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Abstract

Many emerging applications (e.g., teleconference, real-time
information services, pay per view, distributed interactive
simulation, and collaborative work) are based upon a group
communications model, i.e., they require packet delivery
from one or more authorized senders to a very large number
of authorized receivers. As a result, securing group commu-
nications (i.e., providing confidentiality, integrity, and au-
thenticity of messages delivered between group members)
will become a critical networking issue.

In this paper, we present a novel solution to the scal-
ability problem of group/multicast key management. We
formalize the notion of a secure group as a triple (U, K, R)
where U denotes a set of users, K a set of keys held by the
users, and R a user-key relation. We then introduce key
graphs to specify secure groups. For a special class of key
graphs, we present three strategies for securely distribut-
ing rekey messages after a join/leave, and specify protocols
for joining and leaving a secure group. The rekeying strate-
gies and join/leave protocols are implemented in a prototype
group key server we have built. We present measurement
results from experiments and discuss performance compar-
isons. We show that our group key management service, us-
ing any of the three rekeying strategies, is scalable to large
groups with frequent joins and leaves. In particular, the
average measured processing time per join/leave increases
linearly with the logarithm of group size.

1 Introduction

Most network applications are based upon the client-server
paradigm and make use of unicast (or point-to-point) packet
delivery. Many emerging applications (e.g., teleconference,
real-time information services, pay per view, distributed in-
teractive simulation, and collaborative work), on the other
hand, are based upon a group communications model. That
is, they require packet delivery from one or more authorized
sender(s) to a large number of authorized receivers. In the
Internet, multicast has been used successfully to provide an
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efficient, best-effort delivery service to large groups [6]. We
envision that deployment of network applications requiring
group communications will accelerate in coming years.

While the technical issues of securing unicast commu-
nications for client-server computing are fairly well under-
stood, the technical issues of securing group communications
are not. Yet group communications have a much greater ex-
posure to security breaches than unicast communications. In
particular, copies of a group communication packet traverse
many more links than those of a unicast packet, thereby cre-
ating more opportunity for traffic interception. We believe
that securing group communications (i.e., providing confi-
dentiality, integrity, and authenticity of messages delivered
between group members) will become a critical issue of net-
working in the near future.

Conceptually, since every point-to-multipoint communi-
cation can be represented as a set of point-to-point commu-
nications, the current technology base for securing unicast
communications can be extended in a straightforward man-
ner to secure group communications [9, 10]. However, such
an extension is not scalable to large groups.

For a more concrete illustration of this point, we outline
a typical procedure for securing unicast communications be-
tween a client and a server. Initially, the client and server
mutually authenticate each other using an authentication
protocol or service; subsequently, a symmetric key is cre-
ated and shared by them to be used for pairwise confiden-
tial communications [4, 17, 19, 22]. This procedure can be
extended to a group as follows: Let there be a trusted group
server which is given membership information to exercise
group access control. When a client wants to join the group,
the client and group server mutually authenticate using an
authentication protocol. Having been authenticated and ac-
cepted into the group, each member shares with the group
server a key,' to be called the member’s individual key. For
group communications, the group server distributes to each
member a group key to be shared by all members of the
group.?

For a group of n members, distributing the group key
securely to all members requires n messages encrypted with
individual keys (a computation cost proportional to group
size n). Each such message may be sent separately via uni-
cast. Alternatively, the n messages may be sent as a com-
bined message to all group members via multicast. Either
way, there is a communication cost proportional to group

In this paper, key means a key from a symmetric cryptosystem,
such as DES, unless explicitly stated otherwise.

2t is easy to see that sharing a group key enables confidential
group communications. In addition to confidentiality, authenticity
and integrity can be provided in group communications using stan-
dard techniques such as digital signature and message digest. We will
not elaborate upon these techniques since the focus of this paper is
key management.



size n (measured in terms of the number of messages or the
size of the combined message).

Observe that for a point-to-point session, the costs of
session establishment and key distribution are incurred just
once, at the beginning of the session. A group session, on
the other hand, may persist for a relatively long time with
members joining and leaving the session. Consequently, the
group key should be changed frequently. To achieve a high
level of security, the group key should be changed after every
join and leave so that a former group member has no access
to current communications and a new member has no access
to previous communications.

Consider a group server that creates a new group key
after every join and leave. After a join, the new group key
can be sent via unicast to the new member (encrypted with
its individual key) and via multicast to existing group mem-
bers (encrypted with the previous group key). Thus, chang-
ing the group key securely after a join is not too much work.
After a leave, however, the previous group key can no longer
be used and the new group key must be encrypted for each
remaining group member using its individual key. Thus we
see that changing the group key securely after a leave in-
curs computation and communication costs proportional to
n, the same as initial group key distribution. That is, large
groups whose members join and leave frequently pose a scal-
ability problem.

The topic of secure group communications has been in-
vestigated [1, 2, 8, 15]. Also the problem of how to dis-
tribute a secret to a group of users has been addressed in
the cryptography literature [3, 5, 7, 18]. However, with the
exception of [15], no one has addressed the need for frequent
key changes and the associated scalability problem for a very
large group. The approach proposed in Iolus [15] to improve
scalability is to decompose a large group of clients into many
subgroups and employ a hierarchy of group security agents.

1.1 Our approach

We present in this paper a different hierarchical approach to
improve scalability. Instead of a hierarchy of group security
agents, we employ a hierarchy of keys. A detailed compari-
son of our approach and the Iolus approach [15] is given in
Section 6.

We begin by formalizing the notion of a secure group as
a triple (U, K, R) where U denotes a set of users, K a set
of keys, and R C U x K a user-key relation which specifies
keys held by each user in U. In particular, each user is given
a subset of keys which includes the user’s individual key and
a group key. We next illustrate how scalability of group key
management can be improved by organizing the keys in K
into a hierarchy and giving users additional keys.

Let there be a trusted group server responsible for group
access control and key management. In particular, the server
securely distributes keys to group members and maintains
the user-key relation.® To illustrate our approach, con-
sider the following simple example of a secure group with
nine members partitioned into three subgroups, {u1, uz, us},
{u4,us,us}, and {ur,us,ug}. Each member is given three
keys, its individual key, a key for the entire group, and a
key for its subgroup. Suppose that u; leaves the group, the
remaining eight members form a new secure group and re-
quire a new group key; also, us and us form a new subgroup
and require a new subgroup key. To send the new subgroup

3In practice, such a server may be distributed or replicated to
enhance reliability and performance.

key securely to uz (us), the server encrypts it with the indi-
vidual key of uz (us). Subsequently, the server can send the
new group key securely to members of each subgroup by en-
crypting it with the subgroup key. Thus by giving each user
three keys instead of two, the server performs five encryp-
tions instead of eight. As a more general example, suppose
the number n of users is a power of d, and the keys in K
are organized as the nodes of a full and balanced d-ary tree.
When a user leaves the secure group, to distribute new keys,
the server needs to perform approximately dlog,(n) encryp-
tions (rather than n — 1 encryptions).* For a large group,
say 100,000, the savings can be very substantial.

1.2 Contributions of this paper

With a hierarchy of keys, there are many different ways
to construct rekey messages and securely distribute them
to users. We investigate three rekeying strategies, user-
oriented, key-oriented and group-oriented. We design and
specify join/leave protocols based upon these rekeying stra-
tegies. For key-oriented and user-oriented rekeying, which
use multiple rekey messages per join/leave, we present a
technique for signing multiple messages with a single digital
signature operation. Compared to using one digital signa-
ture per rekey message, the technique provides a tenfold re-
duction in the average server processing time of a join/leave.

The rekeying strategies and protocols are implemented in
a prototype group key server we have built. We performed
experiments on two lightly loaded SGI Origin 200 machines,
with the server running on one and up to 8,192 clients on the
other. From measurement results, we show that our group
key management service, using any of the rekeying strategies
with a key tree, is scalable; in particular, the average server
processing time per join/leave increases linearly with the
logarithm of group size. We found that the optimal key tree
degree is around four. Group-oriented rekeying provides the
best performance of the three strategies on the server side,
but is worst of the three on the client side. User-oriented
rekeying has the best performance on the client side, but
worst on the server side.

The balance of this paper is organized as follows. In
Section 2, we introduce key graphs as a method for speci-
fying secure groups. In Section 3, we present protocols for
users to join and leave a secure group as well as the three
rekeying strategies. In Section 4, we present a technique for
signing multiple rekey messages using a single digital sig-
nature operation. Experiments and performance results are
presented in Section 5. A comparison of our approach and
the Iolus approach is given in Section 6. Our conclusions
are in Section 7.

2 Secure Groups
A secure group is a triple (U, K, R) where
e U is a finite and nonempty set of users,
e K is a finite and nonempty set of keys, and

e R is a binary relation between U and K, that
is, R C U x K, called the user-key relation of
the secure group. User w has key k if and only if
(u, k) is in R.

%A similar observation was independently made in [20] at about
the same time as when this paper was first published as a technical
report [21].



Each secure group has a trusted group server responsible for
generating and securely distributing keys in K to users in
the group.® Specifically, the group server knows the user set
U and the key set K, and maintains the user-key relation
R. Every user in U has a key in K, called its individual key,
which is shared only with the group server, and is used for
pairwise confidential communication with the group server.
There is a group key in K, shared by the group server and
all users in U. The group key can be used by each user to
send messages to the entire group confidentially.

2.1 Key graphs

A key graph is a directed acyclic graph G with two types
of nodes, u-nodes representing users and k-nodes represent-
ing keys. Each u-node has one or more outgoing edges but
no incoming edge. Each k-node has one or more incoming
edges. If a k-node has incoming edges only and no outgoing
edge, then this k-node is called a root. (A key graph can
have multiple roots.)

Given a key graph G, it specifies a secure group (U, K, R)
as follows:

i. There is a one-to-one correspondence between U
and the set of u-nodes in G.

ii. There is a one-to-one correspondence between K
and the set of k-nodes in G.

iii. (u,k) isin R if and only if G has a directed path
from the u-node that corresponds to u to the k-
node that corresponds to k.

k1234
B RREREEEEEEEEEEEE -, k-nodes

k12 Q k234

g/g
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Figure 1: A key graph.

As an example, the key graph in Figure 1 specifies the
following secure group:

U = {u1,uz,us,us}

K = {ki,k2, k3, ka, k12, ko34, k1234 }

R:{ (ulakl)a (Ul,klz), (U1,k1234),
(uz,kz2), (uz,ki2), (uz2, k2sa), (u2,k1234),
(us, k3), (us,kasa), (us,k1234),
(u4,ks), (us,kassa), (ua,k1234) } a

Associated with each secure group (U, K, R) are two func-
tions, keyset() and userset(), defined as follows:
keyset(u) ={ k| (u,k) € R}
userset(k) ={ v | (u,k) € R}
Intuitively, keyset(u) is the set of keys that are held by user

5Note that individual keys may have been generated and securely
distributed by an authentication service and do not have to be gen-
erated by the group server.

w in U, and userset(k) is the set of users that hold key k
in K. For examples, referring to the key graph in Figure 1,
we have keyset(us) = {ka, k23a, k1234} and userset(kass) =
{UQ, us, U4}.

We generalize the definition of function keyset() to any
subset U’ of U, and function userset() to any subset K' of
K, in a straighforward manner, i.e., keyset(U’) is the set of
keys each of which is held by at least one user in U’, and
userset(K') is the set of users each of which holds at least
one key in K'.

When a user u leaves a secure group (U, K, R), every
key that has been held by w and shared by other users
in U should be changed. Let k be such a key. To re-
place k, the server randomly generates a new key kynew and
sends it to every user in userset(k) except u. To do so se-
curely, the server needs to find a subset K' of keys such
that userset(K') = userset(k) — {u}, and use keys in K’
to encrypt kpew. To minimize the work of rekeying, the
server would like to find a minimal size set K'. This sug-
gests the following key-covering problem: Given a secure
group (U K, R), and a subset S of U, find a minimum size
subset K’ of K such that userset (K ) S. Unfortunately,
the key-covering problem in general is NP-hard [21].

2.2 Special classes of key graphs

We next consider key graphs with special structures for
which the key covering problem can be easily solved.

Star: This is the special class of a secure group (U, K, R)
where each user in U has two keys: its individual key and a
group key that is shared by every user in U.°

Tree: This is the special class of a secure group (U, K, R)
whose key graph G is a single-root tree. A tree key graph
(or key tree) is specified by two parameters.

e The height h of the tree is the length (in number
of edges) of the longest directed path in the tree.

e The degree d of the tree is the maximum number
of incoming edges of a node in the tree.

Note that since the leaf node of each path is a u-node, each
user in U has at most h keys. Also the key at the root of the
tree is shared by every user in U, and serves as the group
key. Lastly, it is easy to see that star is a special case of
tree.

Complete: This is the special class of a secure group
(U, K, R), where for every nonempty subset S of U, there
is a key k in K such that userset(k) = S. Let n be the
number of users in U. There are 2" — 1 keys in K, one for
each of the 2" — 1 nonempty subsets of U. Moreover, each
user u in U has 2"~ keys, one for each of the 2"~ ' subsets
of U that contains u. Since U is a subset of U, there is a key
shared by every user in U which serves as the group key.

The total number of keys held by the server and the
number of keys held by a user are presented in Table 1 where
n is the size of U. In particular, in the case of a complete key
graph, each user needs to hold 2" ! keys which is practical

only for small n. Note that the number of keys in a key
tree is % = %n when the tree is full and balanced (i.e.
n=d"1).

SThis is the base case where no additional keys are used to improve
scalability of group key management.



Class of key graph Star Tree Complete
Total number of keys n+1 d%"ln 2" -1
Number of keys per user 2 h gn—t

Table 1: Number of keys held by the server and by each
user.

3 Rekeying Strategies and Protocols

A user u who wants to join (leave) a secure group sends a join
(leave) request to the group server, denoted by s. For a join
request from user u, we assume that group access control is
performed by server s using an access control list provided by
the initiator of the secure group.” A join request initiates an
authentication exchange between u and s, possibly with the
help of an authentication server. If user u is not authorized
to join the group, server s sends a join-denied reply to w.
If the join request is granted, we assume that the session
key distributed as a result of the authentication exchange
[17, 22] will be used as the individual key k., of u. To simplify
protocol specifications below, we use the following notation

s < w : authenticate u and distribute k&,

to represent the authentication exchange between server s
and user u, and secure distribution of key k, to be shared
by u and s.

After each join or leave, a new secure group is formed.
Server s has to update the group’s key graph by replacing
the keys of some existing k-nodes, deleting some k-nodes (in
the case of a leave), and adding some k-nodes (in the case
of a join). It then securely sends rekey messages containing
new group/subgroup keys to users of the new secure group.
(A reliable message delivery system, for both unicast and
multicast, is assumed.) In protocol specifications below, we
also use the following notation

T—=yY oz
to denote

o if y is a single user, the sending of message z from
z to y;

o if y is a set of users, the sending of message z from
z to every user in y (via multicast or unicast).

In the following subsections, we first present protocols for
joining and leaving a secure group specified by a star key
graph. These protocols correspond to conventional rekey-
ing procedures informally described in the Introduction [9,
10]. We then consider secure groups specified by tree key
graphs. With a hierarchy of group and subgroup keys, rekey-
ing after a join/leave can be carried out in a variety of
ways. We present three rekeying strategies, user-oriented,
key-oriented, and group-oriented, as well as protocols for
joining and leaving a secure group.

3.1 Joining a star key graph

After granting a join request from user u, server s updates
the key graph by creating a new u-node for u and a new
k-node for k,, and attaching them to the root node. Server

"The authorization function may be offloaded to an authorization
server. In this case, the authorization server provides an authorized
user with a ticket to join the secure group [16, 23]. The user submits
the ticket together with its join request to server s.

s also generates a new group key ky: for the root node,
encrypts it with the individual key k, of user w, and sends
the encrypted new group key to w. To notify other users
of the new group key, server s encrypts the new group key
kyr with the old group key ky, and then multicasts the
encrypted new group key to every user in the group. (See
Figure 2.)

(1) w— s: join request

(2) s < wu: authenticate u and distribute ky

(3) s : randomly generate a new group key kg
(4) s = u: {ky }r,

(5) s = U: {ku'}y

Figure 2: Join protocol for a star key graph.
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Figure 3: Star key graphs before and after a join (leave).

For example, as shown in Figure 3, suppose user u4 wants
to join the left secure group in the figure, and it is allowed
to join. After server s changes the group key from kj23 to a
new key ki234, server s needs to send out the following two
rekey messages.

s — {u1,u2,us} {k1234 }r10g
5 — uq {k1234 } iy

For clarity of presentation, we have assumed that rekey
messages contain new keys only and secure distribution
means that the new keys are encrypted just for confiden-
tiality. In our prototype implementation, rekey messages
have additional fields, such as, subgroup labels for new keys,
server digital signature, message integrity check, timestamp,
etc. (See [21] for rekey message format.)

3.2 Leaving a star key graph

(1) w : { leave-request }r,
(2) s = u: { leave-granted },
(3) s: ra.ndomly generate a new group key kg
(4) for each user v in U except user u do
s = v {ky tr,

Figure 4: Leave protocol for a star key graph.

After granting a leave request from user w, server s up-
dates the key graph by deleting the u-node for user u and
the k-node for its individual key k, from the key graph.
Server s generates a new group key kys for the new secure
group without w, encrypts it with the individual key of each
remaining user, and unicasts the encrypted new group key
to the user. (See Figure 4.)
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3.3 Joining a tree key graph

After granting a join request from wu, server s creates a new
u-node for user v and a new k-node for its individual key k.
Server s finds an existing k-node (called the joining point for
this join request) in the key tree and attaches k-node k, to
the joining point as its child.

To prevent the joining user from accessing past commu-
nications, all keys along the path from the joining point to
the root node need to be changed. After generating new
keys for these nodes, server s needs to securely distribute
them to the existing users as well as the joining user. For
example, as shown in Figure 5, suppose ug is granted to
join the upper key graph in the figure. The joining point is
k-node ks in the key graph, and the key of this k-node is
changed to krso in the new key graph below. Moreover, the
group key at the root is changed from kj_g to ki1_o. Users
u1,...,us only need the new group key ki_o, while users
ur,us, and ug need the new group key ki_g as well as the
new key kvsg to be shared by them.

To securely distribute the new keys to the users, the
server constructs and sends rekey messages to the users. A
rekey message contains one or more encrypted new key(s),
and a user needs to decrypt it with appropriate keys in or-
der to get the new keys. We next present three different
approaches to construct and send rekey messages.

User-oriented rekeying. Consider each user and the subset
of new keys it needs. The idea of user-oriented rekeying
is that for each user, the server constructs a rekey message
that contains precisely the new keys needed by the user, and
encrypts them using a key held by the user.

For example, as shown in Figure 5, for user ug to join
the upper secure group in the figure, server s needs to send

the following three rekey messages.

s — {u1,...,us} {ki—o}r,_g
s — {ur,us} {k1—0, k780 }rrg
s — ug {k1—9, k789 }re

Note that users ui,...,us need to get the new group key
ki—9. There is no single key that is shared only by ui, ..., us.
However, key k1_g can be used to encrypt the new key k1o
for ui,...,us without security breach since users u7 and us
will also get this new group key from another rekey message.

User-oriented rekey messages can be constructed as fol-
lows. For each k-node x whose key has been changed, say
from k to k', the server constructs a rekey message by en-
crypting the new keys of k-node z and all its ancestors (upto
the root) by the old key k. This rekey message is then sent
to the subset of users that need precisely these new keys. Ei-
ther unicast or subgroup multicast may be used.® Moreover,
one rekey message is sent to the joining user which contains
all of the new keys encrypted by the individual key of the
joining user.

This approach needs h rekey messages. Counting the
number of keys encrypted, the encryption cost for the server
is given by

1424, +h—1+h—1="2080 7
Key-oriented rekeying. In this approach, each new key is
encrypted individually (except keys for the joining user).
For each k-node z whose key has been changed, say from k
to k', the server constructs two rekey messages. First, the
server encrypts the new key k' with the old key &, and sends
it to userset (k) which is the set of users that share k. All of
the original users that need the new key k' can get it from
this rekey message. The other rekey message contains the
new key k' encrypted by the individual key of the joining
user, and is sent to the joining user.

As described, a user may have to get multiple rekey mes-
sages in order to get all the new keys it needs. For example,
as shown in Figure 5, for user ug to join the upper secure
group in the figure, server s needs to send the following four
rekey messages. Note that users ur,us, and ug need to get
two rekey messages each.

s — {ul,...,Ug} {k1—9}k1_8
s — ug {k1—o}x,
s = {ur,us} { K780 trrs
5 — ug {k7s80 }ro

Compared to user-oriented rekeying, the above approach
reduces the encryption cost of the server from @—1 to
2(h—1), but it requires 2(h—1) rekey messages instead of h.

To reduce the number of rekey messages, all of the rekey
messages for a particular user can be combined and sent as
one message. Thus, server s can send the following three
rekey messages instead of the four rekey messages shown

above.
s — {u1,...,us} {ki—o}r, ¢
s = {ur, us} {ki—o}r, o> {k780}krg
s — Ug ki—o, k789 } ko

The join protocol based upon this rekeying strategy is
presented in Figure 6. Steps (4) and (5) in Figure 6 spec-
ify how the combined rekey messages are constructed and
distributed by server s.

Using combined rekey messages, the number of rekey
messages for key-oriented rekeying is h (same as user-

8A rekey message can be sent via multicast to a subgroup if a
multicast address has been established for the subgroup in addition to
the multicast address for the entire group. Alternatively, the method
in [13] may be used in lieu of allocating a large number of multicast
addresses for subgroups. See Section 7 for more discussion.



oriented rekeying) while the encryption cost is 2(h — 1).
From this analysis, key-oriented rekeying is clearly better
for the server than user-oriented rekeying. (This conclusion
is confirmed by measurement results presented in Section 5.)

(1) w — s : join request
(2) s < u: authenticate u and distribute k,

(3) s : find a joining point and attach k,,
let z; denote the joining point, zo the root,
and z;—1 the parent of z; fort =1,...,7,

let K11 denote k.,
and Ko, ..., K; the old keys of zo,...,z;,
randomly generate new keys Ky, ..., K;
(4) for ¢ = 0 upto j do
let M = {K(’)}K()v"'v{Kz(}Ki
s — (userset(K;) — userset(K;y1)) : M
(5) s = u: {Kp,...,Kj},

Figure 6: Join protocol for a tree key graph (key-oriented
rekeying).

Group-oriented rekeying. In key-oriented rekeying, each
new key is encrypted individually (except keys for the join-
ing user). The server constructs multiple rekey messages,
each tailored to the needs of a subgroup. Specifically, the
users of a subgroup receive a rekey message containing pre-
cisely the new keys each needs.

An alternative approach, called group-oriented, is for the
server to construct a single rekey message containing all new
keys. This rekey message is then multicasted to the en-
tire group. Clearly such a rekey message is relatively large
and contains information not needed by individual users.
However, scalability is not a concern because the message
size is O(log,(n)) for group size n and key tree degree d.
The group-oriented approach has several advantages over
key-oriented and user-oriented rekeying. First, there is no
need for subgroup multicast. Second, with fewer rekey mes-
sages, the server’s per rekey message overheads are reduced.
Third, the total number of bytes transmitted by the server
per join/leave request is less than those of key-oriented and
user-oriented rekeying which duplicate information in rekey
messages. (See Section 5 and Section 7 for a more thorough
discussion on performance comparisons.)

For example, as shown in Figure 5, for user ug to join
the upper secure group in the figure, server s needs to send
the following two rekey messages; one is multicasted to the
group, and the other is unicasted to the joining user.

s — {u1,...,us} {k1-9}n;_g,{k780 }rrs
s — ug {k1-9, k780 }1o

The join protocol based upon group-oriented rekeying is
presented in Figure 7. This approach reduces the number
of rekey messages to one multicast message and one unicast
message, while maintaining the encryption cost at 2(h — 1)
(same as key-oriented rekeying).

(1) - (3) (same as Figure 6)
(4) s — userset(Ko) : {Ko}ry,. ., {Kj}x;
5) s—)u:{Ké,...,K;}ku

Figure 7: Join protocol for a tree key graph (group-oriented
rekeying).

3.4 Leaving a tree key graph

After granting a leave request from user u, server s updates
the key graph by deleting the u-node for user u and the k-
node for its individual key from the key graph. The parent
of the k-node for its individual key is called the leaving point.

To prevent the leaving user from accessing future com-
munications, all keys along the path from the leaving point
to the root node need to be changed. After generating new
keys for these k-nodes, server s needs to securely distribute
them to the remaining users. For example, as shown in Fig-
ure b, suppose ug is granted to leave the lower key graph in
the figure. The leaving point is the k-node for krgo in the
key graph, and the key of this k-node is changed to krs in
the new key graph above. Moreover, the group key is also
changed from ki_g to ki—s. Users ui,...,us only need to
know the new group key ki_s. Users w7 and us need to
know the new group key ki_s and the new key krg shared
by them.

To securely distribute the new keys to users after a leave,
we revisit the three rekeying strategies.

User-oriented rekeying In this approach, each user gets a
rekey message in which all the new keys it needs are en-
crypted using a key it holds. For example, as shown in
Figure 5, for user ug to leave the lower secure group in the
figure, server s needs to send the following four rekey mes-

sages.
s — {ul,uz,U3} {k1*3}k123
s — {U4,U5,u6} {kl—s}k4ss
s — ur {k1-s8,krs}r;
5 — ug {k1—s, kvs}xg

User-oriented rekey messages for a leave can be con-
structed as follows. For each k-node ¢ whose key has been
changed, say from k to k', and for each unchanged child y
of =, the server constructs a rekey message by encrypting
the new keys of k-node z and all its ancestors (upto the
root) by the key K of k-node y. This rekey message is then
multicasted to userset(K).

This approach requires (d — 1)(h — 1) rekey messages.
The encryption cost for the server is given by

— (d=Dh(r-1)
d-—1D(1+2+...+h—1) = =5

Key-oriented rekeying In this approach, each new key is
encrypted individually. For example, as shown in Figure 5,
for user ug to leave the lower secure group in the figure,
server s needs to send the following four rekey messages.
s — {u1,u2,us} {k1-8}ki2s
s — {U4,U57u6} {kl—s kase
s = ur {k1-8}hrs, {ks}ir
s — ug {k1—8}rrs, {k7s}rs
The leave protocol based upon key-oriented rekeying is
presented in Figure 8. Step (4) in Figure 8 specifies how the
rekey messages are constructed and distributed to users.
Note that by storing encrypted new keys for use in dif-
ferent rekey messages, the encryption cost of this approach
is d(h — 1), which is much less than that of user-oriented
rekeying. The number of rekey messages is (d — 1)(h — 1),
same as user-oriented rekeying.

Group-oriented rekeying. A single rekey message is con-
structed containing all new keys. For example, as shown in
Figure 5, for user ug to leave the lower secure group in the
figure, server s needs to send the following rekey message:



(1) w — s : { leave-request }r,
(2) s = u: { leave-granted },
(3) s : find the leaving point (the parent of k),
remove k, from the tree,
let ;41 denote the deleted k-node for k.,
z; the leaving point, zo the root,
and z;—1 the parent of z; fort =1,...,7,
randomly generate keys Ky, ..., K;
as the new keys of zo,...,z;
(4) for ¢ = 0 upto j do
for each child y of z; do
let K denote the key at k-node y
if i 75 Ti+1 then do
let M = {Kz{}Kv {Kz{—l}Klfv R {I{(’)}K’1

s — userset(K) : M

Figure 8: Leave protocol for a tree key graph (key-oriented
rekeying).

let Lo denote {kl—s}klzav {kl—s}k4567{k1—8}k78
let L, denote {k73}k7, {k78}ks
S—){ul,...,’U,g} : Lo,Ll

Note that for a leave, this single rekey message is about
d times bigger than the rekey message for a join, where d is
the average degree of a k-node.

The leave protocol based upon group-oriented rekeying
is presented in Figure 9. This approach uses only one rekey
message which is multicasted to the entire group, and the
encryption cost is d(h — 1), same as key-oriented rekeying.

(a) the requesting user

Star Tree Complete
join 1 h—1 2"
leave 0 0 0
(b) a non-requesting user

Star Tree Complete
join 1 - an— T
leave 1 0%1 0
(c) the server

Star Tree Complete
join 2 2(h—1) 2n Tl
leave n—1 d(h—1) 0

Table 2: Cost of a join/leave operation.

cost Star Tree Complete
cost of the server | n/2 (d+2)(h-1)/2 2"
cost of a user 1 d/(d—1) 2"

(1) - (3) (same as Figure 8)
(4) for ¢ = 0 upto j do
let {z1,..., 2} be the set of the children of z;
let Ji,...,Jr denote the keys at z1,..., 2,
let L; denote {K;}s,,...,{K;}J.
s — userset(K{) : Lo,...,L;

Figure 9: Leave protocol for a tree key graph (group-oriented
rekeying).

3.5 Cost of encryptions and decryptions

An approximate measure of the computational costs of the
server and users is the number of key encryptions and de-
cryptions required by a join/leave operation. Let n be the
number of users in a secure group. For each join/leave op-
eration, the user that requests the operation is called the
requesting user, and the other users in the group are non-
requesting users. For a join/leave operation, we tabulate the
cost of a requesting user in Table 2(a), the cost of a non-
requesting user in Table 2(b), and the cost of the server in
Table 2(c). These costs are from the protocols described
above for star and tree key graphs, and from [21] for com-
plete key graphs. (Key-oriented or group-oriented rekeying
is assumed for tree key graphs.)

For a key tree, recall that d and h denote the degree
and height of the tree respectively. In this case, for a non-
requesting user u, the average cost of u for a join or a leave
is less than % which is independent of the size of the tree
(derivation in [21]).

Assuming that the number of join operations is the same
as the number of leave operations, the average costs per
operation are tabulated in Table 3 for the server and a user
in the group.

Table 3: Average cost per operation.

From Table 3, it is obvious that complete key graphs
should not be used. On the other hand, scalable group key
management can be achieved by using tree key graphs. Note
that for a full and balanced d-ary tree, the average server
cost is (d+2)(h —1)/2 = (d+2)(log,(n))/2. However, each
user has to do slightly more work (from 1 to 74;). For d = 4,
a user needs to do 1.33 decryptions on the average instead
of one. (It can be shown that the server cost is minimized
for d = 4, i.e., the optimal degree of key trees is four.)

4 Technique for Signing Rekey Messages

In our join/leave protocols, each rekey message contains one
or more new keys. Each new key, destined for a set of users,
is encrypted by a key known only to these users and the
server. It is possible for a user to masquerade as the server
and send out rekey messages to other users. Thus if users
cannot be trusted, then each rekey message should be digi-
tally signed by the server.

We note that a digital signature operation is around two
orders of magnitude slower than a key encryption using DES.
For this reason, it is highly desirable to reduce the number of
digital signature operations required per join/leave. If each
rekey message is signed individually, then group-oriented
rekeying, using just one rekey message per join/leave, would
be far superior to key-oriented (user-oriented) rekeying,
which uses many rekey messages per join/leave.

Consider m rekey messages, M1, ..., M,,, with message
digests, di = h(M;) for 1 = 1,...,m, where h() is a secure
message digest function such as MD5. The standard way to
provide authenticity is for the server to sign each message
digest (with its private key) and send the signed message
digest together with the message. This would require m
digital signature operations for m messages.

We next describe a technique, implemented in our pro-
totype key server, for signing a set of messages using just
a single digital signature operation. The technique is based
upon a scheme proposed by Merkle [14].

Suppose there are four messages with message digests
di,d2,ds, and d4. Construct message D12 containing d;
and dz, and compute message digest diz = h(Di2). Simi-
larly, construct message D34 containing ds and ds4, and com-
pute message digest dss = h(D3s4). Then construct message




