Sharing Resources in Distributed Systems

by

Rajmohan Rajaraman, B.Tech., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 1997

Sharing Resources in Distributed Systems

Approved by
Dissertation Committee:

To Ajuma and Mummy

Acknowledgments

First and foremost, I am indebted to my dissertation supervisor Greg Plaxton, who
has been a true friend, philosopher, and guide ever since I have known him. A large
part of what I have learnt in graduate school is due to Greg. His brilliance, enthusiasm,
perseverance (exemplified by a 12-hour marathon meeting we once had), and his yearning
for excellence are inspiring and I hope some of this has rubbed off on me.

The members of my dissertation committee, Bruce Maggs, Vijaya Ramachandran,
Martin Wong, and David Zuckerman, have contributed a lot, either directly or indirectly,
to my dissertation. Some of the key ideas that led to the result on static load balancing
of Chapter 4 are due to Bruce Maggs. Bruce also made several useful comments that
have significantly improved the presentation of Chapter 4. I would like to thank Vijaya
Ramachandran for her insightful comments regarding the results of Chapter 3 and for
the numerous hours she has devoted for discussing my doctoral work. I am grateful to
Martin Wong, with whom I co-authored my first publication, for introducing me into
computer science research. David Zuckerman has taught me a lot about randomness
(in part, through his puzzles and card tricks). David also co-authored the static load
balancing result of Chapter 4.

During the course of my graduate work, I have been fortunate to have collabo-
rated with several other researchers who have also become close friends over these years.
Johannes Gehrke made valuable contributions to the work concerning load balancing
on rings (Chapter 5). Phil Mackenzie co-authored the work on contention resolution

(Chapter 2). I am also grateful to Phil for my internship at Sandia National Labs dur-

v

ing the summer of 1996. S. Muthukrishnan and Andréa Richa worked with me on the
static load balancing result of Chapter 4. Muthu also came up with some of the main
ideas in the dynamic load balancing result of Chapter 6. I would like to thank Torsten
Suel for being always available for advice and discussions.

I have had very nice officemates who have tolerated my clumsiness which included
regular encroachments of my material upon their desks. Special thanks to Shashidhar
Thakur with whom I shared a wonderful office in Painter Hall for two years. Shashidhar
and I had uncountable puzzle-solving sessions and I am glad that he is crunching out
puzzles even after joining industry. The long discussions with the blokes at UA9, espe-
cially Rajeev Joshi, Kedar Namjoshi, and Carlos Puchol, and the hundreds of gallons of
coffee that accompanied these discussions, will continue to stimulate me for a long time.

My six-year stint in Austin has been memorable thanks to some very special
friends, but for whom this dissertation would have been completed in half the time (with
apologies to P. G. Wodehouse)! All of my apartment mates over the years have been
fun. I would especially remember Pawan Goyal and his culinary skills, Sanjay Gupta and
his puns, Dinesh Muzumdar and our basketball duels, and Rahul Singh and his fixing
abilities. The interminable debates with my real apartment mates and “virtual apart-
ment mates” Om Damani, Rajesh Govindan, Divas Sanwal, Prashant Shenoy, and Ashis
Tarafdar made me take the NBA slogan “Stay in School” a little too seriously. The com-
pany of Sanjay Agarwal, Madhukar Korupolu, Nishant Mittal, Chandramouli Nagara-
jan, Analbhai Shah, Renu Tewari, and Kishore Yellepeddy produced several memorable
moments. I will always be nostalgic about the blood, sweat, tears, and the occasional
baskets that were produced by our basketball gang during the numerous jam sessions
we had this year.

Of course, I would not have been able to do any of the above without the financial
support provided by NSF, Sandia National Labs, Schlumberger Corporation, TARP,
and University of Texas at Austin. My sincere thanks to Gloria Ramirez, our graduate
secretary, whose phenomenal efficiency can make even the most incompetent student

meet their deadlines.

Undoubtably, the biggest credit goes to my family, especially my mother and my
brother Rajesh, whose long-distance support contributed significantly to both my morale
and the telephone industry. There was no better tonic for uplifiting my spirits than the
royal treatment meted out by my folks at Calcutta and the nonstop encouragement

provided by my sister-in-law Deepika.

RAIJMOHAN RAJARAMAN

The University of Texas at Austin
December 1997

vi

Sharing Resources in Distributed Systems

Publication No.

Rajmohan Rajaraman, Ph.D.
The University of Texas at Austin, 1997

Supervisor: C. Greg Plaxton

An important goal of a distributed system is to effectively utilize the collective resources

of the system, namely, the memory and the processors of the individual nodes. This
dissertation addresses certain problems pertaining to sharing memory and processors in
distributed systems.

In the first part of the dissertation, we study two important issues that arise while
sharing memory in a distributed system: memory contention and faults. We adopt a
model of computation in which each node can send or receive at most a constant number
of objects per step. Our main result is a simple protocol for providing fast access to
shared objects in an environment in which memory contention is unconstrained and a
constant fraction of the nodes and communication links may be faulty at any time. Our
protocol combines techniques for hashing and erasure codes with a new mechanism for
on-line replication. We show that if each new access request is chosen according to a
fixed probability distribution over the set of objects, then our protocol rapidly reaches
a steady state in which each request is satisfied in an expected constant number of
steps and the throughput of the protocol is asymptotically optimal. We also prove that
the protocol continues to remain in a steady state if changes in the access pattern are

moderate.

vil

The second part of the dissertation studies load balancing, which is a mechanism
for sharing processors in a distributed system. We analyze the effectiveness of a local load
balancing algorithm in which each node repeatedly balances its load with its neighbors.
Our main results concern the static version of the problem where we assume that the
total load does not change with time. We analyze the local balancing algorithm in terms
of both the imbalance of the initial load distribution and several parameters of the
network, including the number of nodes, the maximum degree, and the edge expansion.
We show that the algorithm is worst-case optimal for all networks. We improve this
result for the special case of ring networks by showing that the local balancing approach
is optimal (up to an additive linear term) for every initial distribution of load on the
ring. Our results are also shown to hold for an asynchronous model of computation.

This dissertation demonstrates that a number of basic resource sharing problems
admit efficient solutions in the form of simple local algorithms. Our algorithms are simple
in the sense that the program running at each node can be expressed as a periodic process
that repeatedly executes a small number of fixed operations. Our algorithms are local in
the sense that each node either communicates with only its nearest neighbors or sends

messages to only a small number of other nodes.

viii

Contents

Acknowledgments iv
Abstract vii
Chapter 1 Introduction 1
1.1 Sharing Memory L e 2
1.1.1 Model of Computation 3

1.1.2 Exclusive Access to Shared Objects 5

1.1.3 Fault-Tolerant Concurrent Access to Shared Objects 6

1.2 Sharing Processors 8
1.2.1 Model of Computation 10

1.2.2 Static Load Balancing 10

1.2.3 Dynamic Load Balancing 12

1.3 Two Abbreviations for High Probability Bounds 12
Part 1 Sharing Memory 14
Chapter 2 Fast Exclusive Access to Shared Objects 15
2.1 Introduction L 15
2.1.1 Overview of the Results 17

2.1.2 Related Work L 19

2.2 The 1 out of ¢ Protocol 21

ix

2.3

24

2.5
2.6
2.7

Sketch of the Analysis 21

2.3.1 Unbounded ¢ 21
232 Bounded £. 23
2.3.3 Summaryo .o e 25
Analysis of the 1 out of £ Protocol 26
2.4.1 Large Deviations Lo oL 31
2.4.2 Lemmason Ballsand Bins 32
2.4.3 Analysis of Algorithm Alg2 35
Limited Independence L. 51
The Emulation Protocols 58
Concluding Remarks oL 60

Chapter 3 Fast Fault-Tolerant Concurrent Access to Shared Objects 61

3.1

3.2
3.3
3.4
3.5
3.6

3.7
3.8

Introduction Lo 61
3.1.1 Overviewof the Results 63
3.1.2 Related Work oo oL 64
Model of Computation 66
Overview of the Protocol 68
The Read-Only Protocol L. 73
Statement of the Results L L. 76
Analysis 78
3.6.1 Sketch of the Analysis 78
36.2 GoodRounds 80
3.6.3 Invariants L L 90
3.6.4 TheFixed Model 94
3.6.5 The Dynamic Model 106
Write Operations L e 107
Concluding Remarks oL 109

Part 11 Sharing Processors 111

Chapter 4 Static Load Balancing on Arbitrary Networks 112
4.1 Introduction. L e 112
4.1.1 The Single-Port and Multi-Port Algorithms 113

4.1.2 Overview of the Results 114

4.1.3 Related Work o 117

4.2 Preliminaries L L e 119
4.3 Analysis for Static Synchronous Networks 119
4.3.1 The Single-Port model 119

4.3.2 The Multi-Port Model 126

4.3.3 Results in Terms of Node Expansion 133

4.4 Extension to Dynamic and Asynchronous Networks 134
4.5 Tight Bounds on Centralized Load Balancing 140
4.6 Concluding Remarks oo 146
Chapter 5 Static Load Balancing on Rings 148
5.1 Introduction. L 148
5.1.1 Overview of the Results 149

5.1.2 Related Work L o 150

5.2 The Unidirectional Algorithm A 151
5.3 Preliminaries L L 153
5.4 Analysis for Synchronous Rings 154
5.4.1 Analysis of Partial Algorithms 155

5.4.2 Complexity of Algorithm A 161

5.5 Analysis for asynchronous rings L. 161
5.6 Concluding Remarks L 167
Chapter 6 Dynamic Load Balancing on Arbitrary Networks 168
6.1 Introduction 168

x1

6.2 An Adversarial Model

6.3 Stability of the Multi-Port Algorithm

6.4 Concluding Remarks L o

Conclusions

Appendix A Tails of Probability Distributions

Appendix B Martingales

Appendix C Technical Inequalities

C.1 Expected Number of Non-Singletons and Non-Pairs.

C.2 The Potential Function of Section 4.4

Appendix D Proof of Lemma 4.7

Bibliography

Vita

xii

176

179

181

183
183
187

189

198

212

Chapter 1

Introduction

By a distributed system, we mean a collection of nodes that can communicate with one
another. We assume that each node consists of a processor and some local memory.
In order to optimize the overall performance of a distributed system, a need arises for
effectively sharing the collective resources of the system, namely, the memory and the
processors of the individual nodes. In this dissertation, we study two classes of problems,
one arising in the context of sharing memory and the other arising in the context of
sharing processors.

Sharing memory. A basic problem in a distributed system is to provide efficient
access to shared objects (e.g., files, words of memory) that are stored in remote nodes.
This is a complicated problem in general because of the large number of considerations
involved, including: latency, bandwidth, faults, and network topology. Thus, for exam-
ple, a request for a remote object may be delayed due to several reasons including: (i)
the object may be a “hot spot”, or (ii) the network may be congested, or (iii) the node
holding the object may be temporarily faulty, or (iv) the node holding the object may be
geographically distant. The first half of this dissertation focuses on developing protocols
that efficiently handle faults and memory contention while providing access to shared

objects. An overview of our results in this area is given in Section 1.1.

Sharing processors. Consider a distributed system where each node has a collec-
tion of tasks to execute. To minimize the total time taken to execute all of the tasks, one
approach is to utilize the processors effectively by redistributing the tasks. For example,
if there are some communication requirements among the tasks and communication is
expensive, then it may be beneficial to distribute the tasks so that any two tasks that
communicate with each other tend to be mapped to the same node or to nearby nodes.
As another example, consider a scenario in which the tasks are independent and can be
executed at any of the processors of the system. If the initial distribution of the tasks is
uneven, then the total execution time can be reduced by transferring tasks from heavily
loaded nodes to lightly loaded nodes. This technique, referred to as load balancing, is
the focus of the second half of this dissertation. An overview of our results in this area
is given in Section 1.2.

This dissertation demonstrates that a number of basic resource sharing problems
admit efficient solutions in the form of simple local algorithms. Our algorithms are simple
in the sense that the program running at each node can be expressed as a periodic process
that repeatedly executes a small number of fixed operations. Our algorithms are local in
the sense that each node either communicates with only its nearest neighbors or sends
messages to only a small number of other nodes.

In addition to being easy to implement in practice, simple local algorithms are
advantageous because they tend to be robust in the presence of faults and asynchrony.
We provide some formal evidence in this regard by showing that most of our results hold

in certain models that incorporate faults or asynchrony.

1.1 Sharing Memory

In the first part of the dissertation, we study two important issues that arise while pro-
viding access to shared data in a distributed system: memory contention and faults.
Memory contention is the phenomenon in which an access request is delayed or rejected

by a node because of other requests simultaneously sent to the node. This phenomenon

may arise due to: (i) a number of nodes simultaneously attempting to access distinct
objects residing at the same node (ezclusive access), or (ii) a number of nodes simulta-
neously attempting to access the same object residing at some node (concurrent access).
Even in the absence of memory contention, the response to an access request may be
delayed if: (i) the remote node is faulty, or (ii) the requesting node is unable to commu-
nicate with the remote node due to faults in the communication network.

Our results in this part are presented in Chapters 2 and 3. Chapter 2 focuses on
resolving memory contention that arises solely due to exclusive accesses and presents a
protocol for supporting fast exclusive access to shared objects in a non-faulty distributed
system. Chapter 3 considers the problem in its generality and presents a protocol for
supporting fast fault-tolerant concurrent access to shared objects.

Chapters 2 and 3 are reviewed in Sections 1.1.2 and 1.1.3, respectively. We first
describe in Section 1.1.1 the general aspects of the model of computation adopted in our

study on sharing memory in a distributed system.

1.1.1 Model of Computation

We represent the distributed system as an n-crossbar. The n-crossbar (or simply, the
crossbar) is a synchronous distributed machine that consists of n nodes and supports
direct point-to-point communication between any two nodes. In order to address the
issue of memory contention, we enhance the crossbar model as follows. A c-arbitrary
crossbar is a crossbar in which: (i) the total number of messages sent or received by a
single node in each step is at most ¢, and (ii) if the total number of messages destined
to a node in a step exceeds ¢, then an adversary determines which subset of ¢ messages
is successfully received by the node.

We address faults by incorporating both static and dynamic node faults as well
as a notion of faulty communication. Most importantly, our fault model assumes that
at any given time: (i) a constant fraction of the nodes may be “down” (i.e., unable to
communicate with any other nodes), and (ii) each “up” node may be unable to directly

communicate (i.e., via a single point-to-point message) with a constant fraction of the

3

other “up” nodes.

We now elaborate on three aspects of the model defined above: (i) synchrony,
(ii) uniform topology, and (iii) the parameter c.

Synchrony. While our model allows messages to be lost due to communication
failures and nodes to dynamically fail and recover, it disallows unpredictable delays in
the delivery of messages and the execution of local computations. Our main reason for
adopting a synchronous model is to obtain meaningful bounds on certain performance
measures that concern time, e.g., the time taken to satisfy an access request. The task
of devising an analytical model for deriving time bounds in an arbitrary asynchronous
environment is a challenging open problem.

Uniform topology. In spite of the restrictive assumption of a uniform topol-
ogy, the crossbar serves as a useful model for both tightly-coupled and loosely-coupled
distributed systems. At one extreme, a system for which the interconnection is based
on a dedicated switching network is precisely a crossbar. At the other extreme, the
crossbar suitably models a wide-area network with a fast routing mechanism in studies
where the particular topology of the network and the underlying routing mechanism are
not of primary concern. In future work, we would like to extend our results to mod-
els that take into account the differing costs in communication among different nodes.
(See [19, 74, 103] for recent work in this area.)

The parameter ¢. An important feature of the c-arbitrary crossbar is the pa-
rameter ¢ which signifies the bandwidth limitation at each of the nodes of the network.
This feature is motivated by the observation that with rapidly growing speeds and ca-
pacities of communication links, the network-node interface is increasingly limiting the
performance of the network [41] [99, Chapter 9]. Restrictions on local bandwidth play
a significant role in the BSP [115], LogP [41], and QSM(g) [58] models as well. The
gap parameter of these models places an upper bound on the rate at which a single
node may send or receive messages. However, BSP and LogP differ from the c-arbitrary
crosshbar on one significant point. In BSP and LogP, the gap places an upper bound

on the number of messages destined to a single node in one step. On the other hand,

4

the c-arbitrary crossbar model places no upper bound on the total number of messages
destined to a single node in one step. Instead the model only limits to ¢ the number of
messages successfully received by a node in one step. The messages that are destined to
a node and yet are not received by the node are assumed to be lost. Such a mechanism
can be implemented, for example, by associating a time-out with each message so that
every message that is not delivered at the end of a step times out.

Thus far, we have considered models that place restrictions only on the bandwidth
available at the nodes. These models may not be appropriate for networks where the
bandwidth of the network as a whole is the limiting factor. For such networks, we
need to place global restrictions on the bandwidth, as is done in the PRAM(m) [90]
and the QSM(m) [58] models. For a recent study on the implications of local and
global bandwidth restrictions, see [3]. (We remark that our usage of the terms “local
bandwidth” and “global bandwidth” is borrowed from [3].) The DRAM model [81]
considers bandwidth restrictions in a more general form by explicitly accounting for
congestion across every cut of the underlying network. Even though the DRAM provides
a more accurate framework for evaluating performance, we have chosen a more abstract

model for our study in order to simplify the analysis.

1.1.2 Exclusive Access to Shared Objects

We first consider the problem of resolving contention arising due to exclusive accesses
in a fault-free c-arbitrary crossbar. Consider the scenario in which each node of the
crosshar has a single access request. Since all the accesses are exclusive, each request is
for a distinct object. Hence, we can represent the current set of access requests as a step
of an EREW PRAM as follows: each processor of the PRAM maps to a distinct node
of the crosshar, and each shared memory cell of the PRAM maps to a shared object of
the crossbar. Our problem thus corresponds to the emulation of an n-processor EREW
PRAM on a non-faulty c-arbitrary n-crossbar. In Chapter 2, we pinpoint the asymptotic
complexity of a class of simple protocols that combine hashing and redundancy to obtain

fast emulations of EREW PRAMSs on c-arbitrary crossbars for all values for ¢. The results

5

in this chapter are joint work with Phil Mackenzie and Greg Plaxton, and have appeared
in [88].

A natural emulation scheme is to map each location of the EREW PRAM shared
memory (and hence, each shared object) to the memory module of a randomly chosen
node of the crossbar. We can easily see that the desired emulation corresponds to a
random “balls and bins” experiment, in which each of n balls (representing the n memory
accesses) are thrown independently and uniformly at random into n bins (representing
the memory modules at the n nodes). It is straightforward to prove using Chernoff
bounds [37] that if ¢ is O(1), then the preceding scheme requires ©(logn/loglogn) time
with high probability to emulate one step of the EREW PRAM. (By the phrase “with
high probability”, we mean “with probability 1 — 1/n%(1)”))

In Chapter 2, we analyze a class of simple emulation protocols that replicate
each object a constant number of times to achieve an O(loglogn) delay bound, and
thus, an exponential improvement in delay. We remark that prior to our work, Karp,
Luby, and Meyer auf der Heide [75], and subsequently, Dietzfelbinger and Meyer auf der
Heide [47], presented protocols that achieve the O(loglogn) delay bound while incurring
only a constant factor increase in space. Our results improve on previous results in two
ways. First, our results hold for all values of ¢, while previous emulations required c
to be sufficiently large. Second, we analyze a protocol that is more basic than those
studied before. We are able to reduce our analysis to a study of a random balls and bins
experiment that is similar to (but more complex than) the one mentioned above. We
derive a sharp threshold phenomenon for the balls and bins experiment, which may be

of independent interest.

1.1.3 Fault-Tolerant Concurrent Access to Shared Objects

The results reviewed in the preceding section concern a static set of exclusive accesses
(i.e., with no concurrency) on a fault-free crossbar. In Chapter 3, we extend the ideas
of hashing and replication that are used in Chapter 2, to address the more general

setting of dynamically generated memory requests with arbitrary concurrency on a faulty

6

distributed machine. Our study is largely motivated by the growing importance of wide-
area network file systems which have become feasible due to high-speed networks. Since a
completely general study is quite complicated, we make certain simplifying, yet realistic,
assumptions that enable us to design and analyze a simple efficient protocol.

We represent the distributed system as a faulty O(logn)-arbitrary crossbar, as
defined in Section 1.1.1. We design and analyze a protocol for providing fast concurrent
access to shared objects in this faulty network environment. Our protocol is based on
on-line replication of objects and employs hashing and erasure codes. When a large
number of clients attempt to read a given object at the same time, the object is rapidly
replicated to an appropriate number of servers. Once the necessary level of replication
has been achieved, each remaining request for the object is serviced within O(1) expected
steps.

We analyze our protocol and establish its optimality under two natural dynamic
access patterns. In our first model, we assume that there is a fixed probability distri-
bution from which each access request is independently drawn at all times. We show
that our protocol reaches a steady state in O(logn) steps, in which each subsequent
request is satisfied in O(1) expected steps and O(logn) steps with high probability. The
significance of this result is that it establishes the rapid adaptability of the protocol to
arbitrary global access patterns. Since (logn) steps is a lower bound on the number
of steps taken by any protocol to reach the steady state in the worst case, our analysis
shows that the protocol reaches a steady state in an optimal number of steps. In the
steady state, the expected time for satisfying any request is asymptotically optimal.

A drawback of the first model is that it does not allow, in general, dynamic
changes in the “popularity” of an object (i.e., the number of users trying to access
the object). In our second model, we assume that the popularity of an object can
change arbitrarily, subject to the constraint that it is not more than a constant times
the maximum popularity in the previous ©(logn) steps. For this model, we show that
each request is satisfied in expected O(1) steps and O(log n) steps with high probability.

Moreover, for both the access pattern models, our protocol satisfies an asymptotically

7

optimal number of requests per step while using an asymptotically optimal amount of
communication.

The results in Chapter 3 are most suitable for applications in which: (i) reads
occur much more frequently than writes, (ii) objects are not too small, and (iii) the
popularity of any object does not change significantly over a short period of time. For
example, the protocol might be appropriate for managing access to WWW pages on the
Internet, since pages tend to be read far more often than they are written, the typical
page size is thousands of bytes or more, and popular pages tend to remain popular over
extended periods of time (e.g., for minutes, hours, or even days). In contrast, the protocol
would probably be poorly-suited for use within a PRAM emulation scheme, where writes
often account for a significant fraction of all accesses, the objects being accessed tend
to be extremely small, and the popularity of an object may change arbitrarily from one
time step to the next. The results in Chapter 3 are joint work with Greg Plaxton and

have appeared in [102].

1.2 Sharing Processors

A natural approach towards harnessing the aggregate processing power of a distributed
system is to balance the workload among the nodes of the system. In order to balance
the workload, a simple strategy is to have each node periodically poll the other nodes to
which it is connected and send some of its work to nodes with less pending work. The
second part of this dissertation analyzes the effectiveness of this local load balancing
strategy in the simplified scenario in which the load consists of a collection of independent
unit-size jobs (called tokens) that can be executed on any other node.

The bulk of our results concerns static load balancing. In static load balancing,
the total workload is available at the start of the computation, and no new load is added
to the system. The main objective is to distribute the total load before initiating the
computation such that the assignment of tasks to processors is balanced. Our main

results in static load balancing are reviewed in Section 1.2.2.

Static load balancing is applicable in scenarios where information about the par-
ticular computation is known in advance. Parallel computations such as large-scale
partial differential equations, finite element methods, branch-and-bound computations,
and ray tracing, can be divided into a large number of small computational tasks and
distributed among the processors at the start of the overall computation (see [77, 118]
for some examples). Another important application of static load balancing arises in cer-
tain packet routing problems, where the initial distribution of packets may be irregular.
In these problems, routing is performed by first redistributing the packets among the
processors in a balanced manner, and then invoking standard routing techniques such
as permutation routing or k-k-routing [97].

Our results for static load balancing also apply to certain problems where the

load is dynamic, that is, the total load varies with time!

. Dynamic load balancing is
required in a wide variety of applications, including operating systems [48, 83], combi-
natorial optimization problems [80], adaptive mesh partitioning [68, 118], and fine-grain
functional programming [59]. In certain problems arising in these applications, it is
possible to divide the overall computation into phases, where the distributed system
alternates between static load balancing and executing a portion of the workload.
Static load balancing may not be applicable in situations where the load is not
known in advance. In such applications, it is required to have a continuous process that
manages the distribution of load among nodes. Balancing dynamic load, however, is
more difficult than balancing static load because of the potentially arbitrary nature of
the on-line job arrival process. In order to make the study of dynamic load balancing
somewhat tractable, most of the previous work has assumed either a particular statistical
model of load variation or a specific network topology (for example, see [85, 111]). We
adopt a different approach by proposing a model that allows an adversary to control the

on-line job arrival process. Our results in this area are limited in scope. It is possible

"While we have used the term “static” or “dynamic” as a property of the load, some papers in
the load balancing literature use the term as a property of the algorithm. These papers (for example,
see [111]) define a static load balancing algorithm (resp., dynamic load balancing algorithm) to be an
algorithm in which the decision of transferring load does not depend (resp., may depend) on the current
system state.

that suitable enhancements of our model will be useful in the study of more realistic

problems. Section 1.2.3 reviews our work on dynamic load balancing.

1.2.1 Model of Computation

We represent the distributed system as an arbitrary network G, where the vertices of G
correspond to the nodes of the system and the edges of G correspond to the connections
between nodes. We assume that in one unit of time, at most one token can be transmitted
across an edge of the network in each direction. We focus primarily on algorithms with
distributed control, that is, algorithms in which the action of a node depends only on
the information available at the node and its neighbors.

The three defining characteristics of the model outlined above are: an arbitrary
network topology, bounded edge capacity, and distributed control. We believe that
these characteristics suitably model load balancing problems arising in practice. We
also address the issue of asynchrony. The particular assumptions about asynchrony are

discussed in the following section, where we review our results on static load balancing.

1.2.2 Static Load Balancing

We are given an arbitrary network G in which each node has an initial collection of
tokens and no tokens are added or deleted while the tokens are being balanced. In each
step, each node can transmit at most one token to each of its neighbors. The static load
balancing problem is to design a distributed algorithm that reduces the imbalance of G,
where the imbalance is defined to be the maximum difference between the number of
tokens at any node and the average number of tokens per node. The performance of
an algorithm is measured by the time it takes to balance the tokens, and by the final
imbalance it achieves.

In Chapter 4, we tightly analyze a simple local algorithm of Aiello et al. [5],
in which at each step each node sends a token to each of its neighbors with at least

2d fewer tokens (where d is the degree of the network). In particular, we prove that

10

this algorithm, which we call the multi-port algorithm, balances to within O(d? logn/a)
tokens in O(A/a) steps, where « is the edge expansion of the network and A is the
imbalance associated with the initial token distribution. (We remark that there exist
networks with diameter 2(d?logn/a).) This upper bound is optimal in the following
sense: Given any network with edge expansion «, there exists an initial load distribution
with imbalance A for which any algorithm takes Q(A/«) steps to balance to within even
A/2 tokens.

We extend our analysis to a slight variant of the multi-port algorithm for an
asynchronous network model, in which edges are allowed to go “down” arbitrarily subject
to the constraint that during any time unit the subgraph induced by the “up” edges has
edge expansion o. We also obtain tight bounds on a randomized algorithm of Ghosh
and Muthukrishnan [54] which balances load across edges chosen in a random matching.

Our main proof technique in Chapter 4 is a potential function argument based
on the observation that, due to the expansion of the graph, there are many edges from

“high” nodes (i.e., nodes having a large number of tokens) to “low”

nodes. By assigning
an exponentially higher potential to the “high” nodes, we show that a particular measure
of the balance of the network improves rapidly throughout the course of the algorithm
until the network is balanced to within O((d? logn)/a) tokens. The results in Chapter 4
are joint work with Bhaskar Ghosh, Tom Leighton, Bruce Maggs, S. Muthukrishnan,
Greg Plaxton, Andréa Richa, Robert Tarjan, and David Zuckerman, and have appeared
in [52].

One shortcoming of our results in Chapter 4 is that the bounds on the final
imbalance and the time taken to achieve the final imbalance are not optimal for all

initial distributions. In Chapter 5, we establish a *

‘universal” near-optimality result for
the special class of ring networks. We show that for any initial token distribution b on a
ring of n nodes, a particular local balancing algorithm converges to a completely balanced
distribution within 40PT(b) 4+ n steps, where OPT(b) is the time taken by an optimal

centralized algorithm to balance b completely. More significantly, we generalize the

preceding result to an asynchronous model in which local computations and messages

11

may be arbitrarily delayed, subject to the constraint that each message is eventually
delivered and each computation is eventually performed. The results in Chapter 5 are

joint work with Johannes Gehrke and Greg Plaxton, and appear in [50].

1.2.3 Dynamic Load Balancing

In order to study the dynamic aspect of load balancing, we introduce the adversarial
model in Chapter 6. In this model, tokens are created and/or destroyed in each step,
and an adversary decides the number of these tokens and the location of each token.
The goal of the balancing algorithm is to maintain a “small” imbalance at all times.

Clearly, some restrictions have to be placed on the adversary to disallow scenarios
in which an unbounded amount of imbalance may be created, for example, by adding a
large number of tokens at a single node. We place the following restriction: the adversary
may insert/delete any number of tokens on any subset of nodes subject to the constraint
that there exists an € > 0 such that for every subset S of nodes, the change in the
imbalance of S is at most (1 — &) times the number of edges coming out of S. In other
words, the change in the imbalance of S is less than the number of edges connecting S to
the rest of the network. It follows from an easy bisection argument that if the change in
the imbalance of S is allowed to exceed the number of edges connecting S to the rest of
the network, then an adversary may cause the imbalance of S to increase continuously
with time.

Given the adversarial model, we seek stable algorithms. An algorithm is said to
be stable if there exists A such that for all ¢ > 0, the imbalance of G at the start of step ¢
is at most A. In Chapter 6, we show that the local balancing algorithm of Aiello et al. [5]

is stable for all networks for ¢ > 0. This result is joint work with S. Muthukrishnan.

1.3 Two Abbreviations for High Probability Bounds

Several claims in this dissertation are probabilistic and we differentiate between two kinds

of high probability bounds. Let n denote the number of nodes in the system. Throughout

12

this document, we use the abbreviation “whp” to mean “with high probability” or, more
precisely, with probability 1 — n™¢ for some constant c¢. Throughout this document, we
use the abbreviation “wvhp” to mean “with very high probability” or, more precisely,
with probability 1 — n~¢, where ¢ is a constant that can be set arbitrarily large by

appropriately adjusting other constants defined within the relevant context.

13

Part 1

Sharing Memory

14

Chapter 2

Fast Exclusive Access to Shared

Objects

2.1 Introduction

In this chapter, we consider the problem of emulating an EREW PRAM on a c-arbitrary
crosshar. We begin by reviewing the definitions of these two computational models. An
EREW PRAM [49] is a collection of n processors along with a global shared memory.
Input and output are provided in the shared memory. In a single computational step,
each processor can read or write one memory location. The sole restriction is that no
two processors are allowed to access the same memory location in a single step. (If
two processors attempt to access the same memory location in a single step, then the
machine halts.)

A c-arbitrary crossbar, which we introduced in Section 1.1.1, is a more realistic
model of distributed computation in which the global shared memory is distributed over
the n nodes of the machine. Input and output are provided in the distributed memory,
and the nodes access the distributed memory via a communication network. Recall
that the number of messages that a node of the c-arbitrary crossbar can send or receive

in a single step is at most ¢. We now rephrase this property in terms of read/write

15

operations to the distributed memory. We assume that each computational step of the
crossbar consists of a read/write phase followed by an acknowledgment phase. During
the read/write phase each node can issue one read or write request for a specific memory
location. If the total number of read/write requests involving memory locations stored
in any particular node A is less than or equal to ¢, then all requests involving A succeed
and are acknowledged during the acknowledgment phase. On the other hand, if more
than ¢ processors attempt to access memory locations stored in the same node A, then
an arbitrary subset of ¢ of the requests succeed and are acknowledged.

We obtain our emulation results for the c-arbitrary crossbar by analyzing our
emulations on a slight variant of the c-arbitrary crossbar, the c-collision crossbar. A
c-collision crossbar is defined in the same manner as a c-arbitrary crossbar, except that
if more than ¢ requests are sent to a node A, then all requests involving A fail and
no corresponding acknowledgments are sent. It is easy to see that given any emulation
protocol for the c-collision crossbar, we can construct an equally efficient emulation
protocol for the c-arbitrary crossbar.

The c-arbitrary and c-collision crossbars generalize some models that have been
studied previously. The module parallel computer (MPC [9]) and the S*PRAM [116]
correspond to the l-arbitrary crossbar model. The local memory PRAM model of An-
derson and Miller [10], later studied under the name OCPC (optical communication
parallel computer) in [51, 60, 61], corresponds to the 1l-collision crossbar model. The
c-arbitrary and c-collision DMM models of [47, 75] are similar to the crossbar models in
that the underlying communication network is a complete network. The DMM models,
however, limit only the total number of objects accessed from a node to ¢ and, hence,
allow unbounded concurrent access to an object stored in a node, while the crossbar
models limit the total number of accesses satisfied by a node to c.

As mentioned in Section 1.1.1, the c-arbitrary crossbar is a distributed memory
model that addresses the issue of contention by placing a restriction on the bandwidth
at each node. Among shared memory models, a well-studied model that addresses

contention is the QRQW PRAM [57, 55, 56]. The QRQW PRAM extends the EREW

16

PRAM model by allowing simultaneous access to a cell in any step and allowing processor
instructions to be pipelined. The amount of contention that occurs in a step is taken

into account in the cost of performing the step.

2.1.1 Overview of the Results

Assume that we wish to emulate an EREW PRAM on a c-collision crossbar. If we
map each EREW PRAM processor to a unique node of the crossbar, and employ a
random hash function to map each location of the EREW PRAM shared memory to the
memory module of some node of the crossbar, we can easily see the connection between
the desired emulation and a random “balls and bins” experiment in which n balls are
thrown independently and uniformly at random into n bins. Each of the at most n
read or write requests generated in a single step of the EREW PRAM computation
corresponds to a ball, and the memory module at each node corresponds to a bin.

If ¢ = O(1), we can conclude that the preceding scheme requires Q(lgn/lIglgn)
time whp! to emulate one step of the EREW PRAM. On the other hand, Dietzfelbinger
and Meyer auf der Heide [47] have recently shown that a bound of O(lglgn) time per
EREW PRAM step is attainable for constant c. They presented a contention resolution
protocol that minimizes the effect of the inevitable “hot-spot” memory modules (e.g.,
those memory modules receiving ©(lgn/lglgn) requests under a given hash function)
by storing three copies of each shared memory cell in the crossbar. Thus, at the expense
of increasing the storage requirement by a factor of 3, the running time of the emulation
is exponentially decreased.

In the protocol of [47], a read or write operation of memory location z by EREW
PRAM processor ¢ is emulated by having processor ¢ of the c-collision crossbar access 2
out of the 3 copies corresponding to memory location . The analysis presented in [47]
requires some slack in the constants; in particular, they require ¢ > 3, and are only able

to analyze the protocol when it is used to emulate en processors at a time, where ¢ is

'Recall that the term whp, which is defined in Section 1.3, means with probability 1 —n " for some
constant a.

17

a sufficiently small positive constant. (Thus, the overall running time of the protocol is
increased by a factor of 1/¢.)

The protocol of [47] is easily generalized to the “a out of b problem”, in which b
hash functions are used, and each node of the c-collision crossbar is required to access
a out of b copies of a particular memory location. Our results in this chapter consist of

the following bounds for the a out of b problem.

e In Section 2.4, we focus on the case a = 1, and pinpoint the asymptotic complexity
of the resulting protocol on the c-collision crossbar for all possible choices of the
parameter b and for ¢ in {1,2}. Furthermore, our analysis goes through with ¢ = 1,
that is, we consider the most basic form of the protocol in which the action of all n
EREW PRAM processors is emulated at once. For ¢ = 1, we prove that the protocol
runs in ©(lglgn) time whp if b > 3. For ¢ = 1 and b = 2, we prove that the protocol
runs in Q(lgn) time wvhp!. For ¢ = 2 and b > 2, we prove that the protocol runs
in O(lglgn) time whp. Our results imply that for all constants ¢ > 2, the 1 out of b
protocol terminates in ©(loglogn) time whp on a c-collision crossbar. (The protocol
will run faster for non-constant c. It would not be difficult to extend our analysis to

obtain tight bounds for non-constant c.)

e In Section 2.5 we show that the above results hold even if the hash functions are only

O(log® n)-wise independent, where « is a sufficiently large real constant.

e In Section 2.6, we observe that any a out of b problem with a > 1 can be reduced to
a sequence of 1 out of £ problems for an appropriate choice of £. Thus, we are able
to easily upper bound the complexity of a (new) protocol for essentially any a out of
b problem. Our results yield, for example, O(loglogn) time protocols on 1-collision
and 2-collision crossbars, and hence on l-arbitrary and 2-arbitrary crossbars as well,
using 5 and 3 hash functions, respectively. One might suspect that a reduction of this

sort, while making the analysis easier, is only doing so at the expense of a significant

'Recall that the term wvhp, which is defined in Section 1.3, means with probability 1 —n~%, where o

is a constant that can be set arbitrarily large by appropriately adjusting other constants defined within
the relevant context.

18

constant factor in performance. Interestingly, this is not the case; rather, as discussed
in Section 2.6, our reduction yields a faster a out of b protocol than is obtained via

the natural generalization of [47] for virtually all possible values of a and b.

2.1.2 Related Work

The ideas of hashing and replication have played a central role in almost all of the
known shared memory simulations. Mehlhorn and Vishkin [91] proposed distributing the
shared objects using universal hashing. Upfal and Wigderson [113] were the first to use
replication in the context of shared memory simulations. They presented a deterministic
protocol with delay O(logn(loglogn)?). One of their main observations, which has been
used in several subsequent replication-based simulations, including ours, was that it is
sufficient to access a majority of the copies. (The “majority trick” had been proposed
earlier for concurrency control in replicated databases [112].)

Following the work of Upfal and Wigderson, several EREW PRAM emulations
on the crossbar have been proposed. A deterministic simulation with delay O(logn) was
presented in [9]; however, their result is non-constructive. Karp, Luby, and Meyer auf
der Heide [75] presented a protocol that uses three hash functions and incurs O(loglogn)
delay. Subsequently, Dietzfelbinger and Meyer auf der Heide [47] proved the same bound
for a much simpler protocol which forms the basis for our work.

Subsequent to our work, faster protocols for EREW PRAM emulation on the
closely related DMM model have been obtained. Czumaj, Meyer auf der Heide, and
Stemann presented two randomized protocols for DMMs with O(loglogn/(logloglogn))
[44] and O(logloglognlog® n) [43] delay whp, respectively. Their protocols consist of
certain preprocessing steps in which all the nodes of the DMM cooperate in estimating
certain quantities associated with the PRAM step (e.g, the number of requests directed
to each module). Hence, these protocols are more complicated than the ones we consider
here. Moreover, the simulations of [44, 43] do not apply directly to the crossbar model
which, as mentioned before, is not as powerful as the DMM model.

All of the protocols studied in this chapter and the ones discussed above are

19

designed for distributed machines in which the underlying communication is by means
of a complete network. Several researchers have studied simulations of shared memory
on other topologies. Non-constructive simulations on networks of bounded degree were
presented in [9]. Ranade devised a novel routing algorithm for the butterfly which
leads to a CRCW PRAM simulation protocol with O(logn) delay [105]. Simulations of
different PRAM models have been obtained on the mesh-connected computer [100] and
its variants [82].

From the point of view of contention resolution, our work is related to the vast
body of research on routing protocols for multiple-access channels (MACs) and optical
computers. In a MAC, a set of distributed processes contend for a single shared resource,
the channel, and the problem is to allocate the channel among the participating client
processes. If two or more clients attempt to use the channel simultaneously, then there
is a collision, and no client succeeds. The standard Ethernet local area network [92] and
the classic ALOHA packet radio network [1] are two well-known examples of multiple
access channels. (See [29, Chapter 4] for more examples.) An optical computer, which
can be viewed as a collection of multiple access channels, is accurately modeled by a
1-collision crossbar.

There is a fundamental difference between the nature of contention arising in the
context of routing for MACs and optical computers, on the one hand, and in shared
memory simulations, on the other. While the “minimum unit of contention” in the
former case is the channel or the memory module, in the latter case it is an object which
is replicable. To illustrate this, consider a routing problem on a 1-collision crossbar in
which h nodes send one message each to the same destination. It is easy to see that there
is a lower bound of h for this problem. However, if we consider the analogous scenario
of h nodes contending for objects that reside in the same memory module, a bound of A
can be overcome by replication.

In the absence of replication, a natural approach to resolve contention for MACs
is to use randomization to break the symmetry among the clients. This idea is central

to many MAC protocols, including the Ethernet protocol [92] and the slotted ALOHA

20

protocol [1], and routing protocols for the optical computer [10, 116, 51]. (For more work
in this direction, see [64, 65].) Lower bounds for routing in optical computers appear

in [62, 88].

2.2 The 1 out of / Protocol

Consider the 1 out of £ problem where £ > 1. Let the £ hash functions be labeled h;,
0 <@ < {, and the shared memory request of node j be for cell z;. Node j needs to
successfully access one of the memory locations h;(z;), 0 < ¢ < £. To solve the 1 out of
¢ problem, the following sequence of £ rounds can be repeated until each processor has

had one successful access:

e In the ¢th round, where 0 < ¢ < £, if node j has not successfully accessed any copy

of x;, then node j attempts to access h;(z;).

Each round is executed in a synchronous fashion. We refer to this protocol as the 1 out
of £ protocol. (This is analogous to Access Schedule 2 of [47], defined for the 2 out of 3

problem.)

2.3 Sketch of the Analysis

In order to understand the execution of the 1 out of £ protocol, let us consider the
underlying process in an equivalent balls-and-bins setup. Assume for simplicity that the
protocol is running on a l-collision crossbar. Let 7} (resp., t;) denote the set (resp.,

number) of outstanding requests at the end of round i.

2.3.1 Unbounded /¢

To gain an initial intuition, let us assume that we have an infinite number of hash
functions (i.e., £ is unbounded). Consider round 0 of the protocol. Since hy is chosen
independently and uniformly at random, round 0 corresponds to a random throw of n
balls into n bins. In a l-collision crossbar, if a node receives more than one request,

21

then the node rejects all of its requests. Therefore, ¢y is the number of non-singletons,
where a non-singleton is a ball that lands into a bin with more than one ball. Following
the same argument, we obtain that for all ¢, ¢; is the number of non-singletons obtained
in a random throw of ¢;_; balls into n bins. Figure 2.1 illustrates rounds 0 and 1 of an

instance of the random process that begins with 16 balls and 16 bins.

(6)
(5
Bo_8__8_e8__8_ _ae
@

(>

_@@_8__69_8__@
(b)

@ _

Figure 2.1: Rounds 0 and 1 of the 1 out of £ protocol, with £ > 2 and n = 16. The 16
balls are numbered 0 through 15. Round 0 (part (a)) is an instance of a random throw
of 16 balls into 16 bins. Since balls 3, 5, 7, and 10 are singletons we remove them before
round 1. Round 1 (part (b)) is an instance of a random throw of the remaining 12 balls
into 16 bins.

The process of throwing k balls into n bins is well understood and it is straight-
forward to derive expected and high probability bounds on the number of non-singletons.
As an example, consider the case when k is n. The probability that a bin receives exactly
one ball is (1 — 1/n)"~! ~ 1/e. Thus, the expected number of bins that receive exactly
one ball is approximately n/e. It follows that the expected number of non-singletons
is approximately (e — 1)n/e. More generally, we can show that if n/a balls are thrown
independently and uniformly at random into n bins, then the number of non-singletons
is O(n/a?) wvhp. (The intuition behind the preceding observation is the following: the
probability that a ball lands in a bin holding at least one other ball is most 1/a.) Using
the above calculations, it is easy to show that there exist constants « > 1 and g > 1

such that ¢; is O(n/af") wvhp for all 7. Thus, we obtain that for i = ©(loglogn), t; is

22

zero wvhp, and hence all requests are satisfied within ©(loglogn) rounds wvhp.

2.3.2 Bounded /¢

Unfortunately, the approach outlined in the preceding section does not carry through
for the case of constant ¢ because the sequence of distributions arising in the analysis
quickly deviates from the simple behavior associated with the process of throwing k
balls randomly into n bins in round ¢. To see this, consider round £ of the protocol. In
this round, each node j that has not successfully accessed a copy of z; in any of the
first £ rounds attempts to access ho(z;). (Recall that the protocol cycles through the
¢ hash functions.) Even though hg is a hash function that is chosen independently and
uniformly at random, it is not the case that round ¢ corresponds to a random throw
of ty_1 balls into n bins. This is because there is a correlation between the set T;_; of
requests that are outstanding after round ¢ — 1 and the set of hash functions used in
the first £ rounds, which includes hy. Figure 2.2 illustrates round 2 of the experiment
initiated in Figure 2.1 under the assumption that £ is 2. The remaining rounds are shown

in Figure 2.3.

@__@____@_____

Figure 2.2: Round 2 of the 1 out of 2 protocol for the example in Figure 2.1. We
obtain the distribution in round 2 by removing the four singletons obtained in round 1
and the five singletons 0, 6, 11, 14, and 15 obtained in round 1 (Figure 2.1(b)) from the
distribution obtained in round 0 (Figure 2.1(a)).

The key idea underlying our analysis is that we are able to characterize the
process associated with round ¢ (and each of the subsequent rounds) in terms of certain
“truncated k balls in n bins” distributions that are obtained by throwing k balls into n
bins and removing balls until a certain condition holds. We then show that the truncated
distributions can be approximated by suitably chosen instances of the standard balls-
and-bins distributions.

Our approach can be illustrated by considering the relationship between rounds 0

23

Figure 2.3: Rounds 3 and 4 of the 1 out of 2 protocol, for the example in Figure 2.1. We
obtain the distribution in round 3 (part (a)) by removing the five singletons obtained in
round 1 and the three singletons 2, 9, and 12 obtained in round 2 (Figure 2.2) from the
distribution obtained in round 1 (Figure 2.1(b)). We obtain the distribution in round 4
(part (b)) by removing the three singletons obtained in round 3 and the two singletons
1 and 13 obtained in round 3 (Figure 2.2(b)) from the distribution obtained in round 2
(Figure 2.1(b)). Since there are no balls left after round 4, the protocol terminates.

and £. As mentioned before, Tj represents the set of non-singletons obtained in a random
throw of a set (say Sp) of n balls into n bins. Since Ty is a subset of Ty, we obtain that
for any request in 7,_1, the location of the copy determined by hy is no longer random.
The following crucial property, however, still holds: the set Ty 1 is a random subset of

Ty. This property indicates that Ty can be determined by the following experiment:

e Remove balls from Sy at random until the number of balls remaining from 7§ is ¢,_1.

(Let Sy denote the set of balls remaining from Sy.)

The set 1} is precisely the set of non-singletons obtained at the end of the preceding
experiment. Moreover, the set Sy is a nearly random |Sy|-size subset of Sp. (We say
“nearly random” because Sy is biased by the stopping condition of the experiment. For
example, the number of balls in S, that also belong to Ty is ty_;.) An experiment in
which we first throw k balls into n bins at random and then remove a random subset
of k' balls is equivalent to a random throw of & — k' balls into n bins. Hence, t; is
closely approximated by the number of non-singletons obtained in a random throw of
sg = |Se| balls into n bins. We have thus reduced the calculation of ¢, to that of sy. It
is easy to see that the expected value of s, is approximately nty 1 /tg. It follows from a

24

Chernoff-type argument that sy is ©(nt,—1/ty) wvhp. More generally, for all i > £, we
can show that there exists s; = O(s;_gt;_1/t;—¢) such that ¢; approximates the number
of non-singletons obtained in a random throw of s; balls into n bins.

We now have all the ingredients that together complete the analysis of the 1 out
of £ protocol. The first ingredient is a sharp estimate of the number of non-singletons
in a random throw of k£ balls into n bins. The second ingredient is the proof that t;
approximates the number of non-singletons obtained in a random throw of s; balls into
n bins. The third ingredient is that s; can be determined from s; g, t;_4, and ¢;_1.

Using the first and second ingredients, we obtain a relation between s; and t;.
Then, using the third ingredient, we obtain a recurrence relation among the ¢;’s. Finally,
the recurrence relation yields a bound on the number of rounds it takes for ¢; to be zero,
and hence a bound on the running time of the protocol.

The formal analysis is somewhat more complicated than the informal description
outlined above. For example, it turns out that both our estimate of the number of
non-singletons as well as our bounds relating the quantities s;, s; ¢, t;_¢, and ¢; 1,
need to be accurate to within a 1 — o(1) factor. Fortunately, the theory of martingales
provides a mechanism to obtain bounds that have the required level of accuracy. Another
complication arising in the analysis is that, as indicated above, ¢; is only approximately
given by the number of non-singletons in a random throw of s; balls into n bins. We
make the notion of approximation precise by deriving suitably tight upper and lower

bounds for ;.

2.3.3 Summary

The basic ideas sketched in Section 2.3.2 can be generalized to derive a bound on the
running time of the protocol for all values of £ and c¢. For example, when ¢ is 1, we
obtain that the running time is ©(loglogn) for all £ > 3.

Finally, as mentioned in Section 2.1.1, we derive a protocol for the a out of b
problem by running a sequence of an appropriate number of 1 out of £ protocols. The

analysis for the a out of b problem follows from the analysis for the 1 out of £ problem

25

in a straightforward manner.

2.4 Analysis of the 1 out of / Protocol

In this section we analyze the 1 out of £ protocol under the assumption that each hash
function is chosen independently and uniformly at random. We begin our analysis by
presenting the 1 out of £ protocol in an equivalent balls-and-bins setup. Let n balls
labeled 0 through n — 1 represent the accesses, and n bins labeled 0 through n — 1
represent the memory modules. Each hash function, a random function from [n] to [n],
is equivalent to a random throw of n balls uniformly and independently into n bins. Let
h# denote the function h with domain restricted to the set A C [n]. Let R; denote the
set of balls remaining after round :. For convenience, define R_; to be the set of balls
left before round 0, i.e., R_; = [n]. Note that for i > 0, R; is the subset of R;_; given

by the following recurrence:

Ry ={j € Ri_1: |f 1 (f(j))| > ¢}, where f = hi-!

i mod £*

Recall that a bag (or multiset) is an unordered set in which repetition is allowed.
For any set A we define a bag B to be an A-bag if every element of B is also an element
of A.

For nonnegative integers m and n, let F,, ,, denote the set of functions from [m]
to [n]. For each f € Fp, 5, note that the bag {f(j) : j € [m]} is an m-size [n]-bag. For
convenience, given any f € Fy,, and A C [m], let the term bag f(A) denote the bag
{f(z) : « € A}. The uniform distribution over F,,,, induces a probability distribution,
which we denote Dy, ,, over the set of all m-size [n]-bags. For any bag B and A C [n],
let Bap = {f4: f € Fnn and bag f(A) = B}.

Let S; and T; denote the bags h; mod ¢(Ri—1) and h; mod ¢(R;), respectively. Let
t; = |1;| = |R;| (thus t_; = n) and s; = |S;|. Note that (¢;) is a nonincreasing sequence.
The protocol terminates after the first round ¢ for which ¢; = 0. The protocol fails to

terminate if and only if ¢; = ;.4 > 0 for some ¢ > —1. (In such a case, the protocol

26

enters an infinite loop with ¢; = ¢; for all j > i.) The goal of our analysis is twofold:
(i) to bound the probability that the protocol fails to terminate, and (ii) to analyze
the number of rounds required by the protocol when it does terminate. We begin our
analysis by establishing some properties of D, ,, and B4 p.

Let random variable X be drawn from Dy, ,, B be an arbitrary [n]-bag of size

m, and m; be the number of copies of element ¢ in B, 0 < ¢ < n. We have:

PrX=B=— . —, (2.1)

mol - my_1! nm
Lemma 2.1: Let m and n be integers such that 0 < m < n and assume that X is a
random variable drawn from Dy, y1,. Let x be chosen uniformly at random from X. If

Y is the random variable X \ {z}, then the probability distribution of Y is Dy, p.

Proof: Let B be any m-size [n]-bag and B; = BU {i}, 0 < i < n. Let the number of

copies of element ¢ in B be m;. (Hence Z?gol m; = m.) Using Equation 2.1 we have

n—1 m‘+1
Pr[Y =B] = Pr[X = B;] - —
V=B = Y PdX=B)- Ty
n—1
- F1°)] ol
\nm (mz—i-l).#i m;!t | m+1
B HZ:I 1 m!
B —~ nmtl omgl - my_q!
B m! 1
- mol .mnill nm

Corollary 2.1.1: Let a, m, and n be integers such that 0 < a < m < n. Let X be
a random variable drawn from Dy, . If Y is a random a-size subbag of X, then the

probability distribution of Y is Dy . 0

Lemma 2.2: Let R be an arbitrary subset of [n] and B be an arbitrary [n]-bag. Let h be
a function drawn uniformly at random from Bgr p. For an arbitrary subset A of R, the
bag h(A) is a random |A|-size subbag of B.

27

Proof: Consider an arbitrary element € R. Clearly h(z) is a random element of B.
Applying this for each element in A, we obtain that the bag h(A) is a random |A|-size
subbag of B. [

For any random variable X and any event F which occurs with non-zero proba-
bility, let X | E' denote the random variable whose probability distribution is the condi-
tional probability distribution of X given E. Using Corollary 2.1.1 and Lemma 2.2, we

prove the following claims about the 1 out of ¢ protocol.

Lemma 2.3: Let R be an arbitrary subset of [n] and T be an arbitrary [n]-bag. For all
i >0, if Pr[{R; = R,T; = T}] is non-zero, then the random variable hf ., | {R; =

R,T; =T} is drawn uniformly at random from Bg 1.

Proof: The random variable h; noq ¢ is drawn uniformly at random from 7, . There-
fore, given that R; = R and bag himoed¢(R) = 1; = T, hfmod ¢ is drawn uniformly at

random from the set of functions whose domain is R and the range, viewed as a bag, is

the [n]-bag T". This set of functions is precisely Bg 1. 0

Lemma 2.4: For 0 <j <1, let Ej, fj, andi\j be an arbitrary subset of [n], an arbitrary
[n]-bag, and an arbitrary integer, respectively, such that ;f\] = |§]| = |j:]| Let S} denote
the random variable S; | {R; = ﬁj,Tj = fj,tj =1;:0<j <i}. Leti be a nonnegative
integer and Pr[{R; = Ej,Tj = fj,tj = 2\] :0 < j <i}| be non-zero. If 0 < i < £, then S

. . . ;- > . =~
s drawn from foiq,n’ otherwise, S; is a t;_1-size random subbag of T;_,.

Proof: By definition, S; equals the bag h; mod ¢(Ri—1). If 0 < i < £, then S} equals the
bag h; mod g(ﬁi_l) because h; mod ¢ 1s independent of all events associated with rounds
0 through 7 — 1. Let C be an arbitrary n-bag and let h' denote the random variable
himod ¢ | {himod e([n]) = C}. The probability distribution of bag h; mod ¢([n2]) is Dp p
and hence A’ is drawn uniformly at random from Bin),c- Applying Lemma 2.2 with

(In],C, k', Ri_y) for (R, B, h, A), we obtain that bag h'(R;_1), i.e., S| {himoa ¢([n]) =

C}, is a random t;_1-size subbag of C. Since the preceding statement holds for all C, we

28

apply Corollary 2.1.1 with (£;_1, 7, n, hi moa ¢([n]), Si) for (a,m,n, X,Y) to obtain that
S; is drawn from Dy .
Riy

We now consider the case 7 > £. Let h"” denote the random variable b od e

{Ri—¢ = ﬁi_g,Ti_z = ﬁ_g}. Since A" is independent of all events associated with

rounds ¢ — £+ 1 through ¢ — 1, S} equals the bag h"(R;_1). Applying Lemma 2.3 with

(Ri_¢,Ti_¢,i —) for (R, T,i), we obtain that A" is drawn uniformly at random from

Bg 7 ,- Applying Lemma 2.2 with (ﬁi,g,fi,g,h",ﬁi,l) for (R, B,h,A), we obtain
that bag h”(]/%i_l), ie., S, is a random t;_1-size subbag of ﬁ_g. 0

We are now ready to describe the protocol in terms of the S;’s and T;’s alone. Let
RandomBag(m,n) return a bag drawn from D, ,. Let RandomSubbag(B,m) return
a new bag that is a random m-size subbag of B. Let PrunedBag(B,c) return a bag
that contains exactly those elements of S that have more than ¢ copies. Algl(n,Z,c)
algorithmically describes the random process established by Lemma 2.4 regarding the

1-out-of-£ protocol on a c-collision n-crossbar.

Algl(n,¢,c)

(1.1) i:=0;

(1.2) repeat

(1.3) if i </ then

(1.4) S; = RandomBag(|T;-1|,n)

(1.5) else

(1.6) S; := RandomSubbag(T;_4,|T; 1]);
(1.7) T; := PrunedBag(S;, ¢);

(1.8) i=it1

(1.9) until |T;_4]| =0

In order to analyze Algl we will estimate the size of T; after round :. We propose

a modified version of the above algorithm that simplifies the estimation of |1;|. Observe

that for 0 < ¢ < £, S; is the bag obtained by throwing |S;| balls at random into n bins,

and T; is PrunedBag(S;, ¢). Below we present the modified algorithm Alg2(n, ¢, c) that
29

approximately maintains this invariant after every round, under a suitable redefinition
of S;. The analysis in Section 2.4.3 will make this precise. Alg2 is the same as Algl
except that Lines (1.5) and (1.6) are replaced by Lines (2.1) through (2.7), stated below.

(2.1) else {

(2.2) Si, T == Si_¢, Ts_p;

(2.3) while [T} > |Tj_1| {

(2.4) “Select = at random from S;”;
(2.5) Si, Ti = Si \ {z}, Ti \ {z}
(2.6) }

(2.7) };

Since each element x in line (2.4) is selected at random from S;, any element
selected from 77 is also random in 7;. Moreover exactly |T;_1| of the elements from 7;_,

are retained after the execution of the while loop.

Lemma 2.5: Let S}, T} (resp., S2, T?) denote bags S;, T; in Algl (resp., Alg2) after

round i, ¢ > 0. Then T} and Ti2 have the same probability distribution.

2

Proof: We use induction on the number of rounds. For the basis, we observe that
To,..., Ty 1 in Algl and Alg2 are obtained in exactly the same way. (Lines (1.5)
and (1.6) of Algl and the corresponding lines (2.1) through (2.7) of Alg2 are not
executed.)

Consider round ¢ > £. By the induction hypothesis le and Tj2 have the same
probability distribution, 0 < j < i. In Line (1.6), Algl computes S} by selecting
a random subbag of size |I}' ;| from the subbag 77" ,. In Lines (2.3) through (2.6),
Alg2 computes S? by removing at random elements from S? , until |77 | elements are
retained from subbag 77 ,. Thus 77 is a |T2 ,|-size subbag chosen randomly from 77 ,.
By the induction hypothesis, the probability distribution of T} , (resp., T} ;) is the
same as that of 7 , (resp., 77 ;). Therefore, S} after Line (1.6) of Algl and T7? after
Line (2.6) of Alg2 have the same probability distribution. Let S’ (resp., T”) denote S2

30

(resp., T?) after Line (2.6) of Alg2. Since T , contains all elements of 52 , with more
than c copies, T" contains all elements of S’ with more than ¢ copies.

After Line (1.7), T} is the subbag of S} containing all elements with more than ¢
copies, and Ti2 is the subbag of S’ containing all elements with more than ¢ copies. Since
T" contains all elements of S’ with more than ¢ copies, 77 is the subbag of 7" containing
all elements with more than ¢ copies. Therefore, the probability distribution of Ti1 after

round ¢ is the same as that of T? after round i. [

Corollary 2.5.1: The probability that Algl(n,¥,c) terminates after round i, i > 0, is

equal to the probability that Alg2(n, ¢, c) terminates after round i. []

In the remainder of this section, we analyze Alg2 for the cases where c is in
{1,2} and { is arbitrary. The analysis can be easily generalized to apply for all values
of ¢. We begin by presenting, in Section 2.4.1, some results on large deviations of
certain probability distributions. In Section 2.4.2, we analyze certain “balls and bins”
experiments. Section 2.4.3 uses these analyses to obtain tight bounds on the running
times of Alg2(n,¢,1) and Alg2(n,¢,2). Among other results, we show that Alg2(n,3,1)

and Alg2(n,2,2) both terminate in ©(loglogn) rounds whp.

2.4.1 Large Deviations

For our analysis, we make frequent use of bounds on the tails of the binomial and
hypergeometric distributions [8, 37, 38, 70]. These bounds are stated in Appendix A.
Lemmas 2.6 and 2.7 are obtained from bounds on the tails of the hypergeometric and

binomial distributions, respectively.

Lemma 2.6: Let S be a set of s balls, and T' be a subset of S, t = |T'|. Let s' balls
be chosen uniformly at random from S, and t' be the random variable representing the

number of balls that are chosen from T'. Then,

Prlt’ > (14 1/(2log? n))s't/s] —s't?/(2s* log®n)

IA

e and

e—s’tz/(Zs2 log® n)

IA

Pr[t' < (1 —1/(2log®n))s't/s]

31

Proof: Apply Theorem A.2 with ¢ = t/(2slog® n). 0

Lemma 2.7: Let S be a set of s balls and T be a subset of S, t = |T'|. Let s' balls be
chosen at random from S, and let t' be the random variable representing the number of

balls that are chosen from T. If s't/s > log®n, then t' > s't/(3s) wuhp.

Proof: Let p =t/s. Consider the s’ balls being chosen in s’ rounds (one ball in each
round). If the number of balls chosen from bag 7' in rounds 1,...,7 — 1 is less than
ps' /3, the probability that a ball from 7" is chosen in round ¢ is at least 2p/3. Let X be
a random variable drawn from B(s',2p/3). The probability that ¢ > ps’'/3 is at least
the probability that X > ps’'/3. By Equation (A.1) of Theorem A.1, Pr[X > ps'/3] >

1 — e P$'/12_ Since ps' > log? n, the lemma is proven. [

In Alg2(n,4,1), T; is that subbag of S;, each element of which has at least 2
copies. We call such elements (as well as the associated balls) non-singletons. Similarly,
in Alg2(n,{,2) each element of T; has at least 3 copies. We call such elements (as
well as the associated balls) non-pairs. In Section 2.4.3, we show that the probability
distribution of S; is approximately Dy, ,. Thus, in Alg2(n,£,1) (resp., Alg2(n,,2))
t; is approximately the number of non-singletons (resp., non-pairs) in a random bag
drawn from Dy, ,,. In order to get sharp estimates on the number of non-singletons and
non-pairs in a random bag drawn from Dy, ,, we use a martingale analysis. Appendix B

defines a martingale and states certain useful bounds on large deviations for martingales.

2.4.2 Lemmas on Balls and Bins

In this section, we estimate the number of non-singletons and non-pairs in a random bag
with distribution Dy, , using the large deviation bounds mentioned in Section 2.4.1. By
linearity of expectation, the expected number of non-singletons (resp., non-pairs) of a

random bag X drawn from D, ,, is given by f(m,n) (resp., g(m,n)), where

fmy = (1= (1-2)") ona

32

g(m,n) = m(1—<1—%>m_1—m;1(1—%>m_2>.

Throughout this section n will be fixed, so we use f(m) (resp., g(m)) to denote f(m,n)
(resp., g(m,n)). In Section C.1 of Appendix C, we derive certain properties of f and g.
In particular, Lemmas C.1 and C.2 show that f(m) = ©(m?2/n), and g(m) = O(m?/n?).
Let

§ = 1—1/log’n, and
A = 1+1/log®n.
We now bound the probability that the number of non-singletons in a random bag
drawn from Dy, , deviates from the mean f(m). Lemma 2.8 is used to bound deviations

to within a o(1) factor for m suitably large, and Lemma 2.9 bounds deviations to within

a constant factor for all m.

Lemma 2.8: Let m and n be integers such that 3 < m < n, and h : [m] — [n] be
a random function drawn from Fp, n, and t(h) be the number of non-singletons in bag

h([m]). If m > n?/31ogn, then §f(m) < t(h) < Af(m) wohp.
Proof: Consider the martingale X, ..., X,, defined as:
Xi(h) = E[t(p) | p and h agree on balls in [7]].

If two functions p and p’ differ only on ball 7, ¢(p) and ¢(p') differ by at most 2. We apply
Theorem B.2 by scaling the random variable ¢ by 2 and thus obtain, |X;11 — X;| < 2.

Similarly, after scaling X;’s by 2, we apply Theorem B.1 to get
Pr[| X, — Xo| > 20/m] < 2e /2. (2.2)

The expected value X of ¢, is f(m). For a function h, t(h) is X,,(h). By Equation 2.2
with A = f(m)/(2y/mlog®n), we find that

Pr||t(p) — f(m)| > f(?) < 9¢—f(m)?/(8mlog®n)
log® n

33

Since f(m) > m?2/3n, for all m > 2

Pr |[t(p) — f(m)| > f(?) < 9o—m*/(72n° log®n)
log” n

For m > n?/3log®n, m?/(7221og® n) > (log®n)/72. Therefore, 6f(m) < t(p) < Af(m)

wvhp. []

Corollary 2.8.1: Let m and n be integers such that 3 < m < n, S be a random bag
drawn from Dy, n, and t be the number of non-singletons in S. If m > n2/31og® n, then

5f(m) <t < Af(m) wohp. 0

Lemma 2.9: Let m and n be integers such that 3 < m < n and S be a random bag

drawn from Dy, . Let t represent the number of non-singletons in S. Then,
1. The probability that a particular ball is a non-singleton is at most m/n.
2. For \/ﬁlog5n <m <n, we have t < 4m2/n wuhp.

3. For m < \/nlog®n, we have t < 41og'® n wohp.

Proof: Let the m balls be thrown one-by-one. Since the balls occupy at most m bins,
when a ball ¢ is thrown the probability that ¢ falls into a bin that is non-empty before
i is thrown (referred to as a “non-empty bin” henceforth in this proof) is at most m/n.
Thus, the probability that a particular ball is a non-singleton is at most m/n. This
establishes Part 1 of the lemma.

Let X be the random variable representing the number of balls that fall into
non-empty bins. Thus, the number of non-singletons is at most 2X. Moreover, X
is stochastically dominated by the random variable ¥ drawn from B(m,m/n). The
expected value of Y is m?2/n.

For m > \/nlog®n, we apply Equation A.2 with ¢ = 1, and obtain Pr[Y >
252 /n] < e~m?/3n < (g’ n)/3 Therefore the number of non-singletons is at most

4m? /n wvhp, proving Part 2 of the lemma.

34

For m < \/ﬁlog5 n, we upper bound ¢ by the number of non-singletons in a bag

drawn from D /miogs nn- By Part 2,1 < 41og'® n wvhp, proving Part 3 of the lemma. []

The following two lemmas establish bounds on the number of non-pairs. We omit the

proofs since they follow the lines of Lemmas 2.8 and 2.9, respectively.

Lemma 2.10: Let m and n be integers such that 6 < m < n. Let h : [m]| — [n] be a
random function drawn from Fp, n, and t(h) be the number of non-pairs in bag h([m]).

If m > n*/51og3n, then dg(m) < t(p) < Ag(m) wohp. 0

Corollary 2.10.1: Let m and n be integers such that 6 < m < n, S be a random bag
drawn from Dy, ,, and t be the number of non-pairs in S. If m > n*5log®n, then

dg(m) <t < Ag(m) wohp. 0

Lemma 2.11: Let m and n be integers such that 6 < m < n, and S be a random bag

drawn from D, . Let t be the random variable denoting the number of non-pairs in S.

Then,
1. The probability that a particular ball is a non-pair is at most the mazimum of
3m?/n? and 3(log*’ n)/n.
2. For n?/3 log3 n<m<mn,tis at most 12m3/n? wohp.

3. For m < n?/3log®n, t is at most 121og® n wohp. []

2.4.3 Analysis of Algorithm Alg2

In this section, we analyze the number of rounds taken by Alg2 before termination. For
0 <1< ¥, we have s; = t;_1. Corollaries 2.12.1 and 2.12.2, and Lemma 2.13 establish

bounds on s; in terms of the s7’s, 0 < j < i.
Lemma 2.12: In Alg2(n,l,c) let i > ¢, sy = As;_gt; 1/t; ¢ and s = ds;_gt; 1/t 4.
Then,

_ 2 2 6
Pr[s; > s4] e S+tioe/(2si_log"n) - gpg

Y

Pr[s; <s_] < oS-t /(257 ,logn)

35

Proof: In round ¢, Alg2 removes elements at random from S;_, until ¢;_; elements
are left from the subbag 7;_, of S;_,. Hence, Pr[s; > s;] equals the probability that
less than t; 1 elements are left from 7; , after s; y — s, elements are removed. This is
equal to the probability that less than #;_; elements are chosen from 7;_, in a random
selection of s elements from S;_,. Applying Lemma 2.6 with (s,t,s") = (sj_¢, ti—g, 54+),
the desired probability is at most e °+ tf_¢/(257_¢log°n), (Here we use the inequality
(1 —1/(21og®n))A > 1 for n sufficiently large.)

Similarly, Pr[s; < s_] equals the probability that more than ¢;_; elements are left
from T;_, after s;_y,—s_ elements are removed from S; ;. This is equal to the probability
that more than ¢;_; elements are chosen from T;_, in a random selection of s_ elements
from S;_y. Applying Lemma 2.6 with (s,¢,s") = (s;—_¢, ti—g, S—), the desired probability
is at most e *—ti-t/(2si_¢108%n) (Here we use that inequality (1 +1/(2log®n))d < 1 for

n sufficiently large.) 0

Corollary 2.12.1: In Alg2(n,{,c), if i > €, si_gti_1/ti¢ > 2n*/3log®n and t;_, >
s? ,/4n, then wvhp,

0si—gti—1/ti—e < 53 < Asi_gti_1/ti .
Proof: Let s;,s_ be as defined in Lemma 2.12. By Lemma 2.12, we have
Prs; > As;_gti_1/ti—g] < e~ S+t o/ (257 log"n)

Since s4,8;—¢ > 2n2/3 log3n and t;_y > 3%74/411, the right hand side of the above in-

2 2 6 3 . .
545 ¢/32n"login - o—log®n/4, Similarly, we can prove the de-

equality is at most e~
sired lower bound on s; wvhp using the lower bound in Lemma 2.12. (Note that

s_ > 20m?/3log3n > n?/31log®n for n sufficiently large.) d

Corollary 2.12.2: In Alg2(n, £, c), if si_gti_1/ti—¢ > 2n*/%log® n and t;_y > s ,/13n?,
then wvhp,

0si—gti—1/ti—e < 5; < Asi_gti_1/tiy.

36

Proof: Let s;,s_ be as defined in Lemma 2.12. By Lemma 2.12, we have

2

Prls; < Asi_gti_1/ti_g) < e *+ii-o/ (sl 1o8"n),

Since sy, Sj—¢ > 2n4/5 log3n and t;_, > 33_4/13112, the right hand side of the above

. . . _ 4 .132p4 6 _ 9 2
inequality is at most e *+%i-¢/(213°n%log"n) o —(1610g"n)/137

Similarly, we can prove
the desired lower bound on s; wvhp using the lower bound in Lemma 2.12. (Note that

s_ > 20n*/%log®n > n*5log®n for n sufficiently large.) d

Lemma 2.13: Let i > £. In Alg2(n,{,c), if ;1 > log®n, then s; < 3s;_¢t; 1/ti ¢

wvhp. If t; 1 <log®n, then s; < 3s;_¢(log®n)/t;_¢ wohp.

Proof: In Alg2, Pr[s; < 3s; 4t; 1/ti_¢] is equal to the probability that more than ¢;
elements are selected from 7;_, in a random selection of 3s;_gt;_1/t;—; elements from
Si_e. Ift;_; > log® n, then we apply Lemma 2.7 with (s,t, s') = (si_¢, ti—¢, 35i—eti—1/ti—e)
to establish that s; < 3s;_st; 1/t;_¢ wvhp. Similarly, Pr[s; < 3s;_¢(log®n)/t; 4] is equal
to the probability that more than ¢; ; elements are selected from 7; _, in a random selec-
tion of 3s;_y(log? n)/t;_s elements from S;_,. If t;_; < log® n, then we apply Lemma, 2.7
with (s,t,8') = (si_e,tis,38;_¢(log®n)/t;_¢) to establish that s; < 3s;_g(log?n)/t;

wvhp. []
We now relate t; to s; for ¢ > £. First, we prove the following lemma.

Lemma 2.14: Let m balls be thrown independently and uniformly at random into n bins
and S be the associated random bag. Let balls be removed at random from S until the
remaining bag, denoted by S', satisfies a given condition C'. Let X denote the set of balls
that are non-singletons, m' denote |S'|, and t' denote |X|. Let condition C' be such that

there exist integers d and u satisfying d < m' < u wvhp.
1. If d,u > n?3log3n, then 6f(d) <t' < Af(u) wuhp.
2. If u > /nlog’n, then t' < 4u®/n wohp.

3. If u < /nlog®n, then t' < 4log'®n wohp.
37

4. For any ball z, Pr[x € X] < u?/(mn) + 1/n¢ for any real constant ¢ > 0.

Proof: Consider the experiment of removing balls one-by-one at random from S. Let
S1 (resp., X1) be the bag (resp., set of non-singleton balls) obtained when m — u balls
have been removed and Sy be the bag obtained when m — d balls have been removed.
Therefore |S1| = u and |S3| = d. Also, S is a subbag of S;. Wvhp, the condition C
occurs after m — u balls are removed and before m — d balls are removed from S. Thus
wvhp, S’ is a subbag of S7 and a superbag of Sy. Let ¢; (resp. t2) denote the number of
non-singletons in Sy (resp., S2). Hence t; < t' < t; wvhp. Note that by Corollary 2.1.1,

S1 and Sy have probability distributions D, ,, and Dy, respectively.

1. If d,u > n?/3log®n, then by Corollary 2.8.1, to > 6f(d) and t; < Af(u) wvhp,

thus establishing Part 1 of the lemma.

2. If u > /nlog® n, then by Part 2 of Lemma 2.9, t; < 4u?/n wvhp, thus establishing

Part 2 of the lemma.

3. If u < y/nlog®n, then by Part 3 of Lemma 2.9, t; < 4log!®n wvhp. Hence

t' < 41og'® n wvhp, thus establishing Part 3 of the lemma.

4. For any ball z, Pr[z € X] < Pr[z € X;] + 1/n° for any ¢ > 0. By symmetry, the
probability that remains when u balls are left is u/m. Since S7 is drawn uniformly
at random from D, p, by Part 1 of Lemma 2.9, Prjz € X;] < (u/m)(u/n) =

u?/(mn), thus establishing Part 4 of the lemma.

Corollary 2.14.1: In Alg2(n,{,1), let ¢ > £ and d,u > 0 be integers such that d <
s; < u wvhp. Ift' =t;, then Parts 1 through 3 of Lemma 2.1/ hold. Also, for any ball
z € [n], the probability that x remains after round i is at most (u?/n?) + 1/n¢ for any

real constant ¢ > 0.

Proof: Fix integer i > {. Let k = ¢ mod . Consider the sequence of bags {Sjp1x | j >
0} in Alg2. Bag Sy is obtained by throwing ¢t (n if £ = 0) balls into n bins. Bag
38

Sje+k, J > 0, is obtained by removing balls at random from S(;_1)¢4 4 until ¢(;_1)p 1
balls are left in a particular subbag T(; 1)ex Of S(j_1)e4-

Bag S can be obtained equivalently the following way: remove n — t; 1 (0 if
k = 0) balls at random from S that is a random bag drawn from D, ,. Thus each bag
Sie+ks J = 0 (S;, in particular), can be viewed as having been obtained from bag S
by removing balls at random until a certain condition (say C') holds. For bag S; thus
obtained, it is given that d < |S;] < u wvhp. We invoke Lemma 2.14, substituting
(S, S;, s4,t',n,d,u, C) for (S,S",m' t',m,d,u,C), to establish the desired claims. 0

Lemma 2.15 is the analogue of Corollary 2.14.1 for Alg2(n,¢,2) and can be proved along

the same lines.

Lemma 2.15: In Alg2(n,{,2), let i > ¢ and d,u > 0 be integers such that d < s; < u

wvhp.
1. If d,u > n*%log3n, then dg(d) < t; < Ag(u) wuhp.
2. If u > n?3log®n, then t; < 12u®/n? wuhp.
3. If u < n?3log®n, then t; < 12log” n wohp.
4. For any x € [n] the probability that x remains after round i is at most the mazimum
of 3u®/n® + 1/n¢ and (ulog® n)/n% + 1/n¢ for any real constant ¢ > 0. 0
2.4.3.1 Analysis for the 1-Collision Crossbar

Using the results of Section 2.4.2, we show that the probability that Alg2(n, ¢, 1) deviates
significantly from the “expected behavior” is polynomially small. Let s; be defined as

follows:
n if 1 =0,

=19 f(si_y) if 0 <i< ¢ and

sk, f(s—,g)) otherwise.

39

Let t; = f(s}) for all ¢ > 0. (Note that for all 7 > 0, s} is the expected value of s;
given that (s;,t;) = (sj,t;) for 0 < j <. Similarly, ¢; is the expected value of ¢; given

that (s;,t;) = (s},t;) for 0 < j <i and s; = s;.)

(3
Lemma 2.16: In Alg2(n,{,1), for all 0 < i < 2logglogn, if s} > 4n?/31og® n and n is

sufficiently large, then wuvhp,

53is; <8 < A3is;, and (2.3)

O3 <t < AZFFLY (2.4)

Proof: We use induction on ¢. For the basis, i = 0 and s9 = n = sj,. By Lemma 2.8,
df(n) <to < Af(n) wvhp. Since t; = f(n), the desired claims hold for ¢ = 0.

Assume the claim holds for all j < i. We first establish Equation 2.3 from which
we then derive Equation 2.4. We consider two cases. If i < £, then s; = ¢;_1. Since
si_y > s> 4n?/31og® n, we obtain from the induction hypothesis that 62'3i71+1t§_1 <
ti < A2'3i_1+1t;71 wvhp. Since 3¢ > 231 + 1 fori < ¥4, 5Cisg <s; < sgAci wvhp.

If ¢ > £, we use Corollary 2.12.1 to bound s;. By the induction hypothesis and

using the inequality min{s,_,,s] ,} > 4n?/3log’n,

i—2L i—2L
8 sy <sie < ATTsy,
2.3 441 2.3 L1y
FF L, <t < AP, and
2.30- 141 s 2.3 1410
) e, <t 1< A e .

Substituting appropriate bounds on s;_¢,¢;_¢, and t;_1, we get the following bounds on
s = 8i_gt;_1/t;_¢ Wvhp:

230143l
g Si—ebi1

2:317 14317041 o
A si_gti 1
<s< .

2.3i—4 4141 2.3i—C 4141
A ti_y d ti_y

Since § < A~ and A? > 7! for n sufficiently large, we have

2:307143.30 0420 o 2:307145:307¢43 1w
0 Si—gli— A Si—gti—1

, F<s< ,
L, tie

(2.5)
Since 3¢ > 2-3¢"1+9 for £ > 3, 3" > 2.3 14+3.3° £ +-2. Therefore s > 6%'s, ,t/_,/t} , =
53is§ wvhp. Since ¢ < %logg, logn, we have 3¢ < log“r’/2 n. Hence, &% > a for any real

40

a < 1 for n sufficiently large. We thus have s > 2n2/31log® n. We next show that t;_, >

s? ,/4n wvhp. By the induction hypothesis, ¢;_y > 52'3i_£+1t;4 = 52'3i_£+1f(s;4)
wvhp. Since f(s; ,) > (3275)2/371 and s;_p < A3i7£sgie wvhp, we have

237641 2 430441 2

) e, 0 g

: > i—¢
3A23 Ty T 3n

ti ¢ 2>

wvhp. In the last equation we use § < A~!. For any real a < 1, 53 > 8% > forn
sufficiently large. Therefore, §43' ‘+1 > 3 /4 for n sufficiently large and thus it follows
that t;_, > s? ,/4n wvhp.
We now apply Corollary 2.12.1 to obtain ds < s; < As wvhp. By Equation 2.5,
wvhp,
52-3i—1+3-3"—‘+33;_zt;71 e A2-3i—1+5-3i—‘+4sg_zt271
ti_ - '

Since for £ > 3, 3t > 2.31 4+ 9 we have 3 > 2.3"1 4+5.3¢ 4 44 and 3* >

/
ti—Z

2371 4+ 3.3t 4 3. Since s} = si_,ti_1/t:_,, Equation 2.3 holds wvhp.
We now invoke Part 1 of Corollary 2.14.1 to obtain bounds on ;. Note that
53is;, A?’is; > n?/310g® n for n sufficiently large. Thus wvhp,
8F(6%sh) < ti < AF(A¥s),
and hence by Corollary C.3.1,
OEILf(s) < t; < AZFFLL(s).
Since t; = f(s}), Equation 2.4 follows wvhp. 0

Lemma 2.16 implies that we can analyze Alg2(n,¢,1) by studying how s/ decreases as

¢ Increases.

Lemma 2.17: For all 0 <1 < {, we have

! ! !
II si=s0 I £Gs),
0<j<i+1 0<j<i
and for i > £, we have

H 55 = 59 H f(s5).

i 04+1<j<it1 i 04+1<5<i

41

Proof: For 0 < i < £, the desired claim follows directly from the definition of s;, 0<
j <i+1. Observe that for s = £—1, we have [[;_p. ;i ;1187 = 80 [li_pr1<j<i F(85-1)-
We use this equality as a basis for the case ¢ > £. Assume that for £ — 1 < k < i, we

/
S
I i /
H 55 = g H 5j
1—l+1<j<i+1 = —<j<i
/

_ 5 (fi—l) H f(Sg-)

Flsie) i—0<j<i—1

= s [£

i 04+1<5<i

Lemma 2.18: For all 1 <i < {, if s;_; and n are sufficiently large, then

1 s s s
= Il 2<2<]I+
o<j<i v oS
Fori >4, if s& . and n are sufficiently large, then
’ 1—1) qge,
1 sl s
=t | B .
- n n n
i—0+1<j<i i—+1<j<i

Proof: By Lemma 2.17 and Lemma C.1, if s; ; and n are sufficiently large, then for

all 0 <17 < £, we have

V2]
o~
VAN
V)
o~
—
V)
oL~
~
[\

/ 12
S0 (Sj)
2 1 ==
0<j<i 0<j<i+1 0<j<i
and the claim of the lemma follows after dividing by s [[y< j<i s;-. By Lemma 2.17 and
Lemma C.1, if s;_; and n are sufficiently large, then for all : > 0, we have

&) (s5) o (55)°
3¢-1 H n = H SJ'SSO H n

i 04+1<5<i i 04+1<j<i+1 i 04+1<5<i

and the claim of the lemma follows after dividing by s [[; ,1<j<; 5} B

Lemma 2.18 can be used to analyze Alg2(n,¢,1) for any £ > 2. Let w; = log,(n/s;) and
w; = log,(n/s}), where r = n/f(n). (Note that e/(e —1) <r <2 for alln > 2.)
42

Lemma 2.19: In Alg2(n,{,1), for all i > 0, if s,_; and n are sufficiently large, then
Z w;_; < w; < 2log, 3+ Z w;_j.-
1<j<min{¢,¢—1} 1<j<min{¢,£—1}

Proof: Follows directly from the definition of w} and Lemma 2.18. 0

We are now ready to place a bound on the number of rounds taken by Alg2(n,{,1)
before termination. We first show that for £ > 3, Alg2(n, ¢, 1) terminates in O(loglogn)
rounds whp. To prove this upper bound, it is enough to consider the case £ = 3. The

upper bound for £ > 3 follows from the bound for £ = 3.

Lemma 2.20: In Alg2(n,3,1) for all i > 0, if s;_; and n are sufficiently large, then

w; > piL, where p1 > 1 satisfies the following inequality:
pPi—p—1<0 (2.6)

Proof: The proof is by induction on i. For the induction basis, ¢ is 1. We have
st =n/r, hence wj =1 = pJ.

Let the claimed lower bound on w] hold for all 0 < j < ¢, 7 > 1. By Lemma 2.19
and the induction hypothesis,

w > pi% +pi 7
It thus follows from Equation 2.6 that wj, > p’f L [

We now place an upper bound on the number of rounds taken by Alg2(n,3,1) before

termination.

Lemma 2.21: There exists an integer j = O(loglogn) such that s; < n2/5 wohp in
Alg2(n,3,1).

Proof: Let ¢ = (14 1/5)/2. Since ¢ — ¢ — 1 = 0, Lemma 2.20 implies that w] > ¢* !
for all i > 0. Let k = min{i : w} > log;,,(410g n)} For i = [log, log, i 410] + 1, w, >

nl/?). Therefore, k < logy log, 4”—/3 . (Also note that since w) < 1+ 2log, 3,

log, (Fiog™n log® n

k > 3 for n sufficiently large.) Since ¢°/2 > 3, k < 5/2logslogn for n sufficiently

43

large. Thus, Equations 2.3 and 2.4 of Lemma 2.16 hold for all ¢ < k. (Also note that
s =n/r% < 4n?/3log®n.)

By Lemma 2.16, t;,_; > 623" 7" +1¢! __ wvhp. Since t, | = f(s,_,) > (s,_,)?/3n,
we have

th1 > 16623 7+ (n1/310g% n) /3 > log?n

wvhp for n sufficiently large. By Lemma 2.13, s < 3sj_3tg_1/tx_3 wvhp. Substituting

appropriate bounds on s;_3, t;_3, and t;_; from Lemma 2.16, we have wvhp
sp < BATTHSITIHAS 3B <yl (2.7)

The last equation follows from the inequality A% < a for any real a < 1 and n suffi-
ciently large. We consider two cases depending on the value of s}.

Case 1: st < y/nlog’n. By Equation 2.7, sy < 4y/nlog”n wvhp. Therefore, by Part
3 of Lemma 2.14.1, ¢, < 64log'®n wvhp. We consider two cases. If t; > logZn, by
Lemma 2.13, sp41 < 3s_otg/tx_o wvhp. If t; < log®n, then sz < 3sp_slog?n/ty_».
In any case, sx41 < (192552 log'® n)/ty_o wvhp. We now substitute appropriate bounds
on S;_o and t;_s from Lemma 2.16 and obtain that wvhp,

192A3k725272 log!®n
.3k—2
g2y

Sg+1 <

576nA53" +210g10
Sk2
< 144A%nY310g™n

< n2/s

for n sufficiently large. (Note: The penultimate equation follows from the inequalities
38 >5.382+2and s},_, > 4n*3log’ n.)
Case 2: s}, > v/nlog® n. By Equation 2.7, s < 4s). wvhp. We again consider two cases,
depending on whether t; < log?n or t; > log?n.

If t; < logZn then Lemma 2.13 implies that sp.; < 3sg_olog®n/ty_s wvhp.

Arguing as in Case 2, s;41 is at most n2/5 wvhp.

44

If t, > log?n then Lemma 2.13 implies that sy < 3s;_otg/tg—2 wvhp. Since
sk < 4s}, by Part 2 of Lemma 2.14.1, 3 < 64(s},)?/n < 192t} wvhp. Substituting this
upper bound on #; and appropriate bounds on s;_s and t;_o obtained from Lemma 2.16,
we have s34 1 < 1000s), 41 Wvhp for n sufficiently large. We now derive an upper bound
on sy ;.

By Lemma 2.19, w}, < wj,_; +wj,_, + 2log, 3. Since w}, ; > w},_,, we have

1 1 3log, 1
wy,_, > =(w), — 2log, 3) > 6Tt 0708r 08T log, 6.
2 6 2
Thus, by Lemma 2.19,
Wi 2 Wit W
1 9log, 1
> °g2"” — Og’"Q %" 1og, 24, and

5
8;c+1 < \/ﬁlog n,

for n sufficiently large. We now apply an analysis similar to Case 2 with k replaced by
k + 1 to establish that s; o is at most n%/®> wvhp.

Cases 1 and 2 establish that after j = k + 2 = O(loglogn) rounds, s; is at most
n2/> wvhp. 0

Lemma 2.22: For any ball © € [n], the probability that x remains after O(loglogn)
rounds of Alg2(n,3,1) is at most 2/n%> for n sufficiently large.

Proof: By Lemma 2.21, after j = O(loglogn) rounds, s; < n?/5% wvhp. By Corol-
lary 2.14.1, the probability that z remains after round j is at most 2n%/5 /n? for n

sufficiently large. Since 2n%/®/n? = 2/n8/% the desired claim follows. 0
The following theorem is an easy consequence of the above lemma.

Theorem 2.1: Alg2(n,3,1) terminates in O(loglogn) rounds whp. 0

Corollary 2.1.1: For £ > 3, Alg2(n, £, 1) terminates in O(loglogn) rounds whp. 0

45

We now establish a lower bound on the number of rounds taken by Alg2(n,¢,1) before
termination. We first place an upper bound on w} that complements the lower bound
of Lemma 2.20. (Note that the following lemma applies for all £, while £ equals 3 in
Lemma 2.20.)

Lemma 2.23: In Alg2(n,{,1) for all ¢ > 0, if s;_; and n are sufficiently large, then
w; < pg_l, where pa > 1 satisfies the following inequality:
Pk —2log, 3 — Zp% >0 forallk<(-1 (2.8)
0<j<k
Proof: We first note that wj = 0. The proof of the lemma is by induction on i. For
the induction basis, i = 1. We have s} = n/r, and hence w} =1 = pj.
Let the claimed upper bound on w} hold for all 0 < j < ¢, ¢ > 1. By Lemma 2.19
and the induction hypothesis, we have:
wj < 2log, 3+ > P
1<j<min{:—1,0—1}
By Equation 2.8 and the inequality p, > 1, 2log, 3 + Zlgjgmin{ifl,éfl} p;_j_l < p’;l.
This completes the proof of the desired claim. []

Theorem 2.2: For any ¢ > 3, Alg2(n,{,1) terminates in Q(loglogn) rounds wvhp.

Proof: One solution to Equation 2.8 is p, = 2log, 3+1 = O(1). Thus, by Lemma 2.20,
w, < ph ! for all i > 0. After k = |log,, ((log, n)/4)| rounds, wj < (log,n)/4 and
sy, > n3/%. For n sufficiently large, n®/% > 4n2/3 log® n. Therefore, by Lemma 2.16, t; >
(52'3’”'1#c > 52'3k+1(s%)2/3n > 0 for n sufficiently large. This shows that Alg2(n,¢,1)
executes at least log,, ((log, n)/4) > log,, ((logn)/4) = Q(loglogn) rounds before termi-

nation. []

The recurrence in Lemma 2.18 for £ = 2 yields si,,/n > s;/3n for all i > 0. Thus
w; = O(¢). Using an analysis similar to the above theorem we establish an Q(logn)
lower bound for Alg2(n,2,1).

Theorem 2.3: Alg2(n,2,1) terminates in Q(logn) rounds wvhp. 0

46

2.4.3.2 Analysis for the 2-Collision Crossbar

The analysis of Alg2 for the 2-collision crossbar is similar to that for the 1-collision

crossbar. We begin by defining s as follows:

n if i =0,
si=14 g(si_y) if0<i<d,
CAVE g(zz:,l;; otherwise.

For all i > 0 let t; = g(s}). Asin Section 2.4.3.1, we next show that s, and ¢} are
good approximations for s; and t;, respectively (Lemma 2.24). Lemmas 2.25 and 2.26
determine the rate at which s; decreases with increasing i. Using Lemma 2.24, we can
then determine the rate of change of s; as ¢ increases. The proofs of Lemmas 2.24, 2.25,

and 2.26 are analogous to those of Lemmas 2.16, 2.17, and 2.18.

Lemma 2.24: Let c be the positive root of ¢> = 4c + 13. In Alg2(n,(,2), for all
0 <i < (11/4)log,logn, if s > 4n*/>log® n, then wohp,

5l <s;< A“s) and (2.9)
Sl << At (2.10)
0

Lemma 2.25: For all 0 <1 < {, we have

II si=s0 IT a(sp),

0<j<i+1 0<j<i

and for i > £, we have

[T %= II o

i—l+1<j<it1 i—0+1<j<i

Lemma 2.26: For all 1 <i < {, if s; | and n are sufficiently large, then

1 SN
JY) <«
12¢-1 H (n > n

0<j<i

IA
—
—
S |
N———

47

For i >(, if s._; and n are sufficiently large, then

1 AN
! .
1201 11 (Z) S#S 1:[
<J

i 0r1<j<i <i
O
Let w; = log,(n/s;) and w, = log,.(n/s), where r = n/g(n). (Note that e/(e —
2)<r<9forn>3.)
Lemma 2.27: In Alg2(n,{,2), for all i > 0, if s;_; and n are sufficiently large, then
Z 2w;_; < wj <log, 12+ Z 2w;_;.
1<j<min{i,t—1} 1<j<min{i,(—1}
Proof: Follows directly from the definition of w} and Lemma, 2.26. 0

We are now ready to place a tight bound on the number of rounds taken by Alg2(n,¢,2)
before termination. We first show that Alg2(n,2,2) terminates in O(loglogn) rounds
whp. The upper bound for ¢ > 2 follows from the bound for £ = 2.

Lemma 2.28: In Alg2(n,2,2) for all i > 0, if s;_; and n are sufficiently large, then

w; > 21,

Proof: The proof is by induction on ¢. For the induction basis, ¢+ = 1. We have
s} =n/r, hence w} =1 = 2% Let the claimed lower bound on w} hold for all 0 < j < 1,

i > 1. By Lemma 2.19 and the induction hypothesis, w} > 2 - 21=2 = i1, []

We now place an upper bound on the number of rounds taken by Alg2(n,2,2) before

termination.

Lemma 2.29: There exists an integer j = O(loglogn) such that s; < n5/8 wohp in

Alg2(n,2,2).

Proof: By Lemma 2.28, w} > 2¢=1 for all ¢ > 0. Let k = min{i | w} > log, -2 410g n}

Therefore k < [loglog, > Tiog o/t] + 1 < loglog, 2 Tiog 3 + 2. (Also note that since w} =1,

we have k > 2 for n sufficiently large.) Now we apply Lemma 2.24 with ¢ = 2. Let «
48

be the root of the equation a? = 4« + 13. Since 2''/4 > «, k < (11/4)log, log, n for n
sufficiently large. Therefore by Lemma 2.24, tj_1 > 54"’9_1“%71 wvhp. Since t} | >
(sh_1)%/(12n?), we have t_; > 54471 41(16n2/5 log? n)/3 > log?n for n sufficiently
large. By Lemma 2.13, s, < 3sg_ot_1/tx—2 wvhp. Substituting the appropriate bounds
on Sg_o, tp—1 and t;_o given by Lemma 2.24, we have wvhp,

4ok =1 pak—241 !
3A St_oth_1

- 54a’»‘—2+1t;c

Sk
2

3A4ah1 +9ah=2 + 34 'k —1

!
th—o

Since o = 4a + 13, we have of > 4a#~1 + 9a*~2 + 3. Therefore,
sk < 3AY S < 4], (2.11)

wvhp for n sufficiently large.
We consider two cases, depending on whether ¢;, < log?n or t; > log® n.
If tj, < log®n, then by Lemma, 2.13, Sp41 < 38p—1 log? n/tg_1 wvhp. Substituting

appropriate bounds on s 1 and t;_1 given by Lemma 2.24, we have wvhp,

3A°‘k_13271 log®n

Sk+l S §lat iy

_ 36A% 1 H2p2 062 py

B (sk_1)?
9Aak+1n2/5

< -

- 4log* n
920p2/5

S A
4log*n

< nil8

for n sufficiently large. (The second equation follows from the lower bound on ¢}, _; given
by Lemma C.2. In the third equation we use s},_; > n*51og®n. And in the penultimate
equation we use AY <2 forn sufficiently large.)

If ¢y > log®n then by Lemma 2.13, sgy1 < 3sp_1tg/tp—1 wvhp. If s} <
(n?/31og®n)/4, then since s < 4s, wvhp, by Part 3 of Lemma 2.15, ¢, < 12log”n

49

wvhp. Hence, as in the case t; < log?n above, we can establish that tk11 is zero whp.
If s}, > (n?/3log®n)/4, then by Lemma 2.15, t, < 768(s}, ,)®/n? wvhp. Therefore, by
Lemma C.2, ¢, < 12 - 768¢). Substituting this bound on t; and appropriate bounds on
sg—1 and t;_1 given by Lemma 2.24, we have wvhp,
36 - 768A°" 'l ¢!

54ak*1+1t;971

Sgp+1 <

I

ak—1
36 - 768A%" 24

< 36-768-2%, ;.

nl/s
4log®n

By Lemma 2.27 with £ = 2, wj_, > 2w;. Thus wy , > 2log,(), and sj_; <

16n3/5 log6 n. Hence, sg41 < n5/® for n sufficiently large. 0

In Lemma 2.30 we place a bound on the probability that a particular ball remains after

O(loglogn) rounds.

Lemma 2.30: For any ball x € [n], the probability that x remains after O(loglogn)
rounds of Alg2(n,3,1) is at most 4/n%® for n sufficiently large.

Proof: By Lemma 2.29, after j = O(loglogn) rounds, s; < n5/8 wvhp. By Part 4
of Lemma 2.15, the probability that 2 remains after round j is at most 4n15/8 /n3 for n

sufficiently large. Since 4n'/8 /n® = 4/n°/® the desired claim follows. 0
The following theorem follows easily from Lemma 2.30.

Theorem 2.4: Alg2(n,2,2) terminates in O(loglogn) rounds whp. 0
Corollary 2.4.1: For £ > 2, Alg2(n,{,2) terminates in O(loglogn) rounds whp. 0

We now establish a lower bound on the number of rounds taken by Alg2(n,¢,2) before
termination. We first place a upper bound on w} that complements the lower bound of
Lemma 2.28. The proof of the following lemma follows the lines of Lemma 2.23 and is

omitted here.

50

Lemma 2.31: In Alg2(n,,2) for all ¢ > 0, if s;_; and n are sufficiently large, then

w; < p'~L, where p > 1 satisfies the following inequality:
pF—log, 12—-2 Y p/ >0 forall k < 0—1. (2.12)
0<j<k
0

Theorem 2.5: For all £ > 1, Alg2(n,,2) terminates in Q(loglogn) rounds wvhp.

Proof: One solution to Equation 2.12is p = log, 12 = O(1). Therefore, by Lemma 2.28,
wj < p! for all 4 > 0. After k = |log,((log,n)/6)], rounds wj < (log, n)/6, and
sy, > n5/6. For n sufficiently large n®® > 4n*/3log3 n. Therefore, by Lemma 2.24, t; >
54ck+1t;€ > (54ak+1(596)3’/12112 > 1 wvhp for n sufficiently large. (Here « is the positive
root of a? = 4a + 13. Note that §%+1 > 124/n for n sufficiently large.) This shows
that Alg2(n, 2,2) executes at least |log,((log, n)/6)| > [log,((loggn)/6)] = Q(loglogn)

rounds wvhp before termination. []

2.5 Limited Independence

In this section we analyze the 1 out of £ protocol when the £ hash functions are chosen
from a k-wise independent family of hash functions. We show that for any c-collision
crossbhar, the probability that a particular memory request remains after » rounds of the
k-wise independent 1 out of £ protocol is close to that of the fully independent protocol
for r = O(loglogn), even when k < n. Importing the results in Lemmas 2.22 and 2.30,

we obtain the following main theorems.

Theorem 2.6: For integers £ > 3 and ¢ > 1, the 1 out of £ problem is solved on a
c-collision crossbar in O(loglogn) rounds whp, when the £ hash functions are chosen in-
dependently and uniformly at random from a k-wise independent family of hash functions

for any k = Q(log® n), where a is a real constant chosen sufficiently large. 0

51

Theorem 2.7: For integers £ > 2 and ¢ > 2, the 1 out of £ problem is solved on a
c-collision crossbar in O(loglogn) rounds whp, when the £ hash functions are chosen in-
dependently and uniformly at random from a k-wise independent family of hash functions

for any k = Q(log® n) where « is a real constant chosen sufficiently large. []

Let Fr, ,, denote a k-wise independent family of functions from [m] to [n]. That
is, for {z; : ¢ € [j]} € [m], yo,---,ye-1 € [n}?, j € [k + 1], it holds that if h is drawn

uniformly at random from fﬁl,n, then
Pr[h(z;) = y; for all 7 in [j]] = 1/n’.

Ifk < /n, f,’ﬁm can be constructed as in [75] using the families Fndvn and H}nmd defined
in [35] and [107] respectively. (Here d is an appropriate constant.) A hash function h
chosen uniformly at random from fr’%,n is defined as r o s, where r and s are chosen
uniformly at random from Fndﬂl and H}n,nd respectively. Both r and s can be evaluated
in constant time [107, 35], and hence the same is true of h.

In order to analyze the 1 out of ¢ protocol, we restrict our attention to the atmost
n memory requests of the processors. The hash functions with the domain restricted to
this set of requests can be viewed as mapping m < n memory locations into n memory
modules k-wise independently. First, we establish a few simple properties of k-wise

independent hash functions.

Lemma 2.32: Let k, m, and n be integers such that 0 < k < m < mn. Let h be drawn

uniformly at random from FF, .. For any A C [n], |A] < (k —1)/€?, we have
Pr[h™"(A4) = 0] < (1 - |A|/n)™ (1 + e~ *1/3).

Proof: If k is even, let k' = k; otherwise, let k' = k — 1. By inclusion-exclusion we

have:

Prih}(A) =0] = 1+ > (=1)¢Prlh(zg), ..., h(zi_1) € A]

i=1 0<zp<...<zi;—1<m

N
I > (=1)! Pr[h(zo), . .., h(zi_1) € A]

1=1 0<zp<...<zTj—1<m

52

IA

"
= 1+ > (=1)"(|Al/n)’

1=1 0<zp<...<zij—1<m

k-1
- 1+(Z > (1)i<A/n)i)+(Zf)(A/n>k’

i=1 0<zp<...<zij—1<m

= 1+ (i > (1)"(A/n)") + <Z>(|A|/n)k’
i=1 0<z0<...<Tj_1<m

< (@=lA/m)™+ (Z>(|A|/n)k'

< (1—|A|/n)™(L+ (em/k")¥ (| Al /n)¥ e2m!Al/m)

< (1= |Al/n)™(L+ (e] A /K)¥ e>mAlm)

< (L= JAl/n)™(1+e ¥e24))

< (- [Al/n)m1+e),

(In the seventh equation we use the inequalities 1 — x > 2% for 0 < z < 1/2 and

|A| < k'/e? < n/2. The last equation follows since |A| < k'/e?.) 0

Lemma 2.33: Let k, m, and n be integers such that 0 < k < m < mn. Let h be drawn
uniformly at random from FF, .. Let B C [n] satisfy |B| < k/B, where real 8 > 0. If
S =h~'(B), then Pt[|S| > B|B|| < (e/B)°IP].

Proof: By the definition of S, Pr[|S| > 5| B|] is the probability that there exists a set
T C [m], |T'| = B|B], such that h(T) C B. Since §|B| < k and h is chosen uniformly

from a k-wise independent family of hash functions, the desired probability is at most

(57 (|BI/m)B < (me/(Bn))P1E] < (e/8)P15. 0

Corollary 2.33.1: Let k, m, n, and p be integers such that 0 < p < k <m < n. Let
h be drawn uniformly at random from Fp, .. For i in [p], let X = {z; : i € [p]} C [m]
and y = (Yo,...,Yp—1) € [n|P. Let E be the event that for all ¢ in [p], h(z;) = y;. Let
A C[n], |A| < min{p,(k—p—1)/€?}, and E' be the event that for all x ¢ X, h(z) € A.
Let B C [n] satisfy |B] < (k —p —1)/8, where real 3 > 0. If S = h Y(B), then
PL(|S| > BIB| +p | BN EY] < 26%4(e/5)A15.

53

Proof: Let Y denote [m]\ X. Thus, g = Y | E is drawn uniformly from a (k —p)-wise
independent family of functions from Y to [n]. The event E' | E is equivalent to the
event that g~1(A) = 0. If k — p is odd, let k' = k — p; otherwise, let ¥’ =k —p — 1. By

inclusion-exclusion we have

Pr(E' | E] > (1-|4|/n)™P - (m’f_’p>(|A|/n)k’
> e AAlm=p)/n _ (¢|A|/(K"))¥
> 24l _ (9¢)-24]
> e 24l/2,

(For the second equation we use the inequality (1 — |A|/n) > e~ 2l41/7 since |A| < n/2.

The third equation follows from the inequality k' > 2e%|A| > 2|Al.)

Pr[E" | E]
_ Pul(S] 2 BIB| +1) | E)
- Pr[E' | E]
_ Prg\(B) 2 BB
- Pr[E]

< 2¢214l(e/p)BIBI

(For the last equation we invoke Lemma 2.33 substituting (m — p,n,k — p,3, B, S) for
(m,n,k,a,B,S).) 0

For the rest of this section, we fix integers £,c > 1, and analyze the 1 out of ¢ protocol
on the c-collision crossbar. Let h = (hg,...,he—1) represent a tuple of £ hash functions,
where h; : [m] — [n] for all i in [(]. For z € [m], let AFFECT;(h,z) denote the set of
memory requests that could affect the success of request z in round j for all j in [i + 1].

Formally, we define

{z} if i = —1,
AFFECTZ'(EVT) = {Z S [m] : hi mod Z(z) = hi mod e(y)
for some y € AFFECT;_(h,x)} otherwise.

54

Lemma 2.34: Let k, m, and n be integers such that 0 < k < m < n. Let h =
(ho,...,he—1) denote hash functions chosen independently and uniformly at random
from FE ., For any x € [m] and i > 0, if k > maz{4log®n, 10|AFFECT;_y(h,)|}, then
|AFFECT;(h,)| < maz{4log® n, 10|AFFECT;_1(h,z)|} wohp.

Proof: In the following we use A; as a shorthand for AFFECT;(h,z). Fix i and
let j = imod{. Let A;_qy = {xo,...,zp_1}, where p € [m +1]. If i > £ —1, let
A = Aj_1 \ Aj_y; otherwise, let A = A;_;. Let B = hj(Ai—¢), C = hj(A), and
S = Ai\ Ai.1. Thus § € h7'(C). Fix y = (¥o,---,¥p-1) € [0 and let E be the
event that (h;(zg),...,hj(zp—1)) = y. Let E’ be the event that for all z & A;_;
hj(z) € C. Set B = max{(e?p)/|C|, (log®>n)/|C|}. We now apply Corollary 2.33.1, sub-
stituting (k, m,n, h;,p,X,y, B,C, S, E,E', 3) for (k,m,n, h,p, X,y,A,B,S,E,E', 3), to
obtain |S| < B|C|4p with probability at least 1—2e2Bl(e/3)8IC1. Since 8 > €2p/|C| > €2,

we have
2¢2Bl(e/B)8IC1 < 2¢2BI-AIC]
< 92 BICI/2

9e—(l0gn)/2,

IN

(For the second equation we use the inequality 2|B| < 2p < 28|C|/e* < B|C|/2. The

last equation follows from the definition of 5.) Thus,
|Ail < |Ai1| + 18] < max{e’p, 2log?n} + 2p < max{4log®n, 10]4; [}

wvhp. []

—

For r > 0, h = (hg,...,he_1), hi : [m] — [n] for all ¢ in [{], and = € [m], define
ASSIGN,(h,z) as {(z',ho(z"), ..., he_1(z")) : =’ € AFFECT,(h,z)}. We note that
ASSIGN 7a(ﬁ,ac) completely determines whether x succeeds within r rounds under .
Any element in the set [m] x [n]¢ of (£ + 1)-dimensional vectors is referred to as an
assignment.

In the following, let Pry[EVENT (h)] denote the probability of EVENT(h) when
each hash function in A is chosen independently and uniformly from .7-",’;7”.

55

Lemma 2.35: Let k, m, n, and p be integers such that 0 < k <m <n and 0 < p <
(k—1)/(e*+1). Let z;, for alli in [p], be arbitrary distinct integers from [m] and y; j, for
all i in [p] and all j in [£], be arbitrary integers from [n]. Let A = {(zi,Yio,. - Yie—1):

i € [p]}. For arbitrary x € [m] and integer r > 0, we have
Pri[ASSIGN . (h,z) = A] < Prp[ASSIGN,(h,z) = AJ(1 + e (-P)/3)L,

Proof: Let E be the event that h;(z;) = y;; for all 7 in [p] and all j in [{]. Let
X={x;:ie[p]tand ¥; = {y;; : ¢ € [p]}, j € [£]. (Note that |Y;| < p for j in [¢].) Let
E' be the event that AFFECT,(h,z) = X. Thus ASSIGN,(h,z) = A if and only if E
and E' occur.

We now consider E’ under the assumption that E occurs. Let g denote the tuple
(R, ... hi" ;). Let Ej be the event that AFFECT,(§,z) = X. Let E| be the event

that for j in [{], h;

1(B;) is a subset of X, where for all j in [¢], B; is determined as
follows: If r < j then B; = (); otherwise, we consider two cases. If r mod ¢ < j, then
Bj = hX(AFFECT |y /¢)-1)e45(§, ¢)); otherwise, Bj = hX (AFFECT |, /¢j045(d,x)). We
now show that given £, E' is equivalent to £y N E]. First, by the definition of AFFECT,
E'" implies Ej and E' implies E]. Second, event Ej implies that AFFECTT(E, z) 2 X.
Since the domain of g is X, by the definitions of B; and AFFECT, if h;l(Bj) C X for
all j, then the calculation of AF FEC’TT(E, z) will be identical to that of the calculation
of AFFECT,(g,x), i.e., AFFECTT(E, x) = AFFECT,(g,z). Therefore, Ejy N E] implies
E'.

Since the occurrence of event E completely determines g, and hence whether £j
occurs, it follows that Pry[Ej | E] = Pry,[Ef | E]. It remains to bound Pri[E] | EN Ep],
which is the same as Pry[E] | E].

For any p < ¢ < m, if h; is drawn from a g-wise independent family of hash
functions from [m] to [n], then f; = hg-m]\X | E is drawn from a (q — p)-wise independent
family of hash functions from [m]\ X to [n]. We invoke Lemma 2.32, substituting

(k —p,m —p,n, fj, B;) for (k,m,n,h, A), to obtain that for all j in [£]:

Prelh ' (B)) C X | E] = Pulf;’'(B;) = 0]

56

< Prolf; '(B)) = 0](1 + e~ ¢=2)/3)

= Prp[h; '(B;) € X | E](1+ e~ *+P)/3),

Since Pry[E' | E] is at most [o<, Prq[hjfl(Bj) C X | E] for ¢ in [m + 1], we

have
Pr[ENE] = Pr[E|Pri[E | EJPr[E] | E]

= Prp[ElPri[Ey | E) [Pralh; ' (B)) € X | E)
0<j<t

= Prp[E]Pry[Eg | E] [Prelhj'(B)) € X | E]
0<j<t

< Prp[E|Pry[Ey | E] [] Pramlh;'(B)) € X | E|(1+ e (k-P)3)t
0<j<e

= Prp|E|Prn|Eb | EPrp[E, | E](1 + e (*F-P)/3)¢

= Pry[ENE1+e B3y

Lemma 2.36: Let k, m, and n be integers such that 0 < k < m < n. For any real

442

v >0, € [m] and integer r < yloglogn, if k > 8log n, then

Pry[x remains after v rounds under h] < Prp,[z remains after r rounds under k] + 1/n?

for n sufficiently large.

Proof: Let A be {ASSIGN,(h,z): h € Fmn and z remains after r rounds under h}.
By Lemma 2.34, |ASSIGN,(h,)| < 4(log?n)107} < 4log®*? n wvhp. By Lemma 2.35,

for any assignment A such that |A| < 4log¥*%n,

Pri[ASSIGN,(h,z) = A]

IA

Pr,[ASSIGN, (h,z) = A](1 4 e~ (k=14D/3)¢

< Prp[ASSIGN,(h,z) = AJ(1 + 1/n?),

for n sufficiently large. (Here we use the inequality k > 8log?*2n > 2|A|.) Thus,

Pri[z remains after r rounds under h|

57

< Pri[ASSIGN,(h,z) € A
< Pri[(ASSIGN,(h,z) € A) and |ASSIGN,(h,z)| < 4log®*2n] + 1/n?
< > Pr[ASSIGN,(h,z) = A] + 1/n®
AcA

|A|<4log¥1+2n
< > Pru[ASSIGN,(h,z) = AJ(1 + 1/n%) + 1/n®

|A\§4?o€g-2‘7+2 n
< Prp[ASSIGN,(h,z) € A|(1+1/n%) +1/n3

< Prp,[r remains after r rounds under k] + 1/n?,

for n sufficiently large. U

By Lemma 2.22, for any = € [n], Pr,[z remains after O(loglogn) rounds] is at most
2/n8/% in the 1 out of 3 protocol on the 1-collision crossbar. Similarly, for the 1 out of
2 protocol on the 2-collision crossbar, Lemma 2.30 implies that 4/ n9/8 is a lower bound
on Pry[z remains after O(loglogn) rounds| for any = € [r]. We now apply Lemma 2.36

to establish Theorems 2.6 and 2.7.

2.6 The Emulation Protocols

Algl can be generalized to apply to any a out of b problem by changing the routines
RandomSubbag and PrunedBag appropriately; after each step, we need to keep track
of how many successes each processor has had, and only those processors with fewer
than a successes participate. In the following discussion, we refer to this protocol as the
generic protocol. For given a and b, the analysis of the generic protocol can be done
using the approach of Subsection 2.4.3, but involves more complicated calculations and
recurrences. A different analysis of this protocol for the 2 out of 3 case is given in [47],
where an O(loglogn) upper bound is shown when the collision factor is greater than 3.
In this section, we present a simple variant of the generic protocol that solves any a out
of b problem on a 2-collision crossbar, and hence on a 2-arbitrary crossbar as well, in

O(loglogn) time whp.

58

In particular, we can solve any a out of a + 1 problem by running Algl(n,2,1)
with (a;d) different hash-function pairs. Since each run fails with a polynomially small
probability and there are only a constant number of runs, the entire algorithm succeeds
whp. For instance, in the case of 2 out of 3, we simply perform 3 runs of Algl. At
first glance, it may appear that this revised protocol is only of interest because it is
simpler to analyze. Actually, the new protocol is competitive with the generic one for
small a and is much faster for large a. Comparing it for the 2 out of 3 problem, we
first note that since each of the 3 runs use 2 hash functions only while the generic
protocol uses 3, the revised protocol will be at most twice as slow as the generic one.
Moreover, the 1 out of 2 problem is clearly a simpler problem than the 2 out of 3
problem. So each run will involve a fewer rounds than in the generic algorithm. For
large a, this phenomenon is pronounced. For a generic a out of a + 1 protocol to make
“progress”, a number of processors must have a large number of successes. But at the
outset, the fraction of processors that have succeeded on d < a hash functions decreases
exponentially with d. Therefore, while the revised protocol experiences only a quadratic
slowdown in running time, the generic protocol will suffer an exponential increase in
running time with increasing a. (We remark here that our notion of the generic protocol
does not include the protocol studied in [94] that is shown to have a running time that
is polynomial in @ when a, b, and ¢ are suitably chosen.)

The basic idea outlined above can be used to solve any a out of b problem by

choosing any a + 1 hash functions and solving the corresponding a out of a + 1 problem.

Theorem 2.8: For integer constants a and b with 1 < a < b, the corresponding a out

of b problem can be solved on a 2-collision or a 2-arbitrary crossbar in O(loglogn) time

whp. []

The above generalizations can be made for the 1-collision and the l-arbitrary
crossbhars as well. Since Algl solves the 1 out of 3 problem on a 1-collision crossbar in

O(loglogn) time whp, any a out of a + 2 problem can be solved in the same asymptotic

a+2

time bound by running Alg1(n,3,1) on (“;

) different triples of hash functions.

59

Theorem 2.9: For integer constants a and b with 1 < a < b— 1, the corresponding a
out of b problem can be solved on a 1-collision or a 1-arbitrary crossbar in O(loglogn)

time whp. 0

2.7 Concluding Remarks

In this chapter, we have analyzed a class of simple local protocols for emulating an
EREW PRAM on a c-arbitrary crossbar. As shown in Section 2.6, the delay associated
with the emulations is O(loglogn) whp. One way to reduce delay is to introduce parallel
slackness by emulating a non-constant number of EREW PRAM processors on a node
of the crossbar. The concept of parallel slackness has been used by [47, 63, 75] to obtain
work-optimal emulations. A work-optimal emulation with delay d(n) is a protocol that
emulates a d(n)-processor EREW PRAM on an n-processor crossbar in O(d(n)) time.
It would be interesting to see if the techniques developed in this chapter can be applied
to obtain tight analyses of simple work-optimal emulations.

An alternative approach to reduce delay is to allow the nodes of the crossbar
to execute asynchronously. In other words, once a node has successfully accessed its
request, it need not wait for the successful completion of the access requests of other
nodes before proceeding to its next access request. Such an approach not only reduces
delay, but is also preferable since no explicit synchronization is required. We adopt this
dynamic approach in the following chapter, where we build on the techniques of hashing
and replication used here to develop a protocol that provides efficient access to shared
objects in the presence of faults and concurrency.

Our main technical contribution in this chapter is the derivation of sharp thresh-
old phenomena associated with certain random allocation experiments. Several recent
papers have studied similar processes that arise in dynamic resource allocation and par-

allel load balancing [2, 25, 108].

60

Chapter 3

Fast Fault-Tolerant Concurrent

Access to Shared Objects

3.1 Introduction

In this chapter, we design and analyze a simple local protocol for providing fast con-
current access to shared objects in a faulty distributed network. We model the network
as a faulty O(logn)-arbitrary crossbar. In particular, our model consists of n nodes
communicating via point-to-point messages, subject to the following constraints: In a
single step, (i) a node can only send or receive O(logn) words!, (ii) a constant fraction of
the nodes may be “down” (i.e., unable to communicate with any other nodes), and (iii)
each “up” node may be unable to directly communicate (i.e., via a single point-to-point
message) with a constant fraction of the other “up” nodes. See Section 3.2 for a precise
definition of our model of computation.

How can we provide efficient concurrent access to a given popular object A in
a network that supports only partially reliable point-to-point communication? In a
conventional distributed file system, a single “server” process (residing on a particular

physical node) is assigned the responsibility for storing the object A, and any “client”

!Throughout this chapter, we use the term “word” to refer to an O(logn)-bit string.

61

process wishing to read A sends a message to this server; the server then responds with a
message containing a copy of the object A. Unfortunately, this scheme suffers from both
low fault-tolerance (if a given client cannot connect to the server due to a network fault,
an event that occurs with constant probability in our model, then that client cannot
access the object) and high latency (since A is assumed to be a popular object, a long
time is needed for the server to sequentially service each of the incoming requests for A).

Thus, to obtain either fault-tolerance or fast concurrent access we are led to con-
sider schemes in which each object is replicated across a number of different nodes. In
Chapter 2, we observed that a constant number of copies suffices to provide efficient
access to shared objects under the assumption that there are no faults and no concur-
rent accesses. Fault-tolerance considerations alone, however, would seem to imply that
each object should be replicated 2(logn) times if we wish to guarantee access with a
failure probability that is polynomially small in n, the number of nodes in the network,
since each node can fail with constant probability. Unfortunately, this results in an
Q(logn)-fold increase in the space needed to store each object. The theory of erasure
codes, however, provides a convenient method for achieving fault-tolerance while paying
only a constant factor space penalty. For example, using Rabin’s Information Dispersal
Algorithm [104] (IDA), for any k > m, a given b-bit string can be encoded as a set of
k (b/m)-bit strings of length m, with the property that any m of the (b/m)-bit strings
suffice to reconstruct the original b-bit string. Thus, IDA can be used to obtain fault-
tolerance with only a constant factor space penalty by setting m to ©(logn) and k to
©(m), e.g., k = 2m. This powerful technique is used by Aumann et al. [17] as part
of an efficient scheme for emulating large-grained PRAM programs on an asynchronous
parallel machine. In our protocol, we use the same technique to store the “primary”
copy of each object.

Of course, the IDA technique alone is not sufficient to guarantee fast (e.g.,
O(logn) time) concurrent access to an object that is extremely popular. For exam-
ple, suppose that the popularity of some object is y/n, and that IDA has been used to

encode the object in ©(logn) “fragments”, each of which is stored in a separate node.

62

Assuming point-to-point communication, and assuming that a single node cannot send
or receive more than O(logn) messages in a single time step, it is clear that without
further replication (either of the individual fragments, or of the object as a whole),
Q(y/n/logn) steps are needed in order to service all \/n requests.

A central part of our protocol is a mechanism for on-line replication. At a high
level, the replication mechanism provides fast concurrent access by enforcing the fol-
lowing two invariants. Invariant 1: While the popularity of a given object exceeds the
number of “server copies” (i.e., the number of server processes holding a copy of the
object), the number of server copies increases geometrically. Invariant 2: When the
popularity of a given object does not exceed the number of server copies by more than a
constant factor, each outstanding request is independently serviced with constant prob-
ability at the current step. Thus, if the popularity of the object does not change during
subsequent steps, each of the outstanding requests is serviced in O(1) expected steps,

and in O(logn) steps wvhp!.

3.1.1 Overview of the Results

The design of our protocol is presented in Sections 3.3, 3.4, and 3.7. Section 3.3 gives
an informal overview of our protocol. Section 3.4 contains a formal definition of our
protocol for read-only objects. Section 3.7 discusses write operations.

In order to establish the fast performance of our protocol, we consider two natural

models for dynamic access patterns.

e Our first model is the fized model in which there is a fixed probability distribution
from which each access request is independently drawn at all times. We show that
our protocol reaches a nice state in O(logn) steps, after which: (i) in each step, a
constant fraction of all requests are satisfied wvhp, and (ii) each request is satisfied

in expected O(1) steps and O(logn) steps wvhp.

'Recall that the term wvhp, which is defined in Section 1.3, means with probability 1 —n~¢, where ¢

is a constant that can be set arbitrarily large by appropriately adjusting other constants defined within
the relevant context.

63

e Our second model is the dynamic model that allows constrained fluctuations in
the access pattern over time. More precisely, in the dynamic model the number of
new access requests for any object in any step may change arbitrarily subject to
the constraint that it does not grow beyond a constant factor times the maximum
number of accesses to the same object in the previous O(logn) steps. For the

dynamic model, we show that the protocol is always in a nice state.

While the result for the fixed model establishes the rapid convergence of our protocol to
a nice state in the presence of a fixed global access pattern, the result for the dynamic
model shows that once a nice state is reached, the protocol tolerates “non-volatile”
changes in the access pattern. In Section 3.5, we formally define the two access pattern
models and state the performance bounds of the protocol. Section 3.6 contains an
analysis of the protocol, in which we first establish Invariants 1 and 2 under suitable
assumptions, and then, by making use of the invariants, establish the bounds for the

fixed and dynamic models.

3.1.2 Related Work

Most of the details of our protocol are concerned with ensuring fast access to popular
objects. A variety of other well-known methods have been used for solving this prob-
lem, including broadcast, combining [105], and multicast [45]. However, the class of
architectures that support the efficient implementation of these methods is restricted.
For example, a single-bus network can efficiently support broadcast, which enables an
arbitrary subset of the processors to obtain copies of a single object at the same time.
On the other hand, the cost of implementing broadcast in a distributed network with
point-to-point connections is significant.

Our hashing techniques are loosely related to Valiant’s hashing-based combining
mechanism for simulating CRCW PRAM algorithms on parallel computers [114]. In
other related work, Gibbons, Matias, and Ramachandran [55] adopt a different approach
to account for contention in parallel algorithms. They introduce the QRQW PRAM

64

model, which permits concurrent reading and writing but at a cost proportional to the
number of readers/writers to a memory location in a given step. The focus of our
algorithm design and analysis is different. While [55] and [114] are primarily concerned
with the problem of PRAM emulation, we have optimized our protocol to obtain fast
performance (e.g., expected O(1) time) on a more restricted class of access patterns.

The particular assumptions of our model and the design choices of our protocol
are largely influenced by the characteristics and requirements of wide-area network file
systems. There is a growing need for efficient protocols to access objects across wide-area
networks and several solutions have been recently proposed. While all of these solutions
incorporate replication of objects, they differ on the mechanism used to determine where
the copies of a given object are stored. Very broadly, existing protocols can be classified
into two categories.

The first category consists of implementations where a client accesses a given
object by consulting the “manager” of the object to locate a copy (examples include
[31], [67], and xFS [11]). The main drawback with this approach is that the manager
is usually implemented as a process running at a single node and thus constitutes a
sequential bottleneck. Instead of sending each request for a given object through a
central server, the protocols in the second category forward the request along a path in
a tree of nodes, the root of which is the “owner” of the object (examples include [74] and
Harvest [33, 36]). An advantage of this approach is that if several copies of a given object
exist, then a request to the object is satisfied within a small number of forwardings along
the path. A request for an object with low popularity, however, may be significantly
delayed because the request may have to be forwarded through all the nodes in the
relevant path to the owner of the object. Our protocol overcomes the above drawbacks
by sending each request to O(logn) nodes in parallel. By choosing the O(logn) nodes
judiciously, we are able to ensure that if the number of copies of an object is at least
a constant fraction of the number of requests, then the expected time for accessing the

object is O(1).

65

3.2 Model of Computation

In this section we define our model of computation. We assume a synchronous network
consisting of n nodes, each with its own local memory. We specify the model by char-
acterizing: (i) communication, (ii) faults, (iii) object size, (iv) cache size, and (v) local
computation.

Communication. Nodes communicate with one another by sending messages. Each
message contains at least one word, and at most O(logn) words, where a “word” is
defined as an O(logn)-bit string.

Sending messages. The total number of words in all messages sent by a single
node in one step is required to be O(logn) (even if some or all of these messages are not
successfully transmitted due to faults in the network, which are discussed below).

Receiving messages. The total number of words in all messages received by a
single node in one step is required to be O(logn). We place no upper bound on the total
number of words in all messages destined to a single node in one step; instead, we only
limit to ¢glogn the number of words in all messages successfully received by a node in
one step, where ¢y is some positive constant. We assume that a worst-case adversary
determines which subset of the messages of total size cylogn are successfully received
by a given node if the cylogn limit on total size would otherwise be exceeded.

Message types. Our protocol makes use of a constant number of different types
of messages. At times the protocol may result in, say, O(logn) messages of type «
and O(y/n) messages of type [being sent to a particular node. In such a scenario,
the adversary referred to above has the freedom to decide that none of the messages of
type a get through. On the other hand, it may be important for the correctness of the
protocol that the type a messages be given priority over the type J messages. One way
to accomplish this is to modify the model stated above by associating a numeric priority
with each message type to resolve contention among messages of different types. Since
our protocol only makes use of a constant number of different message types, we could

avoid introducing such priorities by modifying the protocol to ensure that only one type

66

of message is ever sent in a single step. We prefer the former solution since it is more
compatible with an asynchronous view of the protocol.

Faults. As mentioned in Section 3.1, our model of computation also allows for the
possibility of faults in the network. More specifically, we assume that the network is
subject to the following three classes of faults.

Random static node faults. After we have fixed our initial storage layout for
the objects, we assume that a (sufficiently small) constant fraction ¢y of the nodes are
selected at random and marked as “dead”. Such dead nodes cannot send or receive any
messages throughout the course of the computation.

Dynamic node faults. An oblivious adversary selects, for each step, a (sufficiently
small) constant fraction ¢; of the nodes and marks them “down”. Such down nodes
cannot send or receive any messages in the current step.

Dynamic link faults. For each pair of up nodes (i.e., neither dead nor down) %
and j in the network, an oblivious adversary determines whether communication between
nodes ¢ and j is to be allowed in step ¢. In each step ¢, each up node must be allowed
the possibility of communicating with a (sufficiently large) constant fraction (1 — ¢3) of
the other nodes.

With regard to the dynamic link faults, we should emphasize that the set of
faulty links determined by the adversary are not provided to the non-dead nodes at
execution time. The only way that a non-dead node can find out whether it is possible
to communicate with some other non-dead node in step ¢ is by attempting to send a
message in step ¢, with the hope of subsequently receiving some form of acknowledgment
in a later step. (Of course, any acknowledgment message is itself subject to possible
faults.)

Object size. Each object consists of ©(logn) words. Note that this assumption can
be enforced by simply breaking up larger data items into ©(logn)-word pieces, and
padding out smaller data items to ©(logn) words. The main reason for assuming a
uniform object length is that it simplifies our presentation and analysis. In a practical

implementation, we would modify the protocol to handle messages of varying lengths;

67

for larger objects, the associated optimizations can be expected to provide substantial
constant factor savings in overhead per object-word accessed.

Cache size. We assume that each node of the network has a cache in which extra copies
of objects are stored. In our analysis, it is convenient to assume that the capacity of
each cache is 2(logn) objects.

Local computation. In each step, a node is allowed to perform an arbitrary amount of
local computation. Although the model of computation allows an arbitrary amount of
local computation in each step, our protocol does not perform any particularly complex

local operations in a single step.

3.3 Overview of the Protocol

In this section we provide an informal overview of our protocol for accessing read-only
objects. Our discussion is formalized in Section 3.4. See Section 3.7 for a discussion
of write operations. As mentioned in Section 3.1, our protocol relies on maintaining
Invariants 1 and 2.

Enforcing Invariant 1. With each object we associate a number of disjoint blocks of
servers. The ith block contains ©(2¢logn) servers, 0 < i < log(n/©(logn)), so that
the total number of servers in all blocks is n, the number of nodes in the network. A
hash function is used to map these logical blocks of servers to the physical nodes of the
network. The hash function is distributed to all nodes so that any node can rapidly
compute the physical node corresponding to the jth server of the ith block of a given
object. The O(logn) servers of block 0 of an object are used to store the primary copy
of that object, i.e., the ©(logn) fragments computed using IDA. Each server in the
higher-numbered blocks (block 1 onwards) of an object is used to store a whole copy of
that object. We choose to replicate whole copies of objects, as opposed to fragments,
so that the encode-decode overhead associated with IDA can be avoided on retrieval of
popular objects. This may be viewed as a minor optimization since the overhead of IDA

is actually quite small [104].

68

In our protocol, a client process attempting to read a particular object A sends
O(log n) messages, one to each of the @(logn) servers in block 0 of A, and O(1) messages
to a randomly chosen set of servers in each of the ©(logn) other blocks associated with A.
(See Figure 3.1.) If the popularity of A is low (i.e., O(logn) where the hidden constant
is sufficiently small), then wvhp a sufficiently high constant fraction of the messages sent
to block 0 are successfully transmitted, and at the next step a sufficiently high number
of fragments are returned to the client, allowing the client to reconstruct a copy of the
desired object using IDA. (Note that a node can send O(logn) copies of a fragment in
a single step, since a fragment only consists of a constant number of words.)

Block O Block 1 Block 2

C

Figure 3.1: The request messages sent by a client. Client C' attempting to read a
particular object A sends messages to O(logn) of the n servers associated with A. Each
cell shown above represents a server associated with object A. The client sends one
request message to each server in block 0, and O(1) messages to a randomly chosen set
of servers in each of the other blocks.

If the popularity of A is high (i.e., 2(logn) where the hidden constant is suffi-
ciently high), then so many clients attempt to access A that the servers in block 0 of A
are “flooded” with incoming messages requesting fragments of A. As a result, most of
these messages are not successfully transmitted, and few if any of the clients receive (on
the next step) sufficiently many fragments to reconstruct A using IDA. On the other
hand, a sufficiently high constant fraction of the servers in block 0 of A receive ©(logn)
messages requesting a fragment of A.

One might believe that all of the servers in block 0 receive ©(logn) such messages;

this is not necessarily the case, however, since some of these servers may be mapped to the

69

same node as, for example, the servers in block 0 of one or more other popular objects, so
that the messages associated with A might be “swamped out” by the messages associated
with other objects. A critical part of our analysis is geared towards proving that wvhp
a sufficiently high constant fraction of the nodes in block 0 of A is not the destination
of more than a total of O(logn) messages associated with other objects at the current
step; these are the nodes that wvhp receive ©(logn) requests for A.

Each server in block 0 of A that detects a high level of popularity for A at a
particular step reacts by attempting to send a copy of the fragment of A that it holds
to all O(logn) servers in block 1 of A. (See Figure 3.2.) Although the servers in block 1
may all be flooded with client requests for A (since the popularity of A is assumed to be
high), the fragment messages sent from servers in block 0 are not swamped out by such
client requests because the fragment messages are given a higher priority. (Of course,
we need to argue that these fragment messages are not swamped out by same-priority
fragment messages associated with other objects; this follows by essentially the same
argument as was mentioned in the preceding paragraph.) As a result of the fragment
messages sent from servers in block 0 (the constant fraction detecting a high popularity
for A) to servers in block 1, wvhp a sufficiently high constant fraction of the servers in
block 1 of A reconstruct a copy of A using IDA.

Thus, if the popularity of A is sufficiently high at time ¢, then at time ¢ + 1, a
constant fraction of the servers in block 1 of A hold a copy of A wvhp. A minor variant
of the above process is used to ensure that, if a sufficiently large constant fraction of
the servers in block 1 hold a copy of A at time ¢, and if the popularity of A is Q(logn),
then a constant fraction of the servers in block 2 hold a copy of A at time ¢ + 1. The
idea is that a server in block 1 “detects a high popularity” for A if it receives more than
a certain constant threshold number of requests for A. Rather than sending O(logn)
fragments of A to servers of block 2 (as were sent from servers of block 0 to servers
of block 1 earlier), each server of block 1 detecting a high popularity for A sends O(1)
copies of A to a randomly chosen set of servers in block 2 of A. (Note that O(1) copies
of A require O(logn) words.)

70

More generally, suppose that at time ¢ a sufficiently high constant fraction of the
servers in each of blocks 1 through ¢ holds a copy of A, and that the popularity of A is
Q(2¢logn), where the hidden constant is sufficiently large. Then a constant fraction of
the servers in block ¢ receive more than a certain constant threshold number of requests
for A, and react by sending O(1) copies of A to randomly chosen servers in block i + 1.
(See Figure 3.3.) As a result, at time ¢ + 1, a constant fraction of the servers in block

t + 1 of A hold a copy of A wvhp.

////’—‘“\\ \\

7 [~

Y s ~ ~N N

s - - ~ A \
///// _ ~ N \ \
/7, - "= ~ N \
7=~ ~ N \ \
/ 7 7 ~ N N \ \
////// N \ \ \ \
11¢ \ \ \
I \ \ \ \
/l;/ \ \
y vy y Y
Il”'

Block 0 | S Block 1

Figure 3.2: The response of a server in block 0. The unbroken arrows represent request
messages from clients. The broken arrows represent responses from server S in block
0. If the number of requests to S exceeds a certain Q(logn) threshold, then S sends a
copy of the fragment it holds to each server in block 1. This helps to enforce Invariant 1.
Server S also sends a copy of the fragment it holds to each of the requesting clients.
This helps to enforce Invariant 2.

Enforcing Invariant 2. The total number of requests received by a server for object
fragments is O(log n) per step, simply because a node cannot receive more than O(logn)
messages per step. Thus, in the following step (assuming it is not subject to a dynamic

node fault), a server can respond to each such request with a copy of the desired fragment.

71

Block i " V v ‘ Block i+1

Figure 3.3: The response of a server in block 7, ¢ > 0. The unbroken arrows represent
request messages from clients. The broken arrows represent responses from server S in
block ¢. If S holds a copy of the object, it sends the following messages. If the number
of requests to S exceeds a certain constant threshold, then S sends a constant number
of copies of the object randomly chosen servers in block ¢ + 1. This helps to enforce
Invariant 1. Server S also sends a copy to an arbitrarily chosen constant-size subset of
the requesting clients. This helps to enforce Invariant 2.

This is illustrated in Figure 3.2. (Recall that a fragment consists of a constant number of
words and so the total number of words in all of these responses is O(logn).) Of course,
each of these responses may or may not be received by the associated client due to the
possibility of dynamic faults in the network. On the other hand, the server in block
i > 0 may also receive as many as O(logn) requests for entire copies of objects, and
since each object consists of O(logn) words, only a constant number of these requests
can be handled in a single step. In our protocol, the server selects a constant-size subset
of the incoming requests for entire copies of objects, and responds only to this selected
subset. (See Figure 3.3.)

Now suppose that the hypothesis of Invariant 2 holds, that is, the popularity of
some object A is less than or equal to the number of server copies of the object. Since our

mechanism for generating server copies fills in the blocks in ascending order of index, we

72

can deduce that a block of servers of A with size within a constant fraction of the current
popularity of A satisfies the following two conditions wvhp: (i) a constant fraction of
the servers in the block contain a copy of A, and (ii) each client requesting a copy of A
sends a constant number of messages to randomly chosen servers within the block. By
a straightforward Chernoff-type argument [37], we can show that a constant fraction of
the client requests for A are satisfied at the current step, establishing Invariant 2.

Cache management. Each node has a cache for holding extra object copies. When this
cache becomes full, an LRU (least-recently-used) replacement policy is invoked to decide

which object copy to abandon.

3.4 The Read-Only Protocol

In this section, we formally define our protocol for accessing read-only shared objects.
With every object A we associate n server processes, which provide client processes
access to A. Let the servers associated with A be labeled S;(A), 0 < i < n. Let b
equal log(n/c1logn) + 1, where ¢; is a constant that is specified later. We assume that
c1logn and b are both integers. We partition the set of servers into blocks as follows.
For each i in [b], the th block, denoted by B;(A), is the set {S;(A) : (2° — 1)c; logn <
j < (2811 —1)cq logn}. For each i in [b], let b; = c¢12¢logn be the size of the ith block.
Each server associated with A is mapped to a physical node by means of a hash
function hy; the function hy is chosen such that for any ¢ in [b], block B;(A) is mapped
to a subset of |B;(A)| nodes chosen independently and uniformly at random. (Note
that several servers associated with different objects may be mapped to the same node.)
Using IDA [104], we encode A as a set of by fragments such that any by/4 fragments
suffice to decode A. For each i in [by], ha(S;(A)) stores the ith fragment of A. For each
integer j in [1,b), and for each server S € B;(A), ha(S) stores at most one replicated
copy of the entire object. Let the cache at each node have the capacity to store the
maximum number of object copies that may be received by the node in I' rounds. Thus,

the minimum cache capacity is ©(I") objects. We assume that I' is Q2(logn).

73

We describe our access protocol in terms of the communication between the clients
attempting to access a given object A and the servers associated with A. In order to
simplify the presentation and analysis of the protocol, we assume that the clients send
messages at even steps of the protocol and the servers send messages at odd steps of the
protocol. The clients always send messages to servers; servers send messages to both
clients and servers. For any nonnegative integer ¢, let round ¢ denote the pair of steps
2t and 2t + 1 (steps are numbered from 0).

In our description of the protocol, we differentiate between several kinds of mes-
sages; these are listed in Table 3.1. In the priority-based model, any assignment of
priorities that respects the following constraints can be used: (i) frag-req has a lower
priority than each of client-obj and client-frag, and (ii) obj-req has a lower priority than
each of client-obj, client-frag, server-obj, and server-frag, and (iii) each of server-frag and

server-obj has a lower priority than each of client-frag and client-0bj.

[Message type | Source | Destination | Size | Contents |
obj-req client server o(1) request for object
frag-req client server o(1) request for fragment
client-obj server client O(logn) copy of object
client-frag server client o(1) copy of fragment
server-obj server server O(logn) copy of object
server-frag server server o(1) copy of fragment

Table 3.1: Types of messages.

The protocol is defined in Figure 3.4, where we state the actions in round ¢ of:
(i) a client C' attempting to access object A, and (ii) a server S associated with A. It
is convenient to divide each step into two phases, one in which messages are sent, and
the other in which messages are received. Thus, in Figure 3.4, Phase 0 (resp., Phase 2)
is the “sending phase” for step 2t (resp., 2¢ 4+ 1), while Phase 1 (resp., Phase 3) is the
“receiving phase” for step 2t (resp., 2t +1). In Figure 3.4, my, my, 7o, 73, 74, 75, and 7g
denote positive integer constants.

The terms “send”, “receive”, and “attempt to send” are used in the protocol

74

Phase 0: In step 2t clients send request messages.

e Client. Attempt to send a frag-req message to each server in By(A) and, for
0 < i < b, an obj-req message to a random server in B;(A).

(Remark: Note that each message is actually sent since the bound on the number
of words that can be sent by a node is not exceeded.)

Phase 1: Successfully transmitted Phase 0 messages are received by servers.

e Server. Let D(S,t) denote the set of clients that are the sources of obj-req and
frag-req Phase 1 messages received by S.

Phase 2: In step 2t + 1, servers holding a copy or fragment of object A respond to
Phase 1 messages. Let S € B;(A).

e Server, i = 0. Attempt to send a client-frag message to min{mobo, |D(S,t)|} clients
in D(S,t), and if D(S,t) > m1by then attempt to send a server-frag message to
each server in By (A).

e Server, i > 0. If |D(S,t)] > my then attempt to send a client-obj message to
min{ns, |[D(S,t)|} random clients in D(S,¢), and if D(S,t) > m4 then attempt to
send a server-obj message to 75 random servers in B;11(A).

(Remark: If the bound on the number of words a node can send in a step would be
exceeded, an arbitrary subset of these messages are actually sent.)

Phase 3: Successfully transmitted Phase 2 messages are received by clients and
servers.

e Client. If C receives a client-obj message or c2logn fragments, then the access
attempt is successful. Otherwise, C' attempts to access A in round ¢ + 1.

e Server, ¢ = 1. If S receives at least ¢z logn fragments, then decode A and store it
in the LRU cache; otherwise, discard the fragments received.

e Server, ¢ > 1. If S receives at least mg server-obj messages, then store A in the
LRU cache.

(Remarks: Note that C could receive more than one copy of A, and that S could
receive a new copy of A even though S already has a copy. In a practical implemen-
tation: (i) C' would stop transmission of all but one copy of A, (ii) a check would
be added to ensure that a new copy is sent to S only if S does not already have
a copy, and (iii) if fewer than c; logn fragments are received by a client or server,
then these fragments would be cached and not discarded since sufficiently many
additional fragments are likely to be received in the near future.)

Figure 3.4: The read-only protocol (object A, client C, server S, round t).

75

definition. When we say that a client/server mapped to node u sends a message x, we
mean that v initiates the transmission of xz. When we say that a client/server mapped
to node u receives a message ¥, we mean that the transmission of z is successful and
z is at destination u. When we say that a client/server mapped to node u attempts to
send a message , we mean that u sends z if z is in the subset of messages of total size

at most ¢glogn that is selected for transmission from wu.

3.5 Statement of the Results

In this section, we state our main performance bounds for the read-only protocol. Let
A be a collection of m objects, labeled Ay through A,, 1. For any round ¢, and any
i in [m], let g;(t), r;i(t), and s;(t) denote the number of new requests generated, the
number of requests remaining, and the number of requests attempted, respectively, for
A; at the start of round ¢. (For any nonnegative integer z, we use [z] to denote the set
{0,...,2 — 1}.) Thus, for any round ¢, and any ¢ in [m], s;(t) = r;(¢) + ¢;(t).

We measure the performance of our protocol in terms of throughput, delay, and
per-request communication. The throughput of the protocol is the average number of
access requests satisfied per round. The delay of an individual access request is the
number of rounds taken to satisfy that request. The per-request communication is
defined as the total number of words in all messages sent divided by the number of
access requests satisfied. We say that round ¢ is nice if: (i) there exists a real constant
9,0 <4 < 1, such that r;11(t) < ds;(t) for all ¢ in [m], and (ii) the probability that an
arbitrary access request is satisfied in round ¢ is Q(1). Thus, if round ¢ is nice, for every
object A, an expected constant fraction of the requests for A are satisfied in round ¢.

The first access model we consider is the fized model, in which each new access
request is independently drawn from a fixed probability distribution D on A. The
distribution D is specified by a vector (py,...,pm_1); for a random variable X drawn
from D, we have Pr[X = A;] = p;. At the start of each round ¢, new requests drawn from

D are generated and placed by an adversary on each of the nodes that do not currently

76

have an outstanding request. The particular assignment of new requests to free clients

can be arbitrarily determined by the adversary.

Theorem 3.1: In the fized model, there exists tg = O(logn) such that for any t, ty <

t < poly(n), round t is nice wvhp.

It follows from Theorem 3.1 and the protocol definitions that in the fixed model, our
protocol provides optimal throughput and optimal expected delay using optimal per-

request communication.

Corollary 3.1.1: Int rounds of the fized model, where Q(logn) <t < O(poly(n)), wvhp,
the number of access requests satisfied is Q(nt) using O(logn) per-request communication.

Moreover, after O(logn) rounds, each access request is satisfied in expected O(1) rounds.

O

We note that in Corollary 3.1.1 the per-request communication is optimal since each
object is of size ©(logn).

The bounds stated in Corollary 3.1.1 also hold for certain access patterns in which
the popularity of an object may change considerably over time. In the dynamic model,
an adversary assigns new requests to free clients subject to the following constraints for
all ¢ in [m]: (i) ¢;(0) = O(logn), and (ii) for ¢ > 0, ¢;(¢) < pmax{g;(t') : max{0,t —I'} <
t'" < t}, where p > 1 is a real constant. We note that the dynamic model permits
arbitrary decreases in the popularity of an object, and also permits large increases in

certain cases.

Theorem 3.2: In the dynamic model, for an appropriately chosen p it holds wvhp that
each round is nice, the number of access requests satisfied per round is Q(n), and the

per-request communication is O(logn) words.

The particular choice of the constant p in the above theorem depends on the rate of
growth of b; with i. As defined in Section 3.4, b; grows as 2¢logn. We can establish the
claim of Theorem 4.5 for arbitrarily larger values of p by choosing an appropriately large
growth rate for b;.

77

3.6 Analysis

Our analysis proceeds in two parts. In the first part, Sections 3.6.2 and 3.6.3, we establish
certain properties of our protocol which hold under any access pattern model. In the
second part, Sections 3.6.4 and 3.6.5, we restrict our attention to the fixed and dynamic
models and prove Theorems 3.1 and 3.2, respectively. Before delving into the formal
proofs, we give a brief overview of the analysis in Section 3.6.1.

To simplify the presentation, we assume that there is no contention among mes-
sages of distinct types. The message priorities defined in Section 3.4 can easily be used

to remove this assumption.

3.6.1 Sketch of the Analysis

A significant portion of the analysis is devoted to establishing Invariants 1 and 2 under
suitable assumptions. In Section 3.3, we presented an informal argument describing how
the protocol maintains the invariants. The argument of Section 3.3, however, views each
block in isolation and hence ignores the contention among messages that are destined
to different blocks and, yet, to the same node. Such a contention is possible since all
the hash functions share a common range, namely, the set of all nodes. We begin our
analysis by proving in Section 3.6.2 that for an arbitrary set of access requests, the
interaction among the different blocks is “small” enough that each block can be viewed
in isolation.

We now give a brief sketch of the formal arguments developed in Section 3.6.2.
The notion of a small interaction among different blocks is captured formally in the
definition of a good round (see Definition 3.3 in Section 3.6.2.4). Loosely put, a round
is good if for every block B only a small fraction of servers in B are inaccessible due to
faults and/or contention with messages sent to other blocks.

Suppose that at the start of a particular round, we are given z; requests for
object A;, where the z;’s are fixed integers such that } ., x; is O(n). Consider a

block B of an object A. Let us first determine the number of the servers of B that are

78

inaccessible due to faults. Since the hash function mapping the servers in B to the nodes
of the network is random and independent of the node and link faults, it follows from
a straightforward Chernoff-type argument that only a constant fraction of the servers
in B are unreachable wvhp. It now remains to consider the servers that are swamped
by messages destined for other blocks. Let U be the set of nodes u such that O(logn)
words associated with messages sent to blocks other than B are destined to u. The total
number of words sent in any round is O(nlogn); therefore, |U] is ©(n). Since the hash
function mapping B to the nodes is independent of the z;’s, it follows from a Chernoff-
type argument that U contains a constant fraction of the nodes to which the servers in
B are mapped. Hence, only a constant fraction of the servers in B are swamped with
messages sent to other blocks. Thus, if we are given a fixed set of access requests at the
start of any round ¢, then ¢ is good wvhp.

After defining the notion of a good round, we formalize the informal discussion
of Section 3.3 in Section 3.6.3 and show that the Invariants 1 and 2 hold wvhp whenever
a round is good. The remainder of the analysis concerns the fixed and dynamic models
of access patterns and is contained in Sections 3.6.4 and 3.6.5, respectively. While it is
not too difficult to derive Theorems 3.1 and 3.2 from the invariants, the main challenge
in the analysis of these models is to show that each round is good wvhp.

If the set of access requests are fixed for each round, then our informal dis-
cussion above implies that each round is good wvhp. However, in general, the vector
(so(t),...,8m—1(t)) may depend on the particular actions of the protocol in the first ¢
rounds; hence, (so(t),...,Sm_1(t)) and the hash functions may be correlated among one
another. (Recall that s;(¢) denotes the number of outstanding requests for object A; at
the start of round ¢.) For example, if the choice of hash functions for objects Ag and A;
is such that a large number of servers in the Oth blocks for Ay and A; map to the same
subset of nodes, there will be a correlation between the number of requests for Ay and
Az at the start of each round. Although, intuitively, we do not expect such seemingly
minor correlations to have a significant impact on the performance of the protocol, it is

a technical challenge to establish this.

79

We overcome the problems associated with the aforementioned dependencies by
obtaining tight estimates on the number of requests for each object at the start of any
round. Our proof for each model is by an induction on the number of rounds. In the
induction argument for round ¢: (i) we use the invariants of Section 3.6.3 to place a tight
bound on the number of requests for each object at the start of round ¢ such that the
upper bound on the total number of requests is O(n), and (ii) we invoke the results of
Section 3.6.2 to show that round ¢ is good, and hence establish the invariants for the

next round.

3.6.2 Good Rounds

The goal of this section is to formalize the notion of a good round which we alluded to
in Section 3.6.1. Sections 3.6.2.1, 3.6.2.2, and 3.6.2.3 develop some technical machinery
and Section 3.6.2.4 gives the formal definition.

We begin by introducing some additional notation. Let an a-message refer to
any message of type a. Let size(a) denote the number of words in an a-message. For
any o and ¢ € [b], let No(A,1,t) denote the set of servers in B;(A) that attempt any
a-message in round ¢. (Here and in the rest of this section, we use the word “attempt”
as a short form for “attempt to send”.) Let N/ (A,i,t) denote the set of servers S in
B;(A) such that all of the a-messages attempted by S in round ¢ are sent.

Let My(A,,t) be the set of a-messages that are sent to B;(A) in round ¢. Let
M/ (A,i,t) denote the set of a-messages received by B;(A) in round ¢t. Let F(A,t) be
the set of servers in By(A) that send b; server-frag messages in round ¢. Let G(A,t)
denote the set of clients that send by frag-req messages in round ¢.

If we assume a fault-free model with no upper bound on the number of words
a node can send/receive in a single step, then it is easy to show that some of the sets
defined above are related by well-studied balls-and-bins experiments. Unfortunately, in
the presence of faults and contention, this is not true. However, we are able to establish
similar relations using more complex balls-and-bins experiments which are defined in the

following section.

80

3.6.2.1 Two Balls and Bins Experiments

Definition 3.1: Let X denote a set of labels, let U denote a set of bins, let ¢ be a real
in [0,1), and let 7 be a nonnegative integer. In a uniform (X,U,e,T) experiment,
we are given a set {V; : i € X,V; C U, and |V;| < ¢|U|}, and the following steps are
performed: (i) for each i in X, place a ball labeled i in each bin in U \ V;, and (ii) for
each bin that has more than 7 balls, discard all but an arbitrary subset of at least T balls.
Let Y denote the set of remaining balls. We refer to the set of remaining balls as the

outcome of the erperiment. 0

Definition 3.2: Let X denote a set of balls, and let U, &, and 7 be as defined in
Definition 3.1. In a random (X,U,e,7) experiment, we are given a set {V; : i €
X, Vi C U, and |V;| < ¢|U|}, the following steps are performed: (i) throw the balls
independently and uniformly at random into U, (ii) for each ¢ € X, if ball i lands in
a bin in V;, discard ball i, and (iii) for each bin that has more than T balls, discard all
but an arbitrary subset of at least T balls. We refer to the set of remaining balls as the

outcome of the experiment. []

The following two sections contain analyses of the experiments introduced in Defini-

tions 3.1 and 3.2, respectively.

3.6.2.2 Analysis of the Uniform Experiment

In this section, we analyze a uniform (X, U, ¢, 7) experiment (see Definition 3.1). Let x
and v denote | X| and |U|, respectively. Throughout this section, we assume that u is at
least ¢ logn. Also, c; is assumed to be sufficiently large and ¢ to be sufficiently small.
For any ball 7 in X and bin j in U, we say that ¢ is good for j if j is not in V;; otherwise,

we say that ¢ is bad for j.
Lemma 3.1: The number of bins that receive at most (1 — ce)z balls is at most u/c.

Proof: For each ball in X, the number of bad bins is at most eu. Thus, the total
number of bad “ball-bin pairs” is at most cux. By an averaging argument, we obtain

81

that the number of bins that are bad for at least cez balls is at most u/c. b
Corollary 3.1.1: The number of bins that receive at most x/2 balls is at most u/10. []

3.6.2.3 Analysis of the Random Experiment

In this section, we analyze a random (X, U, ¢, 7) experiment (see Definition 3.2). We
are interested in bounds on random variables associated with the number of bins that
receive at least (or at most) ¢ balls for some positive integer ¢, where ¢ is some positive
integer. We refer to these variables as threshold variables. We are only concerned with
threshold variables for which c is at most 7; hence, we can assume 7 to be as large as | X]|.
Let z and u denote | X| and |U|, respectively. Throughout this section, we assume that
u is at least ¢ logn. Also, ¢; is assumed to be sufficiently large and ¢ to be sufficiently
small.

The theory of martingales provides a useful tool for analyzing the random experi-
ment. Appendix B contains a brief discussion of martingales, including a large deviation

bound that is used in the following lemma.

Lemma 3.2: Let Z be a threshold variable in a random (X, U, e,) experiment. For any
A >0, we have:

Pr[|Z — E[Z]] > \Wz] < 2¢ /2,

Proof: The random experiment defines a probability distribution on the set of functions
Q from X to U U{Ll}, where L is a special bin that contains the discarded balls. A
random function g drawn from (2 satisfies the following. For any 7 in X, we have: (i)
for any j in U \ V;, Pr[g(i) = j] = 1/u, (ii) for any j in V;, Pr[g(i) = j] = 0, and (iii)
Prlg(i) = 1] = |V;|/u. Fix a gradation § = By C B; C ... C B, = X. Given any

functional L : Q2 — R, we define a martingale Zy, Z1, ..., Z; by setting
Zi(h) = E[L(g) : g(b) = h(b) for all b in B;].

Since the function associated with Z; satisfies the Lipschitz condition defined in

Theorem B.2, the desired claim follows from Theorem B.1. []

82

We extend the definition of threshold variables to a sequence of s random experiments,
given by (Xo,Ug,&,7), ..., (Xs—1,Us—1,¢,7). A threshold variable Z for a sequence of
s random experiments is the number of bins that receive at least (or at most) ¢ balls in

at least one of the s experiments, for some positive integer c.

Lemma 3.3: Let Z be a threshold variable associated with a sequence of s random

experiments. For any A > 0, we have:

Pr||Z—E[Z)| >\ 3 X;| <2e7V/2
1€[s]

Proof: Similar to that of Lemma 3.2. []

In the remainder of the section, we use Lemmas 3.2 and 3.3 to obtain high probability
bounds on certain threshold variables. Lemmas 3.4 and 3.5 consider a single random
(X,U,¢e,7) experiment. As in Section 3.6.2.2, we say that bin j is good for ball i if j is

not in V;; otherwise, we say that j is bad for i.

Lemma 3.4: Let ¢ be a real number greater than 4. If x is at least 4cu, then the number

of bins that receive less than c balls is at most u(1/e®+1/20+ X) with probability at least
(1 _ QefAzu/(Sc))‘

Proof: Let X' be an arbitrary 4cu-size subset of X. Let U’ be the set of bins j such
that j is bad for at most 4c’ecu balls in X’. By an averaging argument, we obtain that
|U’| is at least (¢' — 1)u/c.

Let Z denote the number of bins in U that receive less than ¢ balls. Let ¢ be a
bin in U’. Let X] be the set of balls in X' that are good for 7, and let z denote |X]|.
By the definition of U’, «} is at least (1 — c’¢)4cu. The probability that i receives less

than ¢ balls is at most:

()

< 4e(l —e) \°
= ¢ ed(l—c'e)~1/u
1

< o
=

1 (1-c'e)dcu—c
< c(de(l = de))° (1 - —)

for ¢ > 4 and ¢ sufficiently smaller than 1/¢".
We set ¢’ to 20. Thus, E[Z] is at most (1/e® + 1/20)u. By Lemma 3.2, the
probability that Z is at least (1/e€ 4 1/20 + A)u is at most 2e*"4/(8¢), 0

Corollary 3.4.1: If ¢ is sufficiently large, c1 is sufficiently larger than c, and x is at

least 4cu, then the number of bins that receive less than c balls is at most u/10 wvhp. []

Lemma 3.5: If x is at most cu, then the number of bins that receive at least 2ec balls

is at most u(1/2%¢€ + \) with probability at least 1 — 2e~A"u/(2¢)

Proof: Let Z denote the number of bins that receive at least 2ec balls. For any bin ¢,

the probability that i receives at least 2ec balls is at most ({*)—4z < s=. Thus, E[Z] is

2ec’/ y2ec — 9Q2ec

at most u/22°¢. By Lemma 3.2, the probability that Z exceeds u(1/2%¢¢ + \) is at most
QefAzu/(2c)' [

Corollary 3.5.1: If ¢ is sufficiently large, c1 is sufficiently larger than ¢, and x is at
most cu, then the number of bins that receive at least 2ec balls is at most u/10 wvhp. []
In the following two lemmas, we analyze a sequence of random (X, U, ¢, 7) experiments.

Lemma 3.6: Let ¢ be a positive integer constant. Consider a sequence of s random
experiments, (Xo,Up,&,7),...,(Xs—1,Us_1,¢,T), such that ¢ < z; = | X;| < u = |U;| for

all i in [s], and U; N Uj is O for i # j. The number of bins in Ujc(qU; that receive at

@) Z(xf/uc_l)-l— inlogn wuhp.
1€[s] 1€[s]

84

least ¢ balls is

Proof: Let Z; be the number of bins in U; that receive at least ¢ balls. Let Z equal
Eie[s] Z;. We first obtain an upper bound on E[Z;] for any ¢, and hence an upper bound
on E[Z].

Consider the ith experiment. The probability that j receives at least c balls is at
most (7)(1/u)® = O((zi/c)¢). Thus, E[Z;]is O(z¢/u®t) and E[Z] is O(Zie[s}(:pf/uﬁl)).

The desired claim follows from Lemma 3.3. []

Lemma 3.7: Let ¢1 be a positive real constant in (0,1], and let ¢ be a positive integer
constant. If s is a suitably large integer constant, then in any sequence of s random
exzperiments (Xo,U,e,7),...,(Xs_1,U, &, 7) satisfying equ < |X;| < w for all i in [s], the
number of bins in U that receive at least ¢ balls in at least one of the s experiments is

9u/10 wohp.

Proof: Let Z be the number of bins in U that receive at least ¢ balls in at least one
of the s experiments. We first obtain a lower bound on F[Z].

Consider the ith experiment, namely the random (X;,U, e, 7) experiment. Let
X! be an arbitrary ;u-size subset of X;. Let U/ be the set of bins such that j is bad for
at most 100ee;u balls in X. By an averaging argument, we obtain that |U]| is at least

99u/100. Consider a bin j in U]. The probability that j receives at least ¢ balls is at

((1 - 100661)U> (1 _ l)mc ic = f(e,e1,0),

C u u

least:

where f(g,e1,¢) is a constant in [0, 1], dependent on ¢, &1, and c.

Let U’ be the set of bins j such that j is in U/ for at least s/2 different values of
i. By an averaging argument, we obtain that |U’| is at least 49u/50. Consider any bin
7 in U'. The probability that j did not receive ¢ balls in any of the s experiments is at
most

(1 - f(€7 81’C))s/2 > 19/207

for s chosen a suitably large constant. Thus, F[Z] is at least 19u/20. By Lemma 3.3, it
follows that Z is 9u/10 wvhp. [

85

3.6.2.4 Definition of a Good Round
Using Definitions 3.1 and 3.2, we now define the notion of a good round.

Definition 3.3: Round t is good if there exists a sufficiently small real € such that, for

every object A, the following conditions hold:

1. Given any a and any @ in [b], if |[No(A4,1i,t)| is Q(logn), then |N,(A,i,t)| is
Q(INa(4,4,1)]).

2. If a is frag-req, then M/, (A,0,t) is the outcome of a uniform (G(A,t), Bo(A), e,

©(logn)) experiment.

3. If v is server-frag, then M!(A,1,t) is the outcome of a uniform (F(A,t), B1(A),¢,

O(logn)) experiment.

4. If a is in {obj-req, server-obj}, then for any i in [b], ML (A, t,t) is the outcome of
a random (My(A,1,t), Bi(A),c,0(logn)/ size(a)) experiment. 0

Let T, (t) denote the set of all a-messages that are attempted in round ¢. For any set
of messages X, let || X|| denote the total number of words in X. The following lemma

places an upper bound on |75 (t)||.
Lemma 3.8: For any i in [m], any round t, and any «, ||T,(t)| is O(nlogn) wohp.

Proof: The messages attempted in step 2t are described in Phase 0 of Figure 3.4. (No
messages are attempted in Phase 1.) Only clients attempt messages in Phase 0 and at
most one client resides at any node. In Phase 0, each client attempts O(logn) frag-req
messages and O(logn) obj-req messages. Thus, for a in {frag-req, obj-req}, ||Tw(t)| is
O(logn).

The messages attempted in step 2¢ + 1 are described in Phase 2 of Figure 3.4.
(No messages are attempted in Phase 3.) We consider different cases based on «a. Let

z; equal s;(t).
e Case a = client-frag: At most O(logn) a-messages are sent by servers in By(4;)
to each client requesting A;. Therefore, ||To(t)| is O(3 ;) @ilogn) = O(nlogn).

86

e Case a = server-frag: A server S in By(A;) attempts an a-message only if S
receives at least mby client-frag messages. Since each client-frag message received
by S is from a different client, it follows that if S attempts any a-message, then x;
is at least m1bg. Since the number of a-messages attempted by S is at most myby,
the total number of a-messages attempted in step 2t + 1 by servers in By(A;) is
O(log?n) = O(z;logn). Since the size of each server-frag message is ©(1), ||T,(2)]|
is O(nlogn).

Case a € {client-obj, server-obj}: A server S attempts a client-obj (resp., server-obj)
message in step 2t + 1 only if it receives at least mo (resp., m4) 0bj-req messages in
step 2t. We show for a = client-obj that ||T,(t)| is O(nlogn) wvhp. A similar

proof holds for a = server-obj.

We partition the set of objects into two disjoint subsets L and H. For each ¢ in
[m], if z; < logn, then A; is in L; otherwise, A; is in H. Consider an object A;
in H. Let j be the largest integer such that b; < x;. Since each server attempts
at most m3 a-messages, it follows that the total number of a-messages attempted
by servers in By(A;) through B;(A4;) is O(z;). We now place an upper bound on
the number of a-messages attempted by servers in By(A;) for k > j. Since each
obj-req message is destined to a random server, even if all of the 0bj-req messages
are received, we obtain by Lemma 3.6 that the number of servers in Uy ;j By (4;)
that receive at least o 0bj-req messages in step 2t is O(x;) wvhp. Thus, the total
number of attempted client-obj messages associated with objects in H is O(n)

wvhp.

Consider the set L. Since each o0bj-req message is destined to a random server,
even if all of the obj-req messages are received, we obtain by Lemma 3.6 that the

number of servers in Ug,cr, Ugso Bi(A;) that receive at least my obj-req messages

) Z Z ;)28 + Z z;logn = O(n) wvhp.
k>0 \ A;€L AeL

87

in step 2t is:

Adding the bounds for the a-messages associated with L and H, we obtain that
|T4(t)] is O(nlogn) wvhp.

Lemma 3.9: If there are nonnegative reals xg,...,Tm_1, independent of the hash func-

tions, such that s;(t) < x; and) ;¢ ¥ = O(n), then round t is good wvhp.

Proof: We fix indices ¢ € [b] and j € [m]. We prove the desired claim by establishing
the four parts of Definition 3.3. Let U denote the set of up nodes (i.e., neither dead nor
down) in round ¢. Note that |U| is at least (1 — (¢9 + ¢1))n.

1. Let a be any message-type that is attempted by a server. Since servers attempt
messages in odd steps only, this part concerns step 2t + 1 only. By Lemma 3.8,
ITa(t)|| is O(nlogn) wvhp. Let U’ be the set of nodes u such that at most
(cologn)/2 words are attempted from u in step 2t + 1. By an averaging argument,
it follows that |U'| is 2(n), where the hidden constant can be made arbitrarily
close to 1 by setting cg sufficiently large. By definition, all messages in Ny (A;,1,1)
are attempted by servers. Since xg,...,Z,_1 are independent of the hash func-
tions, the mapping of B;(A;) is independent of the source nodes associated with
the messages in T, (t) \ No(Aj,4,t). It follows from bounds on the tail of the hy-
pergeometric distribution [38], given in Theorem A.2, that a constant fraction of
the messages in N(A;,i,t) are attempted by nodes in U'. By setting ¢y and c;
sufficiently large, we obtain that [N/ (A;,1,t)| is Q(|No(A;,1,t)|) wvhp.

2. Let « equal frag-req. We need to prove that M/ (A;,0,t) is the outcome of a
uniform (G(A;,t), Bo(A;),e,0(logn)) experiment. In our proof, the clients in
G(Aj,t) correspond to the labels, and the servers in By(A;) correspond to bins.
Step (i) of the experiment corresponds to the following: each client in G(A;,1t)
sends one a-message to each server in By(A;). We now establish step (ii) of the

experiment.

88

Consider a client C'in G(Aj,t). Let v be the node associated with C'. Let U, be the
set of up nodes u in U such that at most (cologn)/2 words in T, (t) \ Mq(A;,1,t)
are destined to u and u has a non-faulty link to v. Since ||T,(¢)|| is O(nlogn), by
an averaging argument, it follows that |U,| is £2(n), where the hidden constant is
arbitrarily close to 1 for ¢y sufficiently large and ¢g, ¢1, and ¢o sufficiently small.
Let W, be By(A;) NU,. Since the mapping of servers in By(A;) is independent of
the destination nodes associated with the messages in Ti,(t) \ Mo (A}, 1,), it follows
from Theorem A.2 that |W,| is at least cb; wvhp, where ¢ can be set arbitrarily

close to 1 for appropriate values of ¢y, ¢y, ¢1, and ¢s.

The correspondence to Definition 3.1 is established by substituting G(A;,t), Bo(4;),
(1 —c), ©(logn), and By(A;) \ W, for X, U, €, 7, and V}, respectively.

. Similar to Part 2.

. Let o be in {obj-req, server-obj}. We need to prove that M,(A;,4,t) is the out-
come of a random (My(Aj,1,t), Bi(A;j),¢,0(logn)/size(«)) experiment. In our
proof, the messages in M, (A;,4,t) correspond to balls, and the servers in B;(A4;)
correspond to bins. Step (i) of the experiment corresponds to the following: each
a-message is sent to a server chosen independently and uniformly at random from

B;(Aj). We now account for steps (ii) and (iii) of the experiment.

Consider any message y in M(A;,i,t). Let U, be the set of up nodes u € U
such that at most (cologn)/2 words in T(t) \ Mq(A;,1,t) are destined to u and
u has a non-faulty link to the source of message y. Since ||T,(¢)]| is O(nlogn), by
an averaging argument, it follows that |U,| is €2(n), where the hidden constant is
arbitrarily close to 1 for ¢y sufficiently large and ¢g, ¢1, and ¢o sufficiently small.
Let Wy be the set of servers in B;(A;) that are mapped to nodes in Uy. Since the
mapping of servers in B;(A;) is independent of T},(t) \ My (A}, 1,t), it follows from
Theorem A.2 that |W,| is at least cb; wvhp, where ¢ can be set arbitrarily close to
1 for appropriate values of cg, @g, ¢1, and ¢o. For step (iii), it is enough to note
that each server in W, can receive at least (cologn)/2 words from M'(A;,i,t).

89

The correspondence to Definition 3.2 is established by substituting Mq(A;,%,t),
Bi(A;), (1 —c¢), O(logn)/ size(ar), and B;(A;) \ Wy, for X, U, €, 7, and V;, respec-

tively.

3.6.3 Invariants

For any server S associated with object A, let a(S,t) be 1 if server S has a copy of
A or a fragment of A at the start of round ¢, and 0 otherwise. With each ¢ in [b], we
associate a state variable s(A4,,t) € {complete, incomplete} that is defined as follows: if
the number of servers S in B;(A) such that a(S,t) = 1 is at least 9b;/10, then s(A4,1,t)
is complete; otherwise, s(A4,1,t) is incomplete. Let R(A,t) denote the set of clients that
attempt to access A in round ¢. Let R'(A,t) denote the set of clients C' that receive at
least by /4 distinct client-frag messages or at least one client-obj message in round ¢. We

define predicates Py through Ps as follows:
o Py(A,t): If |[R(A,t)| is at least 2mibg, then for t +1 < ¢/ <t + 1T, s(A,1,t) is
complete.
o Pi(A,i,t): If |R(A,t)| is at least 4m4b; and s(A,,t) is complete, then for ¢t + 1 <
t' <t+T, s(A,i,t') is complete.
o Py(A,t): If |R(A,t)| is at most moby, then R'(A,t) = R(A,t).
o P3(A,i,t): If s(A,i,t) is complete then: (i) if |R(A,¢)| is at least m3b;/12, then
|R'(A,t)| is at least m3b;/120, and (ii) if 4meb; < R(A,t) = O(b;), then for each
C € R(A,t), we have Pr[C € R'(A,t)] = Q(1).
The predicates Py(A,t) and Pi(A,i,t) (resp., P2(A,t) and P3(A,¢,t)) formalize Invari-

ant 1 (resp., Invariant 2) of Section 3.1. We assume that w3 > max{4my, 247,487 }.

Lemma 3.10: If round t is good, then the following predicates hold for every object A
wvhp: (i) Py(A,t), (i1) Vi > 0: Pi(A,i,t), (iii) Pa(A,t), and (iv) Vi > 0: P3(A,1,t).

90

Proof: Since at most one client resides at any node and each client attempts at most

cologn words, each attempted message of type client-frag or obj-req is sent.

1. Proof of Py(A,t): Let a and 3 equal frag-req and server-frag, respectively. We are
given that R(A,t) is 2w by. Since round ¢ is good, it follows from part (ii) of Defi-
nition 3.3 that M/, (A,0,t) is the outcome of a uniform (R(A,t), Bo(A),,0(logn))

experiment.

Let X be the set of servers in By(A) that receive at least m1by a-messages in step
2t. By Corollary 3.1.1, | X]| is at least 9by/10. Each server in X attempts b; (-
messages in step 2t + 1 (see Phase 2 of Figure 3.4), i.e., N3(4,0,t) = X. Since
step 2t + 1 is good, it follows from part (i) of Definition 3.3 that |N[’.3(A, 0,t)| is at
least by /2.

By definition, F'(A,t) equals Ng(A,0,¢). Since round ¢ is good, by part (iii) of Def-
inition 3.3, M3(A,1,¢) is an outcome of a uniform (Mg(4,1,t), B1(4),¢, O(logn))
experiment. Let Y be the set of servers in By(A) that receive at least by/4 (-
messages. By Corollary 3.1.1, |Y] is at least 9b,/10. Therefore, s(A,1,t + 1) is

complete, and the desired claim follows from the cache capacity assumption.

2. Proof of P(A,i,t) for all i > 0: Let o and (3 equal obj-req and server-obj, re-
spectively. We are given that R(A,t) is at least 4myb;. Hence, |My(A,1,)] is at
least 4m4b;. Since round ¢ is good, it follows from part (i) of Definition 3.3 that
M/,(A,i,t) is the outcome of an (My(A4,1,t), B;(A),e,0(1)) experiment.

Let X denote the set of servers in B;(A) that receive at least m4 a-messages. By
Corollary 3.4.1, | X| is at least 9b;/10. Since s(A,,t) is complete, at most b;/10
servers in B;(A) do not have a copy of A. Therefore, at least 4b;/5 servers in X
attempt 75 B-messages to B;y1(A) in step 2t 4+ 1. Thus, [Ng(A,i+1,¢)| is at least
47sb; /5. Since round ¢ is good, by part (ii) of Definition 3.3, the number of servers
in B;(A) all of whose attempted (-messages are sent is at least 2b;/5. Therefore,
|Ma(A,i+ 1,¢)| is 2msb; /5.

91

Since round ¢ is good, it follows from part (i) of Definition 3.3 that Mj(A,i+1,1) is
an outcome of an (Mg(A,i+1,t), Bi11(A), e, 0(1)) experiment. By Corollary 3.4.1,
the number of servers in B;,1(A) that receive at least 75/20 S-messages is 9b;,1/10
wvhp. Thus, s(A,i+1,t+ 1) is complete wvhp, and the desired claim follows from

the cache capacity assumption.

. Proof of P»(A,t): Let a and 8 equal frag-req and client-frag, respectively. By the
hypothesis of P»(A,t), we are given that |R(A,t)| is at most mpby. Since round ¢
is good, it follows from part (ii) of Definition 3.3 that M/, (A,0,t) is the outcome
of a uniform (M,(A,0,t), By(A),e,0(logn)) experiment. Thus, for any client C,
(1 —¢)by of the a-messages sent by C' are received by (1 —¢)by different servers in
By(A).

Since each server that receives an a-message attempts at least one S-message, it
follows that |[Ng(A,0,t)| is at least (1 —)by. Since round ¢ is good, by part (i)
of Definition 3.3, all but 2by/5 of the servers in By(A) send all their attempted
B-messages. All of the S-messages that are sent by servers in By(A) are received
by the clients. It follows that C' receives f-messages from (1 — e — 2/5)by different

servers in By(A). Hence, the request by client C' is satisfied in round ¢.

. Proof of P3(A,i,t) for all ¢ > 0: Let a and 8 equal obj-req and client-obj, re-
spectively. By definition, |My(A4,4,t)| is |R(A,t)|. Since round ¢ is good, it
follows from part (iv) of Definition 3.3 that M/ (A,i,t) is the outcome of an
(My(A,i,t),B;i(A),e,0(1)) experiment. For part (i) of Ps, we are given that
m3b; /12 < |R(A,t)| < m3b;/6. By Corollaries 3.4.1 and 3.5.1, at least 4b;/5 servers
in B;(A) receive at least m3/48 > my and at most m3 a-messages wvhp. Hence,
|Ng(A,i,t+1)| is 4b;/5 wvhp. Since round ¢ is good, by part (i) of Definition 3.3,
it follows that [Ng(A,¢,¢)| is 2b;/5. If a client C'is sent at least one S-message, C'
receives at least one S-message. Therefore, m3b; /120 > |R(A,t)|/20 of the clients

receive a S-message wvhp, establishing part (i).
The proof of part (ii) is similar. We are given that 4mb;/12 < |R(A,t)| = O(b;).
92

By Corollary 3.4.1 and Lemma 3.5, at least 4b;/5 servers in B;(A) receive at least
mp and at most O(1l) a-messages. By part (i) of Definition 3.3, it follows that
|Ng(A,,¢)| is 2b;/5. Thus, Q(|R(A,t)|) of the clients receive a f-message. Since
each client C' selects a server at random and each server sends 3-messages to a

random subset of requesting clients, part (ii) of the claim follows.

O

For any round ¢, we define d;(t) to be the largest index j such that s(A4;, k,t) is complete
for all k£ in 5+ 1]. Let e;(¢) be the smallest index j such that a(S,t) is O for every server
S in Ug>;Bi(A4;). In the following lemma, we use Lemma 3.10 to relate d;(t), e;(t), r;(t),
and s;(t) when ¢ is good.

Lemma 3.11: Let t be a good round. For any i in [m]:
1. If si(t) is at most myby, then ri(t + 1) = 0 wohp.
2. If si(t) is at most m3bg,(4)/6, then s;(t) —ri(t + 1) is at least s;(t)/20 wohp.
3. If s;(t) is at least 4m4b; and d;(t) is at least j, then d;(t + 1) is at least j + 1.
4. 8i(t) —ri(t + 1) is at most m3be,(y)-

Proof: By definition, s;(¢) equals |[R(A;,t)| and s;(¢t) —r;(t+1) equals |R'(A;,t)|. Since

round ¢ is good, we invoke Lemma 3.10 to prove the claims.
1. The claim directly follows from Part (iii) of Lemma 3.10.

2. There exists an integer j < d;(t) such that m3b;/12 < s;(t) < w3b;/6. Therefore,
by Part (iv) of Lemma 3.10, s;(¢) — r;(t + 1) is at least s;(k)/20 wvhp.

3. If s;(t) is at least 4myb; and d;(t) is at least j, then for each k in [j + 1], s;(¢) is at
least 474b. Therefore, Parts (i) and (ii) of Lemma 3.10 imply that s(A;, k,t + 1)

is complete for all 7 in [j + 2|, establishing the desired claim.

93

4. Each server in By(A) sends at most myby client-frag messages. Since each client
requires by/4 fragments to reconstruct the object, the number of clients whose
requests are satisfied by By is at most 4mpby < w3by. The number of requests
satisfied by each server in a block B;(A;) for j > 0 is at most 3. Therefore

si(t) —ri(t +1) is at most 3 o, .. () T3bj, which is at most m3be, ().

3.6.4 The Fixed Model

The fixed model is specified by a probability distribution D = (py, ..., pm—1), where each
new request is for A; with probability p;. We use a number of positive real constants in
our analysis. Constants ag through ag appear in the definitions and the statements of

the lemmas and are required to satisfy the following inequalities.

ay < mocr/as,

ar > 9azmi/(azas),

az > max{4dmy,?2m},

ap < mw3/l2,

as = 1/(1-1/20+a3/(as —a3)), and
ag > 2lag.

The above inequalities are satisfied if the constants are selected as follows. Constants
as and a4 are first selected according to the desired failure probability of the protocol.
Then, a1, as, and ag are selected so that my, ™ < a2 < 73 < a1 and ag < ag. Finally,
agp is chosen appropriately. (The inequalities associated with other constants that arise
in the proofs are specified whenever such constants are introduced.)

We partition the set A into O(logn) subsets as follows:

{Az tmp; < ag 10gn}7 lf] =0,
A =

{4;: aoa{'*l logn < np; < aoa{ logn}, otherwise.

94

Let A>; denote the set U;>;A;. We define A<;, A-;, and A_; similarly. For each
¢ in [m], object A; is said to be good in round ¢ if s;(t) < azbg,(); otherwise, A; is said
to be bad in round ¢. Thus, if an object A; is good in round ¢, then at the start of round
t, the number of requests for A; is at most a constant factor times the number of copies
of A;.

Let B(m,p) be the random variable denoting the number of successes in m in-
dependent Bernoulli trials with success probability p. Let ag and a4 be real constants
such that for p > aglogn/n, agnp < B(n,p) < agnp wvhp; ag and a4 may be obtained

from standard Chernoff bounds [37] given in Theorem A.1.

Lemma 3.12: Let rounds 0 through v —1 be good. If object A; is bad in rounds O through

r, then wvhp we have d;(j) = j and e;(j) =5+ 1 for0 < j<r.

Proof: The proof is by induction on j. The induction basis is trivial. For the induction
hypothesis, we assume that d;(j) = j and e;(j) = j + 1 for all 5 in [k], where k is in
[r —1]. Since A; is bad in round k — 1, we have s;(k — 1) > a2bg,(x—1). Since round k —1
is good, by Part 3 of Lemma 3.11, d;(k) is k wvhp. Since e;(k — 1) + 1 < e;(k) < d;(k)
and e;(k — 1) =k, e;(k) is k + 1 wvhp. 0

Lemma 3.13: Let rounds 0 through r — 1 be good. If A; is not in Ay and A; is bad in
rounds 0 through r, then s;(r) > asasnp;/(3ms) wvhp.

Proof: By Lemma 3.12, d;(j) is j for all j in [r 4+ 1]. By Part 4 of Lemma 3.11, it

follows that s;(j) — (7 + 1) is at most 2m3b;. Thus, we have wvhp:

si(r) = s(0)+ Z qi(j) — Z (si(4) —ri(j + 1))

v
&
—~~
o
SN—r
|
|
b
[N
N
w
&

0<j<r
> 5i(0) — 2m3by
> agnp; — 2m3b,
> agnp; — 2m354(r)/az

95

> agnp;/(1+ 2m3/az)

> agaqnp;/(3ms).

(The first equation follows from the definition of s;. The fourth equation follows from a
Chernoff bound. The fifth equation holds since A; is bad in round r. The last equation

holds since as < 73.) U

Lemma 3.14 places an upper bound on the number of requests for object A; at the start

of a round subsequent to the first round in which A; is good.

Lemma 3.14: Let rounds 0 through r — 1 be good, where r is at most I'. Assume that
A; does not belong to Ay, and let j < r be the smallest integer such that A; is good in

round j. There exist constants as > 1 and ag such that, for j < k < r, we have wvhp:

si(k) < max { Szk(fy) , aﬁnpz} . (3.1)
as

Proof: By a Chernoff bound, ¢;(k + 1) is at most agnp; wvhp. If s;(k) < (ag — ag)np;,
then s;(k + 1) < s;(k) + qi(k + 1) < agnp; wvhp, thus establishing the claim. For the

remainder of the proof, we assume that:
si(k) > (ag — az)np;. (3:2)
We consider two cases depending on whether s;(7) > agnp;.

e Case s;(j) > agnp;: We show by induction on k that Equation 3.1 holds wvhp.
The induction basis is trivially true. Let Equation 3.1 be true for rounds j through
k, where 7 < k < r — 1. Since j is the first round in which A; is good, Lemma, 3.12

implies that d;(j) is j. Therefore, s;(j) < azb; wvhp.

By the induction hypothesis, s;(k) < s;(j). Moreover, since r is at most I', d;(k)
is at least j. Therefore, s;(k) < a2b; < abg,(x). Since az is at most m3/6, Part 2

of Lemma 3.11 implies wvhp:

si(k) — rs(k +1) > s;(k)/20. (3.3)
96

Therefore we have wvhp:

silk+1) = ri(k+1)+q(k+1)

(
= si(k) = (si(k) —ri(k + 1)) + qs(k + 1)
< si(k)(1— 1/20) + azsi(k)/(as — a3)
< s;(k)(1 —1/20+ a3/(ag — a3))
< si(k)/as

VAN

=

&

»
/—/H
»
??‘A
S ~—

i(J
_~,a6npz}-
as

(The second equation follows from the definition of s;. The third equation follows
from Equations 3.2 and 3.3. The fifth equation follows from the choice of the
constants: ag > 2lag and 1/a5 = (1 — 1/20 + a3/(as — a3)).)

Case s;(j) < agnp;: We show that in this case s;(k) < agnp; wvhp. The proof
is by induction on k. The induction basis is trivial. Let the claim be true for
rounds j through k where 7 < k < r. In the induction step, we need to show that
si(k+ 1) < agnp;.

Let ¢ be the last round in which s;(£) < abg,(r)- (Such an £ exists since s;(j) <
azbg,(j)-) By Part 3 of Lemma 3.11 and the definition of ¢, d;(k) > d;(¢) + (k — £)
wvhp. By a Chernoff bound, s;(¢) is at least (ag — (kK — £)as)np; wvhp. Therefore,
by,(¢) is at least (ag — (k — £)ag)np;/az wvhp. Moreover, since £ is at most I,

d;(£) > j. Therefore, we have wvhp:

bdi(e) > bj
S 2s5(j — 1)
— 2a9+ w3
2aza4mp;
97r§

(The second equation holds since A; is good in round j. The third equation follows
from Lemma 3.13.) Therefore, we have wvhp:

2a3a4 } np;

ba;(¢) 2 max {(ae —(k=8as) g 5 as
3

(3.4)

97

We select ag and a new constant a7 such that 2aza; < ag < 297+ 2aga4/(972). If
k — € is at most a7, then bg, () is at least agnp;/2as. By the induction hypothesis,
si(k) is at most agnp;. Therefore, s;(k) < 2a2bg,(r). If k — £ is at least a7, then
b (k) is at least 297 asaynp;/(972). By the choice of ag and a7, we obtain that
si(k) < 2agbg, () wvhp.

By Part 2 of Lemma 3.11, we have wvhp: s;(k) — r;(k + 1) is at least s;(k)/20.
Therefore, s;(k + 1) is at most 19s;(k)/20 4+ agnp;, which is at most agnp; by the

choice of the constants.

i

Lemma 3.15 relates the number of requests, in round r, for any two objects that are bad

in rounds O through r — 1.

Lemma 3.15: Let rounds 0 through r — 1 be good. Let i1 and iz be integers in [m] such
that A;, and A;, are not in Ay and A;, is bad in rounds 0 through r. Then, wvhp we
have:

siy (r) < Msi (r).

Qa2a4Di,

Proof: Consider any round j, 0 < j < r. We are given that A;, does not become
good in any of the r rounds. We invoke Lemma 3.12 and obtain that d;,(j) = j wvhp.
Therefore, s;,(7) > a2b; wvhp. By Part 4 of Lemma 3.11 (s;,(7) —74,(j + 1)) is at most
2m3b; wvhp. Let g denote the number of new requests generated in rounds 0 through

r. Since ¢ > n and A;,, 4;, ¢ Ay we have wvhp: ZO<]’<1’ i, (7) is at least asap;; ¢ and

Eo<j<r gi,(7) is at most asp;,q. We thus have:

sy, (1) < aspiq, (3.5)

si,(J) = aapiq — Z 2m3b;. (3.6)
0<j<r

From Equations 3.5 and 3.6, we obtain wvhp:

si, (1) < aspiq
98

aspi,;

=< (sip(r) + 2m3by)
A4Pi,
3 .

S a’37r3p7/1 82 (T),
a204P;,

(The first equation follows from Equation 3.5. The second equation follows from Equa-

tion 3.6. The last equation holds since A;, is bad in round r and ay < 73.) []

Lemma 3.16 shows that the number of rounds taken for an object to become good grows
almost logarithmically with its probability of access. Lemma 3.17 states that each object

in A is good in all rounds.

Lemma 3.16: Let rounds 0 through r — 1 be good. Let i1 and iy be in [m]. Let j in
[r] be the smallest integer such that A;, is good in round j. If p;, > a¥p;,, where k is
a positive integer, then there exists 7' < j —k + 1 such that A;, is good in round j'. If
Di, > Pi, /a1, then there exists j' < j+ O(1) such that A;, is good in round j'.

Proof: We first consider the case in which p;, > a¥p;, for some positive integer k.
Since A;, is bad in rounds 0 through j — 1, d;,(j) = j wvhp by Lemma 3.12. Since
A;, is good in round j, we have s;, (j) < azb; wvhp, and we obtain an upper bound on

si;(j — k + 1) as follows:

sn(G—k+1) = spy(N+ | D Gu(G-0-r@G—L+1)—q(i —€+1)
0<l<k

< s+ | D0 GaG—0—r(i-£+1)
0<t<k
< 83, (7) + 2m3b;

(The first equality follows from the definition of s;,. The third equation follows from
Part 1 of Lemma 3.11. The last equation holds since A4;, is good in round j and ay < 73.)

If A;, is good in some round j' < j — k+ 1, then the claim holds. Otherwise, by
Lemma 3.15, it holds wvhp that s;, (j —k+1) < %sil(j —k+1). Hence, A;, is good

99

in round j — k + 1 wvhp because:

) 9as(ms)?
Siz(]—k-l-l) < 7]3(3) bj
aya2a4

A

< agbj gy1-

(The first equation follows from Equation 3.7. The second equation follows from the
choice of constants: a; > 9asn3/(azays) > 2.)

We now consider the case in which p;; > p;,/a;. Let ag be an integer constant
satisfying:

208 Z 3(1%((12 + 3(187'('3)((12 + 7r3)a1a37r3/(a2a4).

(Thus, ag is a sufficiently large integer constant.) If A;, is good in some round j' < j+as,

then the claim holds. Otherwise, A;, is good in round j + ag wvhp because:

si;(J+ag) < s8i,(7 — 1) + asagnp;,
S Siz(j - 1)(1 + 37T3a8/a2)
3(1 +37T3a8 as)a10a37s .
< X Jan)nasts ;1)
a204
3(1 +37T3a8 as)a1a3ms A
< X)T (o () + maby)
asQy
o 3(L+3msas/az)aragms(az + 73)
- asQy J
< a2bj+a8.

(The first equation follows from the definition of s;,. The second equation follows from
Lemma 3.13. The third equation follows from Lemma 3.15. The fourth equation follows
from the definition of s;,. The fifth equation holds since A4;, is good in round j. The

last equation follows from the choice of ag.) []

Lemma 3.17: Let rounds 0 through r — 1 be good. For any nonnegative integer ¢ such

that 0 < i <m and A; € Ap, we have r;(r) = 0.

Proof: We will prove by induction on j that for 0 < j < r, r;(j) is zero. The base
case is trivial. Let the claim hold for j. Consider round j 4+ 1 < r. Since r;(j) is zero,

100

si(j) equals g;(j), which is at most myby wvhp. Since round j is good, by Part 1 of

Lemma 3.11, it follows that r;(j 4+ 1) equals zero wvhp. 0

In Definition 3.4, we define O(logn) m-vectors of the form (s§(j),...,s},_1(j)). These
vectors are used in Lemma 3.9 to place an upper bound on the number of requests for

each object at the start of a given round.

Definition 3.4: For nonnegative integers i and j, 0 < ¢ < m, we define:

B(napi) Zf Az S A(],
sild) = ZAk€A>[pk tnp; if Ai€ A, 0<l<]

np

N /B) otherwise.
ZAheA>]pk + pz

Lemma 3.18: For all j >0, Y ;.. 55 (j) is O(n) wuhp.

Proof: We rewrite) ;.. s7(j) as follows:
Yoost)= D sii+ Y si+ Y siG):
0<i<m i:A;€Ap i:AiEASjﬂA>0 i:Ai€A>j
We establish the lemma by obtaining upper bounds on the three terms in the right-hand
side of the above equation. The first sum is at most a4n wvhp. The second sum is

bounded as follows:

Yooosm) = [Y. D + Y. np;

i:AiEASjﬂA>0 0<t<ji:A; EA[ZAk €A>[Pk i:AiEASj
SHPDY + >
0<Z<] A EA[ZAk €A, Pk itA;€A<;
= Y Z
0<t<j ay 1A€Ay

A
3
o+
M ¢
3
w
X

101

Similarly, we bound the third sum as follows:

[~]
ity
<
I 1
3
[M] v N
3
=
E s
|
[~]
S
=
e

It follows from the bounds on the three sums that } 3y, ., s} is O(n). 0

Lemma 3.19 shows that each of the first O(logn) rounds is good wvhp.

Lemma 3.19: Let rounds 0 through r — 1 be good, where r is at most I'. Wuhp, round

r is good.

Proof: We show that there exists an integer h such that for all ¢ in [m], s;(r) is O(s}(h))
wvhp. We divide A into three groups Ay, S, and U. Let S be the set {A4; € A\ Ay :
there exists j < r such that A; is good in round j}. Let U be the set A\ (S U Ap).

We first consider any object A; in Ap. By Lemma 3.17, we have s;(r) = ¢;(r) <
B(n,p;).

Let h be the largest index such that Ay NS is nonempty. If S is empty then we
set h to 0. By Lemma 3.16 and the definition of A;, it follows wvhp that for ¢ in [h],
every object in A; is good in some round j' <r —h+i+ 1.

Consider any object A; € SN A; where 0 < ¢ < h. Let r; be the smallest round
in which A; is good. By Lemma 3.16 and the definition of A;, it holds wvhp that every
object A € A>; is bad in some round ' = r; — O(1). By Lemma 3.15, it holds that for
Ay € Asq, we have si(r') = Q(prs;(r’')/pj) wvhp. Therefore we have wvhp:

sj(rj—1) = O<$+npj>,

EAkEAZi Pk

and hence,

npj
r—r

j
ag ZAkeAZ,- Pk

— nPj
=0 < h—i 1 + npj>
as ZAkeAZipk

O(s5(h)).

sij(r) = O + np;

102

(The first equation follows from Lemma 3.15. The second equation follows from the
earlier claim that r; < r —h + ¢+ 1. The last equation follows from the definition of
s3(h).)

We now consider the objectsin U. Let h’ be the smallest index such that A, NU #
(. If U is empty, then let h' equal h. By Lemma 3.16, h' is at least h — 1 wvhp. By
Lemma 3.16, it holds wvhp that every object in A~ is bad in some round r' = r—O(1).
Consider any object A; € U N A;, i > h/. By Lemma 3.15, for all objects Ay € A>p, it

holds wvhp that sg(r') = Q(pgs;(r')/p;j). Therefore we have wvhp:

’I’ij
<ZAk€AZh’ Pk J)
= 0(sj(h)).

s;(r)

(The first equation holds since }ycp,,) s¢(t) is at most n for any ¢. The second equation
holds since A>p 2 A>p.)

We have shown that for each j in [m], s;(r) is O(s}(h)) wvhp. By Lemmas 3.9
and 3.18, it follows that round r is good wvhp. []

We are now ready to establish tight bounds on s;(t) for each object A; and round ¢.
These bounds, which are proved in Lemma 3.20, imply that after ©(logn) rounds the
number of copies of any object is at least a constant fraction of the number of requests
for the object.

Let to equal b+log, n. We assume that I is at least £g + ©(1), where the hidden

constant is specified in the following proof.

Lemma 3.20: For any i in [m] and for any t > ty, we have wvhp:
1. If A; is in Ay, s;i(t) is B(©(n),p;).
2. If A; is not in Ay, s;(t) is ©(np;), and by, is Q(np;).
3. Round t is good.

Proof: By Lemma 3.19, rounds 0 through ¢y are good wvhp. For any ¢ in [m], if
A; is bad in rounds O through b — 2, then by Lemma 3.12, d;(b — 1) is b — 1. Since
103

agc12b~logn > n > s;(b— 1), A; is good in round b — 1. We have thus shown that for
each ¢ in [m], A; is good in some round j in [b].

Part 1 follows directly from Part 2. We establish Parts 2 and 3 by showing that
for any A; not in Ay, and ¢ > to: (i) s;(¢) is at most ajonp;, (ii) round ¢ is good, (iii) if
t > to, si(t) is at least ajanp; , and (iv) b, () is at least ajjnp;. Constants ajg, a1, and
a2 are specified below.

The proof of the above four claims is by induction on ¢. For the induction
basis, let ¢ equal ty. By Lemma 3.14, s;(t) is at most agnp; < ajgnp; wvhp, thus
establishing claim (i) (we set a;p > ag). Claim (ii) follows from claim (i) and Lemma 3.9.
Claim (iii) holds vacuously. Since I' is Q(logn), Lemma 3.13 implies that bg,s,) is at
least asasnp;/(97%) > ajinp;, thus establishing claim (iv) (we set aj; < azas/(973)).
This completes the induction basis.

For the induction step, we assume that claims (i), (ii), (iii), and (iv) hold for
rounds ¢y through ¢. We first establish claim (i) for round ¢ + 1. If s;(¢) is at most
(a10 — ag)np;, then s;(t + 1) < s;(¢) + g;(t + 1) < ajponp; wvhp, and the desired claim
holds.

We now consider the case in which s;(¢) is at least (aj9 — ag)np;. Let £ > ¢
be the last round in which s;(€) < 9agm3bg,(s)/(a2as). (Such an £ exists as to satisfies
the inequality.) Since 9agm3/(azas) > 4my, Part 3 of Lemma 3.11 and the definition
of ¢ imply that d;(¢) is at least d;(¢) + ¢t — £. By a Chernoff bound, s;(¢) is at least
(a10 — (t — £)ag)np; wvhp. Therefore, by, (y) is at least 2aza4(aio — (t — £)as)np;/(9aem3)

wvhp. Moreover, by the induction hypothesis, by, (¢ is at least ajynp;. Thus,

2aza4(a10 — (t — £)as)
;. 3.10
90/677% 7a11}npz ()

ba,(¢) = max{

We choose a3 and a1g such that 2azai3 < a1 < aga112%3. If t — £ is at most a3,
then by, ;) is at least azazasaronp;/(97%). By the induction hypothesis, s;(¢) is at most
aonp;. Therefore, s;(t) is at most 1873bg,(1)/(azas). By Part (iii) of Lemma 3.10, we
have wvhp: s;(t) —r;(t+1) is at least agaqs;(t)/(2160agms) wvhp. If t — £ is at least a;3,
then bg, (¢ is at least 2%2a;;np; wvhp. By the choice of constants, we obtain that s;(t)

104

is at most azby,(;) wvhp. By Part 2 of Lemma 3.11, s;(t) — r;(t + 1) is at least s;(t)/20.
Thus, in either case, since s;(t) is at least (a19 — a3)np;, if a1 is chosen sufficiently larger
than 73, s;(t + 1) is at most ajgnp;.

Claim (ii) follows from claim (i) and Lemma 3.9. We now prove claim (iii).
Since s;(t) is at most ajonp; and bg,(;) is at least ajjnp;, by Part (iii) of Lemma 3.10,
si(t) —ri(t+1) is at least ajym3s;(t)/(120a19) wvhp. Therefore, the total number of new
requests is at least aj;mgn/(120a19). By a Chernoff bound, the number of new requests
for each A; in A- is at least ajonp; wvhp for a suitable choice of ajs.

We now prove claim (iv). We need to show that s(A;,7,¢t + 1) is complete for all
J such that b; is at most 2a;;np;. Fix an index j such that b; is at most 2a;;np;. By
the induction hypothesis, s;(t) is at least ajanp;, and bg,(y) is at least ajynp;. Part (ii)
of Lemma 3.10 is applicable only if a;o were at least 4a;174. Such a choice of a;; and
a1z is not always possible. Therefore, instead of considering new copies made in B;(A;)
in round ¢ only (as is done in the Part (ii) of Lemma 3.10), we consider copies made in
rounds ¢ — ag through ¢, where ag is a sufficiently large constant. The proof of claim (iv)
is as follows. If ¢ < tg + ag, then since the cache is assumed to hold copies created in
rounds 0 through ¢+ ayg, as in the induction basis, it follows that by, ;) is at least ai1np;.
If ¢ > tg + ag, the induction hypothesis implies that for ¢ —ag < t' < t, s;(t') is at
least ajonp;. By Lemma 3.7, if ag is chosen sufficiently large, the number of new copies

created in Bj(A;) in rounds ¢ — ag through ¢ is at least 9b;/10. Thus, by, (¢41) is at least

aiinp;. []

Proof of Theorem 3.1: It follows from Lemmas 3.20 and 3.17, and Part (iv) of
Lemma 3.10 that each round is nice. Since each round is nice, the number of access
requests satisfied in each round is Q(n), thus establishing the bound on the number of

access requests. The bound on per-request communication follows from the protocol

definition. [

105

3.6.5 The Dynamic Model

The proof for the dynamic model follows easily from the properties of the protocol
derived in Sections 3.6.2 and 3.6.3. Recall that in the dynamic model, an adversary
assigns new requests to free clients subject to the following constraints for all ¢ in [m]: (i)

¢(0) = O(logn), and (ii) for ¢t > 0, ¢;(t) < (21/20) max{¢;(t') : max{0,t —I'} <t' < t}.
Lemma 3.21: For all i in [m] and 0 <t < poly(n), we have wvhp:

1. si(t) is at most Zogjgt(19/20)(t_j)%'(j)r

2. Round t is good, and

3. si(t) is at most 8mibg,(y)-

Proof: Fix an ¢ in [m]|. We first show that Part 1 implies Part 2. Let z; denote
Zogjgt(IQ/QO)t*j gi(j). Foralliand ¢, ¢;(¢') is chosen independent of the hash functions.
Moreover, » o; , ¢(t') is at most n for all ¢'. Therefore, >y, ,,, ¥; is O(n). It thus
follows from Lemma 3.9 that if Part 1 holds, then round ¢ is good wvhp.

The proof of the lemma is by induction on ¢. For the base case, we let t equal 0.
Since s;(0) equals ¢;(0), Part 1 holds, thus also implying Part 2. Since ¢;(0) is O(logn)
and d;(t) is at least 0, Part 3 holds.

For the induction step, we assume that the statement of the lemma holds for all
rounds before round t. Therefore, s;(t) is at most 87m1bg,(s). By Part 2 of the induc-
tion hypothesis, round ¢ is good. Since 8 is at most 73/6, it follows from Part 2 of

Lemma 3.11 that r;(¢ + 1) is at most 19s;(¢)/20. We thus have:

si(t+1) < q(t+1)+19s4(t)/20
< gt +1)+(19/20) Y (19/20)" g(5)
0<j<t¢

> (19/20) T g(5),

0<j<t+1

IA

which establishes Part 1 of the induction step. (The second equation follows from Part 1
of the induction hypothesis.) Part 2 of the induction step is implied by Part 1.
106

For Part 3 of the induction step, we first show that for any ¢’ in [max{0,t—1I'},¢],
s;(t') is at most 4mbg,(14+1). By Part 1 of the induction hypothesis, s;(') is at most
8m1bg, 1) Let j be the largest integer such that s;(t') is at least 4m1b;. It follows from
the definition of j that d;(¢') is at least j. By Part 2 of the induction hypothesis, round
t is good. Hence, by Part 3 of Lemma 3.11, d;(¢t + 1) is at least j + 1. Therefore,
5;(t") < 4Amibg,(441)-

After round ¢, we have:
si(t+1) < (19/20)s;(t) + @it + 1)
< (19/20)s;(¢) + (21/20) max{g;(¢') : max{0,t —O(")} < t' < t}

< (19/20)47T1bd,-(t+1) + (21/20)47T1bd,-(t+1)

IN

8m1bg,(t11),
thus completing the proof of the induction step. [

Proof of Theorem 3.2: It follows from Part (iv) of Lemma 3.10 and Parts 2 and 3
of Lemma 3.21 that each round is nice. Since each round is nice, the number of access
requests satisfied in each round is Q(n), thus establishing the bound on the number of
access requests. The bound on per-request communication follows from the protocol

definition. []

3.7 Write Operations

Thus far, we have focused our attention on read-only objects. In this section, we describe
our algorithm for handling write operations. We consider two different approaches: the
write-and-update and the invalidate-and-write protocols.

At a given time step, any number of clients may attempt to simultaneously
initiate a write operation on some object A. Each client communicates with servers
in block By(A) only, where the primary copy of A is stored. The first part of each

protocol consists of a simple three-round randomized leader election procedure to select

107

one of these clients to actually write the object A. We introduce four new types of
control messages: write-req, write-may, write-try, and write-ok. In the first round, each
writer attempts a write-req message to each server in By(A). For a server S in By(A),
let Q(S) denote the set of clients whose write-req messages are received by S. If Q(S)
is non-empty, S sends a write-may control message to an arbitrary client in Q(S). In
the second round, each client that receives at least one write-may message attempts a
write-try control message to each server in By(A). Let T'(S) denote the set of clients
whose write-try messages are received by S. Server S selects the client C' in 7'(S) with
the largest id and sends a write-ok message to C. In the third and final round, the
unique client that receives more than by/2 write-ok messages, writes A by sending the
fragments of the new version of object A to By(A). A time-stamp is sent along with
each of these fragments so that future clients reading the fragments can differentiate old
fragments from new ones.

The two protocols differ in the second part. In the write-and-update protocol,
after the fragments are sent to block By(A), updates are propagated to servers in higher-
numbered blocks that hold copies of A, by the same method as is used to propagate
copies. The write is assumed to “complete” before these updates are propagated. As a
result, it is possible that a client reads an old version of an object. We use the following
validation scheme to ensure that each client receives a version that is at most O(logn)
steps out of date. A steady stream of validation time-stamps is created by servers in
By(A) and propagated to higher-numbered blocks that hold copies of A. Each server
S that has a copy of A maintains a variable b(S) that denotes the last validation time-
stamp received by S. A server S satisfies a request in round t only if b(S) is at least
t —O(logn), thus ensuring that the version sent to a client is at most O(logn) steps old.
Since the per-request communication due to the validation time-stamps is asymptotically
smaller than that required by the rest of the protocol, the results of Section 3.5 hold as
stated.

In the invalidate-and-write protocol, we maintain, for each object, a fault-tolerant

distributed list of all servers and clients holding a copy of the object. When a write oper-

108

ation is performed, before updating the primary copy, the servers in block 0 participate
in an invalidation scheme in which each client/server on the list is sent one or more
invalidation messages wvhp. The main advantage of this extension is that clients can
make use of locally-cached copies of objects since they are informed once such a copy
becomes out of date. The main disadvantage is that it is not possible to guarantee in
the worst case that these invalidation messages are all sent quickly (e.g., within O(logn)
steps). The difficulty is that the lists can grow very long over time, and if a large num-
ber of write operations are performed over a short period on a set of objects with long
associated client/server lists, then it is simply not possible to send all of the invalidation

messages quickly.

3.8 Concluding Remarks

In order to achieve fault-tolerance and space-efficiency, our protocol uses Rabin’s IDA
technique to encode each object as a set of fragments such that only a constant fraction
of the fragments are needed to reconstruct an object. One shortcoming of IDA is that
it does not tolerate errors in the fragments. Suppose, for example, that a client reading
an object receives a large number of fragments, each of which is noisy (i.e., contains ar-
bitrarily many errors) with some constant probability ¢ > 0. Unless the noisy fragments
can be easily identified as such, the client cannot efliciently reconstruct the object using
IDA. In such a noisy setting, it would be worthwhile to consider variants of our protocol
based on the Berlekamp-Welch decoder [28] (see also [110, Appendix A]), which tolerates
noise in a constant fraction of the fragments.

We would like to extend our protocols to other interesting models of distributed
computation that incorporate asynchrony or locality information. We conjecture that,
with suitably modified definitions and appropriate technical assumptions, the perfor-
mance bounds of the present chapter can be extended to apply to models allowing
limited forms of asynchrony (e.g., bounded asynchrony). To address the issue of locality,

it would be interesting to consider a variant of our protocol in which the number of copies

109

of an object that are created in any region of the network is proportional to its popular-
ity within the region, and where regions are identified on the basis of some hierarchical
decomposition of the network. Recent work on locality issues includes algorithms for
allocating files on arbitrary networks [19, 26], protocols for accessing nearby objects on
restricted classes of networks [74, 103, 117], and caching schemes for the Internet [67].
The most important technical problem left open in this chapter is to extend our
analysis to more general models of access patterns. For example, we would like to study
a model in which an adversary places an arbitrary sequence of requests at each node
at the start of the computation. We conjecture that our protocol is provably efficient
under the preceding model as well. We anticipate that the framework developed in

Sections 3.6.2 and 3.6.3 will be useful in generalizing our results to other models.

110

Part 11

Sharing Processors

111

Chapter 4

Static Load Balancing on Arbitrary
Networks

4.1 Introduction

We begin our discussion about processor sharing in a distributed system by considering
the problem of static load balancing. We model the distributed system by an undirected
graph G = (V, E) in which V is the set of nodes and F is the set of edges. Each node has
an initial collection of tokens and no tokens are created or destroyed while the tokens
are being balanced. We assume that in one unit of time, at most one token can be
transmitted across an edge of the network in each direction. Figure 4.1 illustrates an
instance of the static load balancing problem.

In this chapter, we analyze the performance of simple local load balancing al-
gorithms for both single-port and multi-port models of computation. In the single-port
model; a node may send and/or receive at most one token per unit time. In the multi-
port model, a node may send and/or receive a token across all of its edges (there may

be as many as d) per unit time.

112

Figure 4.1: An instance of the static load balancing problem. Each small rectangle
represents a token. For example, node 5 has 4 tokens.

4.1.1 The Single-Port and Multi-Port Algorithms

The single-port and multi-port algorithms are both based on the local balancing ap-
proach, in which each node exchanges load with a subset of its neighbors at each step.
In the single-port algorithm, a matching is randomly chosen at each step. First, each
(undirected) edge in the network is independently selected to be a candidate with prob-
ability 1/(4d). Then each candidate edge (u,v) for which there is another candidate
edge (u,x) or (y,v) is removed from the set of candidates. The remaining candidates
form a matching M in the network. For each edge (u,v) in M, if v and v have the same
number of tokens, then no tokens are sent across (u,v). Otherwise, a token is sent from
the node with more tokens to the node with fewer. Figure 4.2 illustrates one step of
the single-port algorithm on the example given in Figure 4.1. This algorithm was first
analyzed in [54]. (The single-port algorithm is sometimes referred to as the dimension-

exchange method in the load balancing literature [119].) The multi-port algorithm is

113

Figure 4.2: A step of the single-port algorithm on the example given in Figure 4.1.
The bold edges are the edges that are chosen in the random matching.

simpler and deterministic. At each step, a token is sent from node u to node v across
edge (u,v) if at the beginning of the step node u contains at least 2d + 1 more tokens
than node v. Figure 4.3 illustrates one step of the multi-port algorithm on the example
given in Figure 4.1. This algorithm was first analyzed in [5]. (The multi-port algorithm
is sometimes referred to as the diffusion method in the load balancing literature [119].)
We characterize the performance of a load balancing algorithm by the time that it takes
to balance the tokens, and by the final imbalance that it achieves. The imbalance is
defined to be the maximum difference between the number of tokens at any node and
the average number of tokens in the network. We say that an algorithm balances to

within t tokens if the final imbalance is at most ¢.

4.1.2 Overview of the Results

We analyze the single-port and multi-port algorithms in terms of the initial imbalance,

which we denote A, the number of nodes in the network, n, the maximum degree d of

114

Figure 4.3: A step of the multi-port algorithm on the example given in Figure 4.1.

the network, and the node and edge expansions of the network. We define the node
expansion p of a network G to be the largest value such that every set S of n/2 or fewer
nodes in G has at least p|S| neighbors outside of S. We define the edge expansion a of
a network G to be the largest value such that for every set S of n/2 or fewer nodes in
G, there are at least a|S| edges in G with one endpoint in S and the other not in S.
Consider the example in Figure 4.1. It is easy to see that A = 42/8 n =8, and d = 3.
To determine the node and edge expansions, note that each set S of at most 4 nodes
has at least 3|5|/4 neighbors (resp., 3|S|/4 edges) outside of S (resp., coming out of S).
Moreover, the set {3,6,7,8} has 3 neighbors and 3 edges outside of S. Thus, u and «
are both 3/4.

Our main results in this chapter are as follows:

e In Section 4.3.1, we show that the single-port algorithm balances any network to

within O(dlogn/a) tokens in O(dA/a) steps wvhp!. This bound is tight in the

'Recall that the term wvhp, which is defined in Section 1.3, means with probability 1 —n~¢, where ¢
is a constant that can be set arbitrarily large by appropriately adjusting other constants defined within
the relevant context.

115

sense that for many values of n, d, «, and A, there is an n-node network with
maximum degree d, edge expansion «, and an initial placement of tokens with
imbalance A, where the time (for any algorithm) to balance to within even A/2
tokens is at least Q(dA/a). We also establish a bound on the single-port algorithm

in terms of node expansion.

As in the single-port case, we analyze the multi-port algorithm in terms of both
edge expansion and node expansion. We show that the multi-port algorithm bal-
ances any network to within O(d?logn/a) tokens in O(A/a) steps. This bound is
tight in the sense that for any network with edge expansion «, and any value A,
there exists an initial distribution of tokens with imbalance A such that the time
to reduce the imbalance to even A/2 is Q(A/a). Our analysis of the multi-port

algorithm is contained in Section 4.3.2.

Thus far we have described a network model in which the nodes are synchronized
by a global clock (i.e., a synchronous network), and in which the edges are assumed
not to fail. In Section 4.4, we consider dynamic and asynchronous networks, in
which edges may fail and recover dynamically. We show that a minor variant of
the multi-port algorithm achieves the same bounds as for the synchronous case,
if the network satisfies the following constraint: at each time step, the set of live

edges has edge expansion a, or node expansion .

Finally, in Section 4.5, we study a centralized version of the static load balancing
problem, in which every node has knowledge of the global state of the network.
We prove that any network can be balanced by a centralized algorithm to within
three tokens in at most 2[(1 + u)A/u] steps in the single-port model. Moreover,
there exists a network and an initial token distribution for which any single-port
algorithm takes more than [(1 4+ p)A/u] steps to balance the network to within
one token. Similarly, for the multi-port model, we show that that any network can
be balanced to within d + 1 tokens by a centralized algorithm in at most 2[A/«a]
steps, while there exists an initial token distribution such that any algorithm will

116

take at least [A/a| steps to balance the network to within one token.

4.1.3 Related Work

Load balancing has been studied extensively because it arises in a wide variety of
settings including adaptive mesh partitioning [68, 118], fine-grain functional program-
ming [59], job scheduling in operating systems [48, 83], and distributed tree searching
[76, 86]. A number of models have been proposed for studying load balancing prob-
lems. These models can be classified on the basis of three characteristics: (i) central-
ized control (e.g., [93, 111]) versus distributed control (e.g., [30, Chapter 7] [42]), (ii)
shared memory communication such as the PRAM model (e.g., [27]), uniform com-
munication (e.g., [111]), or fixed-connection network communication (e.g., [5, 42]), and
(iii) unbounded edge capacity (e.g., [30, Chapter 7] [109]) versus bounded edge capac-
ity (e.g., [5, 101]) (the capacity of an edge is the maximum number of tokens it can
transmit per step). In the discussion that follows, we restrict our attention to models of
computation with the same basic characteristics as the model considered in this chap-
ter, namely: distributed control, fixed-connection network communication, and bounded
edge capacity.

Local algorithms restricted to particular networks have been studied on counting
networks [15, 78], hypercubes [72, 101], and meshes [68, 93]. Another class of networks
on which load balancing has been studied is the class of expanders. Peleg and Upfal [97]
pioneered this study by identifying certain small-degree expanders as being suitable for
load balancing. Their work was extended in [34, 69, 98]. These algorithms either use
strong expanders to approximately balance the network, or the AKS sorting network [6]
to perfectly balance the network. Thus, they do not work on networks of arbitrary
topology. Also, these algorithms work by transferring load along fixed paths in the
network and, therefore, cannot cope with the changes in the network topology. In
contrast, our local algorithm works on any dynamic network that remains connected.

On arbitrary topologies, load balancing algorithms that use bounded edge ca-

pacity were first proposed and analyzed in [5] for the multi-port variant and in [54]

117

for the single-port variant. The associated upper bounds are suboptimal by factors of
Q(log(nA)) and Q(y/n), respectively. We improve these results for both single-port and
multi-port variants.

As remarked earlier, our multi-port results (and those in [5]) hold even for dy-
namic or asynchronous networks. In general, work on dynamic and asynchronous net-
works has been limited. In work related to load balancing, for instance, an end-to-end
communication problem, namely one in which messages are routed from a single source
to a single destination, has been studied in [4, 24] on dynamic networks. Our scenario is
substantially more involved since we are required to move load between several sources
and destinations simultaneously. Another result on dynamic networks is the recent
analysis of a local algorithm for the approximate multicommodity flow problem [22, 23].
While their result has several applications including the end-to-end communication prob-
lem mentioned above, it does not seem to extend to load balancing. Our result on load
balancing uses similar techniques; however, our algorithm and analysis are simpler and
we obtain worst-case optimal bounds for our problem.

The convergence of local load balancing algorithms is related to that of random
walks on Markov chains. Indeed the convergence bounds in both cases depend on the
expansion properties of the underlying network and they are established using potential
function arguments. There are however two important differences. First, the analysis of
the rapid convergence of random walks [73, 95] relies on averaging arbitrary probabilities
across any edge. This corresponds to sending an arbitrary (possibly nonintegral) load
along an edge, which is forbidden in our model. In this sense, the analysis in [42]
(and all references in the unbounded capacity model) are similar to the random walk
analysis. Second, our argument uses an exponential potential function. The analyses
in [42, 73, 95|, in contrast, use quadratic potential functions. Our potential function and
our amortized analysis appear to be necessary since a number of previous attempts using

quadratic potential functions yielded suboptimal results [5, 54] for local load balancing.

118

4.2 Preliminaries

For any network G = (V, E) with n nodes and edge expansion «, we denote the number
of tokens at v € V by w(v). We denote the average number of tokens by p, i.e., p =
(> _vey w(v))/n. For simplicity, throughout this chapter we assume that p is an integer.
We assign a unique rank from [1,w(v)] to every token at v. The height of a token is its
rank minus p. The height of a node is the maximum among the heights of all its tokens.

Consider a partition of V' given by {S;}, where the index ¢ is any integer (positive,
negative, or zero) and S; may be empty for any i. Let S ; be U;~;S;. Similarly we define
S>j, S<j, and S<j. We define index ¢ to be good if |S;| < «|S~;|/2d. An index that is
not good is called a bad index. Thus, index 7 is good if there are at least a|S~;|/2 edges
from nodes in S; to nodes in S<;. To observe this, note that the number of edges out
of S~; is at least a|S~;|. On the other hand, the number of edges coming out of S; is at
most d|S;| which is at most a|S~;|/2 if ¢ is good. Therefore, at least «|S~;|/2 edges go
from nodes in S5 ; to nodes in S;.

For any bad index i, it follows from the equality |S;| = [S~; 1| — |S>i| that
|S<i| < |Ssi—1|/(1 + a/(2d)). Consider the reduction in |S<;| as ¢ increases. For each
bad index, there is a reduction by a factor of 1/(1 + «/(2d)). Hence, there can be at
most [log(14.q/(24)) 7| bad indices because (1 + a/(2d)) 08 t+a/an™ > p. It follows that

at least half of the indices in [1,2[log(y ;q/(24)) 7]] are good.

4.3 Analysis for Static Synchronous Networks
4.3.1 The Single-Port model

In this section, we analyze the single-port load balancing algorithm that is described in

Section 4.1.2.

Theorem 4.1: For an arbitrary network G with n nodes, mazrimum degree d, edge
expansion «, and initial imbalance A, the single-port algorithm balances G to within

O((dlogn)/a) tokens in O((dA)/«a) steps, wvhp.

119

For the sake of analysis, before every step we partition the set of nodes according
to how many tokens they contain. For every integer i, we denote the set of nodes having
p+i tokens as S;. Consider the first T" steps of the algorithm, with T" to be specified later.
It holds that either |S.o| < n/2 at the start of at least half the steps, or |S<o| < n/2 at
the start of at least half the steps. Without loss of generality, assume the former is true.
Thus, every subset of nodes in S5(expands, and we will use this expansion property
to show that the number of nodes that have at least p + 21og(1 4 /(24)) » tokens rapidly
goes to zero.

Recall that at least half of the indices in [1,2[log(;q/(24)) 7|] are good in any
time step. Therefore, there exists an index j in [1,2[log(114/(24)) 7]] that is good in at
least half of those time steps in which [S-¢| < n/2. Hence j is good in at least 7'/4
steps.

With every token at height x we associate a potential of ¢(x), where ¢ : N — R

is defined as follows:
0 ifx <j,
¢(z) = (4.1)
(14+v)*® otherwise,
where v = a/(cd), and ¢ > 1 is a real constant to be specified later. The potential of the
network is the sum of the potentials of all tokens in the network. While transmitting a
token, every node sends its token with maximum height. Similarly, any token arriving
at a node with height h is assigned height h 4+ 1. It follows from the definition of the
potential function, and the fact that the height of a token never increases, that the
potential of the network never increases. In the following, we show that during any step
when j is good, the expected decrease in the potential of the network is at least an cv/?
fraction of the potential before the step, where ¢ > 0 is a real constant to be specified
later.
Before proving Theorem 4.1, we present an informal outline of the proof. For
simplicity, let us assume that G is a constant-degree expander, i.e., d = O(l) and
p = (1). Consider the scenario in which all of the indices greater than j are bad. In

this situation, for indices greater than j, the size of the set S>; decreases exponentially

120

with increasing ¢, and hence the number of tokens with height ¢ decreases exponentially
with increasing ¢. If the rate of growth of ¢(z) with increasing z is smaller than the rate
of decrease of |S>;| with increasing 7, then the total potential due to tokens at height i
“dominates” the total potential due to tokens at height greater than ¢. In such a case the
potential of S ; is essentially a constant times the potential of tokens at height j + 1.
In addition, if the potential of tokens at height at most j is zero, then in every step
when j is good, there is a constant fraction potential drop, because a constant fraction
of the nodes in \S-.; send tokens to S—; in such a step. The exponential function we have
defined in Equation (4.1) satisfies the properties described above for ¢ sufficiently large.

In general, the indices greater than 7 may form any sequence of good and bad
indices, provided that the upper bound on the number of bad indices is respected. We
consider the indices greater than j in reverse order and show by an amortized analysis
that for each index ¢ we can “view” all indices greater than or equal to ¢ as bad. If ¢
is bad, then this view is trivially preserved; otherwise, the number of edges from S-;
to S.; is at least «|S~;|/2 and hence there is a significant potential drop across the cut
(S<i, S~i). This drop can be used to rearrange the potential of S-; in order to maintain
the view that all indices greater than ¢ are bad. We then invoke the argument for the
case in which all indices greater than j are bad, and complete the proof.

Consider step t of the algorithm. Let ®; denote the potential of the network after
step t > 0. Let M; be the set of tokens that are sent from a node in S-; to a node in
S<;. Note that a token may appear in several different sets M;. Let m; = |M;|. We say
that a token p has an i-drop of ¢(i + 1) — ¢(¢) if p moves from a node in S~; to a node
in S<;. Thus, the potential drop due to a token moving on an edge from node u € S;
to node v € Sy, ¢ > ¢’ + 1, can be expressed as the sum of k-drops for i/ < k < 7. In
Lemma 4.1, we use this notion of i-drops to relate the total potential drop in step ¢, ¥,

to the m;’s.

Lemma 4.1:
U= Zmil/(l +) | +my(1+v)y T
1>]

121

Proof: Let M be the set of tokens that are moved from a node in S ;. (Note that
tokens that start from and end at nodes in S ; also belong to M.) For any token p, let

a(p) (resp., b(p)) be the height of p after (resp., before) step ¢.

To=) (4(b(p) - ¢lalp)))

peEM

= Y. > (gli+1)—e(i)
pEM a(p)<i<b(p)

=) (e(i+1)—9(i)
i>j pEM;

= [DD B+ -¢6) | + Y (G +1) - ¢()))

i>j peM; pEM;
= (DD v+v) |+) @+wytt
1>7 peM; peEM;

= [Y mar@+v) | +mi(L+)
i>7

(The second equation holds since the sum of ¢(¢ + 1) — ¢(3) over 7 telescopes. For the
third equation, we interchange the order of summation and use the fact that ¢(7) is
zero for all ¢ < 5. The fourth equation is obtained by separating the case ¢ > j into
two cases ¢ > j and ¢ = j. For deriving the fifth equation, we use: (i) for all i > j,
B(i+1)—¢(i) = v(1+v)¢, and (ii) #(j) = 0. The last equation follows from the definition
of m;.) 0

We now describe the amortized analysis, which we alluded to earlier in this
section, that we use to prove Theorem 4.1. We associate a charge of ev2¢(h) with each
token at height h. We show that we can pay for all of the charges using the expected
potential drop E[¥], which implies a lower bound on E[¥]. We consider the indices in
[7 + 1,¢] in reverse order, where / is the maximum token height. For every ¢ in [7, £], we
maintain a “debt” term, given by I'; below, which is the difference between the charges
due to tokens at height greater than ¢ and the sum of i'-drops for ¢ > i. We will place
an upper bound on E[I';] that lets us view all of the indices in [t + 1, ¢] as bad indices. In

122

other words, we upper bound E[I';] by ev|S>;|(1+v)". It follows from this upper bound
and the informal argument outlined earlier in this section that the expected total debt
can be paid for by the expected drop across index j.

Formally, for any ¢ > j, we define

v, = kaz/(l—l—z/)k, and

Fi = (81/2) Z (1+I/)b(p) —\Ili.

We also define
I = (e?) Z (14)o@ | —w,
p:b(p)>j

Note that ®;_1 = Z (1+ V)b(p) is the total potential of S ; prior to step ¢.

p:b(p)>j
In order to prove the upper bound on EI[I';], we place a lower bound on E[m;]

that is obtained from the following lemma of [54].

Lemma 4.2 ([54]): For any edge e € E, the probability that e is selected in the matching
is at least 1/(8d). 0

Lemma 4.3: There exists a real constant € > 0 such that for all i > j, we have E[I';] <

(0[Sl (1 +).

Proof: The proof is by reverse induction on i. If ¢ > £, then the claim holds trivially
since I'; and |S>;| are both equal to zero. (Recall that ¢ denotes the maximum token
height.) Therefore, for the base case we consider i = £. Since my; = 0, we have ¥, = 0.
Thus, I'y = (ev2)[Se|(1 + v)¢ < (ev)]S>e|(1 + v)¥, since v = a/(cd) < 1/c < 1 by our
choice of c.

For the induction step we consider two cases, depending on whether 7 is good
or bad. We begin with the case when 7 is good. By the definition of a good index, we
have |S;| < a]S~i|/2d. Since each node has at most d adjacent edges, there are at most

a|S~;|/2 edges adjacent to nodes in S;. Therefore, there are at most a|S~;|/2 edges

123

from S-; to S;. By the expansion property of the graph, S.; has at least a|S.;| edges
to nodes in S>;, so there are at least a|S-;|/2 edges from S-; to S.;. By Lemma 4.2,
we have E[m;] > a|S~;|/(16d).

We are now ready to place a bound on E[I';]. By definition, I'; can be calculated
by subtracting the sum of ¢-drops from [';;; and adding the charges due to tokens at

height ¢. Therefore, we have:

B[] E[ii1] + (ev®)]S54| (1 + v)' — Efmyv(1 + v)*

< B[] + (ev?)]S5i] (L + v)' — ev?|Ssi| (1 +v) /16

< Blin] = 0)IS5l(1+) (f(c, ,d) —¢)

< (en)|Ssil (L+) H = (2)]95i] (1 + 1) (f(c, @, d) —¢)
< (en)|S5il L+) (L +v) = v(f(e,a,d) —€)/e),

where f(c,a,d) = ¢/(16(1 + a/(2d))). (The first equation holds since the number of
tokens p such that b(p) = i is |S>;|. The second equation follows from the lower bound
on E[m;]. The third equation holds since |S~;| > [S>;|/(1+«a/(2d)) whenever i is a good
index. The fourth equation follows from the induction hypothesis. The last equation
follows from the inequality |S-;| < |S>4].)

The second case is when ¢ is bad. Thus |S;| > «|S~;|/(2d). We now place an

upper bound on E[I';] as follows.

B[y

IN

E[FH_l] + (€V2)|Szi|(1 + Il)i

IN

(eV)1S5i| (1 +)"+ (e?)]S54 (1 + v)’
< (@)ISsl(1+)L+ 1)/ (1 +ev/2) +).
(The first equation holds since the number of tokens p such that b(p) = i is |S>;|. The
second equation follows from the induction hypothesis. The third equation holds since
|S>i| > (1 + a/(2d))|S~;| whenever 7 is a bad index.)
We now complete the induction step by determining values for ¢ and ¢ such that

the following equations hold.

(14+v)—v(f(c,a,d) —¢)/e) <1, and (4.2)
124

(1+v)/1+cw/2)+v <1 (4.3)

We set ¢ to be any constant greater than or equal to (a/d) + 4 (e.g., ¢ = 5). For this

choice of ¢, v = a/(ed) < (c — 4)/c, and hence 2v + cv?/2 < cv/2. Therefore, we have:

1+v)/(1+cw/2)+v = (1+2v+c?/2)/(1+cv/2)
< (1+ew/2)/(1+cv/2)

= 1.

Thus, Equation (4.3) is satisfied. Since a < d, we find that f(c,«,d) > ¢/24. We now
set € = ¢/48 to establish Equation (4.2). (For example, ¢ =5 and ¢ = 5/48.) 0

We are now in a position to bound E[I'| on those steps in which j is good. By
applying Lemma 4.3 with ¢ = j + 1, we obtain that E[l'j11] < (ev)|Ss;41|(1 +v)ITL If
J is good, then by the definitions of I, I'j 1, and ¥, we have:

E[l] = E[lju] - Elmg)l+v)*
< B[] — alSs;/(1+v)*1/(16d)
< (e)|S551 (1 +v) T — al S5 jl(1 + v) T/ (16d)
= ISl(1 4 (e — /16)
< 0

(The second equation follows from the inequality E[m;] > «|S-;|/16d which holds when-
ever j is good. The third equation follows from the upper bound on E[I'j,]. The fifth
equation holds since ¢/16 > ¢.)

We now derive a lower bound on the expected drop in the potential of the network
during a sequence of T' steps. By the definitions of ¥ and I', we have ®; = &, ; — ¥
and ' = ev?®;_; — V. If j is good during step ¢, we have E[I'] < 0, and therefore,
E[®;] < &; 1(1—ev?), where the expectation is taken over the random matching selected
in step ¢. Since j is good in at least T'/4 steps, we obtain that E[®, 7] < ®;(1—ev?)T/4,

where the expectation is over all the random matchings in the 7" steps. By setting

125

T = [(41n4)/(ev?)], we obtain E[®;,7] < ®;/4. By Markov’s inequality, the probability
that ®;7 > ®,/2 is at most 1/2. Therefore, using standard Chernoff bounds [37], we
can show that in 7" = 8aT'[(log ®¢ + logn)]| steps, 7+ > 1 with probability at most
O(1/(®9)* + 1/n%) for any constant a > 0.

If A'is at most 210g(1,q/(2q)) 7, then the claim of the theorem holds trivially.
Accordingly, we assume that A is greater than 21og(;;q/(2q)) » in what follows. Since
®y is at least (1 +)2, @y is at least n?/¢. Therefore, 1/(®()® is inverse-polynomial in
n. Since ®y < n(1+v)2! /v, we have log ®y < (A+1)(v) +logn —logv. Therefore, for
T' = O(Ad/a + d*logn/a?), we have @ < 1 wvhp which implies that after 7" steps,
552108110 (24yy n| = 0 WVhP.

To establish an upper bound on the imbalance in the number of tokens below the
average, we use an averaging argument to show that after 7" steps |S<_210g (e (2a)) nl <
n/2 wvhp, and then repeat the above arguments the potential redefined appropriately.

This proves Theorem 4.1.

4.3.2 The Multi-Port Model

In this section, we analyze the deterministic multi-port algorithm described in Sec-

tion 4.1.2.

Theorem 4.2: For an arbitrary network G with n nodes, maximum degree d, edge

expansion «, and initial imbalance A, the multi-port algorithm balances G to within

O((d?logn)/a) tokens in O(A/a) steps.

The proof of Theorem 4.2 is similar to that of Theorem 4.1. We assign a potential
to every token, where the potential is exponential in the height of the token. We then
show by means of an amortized analysis that a suitable rearrangement of the potential
reduces every instance of the problem to a special instance that we understand well.

For the sake of analysis, before every step we partition the set of nodes according
to how many tokens they contain. For every integer i, we denote the set of nodes having
between p—d+2id and p+d— 1+ 2id tokens as S;. (Recall that p is the average number

126

of tokens per node.) Consider the first 7" steps of the algorithm, with 7" to be specified
later. Without loss of generality, we assume that |S>o| < n/2 holds in at least half of
these steps. As shown in Section 4.2, there exists an index j in [1,2[log(4 /(2a)) 7]
that is good in at least half of those steps in which |S-¢| < n/2. Hence in 1" steps of the
algorithm, j is good in at least 1'/4 steps.

With every token at height h we associate a potential of ¢(h), where ¢ : N — R

is defined as follows:
0 if x < 24d,

¢(z) =
(1+v)® otherwise,
where v = a/(cd?), and ¢ > 0 is a constant to be specified later. The potential of the
network is the sum of the potentials of all tokens in the network.

While transmitting some number, say m, of tokens in a particular step, a node
sends the m highest-ranked tokens. Similarly, if m tokens arrive at a node during a
step, they are assigned the m highest ranks within the node. Thus, tokens that do not
move retain their ranks after the step. We now describe what specific ranks we assign
to tokens that move during any step ¢. Let u be a node in S; with height h at the start
of step t. Let A (resp., B) be the set of tokens that u receives from nodes in S ; (resp.,
S<;). We assign new ranks to tokens in A and B such that the rank of every token in A
is less than that of every token in B. Let C' be the set of tokens in A that attain height
at most h + (d/2) after the step. Since |A| < d, by the choice of our ranking, we have
|C| > |A|/2. We call C the set of primary tokens. We also note that for any node v
with height h all tokens leaving v during a step are at height at least h — d + 1 prior to
the step.

It follows from the definition of the potential function and the fact that the height
of a token never increases that the network potential never increases. In the following we
show that whenever j is good the potential of S ; decreases by a factor of ev?d?, where
e > 0 is a real constant to be specified later. (For the sake of simplicity, we assume that
d is even. If d is odd, we can replace d by d + 1 in our argument without affecting the

bounds by more than constant factors.)

127

For any token p, let a(p) (resp., b(p)) be the index i such that S; contains p after
(resp., before) the step. (Note that the indexing is done prior to the step.) Let M; be
the set of primary tokens received by nodes in S—;. Let m; = |M;|. Note that m; is at
least half the number of edges connecting nodes in S<; and nodes in S~;. This is because
a token is sent along every one of the edges connecting S.; and S; and at least half the
tokens received by any node in S.; from nodes in S5 ; are primary tokens. Lemma 4.4

establishes the relationship between the total potential drop ¥ in step ¢ and the m;’s.

Lemma 4.4:

Zszd 2z 1)d +m; (1+)2jd+1'
z>]

Proof: Let M be the set of primary tokens that are moved from nodes in S-;. (Note
that primary tokens that start from a node in S-; and end at a node in S ; are in M.)
Let p be a token in M. By the definition of a primary token, the height of p prior to the
step is at least 2b(p)d — 2d + 1 and the height after the step is at most 2a(p)d + 3d/2.
Moreover, p belongs to M; for all ¢ such that a(p) < i < b(p).

U > > [p(2b(p)d — 2d + 1) — ¢(2a(p)d + 3d/2)]

pEM

> Y Y [pQ>i+1)d—2d+1) — ¢(2(i — 1)d + 3d/2)]

PEM a(p)<i<b(p)

— EZ 2(i +1)d — 2d + 1) — ¢(2(i — 1)d + 3d/2)]

1>j peM;
= > > (¢ + 1)d — 2d + 1) — ¢(2(i — 1)d + 3d/2)]
1>7 peM;
+) (20 + 1)d —2d + 1) — ¢(2(j — 1)d + 3d/2)]
pEM;
> _ZZ”d y)2id—d +Zl+)2id+1
1>7 peEM; pEM;
1 0 .
> §Zmi1/d(1+u)2d)+ my(1+ v)Hatt,

i>j

128

(The first equation follows from the lower bound (resp., upper bound) on the height
of a token p in M before (resp., after) the step. For the second equation, note that
2id —2d +1 < 2(t — 1)d + 3d/2. Therefore, ¢(2id — 2d + 1) < ¢(2(¢ — 1)d + 3d/2). The
second equation now follows since the sum telescopes. The third equation is obtained
by interchanging the sums and noting that ¢(z) is 0 for < 2jd. The fourth equation
is obtained by partitioning M into the subsets M \ M; and M;. The fifth equation is
derived using the following calculations: (i) ¢(2id+1)—¢(2id—d/2) > ((1+v)¥2—1)(1+
V)24 > yd(1 + v)2d-d /2 (i) ¢(25d + 1) = (1 + v)¥4L] and (i) ¢(2jd — d/2) = 0.

The last equation follows from the definition of m;.) []

We establish Theorem 4.2 by means of an amortized analysis similar to the one used
in Section 4.3.1. We associate a charge of cv2d?¢(h) with every token at height h. We
show that we can pay for all of the charges using the potential drop ¥ and thus place
a lower bound on ¥. We consider the sets S; in reverse order and maintain a “debt”
term I'; for each ¢. Informally, I'; indicates the difference between the total charges due
to tokens at height at least 2¢d — d and the current upper bound on the potential drop.
Our amortized analysis terminates by showing that the total debt I' is at most zero.
We now formally define I'; and I". For any token p, let h(p) denote the height of
p prior to the step. Thus 2b(p)d—d < h(p) < 2b(p)d+d—1. For i > j and for a suitable

constant € > 0 to be specified later, we define

1
U, = 5kayd(l+u)2’wl—d, and
k>i

r; = (e?d?) Y @+ |~
p:h(p)>2id—d

We also define
[= (ev?d?) Z (1+)MP) | — W,
p:h(p)>2jd
For any step t', let ®, denote the total potential after step ¢. The total potential after
step t — 1, ®;_1, equals Z (1+ ,/)h(p).
p:h(p)>2jd

129

Lemma 4.5: There exists a real constant § > 0 such that for all i > j, we have
I; < (6vd?)|Ss;|(1 + v)2d—4,

Proof: The proof is by reverse induction on ¢. Let £ be the maximum token height.
Consider first the case when ¢ > | (¢ + d)/2d]. Since 2id — d > ¢, there is no token with
height at least 2id — d. Hence I'; < 0 and |S>;| = 0. Thus, the desired claim holds. We
now consider ¢ = | (¢ + d)/2d]. Since ¥; = 0, we have

I; < (2e02d%)| S5 (1 +v)*
< (2e02d%)|S5 (1 +)20+ ~d
< (5l/d2)|52i|(1 + I/)Zid_d.

(The first equation holds because: (i) each node in S; has at most 2d tokens with height
at least 2id — d, and (ii) h(p) < ¢ for each token p. The second equation follows from
the fact that £ < 2(¢+ 1)d — d. The third equation is obtained by choosing ¢ and ¢ such
that § > 2evd(1 +)24, Note that for ¢ sufficiently large, (1 +)24 can be set to an
arbitrarily small constant.)

For the induction step we consider two cases. If ¢ is good, then |S;| < a|Ss;|/(2d)

and m; > a|S~;|/4. Therefore, we have

I; < Digp 4 (2e02d%)S5:](1 + v) 2497 — muvd(1 + v)?4-9/2
< Typr + (2e02d®)]S54 (1 4 v) 2491 — c2@3| S| (1 + v)244/8
< i = (Pd%)|S54] (L +)P4 (f (e, a, d) — 26(1 + 1))
< (0vd®)[S5i|(1+w)2ENEE — (12d3) |54 (1 +) ¥4 (f(c, @, d) — 4e)
< (6vd)|S5i|(1+ v)* (1 + v)* — vd(f(c, @, d) — 4¢)/5),

where f(c,a,d) = ¢/(8(1 + a/(2d))). (The first equation holds because: (i) each node

in S; has at most 2d tokens with height at least 2id — d, and (ii) h(p) < 2id+ d — 1 for

each token p that contributes to I'; and not to I';11. The third equation follows from the

inequality |Ss;| > |S>i|/(1 + «/(2d)). The fourth equation follows from the induction
130

hypothesis and the inequality (1 + v)2¢ < 2 for ¢ sufficiently large. The last equation is
derived using straightforward algebra.)

The second case is when ¢ is bad. Thus |S;| > «|S~;|/(2d). We have

I

IA

Dips + (2602%)] S (1 +)21

< (5l/d2)|5>i|(1 + y)2(i+1)dfd + 2€V2d3|52i|(1 + V)2id+d71

< (6vd?)|S5i|(1+)P (1 +v)? /(1 + o/ (2d)) + 2evd(1 + v)*4/6).
We now set ¢, 6, and ¢ such that ¢ > 4, ¢/12 — 4e > 44, and ¢/4 — 2¢/§ > 4. (One set
of choices is ¢ =50, § = 1, and ¢ = 1/24.) Since a < d, we have f(c,a,d) > ¢/12. Since

¢ > 4, we have 2vd < 1/2, and hence (1+v)?? <1+, ((2vd)’ = 14 2vd/(1 — 2vd) <
1+ 4vd. Thus,

(14 v)%? — vd(f(c,a,d) —4e)/8) < 1 + 4vd — 4vd < 1.

Since a/(2d) < 1/2, we have 1/(1+a/(2d)) < 1—a/2d+ (a/2d)? < 1—a/(2d) +
a/(4d) = 1 — a/(4d), and hence,

(1+v)2/(1 + a/(2d)) + 2evd(1 +v)?¢/5 (L4 v)24(1/(1 + o/ (2d)) + 2cvd/d)
< (1+v)%(1 — a/4d + 2¢vd/$)
= (1+v)%(1 — cvd/4 + 2evd/d)
< (1+4vd)(1 —4vd) < 1

(The second equation follows from the upper bound on 1/(1 + «/(2d)). The fourth
equation follows from the upper bound of (1 + 4vd) on (1 + v)?¢.)
Thus, in both cases, I'; < (6vd?)|S>;|(1 + v)?@~4. This completes the induction

step. 0

Corollary 4.5.1: If j is good on step t then we have ¥ > cv2d?®;_;.

Proof: Applying Lemma 4.5 with ¢ = j + 1, it follows that I'j 11 < (6vd?)|S>j41/(1 +
v)20+hd=d_Tf j is good then |S>;| < (1 + a/(2d))|S>;| < 3]S~;]/2 and m; > S ;|/2.
131

Therefore,

r < I'ja+ 8V2d3|52j|(1 + y)2jd+d—1 . a|S>j|(1 + V)Zjd+1/2
< (6vd?)[S5|(1+ w)2UHNEd 4 (3e12d%)[S5 5| (1 + v) 291 /2 — %|S>j|(1 +)t
< (vd?)|S5;|(1+)20 H0Ed(§ 4 30/ (2cd) — c/4)
< 0,

for ¢, §, and & chosen above. (In the first equation, the term ev?d®|S>;|(1 + v)2idtd—1

is an upper bound on the contribution to I'; by tokens in S ; since: (i) tokens with
height at least 2jd + d contribute to I'j1;, and (ii) each node in S>; has d —2 < d
tokens with height in the interval [2jd + 1,2j5d + d — 1]. Also, the third term in the first
equation is the second term in the right-hand side of the inequality of Lemma 4.4. In
the second equation, we use the upper bounds on I'j; and |S>;|. The third equation
follows from the choice of ¢, 4, and e, and the observation that for ¢ > 4, we have
(1+)4 < (1+a/(cd?)? < (1+1/(cd)? < (1+1/(4d))4 < el/* < 2.)

By the definitions of I' and ¥, we have ®; < ®;_; — ¥ and ' = ev2d?®;_; — V.

If j is good during step ¢, then I' < 0, and the desired claim follows. 0

By Corollary 4.5.1, if j is good during step ¢ then we have
®; < By_1(1 — er?d?).

After T = [41n ®¢/(sv2d?)] steps, we have &1 < ®o(1 —ev2d?)T/4 < 1. Since the height
of each node is at most A initially, 9 < n) 5;5;ca(l+ V)i <n(l+v)A /v, In®y =
O(Av + logn). Substituting a/(cd?) for v, we obtain that within O(A/a + d?Inn/a?)
Steps, |S>210g(140,ay nl < |95 = 0.

We use an averaging argument to show that after 7" steps, |S<_210g(1+a/(2d)) nl <
n/2. By redefining the potential function and repeating the above analysis in the other
direction, we obtain that in another T' steps |S<*410g(1+a/(24)) n| = 0. This completes the

proof of Theorem 4.2.

132

4.3.3 Results in Terms of Node Expansion

The proofs of Theorems 4.1 and 4.2 can be easily modified to analyze the algorithm in
terms of the node expansion p of the graph instead of the edge expansion a. Recall
that ¢ and « are related by the following inequalities: a/d < p < a. The primary
modifications that need to be done to obtain bounds in terms of node expansion are to
change the definition of a good index and to set v appropriately. We call index ¢ good
if [S;| < p|S=il/2. We set v = p/c (resp., v = p/(cd)) for the single-port model (resp.,
multi-port model).

By an argument similar to the one used in Section 4.2, we obtain that the number
of bad indices is at most [log(;1,)n]. (In fact, the argument in Section 4.2 uses a/d as
a lower bound on p.) This bound on the number of bad indices leads to an upper bound
of O((logn)/u) (resp., O(d(logn)/p)) on the final imbalance obtained by the single-port
algorithm (resp., multi-port algorithm). For a bound on the number of steps, note that
while deriving a bound on the potential drop in Sections 4.3.1 and 4.3.2, we use the edge
expansion « to obtain a lower bound on the number of tokens leaving sets S-;. Since
the best lower bound on « in terms of node expansion is p, our time bounds here are
obtained by substituting u for a in the time bounds of Theorems 4.1 and 4.2, respectively.
We thus obtain Theorems 4.3 and 4.4. Finally, Corollary 4.3.1 (resp., Corollary 4.4.1)
follows from Theorems 4.1 and 4.3 (resp., Theorems 4.2 and 4.4).

Theorem 4.3: For an arbitrary network G with n nodes, mazimum degree d, node expan-
ston p, and initial imbalance A, the single-port algorithm balances to within O((logn)/w)
tokens in O(dA/p) steps wuhp.

Corollary 4.3.1: If A > (dlogn)/u, the single-port algorithm balances to within O(logn/)
tokens in O((dA)/a) steps wohp. If A < (dlogn)/p, the single-port algorithm balances
to within O(logn/u) tokens in O((dA)/p) steps wuhp.

Theorem 4.4: For an arbitrary network G with n nodes, mazimum degree d, node

expansion p, and initial imbalance A, the multi-port algorithm load balances to within

133

O((dlogn)/p) tokens in O(A/u) steps.

Corollary 4.4.1: If A > (d?logn)/u, the multi-port algorithm balances to within O((dlogn)/u)
tokens in O(A/a) steps. If A < (d?logn)/u, the multi-port algorithm balances to within
O((dlogn)/p) tokens in O(A/u) steps.

4.4 Extension to Dynamic and Asynchronous Networks

In this section, we extend our results of Section 4.3.2 for the multi-port model to dy-
namic and asynchronous networks. We first prove that a variant of the local multi-port
algorithm is optimal on dynamic synchronous networks in the same sense as for static
synchronous networks. We then use a result of [5] that relates the dynamic synchronous
and asynchronous models to extend our results to asynchronous networks.

In the dynamic synchronous model, the edges of the network may fail or succeed
dynamically. An edge e € F is live during step ¢ if e can transmit a message in each
direction during step t. We assume that at each step each node knows which of its adja-
cent edges are live. The local load balancing algorithm for static synchronous networks
can be modified to work on dynamic synchronous networks. The algorithm presented
here is essentially the same as in [5].

Since edges may fail dynamically, a node v may have no knowledge of the height
of a neighboring node v and hence may be unable to decide whether to send a token
to v. In our algorithm, which we call DS, every node u maintains an estimate e%(v) of
the number of tokens at v for every neighbor v of u. (The value of e¥(v) at the start
of the algorithm is arbitrary.) In every step of the algorithm, each node u performs the
following operations:

(1) For each live neighbor v of u, if w(u) — e*(v) > 12d, u sends a message consisting of
w(u) and a token; otherwise, u sends a message consisting only of w(u). Next, w(u) is
decreased by the number of tokens sent.

(2) For each message received from a live neighbor v, e*(v) is updated according to the
message and if the message contains a token, w(u) is increased by one.

134

Unlike the algorithm for static networks, the above algorithm may (temporarily)
worsen the imbalance since a node may have an old estimate of the height of one of its
neighbors. Two anomalies may occur while executing DS: (i) a token sent by u to v may
gain height as it is possible for w(u) — e%(v) to be greater than 12d even if w(u) is at
most w(v), and (ii) node u may not send a token to v as it is possible for w(u) —e%(v) to
be at most 12d even if w(u) — w(v) is much larger than 12d. Consequently, the analysis
for dynamic networks is more difficult than for static networks. We employ a more
complicated amortized analysis to account for the above anomalies.

For every integer i, let S; denote the set of nodes that have at least p—12d +24id
and at most p+ 12d — 1 4 24id tokens. Consider T steps of DS. We assume without loss
of generality that |S~¢| < n/2 at the start of at least 7/2 steps. As shown in Section 4.2,
there exists an index j in [1,2[log 4 /(24)) 7]] that is good in at least half of those steps
in which |S<9| < n/2. (Recall that index ¢ is good if |S;| < «|S~;|/2d.) If index j is
good at the start of step ¢, we call ¢ a good step. For any token p, let hy(p) denote the
height of p after step ¢, ¢ > 0. For convenience, we denote the height of p at the start of
DS by ho(p). Similarly, for ¢ > 0, we define h¢(u) for every node u and e} (v) for every
edge (u,v).

With every token at height h, we associate a potential of ¢(h), where ¢ : N — R

is defined as follows:

0 if 2 < 24jd — 11d,
¢(z) =

(I14+v)* otherwise,

where v = a/(cd?) and ¢ > 0 is a constant to be specified later. Let ®; denote the total
potential of the network after step ¢. Let ¥; denote the potential drop during step ¢.
We analyze DS by means of an amortized analysis over the steps of the algorithm.

Let E; be the set {(u,v) : (u,v) is live during step ¢, u € S~ and h;_1(u) — hy—1(v) >
24d}. For every step t, we assign an amortized potential drop of

- 1

V= > (9(hea(u) —d) = d(he1(v) +).

(u,v)EE
hi—1(w)>hg_1(v)

135

The definition of ¥, is analogous to the amount of potential drop that we use in step ¢ in
the argument of Section 4.3.2 for the static case. By modifying that argument slightly

and choosing appropriate values for the constants ¢ and ¢, we show the following lemma.

Lemma 4.6: If the live edges of G have an edge expansion of o during every step of
DS, then for every good step t we have W, > ev?d?®;_y, where ¢ is an appropriately

chosen constant.

Proof Sketch: Let M; denote the set of live edges between nodes in S.; and nodes
in S<;. Let m; = |M;|. For any node u, let g(u) represent the group to which u belongs
prior to step t. We now place a lower bound on U, which is analogous to that on ¥ in

Lemma 4.4 of Section 4.3.2. By the definition of \ilt, we have

W= o Y (Glhea) —d) - bl (o) +)

(u,v)EE;
h—1(w)>ht_1(v)
1
Z 0 2. Y (#(24(i +1)d — 13d) — $(24(i — 1)d + 13d))
sy I
1
= =0 > (9240 + 1)d — 13d) — 9(24(— 1)d + 13d))
(24} (w,v)EM;
h—1(w)>ht_1(v)
1
= S Y (4G + D - 13d) - 9240 — 1)d + 130))
Z>] (u,v)EM;
hi_1(u)>hg_1(v)
1
teg DL ¢4 +1)d - 13d)
(u,v)eMj
hi_1(u)>hg_1(v)
22) 1 .
> = Z Z vd(1 + v)2id-11d 4 = Z (1 + v)24d+11d
i>j (u,v)EM; (uﬂl)EMj
hy_1(u)>hi_1(v) hp_q(w)>h1(v)
22) 1)
> %Zmil/d(l + V)24Zd711d + %m]‘(l + I/)24Jd+11d,
i>j

(For the second equation, note that 24id — 13d < 24(i — 1)d + 13d. Therefore, ¢(24id —

13d) < ¢(24(i — 1)d + 13d). The second equation now follows since the sum telescopes.

The third equation is obtained by interchanging the sums and noting that ¢(x) is zero for

x < 245d — 11d. The fourth equation is obtained by partitioning the set M into subsets
136

M \ M; and M;. The fifth equation uses the following calculations: (i) ¢(24:d + 11d) —
B(24id — 11d) > ((1 4 v)?22 —1)(1 4 v)?4d-11d > 224(1 + v)24d-11d (i) ¢(245d + 11d) =
(1+v)24d+11d "and (iii) ¢(24jd —11d) = 0. The last equation follows from the definition
of m;.)

We next establish claims similar to Lemma 4.5 and Corollary 4.5.1 of Section 4.3.2
by modifying the constants in the proofs. We thus have ¥; > ev2d?®, ; for an appro-
priately chosen constant €. [

The following lemma relates the amortized potential drops to the actual potential

drops.

Lemma 4.7: For any initial load distribution and any step t' > 0, we have

MU= | Do | - 28 — n(24jd). (4.4)

<t/ <t/

In order to prove Lemma 4.7, we need to address two issues that arise in the
dynamic setting: (i) potential gains, i.e., when a token gains height, and (ii) the lack of
a otential drop across edges that join nodes differing by at least 24d tokens. We show
that for any of the above events to occur, “many” tokens should have lost height in
previous steps. We use a part of this prior potential drop to account for (i) and (ii). At
a high level, our proof follows the lines of Lemma 3 of [5]. Since the potential functions
involved are different, however, the two proofs differ considerably in the details. We
have included a complete proof of Lemma 4.7 in Appendix D.

The main result follows from Lemmas 4.6 and 4.7. We first show that within
O(1/(ev?d?)) steps, there is a step when the actual potential of the network either

decreases by a factor of 2 or falls below a threshold value.

Lemma 4.8: Let t be any integer such that at least 7/(cv2d?) of the first t steps are
good. There exists t' <t such that ®y < max{®y/2,n%¢(24;jd)}.

Proof: If ®; < n?¢(24;jd), then the claim is proved for ¢ = 0. For the remainder of
the proof, we assume that ®y > n?¢(24;5d). If &y < ®y/2 for any t' < ¢, the claim is

137

proved. Otherwise, for all ¢ < ¢, we have ®; > ®(/2. In this case, we obtain

o = - Ty

t'<t
< 38y + n2p(245d) — Z Uy
t'<t
< 4%y — > (ev?d?)By
th<t
t'good
< ®y/2.

(To obtain the second equation, we invoke Lemma 4.7. For the third equation, we invoke
Lemma 4.6 and use the inequalities ® > n2¢(24;5d), and ¥, > 0 for every . The last
equation holds since at least 7/(sv?d?) of the ¢ steps are good and @y > ®(/2 for every
t'<t.) 0

Theorem 4.5: For an arbitrary network G with n nodes, degree d, and initial imbalance
A, if the live edges at every step t of G have edge expansion «, then the dynamic syn-
chronous multi-port algorithm load balances to within O(d?(logn)/a) tokens in O(A/c)
steps.

Proof: We first place an upper bound on the number ¢ of steps such that the height
of each node at the end of step ¢ is O(d?(logn)/a?). If A is at most d?(logn)/a?, then
a trivial upper bound is 0.

We now consider the case when A is at least d?(logn)/a?. By repeatedly invoking
Lemma 4.8, we obtain that within 7" = [(7/(sv2d?))][log @] good steps, there exists
a step after which the potential of the network is at most n?¢(24jd). (Note that the
requirement that Lemma 4.7 hold for arbitrary initial values of the estimates, the e“(v)’s,
is crucial here.) Since at least 7'/4 of the first T steps are good, there exists ¢ <
4[(7/(ev?d?))][log @] such that ®; < n2¢(24;5d). Since &y < n(1 +v)(A+) /v, we have
log®y < logn + (A + 1)log(1 + v) — logv. Since v = a/(cd?) and log(1l + v) < v, we
have t = O((A/a) + d*(logn)/a?) = O(A/a).

138

Let h be the maximum height of any node after step ¢. We thus have

¢(h)

IA

Py

S n2(1+u)24jd'

Therefore, if ¢(h) > 0, then h < log(;,)(n*(1+v)?%%). If ¢(h) = 0, then h < 24jd—11d.

In either case,

h < 24jd+ (2logn)/log(l + v)

A

24jd + (4logn)/v

O((d*logn)/a).

(The right-hand side of the first equation is an expansion of log(;) (n?(1+v)?%%). The
second equation holds since log(1+v) < v/2 for ¢ appropriately large. The final equation
follows from the relations v = a/(cd?) and j = O((dlogn)/c).)

Thus, at the end of step ¢, no node has more than a = p + h tokens. We now
prove by contradiction that for every step after step ¢, no node has more than a + d
tokens. Let ¢ be the first step after step ¢ such that there exists some node w with more
than a +d tokens. Of the d+ 1 highest tokens received by u after step ¢, at least 2 tokens
(say p and q) were last sent by the same neighbor v of u. Without loss of generality, we
assume that p arrived at u before q. Let ¢; be the step when p was last sent by v to u.
Therefore, we have e} (u) > hy, (p) —d > a — d. Hence g can be sent to u only when v
has height at least a + 11d, which contradicts our choice of ¢'.

We have shown that after O(A/a) steps, no node ever has more than p +
O((d*logn)/a) tokens. An easy averaging argument shows that there exists k = O((dlogn)/«a)
such that after every step ¢’ > ¢, |Sc k| < n/2. By defining an appropriate potential
function for tokens with heights below the average and repeating the analysis done for
S~ ;, we show that in another O(A/a) steps, all nodes have more than p—O(d?(logn)/«)
tokens. []

As suggested in [5], a simple variant of DS can be defined for asynchronous networks.

139

As shown in [5], the analysis for the dynamic synchronous case can be used for asyn-
chronous networks to yield the same time bounds. Hence, the multi-port local load
balancing algorithm balances to within O(d?logn/a) tokens in time O(A/a) on asyn-

chronous networks.

4.5 Tight Bounds on Centralized Load Balancing

In this section, we analyze the load balancing problem in the centralized setting for
both single-port and multi-port models. We derive nearly tight bounds on the minimum
number of steps required to balance on arbitrary networks in terms of the node and edge
expansion of the networks. We assume that the network is synchronous.

We first consider the network G = (V, F) under the single-port model. For any
subset X of V, let X denote V \ X, m(X) denote the number of edges in a maximum
matching between X and X, A(X) denote the set {v € X : Iz € X such that (z,v) €
E}, and B(X) denote the set {z € X : Jy € A(X) such that (z,y) € E}. For subsets
X and Y of V, let M(X,Y) denote the set of edges with one endpoint in X and the

other in Y.

Lemma 4.9: For any network G = (V, E) with node expansion p and any subset X
of V, we have m(X) < pmin{|X|,|X|}/(1 + p). Moreover, for any subset X of V,
m(X UA(X)) < JAX)].

Proof: Without loss of generality, assume that | X| < |X|. Consider the bipartite graph
H = (B(X),A(X),M(X,X)). A maximum matching in H is equal to a maximum flow in
the graph I = (B(X)UA(X)U{s,t}, M(X, X)U{(s,z) : z € B(X)}U{(=,t) : z € A(X)})
from source s to sink ¢, where all of the edges of I have unit capacity. We will show that
every cut C of I separating s and ¢ is of cardinality at least p|X|/(1+ p). Consider
any cut C' = (5,7") with s € S and t € T". The set of edges in C' is M(S,T). Let
Y =TNB(X)and Z =TNA(X). The capacity of C, given by |M(S,T)|, can be lower

bounded as follows.

[M(S,T)] = Y[+ [M(Y,A(X)\ Z)| + [M(B(X)\Y, 2)| + [A(X) \ Z|
140

Y

Y1+ M(BX)\Y, Z)| +]AX) \ Z]

v

[AX\Y)]

v

pIX\ Y|
= p(X[=YT)

> X1/ +p).

(For the third equation, see Figure 4.4. Three subsets of nodes contribute to the set
A(X \Y): (i) the set of nodes in Y that have an edge to a node in X \ Y, (ii) the set of
nodes in Z that have an edge to a node in X \ Y, and (iii) the set of nodes in A(X)\ Z
that have an edge to a node in X \ Y. The size of the three sets is bounded by |Y|,
|M(B(X)\Y,Z)|, and |A(X) \ Z|, respectively. The fourth equation follows from the
definition of A(X \ Y). The fifth equation holds since Y is a subset of X. The last

equation holds since |Y| < |M(S,T")|.) For the second part of the lemma, we note that

B(X)
A(X)
Figure 4.4: The sets X, Y, Z, A(X), and B(X) in the proof of Lemma 4.9.

since all of the neighbors of X are in A(X), any node in X U A(X) that connects to
some node outside of X U A(X) is in A(X). Therefore, m(X U A(X)) < |A(X)|. 0

141

Theorem 1 of [93] obtains tight bounds on the centralized complexity of load
balancing in terms of the function m. We restate the theorem using our notation and
terminology. Before stating the theorem, we need one additional notation. For any
subset X of nodes of any network, let 7(X) denote the number of tokens held by nodes

in X in the initial distribution.

Theorem 4.6 ([93]): Consider a network G = (V, E) in the single-port model. The net-
work G can be balanced in at most maxyy xgv [(1(X) —p|X|)/m(X)] steps so that every
node has at most [p|+1 tokens. Moreover, any algorithm takes at least maxyg x gy [(1(X)—
plX1])/m(X)] steps to balance the network so that every node has at most [p| tokens. []

Theorem 4.6 and Lemma 4.9 imply the following result.

Lemma 4.10: Assume the single-port model. Any network G with node expansion pu
and initial imbalance A can be balanced in at most [A(l + p)/p] steps so that every
node has at most [p| + 1 tokens. Moreover, there exists a network G and an initial load
distribution with imbalance A such that any algorithm takes at least [A(1+ u)/p| steps

to balance G such that every node has at most [p| tokens.

Proof: If I(X) is the the total number of tokens belonging to nodes in X in the
initial distribution distribution, then we have: —A|X| < I(X) — p|X| < A]X] for all
X. Moreover, |I(X) — p|X|| = |[I(X) — p|X]||. Therefore, for all X, |I(X) — p|X]|| =
Amin{|X|,|X|}. By Lemma 4.9, m(X) is at least umin{|X|,|X|}/(1 + u) for all X.
Thus, the first claim of Theorem 4.6 establishes the first claim of the desired lemma.

For the second claim of the lemma, given any u, we construct the following
network G = (V, E) with node expansion p. The node set V' is partitioned into 3 sets X,
Y, and Z such that: (i) |Y| = p|X]|, and (ii) | Z] = | X |(14+u)?/(1—u). Let n and z denote
|V | and | X |, respectively. Thus, n equals 2(1+p+ (1+p)?/(1—p)) = 22(1+) /(1 —p).
The edge set E is the union of the sets X x X, X xY, Y XY, Y X Z, Z x Z.

We now show that the node expansion of GG is u. Consider any nonempty subset

U of V of size at most n/2 and let X', Y’ and Z' denote UN X, UNY, and U N Z,

142

respectively. Let N(U) denote the number of neighbors of U that lie outside of U. We
need to show that N(U) is at least p|U].

We consider two cases: (i) Y’ and Z' are both empty, and (ii) Y’ is nonempty or
Z' is nonempty. In the first case, U = X'. Therefore, N(U) > |Y| = pz > pu|U|. In the

second case, we have:

NU) = |Z]-12|
> |Z] - U]
> a((1+p)?/ (1= p) =+ p)/(1 - p)
= ap(l+p)/(1—p)
> plUl.

(The second equation holds since Z' is a subset of U. For the third equation, note that
Ul < n/2 = z(1+ p)/(1 —p). The last equation follows from the upper bound of
21+ p)/(1 =) on U]

We now apply the second claim of Lemma 4.9 to the subset X. Since A(X) =Y,
m(XUY) =pz = p|XUY|/(1+p). Given any A, consider the initial token distribution
in which each node in X UY has p+ A tokens, and each node in Z has p— A(1—p)/(1+u)
tokens, where p is any integer that is at least A(1 — p)/(1 + p). (Note that the average
number of tokens is p.) By applying the second claim of Theorem 4.6, we obtain that
the number of steps to balance G so that each node has at most p tokens is at least
(I(XUY)—p|XUY|)/m(XUY) > AXUY|/m(XUY) > A(1 + p)/p. Since the

number of steps is an integer, the desired claim follows. []

By using the techniques of [93], we can modify the proof of Lemma 4.10 to show that
any network GG with node expansion p and initial imbalance A can be globally balanced
to within 3 tokens in at most 2[A(1 + u)/u] steps. The extra factor of 2 is required
because even after balancing the network so that each node has at most [p| + 1 tokens,
there may exist a node with considerably fewer than p tokens. It takes an additional

[A(1+ p)/p] steps to bring the network to a state in which the global imbalance is at

143

most 3.

Lemma 4.10 implies that the time bound achieved by the single-port algorithm
(see Theorems 4.1 and 4.3) is not optimal for all networks. An example of a network
for which the single-port algorithm is not optimal is the hypercube whose maximum
degree is logn, edge expansion is 1, and node expansion is ©(1/y/logn). The local
algorithm balances in Q(Alogn) time, while there exists an O(Ay/Iogn + log® n) time
load balancing algorithm for the hypercube [101] which is optimal for A sufficiently large.
For the class of constant-degree networks, however, the time taken by the single-port
algorithm to reduce the global imbalance to O(logn/p) (see Theorem 4.3) is within a
constant factor of the time taken by any algorithm to completely balance the network
(see Lemma 4.10).

The proofs of Theorem 1 of [93] and Lemma 4.10 can be modified to establish

the following result for the multi-port model.

Lemma 4.11: Assume the multi-port model. Any network G with edge expansion o and
initial imbalance A can be balanced in at most [A/«a] steps so that every node has at most
[p| + d tokens. Moreover, for every network G, there exists an initial load distribution
with imbalance A such that any algorithm takes at least [A/a] steps to balance G so

that every node has at most [p]| tokens.

Proof Sketch: We prove that there exists a centralized algorithm that balances to
within d tokens in at most 7" = @gl;?‘é(v {%1 steps. For all X C V, we have
(1) [I(X) — p|X|| < Amin{|X|, |X]|} (see proof of Lemma 4.10), and (ii) |[M (X, X)| >
amin{|X|,|X|}. It follows from (i) and (ii) that T < [A/a].

We modify the proofs of Theorem 1 and Lemma 4 of [93] (where the single-
port model was assumed) to establish the desired claims for the multi-port model. We
transform the load balancing problem on G to a network flow problem on a directed
graph H = (V' E') which is constructed as follows. Let V; be {(v,i) : v € V}, 0 <
i <T. Let E; be {({u,i),(v,t+ 1)) : (u,v) € Eoru=v},0<¢<T. Weset V' to
{5} UUp<icr ViU {t}, and E' to {(s,(v,0)) : v € V} UlUp<jeq Bi U{({v,T),t) : v € V'}.

144

For any v in V, the capacity of the edge (s, (v,0)) is w(v). For any (u,v) in E, the
capacity of any edge ((u,?),(v,i+ 1)), 0 <¢ < T, is 1. For any v in V, the capacity of
any edge ((v,i),(v,i+ 1)), 0 < ¢ < T, is co. For any v in V| the capacity of the edge
((v,T),t) is [p] + d.

We show that the value of the maximum integral flow in H is equal to the
total number of tokens NV in V, from which it follows that there exists a centralized
algorithm that balances to within d tokens in T steps. Consider any cut C' = (S,T) of
H separating s € S and t € T. Let S; = SNV; and D(S;) ={v eV : (v,3) € 5;}. If
So = 0, or ST = Vp, or there is an edge of infinite capacity, then the capacity of C' is
at least N. Otherwise, the number of edges from V; to V;;; that belong to the cut is at
least |M(D(S;), D(S;))| — d(|Si+1] — |Sil). Moreover, since there is no edge with infinite

capacity in C, D(S;) is a subset of D(S;;1). Thus the capacity of C is at least

T-1
I(D(Ve) \ D(S0)) + (3 (IM(D(8:), DIS)| — d(|Sis1] = |Si)) + ([p] +)|

=0
T-1

> 1(D(Vo) \ D(So)) + (Y (I(D(S1)) = pISil)/T — d(|Si1] = |Sil)) + (To] +)|t
=0
T-1

> 1(D(Vo) \ D(S)) + (3 ((I(D(So)) = plSz])/T = d(11] = S0])) + (To] +)|t
=0

> 1(D(Vo) \ D(S0)) + I(D(So)) — p|Sr| + d|So| + [p1|Sr|

> N.

(In the first equation: (i) I(D(Vp)\ D(Sp)) is the capacity of the edges from s to V} that
belong to the cut, (ii) |M(D(S;), D(S;))| — d(]Si+1] — |Si|) is the capacity of the edges

from V; to V;;1 that belong to the cut, and (iii) ([p] +d)|St| is the capacity of the edges
from St to t that belong to the cut. The second equation follows from the definition of
T and the equality |[D(S;)| = |S;|. For the third equation, note that D(Sy) is a subset of
D(S;) for all i and | S| > |S;| for all i. The fourth equation is obtained since the sum of
|Si+1| — |Si| telescopes. The final equation is obtained since I(D(Vp)) = N.) Since the
capacity of the cut ({s},V'\ {s}) equals N, the maximum flow in H is N.

To prove the second part of the lemma, given any network G with a partition

145

(V1, Vo) of its nodes such that |Vi| < n/2 and |M(Vi, V2)| = a|Vi|, we define an initial
load distribution with average p in which each node in V; has p + A tokens and each
node in V3 has p— A|V;|/|Vz| tokens. The desired claim holds since at least A|V;| tokens
need to leave the set V7. []
Lemma 4.11 implies that the local multi-port algorithm is asymptotically optimal for
all networks. As in the single-port case, we can modify the above proof to obtain upper
bounds on the centralized complexity of globally balancing a network. We can show that
any network GG with edge expansion « and initial imbalance A can be globally balanced

to within d + 1 tokens in at most 2[A/«] steps.

4.6 Concluding Remarks

In this chapter, we have shown that the local balancing approach brings any network to a
state of small global imbalance in time that is asymptotically optimal in the worst-case.
Two natural questions come to mind. Can we improve the guarantee on the quality of
balance achieved by the algorithms? Is the local balancing approach optimal, not just
in the worst-case, but for all distributions?

Quality of balance. It is easy to see that there exist distributions for which the global
imbalance guaranteed by the multi-port and single-port balancing algorithms cannot be
better than the network diameter. However, even if a global imbalance that is within a
constant factor of the diameter is reached, the network may not be locally balanced to
within a small number (say O(1)) of tokens. We say that a network is locally balanced
to within ¢ tokens if the maximum difference between the number of tokens at any two
neighboring nodes is at most ¢t. Both the single-port and multi-port algorithms will
eventually locally balance the network, the single-port algorithm to within one token,
and the multi-port algorithm to within 2d tokens. However, even after reducing the
global imbalance to a small value, the time for either of these algorithms to reach a
locally balanced state can be quite large. For example, it is shown in [53] that after

reaching a state that is globally balanced to within O((dlogn)/u) tokens, the multi-port

146

algorithm may take another Q(nl/ 2) steps to reach a state that is locally balanced to
within 2d tokens. (A similar result for the single-port algorithm is also contained in [53].)
Performance ratio for all distributions. It is open whether the time taken by the local
balancing approach is asymptotically optimal for all distributions on all networks. We
believe that an improved analysis will require substantially new techniques that consider
the particular topology of the given network in greater detail.

In the following chapter, we settle both of the questions raised above in the

affirmative for the special case of ring networks.

147

Chapter 5

Static Load Balancing on Rings

5.1 Introduction

While the results of Chapter 4 establish that the local balancing approach is optimal in
the worst-case, it is not the case that the upper bounds shown are optimal for all initial
distributions. In fact, for the class of ring networks, the upper bound may be suboptimal
by an §2(n) factor. To see this, note that the edge expansion of an n-node ring is ©(n).
Therefore, an application of Theorem 4.2 to the special case of a ring network yields
that if the initial imbalance is A, then the multi-port algorithm defined in Section 4.1.1
balances in O(nA) steps. While there exists a distribution with imbalance A for which
any algorithm takes Q(nA) steps to balance, it is easy to construct distributions with
imbalance A that can be balanced in O(A) steps.

In this chapter, we show that a simple variant of the multi-port algorithm of
Section 4.1.1 converges to a completely balanced distribution in near-optimal time for
every initial distribution on both synchronous and asynchronous rings. We are not aware
of any other load balancing algorithm that has been shown to achieve such universal near-
optimality with respect to a non-trivial family of networks (e.g., rings). All previous

optimality results known for load balancing are worst-case results.

148

5.1.1 Overview of the Results

Let R be a ring network with the set [n] = {0,1,...,n — 1} of nodes and the set
{(%,(: + 1) mod n} of edges. The local balancing algorithm, which we denote by A, is
defined as follows. In each step, for all 7 in [n], node ¢ sends a token to node (i + 1) mod n
if and only if ¢ has more tokens than (7 + 1) mod n. (See Section 5.2 for a message-passing
implementation of .A.) We note that there is a single direction, say clockwise, in which
all the token movements in A take place. We refer to algorithms that move tokens in
the clockwise direction as unidirectional algorithms.

We first consider a synchronous model of computation in which: (i) in each step
of the network, all of the nodes simultaneously perform one step of their computations,
and (ii) each message sent during a step is delivered prior to the start of the subsequent

step. We show that:

e The number of steps taken by A to balance any distribution b on a synchronous ring
is at most 4OPT(b) 4+ n, where OPT(b) is the time taken by an optimal centralized

algorithm to balance b. The proof is given in Section 5.4.

We note that the optimal centralized algorithm need not be a unidirectional algorithm,;
that is, OPT(b) is the time taken to balance b by the best algorithm among all algorithms
that send and/or receive at most one token along each of its incident edges in each step.
In fact, if OPT(b) was instead defined as the time taken by an optimal centralized
unidirectional algorithm to balance b, then the factor of 4 in the stated bound could be
replaced by 2.

Our next result concerns an asynchronous model of computation, in which local
computations may be performed at arbitrary speeds and messages may be delayed ar-
bitrarily, subject to the constraint that each message is eventually delivered and each
computation is eventually performed [79]. In order to measure the time complexity in
the asynchronous model, we define a round to be a minimal sequence of steps in which
each component of the ring (i.e., each node or edge) is scheduled at least once. The
time complexity of an algorithm is then defined as the maximum number of rounds

149

taken among all possible schedulings of the components. (See Section 5.5 for a formal
description of the asynchronous model.)

The above notion of time is based on the model proposed in [13] for shared
memory systems. An analogous model for message-passing systems was studied in [16].
Moreover, our model is equivalent to that proposed in [87], where the time complexity of
an algorithm is defined to be the longest amount of elapsed real time from the start to
the completion of the algorithm, assuming that the time delay between two steps of the
same network component is at most unity [13]. (The model proposed in [87] has been
subsequently used in the study of several distributed computing problems [18, 20].)

We generalize our result for the synchronous model to the asynchronous model

at the expense of a factor of 2 in the time complexity. In particular, we show that:

e The number of rounds taken by A to balance any distribution b on an asynchronous

ring is at most 80OPT(b) 4+ 2n. The proof is given in Section 5.5.

We remark that if OPT(b) were instead defined as the time taken by an optimal cen-
tralized unidirectional algorithm for b, then the factor of 8 in the stated bound could be
replaced by 4. We also show that in both the synchronous and asynchronous models, for
every initial token distribution, the message complexity of A is asymptotically optimal

among all unidirectional algorithms.

5.1.2 Related Work

In recent work [14], asynchronous balancing algorithms on several networks including
the ring have been studied. However, the results of [14] are geared towards establishing
eventual convergence in the presence of dynamic network changes, while we are interested
in determining the time to convergence for static load balancing. Also related is the result
of [39], where a worst-case bound on the number of token migrations is given for a model
in which tokens can be transferred between any two nodes.

Our result for the asynchronous model is similar in spirit to that of [20], in

that our asynchronous algorithm is not obtained by using a general synchronizer [18] in

150

conjunction with an algorithm optimized for a synchronous model. Instead, we show
that A is directly implementable on asynchronous rings and hence avoids the overhead

and complexity of a synchronizer while achieving near-optimal bounds.

5.2 The Unidirectional Algorithm A

In this section, we give a message-passing implementation of the unidirectional algorithm
A introduced in Section 5.1. Recall that the nodes of the ring are assigned unique labels
from the set [n]. For convenience, we adopt the following notational convention: any
arithmetic expression referring to a node is interpreted modulo n. For example, we will
often refer to the neighbors of an arbitrary node ¢ as node ¢ — 1 and node ¢ + 1, rather
than node (i — 1) mod n and node (i 4+ 1) mod n.

In A, each node ¢ repeatedly communicates with node ¢ 4+ 1 and sends a token to
i + 1 whenever the number of tokens at i exceeds that at ¢ + 1. Figure 5.1(b) illustrates
one step of the algorithm for the example given in Figure 5.1(a). In order to implement
this balancing scheme efficiently, node ¢ maintains three variables related to the number
of tokens at 7 4+ 1: (i) a count x(i) of the number of tokens that ¢ has sent to 7 + 1 since
the start of the algorithm, (ii) an estimate y(i) of the number of tokens that ¢ + 1 has
sent to ¢ + 2 since the start of the algorithm, and (iii) the number z(7) of tokens at ¢ + 1
initially. At a given point in the execution of the algorithm, let w(¢) denote the number
of tokens at i. Thus, w(i) equals wy(¢) initially. Also, at a given point in the execution
of the algorithm, the expression z(i) + z(7) — y(¢) represents the estimate at node ¢ of
the number of tokens at node 7 + 1.

In A, the nodes communicate with their neighbors using three types of messages:
(i) height, a message that ¢ sends to 7 — 1 indicating the number of tokens at 7, (ii)
update, a message that ¢ sends to ¢ — 1 indicating that ¢ has sent a new token to i + 1,
and (iii) token, a message consisting of a token sent by ¢ to ¢ 4+ 1. In terms of these

messages, the algorithm can be described as follows.

e In the initial step, node ¢ performs the following operations: (i) set z(¢) and y(z)

151

Figure 5.1: (a) An 8-node ring with an initial distribution of tokens. The value of p
for this distribution is 7. (b) One step of A on the example given in part (a). Nodes 0,
2, 6, and 7 send one token each to nodes 1, 3, 7, and 0, respectively.

to zero and set z(i) to oo, and (ii) send a height message with value w(7) to i — 1.

e In each subsequent step, ¢ performs the following operation. If w(i) > z(¢)+z(z) —
y(1), then: (i) decrement w(i) by 1, (ii) increment x(i) by 1, (iii) send a token

message to 7 + 1, and (iv) send an update message to i — 1.

e On receipt of a height message, i sets z(i) to the value of the message. On receipt

of an update message, i increments y(z). On receipt of a token, ¢ increments w(i).

152

5.3 Preliminaries

Let Z and N denote the integers and nonnegative integers, respectively. Let V = [n] — Z
denote the set of n-tuples of integers. For any ¢ in N and ¢ in [n], let w; be defined as
follows: wy(7) is the number of tokens at node 7 at the start of step ¢. (We number the
steps from 0.) For any b in V, let p(b) = %Zie[n} b(i) denote the average number of
tokens in b. We say that the ring is balanced in step ¢ if w (i) is |p(b)]| or [p(b)] for all
i in [n], where b is the initial distribution. For any subset S of [n], let w;(S) denote the
total number of tokens in S at the start of step .

For any ¢ and j in [n], let d(b,i,j) denote the total “imbalance” associated with

the set of contiguous nodes obtained when going from node ¢ to node j in the clockwise

direction (¢ and j included). Formally, we have:

db,i,5)= > (b(i+k)—p(b)).

0<k<(j—i) mod n

(In other words, d(b, ¢, j) equals 3, . (b(k) —p(b)) if ¢ < j, and [32, 4, (b(k) —
p(b)) + > o<p<i(b(k) — p(b))] otherwise.) For example, if b is the distribution given in
Figure 5.1(a), then d(b,2,4) is —7, and d(b,7,2) is 2.

Let £(b) and m(b) be two integers such that d(b, £(b), m(b)) is max; ; d(b, %, j). We
define the discrepancy of a distribution to be the maximum imbalance among all sets
of contiguous nodes of the ring. Thus, the discrepancy D(b) of a distribution b is given
by d(b, £(b), m(b)). For the example in Figure 5.1(a), the values of £ and m are 6 and 1,
respectively, and the discrepancy is 12.

Without loss of generality, we assume for the remainder of this chapter that £(b) is
zero as we can relabel the nodes appropriately otherwise. Moreover, we will be concerned
with applying the functions p, d, and m with respect to the initial token distribution.
Therefore, as a shorthand, we let p, d(i, j), and m, denote p(wy), d(wy, 1, j), and m(wp),

respectively.

153

5.4 Analysis for Synchronous Rings

In this section, we analyze .4 under the synchronous model of computation. For simplic-
ity, we assume, in both this section as well as Section 5.5, that p, the average number
of tokens in the initial distribution, is an integer.

In the synchronous model, each node executes in a lock-step manner and each
message is transmitted in a single step. By the definitions of z(7), y(7), and z(¢), we
obtain that the value of z(i) + z(i) — y(¢) at the start of step ¢ equals w(i + 1) for any
t > 0. Therefore, each step of node ¢ can be expressed as follows: if wy(i) > wy(i + 1),
then send a token to ¢ + 1. For our analysis, it is helpful to consider a generalization of

A given by Definition 5.2 below.

Definition 5.1: We say that a step t of an algorithm is an S-step, where S is a subset
of [n], if each node not in S is idle in step t and each node i in S performs the following

operation: if wy(i) > wy(i + 1), then i sends a token to ¢ + 1. 0

Definition 5.2: A partial algorithm B is one in which each step is an S-step for some
subset S of [n]. For any t in N, we let B(t) denote the set S such that step t of B is an
S-step. [

It follows from Definitions 5.1 and 5.2 that A is a partial algorithm in which
each step after step 0 is an [n]-step. We obtain a bound on the running time of A by
providing a general analysis that applies to all partial algorithms. Before proceeding to
this analysis, which is given in Section 5.4.1, we present some additional definitions.

Given two partial algorithms B and C, we say that B covers (resp., is covered by)
C if for all ¢, B(t) is a superset of (resp., subset of) C(¢). Consider a partial algorithm
B. For i in N, let r; be defined as follows: 7y is —1 and for all ¢ > 0, r; is the smallest
integer greater than r;_; such that U, , i<, B(j) = [n]. We define the ith round of B

to be the sequence of steps in the interval [r; + 1,r;1].

154

5.4.1 Analysis of Partial Algorithms

While the number of tokens present at each node of the ring after ¢ steps of A or any other
partial algorithm is easy to calculate, the particular token distribution obtained does not
directly provide a good barometer for the progress of the algorithm. In Chapter 4, we
analyze load balancing algorithms by first assigning to each node a potential that grows
exponentially with the imbalance at the node and then showing that the sum of the
potentials of the nodes decreases rapidly with time. While the preceding measure proves
to be useful in reducing the complexity of the worst-case analysis for general networks,
it appears to be overly simplistic for our purposes since information about the manner
in which the imbalance is distributed is lost.

By exploiting the simple structure of ring networks, we are able to capture the
precise distribution of the imbalance of the network in a measure, referred to as the
prefix sum vector. For each ¢t in N, let p; be defined as follows:

pii) = Y (wi(5) —p) (5.1)
0<y<i
for all 7 in [n]. (In other words, p; is the n-tuple of the prefix sums of the difference
between the number of tokens at each node at the start of step ¢ and the average.) Given
an initial token distribution wo = b, let T'(b) denote ;1,1 po(2)-

Figure 5.2 gives the value of wgy(j) — p for each node j in the instance given in
Figure 5.1(a). (Note that the nodes have been relabeled so that £ is 0, i.e., the interval
of nodes with the largest total imbalance begins with 0.) Applying Equation 5.1, we
find that the prefix sum vector for the example is (7,10, 12,9,10,4,2,0).

The following lemma gives a lower bound on the time complexity of any balancing
algorithm and the number of token transmissions of any unidirectional balancing algo-
rithm in terms of D(b) and T'(b), respectively, where b is the initial token distribution.
Recall that D(b), which is formally defined in Section 5.3, is the discrepancy of b.

Lemma 5.1: Any algorithm takes at least D(b)/2 steps to balance b. Any unidirectional
algorithm incurs at least T'(b) token transmissions to balance b.

155

o 1 2 3 4 5 6 7

Figure 5.2: The imbalance at each node of the ring given the distribution in Fig-
ure 5.1(a). The unshaded tokens represent the number of tokens more than the average
while the shaded tokens represent the number of tokens less than the average. Note
that the nodes have been relabeled so that the value of £ is 0. Hence, the set [0, 2] has
the maximum total imbalance, 12, which equals the discrepancy of the distribution. By
Equation 5.1, the prefix sum vector is (7,10,12,9,10,4,2,0).

Proof: Consider the set S = {i : 0 < ¢ < m(b)} of nodes. By definition, wy(S) is
D(b) + p|S|. (Recall that £(b) is 0.) If the ring is balanced in ¢ steps, then for each node
i in S, wy(i) is p. Therefore, wy(S) is at most p|S|, and hence, at least D(b) tokens are
sent out of S in t steps. Since at most two tokens can be sent out of S per step, ¢ is at
least D(b)/2.

For each 7 in [n], the number of token transmissions across edge (i,i+ 1) required
by any unidirectional algorithm is at least pg (%) since py(7) is the excess number of tokens
in the interval [0,4]. Therefore, the total number of token transmissions needed by any

unidirectional algorithm to balance b is at least 7'(b). 0

The remainder of this section is devoted to proving that the number of rounds taken by
any partial algorithm to balance a distribution b is at most 2D(b) + n — 1. We begin
by determining the effect of a step of a partial algorithm on the prefix sum vector. For
this purpose, it is useful to define a partial order < on V as follows: b < ¢ if and only
if b(¢) < ¢(¢) for all ¢ in [n]. For convenience, we use 0 to denote the n-tuple each of
whose components is 0. Lemma 5.2 expresses a partial algorithm as a recurrence relation

among the prefix sum vectors.

156

Lemma 5.2: For any partial algorithm B, we have: if i is in B(t) and 2p(i) > ps(i — 1)+
pe(i + 1), then pei1(2) is pe(i) — 1; otherwise, py1(i) 15 pe(z).
The proof of Lemma 5.2 follows from Lemmas 5.3 and 5.5 below.

Lemma 5.3: For any partial algorithm B, if 0 < p;, then: if i is in B(t) and 2py(i) >
pi(i — 1) +pe(i + 1), then pri1(3) is p(é) — 1; otherwise, pri1(3) is pe(i)-

Proof: Since 0 < p;, p¢(0) is nonnegative, and hence w;(0) is at least p. Moreover,
by definition, p;(n — 1) is 0. Since ps(n — 2) is nonnegative, wg(n — 1) is at most p.
Therefore, no token is sent from node n — 1 to node 0. It follows that for each ¢ in [n],
if node ¢ sends a token to node ¢ + 1, then p;1(¢) is pe() — 1; otherwise, py11(2) is pt(2).
Node i sends a token to ¢ + 1 if and only if ¢ is in B(t) and ps(¢) — pe(¢ — 1) is greater
than py(¢ + 1) — p¢(¢). The desired claim follows. 0

Lemma 5.4: For any token distribution, we have 0 =< pyg.

Proof: The proof is by contradiction. Let ¢ be the smallest nonnegative integer
such that py(i) is negative. From the definition of ¢, it follows that d(i + 1, m) equals
d(0,m) — d(0,%). Since d(0,7) = po(i) < 0, we obtain that d(i 4+ 1,m) is greater than

d(0,m) contradicting the definition of m. 0

Lemma 5.5: For any partial algorithm B and all t in N, we have 0 =< p;.

Proof: The proof is by induction on ¢. The induction basis follows from Lemma 5.4.
For the induction hypothesis, we assume that 0 < p;. For the induction step,
we consider step ¢. We need to show that 0 < p;y;. By Lemma 5.3, we have: if
2pe(1) > pe(t —1) + pe(v + 1), then pyyq(i) is pe(é) — 1; otherwise, pyy1(2) is pe(i). In
either case, since p;(i) is nonnegative (by the induction hypothesis) and is an integer for

all i, we obtain that py11(¢) is nonnegative for all 7, thus completing the induction step.

i

Lemma 5.6 shows that the each step of a partial algorithm, when viewed as a
function on the prefix sum vector, is monotonic with respect to <.

157

Lemma 5.6: Let S be an arbitrary subset of [n]. Let p and q denote the prefiz sum
vectors associated with token distributions b and c, respectively. Let p' and q' denote the
prefix sum vectors associated with the token distributions obtained after performing an

S-step on distributions b and c, respectively. If p < q, then we have p' < ¢'.

Proof: Consider any ¢ in [n]. If p(¢) is less than ¢(¢), then p'(i) < ¢q(i) — 1 < ¢/(%).
Otherwise, we have p(i) = ¢(¢). By Lemma 5.2, if ¢/(¢) is ¢(¢) — 1, then 2¢(i) > q(i — 1)+
q(i + 1). It then follows from the hypothesis of the lemma that 2p(i) > p(i — 1)+p(i + 1),
which together with Lemma 5.2 implies that p'(¢) is p(¢) — 1. Thus, the desired claim
holds. []

Corollary 5.6.1: Consider a partial algorithm B. Let py and qo denote the prefix sum
vectors at the start of step 0 when the initial token distributions are b and c, respectively.
If po = qo, then the number of rounds taken by B to balance b is at most that taken to

balance c. []

Corollary 5.7.1 states that if B covers C, then B balances any distribution at least
as quickly as C does.

Lemma 5.7: Let B and C be two partial algorithm such that B covers C. Given an initial
token distribution, let p; and q; denote the prefix sum vectors at the start of step t of B
and C, respectively. Then, for each step t, ps < q.

Proof: The proof is by induction on step . The induction base is trivial since py = qp.
For the induction hypothesis, we assume that p; < ¢;. Consider step ¢t of B and C.

Let D be a partial algorithm that is identical to C except that D(t) = B(t). Let r
represent the prefix sum vector obtained after step ¢ of D. Since D(t) D C(t), it follows
from Lemma 5.2 that r < g;y;. By Lemma 5.6 and the induction hypothesis, it follows

that p;y; <X r. By the transitivity of =<, it follows that p;11 =< giy1. []

Corollary 5.7.1: Let B and C be two partial algorithm such that B covers C. For any

158

initial token distribution b, the number of rounds taken by B to balance b is at most that

taken by C. 0

Given a nonnegative integer h, consider the set U(h) of token distributions with
discrepancy h. Let P(h) denote the set of prefix sum vectors associated with the distri-
butions in U(h). It is easy to see that f(h) = (2h,h,...,h,0) is the distribution whose
prefix sum vector g(h) = (h, h, ..., h,0) is the unique least upper bound (with respect to
<) of P(h). It thus follows from Corollary 5.6.1 that the number of rounds taken by a
partial algorithm B to balance any distribution in U(h) is at most the number of rounds
taken by B to balance f(h). We now place an upper bound on the number of rounds

taken by any partial algorithm to balance f(h).

Lemma 5.8: For any nonnegative integer h, the number of rounds taken by any partial

algorithm B to balance f(h) is at most 2h +n — 1.

Proof: For any i, let the ith round of B consist of the steps [r; + 1,7;41]. In order
to establish the desired claim, we construct a partial algorithm C that is covered by
B. Since the rounds of C may differ from those of B, to avoid ambiguity, we refer to
[ri +1,r;41] as interval 3.

Given interval ¢ and a node j, let y; ; be the smallest integer such that j is in
B(y; ;). We now define C as follows. For each interval ¢, and each step ¢ in interval ¢, node
j is in C(t) if and onmly if: (i) ¢ is y; ; and (ii) j equals t — 2k for some k < min{[t/2], h}
(i.e., 7 has the same parity as t). It follows directly from the definition that C is a
partial algorithm and that B covers C. We now show that C balances f(h) before the
start of interval 2h +n — 1.

We mark the h excess tokens on node 0 with the labels 0 through h —1 from the
top. We show that during the execution of C the following property holds: at the start
of interval ¢, if ¢ < min{[¢/2], h}, token ¢ is at node min{t — 2i,n — 1}; otherwise, token
¢ is at node 0. The proof is by induction on ¢t < 2h + n. The induction base is trivial.
For the induction hypothesis, we assume that the above statement holds at the start of
interval ¢.

159

Consider interval . By the definition of C, we obtain that in interval ¢, if ¢ — j
is even, then node j sends token (¢ — 7)/2 to node j; otherwise, node j does not send
any token. Thus, each node j sends at most one token to node ¢ + 1 in any interval.
Furthermore, by the induction hypothesis, if ¢ — j is even then node j has token (¢ —7)/2
while node j 4+ 1 has no marked token, thus completing the induction step.

It follows from the aforementioned property that C balances f(h) before the start
of interval 2h + n — 1. Hence, by Corollary 5.7.1, B balances f(h) within 2h +n — 1

rounds. []

The following lemma shows that g(D(b)) is an upper bound (with respect to <)

on the initial prefix sum vector of c.
Lemma 5.9: For any initial token distribution b, we have py = g(D(b)).

Proof: By the definition of D and py, for each ¢ in [n], po(%) is at most D(b). Moreover,

since p is an integer, pg(n — 1) is zero. It thus follows from the definition of g that

po = g(D(b)). O

The upper bound on the time complexity of a partial algorithm now follows from

Corollary 5.6.1 and Lemma 5.9.

Lemma 5.10: Given any initial token distribution b, the number of rounds taken by any

partial algorithm to balance b is at most 2D(b) +n — 1.

Proof: By Lemma 5.9, pg =< g(D(b)). Therefore, by Corollary 5.6.1, the number of
rounds taken to balance b is at most that taken to balance f(D(b)). By Lemma 5.8, the
number of rounds taken to balance f(D(b)) is at most 2D(b) +n — 1. The desired claim
follows. []

We now place a bound on the number of token transmissions before balancing a
distribution b. Whenever a node i sends a token in step ¢, we have py1(2) = pe(i) — 1.
Therefore, the total number of token transmissions by any partial algorithm is exactly

T'(b), which, by Lemma 5.1, is optimal with respect to all unidirectional algorithms.

160

Lemma 5.11: Given an initial token distribution b, the number of token transmissions

by any partial algorithm is T'(b). 0

5.4.2 Complexity of Algorithm A

Every step of A after step 0 is an [n]-step. It thus follows from Lemma 5.10 that the
number of steps taken to balance any distribution b with an integral average is at most
2D(b) + n.

We now consider the message complexity of A. In step 0 of the algorithm, n height
messages are transmitted. The number of update messages transmitted is at most the
total number of token transmissions since an update message is sent by a node ¢ in step
t only if ¢ sends a token in step ¢. By Lemma 5.11, the number of token transmissions
is at most 7'(b). Hence the total number of message transmissions is at most 27'(b) + n.

This completes the proof of the following theorem.

Theorem 5.1: Consider the synchronous model of a ring network with n processors
model. If the initial token distribution is b, then the number of steps taken by A to
balance b is at most 2D(b) + n. The number of token transmissions and the number of

message transmissions are T'(b) and 21'(b) 4+ n, respectively. 0

5.5 Analysis for asynchronous rings

In this section, we analyze A under an asynchronous model of computation. We consider
the ring network as consisting of 3n different components: n nodes given by the set [n]
and 2n directed edges given by the set {(¢,7+ 1), (¢, — 1)}. As defined in Section 5.2,
each step of a node consists of sending a constant number of messages to its neighbors
together with performing a small number of local operations. Each edge (7,j) is a
directed channel that transmits messages from ¢ to j in FIFO order. At any instant,
there may be several messages in transit from ¢ to j on edge (7,j). Each step of edge
(¢,7) consists of delivering the first message (if any) in FIFO order among the messages
currently in transit from ¢ to j.

161

We model asynchrony by means of an adversary X that schedules the compo-
nents of the network over a sequence of steps. In step ¢, each component in a set X'(t)
of components chosen by the adversary executes its next step simultaneously. Given
adversaries X; and X, we say that X is weaker (resp., stronger) than X5 if for all ¢,
AX1(t) is a superset (resp., subset) of A5(¢). The notions of an adversary and that of
weakness generalize the notions of a partial algorithm and that of covering defined in
Section 5.4. Indeed, we establish our results for the asynchronous model by generalizing
some of the claims of Section 5.4.

As mentioned above, when an edge is scheduled, the first message (if any) in
FIFO order is delivered to the destination node. In the definition of A, there are some
operations that are performed at the node on receipt of a message. (An example of such
an operation is changing the value of y(i) at node ¢ on receipt of an update message.)
Such operations can be executed either during the scheduling of the edge delivering the
particular message or at the next scheduling of the destination node, as determined by
the adversary.

Given an adversary, we define a round to consist of a minimal sequence of steps
in which each component of the network is scheduled at least once by the adversary.
The sequence of steps is partitioned into a sequence of non-overlapping rounds. The
time complexity of an algorithm is defined to be maximum, over all adversaries, of the
number of rounds taken to balance the ring. The message complexity of an algorithm
is the maximum, over all adversaries, of the number of messages transmitted by the
algorithm.

We now begin the analysis of A under the asynchronous model defined above.
For any ¢ > 0 and any ¢ in [n], let u;(¢) denote the number of tokens in transit along
edge (7,7 + 1) at the start of step ¢. In analogy to Equation 5.1, we define two notions

of prefix sums. For each ¢ in N, we define p; and ¢; as follows:

pe(t) = Z (we(7) + ue(g) — p) and

0<5<i
q(1) = pe(2) — ue(d)

162

for all 7 in [n]. We refer to p; and g; as the upper prefiz sum vector and the lower prefiz
sum vector, respectively. Let m(i) denote the last step ¢’ < ¢t such that a height or an
update message sent by 7 + 1 in step t' is received by 7 in some step before step ¢. If no
height or update message is received by ¢ in any of the first ¢ steps, we set m(i) to —1.
For convenience, we let ¢_1(7) equal oo for all 3.

Lemmas 5.12; 5.13, 5.14, and 5.15 generalize Lemmas 5.3, 5.5, 5.2, and 5.6, re-
spectively. The proofs of Lemmas 5.12 and 5.13 follow the same lines as the proofs of

Lemmas 5.3 and 5.5, respectively.

Lemma 5.12: Consider the ezecution of A against an adversary X. Assume that 0 < g
forall s <t. Ifiisin X(t) and 2q4(i) > pi(i — 1) +qr,(3) (¢ + 1), then qey1(3) is g (i) — 1;

otherwise, q11(%) is q¢(7).

Proof: Consider any s < ¢. Since 0 < ¢4, ¢5(0) is nonnegative, and hence w;(0) is
at least p. Moreover, by definition, ps(n — 1) is 0. Since 0 < ¢4(n — 1) < ps(n — 1),
gs(n—1) and us(n — 1) are both 0. Since ps(n — 2) is nonnegative, ws(n — 1) is at most
p. Therefore, no token is sent from node n — 1 to node 0 in step ¢. It follows that for
each i in [n], if node ¢ sends a token to node ¢ + 1, then g;11(%) is g(¢) — 1; otherwise,
qe+1(2) 1s q¢(2).

We now show that node i sends a token to node i + 1 if and only if ¢ is in X'(¢)
and g(7) —p¢(¢ — 1) is greater than gr,(;) (¢ +1) — g¢(¢). It follows from the definitions of
q¢ and p; that w(i) equals (i) — ps(¢ — 1). If m4(¢) equals —1, then it follows from the
definition of 7(¢) that the value of the variable z(7) (see Section 5.2) at the start of step
t is co. Since the values of z(7), y(¢) and ¢ (¢) are all finite, we obtain that if m(¢) is —1
then at the start of step ¢, 2(7) + (i) — y(i) = 00 = gy, (3 (¢ + 1) — q¢(¢). We now consider
the case when m(¢) does not equal —1. By the definition of m(7), the value of z(i) at
the start of step ¢ is finite. Moreover, by the definitions of the variables z(7), y(¢), and
z(i) of Section 5.2 and the fact that no token is sent from node n — 1 to node n in any

step s < t, we obtain that the value of the expression z(i) + z(i) — y(¢) at the start of

163

step t equals

qo(t +1) — qo(?) + q0(?) — qe(?) — (qo(2 + 1) — gy (5 (2 + 1))

=m0+ 1) — @)

Therefore, in any step ¢, if node ¢ is scheduled by the adversary, then node ¢ sends a
token to i + 1 if and only if ¢;(¢) — pi(i — 1) is greater than g, ;)(i + 1) — g(é). The

desired claim follows. []

Lemma 5.13: Given any adversary, 0 = q; and 0 < p; hold for all t in N.

Proof: The proof is by induction on ¢. The induction basis follows from Lemma 5.4.
For the induction step, consider step ¢. By the induction hypothesis, 0 < ¢;. We
first show that 0 < g;y1. By Lemma 5.12, we have: if 2q4(2) > ps(2 — 1) + gr,5)(2 + 1),
then gy 1(7) is q¢(7)—1; otherwise, q;11(7) is g;(¢). In either case, since p;(i), ps(¢ — 1), and
Gmy(i) (1 + 1) are nonnegative integers by the induction hypothesis, we obtain that g;1(¢)
is nonnegative for all ¢. Since gy+1 =< pey1, it follows that 0 < py41, thus establishing the

induction step. 0
Lemmas 5.12 and 5.13 together imply the following lemma.

Lemma 5.14: Given any adversary X, ifi is in X (t) and 2q4(i) > ps(i — 1)+qr,) (i + 1),

then qu1(3) is qi(2) — 1; otherwise, quy1(2) is qu(7). [

Given a fixed initial distribution of tokens and two different adversaries, we now relate the
prefix sum vectors obtained after ¢ steps of A against the two adversaries. Lemma 5.15
states that both the upper and lower prefix sum vectors associated with the weaker
adversary are lower bounds (with respect to <) on the upper and lower prefix sum

vectors associated with the stronger adversary.

Lemma 5.15: Let X7 and X5 be two adversaries such that Xy is weaker than X5. Given

an initial token distribution, let p; (resp., qf) denote the upper (resp., lower) prefiz sum

vector at the start of step t of A against adversary Xy, and let p? (resp., q¢?) denote the
164

upper (resp., lower) prefiz sum vector at the start of step t of A against adversary Xs.

For each step t, we have gt < q? and p; = p?.

Proof: Let oy(i) and £;(i) denote the value of my(i) under adversaries X; and X,
respectively. We prove by induction on ¢ that: (i) ¢} < ¢7, (ii) p} = p?, and (iii) for all
i qét(i)(i +1) < q%t(i) (i +1). The induction base is trivial since ¢i = ¢3¢ and p} = p?
and ay(i) = Bi(i) = —1 for all . For the induction hypothesis we assume that (i), (ii),
and (iii) hold for all steps less than or equal to ¢.

We first show that qtlJr1 = qfﬂ. Consider any i in [n]. If i (i) < ¢2(i), then it
trivially follows from Lemma 5.14 that qtl_i_l(z') < qt2+1(z'). Otherwise, qtl(z) = qtz(z) In
this case, by Lemma 5.14, if qt2+1(i) = ¢?(i)—1, then 2¢?(:) > p?(i — 1)+¢2(i + 1), where
s equals (;(i). Let s’ equal a4(i). By the induction hypothesis, q;, (i+1) <g?(i+1)and
pi(t—1) < p?(i — 1). Since ¢f (i) = ¢?(1), we thus obtain 2¢{ (<) > p; (i — 1) + gL (i + 1),
which together with Lemma 5.14 implies that qtl_H(z') = ¢} (i) — 1. Thus, we have qtl_i_1 <
q§+1'

We next show that pt1+1 = p%+1- In order to prove that ptl_H(z') < p?_H(z'), we need
only consider the case in which (7,7 4 1) is in X;(¢), as otherwise the desired claim follows
directly from the induction hypothesis. Accordingly, assume that (¢,¢+ 1) is in &3 (¢).
Let uf(i) and u?(i) denote the values of u;(i) associated with adversaries X; and Xs,
respectively. If uf (¢) is positive, then p}, ; (i) = p; (1) —1 < pF(i)—1 < p}, (i). Otherwise,
we have p;, (1) = p}(i) = ¢t (i), and p?, (i) > p? (i) — u?(¢) = q7(:). Therefore, py,,(7)
is at most p , (4).

We now complete the induction step by showing that for all ¢, q(lltﬂ(i)(i +1) <
q%tﬂ(i) (¢4 1). If (z + 1,7) is not in Xp(t), then azy1(2) > a4(4) and Ber1(i) = Bi(7), and
hence the desired claim follows from the induction hypothesis and the trivial inference
from Lemma 5.14 that qyl- is nonincreasing as j increases. We now consider the case
in which (¢4 1,7) is in A5(¢). If ay1(2) # au(i), then the desired claim holds since
¢ A+ = q;t(i)(z' +1) — 1, while qgm(i)(z' +1) > q%t(i)(i +1) — 1. Otherwise, we

ag+1(%)

consider two subcases: oy4+1(¢) > Bry1(i) and apy1(¢) < Beg1(2). In the first subcase,

165

since qjl- is nonincreasing as j increases, q;tﬂ(i)(i +1) < qétﬂ (i)(i +1). For the second
subcase, we note that since ayy1(¢) = a4(i), no update message is received by ¢ in
step ¢ under adversary X7, which implies that no update message was sent by node
i + 1 to node ¢ in the interval [a;11(¢) + 1,¢ — 1] of steps under adversary X;. Since
every token transmission from node ¢ + 1 to node ¢ + 2 is accompanied by an update
message from node 7 + 1 to node ¢, we obtain that for every t' in [ay41(2) + 1,8 — 1],

gy (i +1) = q

Qi1

@) (¢ +1). In particular, qétﬂ(i)(i +1) = q;}t+1(i)(i + 1). Thus, in either
of the two subcases, qclrt+1 (i)(i +1) < qét+1(i) (i +1). The desired claim now follows from

the induction hypothesis. [

Corollary 5.15.1: Let Xy and Xy be two adversaries such that Xy ts weaker than Xs.
For any initial token distribution b, the number of rounds taken by A to balance b against

X1 is at most the number of rounds taken by A to balance b against Xs.
We are now ready to establish the main result for asynchronous rings.

Theorem 5.2: The number of rounds taken by A to balance any initial token distribution
b is at most 4D(b) +2n — 2. The number of token transmissions is at most T'(b) and the

number of message transmissions is at most 21°(b) + n.

Proof: Given any adversary A7, we construct a stronger adversary X5 that schedules
each component exactly once in each round, as follows: component « is in X(t) if and
only if «v is in A7 (¢) and ¢ is the first step in the current round such that « is in A7 (¢).
We next construct an adversary A3 that is stronger than X5 such that each round of X3
consists of scheduling the components in the following order: first all edges of the form
(i, — 1) in any order, then all the nodes in any order, and finally all edges of the form
(¢,¢+ 1) in any order.

By the definition of X5, the number of rounds taken by A against X; is at most
that taken by A against X5. By the definition of X5, the number of rounds taken by
A against X3 equals the number taken by A in the synchronous model, which is at
most 2D(b) + n by Theorem 5.1. Moreover, it is easy to see that X3 can be constructed

166

such that for any ¢, the number of rounds completed at the start of step ¢ of A3 is
at least half the number completed at the start of step ¢ of X3. It thus follows from
Corollary 5.15.1 that for A, the number of rounds taken against X7 is at most twice the
number taken against X3. Thus, the number of rounds taken by A to balance any initial
token distribution b is at most 4D(b) + 2n.

The bounds on the number of token and message transmissions follow as in the

synchronous case. 0

5.6 Concluding Remarks

In Sections 5.4 and 5.5, we obtained bounds on the time taken for A to converge to
a balanced state. One unfortunate characteristic of the bounds is the additive linear
term in the time complexity of A (see Theorems 5.1 and 5.2). We claim that such
an additive linear term is unavoidable for any distributed algorithm. To observe this,
consider two initial token distributions b and ¢ that are defined as follows. In both
distributions, node 0 has two tokens and every other node except node |n/2| has one
token. In distribution b, |n/2]| has zero tokens, while in ¢, [n/2] has one token. The
optimal centralized algorithm for either distribution takes at most one step. However,
any distributed algorithm takes at least linear time to terminate for at least one of the
two distributions, since it takes linear time for some node in the ring to distinguish
between the two distributions.

We would like to extend our study to more complicated, yet structured, networks
such as the d-dimensional mesh. Although we do not expect the bounds to be as sharp

as for the ring, results of a similar flavor are conceivable.

167

Chapter 6

Dynamic Load Balancing on

Arbitrary Networks

6.1 Introduction

We now turn to the dynamic aspect of load balancing. As before, we represent a dis-
tributed system by an arbitrary network, and assume that the load consists of indepen-
dent equally-sized tokens, that may be processed anywhere. The dynamic nature of the
problem is modeled by an on-line process that adds new tokens to and deletes old to-
kens from the system. Since an arbitrary on-line process is difficult to analyze, previous
work in this area has typically made certain probabilistic assumptions about the token
arrival process (for example, see [85, 111]). We depart from this approach and instead
study a simplified scenario of load balancing under a model that does not rely on any
probabilistic assumptions about the process of token generation and destruction.

Our model is based on an adversarial model that has been proposed recently
for studying routing problems [12, 32]. We assume that an adversary controls the on-
line process of token arrival and departure. In each step, the adversary determines the
locations and the number of tokens that are to be added to or deleted from the system.

Given such a model, a natural question to ask is whether there exist stable balancing

168

algorithms, that is, algorithms which ensure that the imbalance of the network does not
exceed a fixed (time-independent) bound.

It is easy to see that we need to place certain restrictions on the adversary to
allow for the possibility of stable algorithms. In our model, the sole restriction on the
adversary is that there must exist r < 1 such that: in any step, for every set S of nodes,
the increase in the imbalance of S due to the actions of the adversary does not exceed r
times the number of edges coming out of S. (The imbalance of a set S is the difference
between the total number of tokens in S and the product of the number of nodes in S
and the average number of tokens per node in the network.) See Section 6.2 for a formal
description of the model.

By a straightforward argument based on edge-cuts, we find that there is no stable
balancing algorithm if r is allowed to exceed 1. The main result of this chapter is that
the multi-port local balancing algorithm defined in Section 4.1.1 is stable for all networks

for all 7 < 1. Section 6.3 contains a proof of this result.

6.2 An Adversarial Model

Let G = (V,E) denote a network, where V is the set of nodes and E is the set of
bidirectional links. As before, let wy(v) denote the number of tokens at node v at the
start of step t. For any subset S of V, let w;(S) denote the total number of tokens
in S at the start of step t. Let the average number of tokens (w¢(V)/|V|) at the start
of step ¢t be denoted by p;. We define the imbalance of G at the start of step ¢ to be
max{|wi(v) — pt| :v € V]

Each step of the computation proceeds in two phases. In the first phase, the
balancing phase, one “step” of the balancing algorithm is executed. We assume multi-
port communication, whereby each node can send/receive at most one token along each
of its incident links.

In the second phase of each step, the adversarial phase, an adversary inserts

and/or deletes tokens from the network. Let e(S) denote the number of edges coming

169

out of a set S of nodes. Let d¢(S) denote the net increase in the number of tokens at
nodes in set S in the second phase of step ¢. (Note that d¢(S) may be negative.) An
adversary with rate r, where r > 0, can insert and/or delete any number of tokens on

any subset of nodes subject to the following constraint for every subset S of nodes:

1d4(S) — (pre1 — pOISI] < 7 - e(S) (6.1)

6.3 Stability of the Multi-Port Algorithm

Recall that in step ¢ of the multi-port local balancing algorithm, each node u executes
the following operation: for each edge (u,v), if wi(u) — w¢(v) > 2d + 1, then u sends a

token to v. This section is devoted to the proof of the following theorem.

Theorem 6.1: For any r < 1, the multi-port local balancing algorithm is stable for rate

r.

At the start of step ¢, for each node v, we assign a potential ¢;(v) of (ws(v) — p¢)?.
We define the height hi(v) of a node v at the start of step ¢ to be w;(v) — p;. Let &y
denote the sum of the potentials of all the nodes. Let V,™ (resp., V,”) denote the set of
nodes with nonnegative (resp., negative) heights at the start of step ¢. Let ®, (resp.,
®;) denote the sum of the potentials of all the nodes in V,* (resp., V,7). We note that
®; equals ® + ®; . Let wj(v) denote the number of tokens at v at the start of the
adversarial phase of step t. Let ¢}(v) denote (w}(v) — p¢)?.

We prove the stability of the multi-port algorithm by placing time-independent

upper bounds on both ®; and ®; . The key step in our analysis is the following lemma.

Lemma 6.1: If there exists a node with height at least 5n?d?/(2¢) at the start of step t,
then ®f,, is at most ®; . If there exists a node with height at most —5n%d?/(2¢) at the

start of step t, then @, is at most @, .

Proof: We only prove the first claim of the lemma. The proof of the second claim is

symmetric.

170

It is useful to extend the notion of height to tokens as well. For this purpose, we
assign, for every node v, a unique rank from [1, w;(v)] to each token at v. Let the height
of a token be its rank minus p;. We note that for any node v with nonnegative height,
¢¢(v) is the sum, over all the tokens = with positive height h(x), of the term 2h(z) — 1.

Assume that there exists a node with height at least 5n2d?/(2¢) at the start of
step t. We divide Vt+ into distinct sets in the following way. For any ¢ in N, if Ug<;;S;
is not equal to Vf, then let S; denote the minimal nonempty set of nodes such that for
all win S; and v in V;* \ Ug<j<i S}, wi(v) — wy(u) is at least 4d. Let k be the maximum
value of ¢ for which S; is defined. Since 5n?d?/(2¢) > 4nd, k is positive. Let S>; denote
Uj>4Sj. Let h; and ¢; denote maxycg, (wi(u) — py) and min,eg, (wg(u) — pt), respectively.
Thus, Sy, 51, ..., S, are disjoint sets that satisfy the following property: for 0 <1 < k,
each node in S; has at least 4d tokens less than each node in S;;;. Moreover, Up<;<S;
equals V1.

We first study the balancing phase. Consider a token z transferred from a node u
in S; to a node v not in S;. Since a token never gains height, the edge (u, v) belongs to the
cut (S>4, V'\5>;). Infact, (u,v) belongs to the cut (S>;,V'\S>;) for each j < i such that
visnot in S ;. (For example, if v is not in V;" = S>¢, then (u,v) belongs to (S>;, V\S>;)
forall 7 <1i.) A lower bound on the drop in the potential of the nodes in Vt"' as a result of

the transfer of the token x is obtained by >, ,)e(V\Ss,) (¢j—hj_1—2d). Thus, for any

S>i
i > 0, the potential drop due to the cut (S>;, V' \ S>;) is at least 2e(S5>;)(4; — hi—1 — 2d).
During the balancing phase, in addition to the potential drop, there may be a
positive contribution to the potential of the nodes with nonnegative heights by nodes
from V \ V,;* which gain tokens and achieve nonnegative height. Since each node gains
at most d tokens, this positive contribution to the potential is at most nd?. Thus, we

have the total potential drop in the balancing phase to be at least:
—nd® +) 2e(S5:) (4 — hi—1 — 2d). (6.2)

>0

Let us now consider the adversarial phase in which the potential may increase

due to the tokens added by the adversary. The potential of any node v in V;" at the
171

start of step ¢ + 1 is (wer1(v) — pe1)? = ((wi(w) — pt) + (de(w) — (pe1 — pr)))?. Thus,
the potential at the start of step ¢ + 1 due to nodes in V;"' is at most:

YD Shlw) + 2(wi(u) = pe)(de(w) = (per1 = pe)) + (de(w) = (pesr — 1))’

1 u€eS;

< Z +Z2h (dy(u) — (prs1 — pr)))) + nd®.

[u€es;

In addition to nodes in V;* that remain in Vtil, there may be nodes that do not belong
to Vt+ but belong to Vtil By Equation 6.1, the potential of any such node is at most
d?. Thus, the total increase in potential in the adversarial phase is at most:

2nd? + Z 2h;i(d(Si) — (pe+1 — pe)|Sil)- (6.3)

i

It follows from Lemma 6.2 below that the right-hand side of Equation 6.3 is maximized
if the adversary adds as many tokens to Sp as the constraint in Equation 6.1 allows,
then adds as many tokens to S;_; as the constraint allows and so on. We thus obtain
an upper bound on the increase in potential by making the following substitution in

Equation 6.3 for all ¢ in [k + 1]:

dy(Si) = (per1 — po)|Sil = (1 —€)(e(S>i) — e(554))- (6.4)

By Equations 6.2, 6.3, and 6.4, we obtain that the net decrease in potential is at

least:
—3nd® — Z 2h;i(1 — €)(e(5>:) — e(S>i)) + 226(520(@‘ —hi—1 —2d)
i>0 i>0

= —3nd® — 2ho(1 — £)e(S>0) + > 2e(S>i)(€; — (1 — €)hi — ehi_1 — 2d)
>0

= —3nd® - 2h0(1 - 8 S>0 Z 2e S>z h; + Z 2e S>z h; — hifl) — 2d)
>0 >0

> —3nd® —4nd® +) 2e(Ssi)(e(hi — hi1) — 2d)

i>0

> —3nd? — 4n’d? + 2¢(hy — 4nd) — 2nd?

= —(4n2d® + 5nd? + 8=nd) + 2chy,

A%

—5n2d? + 2ehy,
172

for n sufficiently large. (In the first and second equations, we rearrange the summands.
For the third equation we note that: (i) h; —¥¢; is at most 4nd for all d, and (ii) the total
number of edges in the network is at most nd/2. For the fourth equation, we note that:
(i) e(S>) is at least one for all 4, (ii) e(S) is at most nd/2 for all S, and (iii) ho is at
most 4nd.)

Since there exists a node with height at least 5n2d?/(2¢), hy is at least 5n2d?/(2¢).

Hence, the net decrease in potential is nonnegative. 0

In the following lemma, we use the notation (z) to denote a sequence xg, z1, .. .,

of reals.

Lemma 6.2: Let () be a sequence of k nonincreasing nonnegative reals. Let (3) be a

sequence of k nondecreasing reals. Then, an optimal solution to the linear program P:

maximize Z Q;T;
i€[k]

subject to Z z; < Bi, for all j in [1,k),
i€lj]

is obtained when g is By and x; is B; — Bi—1 for all i in [1, k).

Proof: Given any solution (y) to P and any ¢ in [k], we say that i is good if > o ;; y;
equals ;. Let (z*) be defined as follows: zj is By and z} is §; — B;—; for all 7 in [1, k).
We note that (z*) is the unique solution that has k good indices.

Given an optimal solution (z) to P that has fewer than k good indices, we con-
struct a new optimal solution (z') that has more good indices than (z). This construction
suffices to establish the lemma.

Let £ be the largest index that is not good; thus, ¢ is the largest index such that
EOSJSZ z; is less than 3. If £ is k — 1, then we set z;- to z; for all j in [k — 1] and 2;_,
to Br—1 — D g<jck_1%j- We note that (z') is a feasible solution to P. Also, () is an
optimal solution since z;c_l > zp_1 and ag_1 is nonnegative. Moreover, the number of

good indices of (z') is one more than that of (z).

173

If £ is less than k — 1, then we set 2} to z; for all j in [k]\ {£,£+1}. Let & denote
the term By — > oo 2. We set z to z¢+ 6 and zp; to ze41 — 4. It follows that (2') is
a feasible solution to P. Also, (z’) is an optimal solution since:

Z aizi = (ag—ag1)d+ Z Q;z;

0<i<k 0<i<k

> Z %4,

0<i<k
where the last equation holds since oy > ayy1. An index 7 in [k] \ {¢} is good for
solution (z) if and only if ¢ is good for solution (z'). Moreover, £ is a good index for
(z"). Therefore, the number of good indices of (z’) is one more than that of (z). This

completes the proof of the desired claim. []

Proof of Theorem 6.1: We now show that for all ¢, ®;” and ®, are both at most
n(5n2d?/(2¢) + d)?. Let, if possible, t be the first step such that ®; is greater than
n(5n2d?/(2¢) +d)?. Therefore, there exists at least one node v such that hs(v) is at least
(5n2d?/(2¢) + d). Since the height of a node increases by at most d in the balancing
phase and by at most d in the adversarial phase, we obtain that hy(v) < hy_1(v) + 2d
for all v. Therefore, for all v in V, hy 1(v) is at least 5n2d?/(2¢). This implies that
by Lemma 6.1, <I>;;1 is at least ®;", which contradicts our choice of . A symmetric

argument establishes that ®; is at most n(5n2d?/(2¢) + d)?.

Hence, the imbalance at the start of any step ¢ is at most y/n(5n2d2/(2¢) + 2d)2,
which is at most 3n%/2d2 /e for n sufficiently large. This establishes the stability of the

multi-port algorithm. 0

6.4 Concluding Remarks

Consider the following variation of the adversarial load balancing problem that is mo-
tivated by job scheduling. We are given an arbitrary network and a dynamic token
arrival/departure process in which each token represents a job that takes one unit of

time to process at any node of the network. In each step, we allow an adversary to

174

create at most n new tokens and distribute them among the nodes of the network arbi-
trarily subject to the constraint that for every subset S of nodes, di(S) — |S| < r - e(S5),
where 7 < 1. (Recall that e(S) denotes the number of edges coming out of S.) A single
step of any scheduling algorithm consists of: (i) a balancing phase in which each node
can send and/or receive at most one token along each of its incident edges, and (ii) a
processing phase in which each node may process at most one of its tokens. Once a
token is processed, it is deleted from the network. We say that a scheduling algorithm is
stable if each token is processed within a bounded (time-independent) number of steps.

It is easy to see that if we strengthen the adversary by either allowing more than
n tokens to be added per step or letting r exceed 1, then no stable algorithm exists. On
the other hand, we can show that the local load balancing algorithm can be combined
with any work-preserving processing strategy to obtain a stable algorithm against all
adversaries provided r < 1. (In a work-preserving strategy, a node is idle only if it has
no tokens to process.)

The main technical problem left open by this chapter concerns the stability of
local load balancing algorithm for rate 1. We conjecture that the algorithm is stable for
rate 1 too. A proof technique different from the one used in this chapter, however, may

be needed to establish such a result (if it holds).

175

Conclusions

In this dissertation, we have developed and analyzed mechanisms for sharing resources in
distributed systems. We have demonstrated that simple local algorithms can efficiently
solve certain problems related to sharing memory and processors in a distributed system.
We now conclude by summarizing our results and by presenting a few directions for future

research.

Sharing Memory

In the first half of the dissertation, we considered the question of how to share memory
in a distributed system. Since the general problem is quite complicated, we focused on
two specific aspects of the problem: memory contention and faults. Our main result is a
protocol that provides fast access to shared objects in an environment in which memory
contention can be unlimited and a constant fraction of the nodes and communication
links can be faulty at any time. We showed that if each access request is chosen according
to a fixed probability distribution over the set of objects, then our protocol reaches a
steady state in O(logn) steps. In the steady state, each request is satisfied in expected
O(1) steps and the throughput of the protocol is asymptotically optimal. We also proved
that the protocol continues to remain in a steady state if changes in the access pattern
are moderate.

There are a number of directions in which our work can be extended. The most

pressing need, perhaps, is that of proposing a model and developing some new techniques

176

to incorporate nonuniform communication costs. One simplifying, yet useful, model for
nonuniform networks is to set the cost of sending a message of length ¢ from a node
u to v as some fixed function of u, v, and £. In addition, as done in this dissertation,
we may place a bound on the number of messages that a node can send or receive per
unit time. Even though the preceding model does not consider issues such as internal

network congestion, the following interesting questions can be posed for the model:

e Placement of copies: In order to support high degrees of concurrency, on-line
replication will play a central role in any efficient access scheme. The results in
Chapters 2 and 3 show that if the cost model is uniform, random hashing can be
used to determine where to place the copies. For a nonuniform network, however,
we would like the placement of copies of any object to be determined by the current
distribution of requests for the object across the network. This leads us to a
well-studied problem in combinatorial optimization, the facility location problem
(e.g., see [40]). While the facility location problem is NP-complete, constant-
factor approximation algorithms for important special cases have been obtained
recently [84, 106]. All of the current solutions devised for this problem, however,
assume centralized control; it would be interesting to obtain solutions that can be
adapted to a dynamic and distributed environment. (For recent related work in

this area on specific network topologies, see [89].)

e Locating nearby copies of objects: In a nonuniform network, changes in the pattern
of accesses across the network may cause changes in the locations of object copies.
Hence, there is a need for a mechanism to dynamically locate nearby copies of
objects. While this problem has been well-studied (see [96] for early work, and [19,
26, 103] for recent results), existing solutions either hold for restricted cost models
only or suffer from large overhead in storage requirements. (By overhead in storage,
we refer to the memory required to store information about the locations of the
objects.) Since the above problem has direct applications to the Internet [66, 117],

an efficient solution would be of great interest.

177

Sharing Processors

In the second part of the dissertation, we analyzed the effectiveness of a local balancing
strategy in which each node repeatedly balances its load with its neighbors. Our main
results in this part concern the static aspect of the problem, i.e., we assume that the total
workload does not change with time. We showed in Chapter 4 that the local balancing
approach is worst-case optimal for all networks. In Chapter 5, we improved the preceding
result for the special case of ring networks by showing that the local balancing approach
is optimal (up to an additive linear term) for all distributions on the ring. Our results
for static load balancing hold in asynchronous environments as well.

Our work on static load balancing leaves a number of interesting open questions.
Can we improve the bounds obtained in Chapter 4 for arbitrary networks? In particular,
we would like to determine whether the multi-port algorithm balances any network G
with any initial distribution b in O(OPT(b)) + f(G) steps for some f(G) independent
of b, where OPT(b) is the time taken by an optimal centralized algorithm to balance b
on GG. Recall that such a result was derived in Chapter 5 for the case of ring networks.
A less ambitious goal is to extend the techniques of Chapter 5 to obtain similar bounds
for regular topologies closely related to the ring, e.g., fixed-dimensional meshes.

We concluded the second half of the dissertation by showing that the local bal-
ancing algorithm is a good candidate for dynamic load balancing as well. Our result in
this area, however, is limited in scope. An interesting enhancement of the basic load
balancing problem is the following scheduling problem that considers dynamic job ar-
rival. Let G = (V, E) be an arbitrary network with arbitrary capacities on edges. Given
an on-line stream of jobs indexed by N, job j characterized by the triple (a;, v;,t;) such
that: (i) job j arrives at node v; at time a;, and (ii) ¢; is the execution time of job j
(on all nodes), the job scheduling problem is to allocate the jobs such that the average
response time is minimized. This problem has been studied under a model in which edge
capacities are infinite [7, 21, 46]. For our model, however, results to date are limited to

specific instances of the problem [71].

178

Appendix A

Tails of Probability Distributions

Theorems A.1 and A.2 provide bounds on the tails of the binomial and hypergeometric

distributions, respectively.

Theorem A.1 ([37]): Let X be a random variable drawn from B(n,p), i.e., X is the
number of successes in n independent Bernoulli trials, where each trial succeeds with

probability p. Then,

PriX <(1—e)np] < e ™2 0<e<1 (A.1)
PrlX > (1+e)np] < e ™3 0<e<1 (A.2)
Pr[X > (1+&)np] < [e5(14¢)~ (Ot (A.3)

0

Theorem A.2 ([70, 38]): Let S be a set of s balls, T' be a subset of S, t = |T'|, and
p =t/s. Let s' balls be chosen uniformly at random from S, andt' be the random variable

representing the number of balls that are chosen from T. Then, for any real € > 0,

Pr[t' > (p+¢)s'] < e 29 and

Prlt' < (p—¢)s] < e 2%

Proof: By [38, 70],
Prlt' > (p+¢)s'] < e 27

179

The lower bound on ¢’ can be proved by using the upper bound on s’ —t'. Thus,

Prft! < (p—¢)s'|=Pr[s —t' > (1 —p+e)d] < o278

180

Appendix B

Martingales

The theory of martingales provides a useful tool for analyzing certain random processes
that are not completely independent. Our presentation in this appendix is based on that
of [8]. A martingale is a sequence Xy, ..., X, of random variables so that for 0 < i < m,
E[Xiy1 | Xi] = X;. We use Azuma’s inequality to obtain bounds on large deviations for

martingales.

Theorem B.1 (Azuma’s Inequality [8]): Let Xy, ..., X be a martingale with | X;11—
Xi| <1, for all 0 <i < k. Then for real A > 0,

Pr || Xy, — Xo| > AWk| < 2e /2.

O

The following theorem identifies certain conditions that are sufficient for applying

Azuma’s inequality.

Theorem B.2 ([8]): Let Q = AP denote the set of functions g : B — A. Fiz a gradation
) =By C By C---C By, =B. Let L be a function from Q to R. Define a martingale
Xo,..., X by setting

Xi(h) = EIL(g) | g(8) = h(b) for all b€ Bi.

181

We say that L satisfies the Lipschitz condition if the following holds for all i: whenever
h and h' differ only on B;y1 — B;, we have |L(h') — L(h)| < 1. If L satisfies the Lipschitz
condition, then |X;11(h) — X;(h)| <1 for all0 <i < m and h € Q. 0

182

Appendix C

Technical Inequalities

In this appendix, we prove certain inequalities concerning functions f and g of Sec-

tion 2.4.2 and function ¢ of Section 4.4.

C.1 Expected Number of Non-Singletons and Non-Pairs

Recall that f(m,n) and g(m,n) are defined as follows:

fm.n) = m(l—(l—%)m_1>,and
g(m,n) = m(1—<1—%>m_1—m;1<1—%>m_2>.

Lemma C.1: For all integers m and n such that 3 < m < n, we have

m?/3n < f(m) < m?/n.

Proof: By definition,
f(m) =m(l—(1—1/n)™7).

Since (1 —1/n)™ 1 >1— (m —1)/n,

f(m) m(l =1+ (m—1)/n)

IA

IA

m?/n.

183

For the lower bound, since (1 — 1/n)™~1 <1 — (" 1) /n+ (",)/n?,

sy = = (" e (M) e
> (m(m —1)/n)(1 ~ (m ~2)/20)
> m(m —1)/(20)
> m?/3n.

In the penultimate derivation, we use (m — 2)/2n < 1/2, and in the last derivation, we

use (m—1)/2 > m/3 for m > 3. 0

Lemma C.2: For all integers m and n such that 6 < m < n, we have
m?/12n? < g(m) < m3/n?.
Proof: By definition,
g(m) =m(1 — (1= 1/n)""" = ((m = 1)/n)(1 - 1/n)"?
Since (1 —1/n)™ 1 >1—(m—1)/nand (1-1/n)™2>1—(m—2)/n,

o) = mla =1 (" = 1)k = (™))

< m3/n?

For the lower bound,

om) = i1+ (") e (T (M e (M) et
=+ m=) ("= (7)

tn=)(")t = =y (7 7))

> m((m ~ 1)(m ~ 2)/20® ~ (m — 1)(m — 2)(m — 3)/3n°
#m = 1)(m = 2)(m — 3)(m — 4)/24n° (= 1) (" 7))

> (m(m — 1)(m — 2)/n)(1/2 ~ (m — 3)/3n)

> m(m — 1)(m ~ 2)/6n?

> m3/12n>.

184

In the last derivation we use (m — 1)(m — 2) > m?2/2 for m > 6. 0

Lemma C.3: If n and m are integers such that 2v/n < m < n, then for all real x > 0,
F(m(1+2)) < (L+2)*f(m).
Proof: By the definition of f,
Fm(1+2)) = m(L +2)(1 - (1 — 1/mym+2)1),

We establish the desired inequality by proving that (1 — (1 —1/n)m~1tme) < (14z)(1—
(1—-1/n)™"1), which is equivalent to showing that (1 —1/n)™ 1+ > (1—-1/n)™ 1(1+
z) — z. Since (1 —1/n)™ > (1 — mz/n),

(1—1/p)ym ttme > (1 -1/n)™ (1 - mz/n)

(1—=1/n)™ Y1 +z)—z(1+m/n)(1 —1/n)™ 1

> (1-1/m)™ (1 +e) - e

The last derivation follows from the observation that for m > 2y/n, (1 4+ m/n) < (1 —
1/n)t=m. i

Corollary C.3.1: If n and m are integers and x is real such that 0 < x < 1 and

2y/n <m(l—2z) <m <n, then:
fm(l+a)) < (L+2)’f(m), and
fm(l—=)) = (1-2)’f(m).

Proof: The first inequality follows directly from Lemma C.3. The second inequality is
proved by applying Lemma C.3 substituting (m(1 —z),1/(1 —z) — 1) for (m, z). 0

Lemma C.4: If n and m are integers such that n > 9 and 10y/n < m < n, then for real
x>0,
g(m(1 +)) < (L +2)*g(m)

185

Proof: By the definition of g,

g(m(1+a)) =m(l+a)(1— (1 -1/n)™ 71— ((m(1+ @) —1)/n)(1 = 1/n)"(+)72),

We establish the desired inequality by showing that (1 — (1 — 1/n)m(1+2)-1 _

(m(1+=)—1)/n)(1 - 1/n)™1+2)=2) < (14 2)3(1 — (1 = 1/n)™! = ((m — 1)/n)(1 -
1/n)™=2). This is equivalent to showing that (1 —1/n)™" 1™ 4 ((m(1+x)—1)/n)(1 -
1/n)m’2+m”c > (1 —I—x)?’(l — 1/71)""1 +(1 —|—CB)3((7TL —1)/n)(1— 1/n)""2 — 3 — 322 —3z.

Y

v

Y

v

Y

A%

(1= 1/n)m= 1M 4 ((m(1 + 2) = 1)/n)(1 = 1/n)m=24me

(1= 1/n)™ (1 = ma/n) + ((m(l+2) = 1)/n)(1 = 1/n)™?

—((maz(m(1+x) - 1))/n?)(1 - 1/n)"™"?

(1 —1/n)™ (1 —ma/n) + ((m = 1)1 +2)/n)(1 —1/n)"

+(z/n)(1 —1/n)™ % = ((ma(m(1 + z) — 1))/n®)(1 = 1/n)™"?

(1+2)*(1—1/n)™ ! — (2* + 32% + 3z + ma/n)(1 — 1/n)™*

+(1+2)3((m—1)/n)(1 —1/n)™ 2 — (z° + 32* + 2z)((m — 1) /n)(L — 1/n)™ 2

+(z/n — m2z/n* — m2z? /n? + mx/n?)(1 - 1/n)™ 2

(1+2)*(1—1/n)™ ! — (23 + 322 + 3z + ma/n)(1 — 1/n)™ 2

+(L+2)*((m —1)/n)(1 — 1/n)™2 — (2* 4 32 + 2z)((m — 1)/n)(1 — 1/n)™2

+(z/n — m*z/n? — m?z?/n? + mz/n®)(1 — 1/n)™ 2

(I+2)3(1-1/n)™ "+ (1 +2)*(m-1)/n)(1 - 1/n)™?

—(1—=1/n)™"%(23 + 32 + 3z + ma/n + ma®/n — 23 /n

+3ma?/n — 322 /n + 2ma/n — 2z /n — x/n

+m2z/n? + m?z?/n® — mx/n?)

(L4+2)3(L=1/n)™ 1+ (1 +2)3((m—1)/n)(1 - 1/n)™2

—(1=1/n)™2(z3(1 + m/n — 1/n)

+32%(1 + m/n — 1/n+ m?/3n?) + 3z(1 + m/n — 1/n + m?/3n* — m/3n?))

(1+2)>%0—=1/n)™+ (1 +2)((m—1)/n)(1 —1/n)™2 — (23 + 32% + 3z).
186

The last derivation follows from the inequalities (1 + (m — 1)/n + m?/3n?) < (1 —
1/n)’(m’2) for n > 9 and 10y/n < m <n. 0

Corollary C.4.1: If n and m are integers and x is real such that 0 <z <1,n > 9, and
10y/n < m(1 —z) < m < n, then:
g(m(l+2)) < (1+z)*g(m), and

gm(l —z)) = (1-x)%g(m).

Proof: The first inequality follows directly from Lemma C.4. The second inequality is

proved by applying Lemma C.4 substituting (m(1 —z),1/(1 —z) — 1) for (m, z). 0

C.2 The Potential Function of Section 4.4

The function ¢ is defined in Section 4.4 as follows:

0 if 2 < 24jd — 11d,
¢(z) =

(I14+v)* otherwise,
where v equals a/(cd?). For the following we set ¢ large enough so that (1+v)12¢ < 3/2.
Lemma C.5: For any integer z, if ¢(x) > 0, then ¢(z + 12d) < 3¢(x)/2.
Proof: Since ¢(z) > 0, we have ¢(z + 12d) = (1 + v)??¢(x) < 34(z)/2. (Note that if

#(z) = 0 then ¢(x + 12d) may not equal (1 + v)'24¢(z).) 0

Lemma C.6: For any integer x we have

max{¢(24jd), ¢(z — 12d)} = 2¢(z)/3

Proof: If ¢(xz — 12d) > 0, then 2¢(x)/3 < ¢(x — 12d) by Lemma C.5. Otherwise,
z—12d < 24jd — 11d, which implies that = < 24jd + d. Therefore, ¢(z) < ¢(245d+d) <
¢(24jd)(1 +v)? < 3¢(24jd)/2. 0

187

Lemma C.7: For any integers x and y, if ¢(x) > 0 and x —y > 11d, then we have
¢(z) — ¢(y) = 2(¢(x + 11d) — ¢(y))/5.

Proof:

2(¢(z + 11d) = ¢(y))/5 = 2(¢(z + 11d) — ¢(x))/5

IN
[\]

-
+
S

IA
[\~

_
+
S

< 9(z) — 9(y).

(In the second equation we use: z — 11d > y. In the last equation we use: (1 4 v)!1? <

3/2.) i

188

Appendix D

Proof of Lemma 4.7

This appendix contains a proof of Lemma 4.7 that is stated in Section 4.4. We begin by
defining a notion of goodness of the tokens. Initially, all tokens are unmarked. After any
step t, for every token p that is moved along an edge, p is marked good if hy_1(p)—h¢(p) >

6d; otherwise, p is marked bad. The marking of tokens that do not move is unchanged.

Lemma D.1: For any two bad tokens p; and ps present at any node v at the start of any
step t, if p1 and pa are last sent to v by the same neighbor u of v, then |hy(p1) —he(p2)| >
4d.

Proof: Let t; (resp., t2) be the step during which p; (resp., p2) is last sent to v.
Without loss of generality, we assume ¢; < t3 < t. Thus we have hy(p1) < hi(p2).
Since u’s estimate of the number of tokens at v is updated in step ¢1, we have e}, (v) >
p+he, (p1)—d. (Note that e} (v) is u’s estimate of the number of tokens at v after step ¢;.)
Since p; remains at v during the interval [t;,¢2), we find that e} (v) > p+ hy(p1) — d for
every step t' in [t1,t2). In particular, we have e}, _;(v) > p+hs, 1(p1) —d. Since u sends
p2 to v in step to, hy, 1(p2) > by, 1(u) —d > e}, ((v) —p+11d > hg, 1(p1)+10d. Since
p2 is bad, we also have hy, (p2) > hiy—1(p2) —6d > hy,—1(p1) +4d. Since hi(p2) = hy, (p2)

and h¢(p1) = hiy—1(p1), the lemma follows. 0

189

Corollary D.1.1: At any time, for any node u and integer i > 0, there are at most d
bad tokens with heights in (i,i + 4d]. 0

Proof of Lemma 4.7: Consider an arbitrary step ¢ of the algorithm. For every token
p transferred from u to v in step ¢, we assign some credit to every edge adjacent to
uw or v. Specifically, if p is marked good after step ¢ we assign an outgoing credit of
9(d(he—1(p)) — #(he(p)))/(20d) units to every edge adjacent to u and an incoming credit
of the same amount to every edge adjacent to v. If p is marked bad we assign an outgoing
credit of (¢(hy(p) + d) — $(he(p)))/(20d) + (6(hs-1(p)) — (i1 (p) — d)) units to every
edge adjacent to u and an incoming credit of the same amount to every edge adjacent
to v. Also, for each edge (u,v), we assign an initial credit of 2 max{¢(24j5d), (¢(ho(u) —
d) + ¢(ho(v) —d))} units at the start of the analysis. The total initial credit I is bounded

as follows:
I o< 2<Z>¢(24jd)+ 3" 2(é(ho(u) — d) + d(ho(v) —)
(u,w)EE
< nP¢(245d) + > D 2¢(ho(u) —0)
ueV 0<e<d

< n2¢(245d) + 2®,.

(The first equation follows from the fact that the maximum of two quantities is at most
the sum of the particular quantities. We also note that each undirected edge (u,v)
appears at most once in the summation. For the second equation, we note that each
node has at most d edges. Hence for any node u, the term 2¢(ho(u) — d) appears in
at most d terms of the sum. We complete the derivation of the second equation by
observing that ¢(ho(u) —£) is at least ¢(ho(u) —d) for 0 < £ < d. The third equation is
obtained by the fact that } -, #(ho(u) — £) is at most ¢(u).) The above bound on I
corresponds to the negative term in Equation (4.4).

We now show that using the above accounting method, we can account for the
amortized potential drop of (¢(hi—1(u) —d) — P(hs—1(v)+d))/50 units at step ¢ for every
edge (u,v) € E;. To accomplish this, for every live edge (u,v) ((u,v) not necessarily in

190

E}), we consider three cases: (i) a token p sent from u to v is marked good, (ii) a token
p sent from u to v is marked bad, (iii) no token is sent from u to v.

We first consider case (i). When a token p is marked good after being sent along
(u,v), we use the actual potential drop of p to pay for the amortized drop D; associated
with (u,v) as well as the total credit D5 assigned to the edges adjacent to u or v due to

the transfer of a good token.

D1+ Dy < (¢p(ht—1(u) —d) — d(ht—1(v) + d))/50 + 9(S(hi—1(p)) — #(hs(p))))/10
(¢(he-1(p)) — #(he(p)))/50 + 9(d(he-1(p)) — ¢(he(p)))/10
¢(ht-1(p)) — d(he(p)).

IA

VAN

(The first term in the right-hand side of the first equation is the amortized potential
drop. The second term is an upper bound on Dj since the number of edges adjacent to
either u or v is at most 2d. The second equation follows from the fact that h; 1(p) is at
least hy; 1(u) — d and hy(p) is at most hy(u) + d.)

We now consider case (ii). In this case we need to account for: (1) if h(p) >
h:_1(p), an amount equal to the potential increase of D1 = ¢(h(p)) — ¢(hs_1(p)) units,
and (2) a credit of at most ((hy(p)+d) — (he(p)))/10+ (@(hs_1(p)) — Blhe 1(p) —))/10
units. We pay for (¢(hi—1(p)) — ¢(ht(p)))/10 units of the credit using the potential
change. The remainder of the credit we need to account for is at most the sum of
Dy = (¢(ht(p) + d) — ¢(ht(p)))/10 and D = (¢(he(p)) — ¢(hs—1(p) — d))/10. (Note that
this is true regardless of whether the potential of p decreases in step ¢.)

We have two subcases, depending on whether ¢ is the first step (u,v) is live
(subcase (a)) or not (subcase (b)). In subcase (a), if ho(u) > h(p) — d, the initial credit
C)y associated with (u,v) is at least 2 max{¢(24;5d), #(h¢(p) —2d)}. Since ¢(hs(p) —2d) >
¢(he(p) — 12d), it follows from Lemma C.6 that 3Cy/4 > ¢(hi(p)) > D1. Since ¢(hi(p) —
2d) > ¢(hu(p) — 11d), Co/4 > d(ha(p)+d)/3 > @(he(p) +d)/10+$(hu(p))/10 > Dy + D,
Therefore, we have Cy > Dy + D2 + D3.

We now consider subcase (a) under the assumption that ho(v) < hy(p) — d. In
order to do the accounting, we use part of the incoming credit associated with the edge

191

(u,v) due to the set X of good tokens of v with heights in the interval (ho(v), he(p) —d].
(Note that each token in X is marked and thus, has contributed incoming credit to all
edges adjacent to v.) Since each token z in X is good, the height of the token before
the transfer to node v was at least hi(q) + 6d. Therefore, the incoming credit assigned
to (u,v) by a token x in X is at least 9(¢(hi(q) + 6d) — ¢(hi(q)))/(20d) units. For each
token z in X, we use ¢ = 8(¢(he(q) + 6d) — #(h(q)))/(20d) units of this incoming
credit. Let C} denote) .y c,. We obtain the following lower bound C;. By invoking
Corollary D.1.1, we obtain:

Gz Y S (G(halp) —d — id + -+ 6d) — $lhe(p) — 4id + k)
1<ic| hep)=dto) | 1<k<3d
> Y S (G(hp) — d - did+ k + 6d) — G(he(p) — 4id +)
1<h<3d i | halr)=d—ho(v)
8 h —d—h
> o S (Blhalp) —d—4d o+ 6d) - plhulp) —4d DI)
1<k<3d
8
> 5oq D (@h(p) +d) = ¢ho(v) +8d))
1<k<3d

= 6(¢(he(p) + d) — ¢(ho(v) + 8d))/5.

(In the first equation we partition the interval (hg(v), ht(p) — d] into subintervals of 4d
consecutive integers starting from hy(p) — d. The last subinterval may have fewer than
4d integers; if so, we ignore the last subinterval in the sum. The second summation in
the first equation is a lower bound on the sum of ¢, over each good token z in each
subinterval. To obtain the second summation, we invoke Corollary D.1.1 which implies
that there are at least 3d good tokens in every subinterval of 4d tokens. The second
equation is obtained by interchanging the order of sums. For the third equation, we use
the fact that ¢(he(p) —d — 4(i — 1)d + k + 6d) > ¢(ht(p) — 4id + k) and then note that
the sum telescopes. For the fourth equation, note that: (i) the index k is at least 0 and
at most 3d, and (ii) hy(p) — 4d| 2@=E=ho®) | < p(4) 4 5d.)

Since p is marked bad after step ¢, we have hy(p) > hy_1(p) — 6d. Therefore,

Co+C1 = 2max{$(24jd), p(ho(v) — d)} + 6(¢(hs(p) + d) — d(ho(v) +8d))/5
192

> 6(hi(p) +d)/5

> ¢(he(p)) = d(he-1(p)) + (6(he(p) + d) — ¢(he(p)))/10
+(¢(he(p)) — ¢(he-1(p) — d))/10

> Dy + Dy + Ds.

(The first equation states the lower bounds on Cy and C; obtained above. For the
second equation, we invoke Lemma C.6 as follows: 2max{¢(24jd), p(ho(v) — d)} >
4¢(ho(v)+11d)/3 > 6¢(ho(v)+8d)/5. The third equation is obtained from the following
three observations: (i) ¢(hu(p) +d) > B(he(p)) — Slhe_1(p)), (i) S(hu(p) + d)/10 >
(6(he(p) +d) — d(ha(p)))/10, and (i) $(he(p) +d)/10 > ((he(p)) — Sk 1(p) — d))/10.

We use a similar argument as above to handle subcase (b) where ¢ is not the first
step in which (u,v) is live. The set X is the set of good tokens of v with heights in the
interval (e} ;(v) — p, ht(p) — d]. Let ¢, and C; be defined as in subcase (a). That is, ¢,
equals 8(¢p(h¢(x) + 6d) — ¢(ht(x)))/(20d) units of the incoming credit assigned to (u,v)
by a token z in X, and C; equals)y c,. We will show that 11C1/12 > Dy + D3, and
C1/12 > D, and hence obtain that C; > Dy + Dy + Ds.

We first show that 11Cy/12 > Dy + Ds. If hy(p) < hy_1(p) — d, then Dy, and D3
are both nonpositive and hence the desired claim holds trivially. We now assume that
he(p) > h¢—1(p) —d. Let y denote e} ;(v) — p+ 8d. We observe that since u sent a token
to v during step ¢, y = e} ;(v) —p+8d < hy_1(u) —4d < hy_1(p) — 3d. Since p is a bad
token, we have y < hy_1(p) — 3d < hy(p) — 2d. As in subcase (a), we divide the interval
(e} 1(v) = p, ht(p) — d] into subintervals consisting of 4d consecutive integers. Note that
el 1(v) —p < hy(p) — 11d, and hence the number of subintervals is at least 1. We obtain
the following lower bound on 11C4/12.

G /12 = (11/12) - 6(¢(he(p) + d) — ¢(y)) /5
11(¢(he(p) + d) — ¢(hs-1(p) — 2d))/10

(¢(he(p)) — ¢(he-1(p))) + (¢(he(p)) — ¢(he-1(p) — d))/10
Dy + Ds

(ALY,

193

(The first equation is obtained in the same manner as the upper bound on Cj in sub-
case (a). While the interval considered in subcase (a) is (ho(v), ht(p) — d], we consider
here the interval (e} ;(v)—p, he(p)—d] = [y—8d, h¢(p)—d]. Hence, the term ¢(ho(v)+8d)
obtained in the lower bound on C} in subcase (a) is replaced by ¢(y) above. The second
equation is obtained by the upper bound on y.)

We now show that C;/12 > D,. Since a token is sent by w to v in step ¢,
et 1(u)—p < hy—1(u) —12d < hy_1(p) —11d. Moreover, since p is a bad token, h;_1(p) <
h¢(p) — 6d. Therefore, e} ;(u) — p < hy(p) — 5d. It follows that (h¢(p) — 5d, he(p) — d] is
a subinterval of (e} ;(u) — p, ht(p) — d]. Hence, Cy can be lower bounded by adding ¢,
over all good tokens x whose height is in (h(p) — 5d, h¢(p) — d]. By Corollary D.1.1, at
least 3d of the tokens in [h¢(p) — 5d, ht(p) — d] are good. We thus obtain:

C1/12 > (3d/12) - 8(¢(ht(p) + d) — d(hs(p) — d))/(20d)
= (¢(he(p) + d) — ¢(he(p))/10

> Dy.

(For the first equation, note that ¢, = 8(¢(he(z) + 6d) — ¢(hi(x)))/(20d) > 8(d(hs(p) +
d) — ¢(he(p) — d))/(20d), for he(x) in [he(p) — 5d, he(p) — d]. The last equation follows
from the definition of Ds.)

To complete the proof for case (ii), we show that for any token z of v, any
incoming credit assigned by x to edge (u,v) that is used at step ¢ for case (ii) is not used
again for case (ii). To prove this, we note that for any z in X, for every further step ¢’ > ¢
until z is transferred by u, we have hy(x) > e} ,(v) — p. While establishing case (ii) for
step ¢, we only use the incoming credit assigned by tokens in (e} ,(v) — p, hy (p) — d].
Hence the incoming credit assigned by x to edges adjacent to u that is used at step ¢
will never be used again.

We need to consider case (iii) only under the assumption that (u,v) € Fy, i.e.,
(u,v)is live in step ¢. In this case we account for D = (¢(hy—1(u)—d)—@(hi—1(v)+d))/50
units of potential. Again we consider two subcases depending on whether ¢ is the last
step in which (u, v) is live (subcase (a)) or not (subcase (b)). We first consider subcase

194

(a). If ho(u) > hy—1(u) — 12d, then we use Cy = 2max{¢$(245d), p(ho(u) — d)} units of
the initial credit associated with (u,v). Since hy_1(u) —d < ho(u) — d + 12d, it follows
from Lemma C.6 that Cy > 4¢(hy_1(u) —d)/3 > ¢(hy—1(u) —d)/50 > D.

We now consider subcase (a) of case (iii) under the assumption that ho(u) <
hi—1(u) —12d. In addition to Cj, we also use part of the incoming credit associated with
the set of tokens Y = {y : y is a token of u and ho(u) < h¢(y) < hy_1(u)}. Specifically,
for every token y in Y, we use (¢(ht(y) + d) — ¢(ht(y)))/(20d) units of incoming credit
that is assigned to (u,v) by y. Note that since h¢(y) > ho(u), token y has moved and
hence has assigned some incoming credit to (u,v). If y is good, this credit is at least
9(od(he(y) + 6d) — @(he(y)))/(20d) units; otherwise, this credit is at least (¢(he(y) +
d) — ¢(h(y)))/(20d). Moreover, if y is a good token, then at most 8(¢(h:(y) + 6d) —
#(ht(y)))/(20d) units of incoming credit were used in the analysis of case (ii). If y is a
bad token, none of the incoming credit was used in the analysis of case (ii). In either
case, at least (¢(he(y) + d) — ¢(he(y)))/(20d) units of incoming credit still remain. Let
this credit be denoted C;. We obtain the following lower bound on Cy + Cf.

Co+C1 > Co+ > (¢(k + d) — ¢(k))/(20d)
ho(u)<k<hi—1(u)

= ot gr 30 (Blhea(w) +9) — Blho(u) +9)
1<i<d
> Cy+ (#hes (w) — d(ho(w) +d))/20

Vv
S
—
>=
T
—
—
<
~
~
~
[\
[e)

v
S

(The second equation holds since the sum in the first equation can be expressed as a
sum of d telescoping sums. For the third equation we invoke Lemma C.6 and obtain
that Co > 26(ho(u) + 11d)/3 > ¢(ho(u) + d)/20.)

We now consider subcase (b) of (iii). Recall that by the definition of Ey, u is
in S-; at the start of step t. Therefore, hy_i(u) > 24(j + 1)d — 12d > 24j5d + 12d.
Since no token was sent along (u,v) in step ¢, we have e} ;(v) — p > hi_1(u) — 12d
(> 24jd). By the definition of E;, we also have h; 1(u) > hy 1(v) + 24d. It follows

195

that e} ;(v) — p > hy—_1(v) + 12d. Subsequent to the last step in which (u,v) was live,
at least ey ;(v) — p — hy—1(v) tokens have left v. We use the outgoing credit assigned
to (u,v) due to these token transmissions. Consider a token z that is transmitted by
v in step ¢'. If z is marked good after the step, then the outgoing credit assigned by
v 10 (,0) is at least 9(é(hu_1(p) — Bk (p)))/(20d) > 9(d(hu_1(p)) — Bhu1(p) —
6d))/(20d) units. Otherwise, the outgoing credit assigned by z to (u,v) is at least
(¢(hy—1(p)) — ¢(hy —1(p) — d))/(20d) units. In either case, the outgoing credit is at least
(¢(hy—1(p)) — @(hy—1(p) — d))/(20d) units. We thus obtain the following lower bound
on the total outgoing credit Cy assigned to (u,v) by the at least e} ;(v) — p — hy—1(v)

tokens.

Cy > > (¢(k) — ¢(k — d))/(20d)

hi—1(v)<k<e}_,(v)—p

= g0q, 2 (Hea(0) —p=d)~ lha(s) ~ d+0)
> (§let1(0) ~ p— d) — Blhy 1(0)))/20

> (Blet1(v) ~ p+ 11d) — By 1(0) +))/50

> (§lhe1(w)) — Blhe1(2) +)50

D.

(The second equation holds since the sum in the first equation can be expressed as a sum
of d telescoping sums. For the third and fourth equations, we first note that since no
token was sent by u to v in step ¢, we have e} ;(v) —p > hy_1(u) — 12d > 24jd —d. The
third equation now follows from Lemma C.7 and the equation ¢(e} ;(v) — p —d) > 0.
The fourth equation follows directly from the lower bound on e} ;(v) — p.)

We note that the outgoing credit assigned to edge (u,v) in the above analysis of
case (iii) is used at most once in case (iii). To prove this, we observe that after step ¢,
the value of e“(v) is updated by u to hy_1(v) 4+ p. Therefore, if case (iii) of the analysis
subsequently uses any outgoing credit assigned by a token x that leaves v and whose

height in v is in (h_1(v), €} ;(v)], then must have arrived at v after step ¢. Hence, the

196

outgoing credit assigned by the e} ;(v) — hy_1(v) tokens that are used in the analysis

for step t is not used again for a later step. []

197

Bibliography

[1]

2]

[4]

N. Abramson. The ALOHA system. In N. Abramson and F. Kuo, editors,
Computer-Communication Networks. Prentice-Hall, Englewood Cliffs, NJ, 1973.

M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel ran-
domized load balancing. In Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, pages 238-247, May 1995.

M. Adler, P. B. Gibbons, Y. Matias, and V. Ramachandran. Modeling parallel
bandwidth: Local vs. global restrictions. In Proceedings of the 9th Annual ACM

Symposium on Parallel Algorithms and Architectures, pages 94-105, June 1997.

Y. Afek, E. Gafni, and A. Rosen. The slide mechanism with applications to dy-
namic networks. In Proceedings of the 11th Annual ACM Symposium on Principles
of Distributed Computing, pages 35-46, August 1992.

W. Aiello, B. Awerbuch, B. Maggs, and S. Rao. Approximate load balancing on
dynamic and asynchronous networks. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing, pages 632—-641, May 1993.

M. Ajtai, J. Komlés, and E. Szemerédi. Sorting in clogn parallel steps. Combi-
natorica, 3:1-19, 1983.

N. Alon, G. Kalai, M. Ricklin, and L. Stockmeyer. Lower bounds on the com-
petitive ratio for mobile user tracking and distributed job scheduling. Theoretical
Computer Science, 130:175-201, 1994.

198

8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York, NY, 1991.

H. Alt, T. Hagerup, K. Mehlhorn, and F. P. Preparata. Deterministic simulation of
idealized parallel computers on more realistic ones. SIAM Journal on Computing,

16(5):808-835, 1987.

R. J. Anderson and G. L. Miller. Optical communication for pointer based algo-
rithms. Technical Report CRI-88-14, Computer Science Department, University
of Southern California, 1988.

T. E. Anderson, M. D. Dahlin, J. N. Neefe, D. A. Patterson, D. S. Rosselli, and
R. Y. Wang. Serverless network file systems. In Proceedings of the 15th Symposium
on Operating Systems Principles, pages 109126, 1995.

M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu.
Universal stability results for greedy contention-resolution protocols. In Proceed-
ings of the 37th Annual IEEE Symposium on Foundations of Computer Science,
pages 380-389, October 1996.

E. Arjomandi, M. J. Fischer, and N. A. Lynch. Efficiency of synchronous versus
asynchronous distributed systems. Journal of the ACM, 30:449-456, 1983.

A. Arora and M. Gouda. Load balancing: An exercise in constrained convergence.
In J-M. Hélary and M. Raynal, editors, Proceedings of the 9th International Work-
shop on Distributed Algorithms, Lecture Notes in Computer Science, volume 972,

pages 183-197. Springer-Verlag, 1995.

J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM,
41:1020-1048, 1994.

H. Attiya and M. Mavronicolas. Efficiency of semi-synchronous versus asyn-

chronous networks. Mathematical Systems Theory, 27:547-571, 1994.

199

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

Y. Aumann, Z. Kedem, K. V. Palem, and M. O. Rabin. Highly efficient asyn-
chronous execution of large-grained parallel programs. In Proceedings of the 34th

Annual IEEE Symposium on Foundations of Computer Science, pages 271-280,
November 1993.

B. Awerbuch. Complexity of network synchronization. Journal of the ACM,
32:804-823, 1985.

B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networks.
In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 574-583, January 1996.

B. Awerbuch, L. Cowen, and M. Smith. Efficient asynchronous distributed symme-
try breaking. In Proceedings of the 26th Annual ACM Symposium on the Theory
of Computing, pages 214-223, 1994.

B. Awerbuch, S. Kutten, and D. Peleg. Competitive distributed job scheduling. In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages
571-580, May 1992.

B. Awerbuch and F. T. Leighton. Improved approximation algorithms for the
multi-commodity flow problem and local competitive routing in dynamic networks.
In Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages
487-496, May 1994.

B. Awerbuch and T. Leighton. A simple local-control approximation algorithm
for multi-commodity flow. In Proceedings of the 34th Annual IEEE Symposium on
Foundations of Computer Science, pages 459468, October 1993.

B. Awerbuch, Y. Mansour, and N. Shavit. End-to-end communication with polyno-
mial overhead. In Proceedings of the 30th Annual IEEE Symposium on Foundations
of Computer Science, pages 358-363, October 1989.

200

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

[34]

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages
593-602, May 1994.

Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data

management. Journal of Computer and System Sciences, 51:341-358, 1995.

H. Bast and T. Hagerup. Fast parallel space allocation, estimation and integer

sorting. Information and Computation, 123:72-110, 1995.

E. Berlekamp and L. Welch. Error correction of algebraic block codes. U.S. Patent
Number 4,633,470.

D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, Englewood Cliffs,
New Jersey, 1992.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Nu-
merical Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

M. A. Blaze. Caching in large-scale distributed file systems. Technical Report TR-
397-92, Department of Computer Science, Princeton University, January 1993.
PhD Thesis.

A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Ad-
versarial queueing theory. In Proceedings of the 28th Annual ACM Symposium on
Theory of Computing, pages 376-385, May 1996.

C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz.
The Harvest information discovery and access system. In Proceedings of the 2nd

International World Wide Web Conference, pages 763-771, October 1994.

A. Broder, A. M. Frieze, E. Shamir, and E. Upfal. Near-perfect token distribution.
Random Structures and Algorithms, pages 559572, 5 1994.

201

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of

Computer and System Sciences, 18:143-154, 1979.

A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A
hierarchical Internet object cache. In Proceedings of the USENIX 1996 Technical

Conference, pages 22-26, January 1996.

H. Chernoff. A measure of the asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Annals of Mathematical Statistics, 23:493-509, 1952.

V. Chvéatal. The tail of the hypergeometric distribution. Discrete Mathematics,
25:285-287, 1979.

E. Cohen. On the convergence span of greedy load balancing. Information Pro-

cessing Letters, 52:181-182, 1994.

G. Cornuéjols, G. L. Nemhauser, and L. A. Wolsey. The uncapacitated facility
location problem. In P. Mirchandani and R. Francis, editors, Discrete Location

Theory, pages 119-171. John Wiley and Sons, Inc., New York, New York, 1990.

D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. LogP: Towards a realistic model of parallel
computation. In Proceedings of the jJth ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, pages 1-12, May 1993.

G. Cybenko. Dynamic load balancing for distributed memory multiprocessors.

Journal of Parallel and Distributed Computing, 2:279-301, 1989.

A. Czumaj, Meyer auf der Heide F., and V. Stemann. Shared memory simula-
tions with triple-logarithmic delay. In Proceedings of the 3rd Annual European

Symposium on Algorithms, pages 46-59, September 1995.

A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Improved optimal shared
memory simulations, and the power of reconfiguration. In Proceedings of the 3rd
Israel Symposium on Theory of Computing and Systems, pages 11-19, 1995.

202

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

S. Deering and D. Cheriton. Multicast routing in datagram internetworks and

extended LANs. ACM Transactions on Computer Systems, pages 85—111, 1990.

X. Deng, H. N. Liu, L. Long, and B. Xiao. Competitive analysis of network load
balancing. Journal of Parallel and Distributed Computing, 40:162-172, 1997.

M. Dietzfelbinger and F. Meyer auf der Heide. Simple, efficient shared memory
simulations. In Proceedings of the 5th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pages 110-119, June 1993.

D. Eager, D. Lazowska, and J. Zahorjan. Adaptive load sharing in homogeneous
distributed systems. IFEE Transactions on Software Engineering, 12:662—675,
1986.

S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, pages 114-118, May
1978.

J. E. Gehrke, C. G. Plaxton, and R. Rajaraman. Rapid convergence of a local
load balancing algorithm for asynchronous rings. In Proceedings of the 11th Inter-

national Workshop on Distributed Algorithms, September 1997. To appear.

M. Geréb-Graus and T. Tsantilas. Efficient optical communication in parallel com-
puters. In Proceedings of the Jth Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 41-48, June 1992.

B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton, R. Ra-
jaraman, A. W. Richa, R. E. Tarjan, and D. Zuckerman. Tight analyses of two local
load balancing algorithms. In Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, pages 548-558, May 1995.

B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton, R. Ra-

jaraman, A. W. Richa, R. E. Tarjan, and D. Zuckerman. Tight analyses of two local

203

[54]

[55]

[56]

[57]

[58]

[59]

[60]

load balancing algorithms. In Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, pages 548-558, May 1995.

B. Ghosh and S. Muthukrishnan. Dynamic load balancing in parallel and dis-
tributed networks by random matchings. In Proceedings of the 6th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 226—235, June 1994.

P. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Accounting
for contention in parallel algorithms. In Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 638—648, January 1994. To appear in
SIAM Journal on Computing.

P. Gibbons, Y. Matias, and V. Ramachandran. The queue-read queue-write asyn-
chronous PRAM model. In Proceedings of Euro-Par’96, Lecture Notes in Com-
puter Science, pages 279-292. Springer-Verlag, August 1996. To appear in the

special issue of Theoretical Computer Science on Parallel Computing.

P. B. Gibbons, Y. Matias, and V. Ramachandran. Efficient low-contention par-
allel algorithms. In Proceedings of the 6th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 236-247, June 1994. To appear in the special

issue of Theoretical Computer Science on Parallel Computing.

P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model
serve as a bridging model for parallel computation? In Proceedings of the 9th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 72-83,
June 1997.

B. Goldberg and P. Hudak. Implementing functional programs on a hypercube
multiprocessor. In Proceedings of the 4th Conference on Hypercubes, Concurrent

Computers and Applications, pages 489503, 1989.

L. A. Goldberg and M. Jerrum. A sub-logarithmic communication algorithm for

the completely connected optical communication parallel computer. Technical Re-

204

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

port ECS-LFCS5-92-234, Laboratory for Foundations of Computer Science, De-

partment of Computer Science, University of Edinburgh, September 1992.

L. A. Goldberg, M. Jerrum, F. T. Leighton, and S. B. Rao. A doubly logarith-
mic communication algorithm for the completely connected optical communication
parallel computer. In Proceedings of the 5th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 300-309, June 1993.

L. A. Goldberg, M. Jerrum, and P. D. Mackenzie. An Q(+/loglogn) lower bound
for routing on optical networks. In Proceedings of the 6th Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 147-156, June 1994.

L. A. Goldberg, Y. Matias, and S. B. Rao. An optical simulation of shared memory.
In Proceedings of the 6th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 257267, June 1994.

A. G. Greenberg, P. Flajolet, and R. E. Ladner. Estimating the multiplicities of
conflicts to speed their resolution in multiple access channels. Journal of the ACM,

34:289-325, 1987.

A. G. Greenberg and S. Winograd. A lower bound on the time needed in the worst
case to resolve conflicts deterministically in multiple access channels. Journal of

the ACM, 32:589-596, 1985.

J. D. Guyton and M. F. Schwartz. Locating nearby copies of replicated Internet
servers. In Proceedings of ACM SIGCOMM, pages 288-298, 1995.

J. S. Gwertzman and M. Seltzer. The case for geographical push-caching. In
Proceedings of the 5th Workshop on Hot Topics in Operating Systems, pages 51—
57, May 1995.

A. Heirich and S. Taylor. A parabolic theory of load balance. Technical Re-
port Caltech-CS-TR-93-22, Caltech Scalable Concurrent Computation Lab, March
1993.

205

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

K. Herley. A note on the token distribution problem. Information Processing

Letters, 28:329-334, 1991.

W. Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58:13-30, 1963.

B. Hoppe and E. Tardos. The quickest transshipment problem. In Proceedings of
the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 512-521,
January 1996.

J. J4ja and K. W. Ryu. Load balancing and routing on the hypercube and related
networks. Journal of Parallel and Distributed Computing, 14:431-435, 1992.

M. R. Jerrum and A. Sinclair. Conductance and the rapid mixing property for
Markov chains: The approximation of the permanent resolved. In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing, pages 235-244, May
1988.

D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy.
Relieving hot spots on the World Wide Web. In Proceedings of the 29th Annual
ACM Symposium on the Theory of Computing, pages 654—663, May 1997.

R. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on a
distributed memory machine. In Proceedings of the 24th Annual ACM Symposium
on Theory of Computing, pages 318-326, May 1992.

R. Karp and Y. Zhang. A randomized parallel branch-and-bound procedure. Jour-
nal of the ACM, 40:765-789, 1993.

R. M. Karp. Parallel combinatorial computing. In J. P. Mesirov, editor, Very Large
Scale Computation in the 21st Century, pages 221-238. Society for Industrial and
Applied Mathematics, 1991.

206

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

M. R. Klugerman and C. G. Plaxton. Small-depth counting networks. In Proceed-
ings of the 24th Annual ACM Symposium on Theory of Computing, pages 417428,
May 1992.

L. Lamport and N. Lynch. Distributed computing: Models and methods. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal

Models and Semantics, pages 1157-1199. Elsevier/MIT Press, 1990.

E. L. Lawler and D. E. Wood. Branch and bound methods: a survey. Operations
Research, 14:699-719, 1966.

C. E. Leiserson and B. M. Maggs. Communication-eflicient parallel graph algo-

rithms for distributed random-access machines. Algorithmica, 3:53—-77, 1988.

V. Leppanen. Studies on the Realization of PRAM. PhD thesis, Department of

Computer Science, University of Turku, November 1996.

F. C. H. Lin and R. M. Keller. The gradient model load balancing method. IEEE

Transactions on Software Engineering, 13:32-38, 1986.

J.-H. Lin and J. S. Vitter. e-approximations with minimum packing constraint
violation. In Proceedings of the 24th Annual ACM Symposium on the Theory of
Computing, pages 771-782, May 1997.

M. Livny and M. Melman. Load balancing in homogeneous broadcast distributed

systems. ACM Performance Evaluation Review, 11(1):47-55, 1982.

R. Liling and B. Monien. Load balancing for distributed branch and bound al-
gorithms. In Proceedings of the 6th International Parallel Processing Symposium,

pages 543-549, March 1992.

N. Lynch and M. Fisher. On describing the behavior and implementation of dis-
tributed systems. Theoretical Computer Science, 13:17-43, 1981.

207

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

P. D. MacKenzie, C. G. Plaxton, and R. Rajaraman. On contention resolution pro-
tocols and associated probabilistic phenomena. In Proceedings of the 26th Annual

ACM Symposium on Theory of Computing, pages 153—-162, May 1994.

B. M. Maggs, F. Meyer auf der Heide, B. Vocking, and M. Westermann. Exploiting
locality for data management in systems if limited bandwidth. In Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science, October
1997. To appear.

Y. Mansour, N. Nisan, and U. Vishkin. Trade-offs between communication
throughput and parallel time. In Proceedings of the 26th Annual ACM Sympo-
sium on Theory of Computing, pages 372-381, May 1994.

K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of
PRAMs by parallel machines with restricted granularity of parallel memories. Acta

Informatica, 21:339-374, 1984.

R. Metcalfe and D. Boggs. Ethernet: Distributed packet switching for local com-
puter networks. Communications of the ACM, 19(7):395-404, 1976.

F. Meyer auf der Heide, B. Oesterdiekhoff, and R. Wanka. Strongly adaptive token
distribution. Algorithmica, 15:413-427, 1996.

F. Meyer auf der Heide, C. Scheideler, and V. Stemann. Exploiting storage re-
dundancy to speed up randomized shared memory simulations. In Proceedings of
the 12th Annual Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science, volume 900, pages 267-278. Springer-Verlag, March
1995.

M. Mihail. Conductance and convergence of Markov chains — A combinatorial
treatment of expanders. In Proceedings of the 30th Annual IEEE Symposium on
Foundations of Computer Science, pages 526-531, October 1989.

208

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

S. J. Mullender and P. M. B. Vitdnyi. Distributed match-making. Algorithmica,
3:367-391, 1988.

D. Peleg and E. Upfal. The generalized packet routing problem. Theoretical
Computer Science, 53:281-293, 1987.

D. Peleg and E. Upfal. The token distribution problem. SIAM Journal on Com-
puting, 18:229-243, 1989.

L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach. Chapter

9. Morgan Kaufmann, San Francisco, California, 1996.

A. Pietracaprina, G. Pucci, and J. F. Sibeyn. Constructive deterministic PRAM
simulation on a mesh-connected computer. In Proceedings of the 6th Annual ACM

Symposium on Parallel Algorithms and Architectures, pages 248-256, June 1994.

C. G. Plaxton. Load balancing, selection, and sorting on the hypercube. In Proceed-
ings of the 1st Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 64-73, June 1989.

C. G. Plaxton and R. Rajaraman. Fast fault-tolerant concurrent access to shared
objects. In Proceedings of the 37th Annual IEEE Symposium on Foundations of
Computer Science, pages 570-579, October 1996.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of
replicated objects in a distributed environment. In Proceedings of the 9th Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 311-320, June
1997.

M. O. Rabin. Efficient dispersal of information for security, load balancing and

fault tolerance. Journal of the ACM, 36:335-348, 1989.

A. G. Ranade. How to emulate shared memory. Journal of Computer and System

Sciences, 42:307-326, 1991.

209

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

D. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility
location problems. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, pages 265—-274, May 1997.

A. Siegel. On universal classes of fast high performance hash functions, their time-
space tradeoff, and their applications. In Proceedings of the 30th IEEE Symposium
on Foundations of Computer Science, pages 20-25, November 1989. Revised ver-

sion.

V. Stemann. Parallel balanced allocations. In Proceedings of the 8th Annual ACM

Symposium on Parallel Algorithms and Architectures, pages 261-269, June 1996.

R. Subramanian and I. D. Scherson. An analysis of diffusive load balancing. In
Proceedings of the 6th Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 220-225, June 1994.

M. Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Ap-
prozimation Problems. PhD thesis, Department of Computer Science, University

of California at Berkeley, October 1992.

A. N. Tantawi and D. Towsley. Optimal static load balancing in distributed com-
puter systems. Journal of the ACM, 32:445-465, 1985.

R. M. Thomas. A majority consensus approach to concurrency control for multiple

copy databases. ACM Transactions on Database Systems, 4:180-209, 1979.

E. Upfal and A. Wigderson. How to share memory in a distributed system. Journal

of the ACM, 34:116-127, 1987.

L. Valiant. A combining mechanism for parallel computers. Technical Report TR-
24-92, Center for Research in Computing Technology, Harvard University, January
1992.

L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103-111, 1990.
210

[116] L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complezity,
pages 943-971. Elsevier/MIT Press, 1990.

[117] M. Van Steen, F. J. Hauck, and A. S. Tanenbaum. A model for worldwide tracking
of distributed objects. In Proceedings of TINA’96, pages 203-212, September 1996.

[118] R. D. Williams. Performance of dynamic load balancing algorithms for unstruc-

tured mesh calculations. Concurrency: Practice and Ezperience, 3:457-481, 1991.

[119] C.-Z. Xu and F. C. M. Lau. Iterative dynamic load balancing in multicomputers.
Journal of the Operational Research Society, 45:786-796, 1994.

211

Vita

Rajmohan Rajaraman was born on January 4, 1971 in Calcutta, India, the son of Lalita
Rajaraman and Neelagudi Subramaniam Rajaraman. He did his schooling in Sawai
Madhopur and New Delhi, India. He received the Bachelor of Technology degree in
Computer Science and Engineering from the Indian Institute of Technology at Kanpur
in July 1991. Thereafter, he entered graduate school at the University of Texas at Austin
in August 1991. He received the Master of Sciences degree in Computer Sciences in May
1993. He was employed as a consultant at Sandia National Laboratories, Albuquerque, in
the summer of 1996. He was awarded the MCD and Schlumberger graduate fellowships
in August 1991 and November 1996, respectively.

Permanent Address: ¢/o Mrs. Lalita Rajaraman
28, Janak Road
Calcutta 700-029, India

This dissertation was typeset with IXTEX 2:! by the author.

!The macros used in formatting this dissertation were written by Dinesh Das, Department of Com-
puter Sciences, The University of Texas at Austin.

212

