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e�cient, best-e�ort delivery service to large groups [6]. Weenvision that deployment of network applications requiringgroup communications will accelerate in coming years.While the technical issues of securing unicast commu-nications for client-server computing are fairly well under-stood, the technical issues of securing group communicationsare not. Yet group communications have a much greater ex-posure to security breaches than unicast communications. Inparticular, copies of a group communication packet traversemany more links than those of a unicast packet, thereby cre-ating more opportunity for tra�c interception. We believethat securing group communications (i.e., providing con�-dentiality, integrity, and authenticity of messages deliveredbetween group members) will become a critical issue of net-working in the near future.Conceptually, since every point-to-multipoint communi-cation can be represented as a set of point-to-point commu-nications, the current technology base for securing unicastcommunications can be extended in a straightforward man-ner to secure group communications [9, 10]. However, suchan extension is not scalable to large groups.For a more concrete illustration of this point, we outlinea typical procedure for securing unicast communications be-tween a client and a server. Initially, the client and servermutually authenticate each other using an authenticationprotocol or service; subsequently, a symmetric key is cre-ated and shared by them to be used for pairwise con�den-tial communications [4, 17, 19, 22]. This procedure can beextended to a group as follows: Let there be a trusted groupserver which is given membership information to exercisegroup access control. When a client wants to join the group,the client and group server mutually authenticate using anauthentication protocol. Having been authenticated and ac-cepted into the group, each member shares with the groupserver a key,1 to be called the member's individual key. Forgroup communications, the group server distributes to eachmember a group key to be shared by all members of thegroup.2For a group of n members, distributing the group keysecurely to all members requires n messages encrypted withindividual keys (a computation cost proportional to groupsize n). Each such message may be sent separately via uni-cast. Alternatively, the n messages may be sent as a com-bined message to all group members via multicast. Eitherway, there is a communication cost proportional to group1In this paper, key means a key from a symmetric cryptosystem,such as DES, unless explicitly stated otherwise.2It is easy to see that sharing a group key enables con�dentialgroup communications. In addition to con�dentiality, authenticityand integrity can be provided in group communications using stan-dard techniques such as digital signature and message digest. We willnot elaborate upon these techniques since the focus of this paper iskey management.1



size n (measured in terms of the number of messages or thesize of the combined message).Observe that for a point-to-point session, the costs ofsession establishment and key distribution are incurred justonce, at the beginning of the session. A group session, onthe other hand, may persist for a relatively long time withmembers joining and leaving the session. Consequently, thegroup key should be changed frequently. To achieve a highlevel of security, the group key should be changed after everyjoin and leave so that a former group member has no accessto current communications and a new member has no accessto previous communications.Consider a group server that creates a new group keyafter every join and leave. After a join, the new group keycan be sent via unicast to the new member (encrypted withits individual key) and via multicast to existing group mem-bers (encrypted with the previous group key). Thus, chang-ing the group key securely after a join is not too much work.After a leave, however, the previous group key can no longerbe used and the new group key must be encrypted for eachremaining group member using its individual key. Thus wesee that changing the group key securely after a leave in-curs computation and communication costs proportional ton, the same as initial group key distribution. That is, largegroups whose members join and leave frequently pose a scal-ability problem.The topic of secure group communications has been in-vestigated [1, 2, 8, 15]. Also the problem of how to dis-tribute a secret to a group of users has been addressed inthe cryptography literature [3, 5, 7, 18]. However, with theexception of [15], no one has addressed the need for frequentkey changes and the associated scalability problem for a verylarge group. The approach proposed in Iolus [15] to improvescalability is to decompose a large group of clients into manysubgroups and employ a hierarchy of group security agents.1.1 Our approachWe present in this paper a di�erent hierarchical approach toimprove scalability. Instead of a hierarchy of group securityagents, we employ a hierarchy of keys. A detailed compari-son of our approach and the Iolus approach [15] is given inSection 6.We begin by formalizing the notion of a secure group asa triple (U;K;R) where U denotes a set of users, K a setof keys, and R � U �K a user-key relation which speci�eskeys held by each user in U . In particular, each user is givena subset of keys which includes the user's individual key anda group key. We next illustrate how scalability of group keymanagement can be improved by organizing the keys in Kinto a hierarchy and giving users additional keys.Let there be a trusted group server responsible for groupaccess control and key management. In particular, the serversecurely distributes keys to group members and maintainsthe user-key relation.3 To illustrate our approach, con-sider the following simple example of a secure group withnine members partitioned into three subgroups, fu1; u2; u3g,fu4; u5; u6g, and fu7; u8; u9g. Each member is given threekeys, its individual key, a key for the entire group, and akey for its subgroup. Suppose that u1 leaves the group, theremaining eight members form a new secure group and re-quire a new group key; also, u2 and u3 form a new subgroupand require a new subgroup key. To send the new subgroup3In practice, such a server may be distributed or replicated toenhance reliability and performance.

key securely to u2 (u3), the server encrypts it with the indi-vidual key of u2 (u3). Subsequently, the server can send thenew group key securely to members of each subgroup by en-crypting it with the subgroup key. Thus by giving each userthree keys instead of two, the server performs �ve encryp-tions instead of eight. As a more general example, supposethe number n of users is a power of d, and the keys in Kare organized as the nodes of a full and balanced d-ary tree.When a user leaves the secure group, to distribute new keys,the server needs to perform approximately d logd(n) encryp-tions (rather than n � 1 encryptions).4 For a large group,say 100,000, the savings can be very substantial.1.2 Contributions of this paperWith a hierarchy of keys, there are many di�erent waysto construct rekey messages and securely distribute themto users. We investigate three rekeying strategies, user-oriented, key-oriented and group-oriented. We design andspecify join/leave protocols based upon these rekeying stra-tegies. For key-oriented and user-oriented rekeying, whichuse multiple rekey messages per join/leave, we present atechnique for signing multiple messages with a single digitalsignature operation. Compared to using one digital signa-ture per rekey message, the technique provides a tenfold re-duction in the average server processing time of a join/leave.The rekeying strategies and protocols are implemented ina prototype group key server we have built. We performedexperiments on two lightly loaded SGI Origin 200 machines,with the server running on one and up to 8,192 clients on theother. From measurement results, we show that our groupkey management service, using any of the rekeying strategieswith a key tree, is scalable; in particular, the average serverprocessing time per join/leave increases linearly with thelogarithm of group size. We found that the optimal key treedegree is around four. Group-oriented rekeying provides thebest performance of the three strategies on the server side,but is worst of the three on the client side. User-orientedrekeying has the best performance on the client side, butworst on the server side.The balance of this paper is organized as follows. InSection 2, we introduce key graphs as a method for speci-fying secure groups. In Section 3, we present protocols forusers to join and leave a secure group as well as the threerekeying strategies. In Section 4, we present a technique forsigning multiple rekey messages using a single digital sig-nature operation. Experiments and performance results arepresented in Section 5. A comparison of our approach andthe Iolus approach is given in Section 6. Our conclusionsare in Section 7.2 Secure GroupsA secure group is a triple (U;K;R) where� U is a �nite and nonempty set of users,� K is a �nite and nonempty set of keys, and� R is a binary relation between U and K, thatis, R � U � K, called the user-key relation ofthe secure group. User u has key k if and only if(u; k) is in R.4A similar observation was independently made in [20] at aboutthe same time as when this paper was �rst published as a technicalreport [21].2



Each secure group has a trusted group server responsible forgenerating and securely distributing keys in K to users inthe group.5 Speci�cally, the group server knows the user setU and the key set K, and maintains the user-key relationR. Every user in U has a key in K, called its individual key,which is shared only with the group server, and is used forpairwise con�dential communication with the group server.There is a group key in K, shared by the group server andall users in U . The group key can be used by each user tosend messages to the entire group con�dentially.2.1 Key graphsA key graph is a directed acyclic graph G with two typesof nodes, u-nodes representing users and k-nodes represent-ing keys. Each u-node has one or more outgoing edges butno incoming edge. Each k-node has one or more incomingedges. If a k-node has incoming edges only and no outgoingedge, then this k-node is called a root. (A key graph canhave multiple roots.)Given a key graph G, it speci�es a secure group (U;K;R)as follows:i. There is a one-to-one correspondence between Uand the set of u-nodes in G.ii. There is a one-to-one correspondence between Kand the set of k-nodes in G.iii. (u; k) is in R if and only if G has a directed pathfrom the u-node that corresponds to u to the k-node that corresponds to k.
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Figure 1: A key graph.As an example, the key graph in Figure 1 speci�es thefollowing secure group:U = fu1; u2; u3; u4gK = fk1; k2; k3; k4; k12; k234; k1234gR = f (u1; k1), (u1; k12), (u1; k1234),(u2; k2), (u2; k12), (u2; k234), (u2; k1234),(u3; k3), (u3; k234), (u3; k1234),(u4; k4), (u4; k234), (u4; k1234) g 2Associated with each secure group (U;K;R) are two func-tions, keyset() and userset (), de�ned as follows:keyset(u) = f k j (u; k) 2 R guserset (k) = f u j (u; k) 2 R gIntuitively, keyset(u) is the set of keys that are held by user5Note that individual keys may have been generated and securelydistributed by an authentication service and do not have to be gen-erated by the group server.

u in U , and userset (k) is the set of users that hold key kin K. For examples, referring to the key graph in Figure 1,we have keyset(u4) = fk4; k234; k1234g and userset (k234) =fu2; u3; u4g.We generalize the de�nition of function keyset() to anysubset U 0 of U , and function userset () to any subset K0 ofK, in a straighforward manner, i.e., keyset(U 0) is the set ofkeys each of which is held by at least one user in U 0, anduserset (K0) is the set of users each of which holds at leastone key in K0.When a user u leaves a secure group (U;K;R), everykey that has been held by u and shared by other usersin U should be changed. Let k be such a key. To re-place k, the server randomly generates a new key knew andsends it to every user in userset (k) except u. To do so se-curely, the server needs to �nd a subset K0 of keys suchthat userset (K0) = userset (k) � fug, and use keys in K0to encrypt knew. To minimize the work of rekeying, theserver would like to �nd a minimal size set K0. This sug-gests the following key-covering problem: Given a securegroup (U;K;R), and a subset S of U , �nd a minimum sizesubset K0 of K such that userset (K0) = S. Unfortunately,the key-covering problem in general is NP-hard [21].2.2 Special classes of key graphsWe next consider key graphs with special structures forwhich the key covering problem can be easily solved.Star: This is the special class of a secure group (U;K;R)where each user in U has two keys: its individual key and agroup key that is shared by every user in U .6Tree: This is the special class of a secure group (U;K;R)whose key graph G is a single-root tree. A tree key graph(or key tree) is speci�ed by two parameters.� The height h of the tree is the length (in numberof edges) of the longest directed path in the tree.� The degree d of the tree is the maximum numberof incoming edges of a node in the tree.Note that since the leaf node of each path is a u-node, eachuser in U has at most h keys. Also the key at the root of thetree is shared by every user in U , and serves as the groupkey. Lastly, it is easy to see that star is a special case oftree.Complete: This is the special class of a secure group(U;K;R), where for every nonempty subset S of U , thereis a key k in K such that userset (k) = S. Let n be thenumber of users in U . There are 2n � 1 keys in K, one foreach of the 2n � 1 nonempty subsets of U . Moreover, eachuser u in U has 2n�1 keys, one for each of the 2n�1 subsetsof U that contains u. Since U is a subset of U , there is a keyshared by every user in U which serves as the group key.The total number of keys held by the server and thenumber of keys held by a user are presented in Table 1 wheren is the size of U . In particular, in the case of a complete keygraph, each user needs to hold 2n�1 keys which is practicalonly for small n. Note that the number of keys in a keytree is dh�1d�1 � dd�1n when the tree is full and balanced (i.e.n = dh�1).6This is the base case where no additional keys are used to improvescalability of group key management.3



Class of key graph Star Tree CompleteTotal number of keys n+1 dd�1n 2n�1Number of keys per user 2 h 2n�1Table 1: Number of keys held by the server and by eachuser.3 Rekeying Strategies and ProtocolsA user u who wants to join (leave) a secure group sends a join(leave) request to the group server, denoted by s. For a joinrequest from user u, we assume that group access control isperformed by server s using an access control list provided bythe initiator of the secure group.7 A join request initiates anauthentication exchange between u and s, possibly with thehelp of an authentication server. If user u is not authorizedto join the group, server s sends a join-denied reply to u.If the join request is granted, we assume that the sessionkey distributed as a result of the authentication exchange[17, 22] will be used as the individual key ku of u. To simplifyprotocol speci�cations below, we use the following notations, u : authenticate u and distribute kuto represent the authentication exchange between server sand user u, and secure distribution of key ku to be sharedby u and s.After each join or leave, a new secure group is formed.Server s has to update the group's key graph by replacingthe keys of some existing k-nodes, deleting some k-nodes (inthe case of a leave), and adding some k-nodes (in the caseof a join). It then securely sends rekey messages containingnew group/subgroup keys to users of the new secure group.(A reliable message delivery system, for both unicast andmulticast, is assumed.) In protocol speci�cations below, wealso use the following notationx! y : zto denote� if y is a single user, the sending of message z fromx to y;� if y is a set of users, the sending of message z fromx to every user in y (via multicast or unicast).In the following subsections, we �rst present protocols forjoining and leaving a secure group speci�ed by a star keygraph. These protocols correspond to conventional rekey-ing procedures informally described in the Introduction [9,10]. We then consider secure groups speci�ed by tree keygraphs. With a hierarchy of group and subgroup keys, rekey-ing after a join/leave can be carried out in a variety ofways. We present three rekeying strategies, user-oriented,key-oriented, and group-oriented, as well as protocols forjoining and leaving a secure group.3.1 Joining a star key graphAfter granting a join request from user u, server s updatesthe key graph by creating a new u-node for u and a newk-node for ku, and attaching them to the root node. Server7The authorization function may be o�oaded to an authorizationserver. In this case, the authorization server provides an authorizeduser with a ticket to join the secure group [16, 23]. The user submitsthe ticket together with its join request to server s.

s also generates a new group key kU0 for the root node,encrypts it with the individual key ku of user u, and sendsthe encrypted new group key to u. To notify other usersof the new group key, server s encrypts the new group keykU0 with the old group key kU , and then multicasts theencrypted new group key to every user in the group. (SeeFigure 2.)(1) u! s : join request(2) s, u : authenticate u and distribute ku(3) s : randomly generate a new group key kU0(4) s! u : fkU0gku(5) s! U : fkU0gkUFigure 2: Join protocol for a star key graph.
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u4 leavesFigure 3: Star key graphs before and after a join (leave).For example, as shown in Figure 3, suppose user u4 wantsto join the left secure group in the �gure, and it is allowedto join. After server s changes the group key from k123 to anew key k1234, server s needs to send out the following tworekey messages.s! fu1; u2; u3g : fk1234gk123s! u4 : fk1234gk4For clarity of presentation, we have assumed that rekeymessages contain new keys only and secure distributionmeans that the new keys are encrypted just for con�den-tiality. In our prototype implementation, rekey messageshave additional �elds, such as, subgroup labels for new keys,server digital signature, message integrity check, timestamp,etc. (See [21] for rekey message format.)3.2 Leaving a star key graph(1) u! s : f leave-request gku(2) s! u : f leave-granted gku(3) s : randomly generate a new group key kU0(4) for each user v in U except user u dos! v : fkU0gkvFigure 4: Leave protocol for a star key graph.After granting a leave request from user u, server s up-dates the key graph by deleting the u-node for user u andthe k-node for its individual key ku from the key graph.Server s generates a new group key kU0 for the new securegroup without u, encrypts it with the individual key of eachremaining user, and unicasts the encrypted new group keyto the user. (See Figure 4.)4
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Figure 5: Key trees before and after a join (leave).3.3 Joining a tree key graphAfter granting a join request from u, server s creates a newu-node for user u and a new k-node for its individual key ku.Server s �nds an existing k-node (called the joining point forthis join request) in the key tree and attaches k-node ku tothe joining point as its child.To prevent the joining user from accessing past commu-nications, all keys along the path from the joining point tothe root node need to be changed. After generating newkeys for these nodes, server s needs to securely distributethem to the existing users as well as the joining user. Forexample, as shown in Figure 5, suppose u9 is granted tojoin the upper key graph in the �gure. The joining point isk-node k78 in the key graph, and the key of this k-node ischanged to k789 in the new key graph below. Moreover, thegroup key at the root is changed from k1�8 to k1�9. Usersu1; : : : ; u6 only need the new group key k1�9, while usersu7; u8, and u9 need the new group key k1�9 as well as thenew key k789 to be shared by them.To securely distribute the new keys to the users, theserver constructs and sends rekey messages to the users. Arekey message contains one or more encrypted new key(s),and a user needs to decrypt it with appropriate keys in or-der to get the new keys. We next present three di�erentapproaches to construct and send rekey messages.User-oriented rekeying. Consider each user and the subsetof new keys it needs. The idea of user-oriented rekeyingis that for each user, the server constructs a rekey messagethat contains precisely the new keys needed by the user, andencrypts them using a key held by the user.For example, as shown in Figure 5, for user u9 to jointhe upper secure group in the �gure, server s needs to send

the following three rekey messages.s! fu1; : : : ; u6g : fk1�9gk1�8s! fu7; u8g : fk1�9; k789gk78s! u9 : fk1�9; k789gk9Note that users u1; : : : ; u6 need to get the new group keyk1�9. There is no single key that is shared only by u1; : : : ; u6.However, key k1�8 can be used to encrypt the new key k1�9for u1; : : : ; u6 without security breach since users u7 and u8will also get this new group key from another rekey message.User-oriented rekey messages can be constructed as fol-lows. For each k-node x whose key has been changed, sayfrom k to k0, the server constructs a rekey message by en-crypting the new keys of k-node x and all its ancestors (uptothe root) by the old key k. This rekey message is then sentto the subset of users that need precisely these new keys. Ei-ther unicast or subgroup multicast may be used.8 Moreover,one rekey message is sent to the joining user which containsall of the new keys encrypted by the individual key of thejoining user.This approach needs h rekey messages. Counting thenumber of keys encrypted, the encryption cost for the serveris given by1 + 2 + : : :+ h� 1 + h� 1 = h(h+1)2 � 1.Key-oriented rekeying. In this approach, each new key isencrypted individually (except keys for the joining user).For each k-node x whose key has been changed, say from kto k0, the server constructs two rekey messages. First, theserver encrypts the new key k0 with the old key k, and sendsit to userset (k) which is the set of users that share k. All ofthe original users that need the new key k0 can get it fromthis rekey message. The other rekey message contains thenew key k0 encrypted by the individual key of the joininguser, and is sent to the joining user.As described, a user may have to get multiple rekey mes-sages in order to get all the new keys it needs. For example,as shown in Figure 5, for user u9 to join the upper securegroup in the �gure, server s needs to send the following fourrekey messages. Note that users u7; u8; and u9 need to gettwo rekey messages each.s! fu1; : : : ; u8g : fk1�9gk1�8s! u9 : fk1�9gk9s! fu7; u8g : fk789gk78s! u9 : fk789gk9Compared to user-oriented rekeying, the above approachreduces the encryption cost of the server from h(h+1)2 �1 to2(h�1), but it requires 2(h�1) rekey messages instead of h.To reduce the number of rekey messages, all of the rekeymessages for a particular user can be combined and sent asone message. Thus, server s can send the following threerekey messages instead of the four rekey messages shownabove.s! fu1; : : : ; u6g : fk1�9gk1�8s! fu7; u8g : fk1�9gk1�8 ; fk789gk78s! u9 : fk1�9; k789gk9The join protocol based upon this rekeying strategy ispresented in Figure 6. Steps (4) and (5) in Figure 6 spec-ify how the combined rekey messages are constructed anddistributed by server s.Using combined rekey messages, the number of rekeymessages for key-oriented rekeying is h (same as user-8A rekey message can be sent via multicast to a subgroup if amulticast address has been established for the subgroup in addition tothe multicast address for the entire group. Alternatively, the methodin [13] may be used in lieu of allocating a large number of multicastaddresses for subgroups. See Section 7 for more discussion.5



oriented rekeying) while the encryption cost is 2(h � 1).From this analysis, key-oriented rekeying is clearly betterfor the server than user-oriented rekeying. (This conclusionis con�rmed by measurement results presented in Section 5.)(1) u! s : join request(2) s, u : authenticate u and distribute ku(3) s : �nd a joining point and attach ku,let xj denote the joining point, x0 the root,and xi�1 the parent of xi for i = 1; : : : ; j,let Kj+1 denote ku,and K0; : : : ; Kj the old keys of x0; : : : ; xj ,randomly generate new keys K00; : : : ; K0j(4) for i = 0 upto j dolet M = fK00gK0 ; : : : ; fK0igKis! (userset (Ki)� userset (Ki+1)) : M(5) s! u : fK00; : : : ; K0jgkuFigure 6: Join protocol for a tree key graph (key-orientedrekeying).Group-oriented rekeying. In key-oriented rekeying, eachnew key is encrypted individually (except keys for the join-ing user). The server constructs multiple rekey messages,each tailored to the needs of a subgroup. Speci�cally, theusers of a subgroup receive a rekey message containing pre-cisely the new keys each needs.An alternative approach, called group-oriented, is for theserver to construct a single rekey message containing all newkeys. This rekey message is then multicasted to the en-tire group. Clearly such a rekey message is relatively largeand contains information not needed by individual users.However, scalability is not a concern because the messagesize is O(logd(n)) for group size n and key tree degree d.The group-oriented approach has several advantages overkey-oriented and user-oriented rekeying. First, there is noneed for subgroup multicast. Second, with fewer rekey mes-sages, the server's per rekey message overheads are reduced.Third, the total number of bytes transmitted by the serverper join/leave request is less than those of key-oriented anduser-oriented rekeying which duplicate information in rekeymessages. (See Section 5 and Section 7 for a more thoroughdiscussion on performance comparisons.)For example, as shown in Figure 5, for user u9 to jointhe upper secure group in the �gure, server s needs to sendthe following two rekey messages; one is multicasted to thegroup, and the other is unicasted to the joining user.s! fu1; : : : ; u8g : fk1�9gk1�8 ; fk789gk78s! u9 : fk1�9; k789gk9The join protocol based upon group-oriented rekeying ispresented in Figure 7. This approach reduces the numberof rekey messages to one multicast message and one unicastmessage, while maintaining the encryption cost at 2(h� 1)(same as key-oriented rekeying).(1) - (3) (same as Figure 6)(4) s! userset (K0) : fK00gK0 ; : : : ; fK0jgKj(5) s! u : fK00; : : : ; K0jgkuFigure 7: Join protocol for a tree key graph (group-orientedrekeying).

3.4 Leaving a tree key graphAfter granting a leave request from user u, server s updatesthe key graph by deleting the u-node for user u and the k-node for its individual key from the key graph. The parentof the k-node for its individual key is called the leaving point.To prevent the leaving user from accessing future com-munications, all keys along the path from the leaving pointto the root node need to be changed. After generating newkeys for these k-nodes, server s needs to securely distributethem to the remaining users. For example, as shown in Fig-ure 5, suppose u9 is granted to leave the lower key graph inthe �gure. The leaving point is the k-node for k789 in thekey graph, and the key of this k-node is changed to k78 inthe new key graph above. Moreover, the group key is alsochanged from k1�9 to k1�8. Users u1; : : : ; u6 only need toknow the new group key k1�8. Users u7 and u8 need toknow the new group key k1�8 and the new key k78 sharedby them.To securely distribute the new keys to users after a leave,we revisit the three rekeying strategies.User-oriented rekeying In this approach, each user gets arekey message in which all the new keys it needs are en-crypted using a key it holds. For example, as shown inFigure 5, for user u9 to leave the lower secure group in the�gure, server s needs to send the following four rekey mes-sages.s! fu1; u2; u3g : fk1�8gk123s! fu4; u5; u6g : fk1�8gk456s! u7 : fk1�8; k78gk7s! u8 : fk1�8; k78gk8User-oriented rekey messages for a leave can be con-structed as follows. For each k-node x whose key has beenchanged, say from k to k0, and for each unchanged child yof x, the server constructs a rekey message by encryptingthe new keys of k-node x and all its ancestors (upto theroot) by the key K of k-node y. This rekey message is thenmulticasted to userset (K).This approach requires (d � 1)(h � 1) rekey messages.The encryption cost for the server is given by(d� 1)(1 + 2 + : : : + h� 1) = (d�1)h(h�1)2 .Key-oriented rekeying In this approach, each new key isencrypted individually. For example, as shown in Figure 5,for user u9 to leave the lower secure group in the �gure,server s needs to send the following four rekey messages.s! fu1; u2; u3g : fk1�8gk123s! fu4; u5; u6g : fk1�8gk456s! u7 : fk1�8gk78 ; fk78gk7s! u8 : fk1�8gk78 ; fk78gk8The leave protocol based upon key-oriented rekeying ispresented in Figure 8. Step (4) in Figure 8 speci�es how therekey messages are constructed and distributed to users.Note that by storing encrypted new keys for use in dif-ferent rekey messages, the encryption cost of this approachis d(h � 1), which is much less than that of user-orientedrekeying. The number of rekey messages is (d � 1)(h � 1),same as user-oriented rekeying.Group-oriented rekeying. A single rekey message is con-structed containing all new keys. For example, as shown inFigure 5, for user u9 to leave the lower secure group in the�gure, server s needs to send the following rekey message:6



(1) u! s : f leave-request gku(2) s! u : f leave-granted gku(3) s : �nd the leaving point (the parent of ku),remove ku from the tree,let xj+1 denote the deleted k-node for ku,xj the leaving point, x0 the root,and xi�1 the parent of xi for i = 1; : : : ; j,randomly generate keys K00; : : : ; K0jas the new keys of x0; : : : ; xj(4) for i = 0 upto j dofor each child y of xi dolet K denote the key at k-node yif y 6= xi+1 then dolet M = fK0igK ; fK0i�1gK0i ; : : : ; fK00gK01s! userset (K) : MFigure 8: Leave protocol for a tree key graph (key-orientedrekeying).let L0 denote fk1�8gk123 ; fk1�8gk456 ; fk1�8gk78let L1 denote fk78gk7 ; fk78gk8s! fu1; : : : ; u8g : L0; L1Note that for a leave, this single rekey message is aboutd times bigger than the rekey message for a join, where d isthe average degree of a k-node.The leave protocol based upon group-oriented rekeyingis presented in Figure 9. This approach uses only one rekeymessage which is multicasted to the entire group, and theencryption cost is d(h� 1), same as key-oriented rekeying.(1) - (3) (same as Figure 8)(4) for i = 0 upto j dolet fz1; : : : ; zrg be the set of the children of xilet J1; : : : ; Jr denote the keys at z1; : : : ; zrlet Li denote fK0igJ1 ; : : : ; fK0igJrs! userset (K00) : L0; : : : ; LjFigure 9: Leave protocol for a tree key graph (group-orientedrekeying).3.5 Cost of encryptions and decryptionsAn approximate measure of the computational costs of theserver and users is the number of key encryptions and de-cryptions required by a join/leave operation. Let n be thenumber of users in a secure group. For each join/leave op-eration, the user that requests the operation is called therequesting user, and the other users in the group are non-requesting users. For a join/leave operation, we tabulate thecost of a requesting user in Table 2(a), the cost of a non-requesting user in Table 2(b), and the cost of the server inTable 2(c). These costs are from the protocols describedabove for star and tree key graphs, and from [21] for com-plete key graphs. (Key-oriented or group-oriented rekeyingis assumed for tree key graphs.)For a key tree, recall that d and h denote the degreeand height of the tree respectively. In this case, for a non-requesting user u, the average cost of u for a join or a leaveis less than dd�1 which is independent of the size of the tree(derivation in [21]).Assuming that the number of join operations is the sameas the number of leave operations, the average costs peroperation are tabulated in Table 3 for the server and a userin the group.

(a) the requesting userStar Tree Completejoin 1 h�1 2nleave 0 0 0(b) a non-requesting userStar Tree Completejoin 1 dd�1 2n�1leave 1 dd�1 0(c) the serverStar Tree Completejoin 2 2(h�1) 2n+1leave n�1 d(h�1) 0Table 2: Cost of a join/leave operation.cost Star Tree Completecost of the server n=2 (d+ 2)(h� 1)=2 2ncost of a user 1 d=(d� 1) 2nTable 3: Average cost per operation.From Table 3, it is obvious that complete key graphsshould not be used. On the other hand, scalable group keymanagement can be achieved by using tree key graphs. Notethat for a full and balanced d-ary tree, the average servercost is (d+2)(h� 1)=2 = (d+2)(logd(n))=2. However, eachuser has to do slightly more work (from 1 to dd�1 ). For d = 4,a user needs to do 1:33 decryptions on the average insteadof one. (It can be shown that the server cost is minimizedfor d = 4, i.e., the optimal degree of key trees is four.)4 Technique for Signing Rekey MessagesIn our join/leave protocols, each rekey message contains oneor more new keys. Each new key, destined for a set of users,is encrypted by a key known only to these users and theserver. It is possible for a user to masquerade as the serverand send out rekey messages to other users. Thus if userscannot be trusted, then each rekey message should be digi-tally signed by the server.We note that a digital signature operation is around twoorders of magnitude slower than a key encryption using DES.For this reason, it is highly desirable to reduce the number ofdigital signature operations required per join/leave. If eachrekey message is signed individually, then group-orientedrekeying, using just one rekey message per join/leave, wouldbe far superior to key-oriented (user-oriented) rekeying,which uses many rekey messages per join/leave.Consider m rekey messages, M1; : : : ;Mm, with messagedigests, di = h(Mi) for i = 1; : : : ;m, where h() is a securemessage digest function such as MD5. The standard way toprovide authenticity is for the server to sign each messagedigest (with its private key) and send the signed messagedigest together with the message. This would require mdigital signature operations for m messages.We next describe a technique, implemented in our pro-totype key server, for signing a set of messages using justa single digital signature operation. The technique is basedupon a scheme proposed by Merkle [14].Suppose there are four messages with message digestsd1; d2; d3, and d4. Construct message D12 containing d1and d2, and compute message digest d12 = h(D12). Simi-larly, construct message D34 containing d3 and d4, and com-pute message digest d34 = h(D34). Then construct message7


