
A Randomized Linear Work EREW PRAM Algorithm to Find aMinimum Spanning Forest �C. K. Poonyand Vijaya RamachandranzJuly 22, 1997AbstractWe present a randomized EREW PRAM algorithm to �nd a minimum spanning forest in aweighted undirected graph. On an n-vertex graph the algorithm runs in o((logn)1+�) expectedtime for any � > 0 and performs linear expected work. This is the �rst linear work, polylogtime algorithm on the EREW PRAM for this problem. This also gives parallel algorithms thatperform expected linear work on two more realistic models of parallel computation, the QSMand the BSP.1 IntroductionThe design of e�cient algorithms to �nd a minimum spanning forest (MSF) in a weighted undi-rected graph is a fundamental problem that has received much attention. There have been manyalgorithms designed for the MSF problem that run in close to linear time (see, e.g., [CLR91]).Recently a randomized linear-time algorithm for this problem was presented in [KKT95]. Based onthis work [CKT94] presented a randomized parallel algorithm on the CRCW PRAM which runs inO(2log� n logn) expected time while performing linear work. The expected time was later improvedto logarithmic by [CKT96].In this paper we consider the design of a linear-work parallel algorithm on a more restrictedmodel of parallel computation { the EREW PRAM. A major motivation for considering the EREWPRAM is the adaptability of an algorithm developed on this model to more realistic parallel com-putation models. In particular, it is shown in [GMR97] that (i) an EREW PRAM algorithm withtime and work bounds of t and w, respectively, represents an algorithm that runs in time gt andwork gw on the Queuing Shared Memory (QSM) model [GMR97], which is a general purpose�This research was supported in part by NSF grant CCR/GER-90-23059 and Texas Advanced Research ProgramGrant 003658386.yDepartment of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.E-mail: ckpoon@cs.cityu.edu.hk.zDepartment of Computer Sciences, The University of Texas at Austin, Austin, TX 78712. E-mail:vlr@cs.utexas.edu. 1



shared memory model of parallel computation, in which the bandwidth limitations of a parallelmachine are captured by a gap parameter g; and (ii) the QSM (and by part (i) the EREW PRAM)has a randomized work-preserving emulation with small (logarithmic) slow-down on the Bulk Syn-chronous Parallel (BSP) computer [Val90], which is a general purpose distributed-memory modelof parallel computation.The above results hold for the more powerful QRQW PRAM [GMR94] as well, but are notknown to hold for a CRCW PRAM. Thus algorithms designed on an EREW PRAM (or a QRQWPRAM) have more applicability than CRCW PRAM algorithms.We present a randomized algorithm to �nd a minimum spanning forest on an EREW PRAMthat performs linear expected work and runs in expected time O(logn � log log n � 2log� n). Here n isthe number of vertices in the input graph. This is the �rst parallel algorithm for this problem onthe EREW PRAM that performs linear work. The running time of our algorithm is only slightlysuper-logarithmic { by a factor that is o((log logn)1+�), for any � > 0. We also present a re�nementof this result that gives a time, edge-density trade-o� while maintaining linear work, and we describethe results obtained by mapping our algorithm on to the QSM and the BSP.Prior to our work, the best results known for the EREW PRAM were a deterministic algorithmby Chong [Cho96] which runs in O(logn log log n) time and performs O(m logn log logn) work, anda randomized algorithm reported in [Kar95] which runs in O(logn) time and performs O(m+n1+�)work for any constant � > 0.2 Outline of the algorithmLet G be a graph with n vertices andm edges. We assume that edges in G have distinct weights, sothe graph has a unique minimum spanning forest (MSF). We also assume that G does not containisolated vertices, so we have m � n� 1.Our algorithm can be viewed as a parallelization of [KKT95] and has a recursive structuresimilar to that of [CKT94]. As in these two algorithms, our algorithm makes use of the followingwell known properties (see [Tar83]).Cycle Property: For any cycle C in a graph, the heaviest edge in C does not appear in the MSF.Cut Property: For any proper nonempty subset X of the vertices, the lightest edge with exactlyone endpoint in X belongs to the MSF.To �nd the MSF of G, the algorithm �rst identi�es a set, E, of edges that belong to the MSF ofG. It then contracts each component induced by E into a single vertex. This reduces the numberof (non-isolated) vertices by a suitable factor k. The algorithm then computes the MSF in thecontracted graph Gc. By the cut property, the set E together with the MSF of Gc will form theMSF of G.Although the number of vertices in the contracted graph Gc is reduced by a factor k, the numberof edges may not be reduced signi�cantly, even if internal and parallel edges are removed. To reduce2



the number of edges in Gc by a factor � = pk, we use a random sampling technique �rst employedfor the MSF problem by [Kar93, KKT95]. This method samples the edges in Gc independentlywith probability p = 1=� and then recursively computes the MSF, F , of the sampled graph, whichhas on average O(mp) = O(m=�) edges. This is the �rst recursive call. Although F is probablynot the MSF of Gc, it can be used to identify some edges in Gc that are not in the MSF of Gc.Following [KKT95], an edge in Gc is said to be F -heavy if it forms a cycle when added to F and isheavier than every edge in that cycle. Edges in Gc which are not F -heavy are said to be F -light.By the cycle property, F -heavy edges cannot be in the MSF of Gc. Thus, to compute the MSFwe need to consider only the F -light edges. By the sampling lemma (Lemma 2.1) of [KKT95], theexpected number of F -light edges in Gc is at most O((n=k)=p) = O(n=�).By �ltering Gc with F , i.e., removing the F -heavy edges in Gc, we obtain a graph G0 that hasO(n=k) vertices and O(n=pk) edges. The algorithm then recursively computes the MSF of G0.This is the second recursive call. Since G0 depends on the output, F , of the �rst recursive call, itdoes not seem possible to execute the two calls in parallel. Consequently, the above algorithm runsin 
(2l) time where l is the number of recursion levels even if the maximum time spent in the localcomputation of each recursive call is constant.By setting k to a su�ciently large constant and recursing until the size of the graph is reduced toa constant, one can obtain a linear work algorithm [KKT95]. However, there will be l = �(logk n) =�(logn) levels of recursion and hence the running time is 
(n�) for some � > 0. In [CKT94] alinear-work CRCW PRAM algorithm was presented by setting the reduction factor of a recursivecall to the exponential of that of its parent call. With this reduction factor, the number of recursionlevels was reduced to O(log�m). The algorithm in [CKT94] requires a randomized CRCW PRAMin order to achieve logarithmic time in the local computation of each recursive call, and has anoverall running time of O(logn � 2log� m).In this paper we present a randomized linear-work parallel algorithm on the more restrictedEREW PRAM model. As in [CKT94] our algorithm has O(log�m) levels of recursion, but weperform each recursive call on an EREW PRAM in O(logn log logn) time, by designing an ap-propriate contraction procedure, and by using the O(logn) time, linear work EREW algorithmof [KPRS97] for the �ltering step that detects F -heavy edges. Moreover, we stop the recursionwhen the size of the graph is reduced to a polylog factor of the original one. At this point, weswitch to the deterministic algorithm of Chong [Cho96] which runs in O(logn0 log logn0) time andO(m0 logn0 log logn0) work on a graph with n0 vertices and m0 edges. Since we apply Chong'salgorithm on a su�ciently small input, we show that the work on all recursive calls to Chong'salgorithm remains linear with respect tom, the size of the input graph G. Consequently, our overallalgorithm has linear work. The running time of our algorithm is O(logn � log log n �2log� m). We alsopresent a re�nement of our algorithm that runs in expected time O(logn � log logn � 2log� f), wheref = 1+ (logn log logn �pn=m), while performing linear work. Finally, we describe the adaptationof our algorithm to the QSM and the BSP. 3



3 Detailed Algorithm and AnalysisWe �rst introduce some notations. Denote by jH j the number of edges in a graph H . De�ne log� xas the minimum i such that log(i) x � 2 where log(0) x = x and log(i) x = log(log(i�1) x) for integeri � 1. Given a graph G and an edge e = (u; v) in G, the contraction of e in G results in the graphH that is obtained from G by deleting edge e, combining u and v into a single vertex, and removingisolated vertices and internal edges, while allowing multiple edges to remain. Given a subset ofedges S in G, the contraction of G with respect to S is the graph obtained through the contractionof each edge in S.Here are several parameters used by our algorithm. Recall that our input graph G has n verticesand m edges. We de�ne the integer parameters l and k1; k2; : : : ; kl as follows. Set k1 = blogmc,ki = blog ki�1c for 1 < i � l and l as the smallest integer such that kl � 2. The proof of thefollowing claim is straightforward.Claim 1 Let l and ki; 1 � i � l be as de�ned above. Then, for m su�ciently large,1. l � log�m and kl � 1;2. log ki�1 � ki and ki�1 � 2ki for 1 � i � l;3. ki � 2l�i for 1 � i � l.The input graph G is represented using the adjacency lists data structure. More precisely, eachvertex u has a doubly-linked list containing one record for each of its incident edges. The recordat vertex u for edge (u; v) contains the edge weight, the vertex name of the other endpoint (i.e.,v), and a pointer to its copy on the adjacency list of v. In addition to the adjacency lists datastructure, we also have, for each edge e, two global variables, v1(e) and v2(e), which store the twoendpoints of e.The pseudo-code for our algorithm, FindMSF(), is shown below. We will �nd the MSF of G bycalling FindMSF(G; l).Algorithm FindMSF(H; i)1 if i = 1 thenapply Chong's algorithm on H and return the edges found2 set (Hc; E) := Contract(H; k6i�1)3 sample the edges in Hc with probability 1=k3i�1 to form the graph Hs4 call FindMSF(Hs; i� 1), let F be the MSF of Hs5 set H 0 := Filter(Hc; F )6 call FindMSF(H 0; i� 1)7 return the edges found in Step (2) and (6).The algorithm makes calls to two procedures: 4



� The procedure Contract(). The procedure call Contract(H; k) produces a set of edges E anda multi-graph Hc which is the contraction of H with respect to E such that (1) E is a subsetof the MSF of H , and (2) Hc has at most (1=k) times the number of vertices in H . Notethat Hc is a multi-graph without any isolated vertices. The algorithm for Contract is givenin the next section, together with an analysis that shows that it runs in O(logn log k) timeand O(jH j logk) work on a deterministic EREW PRAM.� The procedure Filter(). The procedure call Filter(H;F ), in which F is a forest of multi-graphH , returns a subgraph H 0 of H which contains the vertex set of H and the F -light edges inH . It runs in O(logn) time and O(jH j) work on a deterministic EREW PRAM. The �lteringstep is described in section 5.The algorithm also makes recursive calls to itself. Note that the input graphs for the recursive callsmay be multigraphs, i.e., may contain multiple edges. The following lemma gives bounds on theexpected number of vertices and edges in these graphs in terms of n and m, the number of verticesand edges in the original input G.Claim 2 For any integer i where 1 � i � l, any call to FindMSF(H; i) resulting from the initialcall to FindMSF(G; l) satis�es the following: (1) the expected number of vertices in H is at mostO(n=k6i ) and (2) the expected number of edges in H is at most O(m=k3i ).Proof: We will prove the claim by induction on i.(Base Case:) The claim is true for i = l since 1 � kl � 2.(Induction Step:) Assume that the claim is true for i = j and consider the call FindMSF(H; j).After contraction in step 2, the number of vertices in Hc is O(n=k6j�1) by Claim 5. Note thatHc maycontain multiple edges. However, the total number of edges in Hc is no more than that in H . Hencethe sampling in step 3 produces a graph Hs with O(m=k3j�1) expected edges. Consequently, therecursive call to FindMSF(Hs; j�1) in step 4 will satisfy the claim. By Lemma 2.1 in [KKT95] andClaim 7, expected number of edges in H 0 is O((n=k6j�1)� k3j�1) = O(m=k3j�1). Again, this boundis true even though Hc may contain multiple edges. Hence the recursive call to FindMSF(H 0; j�1)in step 6 also satis�es the claim. This completes the induction step and also the claim.Claim 3 The call FindMSF(G; l) requires O(2l � logn � log log n) expected time and O(m) expectedwork on a randomized EREW PRAM.Proof: We assume there are m=(2l logn log logn) processors available. We �rst analyze the totalexpected time required.The initial call to FindMSF(G; l) will generate 2 recursive calls to FindMSF(H; l� 1), 22 callsto FindMSF(H; l� 2), 23 calls to FindMSF(H; l� 3), . . . , and 2l�1 calls to FindMSF(H; 1). Sincethe local computations in these recursive calls are performed in sequential order, the running timeof FindMSF(G; l) is the sum of the time for the local computation in each recursive call.5



Consider each call to FindMSF(H; 1). By Claim 2, the expected number of edges in H isjH j = O(m=k31) =O(m=(logm)3). Applying Chong's algorithm with jH j � m=(2l log n log logn)processors takes O(logn log logn) time. Hence O(2l logn log log n) time su�ces for all recursivecalls to FindMSF(H; 1) in total.Consider the local computation in a call to FindMSF(H; i) for which i > 1. By Claim 2,jH j = O(m=k3i ). By Claim 6 and Claim 7, the expected time required by Contract and Filteris O(logn log ki�1 + logn) = O(logn log ki�1) when there are O(jH j= logn) = O(m=(k3i logn))processors. Since we have m=(2l logn log logn) processors, the expected time isO(logn log ki�1 � d m=(k3i logn)m=(2l logn log logn)e) = O(logn log ki�1 � d2l log lognk3i e)By Claim 1 log ki�1 � ki and ki � 2l�i. Hence for i � 3, the expected time for Contract and Filteris O((2l=k2i ) logn log logn) = O(22i�l logn log logn)For i = 2, the number of processors available, m=(2l logn log logn), is 
(m=(k23 log n)), and theexpected time thus is clearly O(logn log logn). Hence the total expected time required locally in allthe calls to FindMSF(H; i) for which i > 1 is O(Pli=3 2l�i � 22i�l logn log log n+ 2l�2 log n log logn)= O(2l log n log logn).Consequently FindMSF(G; l) takesO(2l�logn log logn) expected time and hence O(m) expectedwork.Claim 4 The algorithm FindMSF(H; l) correctly computes the MSF of H.Proof: We will prove the correctness by induction on l.(Base Case) When l = 1, Chong's algorithm computes the MSF of H .(Induction Step) When l > 1, the procedure Contract identi�es a subset of edges in the MSF ofH by Claim 5. By induction hypothesis, the recursive call FindMSF(Hs; l � 1) returns the MSFF of the sampled graph, Hs, of Hc. By Claim 7 and the cycle property, Filter only removes edgesof Hc which are not in the MSF of Hc. By the induction hypothesis again, the recursive callFindMSF(H 0; l � 1) returns the MSF of H 0 which is the same as the MSF of Hc. Finally, by thecut property the combined set of edges obtained in steps 2 and 6 forms the MSF of H .Note that FindMSF(G; l)would still compute the MSF ofG even if l were not chosen as describedbefore. However if l were too large, the expected time might be more than O(2log�m log n log logn)and if l were too small, the expected work might be more than O(m).4 The Contraction ProcedureThe purpose of the procedure call Contract(H; k) is to identify a set of edges E and to produceHc, the contracted graph of H with respect to E such that (1) E is a subset of the MSF of H , and6



(2) Hc has at most (1=k) times the number of vertices in H . We assume H to have distinct edgeweights but allow multiple edges.The pseudo-code of Contract() is shown below. The procedure allocates two local variables,status(u) and parent(u), for each vertex u in H .Procedure Contract(H; k)1 pfor each vertex u doif u is isolated then status(u) := doneelse status(u) := activeparent(u) := uE := �2 repeat log k timesa) pfor each active vertex u do�nd its minimum weight incident edge e = (u; v)set parent(u) := vadd (v1(e);v2(e)) to Ebroadcast v to all incident edges of uif parent(v) = u and u < v then status(u) := rootb) pfor each active vertex u doplug its adjacency list into parent(u)'s adjacency liststatus(u) := donec) pfor each root vertex u dore-name each of its edges both in its adjacency list andin the other end-point's adjacency listremove internal edgesif u is isolated then status(u) := doneelse status(u) := active3 Vertex set of Hc := the set of active verticesEdge set of Hc := the adjacency lists of the active verticesClaim 5 Let k be a positive integer, and H be a multi-graph with distinct edge weights. Theprocedure call Contract(H; k) produces a set of edges E and a multi-graph Hc which is the contractionof H with respect to E such that1. E is a subset of the MSF of H, and2. Hc has at most n=k vertices, where n is the number of vertices in H.Proof: In each iteration of step 2a, the graph formed by the parent pointers is a collection ofrooted directed trees in which the edges in each tree point from children to their parent, and with7



an outgoing edge from the root to one of its children. Thus, after each iteration of step 2, eachroot contains the concatenation of the adjacency lists of all vertices in its tree, with edges internalto the tree removed, and all remaining edges re-labeled to reect their new endpoints (the roots ofthe two trees containing their original endpoints).In each iteration of step 2, the parent pointers are set using a Bor�uvka step [Bor26], and bythe cut property, the corresponding edges are in the MSF for H [KKT95]. Thus E is a subsetof the MSF for H . In each iteration of step 2a, each active vertex will hook to another activevertex. Done vertices are either isolated vertices or have given up all their edges to their rootsin the previous iteration. Hence each rooted directed tree de�ned by the parent pointers in thecurrent graph contains at least two active vertices and at most one of them remains active at theend of step 2c. This means the number of active vertices reduces by a factor of at least two in eachiteration of step 2. After log k iterations the number of active vertices is reduced by a factor of atleast k. Since the vertex set of Hc is the set of active vertices at the end of step 2, the number ofvertices in Hc is at most n=k.Claim 6 The procedure call Contract(H; k) runs in time O(logn log k) and performs O(jH j logk)work on a deterministic EREW PRAM.Proof: Step 1 requires O(1) time andO(jH j) work. In each iteration of step 2, step 2a takesO(logn)time and O(jH j) work, step 2b takes O(1) time and O(jH j) work, and step 2c takes O(log jH j) =O(logn) time and O(jH j) work (this step is performed by broadcasting the name of the root to allelements in the newly-formed adjacency list, relabeling each edge by its new endpoints and thenremoving those edges whose two endpoints are the same). Thus over all iterations, step 2 requiresO(logn log k) time and O(jH j logk) work. Step 3 takes constant time and O(jH j) work. Hence thewhole procedure requires O(logn log k) time and O(jH j logk) work.5 The Filtering ProcedureGiven a multi-graph H with distinct edge weights and a forest F for H , the procedure Filter(H;F )removes all F -heavy edges in H , i.e., it removes each edge e = (u; v) in H whose weight is greaterthan the weight of any edge on the path between u and v in F .We adapt the MSF veri�cation algorithm in [KPRS97] to identify and remove the F -heavyedges. One method used to avoid concurrent reads in the algorithm in [KPRS97] is to convert thegraph so that all endpoints of nontree edges are distinct. This is done using a scheme of [Ram96]that transforms each rooted tree in F by appending a chain to each vertex, with one copy of thevertex for each nontree edge incident on it. It is not di�cult to see that the least common ancestorof an edge is unaltered by this transformation. The same scheme when applied to the multigraphH will convert it into a simple graph in which all nontree edges have distinct endpoints.The algorithm in [KPRS97] can now be adapted in a straightforward way to identify F -heavyedges. Although that algorithm only determines whether or not there is an F -heavy edge in the8



graph, it is straightforward to modify it to identify all F -heavy edges within the same time andwork bounds. This leads to the following claim:Claim 7 Let F be a forest of a multi-graph H with distinct edge weights. The procedure callFilter(H;F ) detects the F -heavy edges of H and runs in O(logn) time and O(jH j) work on adeterministic EREW PRAM.6 Some ExtensionsIn this section, we describe another algorithm which computes the MSF in O(2log� f log n log logn)expected time and O(m) expected work on an EREWPRAM, where f = 1+(logn�log log n�pn=m).Note that if m = 
(n(logn log logn)2), then f = O(1). Otherwise, f = O(logn log logn). Whenm = 
(n(logn log log n)2), this algorithm has the same performance as an algorithm in [Kar95] forthe CREW PRAM, and it matches the time of (and performs less work than) Chong's algorithm.For m not much smaller than n(log n log logn)2, this algorithm runs faster than FindMSF, and itis no worse than it in any case. For all edge densities this algorithm performs linear work.We �rst describe a randomized EREW PRAM algorithm which computes the MSF in expectedtime O(logn log logn) and expected work O(mf). The algorithm can be viewed as a combination(and generalization) of a CREW PRAM MSF algorithm in [Kar95] and the EREW PRAM MSFveri�cation algorithm in [KPRS97]. Hence we will call it the K-KPRS algorithm.The generalization of the CREW PRAM algorithm of [Kar95] lies in the sampling probabilityused in K-KPRS { f=(logn log log n) { in place of 1=(logn log log n) used in [Kar95] (which isindependent of the edge density). Algorithm K-KPRS requires mf=(logn log logn) processors andhas the following steps.1. Sample the edges in G independently with probability f=(logn log logn). We expect thesampled graph Gs to have mf=(logn log logn) edges.2. Compute the MSF, F , of Gs using Chong's algorithm. This takes O(logn log logn) time.3. Apply �lter on G and F . This takes O(logndlog logn=fe) = O(logn log logn) time. Let G0be the �ltered graph.4. Compute the MSF of G0 using Chong's algorithm. The expected number of edges in G0 isn logn log logn=f . One can easily check that this is O(mf=(logn log logn)) by consideringthe two cases: m = 
(n(logn log logn)2) and m = o(n(logn log logn)2).Hence the K-KPRS algorithm spends O(logn log logn) expected time which in turn implies that itperforms at most O(mf) expected work.Now we use algorithm K-KPRS in place of Chong's algorithm in the base case of our FindMSFalgorithm and call with parameter log� f instead of log�m. Hence the new algorithm has the statedtime and work bounds as given in the claim below.9



Claim 8 The MSF of an n-vertex, m-edge, weighted graph can be computed in O(2log� f logn log logn)expected time and O(m) expected work on an EREW PRAM, where f = 1+(logn log logn �pn=m).If m = 
(n(logn log logn)2) the MSF can be computed in O(logn log logn) expected time and O(m)expected work on an EREW PRAM.7 Adaptation to QSM and BSP ModelsThe QSM model [GMR97] and the BSP model [Val90] are general-purpose models of parallelcomputation that take into account some of the important features of real parallel machines thatare not reected in the PRAM model. The QSM is a shared-memory model with a gap parameterg for access to global memory. The BSP is a distributed memory model that consists of processor-memory units interconnected by a general-purpose interconnection network whose performance isparameterized by a gap parameter g as well as a periodicity parameter L. For a precise de�nitionof the two models, see [Val90, GMR97].It is straightforward to see ([GMR97]) that any EREW PRAM algorithm that runs in timet and work w is a QSM algorithm that runs in time g � t and work g � w. Also, it is shown in[GMR97] that any QSM algorithm that needs to access r distinct memory locations must performwork 
(g � r).Let T (n;m) = O(logn log logn2log� f ), where f = 1 + (logn log log n �pn=m). Thus T (n;m)is the expected running time of FindMSF (G; l) on an EREW PRAM, when G is a graph with nnodes and m edges. Based on the results stated above on mapping an EREW PRAM algorithmon to the QSM we have the following Claim.Claim 9 Let G = (V;E) be a graph on n vertices and m nodes with distinct weights on edges. Aminimum spanning forest for G can be computed on the QSM in expected time O(g � T (n;m)) andexpected work O(g � (n+m)). The work bound is optimal.A randomized work-preserving emulation of the QSM on the BSP is presented in [GMR97] (seealso [Ram97]) with the following performance.Claim 10 ([GMR97]) An algorithm that runs in time t0 on a p0-processor QSM with gap parameterg can be emulated on a p-processor BSP with gap parameter g and periodicity parameter L in timet = O(t0 � (p0=p)) w.h.p. provided p � p0(L=g)+g logp , and t0 is bounded by a polynomial in p.Using the above two claims, we obtain the following result.Claim 11 Let G = (V;E) be a graph on n vertices and m nodes with distinct weights on edges. Aminimum spanning forest for G can be computed on a BSP with expected work O(g � (n+m)) andexpected time O(g � T (n;m) � ((L=g) + g log p)). 10



Proof: Let E[TBSP ] be the expected running time of the MSF algorithm on the BSP withp = n+mg�T (n;m)�((L=g)+g log p) processors. By Claim 9 and Claim 10 E[TBSP ] is bounded byE[TBSP ] � (1� 1=nc)O(g � T (n;m) � ((L=g) + g log p)) + (1=nc) � (g + L) �O(m logn)where c is a constant under our control. In deriving the above expression it was assumed that ifthe algorithm exceeds the time bound in Claim 11, the MSF is computed sequentially on one BSPprocessor using a standard sequential algorithm such as Kruskal's algorithm (see, e.g., [CLR91]).By choosing c su�ciently large (c > 2 + log(g+L)logn should su�ce) the second term can be madesmaller than the �rst term, resulting in the desired result.Soon after hearing of our result, [DJR97] announced some results for �nding an MSF on theBSP. We have also been informed of recent independent work by [DG97] on BSP algorithms forthe MSF problem. Both of these results are for minimizing the number of `super-steps' in theBSP computation, and they perform super-linear work on a general input graph. In contrast, ourparallel algorithms for �nding an MSF on the QSM and the BSP perform expected linear work(i.e., O(g � (n+m)) work) on any input graph.8 ConclusionWe have presented the �rst linear work EREW PRAM parallel algorithm for computing a mini-mum spanning forest in a weighted undirected graph. The algorithm is randomized and performsexpected linear work, which is the best possible, to within a constant factor. The algorithm runsin O(logn � log logn � 2log� n) expected time, which is o((logn)1+�) for any constant � > 0. It re-mains open whether there exists an EREW PRAM algorithm for the MSF problem that runs inlogarithmic time and linear work simultaneously.AcknowledgmentThe authors would like to thank Santanu Sinha for discussions on this problem.References[Bor26] O. Boruvka. O jistem problemu minimalnim. Praca Moravske Prirodovedecke Spolec-nosti, 3:37{58, 1926. In Czech.[Cho96] K. W. Chong. Finding minimum spanning trees on the EREW PRAM. In Proceedingsof the 1996 International Conference on Algorithms, pages 7{14, Taiwan, 1996.[CKT94] R. Cole, P.N. Klein, and R.E. Tarjan. A linear-work parallel algorithm for �ndingminimum spanning trees. In Proceedings of the 1994 ACM Symposium on ParallelAlgorithms and Architectures, pages 11{15, 1994.11



[CKT96] R. Cole, P.N. Klein, and R.E. Tarjan. Finding minimum spanning trees in logarith-mic time and linear work using random sampling. In Proceedings of the 1996 ACMSymposium on Parallel Algorithms and Architectures, pages 213{219, 1996.[CLR91] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press,1991.[DG97] F. Dehne and S. Gotz. E�cient parallel minimum spanning algorithms for coarse grainedmulticomputers and BSP, June 1997. Manuscript, Carleton University, Ottawa, Canada.[DJR97] W. Dittrich, B. Juurlink, and I. Rieping, June 1997. Private communication by IngoRieping.[GMR94] P.B. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Accountingfor contention in parallel algorithms. In Proceedings of the Fifth Annual ACM-SIAMSymposium on Discrete Algorithms, pages 638{648, 1994.[GMR97] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model serve asa bridging model for parallel computation? In Proceedings of the 1997 ACM Symposiumon Parallel Algorithms and Architectures, pages 72{83, 1997.[HZ96] S. Halperin and U. Zwick. Optimal randomized EREW PRAM algorithms for �ndingspanning forests and for other basic graph connectivity problems. In Proceedings of theSeventh ACM-SIAM Symposium on Discrete Algorithms, pages 438{447, 1996.[Kar93] D. R. Karger. Random sampling in matroids, with applications to graph connectivityand minimum spanning trees. In 34th Annual Symposium on Foundations of ComputerScience, pages 84{93, 1993.[Kar95] D. R. Karger. Random Sampling in Graph Optimization Problems. PhD thesis, Depart-ment of Computer Science, Stanford University, 1995.[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to�nd minimum spanning trees. Journal of the ACM, 42:321{328, 1995.[KPRS97] V. King, C. K. Poon, V. Ramachandran, and S. Sinha. An optimal EREW PRAMalgorithm for minimum spanning tree veri�cation. Information Processing Letters,62(3):153{159, 1997.[Ram96] V. Ramachandran. Private communication to Uri Zwick, January, 1996. To be includedin journal version of [HZ96].[Ram97] V. Ramachandran. A general purpose shared-memory model for parallel computation.Technical Report TR97-16, Univ. of Texas at Austin, 1997.12



[Tar83] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial andApplied Mathematics, 1983.[Val90] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,33(8):103{111, 1990.

13


