Exact Gate Decomposition for Low-Power Technology Mapping

Hai Zhou and D.F. Wong
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712-1188

Abstract

With the remarkable growth of portable application and the increasing frequency and integration density,
power is being given comparable weight to speed and area in IC designs. In technology mapping, how
decomposition is done can have a significant impact on the power dissipation of the final implementation.
In the literature, only heuristic algorithms are given for the low-power gate decomposition problem.
In this paper, we prove many properties an optimal decomposition tree must have. Based on these
optimality properties, we design an efficient exact algorithm to solve the low-power gate decomposition
problem. Moreover, the exact algorithm can be easily modified to a heuristic algorithm which performs
much better than the known heuristics.

1 Introduction

With the remarkable growth of portable application and the increasing frequency and integration density,
power is being given comparable weight to speed and area in IC designs. Power dissipation in digital
CMOS circuits is dominated by the dynamic dissipation, which is mainly the charging and discharging
of the node capacitances [5]. It can be modeled as

P = 0.5V furCrLEsy

where Vg4 is the supply voltage, fe i is the clock frequency, C7, is the physical capacitance at the output
of the node, and FEg,, (referred to as the switching activity) is the average number of output transitions
per clock cycle. As we can see, Vyq and f. are fixed by the technology, but Cr and E, can be
controlled in design process.

In technology mapping, the subject netlist is usually first decomposed into a netlist composed
of only inverters and two-input NAND gates. How the decomposition is done can have a significant
impact on the power dissipation of the final implementation [4, 6, 7]. We deal with the low-power gate
decomposition problem in this paper.

The problem appears in a few recent papers. Tiwari et al. [6] mentioned the importance of a good
decomposition on the final result of technology mapping, but did not give any solution. At the same
time, Tsui et al. [7] analyzed the problem and found that Huffman’s algorithm [3] can only be used
in domino dynamic logic. For static logic which is more important in low-power applications, only a
greedy heuristic called the modified Huffman algorithm is given. Murgai et al. [4] also considered the
decomposition problem, but their minimization objective was the power consumptions due to glitches.

Since the problem for dynamic logics can be easily solved, we only consider static logics. In our
approach, we first study the structure of an optimal decomposition tree. This is given by a set of
properties an optimal tree must have. Then, based on these properties, we designed an exact algorithm
for the construction of an optimal decomposition tree. The time complexity of the algorithm is O(n2"),
which, though still exponential, should be regarded as efficient considering the total of more than
(2n — 1)" ! trees in the solution space.

As a by-product, a heuristic algorithm can be easily derived from the exact algorithm. Its running
time is O(nlogn), which is much faster than the O(n?logn) running time of the modified Huffman
algorithm [7]. Since the heuristic is strongly based on the optimality properties, it also performs much
better than the modified Huffman algorithm. In fact our experimental results show that our heuristic
gives optimal results in most cases.

The rest of the paper is organized as follows. In section 2, we define the low-power gate de-
composition problem. In section 3, we describe Huffman’s algorithm for tree construction and identify
two special cases of the problem which can be solved. Section 4 studies the properties of an optimal
decomposition tree. Based on these properties, section 5 presents two algorithms: one exact algorithm
and one heuristic. Section 6 gives the experimental results and some concluding remarks.

2 Problem formulation

In technology decomposition, we need to decompose a multi-input gate into a tree of two-input gates.
Since an OR gate can be treated as a NAND gate with negations of the inputs, what we need to solve is
how to decompose an n-input AND gate into a tree of 2-input AND gates. We call this gate decomposition.

We will treat the signals in a circuit as random variables and define the signal probability of a
signal = as the probability of z being 1, denoted by p(z). We use the same model as in [6, 7], that is,

we assume the zero delay model where gate delays are assumed to be zero and thus signal transitions
due to glitching are ignored; primary inputs are assumed to be uncorrelated (spatial independent);
and the present input signal value is independent of those in the past (temporal independent). Under
these assumptions, given the input signal probabilities and a decomposition tree, the probabilities of
internal signals can be computed as follows. Start from the primary inputs, for each z = x AND y,
let p(z) = p(z)p(y). Thus, the signal probability of any node v is equal to the product of all leaf
probabilities in the subtree rooted at v. For example, Figure 1 shows one gate decomposition and all
signal probabilities of the nodes.

Figure 1: Gate decomposition

The switching activity Fs,, depends on the implementation logic style. In p-domino logic designs,
the gate outputs are pre-discharged to 0, thus the switching activity of a node is equal to the probability
of being 1. Let T' = (V, E) represent the decomposition tree, and p(v), for any v € V', denote the output
signal probability of node v. The objective function we want to minimize in domino logic is >°, oy p(v).
Because of this simple objective function, it can be shown that Huffman’s algorithm can be used to give
an optimal decomposition tree in domino logic designs [7].

Because of the pre-discharges or pre-charges, domino logic designs dissipate more power than
static logic designs, which never do extra charges or discharges. In static logic, under the temporal
independence assumption, the switching activity Fs,, of signal « can be written as

Esqy(x) = Priz:0—=1]+ Priz:1— 0]

Priz = 0]Pr{z = 1] + Pr{z = 1]Pr{z = 0]
2Pr(z = 1|Pr{z = 0]

= 2p(x)(1 - p(x))

However, in their recent work [8], Wu et al. showed that, even in the absence of temporal independence,
2p(z)(1 —p(x)) also gives the expected value of the switching activities among all sequences that satisfy
the given signal probability.

The problem we will solve in this paper can be defined as follows.

Low-power gate decomposition problem: Given an n-input AND gate with inputs sy, s2,..., Sy
and their signal probabilities p(s1),p(s2),...,p(sn), construct a tree T' = (V, E) of 2-input
AND gates with s, s9,..., s, as its leaves such that
Esw(T) = Z p(’U)(l —p(’U))
veV

is minimized.

According to Knuth [2], the number of different labeled oriented binary trees with n leaves is
(2:__11) (2n — 2)!/2" 1. In a decomposition tree, only leaves are labeled, the internal nodes are indistin-
guishable. Therefore, the number of different decomposition trees is

(2 H(2n — 2)!

n—1

=Ty (2n —1)" 1.

Thus, an exhaustive enumeration method is prohibitively expensive. Tsui et al. [7] found Huffman’s
algorithm can not solve this problem. Instead, they gave a heuristic which was called modified Huffman
algorithm. It starts with a forest composed of all the inputs, and incrementally combines two trees into
one until there is only one tree. It is a greedy algorithm, and each time tries all pairs and chooses the
combination which gives the minimum increase on the objective function. The time complexity of the
algorithm is O(n?logn) [7].

This algorithm is by far not optimal. This can be shown by a simple example. Here we have
six input signals with the following probabilities: 0.4, 0.4, 0.4, 0.94, 0.94, 0.95. The decomposition
tree constructed by the modified Huffman algorithm is shown in Figure 2(a), where the summation of
switching activities is 1.3337. Nevertheless, a decomposition tree shown in Figure 2(b) has 1.22748 as
its total switching activities.

Figure 2: (a) Decomposition tree by modified Huffman has switching activities 1.3337; (b) A decompo-
sition tree with switching activities 1.22748

3 Huffman’s algorithm

Given n leaves vy, vy, ..., v, with their weights w(v1),w(v2),...,w(v,), Huffman [3] gave an algorithm
to construct a binary tree with minimum weighted path length Y7 ; w(v;)l;, where [; is the path length
from the root to v;. The algorithm can be described as follows. Starting from a forest composed of all
the leaves, it combines two trees with the minimum weights, use the summation of the weights as the
weight of the combined tree and substitute the two trees by the combined one; this process is continued
until there is only one tree.

If, for each internal node r with two children « and v, we define the weight w(r) = w(u) + w(v),

then .
Zw(vi)li = Z w(u),
=1

ueV
where V represents the set of internal nodes. This formulation leads us to consider Huffman’s algorithm
for the low-power gate decomposition problem. Unfortunately, it can not solve the problem in general

case [7]. However, we find that under some conditions Huffman’s algorithm can give optimal solutions.
Before we give these conditions, we will describe two variations of Huffman’s algorithm, which are a
little different with the original one.

Min-Huffman algorithm: Start with all the input signals; combine the two signals of mini-
mum probabilities and substitute the two signals with the new signal; continue the process
until there remains only one signal.

Maz-Huffman algorithm: Start with all the input signals; combine the two signals of maxi-
mum probabilities and substitute the two signals with the new signal; continue the process
until there remains only one signal.

We first state a lemma which is useful in the proofs.

Lemma 1 Given two sets of signals uy,ug, ..., u, and v1,ve, ..., v, such that 0.5 < p(u;) < p(v;) for all
1<i<n,andlet 0 < a < 1. If we change the probability of u; from p(u;) to ap(u;), and the probability
of v from p(v;) to p(vi)/a, for all 1 < i < n, then the summation of their switching activities will
decrease.

Proof: Consider the difference between the summation of changed switching activities and that of
the original ones

é(ap(“i)(l — ap(u;)) + ép(vi)(l - ép(vi))) - é(p(m)(l — p(ug)) + p(vi) (1 = p(v;)))
= é((apm) — ap(u)?) + (p(vs) — ~p(w3)?) — (plue) — paw)?) ~ (p(ri) —~ p(0)?))
_ ﬁ(p(ui)(a — 1) = pla(0” = 1) + 50 (2~ 1) = p(0)2(5 — 1)
- i((a 1) (p(w) — () — (@ ~ Do) ~ —5p(03)?))
- é(“ 1)) — Sp(I)L (e + D(plu) + Ep(w0)

Since a < 1, p(u;) —p(v;) /e < p(u;) —p(vi) < 0, and p(u;) +p(vi)/a > p(u;)+p(v;) > 0.5+0.5 =1,
we know (o — 1)(p(u;) — p(vi)/a)(1 — (a+ 1)(p(u;) + p(vi)/c))) < 0. Therefore the above difference is
negative, which proves our lemma. []

As stated by the following theorem, two special cases can be solved efficiently.

Theorem 1 If all input signal probabilities are not greater than 0.5, the low-power gate decomposition
problem can be solved by the Min-Huffman algorithm; If the product of all input signal probabilities is
not less than 0.5, it can be solved by the Max-Huffman algorithm.

Proof: We will prove the theorem by showing that each combination in the algorithms actually ap-
pears in the optimal tree. Before doing that, we must notice that switching activity is monotonically

0.25-
p(1-p) —

| !
05 1

Figure 3: Switching activity as a function of signal probability

increasing with signal probability when the signal probability is not greater than 0.5; and is monotoni-
cally decreasing with signal probability when it is greater than 0.5. In fact, their relation can be shown
in Figure 3.

We claim that, given a set of signals whose probabilities are all not greater than 0.5, the two with
minimum probabilities must be combined in an optimal tree. Suppose this is not true, that is, we have
three signals u,v and w such that p(u) < p(w),p(v) < p(w) but u,w are combined first. Without loss
of generality, their relation can be illustrated in Figure 4, where, ¢ denotes their least common parent, /
and r are t’s two children, and p is u and w’s parent. Because r is an ancestor of v (or it can be v itself),
we have p(r) < p(v) < p(w). Now consider exchanging w with the subtree T} rooted at r. Only the
probabilities of the nodes on the path from p to [are changed, and actually they are decreased. Since
all of them are not greater than 0.5, the total switching activities are decreased, which is a contradiction
to the optimality of the tree.

Figure 4: Two nodes with minimum probabilities must be combined

We also claim that, given a set of signals whose product of probabilities is greater than 0.5, the
two with maximum probabilities must be combined in an optimal tree. Suppose this is not true, then
we must have three signals u,v and w such that p(u) > p(w),p(v) > p(w) but u and w are combined
first. Similarly, let ¢ denote their least common parent. Here we have two cases.

Case 1 is shown in Figure 5(a), where v is combined with an ancestor of v and w. In this case, we
can exchange v with w. Because p(v) > p(w), only the probabilities on the path from p to [increased,
others did not change. Since none of the signal probabilities is less than 0.5, this will reduce the total
switching activities, which is a contradiction.

Case 2 is shown in Figure 5(b), in which v is combined with another signal x such that p(z) < p(u)
and p(z) < p(v). Label the nodes on the path from u to ¢ by l1,1ls,...,[,;,, and the nodes on the path
from v to ¢ by r1,7r9,...,7r,. Since u,w and v, x are symmetric, without loss of generality, we can assume
that m > n. We can also assume p(r,) < p(l,), this is because that, if p(r,) > p(l,), we can simply

~-
N
\
|

Figure 5: Two nodes with maximum probabilities must be combined: (a) Case 1 (b) Case 2

exchange the two subtrees rooted at [, and r,. This can only increase the probabilities of I, 11,...,lxy
(nothing if m = n), and does not increase the whole switching activities. Furthermore, we can assume
p(ri) < p(l;), for 1 <4 < n. The reason is that, if p(r;) < p(l;) for all j +1 <1 <n but p(r;) > p(l;),
then r; and /; will have siblings 7% and [}, respectively, such that p(r}) < p(l;). Hence we can relabel
7j, 75 by x,v and I3, 1} by u,w.

Now consider exchanging v with w. Let a = p(w)/p(v) < 1, it only increases the signal probability
of I; from p(l;) to p(l;)/a for 1 <4 < m, and decreases the signal probability of r; from p(r;) to ap(r;) for
1 <j <n. By Lemma 1, the switching activities of [;,r; for 1 < i < n is decreased. Furthermore, since
their probabilities are greater than 0.5 and are increased, the switching activity of [;, for n+1 < j < 'm,
are also decreased. This is a contradiction to the optimality of the tree. 0

4 Optimality properties

In previous section, we identified two special cases of the low-power gate decomposition problem which
can be solved efficiently. In order to solve the general case, in this section, we will study the properties
of an optimal decomposition tree.

First, we have the following simple observations.

Lemma 2 On any path from o leaf to the root in a decomposition tree, the signal probabilities are
decreasing. Each subtree in an optimal decomposition tree is also optimal.

Proof: The first part is trivial because every signal probability is smaller than 1 and the probability
of an internal node is the product of those of its children.

If there is a subtree .S in an optimal tree which is not optimal, then S can be locally reconstructed
to get another S’ which has smaller switching activities. Since the root probabilities of the two subtrees
are equal, it will not change switching activities in other parts. This is a contradiction. [

Further analysis gives us the following result.

Lemma 3 In an optimal decomposition tree, all inputs whose probabilities are not greater than 0.5 must
form a separate subtree.

Proof: Suppose the conclusion is not true. Then there must be a node v having the following property:
its left subtree has an input x, its right subtree has a y, such that p(z),p(y) < 0.5, and at least one of

them, say the left one, has an input z with p(z) > 0.5. This is shown in Figure 6. Let [and r denote the
two children of v, from Lemma 2, we have p(l) < p(z) < 0.5 and p(r) < p(y) < 0.5. Now consider the
path from z to [in the left subtree. Since p(z) > 0.5 and p(l) < 0.5, there exist two succeed nodes u, w
on the path such that p(u) > 0.5 > p(w). Now exchange the subtree T rooted at r with the subtree T
rooted at u. Only those nodes on the path from w to I have their probabilities decreased. According
to Lemma 2, these probabilities are originally not greater than p(w) < 0.5. Therefore, the switching
activities are decreased, which is a contradiction. []

Figure 6: Inputs whose probabilities < 0.5 must form a subtree

Lemma 3 tells us, in order to construct an optimal decomposition tree, we can always combine the
signals whose probabilities are not greater than 0.5 into a subtree. By Lemma 2, this subtree needs to
be an optimal one. According to Theorem 1, it can be constructed by the Min-Huffman algorithm. In
fact, since the product of two smallest probabilities is still the smallest, in the Min-Huffman algorithm,
signals are combined sequentially from low probability to high probability.

Similar analysis gives the following lemma.

Lemma 4 In an optimal decomposition tree, the internal nodes whose probabilities are not greater than
0.5 form a path.

Proof: Suppose those nodes form a tree other than a path. Then we can find a node v with two children
[,r such that [,r are both internal nodes and p(I),p(r) < 0.5. Since the signals whose probabilities are
not greater than 0.5 must be combined sequentially in an optimal tree , one of the two subtrees rooted
at [and r, say the left one, must have an input z such that p(z) > 0.5. This give the same situation
as shown in Figure 6. Using the same exchanging technique in the proof of Lemma 3, we can get a
contradiction. []

In order to present the next optimality property, we need to define two labels for each node in an
optimal decomposition tree. For each v, let level(v) be the distance of v from the root. That is, the
root has level 0, its children have level 1, etc. For each v, if v is an internal node and p(v) < 0.5, then
let rank(v) = 0. Otherwise, let rank(v) be the minimum distance of v from any node in rank 0. The
property can be stated as follows.

Theorem 2 Let u and v be any two nodes in an optimal decomposition tree. If rank(u) = rank(v) # 0
and level(u) < level(v), then p(u) > p(v).

Proof: We prove by induction on the rank.

First, we prove the lemma is true for the nodes of rank 1. If it is not the case, then we must have
two nodes u and v such that rank(u) = rank(v) = 1 and level(u) = level(v) + 1 but p(u) > p(v). This
is illustrated by Figure 7, where rank(z) = rank(y) = 0 (which means p(z),p(y) < 0.5). Now consider
exchanging the subtrees rooted at u and v. Since the leaves of the subtree rooted at y are kept the
same, p(y) does not change. Only p(z) is changed and it is decreased. Since p(x) < 0.5, the switching
activity of x is also decreased. This means the new tree has smaller switching activities than the old
one, which is a contradiction.

Figure 7: Nodes of rank 1 have non-increasing probabilities with respect to their level

Suppose the lemma, is true for all ranks up to k. Now we will show that the probabilities of rank
k+1 are also non-increasing with respect to levels. If it is not the case, then there must exist two nodes
uy and v; such that rank(ui) = rank(vy) = k + 1 and level(uy) < level(vi) but p(u1) > p(v1). This
is illustrated by Figure 8, where z1, 9, ..., %y are nodes of rank 0. Now consider exchanging the two
subtrees rooted at u; and v;. With the same argument as in the base case, the probability of p(x,,)
does not change. The nodes whose probabilities are changed come from three paths: z;,zo,...,2m 1,
U, U3, ..., U, and va,vs, ..., v;. Because p(u1) > p(v1), the probabilities of z; and uj, for 1 <7 <m—1
and 2 < j < k, are decreased, but the probabilities of v;, for 2 < j < k, are increased. Since p(z;) < 0.5
for 1 < i < m—1, the switching activities of them are decreased. Based on the induction hypothesis, we
have p(u;) < p(v;) for 2 < i < k. Let @ = p(v1)/p(u1) < 1, we know that u; changes probability from
p(u;) to ap(u;) and v; changes probability from p(v;) to p(v;)/a for 2 < i < k. According to Lemma
1, the summation of their switching activities is also decreased. Because we assume the original tree is
optimal, this is a contradiction.

0

This theorem states that, in an optimal decomposition tree, for the nodes in the same rank other
than 0, the probabilities are non-increasing with respect to their levels. According to the definition, the
probability of each internal node in rank 1 is greater than 0.5. By Theorem 1, each subtree rooted at
rank 1 node can be constructed by the Max-Huffman algorithm. Therefore, it is possible to arrange each
subtree in such a way that, in each rank, the probabilities is non-decreasing from left to right. Under
these arrangements, an optimal decomposition tree can be visualized in Figure 9, where the nodes in
rank 0 form a path, and the probabilities in other ranks are non-decreasing along the arrows.

In order to prove our next optimality property, we will first prove the following lemma.

Lemma 5 Given a set of signals ui, uo, . .., ur and two constants ay and as such that 0 < a1 <1 < ao,
either
k k
> onp(ui) (1 — arp(ui)) < > plui)(1 — p(ui))
i=1 i=1

Figure 8: Nodes of rank k£ have non-increasing probabilities with respect to their levels

Figure 9: Probabilities are non-decreasing along the arrows in an optimal tree

or f i
> aop(ui) (1 — cop(ui)) < Y p(ui) (1 — p(ug).
i=1 i=1
Proof: We have
k k
> ap(ui) (1 — ap(u;)) — > plui) (1 — plus))
i=1 i=1
k k
= Y (ap(ui) — ®p(ui)®) = Y (p(ui) — p(u;)?)
i—1 i—1
k k
= (1-0*)> p(w)® —(1—a)) plu)
i—1 i—1

k

k
= (=) (L +a) Y plui)” =D plus))
i=1 i=1

If (1 —a)((14a1) X pu)? — X8 p(ug)) < 0, we are done. Otherwise, since 1 — a; > 0, we must

have (14 1) Y5, p(us)? — X5, p(u;) > 0. Therefore,

k k
(14 2) Y p(wi)* = plus)
i=1 i=1
k k
> (L+o)) plui)? = > plu;)
i=1 i=1
> 0
Since 1 — g < 0, this makes
k k
> aop(ui) (1 — azp(u;)) =Y p(ui) (1 — p(u;))
i=1 i=1
k k
= (1—a)((140a2) > p(u)* = plu;))
i=1 i=1
< 0

The following theorem gives another important property of an optimal decomposition tree.

Theorem 3 Let u and v be any siblings in an optimal decomposition tree such that 0.5 < p(u) < p(v),
there can not exist node y in the tree such that p(u) < p(y) < p(v).

Proof: Suppose there is a node y such that p(u) < p(y) < p(v). Given a node z such that p(z) > 0.5,
we will use root(z) to represent the ancestor of z whose rank is 1. According to Theorem 1, u,v,y can
not exist in the same subtree rooted at a node of rank 1, that is, root(u) = root(v) # root(y). Based on
whether y has a sibling whose probability is greater than 0.5, we have two cases.

Case 1: y has no such sibling. This means y = root(y) and rank(y) = 1. By Theorem 2, since
p(root(y)) = p(y) > p(u) > p(root(u)), we have level(root(y)) < level(root(u)). Denote the nodes on
the path from the parent of u and v to the sibling of y (whose probability is not greater than 0.5) by
U1, U2, ..., Ug, as shown in Figure 10. Let oy = p(y)/p(v) and as = p(y)/p(u), then 0 < o < 1 < .
Exchanging v with y will change the probability of u; from p(u;) to a1p(u;) for 1 < i < k; exchanging
u with y will change the probability from p(u;) to agp(u;) for 1 < i < k. According to Lemma 5, one of
them will decrease the switching activities. But this is a contradiction with the optimality of the tree.

Figure 10: Case 1 in proof of Theorem 3

10

Case 2: y has a sibling z whose probability is greater than 0.5. Without loss of generality, we can
assume level(root(y)) < level(root(u)) (the other case can be dealt with by simply exchanging u, v with
y,z). According to Theorem 2, because p(v) > p(y), we must have rank(u) > rank(y). As shown in
Figure 11, we can label the nodes on the path from the parent of y to root(y) by y1,vy2,. .., Ym. Similarly,
label the same number of nodes on the path starting from the parent of v by vy, vs, ..., vy. Furthermore,
also label the nodes on the path from the parent of v, to the sibling of y,,, by w1, use,...,u;. Based on
the probabilities of v,, and y,,, we have 3 cases here.

A\

Figure 11: Case 2 in proof of Theorem 3

Case 2.1: p(vy) > p(ym). Without loss of generality, we can assume that p(v;) > p(y;), V1 <i < m.
(This is because if p(v;) > p(y;) for j+1 < i < m but p(v;) < p(y;), then v;,y; will have siblings v, y",
respectively, such that p(v;) > p(y}). Therefore, we can relabel v;, v}, y;,y; by u,v,y,2.) Now consider
exchanging y with u. This will change the probabilities of v1,..., v y1, ..., Ym; u1,...,u; in Figure
11. Let a = p(u)/p(y) < 1, for all 1 < i < m, the probabilities of y; and v; will change from p(y;)
and p(v;) to ap(y;) and p(v;)/a, respectively. According to Lemma 1, the summation of their switching
activities is decreased. The exchanging also increases p(u;) to p(u;)/a for all 1 <4 < k. It must increase
their total switching activities, otherwise, we will have a contradiction. On the other hand, according to
Lemma 5, if this increasing of probabilities does increase the total switching activities of uy, ..., ug, then
decreasing them can decrease the switching activities. This means that exchanging the two subtrees
rooted at v,, and y,, will decrease switching activities of the whole tree, which is also a contradiction.

Case 2.2: p(vm) < p(ym). This case is very similar to case 2.1. We can also assume that p(v;) <
p(y;) for all 1 < i < m and show that by exchanging v and y the activities of v1,...,Vm; 91, Ym
decrease. The exchanging also decreases the probabilities of ui,...,u, by a factor of p(y)/p(v). If it
does not increase the activities of them, we get a contradiction. Otherwise, by Lemma 5, increasing the
probabilities of them will decrease the activities. This can be done by exchanging subtrees rooted at
Uy, and y,,, which also introduces a contradiction.

Case 2.3: p(v) = p(ym). Without loss of generality, we can assume that p(v;) = p(y;), V1 <i < m.
This is because if p(v;) # p(y;) we can relabel them and their siblings as u,v,y,z. Similarly, by
Lemma 1, we can show that either exchanging u,y or exchanging v,y can decrease the activities of
VlyeneyUmiYly-- - Ym- One of them will increase the probabilities of uy, ..., ux by a factor of p(y)/p(u),
and the other will decrease them by a factor of p(y)/p(v). According to Lemma 5, at lease one of them
will decrease the activities of uy,...,u;. Contradiction is unavoidable.

11

Base on the above analysis, the theorem is proved. []

5 Decomposition algorithms

In the previous section, we have derived some properties an optimal decomposition tree must have.
Since these properties are necessary conditions of an optimal tree, other trees which do not observe
them need not to be considered during the optimization process. This can reduce the search space and
help us to design an efficient algorithm for the low-power gate decomposition problem.

The following theorem combines all optimality properties given in previous section and is the basis
of our exact algorithm.

Theorem 4 Given n input signals 1,82, ..., Sy such that p(s1) < p(s2) ... < p(syn), there is an optimal
decomposition tree where s, either is combined with s, 1 or is a direct child of the root.

Proof: We have two cases based on p(s,_1).

Case 1. p(sp—1) < 0.5. We claim s, must be a direct child of the root in an optimal tree. Here we
have p(s;) < 0.5 for all 1 <i <n—1. If p(s,) < 0.5, according to Theorem 1, the optimal tree can be
constructed by the Min-Huffman algorithm and s,, will be a direct child of the root. On the other hand,
if p(sp) > 0.5, according to Lemma 3, signals s1, s9,...,$,—1 must form a separate subtree, which will
finally be combined with s,. This also means s, is a direct child of the root.

Case 2. p(sp—1) > 0.5. We show there is an optimal tree where s,, either is combined with s, 1
or is a direct child of the root. Denote the sibling of s, in an optimal tree by s. According to Lemma
2, we have p(s) < p(sp—1). If p(s) > 0.5 then it must be that p(s) = p(sp—1). Otherwise, we will have
0.5 < p(s) < p(sn—1) < p(sn), which contradicts with Theorem 3. But if p(s) = p(sp_1), we can always
exchange the subtree rooted at s with s,_; and get an optimal tree where s, is combined with s,,_1.
On the other hand, if p(s) < 0.5, then, let v be the parent of s and s,_1, we will have p(v) < 0.5. This
means rank(v) = 0 and hence rank(s,) = 1. Since p(s,) is the maximum, according to Theorem 2,
level(s,) must be the minimum. Therefore, level(s,) = 1, which means s,, is a direct child of the root.
0

In other words, the theorem says that there is always an optimal tree between the two configurations
shown in Figure 12. More specifically, if p(s,—1) < 0.5 it must be configuration I; otherwise, it can be
either configuration I or configuration II.

Figure 12: Two configurations of an optimal decomposition tree

12

Based on Theorem 4, we can design an exact algorithm for the low-power gate decomposition
problem as follows. Given n input signals, we first sort them according to their probabilities such that
p(s1) < p(s2)... < plsp). If p(sp—1) < 0.5, we construct configuration I; otherwise, we construct both
configurations I and IT and output the one with the minimum switching activities. According to Lemma,
2, the subgraphs 77 and 75 in Figure 12 must also be optimal. Since their input sizes are both only
n — 1, we can construct them recursively. This algorithm is called ExDecomp and its pseudo-code is
given in Figure 13.

The correctness of the algorithm comes directly from Theorem 4 and can be stated as the following
corollary.

Corollary 4.1 The ExDecomp algorithm ezactly solves the low-power gate decomposition problem.

Input: a set of signals S = {s1,...,5,}
such that p(s1) < ... < p(sp)
Output: a decomposition tree T’
ExDecomp(S)
{
if |S| =1
return sy;
T, = ExDecomp(S — {sn});
if (p(sn—l) < 0-5)
return combine(T1, sy,);
s = combine(s,_1, 8,);
Ty = ExDecomp(S + {s} — {sn—1,5n});
if (Esy(combine(T1, sp)) < Esy(T3))
return combine(T1, $y,);
else return T5;

Figure 13: Pseudo-code of ExDecomp

At each recursion in ExDecomp, we need to store the current configuration, which is upper
bounded by n. Since the recursion depth is at most 7, the space usage in the worst case is n2. Let T'(n)
represent the running time of ExDecomp on an instance of size n. It is easy to see that

T(n)=2T(n—1)+n.

This gives us T'(n) = O(n2"). Although in the worst case it is still need exponential time, compared
with the total of more than (2n — 1)"~! decomposition trees, it is efficient.

Besides the exact algorithm, the optimality properties can also be used to derive a set of efficient
heuristic algorithms. As we can see, the complexity of ExDecomp comes from the fact that it is not
known beforehand which configuration in Figure 12 will give the minimum switching activities. Trade

13

accuracy for speed, we can use heuristics to choose only one configuration at each recursion. This gives
us the algorithm scheme shown in Figure 14 which can be tuned into different heuristic algorithms based
on different decision criteria.

Input: a set of signals S = {s1,...,8,}
such that p(s1) < ... < p(sp)
Output: a decomposition tree T'
HeuDecomp(S)
{
if (p(sp—1) < 0.5 or choose configuration I) {
T, = HeuDecomp(S — {sn});
return combine(T1, $y,);
}
else {
s = combine(s,_1, 8,);
Ty = HeuDecomp(S + {s} — {sn—1, sn});
return 75;
}
}

Figure 14: Pseudo-code of HeuDecomp

The heuristic we used in our implementation can be described as follows. Since the structures of
Ty and T in Figure 12 are not known until we recursively construct them, we can not compare their
switching activities beforehand. But we can find that, for the two trees, except one leaf, all other n — 2
leaves are the same. Therefore, we can assume the difference between the internal switching activities of
T; and T3 is not too much. We also know p(r;) = p(r2). So the only concern comes from the difference
between vy and ve. Our decision criteria then is: if Fgy,(v1) < Egy(v2), choose configuration I, otherwise
choose configuration II.

Since only one configuration is chosen at each recursion in HeuDecomp, we need only keep one
copy of the tree structure, hence the space usage is only n. Implemented by the priority queue data
structure [1], the running time can also be upper bounded by O(nlogn), which is much faster than
the modified Huffman algorithm. Furthermore, since HeuDecomp is strongly based on the optimality
properties, its performance should be better than that of the modified Huffman algorithm. This is
supported by our experimental results.

6 Experimental results

We implement both the exact algorithm ExDecomp and the heuristic algorithm HeuDecomp in C++
on a Sun Sparc 5 workstation. Our experiments focus on two aspects: the running time of the exact
algorithm and the performance of the heuristic. In order to compare the performance of the heuristic,
we also implement the modified Huffman algorithm [7].

14

Table 1: Experimental results

ExDecomp Modified Huffman HeuDecomp

#input time(sec.) || #bad | MaxRatio | AvgRatio | #bad | MaxRatio | AvgRatio
) 0.0009 43 5.51% 0.76% 6 0.430% 0.010%
6 0.0014 66 5.59% 1.29% 6 0.187% 0.006%
7 0.0028 83 7.33% 2.30% 9 0.288% 0.008%
8 0.0057 89 11.31% 4.05% 9 0.268% 0.007%
9 0.0105 93 9.95% 5.02% 8 0.254% 0.008%
10 0.0187 93 14.87% 5.97%) 0.265% 0.005%
11 0.0424 96 14.61% 7.55% 1 0.108% 0.001%
12 0.0752 97 16.17% 8.45% 2 0.111% 0.002%
13 0.1377 100 19.41% 9.78% 0 0.000% 0.000%
14 0.3050 97 19.97% 9.83% 0 0.000% 0.000%
15 0.5465 100 20.44% 11.32% 0 0.000% 0.000%
16 1.1539 98 20.82% 11.09% 0 0.000% 0.000%
18 3.9232 99 25.23% 12.25% 0 0.000% 0.000%
20 14.2497 100 29.55% 12.32% 0 0.000% 0.000%

According to Lemma 3 and Theorem 1, the input signals whose probabilities are not greater than
0.5 can be easily combined into a subtree by the Min-Huffman algorithm. Therefore, the complexity
only depends on the number of signals whose probabilities are greater than 0.5. In our experiments, the
input signal probabilities are randomly generate, and based on the above reason, all signal probabilities
are generated to be greater than 0.5.

On each different input size ranging from 5 to 20, we randomly generated 100 instances. We run
ExDecomp, HeuDecomp and the modified Huffman algorithm on each of them. We compute the
average running time of ExDecomp on each input size. To measure the performance of HeuDecomp
and the modified Huffman algorithm, we compare their solutions with the optimal solution given by
ExDecomp. The number of non-optimal solutions is counted. For each instance I, let Opt(I) represent
the optimal solution, we use the ratio

_ S(I) - Opt(I)
B Opt(I)

to measure the performance of solution S(I). For each algorithm, the maximum and average ratios are
computed.

Based on the results reported in Table 1, we have the following conclusions. First, ExDecomp is
efficient in practice. For 20 input probabilities which are greater than 0.5, the average running time is
less than 15 seconds. In reality, usually only half of the input probabilities are greater than 0.5. This
means a problem with 40 inputs can be solved in less than 15 seconds. Second, the performance of
HeuDecomp is very good. Among all the 1400 solutions reported in Table 1, only 46 of them are not
optimal. Among these non-optimal solutions, the largest deviation from the optimal solution is only
0.43%. Finally, an interesting phenomenon is that, with the increasing of the input size, HeuDecomp
performs better and better. Starting from 13 inputs, all solutions given by HeuDecomp are optimal.
Based on this phenomenon and the fact that ExDecomp runs very fast when the input size is not too
large, we can use the following strategy for the low-power gate decomposition problem: if the input size
is not too large, use ExDecomp; otherwise, use HeuDecomp.

15

References

[1]
2]

3]

T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms. MIT Press, 1990.

D.E. Knuth, Fundamental Algorithms, Volume 1 of The Art of Computer Programming. Addison-
Wesley, 1968. Second edition, 1973.

D.A. Huffman, A Method for the Construction of Minimum Redundancy Codes. In Proceedings of
the IRE, volume 40, pages 1098-1101, Sept. 1952.

R. Murgai, R.K. Brayton, and A. Sangiovanni-Vincentelli, Decomposition of Logic Functions for
Minimum Transition Activity. Proceeding of the International Workshop on Low Power Design,
1994.

M. Pedram, Power Minimization in IC Design: Principles and Applications. ACM Trans. on Design
Automation of Electronic Systems, Jan., 1996.

V. Tiwari, P. Ashar, and S. Malik, Technology Mapping for Low Power. ACM/IEEE Design Au-
tomation Conference, 1993.

C.-Y. Tsui, M. Pedram, and A.M. Despain, Technology Decomposition and Mapping Targeting
Low Power Dissipation. ACM/IEEE Design Automation Conference, 1993.

Q. Wu, M. Pedram, and X. Wu, A Note on the Relationship Between Signal Probability and
Switching Activity. Asian and South Pacific Design Automation Conference, 1997.

16

