenode cursor explicitly informs VenusDB

to only monitor the modification of the cursor while shutting off monitoringttenOptTable container.
This rule filters for join nodes, and passes cursors to jia_T rules module. The
join_physical_transformations rule defines a universally quantified and an existentially quantified
cursor over th®©ptTable container. The rule finds the most “promising” node in@pETable and passes

it to thejoin_|_rules module.

The behavior of the module proceeds as follows. [fj¢ire logical_transformations rule fires,
control will be passed to thjein_T_rules module until fixed-point is reached. At that juncture, control
returns to thé@ptimize module and thgin_logical_transformations will continue to evaluate
its rule condition. This sequence will continue testing each nodeei@tTable . Consider the instance

when the passed cursor to foin_T_rules module is modified, the modified cursor will re-trigger the

evaluation of theoin_logical_transformations rule on this element. After all possible such
evaluations of the join_logical_transformations rule has been performed, the
join_physical_transformations rule will then evaluate its rule condition. If during the execution of

_6- 12/03/97

thejoin_I_rules module an element is inserted into or deleted fronOtE able , upon fixed point and

control returning to the Optimize module, the rule condition in the
join_logical_transformations rule will not be re-evaluated. This is because events have been
turned off on theOptTable . Had event monitoring not been turned off on tBptTable , the
join_logical_transformations rule would immediately be evaluated based on the modification.

Execution continues in this manner, bouncing back and forth between nestelé el until the state of

fixed point is reached in tH@ptimize module.

4.0 The Query Optimizer

The three basic parts of a query optimizer consists of thencodel, search space, and search strategy
[DID95]. Following efforts in object-oriented query optimizers, the Venus baseg gpgmizer separates and

encapsulates each of these three elements.

4.1 Operator Tree and Cost Model

Due to its connection to C++, the Venus-based optimizgplrator tree(the representation of the query
graph) and its associated cost model are defined in termstefléiss C++ objects. These definitions closely
resemble the object oriented operator tree definitions developeleinesttensible query optimizers [KAB94,

OZM95].

A base class, calleBREE_NODFEcontains the C++

virtual methods and data needed to define

TREE_NODE
node’s descriptor the logical and/or physica

description of the node. Derived algebraic operat

must specialize these method calls in a man

‘ Hash } ‘ Segment}[Index}

Figure2. Sample Operator Tree

relevant to the operator. Beyond this API, t

structure of an operation may take on any shape

form, including the number of operands upon whi ‘ Merge

the operator maps over.

Figure 2 displays the basic structure of a relatio
operator tree defined usingREE_NODE In the

figure, the logical operations of join and file scan are derived F¥REE_NODE The physical implementing

operations of merge join and hash are further derived from the jomtimpe Likewise, segment scan and

.7- 12/03/97

index scan are derived from file scan.

4.2 Organization of the Rule Base and

Search
The structure of the optimizer, bot
conceptually and, nearly, syntactically,

illustrated in Figure 3. The top-level module(
define the search algorithm used to find
optimal plan.

choose a sub-plan(s) to optimize passing it to

These modules heuristicalf-

Search Method

Search for a subquery to be optimized.

Optimize

Iﬂ-'

Heuristic fan-out applying transformations

J L]

Transformation and implementation
modules grouped by algebraic operator.

Post conditions

Figure 3. Rule System Architecture

Ensuring consistency of the optimizer.

optimize modules.

For example, using the

Volcano search, this group of modules will pig
a sub-plan that has not been optimized in
look up table.

The optimize modules then applies differe
transformation and implementation operatio
on this sub-plan by exploiting procedural ai
heuristic elements, constrained by conditioni
on

the algebraic representation. If th

preconditions are satisfied, the sub-plan
passed to the transformation or implementat
modules. The new modified sub-plan is th
passed to the post conditions modules wh
evaluates the sub-plan and updat
appropriately. It is worth noting that due to tk
modular design of the system, heuristics can
added by simply adding a rule, condition,

module at any step.

Another consequence of this modular structy

is that it leads us to believe that th

implementation of new search methods can

well structured in the form of design pattern

/I Entry point module

module TransformativeSearch(// return value
TREE_NODE best_plan,
/I list of subqueries that
/I may need to be optimized
TREE_NODE OptTable[])

int curr_level = 0; // level in the query graph

rule generate priority 10;
from OptTable[?] node;
if(TRUE) {

/I Search for optimizations
Search(OptTable, curr_level);

/I increment level
curr_level++;

}

rule finished priority 0;
if(TRUE) {

/I grab the best plan
GetBestPlan(OptTable, best_plan);
return; // force fixed point
}
}

/I Module to optimizes all nodes at the current lev
module Search(TREE_NODE OptTable[], int curr_le
{

TREE_NODE
container declaration

TransformsCont(]; // local

rule Get_Node_to_Optimize;

from OptTable[?] node;

/l turn events monitoring off on the

/I TransformsCont

event none TransformsCont;

if(// a node at the current level in the tree
/I has not been optimized
node._logical->depth() == curr_level &&
node._optimized == UN_OPTIMIZED) {

/I Link to the most “promising”
/I operands from the level bellow
LinkNode(OptTable, node);

/I call Venus module to try to

/I Optimize the node

Optimize(node, OptTable,
TransformsCont);

Figure4 Transformative Search in Venus

el
vel)

12/03/97

rule associate;

from OptTable[?] child;

if (// child is a Join node
child.NodeOp() == JOIN &&
/I and an operand of the node to optimize
child.isOperand(op_node) &&
/I meets the requirements of associativity
isAssociative(op_node, child)) {

/I Then apply transformation
TREE_NODE optimized_node(Associate
(op_node, child));
/I Call VenusDB module which tests
/I post-condition statements
postConditions(optimized_node,
OptTable);

Figure5. VenusAssociativity Rule

%trans_rule (JOIN ?op_argl ((JOIN ?op_arg2
(?1 ?2)) ?3))
-> (JOIN ?op_arg3 (?1 (JOIN ?op_arg4
(?223))))
%cond_code
{
if (NOT (attr_in_equiv_class ((?op_argl) ->
join_arg.operandl, ?2)))
REJECT ;
B
%appl_code
{
copy_operator_arg (?op_arg3, ?op_arg?2) ;
copy_operator_arg (?op_arg4, ?op_argl) ;

B

Figure 6. Volcano Associativity Rule

Design patterns are similar to that of a super-class repegie® of an object (only in structure because it can
not be operationally, or physically encapsulated as an object to fiwaseaclass) since the pattern can be
specialized for each particular search. There are results in theesghefAl on planning and general purpose
problem solving demonstrating that a small number of rule-based design patterns malydsethisestarting to
point to encode virtually all forms of search [SOL87, LAI87, LAI83,FS]. Our aim is to take this one
more step and develop components enabling a plug and play approach to difarehttechniques. Our
experimental implementations to date encompass top-down depth-first hillndingyistem R style bottom-up
and a hybrid strategy of Volcano, (coined transformative searchiRyI83, KAB94]). We have converged,
so far, to an architecture where algebraic transforms and iraptation assignments are each encapsulated in
rule modules whose definitions are nearly independent of searaggtrathe structure of those patterns as
they materialize in Venus is becoming more obvious. Our primary unkmifrwe will conclude with a

plug-and-play system or be satisfied with design-patterns and a library of fleshexamples.

The code for the transformative search is located in Figure disafwwn in its entirety to demonstrate the
simplicity of experimenting with different search algorithms witklie VenusDB rule environment. The
TransformativeSearch module contains two prioritized rules. The highest priority rulds cie
Search module applying optimizations while traversing the tree bottom up. ¢litient level pointer can be
reset on lower level modules implementing recursive calls witkimigDB.) Thdinished rule, firing only
after all optimizations have been processed, effectively calisodule to pick the best plan from the

OptTable and then forces fixed point.
TheSearch module contains only one rule. TBet Node_to_Optimize rule determines if a node has

not been optimized. If this is the case, the node links with thé ‘masnising” operands in theinkNode

module and is passed through to @@imize module. As a simple example of a domain specific heuristic

9. 12/03/97

that can greatly effect the outcome of the optimized planl.itteNode module can encode knowledge to

select operand links depending on the type of query and its structure.

Once a node is selected, two types of transformations are deratampted, transformation operatofs (

Rules on the logical algebra and implementation operateRuleg on the physical algebra. Figure 5 displays

the T-rule for the association operator written in VenusDB.

Figurgisplays the equivalent operator

expressed in the Volcano rule specification. One of the primarytogigdn the development of the Venus

rule language was to provide for a syntax that is familiar to a breadpe of people. In Figure 6, we see a

direct resemblance of Volcano rules to that of the more c#&ddi8P derived rule systems of OPS or CLIPS.

Since the syntax of most of the rule languages written for quemiapts is similar to that of Volcaspwe

believe that the learning curve to begin building optimizer rules in Ve be significantly smaller than

in earlier efforts.

Time (seconds)

4| |—&—Venus
404 |- - I - -Volcano

Joins
100 Queryis per data point

1E+28
1E+27
1E+26
1E+25
1E+24
1E+23
1E+22
1E+21
1E+20
1E+19
1E+18
1E+17
1E+16
1E+15
1E+14
1E+13
1E+12
1E+11
1E+10
1E+09
1E+08

115386

0
100000
10000
1000
100
10

1

Time (seconds.

M Venus
OVolcano

Joins
100 Queries per data point

Figure7. Optimization Time

5.0 Performance

Figure 8. Estimated Cost of Optimized Plans

We chose the Volcano optimizer generator as our primary basis gfacgon. Besides availability and

reputation, we had in-house expertise due to a development effort layering in a new franR&EF|

Both relational optimizers contain two T-rules, and two I-rules, thadalgebraic operators of scan, sort and

2 We did not similarly execute the performance wsialof an object-oriented optimizer since theysirewn to be

equivalent to Volcano in [KAB94].

.10-

12/03/97

join. We then ran the optimizers on 12 sets of 100 randomly generated queries. Eagetset queries from
one to twelve joins respectively. We tabulated optimizer execltienand estimated plan cost. The random
gueries were generated using the query generator described in [BAY96] forrgergddga sets. The generator
produces both queries and statistics concerning data distributionser R&n purely random query graphs,
the generator is concerned with producing queries consistent withgbesen real applications. We set the
generators parameters, b and p, to 1.5 and 0.1. These values produceedl lnaitaiot loss-less foreign key
like joins and their complement. The experiments were performed an 8I8a 2 containing 2 x 167 MHz

UltraSparc-1 processors with a 0.5 MB cache and 320 MB main memory. We did not aegbaitdllelism.

Figure 7 presents the execution times of the optimizers, and Figueséhts the total estimated cost for the
plans produced. The cost of the plans produced by VenusDB and Volcano are neaclglid€hé surprising
trend is that the VenusDB optimizer scales better than Volc#haespect to join-arity. We believe there are
two reasons for this trend. First, we think that our abstractiovierins allowed us to define a more complete
definition of the equivalence of two sub-plans avoiding the re-computatiora§ sub-plans. Second, the

(query-derived) optimization techniques embedded within Venus excel with lacdpemnprsize [OBM95].

Recall, one question in our hypothesis is whether the execution speed of a generalrplefizsed language
could be comparable to a specialized search engine. By reflectiggtase can the Volcano search strategy,
examining total optimization time suggests we succeeded. A fiaér greasure, such as number of plans
generated and evaluated per second would be more definitive. We sioyly not align the two

implementations close enough to instrument for this result.

6.0 Quantitative Measurements

Quantitative software metrics are an objective measure asathtyze the complexity and life cycle cost of a
system. We quantify three systems, optimizers developed in OpBiecand, and VenusDB respectively
[GRM93, KAB94]. First, we calculated the total lines of code. sThietric gives evidence of a system’s
overall complexity [BAS79]. Next, we computed McCabe’s cyclomaimplexity. Cyclomatic complexity
measures the number of possible paths through a program which is wediziationtrol flow complexity
[MCC76]. As a brief description, the cyclomatic complexity of me sequential procedure with no
branches receives a rating of 1. Code is considered unmanadeialiderated 11 or higher. Cyclomatic
complexity was developed in the context of Fortran and C. In theafasbkject-oriented programming,
excessive use of accessor functions significantly reduces the aeassgeating of a program. For this reason,
we decided only to analyze procedures with a rating greater tharedtiefly factoring out well designed

constructs while focusing on the more complex. Relating cyclomatic egitypto the rule-based paradigm,

-11- 12/03/97

we developed a simple procedural model of rule execution [WAR96].

6.1 Volcano Comparison

The Volcano rule optimizer was implemented using 12,524 lines of coaiclfi 10,238 lines were used to
define the operator tree, the rule search engine component, and thieesmmarch strategy. 2,286 lines are
unique to the individual relational optimizer. The VenusDB query optimizas implemented using 4,222
lines of code of which 1,494 lines were used to define the operatp? {té8 lines are unique to the relational
optimizer. 665 lines of rule code were needed to encode both the stratelyy and transformations rules.

Hence, 1/3 the amount of code is needed for VenusDB than in Volcano.

The average cyclomatic complexity of the Volcano optimizer is 20.e dggregate number may be
decomposed to the search components as a group averaging 18.7. ElemgnitSngptie sample optimizer
rated 24.6. Thus, new Volcano developers deal with programs chaedtbyi the highest of these ratings.
The equivalent optimizer using VenusDB receives an average of 6.1. agdregate number may be
decomposed to the search components as a group averaging 6.2. Eleméhismptise sample optimizer
rated 5.4.

The large differences in the two systems on both measures aie theeOO structure of the operator tree and
the non-specialized, declarative implementation of search withisiehasDB optimizer. The net result is a

system with roughly a 1/3 of the complexity of the Volcano optimizer.

6.2 Opt++ Comparison

Citing the advances in optimizer research, we deemed it necéssarantify the code of a VenusDB system
to an established object-oriented optimizer. Because of its laligilawe chose the Opt++ optimizer
developed for the SHORE project [KAB94]. The example Opt++ distobus modeled for a basic object-
oriented database. For this reason, we implemented an equivalerizeptiithin VenusDB by extending the

optimizer described in the previous sections.

The sample Opt++ optimizer contains 9,007 lines of code, while the Veneglialent contains 5,333 lines,
roughly half. The McCabe measurement yielded an average complexity of 7l foreéhe Opt++ optimizer
and 6.78 for its VenusDB equivalent. The similarity of the measuneim@ot surprising since both systems
attack the implementation of the operator tree, cost model and ajmpliof operators identically. A closer
inspection reveals an average of 5.5 to implement search within VenusDB (ghtly stiore complex than its

corresponding relational optimizer), compared to Opt++’ 6.1, better than a halfrppiovement.

-12- 12/03/97

Although this is not a complete quantitative analysis of the three systemsjeve ltieis to be telling evidence

of the extensibility of the VenusDB query optimizer.

7.0 Conclusions

The development of extensible query optimizers has been an ongoing expéritnate-offs. Systems have
necessarily given up one or more dimensions of flexibility with the eafec that the net value will be
higher. To summarize, rule-based query optimizers have given up flgxiiilisearch by developing
specialized rule engines. In the case of Volcano, one single tigtdlyrated search strategy was embraced.
This system did remain extensible with respect to new operalttaiever, on going maintenance and new
optimizer development is encumbered with the details of a sgedatule engine. Quantitative software
metrics confirm the challenging life-cycle costs of using Volcanobje€@-based query optimizers have
succeeded in developing a transparent organization. Yet, they do gilgt amit to experimentation
concerning heuristic improvements. Changes in search strategy,wadllilencapsulated, may involve

rewriting large parts of the system.

Our results to date confirm a hypothesis that language definition gienientation techniques for general-
purpose rule languages have improved to a point where they may be usdd &ffbctive query optimizers.
As a consequence, a large portion of the code of specialized sdd-bptimizers, measured in both volume
and its impact on developers, can now be omitted. Within the siuctuany one optimizer written using
VenusDB, a developer may easily add new operators and refiné $eangstics. As on going work, we are
reviewing the construction of several optimizers built using VenusDBigating generic search structures
such that optimizer developers may easily experiment with la@e-ghanges is search strategy. Object
related elements in the definition of VenusDB, many of them typicabtioér contemporary rule-based
languages, provide the benefits seen in object-based optimizersshdhis up primarily in the definition of
the operator tree and cost model. Objects also assist in emteygswther organization elements of the

system that are exclusively rule-based in nature.

ACKNOWLEDGMENTS

We would like to thank Dinesh Das and Don Batory for their insightfimroents and their help exploring the
Prairie and Volcano optimizer. We would also like to thank Tao Wandi§ help in the implementation

effort.

-13- 12/03/97

8.0 REFERENCES

[SOL87]

[BAS79]

[BAY96]

[BRG94]

[CHM8S]

[DID95]

[GAMOS]

[GRD87]

[GRM93]

[LAIS3]

[LAIS7]

[MCC76]

[MCD93]

[KAB94]

[MIR90]

[OBE95]

E. Soloway, J. Bachant, K. Jensen, “Assestie Maintainability of XCON-in-RIME: Coping witthe
Problems of a VERY Large Rule-Base.” Association Aatificial Intelligence Proceedings of the
National Conference on Atrtificial Intelligen¢8AAI-87), August 1987.

V.Basili, R. W. Reiter, Jr. “Evaluating Aanatable Measures of Software Development.” In
Proceedings on Workshop on Quantitative Softwardé#pOctober 1979, 107-116.

R. Bayardo, D.P. Miranker, "Processing Quesrifor the First-Few AnswefsProceedings of the 5th
Conference of Information and Knowledge Managenmiéovember 1996, 45-52.

J.C. Browne, et. al. “A New Approach to Mdakity in Rule-Based Programmingfh Proceedings of
the 6th International Conference on Tools with faital Intelligence,|EEE Press, 1994, 18-25.

K.M. Chandy, J. Misra. Parallel Program Design: A Foundation Addison-Wesley Publishing
Company, Inc., 1985.

D. Das, D. Batory. “Prairie: A Rule Spedafition Framework for Query Optimizers.” Rroceedings of
the 11th International Conference on Data Enginegri201-210, Taipei, March 1995.

E. Gamma, R.Helm, R. Johnson, J. Vlissidessign Patterns, Elements of Reusable Objectrade
Software Addison-Wesley Publishing Company, Reading Masssetts, 1995.

G. Graefe, D. J. Dewitt. “The EXODUS Optirai Generator.” IiProceedings 1987 ACM SIGMOD
International Conference on Management of D&an Francisco, May 1987. 387-394.

G. Graefe, W. McKenna. “The Volcano OptimizGenerator: Extensibility and Efficient SearcHri
Proceeding of the 12th International ConferenceDatta Engineering1993, 209-218.

J. E. Laird. Universal SubgoalingPh.D. dissertation, Carnegie-Mellon Universit983.

J.E. Laird, A. Newell, and P.S. RosenbloofROAR: An Architecture for General Intelligence.”
Artificial Intelligence Elsevier Science Publishers B.V. North-Hollan8i8Z, 1-64.

T. McCabe, “A Complexity MeasurelEEE Transactions on Software Engineerifi@ecember 1976,
308-320.

J. McDermott. “R1("XCON") at age 12: Lessorfor an elmentary school achiver.” Atrrtificial
Intelligenc, (59):1993, 241-247.

N. Kabra, D. J. Dewitt. “Opt++: An Objecriented Implementation for Extensible Databaserue
Optimization.” Unpublished paper located in the CBRE papers home page,
http://www.cs.wisc.edu/shore/shore.papers.html.

D.P. Miranker, D.Brant, B.J. Lofaso Jr., abd Gadbois. “On the Performance of Lazy Matching i
Production Systems.” IRroceedings of the 1990 National Conference orfigidl Intelligence AAAI,
July 1990, 685-692.

L Obermeyer, D.P. Miranker, D. Brant. “Sdlee Indexing Speeds Production Systems.Ptnceedings
of the 7th International Conference on Tools wittifiial Intelligence 1995.

-14. 12/03/97

[OBE96]

[OBE97]

[0ZM96]

[PAC94]

[PHHY2]

[SES97]

[STO92]

[WANO92]

[WAR96]

L. Obermeyer, D.P. Miranker, “An Overview tife VenusDB Active Multidatabase System.” In the
Proceedings of of the International Symposium orop@oative Database Systems for Advanced
Applications Kyoto, Japan, December 1996.

L. Obermeyer, D.P. Miranker. “Evaluating ggers Using Decision Trees.” To appear in CIKM B&s
Vegas, Nevada, November 1997.

M. Tamer Ozsu, Adriana Munoz, Duana Szafrd¥n Extensible Query Optimizer for an Objectbase
Management System.” IfProceedings of the 4th International Conference laformation and
Knowledge Managemerit995, 188-196.

Pachet, F. ed?roceedings of the OOPSLAY4 Workshop on EmbeddgdcOriented Production
SystemgEOOPS), Technical Report LAFORIA 94/24. LaboregoiFormes et Intelligence Artifcielle,
Institut Blaise Pascal. Dec. 1994.

H. Pirahesh, J. M. Hellerstein, and W. Has#dBxtensible/Rule Based Query Rewrite Optimizatio
Starburst.” InProceedings of the 1992 ACM SIGMOD Internationahfécence on Management of
Data, 39-48, San Diego, California, June 1992.

P.Sesshadri, M. Livny and R.Ramakrishnare Tase for Enhanced Abstract Data Types Praveen
Seshadri, VLDB 97.

M. Stonebraker. “The Integration of Rules®ns and Database SystémdEEE Transactions on
Knowledge and Data Engineering15-423, October 1992.

Y-W Wang and E. Hanson. “A Performance Comgan of the Rete and TREAT Algorithms for Testing
Database Rule Conditions.” Rroceedings of the Eighth International ConferenneData Engineering
1992.

L.B. Warshaw, D. P. Miranker. “A Case StudfyVenus and a Declarative Bases for Rule Modules.
Proceedings of the 5th Conference on Informatioth lknowledge Managemeriovember 1996.

-15- 12/03/97

