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Abstract

We present an overview and initial performance assessment of a rule-based query optimizer written in VenusDB.
VenusDB is an active-database rule language embedded in C++.  Following the developments in extensible
database query optimizers, first in rule-based form followed by optimizers written as object-oriented programs, the
VenusDB optimizer avails the advantages of both. To date, development of rule-based query optimizers have
included the definition and implementation of custom rule languages.  Thus, extensibility required detailed
understanding and often further development of the underlying search mechanism of the rule system.  Object-
oriented query optimizers appear to have achieved their goals with respect to a clear organization and encapsulation
of an optimizer’s elements.  They do not, however, provide for the concise, declarative expression of domain
specific heuristics.

Our experience demonstrates that a rule-based query optimizer developed in VenusDB can be well structured,
flexible, and demonstrate good performance.  We compare a relational optimizer developed with Volcano and a
functionally identical optimizer developed with VenusDB.  The results demonstrate comparable performance on
small queries with few joins, while the VenusDB optimizer scales better and outperforms Volcano on larger join-
arity queries. Since we did not have to develop a specialized rule language or consider application specific
programming constructs, the source code for the optimizer is small and straightforward, about one-third the size.
Similar code comparisons with an object-based optimizer, the VenusDB optimizer reveals similar benefit.
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1.0 INTRODUCTION

The ability to express a query optimizer concisely and extensibly has been an ongoing goal of experimental

database research. The first generation of this research comprised a number of rule-based query optimizers

[GRD87, GRM93, DID95, PHH92].  Rule-based representation is attractive since it closes the semantic gap

between the specification of an optimizer and its implementation.  By virtue of a declarative specification, it

follows that rule-based optimizers are much easier to extend than their predecessors.  However, each of these

first generation optimizers considered using the general-purpose rule-based languages that were available at

the time and determined that they were unsuitable as the basis of a query optimizer1.  These languages suffered

from a lack of embeddability, execution speed and/or a lack of control over a perceived need to tightly regulate

general-purpose search mechanisms for rule evaluation. Thus, each project developed a rule language and

execution environment for the single purpose of developing their optimizer.  These specialized rule

environments contain features that go beyond the use found in general purpose rule-languages by including ad-

hoc elements for controlling search and limiting the scope and applicability of rules, all in an effort to increase

speed.  Development of query optimizers in these systems often involves elaborate knowledge of both the rule

language and its underlying execution engine comprising engineering at both levels.  Consequently, rule-based

optimizers have been successful in providing environments friendly to extending the search space by easily

adding new transformation rules, but “they do not allow for extensibility in other dimensions,” often fixing the

search strategies [OZM96].

Subsequent developers have moved to object oriented technologies [KAB94, OZM96].  These systems boast a

well-encapsulated and structured environment by defining the query representation and cost model as first

class objects and procedures respectively.  Hence, defining new database operators often only involves

deriving a class from the designated super-class and specializing its methods.  Though it may be true that

interchanging searches and transformations are easy in these systems, these features are not declaratively

expressed.  Therefore, defining new searches or refining existing searches with additional heuristics is not

nearly as straightforward as in the rule domain. We develop quantitative software metrics that supports this

claim.

The need for extensibility and modification of search strategies has been magnified by the extension of

relational database management systems into arbitrary data-types [SES97].  Given this renewed need and a

number of developments in rule-based execution, we have developed the hypothesis that effective query

                                                          
1 We agree with those findings.
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optimizers may be built using a general-purpose rule language, VenusDB.  VenusDB is an active database

extension of Venus.  Unique features of VenusDB that suggested revisiting the issue of rule-based query

optimizers include,

•  Embeddability in C++ and thus embeddability in database systems.  VenusDB’ data definition language is

precisely C++.  Thus, OO benefits seen in the optimizers developed by [OZM96, KAB94] with respect to

the representation of operator trees can be exploited identically.

•  A well-structured (modular) rule environment that allows a user to assert some procedurally inspired

control over the execution while maintaining fixed-point semantics [BRG94].

•  The addition of the event qualification in the condition-action rules which enables further structuring of the

search, but not as an ad-hoc mechanism.

•  Improvements in the implementation techniques of general-purpose rule compilers that commonly yield

better than 100 times faster execution speeds over the general-purpose compilers available at the time of

the earlier work (on identical hardware).   An irony is that much of this performance gain is precisely due

to the introduction of relational query optimization techniques in rule execution engines [OBE95, MIR90,

WAN92].

At this juncture we have written a number of query optimizers using VenusDB.  A general organization is

emerging as well as substantially overlapping code segments from which we expect to define a library of

design patterns from which an extensible set of search strategies may be refined [GAM95].  In this paper we

describe the core organizational elements and report in detail on an optimizer we developed that is

operationally equivalent to the sample relational optimizer provided with the Volcano distribution.  The

evaluation of optimization times and plans returned by the VenusDB optimizer compares quite favorably to its

Volcano counterpart.  In fact, while returning similar plans, the VenusDB optimizer actually executes faster on

large queries.  Given the success of OO optimizers, we also compare to Opt++ [KAB94].  Since that system

itself has been shown to perform comparably to Volcano, our comparisons are limited to organizational

aspects.   Though it is difficult to compare systems written in different programming language methodologies,

we have quantitative results and can speak to the ease of extensibility with respect to the introduction of

additional search heuristics.
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3.0 The VenusDB Rule Language

Many of the aforementioned deficiencies of early general-purpose rule languages are not unique to their

application to query engines.  Besides slower implementation techniques, these systems used LISP and LISP-

like data structures which make it difficult to embed them in larger systems. Venus is just one of a number of

object-embedded rule languages that have been developed to address these issues [PAC95].

3.1 Venus and VenusDB Syntax

Venus rules are organized into parameterized groups called modules.  See Figure 1. Modules are designated by

the key word module  followed by a list of formal parameters and a list of local variables.  The formal

parameters and the local variable list are made up of containers and primitive variables.  A container is

Venus’s set data type used for inferencing.  Containers are distinguished by the use of square brackets "[ ]",

and their elements are defined as C++ class instances.  Primitive variables are inferable object instances that

are semantically treated as a container of size one.

A Venus rule is made up of three parts, a header, a condition, and an action.  The header contains the keyword

rule  followed by a rule name, an optional priority and a declaration section. The declaration section begins

with the keyword from , followed by a list of container names and quantified cursor declarations. Cursors can

be quantified both existentially and universally. An existentially quantified cursor is represented by a "?"

module  Optimize(TREE_NODE OptTable[], TREE_NODE Tr ansformsCont[])
{

rule join_logical_transformations priority 10;
      from OptTable[?] node;
      event modify node;

     none  OptTable;
if( node.nodeOp() == JOIN )

 // call join_T_rules module
  join_T_rules(node, OptTable, TransformsCont);

rule join_physical_transformations priority 9;
from OptTable[?] node;
    OptTable[*] all_nodes;
if( node.promise() >= all_nodes.promise())

 // call join_I_rules module
 join_I_rules(node, OptTable, TransformsCont);
}

Figure 1.  Sample VenusDB Module with Module Calls
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within the square brackets. A universally quantified cursor is represented by a "*" within the square brackets.

VenusDB is an extension of Venus such that an event clause has been added to the declaration section. In

effect, this introduces refinements concerning the more focussed execution behavior of active-database ECA

(event, condition, action) rules [OBE96]. The event clause is used to define precisely which events trigger a

reevaluation of the rule, and is typical of other active-database rule languages. If an event is not specified, the

specification defaults to all events and results in behavior equivalent to Venus. The other difference between

Venus and VenusDB is an API facility for mapping Venus’s main-memory containers to tables or extents in

databases.  We have previously reported on an application developed by exploiting a heterogeneous integration

of VenusDB with multiple databases [OBE96].

A rule condition is a C++ boolean expression.  C++ functions and method calls can be executed from within

the rule condition provided they return a boolean value and execute side effect free.  A rule's action is a list of

C++ expressions, possibly including the name of a Venus module and its actual parameters.  C++ statements

and function calls can be made modifying data elements without any explicit notification to the rule system.

The Venus compiler, either directly or with the help of the target databases trigger mechanism, produces an

optimal trigger filter [OBE97].

3.2 Modularity and Semantics

The entire action of a Venus rule is defined to be a single atomic transition in a state-space (a transaction), and

rules fire by a fair non-deterministic policy.  Control remains within a Venus module until fixed point is

reached [CHM88]. Modules may be listed in the action of a rule and can be nested arbitrarily deep.  If a rule

fires and its action lists module calls, then the rules within the nested modules must achieve fixed point before

the action of the rule commits.  Thus, Venus semantics and nested transaction models are closely related.

Though incorrect, it is often convenient to think of the condition of a rule that lists modules as being conjoined

with the conditions of the rules within the nested modules, in effect, factoring out a common condition.  This is

incorrect because once a single rule fires, all rules in that module must fire until fixed point is reached, despite

the value of the condition in the calling rule.  These definitions yield a lotus of rule execution that corresponds

to a depth first traversal of the module-call graph. Though declaratively defined, the behavior is consistent

with procedural intuition.



- 6 - 12/03/97

3.3 Procedural Control

In some circumstances, a non-deterministic selection of satisfied rules makes programming difficult. When the

paradigm has been strictly enforced by a rule language, program developers often introduce additional

conditions, coined secret-messages, to force sequencing.  This has been shown to result in poor quality code

[MCD93].  Thus, despite fixed point semantics, Venus includes several clearly procedural constructs.  Such

constructs are admitted to the language only if there is a clear need and an obvious macro-like expansion into

an equivalent, (if not slow and cumbersome), non-deterministic program.

The most critical of these procedural constructs is priorities.  Rules with higher priorities will be given

precedence over rules of lower priorities.  Satisfied rules with the same priority are selected non-

deterministically. Other procedural constructs include a return statement which forces a module to fixed point.

The event clause also falls into this category.

3.4 An Example

As an example of how these declarative constructs interact and behave, consider the module in Figure 1.  The

Optimize  module contains two rules, join_logical_transformations  and

join_physical_transformations .   The join_logical_transformations  rule defines an

existential cursor over the OptTable  container called node .  The node  cursor explicitly informs VenusDB

to only monitor the modification of the cursor while shutting off monitoring on the OptTable  container.

This rule filters for join nodes, and passes cursors to the join_T_rules  module.  The

join_physical_transformations  rule defines a universally quantified and an existentially quantified

cursor over the OptTable  container. The rule finds the most “promising” node in the OptTable  and passes

it to the join_I_rules  module.

The behavior of the module proceeds as follows.  If the join_logical_transformations  rule fires,

control will be passed to the join_T_rules  module until fixed-point is reached.  At that juncture, control

returns to the Optimize  module and the join_logical_transformations  will continue to evaluate

its rule condition.  This sequence will continue testing each node in the OptTable .  Consider the instance

when the passed cursor to the join_T_rules  module is modified, the modified cursor will re-trigger the

evaluation of the join_logical_transformations  rule on this element.  After all possible such

evaluations of the join_logical_transformations  rule has been performed, the

join_physical_transformations  rule will then evaluate its rule condition.  If during the execution of
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the join_I_rules  module an element is inserted into or deleted from the OptTable , upon fixed point and

control returning to the Optimize  module, the rule condition in the

join_logical_transformations  rule will not be re-evaluated.  This is because events have been

turned off on the OptTable .  Had event monitoring not been turned off on the OptTable , the

join_logical_transformations  rule would immediately be evaluated based on the modification.

Execution continues in this manner, bouncing back and forth between nested module calls until the state of

fixed point is reached in the Optimize  module.

4.0 The Query Optimizer

The three basic parts of a query optimizer consists of the cost model, search space, and search strategy

[DID95]. Following efforts in object-oriented query optimizers, the Venus based query optimizer separates and

encapsulates each of these three elements.

4.1 Operator Tree and Cost Model

Due to its connection to C++, the Venus-based optimizer’s operator tree (the representation of the query

graph) and its associated cost model are defined in terms of first-class C++ objects. These definitions closely

resemble the object oriented operator tree definitions developed in other extensible query optimizers [KAB94,

OZM95].

A base class, called TREE_NODE, contains the C++

virtual methods and data needed to define the

node’s descriptor, the logical and/or physical

description of the node.  Derived algebraic operators

must specialize these method calls in a manner

relevant to the operator.  Beyond this API, the

structure of an operation may take on any shape or

form, including the number of operands upon which

the operator maps over.

Figure 2 displays the basic structure of a relational

operator tree defined using TREE_NODE.  In the

figure, the logical operations of join and file scan are derived from TREE_NODE.  The physical implementing

operations of merge join and hash are further derived from the join operation.  Likewise, segment scan and

TREE_NODE

Join

Merge Hash

File Scan

Segment Index

Figure 2.  Sample Operator Tree
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index scan are derived from file scan.

4.2 Organization of the Rule Base and

Search

The structure of the optimizer, both

conceptually and, nearly, syntactically, is

illustrated in Figure 3.  The top-level module(s)

define the search algorithm used to find an

optimal plan.  These modules heuristically

choose a sub-plan(s) to optimize passing it to the

optimize modules.  For example, using the

Volcano search, this group of modules will pick

a sub-plan that has not been optimized in the

look up table.

The optimize modules then applies different

transformation and implementation operations

on this sub-plan by exploiting procedural and

heuristic elements, constrained by conditioning

on the algebraic representation.  If the

preconditions are satisfied, the sub-plan is

passed to the transformation or implementation

modules. The new modified sub-plan is then

passed to the post conditions modules which

evaluates the sub-plan and updates

appropriately.  It is worth noting that due to the

modular design of the system, heuristics can be

added by simply adding a rule, condition, or

module at any step.

Another consequence of this modular structure

is that it leads us to believe that the

implementation of new search methods can be

well structured in the form of design patterns.

Search Method

Optimize

Post conditions

Search for a subquery to be optimized.

Heuristic fan-out applying transformations.

Transformation and implementation
modules grouped by algebraic operator.

Ensuring consistency of the optimizer.

Figure 3.  Rule System Architecture

//  Entry point module
module TransformativeSearch(// return value

       TREE_NODE  best_plan,
       // list of subqueries that
       // may need to be optimized
       TREE_NODE  OptTable[])

{
int curr_level = 0; // level in the query graph

rule generate priority 10;
from OptTable[?] node;
if( TRUE ) {

// Search for optimizations
 Search(OptTable, curr_level);

// increment level
curr_level++;

}

rule finished priority 0;
if( TRUE ) {

// grab the best plan
GetBestPlan(OptTable, best_plan);
return;  // force fixed point

}
}

// Module to optimizes all nodes at the current lev el
module Search(TREE_NODE     OptTable[], int curr_le vel)
{

TREE_NODE TransformsCont[];  // local
container declaration

rule Get_Node_to_Optimize;
from OptTable[?] node;
// turn events monitoring off on the
// TransformsCont
event none TransformsCont;
if(// a node at the current level in the tree
   // has not been optimized 
   node._logical->depth() == curr_level &&
   node._optimized == UN_OPTIMIZED) {

// Link to the most “promising”
// operands from the level bellow
LinkNode(OptTable, node);

// call Venus module to try to
// Optimize the node
Optimize(node, OptTable,

                          TransformsCont);
}

}

Figure 4  Transformative Search in Venus
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Design patterns are similar to that of a super-class representation of an object (only in structure because it can

not be operationally, or physically encapsulated as an object to form a base class) since the pattern can be

specialized for each particular search.  There are results in the sub-areas of AI on planning and general purpose

problem solving demonstrating that a small number of rule-based design patterns may be used as the starting to

point to encode virtually all forms of search [SOL87, LAI87, LAI83, GAM95].  Our aim is to take this one

more step and develop components enabling a plug and play approach to different search techniques. Our

experimental implementations to date encompass top-down depth-first hill climbing, System R style bottom-up

and a hybrid strategy of Volcano, (coined transformative search by [GRM93, KAB94]).  We have converged,

so far, to an architecture where algebraic transforms and implementation assignments are each encapsulated in

rule modules whose definitions are nearly independent of search strategy.  The structure of those patterns as

they materialize in Venus is becoming more obvious.  Our primary unknown is if we will conclude with a

plug-and-play system or be satisfied with design-patterns and a library of fleshed-out examples.

The code for the transformative search is located in Figure 4, and is shown in its entirety to demonstrate the

simplicity of experimenting with different search algorithms within the VenusDB rule environment. The

TransformativeSearch  module contains two prioritized rules.  The highest priority rule calls the

Search  module applying optimizations while traversing the tree bottom up. (The current level pointer can be

reset on lower level modules implementing recursive calls within VenusDB.) The finished  rule, firing only

after all optimizations have been processed, effectively calls a module to pick the best plan from the

OptTable  and then forces fixed point.

The Search  module contains only one rule.  The Get_Node_to_Optimize  rule determines if a node has

not been optimized.  If this is the case, the node links with the most “promising” operands in the LinkNode

module and is passed through to the Optimize module.  As a simple example of a domain specific heuristic

rule associate;
from OptTable[?] child;
if ( // child is a Join node
     child.NodeOp() == JOIN &&
     // and an operand of the node to optimize
     child.isOperand(op_node) &&
     // meets the requirements of associativity
     isAssociative(op_node, child)) {

 // Then apply transformation
TREE_NODE optimized_node(Associate

       (op_node, child));
// Call VenusDB module which tests
// post-condition statements
postConditions(optimized_node,

                        OptTable);
}

Figure 5.  Venus Associativity Rule

%trans_rule  (JOIN ?op_arg1 ((JOIN ?op_arg2
 (?1 ?2)) ?3))
 ->   (JOIN ?op_arg3 (?1 (JOIN ?op_arg4
 (?2 ?3))))
%cond_code
{{
 if (NOT (attr_in_equiv_class ((?op_arg1) ->
     join_arg.operand1, ?2)))
  REJECT ;
}}
%appl_code
{{

copy_operator_arg (?op_arg3, ?op_arg2) ;
copy_operator_arg (?op_arg4, ?op_arg1) ;

}}

Figure 6.  Volcano Associativity Rule
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that can greatly effect the outcome of the optimized plan, the LinkNode  module can encode knowledge to

select operand links depending on the type of query and its structure.

Once a node is selected, two types of transformations are generally attempted, transformation operators (T-

Rules) on the logical algebra and implementation operators (I-Rules) on the physical algebra.  Figure 5 displays

the T-rule for the association operator written in VenusDB.  Figure 6 displays the equivalent operator

expressed in the Volcano rule specification.  One of the primary objectives in the development of the Venus

rule language was to provide for a syntax that is familiar to a broader scope of people.  In Figure 6, we see a

direct resemblance of Volcano rules to that of the more classical LISP derived rule systems of OPS or CLIPS.

Since the syntax of most of the rule languages written for query optimizers is similar to that of Volcano’s, we

believe that the learning curve to begin building optimizer rules in VenusDB will be significantly smaller than

in earlier efforts.

5.0 Performance

We chose the Volcano optimizer generator as our primary basis of comparison. Besides availability and

reputation, we had in-house expertise due to a development effort layering in a new front-end [DID95]2.

Both relational optimizers contain two T-rules, and two I-rules, and the algebraic operators of scan, sort and

                                                          
2  We did not similarly execute the performance analysis of an object-oriented optimizer since they are shown to be
equivalent to Volcano in [KAB94].
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join.  We then ran the optimizers on 12 sets of 100 randomly generated queries.  Each set targeted queries from

one to twelve joins respectively.  We tabulated optimizer execution time and estimated plan cost. The random

queries were generated using the query generator described in [BAY96] for very large data sets.  The generator

produces both queries and statistics concerning data distributions.  Rather than purely random query graphs,

the generator is concerned with producing queries consistent with those seen in real applications.  We set the

generators parameters, b and p, to 1.5 and 0.1.  These values produce a balanced mix of loss-less foreign key

like joins and their complement. The experiments were performed on a Sun Ultra 2 containing 2 x 167 MHz

UltraSparc-1 processors with a 0.5 MB cache and 320 MB main memory.  We did not exploit the parallelism.

Figure 7 presents the execution times of the optimizers, and Figure 8 presents the total estimated cost for the

plans produced.  The cost of the plans produced by VenusDB and Volcano are nearly identical.  The surprising

trend is that the VenusDB optimizer scales better than Volcano with respect to join-arity.  We believe there are

two reasons for this trend.  First, we think that our abstractions in Venus allowed us to define a more complete

definition of the equivalence of two sub-plans avoiding the re-computation of many sub-plans.  Second, the

(query-derived) optimization techniques embedded within Venus excel with larger problem size [OBM95].

Recall, one question in our hypothesis is whether the execution speed of a general-purpose rule-based language

could be comparable to a specialized search engine.  By reflecting as best we can the Volcano search strategy,

examining total optimization time suggests we succeeded.  A finer grain measure, such as number of plans

generated and evaluated per second would be more definitive.  We simply could not align the two

implementations close enough to instrument for this result.

6.0 Quantitative Measurements

Quantitative software metrics are an objective measure used to analyze the complexity and life cycle cost of a

system.  We quantify three systems, optimizers developed in Opt++, Volcano, and VenusDB respectively

[GRM93, KAB94].  First, we calculated the total lines of code.  This metric gives evidence of a system’s

overall complexity [BAS79].  Next, we computed McCabe’s cyclomatic complexity.  Cyclomatic complexity

measures the number of possible paths through a program which is indicative of control flow complexity

[MCC76].  As a brief description, the cyclomatic complexity of a simple sequential procedure with no

branches receives a rating of 1.  Code is considered unmanageable if it is rated 11 or higher.  Cyclomatic

complexity was developed in the context of Fortran and C.  In the case of object-oriented programming,

excessive use of accessor functions significantly reduces the average case rating of a program.  For this reason,

we decided only to analyze procedures with a rating greater than 1, effectively factoring out well designed

constructs while focusing on the more complex.  Relating cyclomatic complexity to the rule-based paradigm,
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we developed a simple procedural model of rule execution [WAR96].

6.1 Volcano Comparison

The Volcano rule optimizer was implemented using 12,524 lines of code, of which 10,238 lines were used to

define the operator tree, the rule search engine component, and the optimizer search strategy.  2,286 lines are

unique to the individual relational optimizer.  The VenusDB query optimizer was implemented using 4,222

lines of code of which 1,494 lines were used to define the operator tree, 2,163 lines are unique to the relational

optimizer. 665 lines of rule code were needed to encode both the search strategy and transformations rules.

Hence, 1/3 the amount of code is needed for VenusDB than in Volcano.

The average cyclomatic complexity of the Volcano optimizer is 20.0.  The aggregate number may be

decomposed to the search components as a group averaging 18.7.  Elements constituting the sample optimizer

rated 24.6.  Thus, new Volcano developers deal with programs characterized by the highest of these ratings.

The equivalent optimizer using VenusDB receives an average of 6.1.  The aggregate number may be

decomposed to the search components as a group averaging 6.2.  Elements constituting the sample optimizer

rated 5.4.

The large differences in the two systems on both measures are due to the OO structure of the operator tree and

the non-specialized, declarative implementation of search within the VenusDB optimizer.  The net result is a

system with roughly a 1/3 of the complexity of the Volcano optimizer.

6.2 Opt++ Comparison

Citing the advances in optimizer research, we deemed it necessary to quantify the code of a VenusDB system

to an established object-oriented optimizer.  Because of its availability, we chose the Opt++ optimizer

developed for the SHORE project [KAB94].  The example Opt++ distribution is modeled for a basic object-

oriented database.  For this reason, we implemented an equivalent optimizer within VenusDB by extending the

optimizer described in the previous sections.

The sample Opt++ optimizer contains 9,007 lines of code, while the VenusDB equivalent contains 5,333 lines,

roughly half.  The McCabe measurement yielded an average complexity of 7.0 overall for the Opt++ optimizer

and 6.78 for its VenusDB equivalent.  The similarity of the measurement is not surprising since both systems

attack the implementation of the operator tree, cost model and application of operators identically.  A closer

inspection reveals an average of 5.5 to implement search within VenusDB (only slightly more complex than its

corresponding relational optimizer), compared to Opt++’ 6.1, better than a half point improvement.
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Although this is not a complete quantitative analysis of the three systems, we believe this to be telling evidence

of the extensibility of the VenusDB query optimizer.

7.0 Conclusions

The development of extensible query optimizers has been an ongoing experiment in trade-offs.  Systems have

necessarily given up one or more dimensions of flexibility with the expectation that the net value will be

higher.  To summarize, rule-based query optimizers have given up flexibility in search by developing

specialized rule engines.  In the case of Volcano, one single tightly integrated search strategy was embraced.

This system did remain extensible with respect to new operators.  However, on going maintenance and new

optimizer development is encumbered with the details of a specialized rule engine.  Quantitative software

metrics confirm the challenging life-cycle costs of using Volcano.  Object-based query optimizers have

succeeded in developing a transparent organization.  Yet, they do not easily admit to experimentation

concerning heuristic improvements.     Changes in search strategy, while well encapsulated, may involve

rewriting large parts of the system.

Our results to date confirm a hypothesis that language definition and implementation techniques for general-

purpose rule languages have improved to a point where they may be used to build effective query optimizers.

As a consequence, a large portion of the code of specialized rule-based optimizers, measured in both volume

and its impact on developers, can now be omitted.  Within the structure of any one optimizer written using

VenusDB, a developer may easily add new operators and refine search heuristics.  As on going work, we are

reviewing the construction of several optimizers built using VenusDB anticipating generic search structures

such that optimizer developers may easily experiment with large-scale changes is search strategy.  Object

related elements in the definition of VenusDB, many of them typical of other contemporary rule-based

languages, provide the benefits seen in object-based optimizers.  This shows up primarily in the definition of

the operator tree and cost model.  Objects also assist in encapsulating other organization elements of the

system that are exclusively rule-based in nature.
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