
Sharing Resources in Distributed SystemsbyRajmohan Rajaraman, B.Tech., M.S.
DissertationPresented to the Faculty of the Graduate School ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDoctor of Philosophy

The University of Texas at AustinDecember 1997

Sharing Resources in Distributed Systems

Approved byDissertation Committee:

To Ajuma and Mummy

Acknowledgments
First and foremost, I am indebted to my dissertation supervisor Greg Plaxton, whohas been a true friend, philosopher, and guide ever since I have known him. A largepart of what I have learnt in graduate school is due to Greg. His brilliance, enthusiasm,perseverance (exempli�ed by a 12-hour marathon meeting we once had), and his yearningfor excellence are inspiring and I hope some of this has rubbed o� on me.The members of my dissertation committee, Bruce Maggs, Vijaya Ramachandran,Martin Wong, and David Zuckerman, have contributed a lot, either directly or indirectly,to my dissertation. Some of the key ideas that led to the result on static load balancingof Chapter 4 are due to Bruce Maggs. Bruce also made several useful comments thathave signi�cantly improved the presentation of Chapter 4. I would like to thank VijayaRamachandran for her insightful comments regarding the results of Chapter 3 and forthe numerous hours she has devoted for discussing my doctoral work. I am grateful toMartin Wong, with whom I co-authored my �rst publication, for introducing me intocomputer science research. David Zuckerman has taught me a lot about randomness(in part, through his puzzles and card tricks). David also co-authored the static loadbalancing result of Chapter 4.During the course of my graduate work, I have been fortunate to have collabo-rated with several other researchers who have also become close friends over these years.Johannes Gehrke made valuable contributions to the work concerning load balancingon rings (Chapter 5). Phil Mackenzie co-authored the work on contention resolution(Chapter 2). I am also grateful to Phil for my internship at Sandia National Labs dur-iv

ing the summer of 1996. S. Muthukrishnan and Andr�ea Richa worked with me on thestatic load balancing result of Chapter 4. Muthu also came up with some of the mainideas in the dynamic load balancing result of Chapter 6. I would like to thank TorstenSuel for being always available for advice and discussions.I have had very nice o�cemates who have tolerated my clumsiness which includedregular encroachments of my material upon their desks. Special thanks to ShashidharThakur with whom I shared a wonderful o�ce in Painter Hall for two years. Shashidharand I had uncountable puzzle-solving sessions and I am glad that he is crunching outpuzzles even after joining industry. The long discussions with the blokes at UA9, espe-cially Rajeev Joshi, Kedar Namjoshi, and Carlos Puchol, and the hundreds of gallons ofco�ee that accompanied these discussions, will continue to stimulate me for a long time.My six-year stint in Austin has been memorable thanks to some very specialfriends, but for whom this dissertation would have been completed in half the time (withapologies to P. G. Wodehouse)! All of my apartment mates over the years have beenfun. I would especially remember Pawan Goyal and his culinary skills, Sanjay Gupta andhis puns, Dinesh Muzumdar and our basketball duels, and Rahul Singh and his �xingabilities. The interminable debates with my real apartment mates and \virtual apart-ment mates" Om Damani, Rajesh Govindan, Divas Sanwal, Prashant Shenoy, and AshisTarafdar made me take the NBA slogan \Stay in School" a little too seriously. The com-pany of Sanjay Agarwal, Madhukar Korupolu, Nishant Mittal, Chandramouli Nagara-jan, Analbhai Shah, Renu Tewari, and Kishore Yellepeddy produced several memorablemoments. I will always be nostalgic about the blood, sweat, tears, and the occasionalbaskets that were produced by our basketball gang during the numerous jam sessionswe had this year.Of course, I would not have been able to do any of the above without the �nancialsupport provided by NSF, Sandia National Labs, Schlumberger Corporation, TARP,and University of Texas at Austin. My sincere thanks to Gloria Ramirez, our graduatesecretary, whose phenomenal e�ciency can make even the most incompetent studentmeet their deadlines. v

Undoubtably, the biggest credit goes to my family, especially my mother and mybrother Rajesh, whose long-distance support contributed signi�cantly to both my moraleand the telephone industry. There was no better tonic for upli�ting my spirits than theroyal treatment meted out by my folks at Calcutta and the nonstop encouragementprovided by my sister-in-law Deepika.
Rajmohan RajaramanThe University of Texas at AustinDecember 1997

vi

Sharing Resources in Distributed SystemsPublication No.Rajmohan Rajaraman, Ph.D.The University of Texas at Austin, 1997Supervisor: C. Greg PlaxtonAn important goal of a distributed system is to e�ectively utilize the collective resourcesof the system, namely, the memory and the processors of the individual nodes. Thisdissertation addresses certain problems pertaining to sharing memory and processors indistributed systems.In the �rst part of the dissertation, we study two important issues that arise whilesharing memory in a distributed system: memory contention and faults. We adopt amodel of computation in which each node can send or receive at most a constant numberof objects per step. Our main result is a simple protocol for providing fast access toshared objects in an environment in which memory contention is unconstrained and aconstant fraction of the nodes and communication links may be faulty at any time. Ourprotocol combines techniques for hashing and erasure codes with a new mechanism foron-line replication. We show that if each new access request is chosen according to a�xed probability distribution over the set of objects, then our protocol rapidly reachesa steady state in which each request is satis�ed in an expected constant number ofsteps and the throughput of the protocol is asymptotically optimal. We also prove thatthe protocol continues to remain in a steady state if changes in the access pattern aremoderate. vii

The second part of the dissertation studies load balancing, which is a mechanismfor sharing processors in a distributed system. We analyze the e�ectiveness of a local loadbalancing algorithm in which each node repeatedly balances its load with its neighbors.Our main results concern the static version of the problem where we assume that thetotal load does not change with time. We analyze the local balancing algorithm in termsof both the imbalance of the initial load distribution and several parameters of thenetwork, including the number of nodes, the maximum degree, and the edge expansion.We show that the algorithm is worst-case optimal for all networks. We improve thisresult for the special case of ring networks by showing that the local balancing approachis optimal (up to an additive linear term) for every initial distribution of load on thering. Our results are also shown to hold for an asynchronous model of computation.This dissertation demonstrates that a number of basic resource sharing problemsadmit e�cient solutions in the form of simple local algorithms. Our algorithms are simplein the sense that the program running at each node can be expressed as a periodic processthat repeatedly executes a small number of �xed operations. Our algorithms are local inthe sense that each node either communicates with only its nearest neighbors or sendsmessages to only a small number of other nodes.

viii

Contents
Acknowledgments ivAbstract viiChapter 1 Introduction 11.1 Sharing Memory . 21.1.1 Model of Computation . 31.1.2 Exclusive Access to Shared Objects 51.1.3 Fault-Tolerant Concurrent Access to Shared Objects 61.2 Sharing Processors . 81.2.1 Model of Computation . 101.2.2 Static Load Balancing . 101.2.3 Dynamic Load Balancing . 121.3 Two Abbreviations for High Probability Bounds 12Part I Sharing Memory 14Chapter 2 Fast Exclusive Access to Shared Objects 152.1 Introduction . 152.1.1 Overview of the Results . 172.1.2 Related Work . 192.2 The 1 out of ` Protocol . 21ix

2.3 Sketch of the Analysis . 212.3.1 Unbounded ` . 212.3.2 Bounded ` . 232.3.3 Summary . 252.4 Analysis of the 1 out of ` Protocol . 262.4.1 Large Deviations . 312.4.2 Lemmas on Balls and Bins . 322.4.3 Analysis of Algorithm Alg2 . 352.5 Limited Independence . 512.6 The Emulation Protocols . 582.7 Concluding Remarks . 60Chapter 3 Fast Fault-Tolerant Concurrent Access to Shared Objects 613.1 Introduction . 613.1.1 Overview of the Results . 633.1.2 Related Work . 643.2 Model of Computation . 663.3 Overview of the Protocol . 683.4 The Read-Only Protocol . 733.5 Statement of the Results . 763.6 Analysis . 783.6.1 Sketch of the Analysis . 783.6.2 Good Rounds . 803.6.3 Invariants . 903.6.4 The Fixed Model . 943.6.5 The Dynamic Model . 1063.7 Write Operations . 1073.8 Concluding Remarks . 109x

Part II Sharing Processors 111Chapter 4 Static Load Balancing on Arbitrary Networks 1124.1 Introduction . 1124.1.1 The Single-Port and Multi-Port Algorithms 1134.1.2 Overview of the Results . 1144.1.3 Related Work . 1174.2 Preliminaries . 1194.3 Analysis for Static Synchronous Networks 1194.3.1 The Single-Port model . 1194.3.2 The Multi-Port Model . 1264.3.3 Results in Terms of Node Expansion 1334.4 Extension to Dynamic and Asynchronous Networks 1344.5 Tight Bounds on Centralized Load Balancing 1404.6 Concluding Remarks . 146Chapter 5 Static Load Balancing on Rings 1485.1 Introduction . 1485.1.1 Overview of the Results . 1495.1.2 Related Work . 1505.2 The Unidirectional Algorithm A . 1515.3 Preliminaries . 1535.4 Analysis for Synchronous Rings . 1545.4.1 Analysis of Partial Algorithms . 1555.4.2 Complexity of Algorithm A . 1615.5 Analysis for asynchronous rings . 1615.6 Concluding Remarks . 167Chapter 6 Dynamic Load Balancing on Arbitrary Networks 1686.1 Introduction . 168xi

6.2 An Adversarial Model . 1696.3 Stability of the Multi-Port Algorithm . 1706.4 Concluding Remarks . 174Conclusions 176Appendix A Tails of Probability Distributions 179Appendix B Martingales 181Appendix C Technical Inequalities 183C.1 Expected Number of Non-Singletons and Non-Pairs 183C.2 The Potential Function of Section 4.4 . 187Appendix D Proof of Lemma 4.7 189Bibliography 198Vita 212

xii

Chapter 1
Introduction
By a distributed system, we mean a collection of nodes that can communicate with oneanother. We assume that each node consists of a processor and some local memory.In order to optimize the overall performance of a distributed system, a need arises fore�ectively sharing the collective resources of the system, namely, the memory and theprocessors of the individual nodes. In this dissertation, we study two classes of problems,one arising in the context of sharing memory and the other arising in the context ofsharing processors.Sharing memory. A basic problem in a distributed system is to provide e�cientaccess to shared objects (e.g., �les, words of memory) that are stored in remote nodes.This is a complicated problem in general because of the large number of considerationsinvolved, including: latency, bandwidth, faults, and network topology. Thus, for exam-ple, a request for a remote object may be delayed due to several reasons including: (i)the object may be a \hot spot", or (ii) the network may be congested, or (iii) the nodeholding the object may be temporarily faulty, or (iv) the node holding the object may begeographically distant. The �rst half of this dissertation focuses on developing protocolsthat e�ciently handle faults and memory contention while providing access to sharedobjects. An overview of our results in this area is given in Section 1.1.1

Sharing processors. Consider a distributed system where each node has a collec-tion of tasks to execute. To minimize the total time taken to execute all of the tasks, oneapproach is to utilize the processors e�ectively by redistributing the tasks. For example,if there are some communication requirements among the tasks and communication isexpensive, then it may be bene�cial to distribute the tasks so that any two tasks thatcommunicate with each other tend to be mapped to the same node or to nearby nodes.As another example, consider a scenario in which the tasks are independent and can beexecuted at any of the processors of the system. If the initial distribution of the tasks isuneven, then the total execution time can be reduced by transferring tasks from heavilyloaded nodes to lightly loaded nodes. This technique, referred to as load balancing, isthe focus of the second half of this dissertation. An overview of our results in this areais given in Section 1.2.This dissertation demonstrates that a number of basic resource sharing problemsadmit e�cient solutions in the form of simple local algorithms. Our algorithms are simplein the sense that the program running at each node can be expressed as a periodic processthat repeatedly executes a small number of �xed operations. Our algorithms are local inthe sense that each node either communicates with only its nearest neighbors or sendsmessages to only a small number of other nodes.In addition to being easy to implement in practice, simple local algorithms areadvantageous because they tend to be robust in the presence of faults and asynchrony.We provide some formal evidence in this regard by showing that most of our results holdin certain models that incorporate faults or asynchrony.1.1 Sharing MemoryIn the �rst part of the dissertation, we study two important issues that arise while pro-viding access to shared data in a distributed system: memory contention and faults.Memory contention is the phenomenon in which an access request is delayed or rejectedby a node because of other requests simultaneously sent to the node. This phenomenon2

may arise due to: (i) a number of nodes simultaneously attempting to access distinctobjects residing at the same node (exclusive access), or (ii) a number of nodes simulta-neously attempting to access the same object residing at some node (concurrent access).Even in the absence of memory contention, the response to an access request may bedelayed if: (i) the remote node is faulty, or (ii) the requesting node is unable to commu-nicate with the remote node due to faults in the communication network.Our results in this part are presented in Chapters 2 and 3. Chapter 2 focuses onresolving memory contention that arises solely due to exclusive accesses and presents aprotocol for supporting fast exclusive access to shared objects in a non-faulty distributedsystem. Chapter 3 considers the problem in its generality and presents a protocol forsupporting fast fault-tolerant concurrent access to shared objects.Chapters 2 and 3 are reviewed in Sections 1.1.2 and 1.1.3, respectively. We �rstdescribe in Section 1.1.1 the general aspects of the model of computation adopted in ourstudy on sharing memory in a distributed system.1.1.1 Model of ComputationWe represent the distributed system as an n-crossbar. The n-crossbar (or simply, thecrossbar) is a synchronous distributed machine that consists of n nodes and supportsdirect point-to-point communication between any two nodes. In order to address theissue of memory contention, we enhance the crossbar model as follows. A c-arbitrarycrossbar is a crossbar in which: (i) the total number of messages sent or received by asingle node in each step is at most c, and (ii) if the total number of messages destinedto a node in a step exceeds c, then an adversary determines which subset of c messagesis successfully received by the node.We address faults by incorporating both static and dynamic node faults as wellas a notion of faulty communication. Most importantly, our fault model assumes thatat any given time: (i) a constant fraction of the nodes may be \down" (i.e., unable tocommunicate with any other nodes), and (ii) each \up" node may be unable to directlycommunicate (i.e., via a single point-to-point message) with a constant fraction of the3

other \up" nodes.We now elaborate on three aspects of the model de�ned above: (i) synchrony,(ii) uniform topology, and (iii) the parameter c.Synchrony. While our model allows messages to be lost due to communicationfailures and nodes to dynamically fail and recover, it disallows unpredictable delays inthe delivery of messages and the execution of local computations. Our main reason foradopting a synchronous model is to obtain meaningful bounds on certain performancemeasures that concern time, e.g., the time taken to satisfy an access request. The taskof devising an analytical model for deriving time bounds in an arbitrary asynchronousenvironment is a challenging open problem.Uniform topology. In spite of the restrictive assumption of a uniform topol-ogy, the crossbar serves as a useful model for both tightly-coupled and loosely-coupleddistributed systems. At one extreme, a system for which the interconnection is basedon a dedicated switching network is precisely a crossbar. At the other extreme, thecrossbar suitably models a wide-area network with a fast routing mechanism in studieswhere the particular topology of the network and the underlying routing mechanism arenot of primary concern. In future work, we would like to extend our results to mod-els that take into account the di�ering costs in communication among di�erent nodes.(See [19, 74, 103] for recent work in this area.)The parameter c. An important feature of the c-arbitrary crossbar is the pa-rameter c which signi�es the bandwidth limitation at each of the nodes of the network.This feature is motivated by the observation that with rapidly growing speeds and ca-pacities of communication links, the network-node interface is increasingly limiting theperformance of the network [41] [99, Chapter 9]. Restrictions on local bandwidth playa signi�cant role in the BSP [115], LogP [41], and QSM(g) [58] models as well. Thegap parameter of these models places an upper bound on the rate at which a singlenode may send or receive messages. However, BSP and LogP di�er from the c-arbitrarycrossbar on one signi�cant point. In BSP and LogP, the gap places an upper boundon the number of messages destined to a single node in one step. On the other hand,4

the c-arbitrary crossbar model places no upper bound on the total number of messagesdestined to a single node in one step. Instead the model only limits to c the number ofmessages successfully received by a node in one step. The messages that are destined toa node and yet are not received by the node are assumed to be lost. Such a mechanismcan be implemented, for example, by associating a time-out with each message so thatevery message that is not delivered at the end of a step times out.Thus far, we have considered models that place restrictions only on the bandwidthavailable at the nodes. These models may not be appropriate for networks where thebandwidth of the network as a whole is the limiting factor. For such networks, weneed to place global restrictions on the bandwidth, as is done in the PRAM(m) [90]and the QSM(m) [58] models. For a recent study on the implications of local andglobal bandwidth restrictions, see [3]. (We remark that our usage of the terms \localbandwidth" and \global bandwidth" is borrowed from [3].) The DRAM model [81]considers bandwidth restrictions in a more general form by explicitly accounting forcongestion across every cut of the underlying network. Even though the DRAM providesa more accurate framework for evaluating performance, we have chosen a more abstractmodel for our study in order to simplify the analysis.1.1.2 Exclusive Access to Shared ObjectsWe �rst consider the problem of resolving contention arising due to exclusive accessesin a fault-free c-arbitrary crossbar. Consider the scenario in which each node of thecrossbar has a single access request. Since all the accesses are exclusive, each request isfor a distinct object. Hence, we can represent the current set of access requests as a stepof an EREW PRAM as follows: each processor of the PRAM maps to a distinct nodeof the crossbar, and each shared memory cell of the PRAM maps to a shared object ofthe crossbar. Our problem thus corresponds to the emulation of an n-processor EREWPRAM on a non-faulty c-arbitrary n-crossbar. In Chapter 2, we pinpoint the asymptoticcomplexity of a class of simple protocols that combine hashing and redundancy to obtainfast emulations of EREW PRAMs on c-arbitrary crossbars for all values for c. The results5

in this chapter are joint work with Phil Mackenzie and Greg Plaxton, and have appearedin [88].A natural emulation scheme is to map each location of the EREW PRAM sharedmemory (and hence, each shared object) to the memory module of a randomly chosennode of the crossbar. We can easily see that the desired emulation corresponds to arandom \balls and bins" experiment, in which each of n balls (representing the nmemoryaccesses) are thrown independently and uniformly at random into n bins (representingthe memory modules at the n nodes). It is straightforward to prove using Cherno�bounds [37] that if c is O(1), then the preceding scheme requires �(logn= log logn) timewith high probability to emulate one step of the EREW PRAM. (By the phrase \withhigh probability", we mean \with probability 1� 1=n
(1)".)In Chapter 2, we analyze a class of simple emulation protocols that replicateeach object a constant number of times to achieve an O(log logn) delay bound, andthus, an exponential improvement in delay. We remark that prior to our work, Karp,Luby, and Meyer auf der Heide [75], and subsequently, Dietzfelbinger and Meyer auf derHeide [47], presented protocols that achieve the O(log logn) delay bound while incurringonly a constant factor increase in space. Our results improve on previous results in twoways. First, our results hold for all values of c, while previous emulations required cto be su�ciently large. Second, we analyze a protocol that is more basic than thosestudied before. We are able to reduce our analysis to a study of a random balls and binsexperiment that is similar to (but more complex than) the one mentioned above. Wederive a sharp threshold phenomenon for the balls and bins experiment, which may beof independent interest.1.1.3 Fault-Tolerant Concurrent Access to Shared ObjectsThe results reviewed in the preceding section concern a static set of exclusive accesses(i.e., with no concurrency) on a fault-free crossbar. In Chapter 3, we extend the ideasof hashing and replication that are used in Chapter 2, to address the more generalsetting of dynamically generated memory requests with arbitrary concurrency on a faulty6

distributed machine. Our study is largely motivated by the growing importance of wide-area network �le systems which have become feasible due to high-speed networks. Since acompletely general study is quite complicated, we make certain simplifying, yet realistic,assumptions that enable us to design and analyze a simple e�cient protocol.We represent the distributed system as a faulty O(logn)-arbitrary crossbar, asde�ned in Section 1.1.1. We design and analyze a protocol for providing fast concurrentaccess to shared objects in this faulty network environment. Our protocol is based onon-line replication of objects and employs hashing and erasure codes. When a largenumber of clients attempt to read a given object at the same time, the object is rapidlyreplicated to an appropriate number of servers. Once the necessary level of replicationhas been achieved, each remaining request for the object is serviced withinO(1) expectedsteps. We analyze our protocol and establish its optimality under two natural dynamicaccess patterns. In our �rst model, we assume that there is a �xed probability distri-bution from which each access request is independently drawn at all times. We showthat our protocol reaches a steady state in O(logn) steps, in which each subsequentrequest is satis�ed in O(1) expected steps and O(logn) steps with high probability. Thesigni�cance of this result is that it establishes the rapid adaptability of the protocol toarbitrary global access patterns. Since
(logn) steps is a lower bound on the numberof steps taken by any protocol to reach the steady state in the worst case, our analysisshows that the protocol reaches a steady state in an optimal number of steps. In thesteady state, the expected time for satisfying any request is asymptotically optimal.A drawback of the �rst model is that it does not allow, in general, dynamicchanges in the \popularity" of an object (i.e., the number of users trying to accessthe object). In our second model, we assume that the popularity of an object canchange arbitrarily, subject to the constraint that it is not more than a constant timesthe maximum popularity in the previous �(logn) steps. For this model, we show thateach request is satis�ed in expected O(1) steps and O(logn) steps with high probability.Moreover, for both the access pattern models, our protocol satis�es an asymptotically7

optimal number of requests per step while using an asymptotically optimal amount ofcommunication.The results in Chapter 3 are most suitable for applications in which: (i) readsoccur much more frequently than writes, (ii) objects are not too small, and (iii) thepopularity of any object does not change signi�cantly over a short period of time. Forexample, the protocol might be appropriate for managing access to WWW pages on theInternet, since pages tend to be read far more often than they are written, the typicalpage size is thousands of bytes or more, and popular pages tend to remain popular overextended periods of time (e.g., for minutes, hours, or even days). In contrast, the protocolwould probably be poorly-suited for use within a PRAM emulation scheme, where writesoften account for a signi�cant fraction of all accesses, the objects being accessed tendto be extremely small, and the popularity of an object may change arbitrarily from onetime step to the next. The results in Chapter 3 are joint work with Greg Plaxton andhave appeared in [102].1.2 Sharing ProcessorsA natural approach towards harnessing the aggregate processing power of a distributedsystem is to balance the workload among the nodes of the system. In order to balancethe workload, a simple strategy is to have each node periodically poll the other nodes towhich it is connected and send some of its work to nodes with less pending work. Thesecond part of this dissertation analyzes the e�ectiveness of this local load balancingstrategy in the simpli�ed scenario in which the load consists of a collection of independentunit-size jobs (called tokens) that can be executed on any other node.The bulk of our results concerns static load balancing. In static load balancing,the total workload is available at the start of the computation, and no new load is addedto the system. The main objective is to distribute the total load before initiating thecomputation such that the assignment of tasks to processors is balanced. Our mainresults in static load balancing are reviewed in Section 1.2.2.8

Static load balancing is applicable in scenarios where information about the par-ticular computation is known in advance. Parallel computations such as large-scalepartial di�erential equations, �nite element methods, branch-and-bound computations,and ray tracing, can be divided into a large number of small computational tasks anddistributed among the processors at the start of the overall computation (see [77, 118]for some examples). Another important application of static load balancing arises in cer-tain packet routing problems, where the initial distribution of packets may be irregular.In these problems, routing is performed by �rst redistributing the packets among theprocessors in a balanced manner, and then invoking standard routing techniques suchas permutation routing or k-k-routing [97].Our results for static load balancing also apply to certain problems where theload is dynamic, that is, the total load varies with time1. Dynamic load balancing isrequired in a wide variety of applications, including operating systems [48, 83], combi-natorial optimization problems [80], adaptive mesh partitioning [68, 118], and �ne-grainfunctional programming [59]. In certain problems arising in these applications, it ispossible to divide the overall computation into phases, where the distributed systemalternates between static load balancing and executing a portion of the workload.Static load balancing may not be applicable in situations where the load is notknown in advance. In such applications, it is required to have a continuous process thatmanages the distribution of load among nodes. Balancing dynamic load, however, ismore di�cult than balancing static load because of the potentially arbitrary nature ofthe on-line job arrival process. In order to make the study of dynamic load balancingsomewhat tractable, most of the previous work has assumed either a particular statisticalmodel of load variation or a speci�c network topology (for example, see [85, 111]). Weadopt a di�erent approach by proposing a model that allows an adversary to control theon-line job arrival process. Our results in this area are limited in scope. It is possible1While we have used the term \static" or \dynamic" as a property of the load, some papers inthe load balancing literature use the term as a property of the algorithm. These papers (for example,see [111]) de�ne a static load balancing algorithm (resp., dynamic load balancing algorithm) to be analgorithm in which the decision of transferring load does not depend (resp., may depend) on the currentsystem state. 9

that suitable enhancements of our model will be useful in the study of more realisticproblems. Section 1.2.3 reviews our work on dynamic load balancing.1.2.1 Model of ComputationWe represent the distributed system as an arbitrary network G, where the vertices of Gcorrespond to the nodes of the system and the edges of G correspond to the connectionsbetween nodes. We assume that in one unit of time, at most one token can be transmittedacross an edge of the network in each direction. We focus primarily on algorithms withdistributed control, that is, algorithms in which the action of a node depends only onthe information available at the node and its neighbors.The three de�ning characteristics of the model outlined above are: an arbitrarynetwork topology, bounded edge capacity, and distributed control. We believe thatthese characteristics suitably model load balancing problems arising in practice. Wealso address the issue of asynchrony. The particular assumptions about asynchrony arediscussed in the following section, where we review our results on static load balancing.1.2.2 Static Load BalancingWe are given an arbitrary network G in which each node has an initial collection oftokens and no tokens are added or deleted while the tokens are being balanced. In eachstep, each node can transmit at most one token to each of its neighbors. The static loadbalancing problem is to design a distributed algorithm that reduces the imbalance of G,where the imbalance is de�ned to be the maximum di�erence between the number oftokens at any node and the average number of tokens per node. The performance ofan algorithm is measured by the time it takes to balance the tokens, and by the �nalimbalance it achieves.In Chapter 4, we tightly analyze a simple local algorithm of Aiello et al. [5],in which at each step each node sends a token to each of its neighbors with at least2d fewer tokens (where d is the degree of the network). In particular, we prove that10

this algorithm, which we call the multi-port algorithm, balances to within O(d2 logn=�)tokens in O(�=�) steps, where � is the edge expansion of the network and � is theimbalance associated with the initial token distribution. (We remark that there existnetworks with diameter
(d2 logn=�).) This upper bound is optimal in the followingsense: Given any network with edge expansion �, there exists an initial load distributionwith imbalance � for which any algorithm takes
(�=�) steps to balance to within even�=2 tokens.We extend our analysis to a slight variant of the multi-port algorithm for anasynchronous network model, in which edges are allowed to go \down" arbitrarily subjectto the constraint that during any time unit the subgraph induced by the \up" edges hasedge expansion �. We also obtain tight bounds on a randomized algorithm of Ghoshand Muthukrishnan [54] which balances load across edges chosen in a random matching.Our main proof technique in Chapter 4 is a potential function argument basedon the observation that, due to the expansion of the graph, there are many edges from\high" nodes (i.e., nodes having a large number of tokens) to \low" nodes. By assigningan exponentially higher potential to the \high" nodes, we show that a particular measureof the balance of the network improves rapidly throughout the course of the algorithmuntil the network is balanced to within O((d2 logn)=�) tokens. The results in Chapter 4are joint work with Bhaskar Ghosh, Tom Leighton, Bruce Maggs, S. Muthukrishnan,Greg Plaxton, Andr�ea Richa, Robert Tarjan, and David Zuckerman, and have appearedin [52].One shortcoming of our results in Chapter 4 is that the bounds on the �nalimbalance and the time taken to achieve the �nal imbalance are not optimal for allinitial distributions. In Chapter 5, we establish a \universal" near-optimality result forthe special class of ring networks. We show that for any initial token distribution b on aring of n nodes, a particular local balancing algorithm converges to a completely balanceddistribution within 4OPT(b) + n steps, where OPT(b) is the time taken by an optimalcentralized algorithm to balance b completely. More signi�cantly, we generalize thepreceding result to an asynchronous model in which local computations and messages11

may be arbitrarily delayed, subject to the constraint that each message is eventuallydelivered and each computation is eventually performed. The results in Chapter 5 arejoint work with Johannes Gehrke and Greg Plaxton, and appear in [50].1.2.3 Dynamic Load BalancingIn order to study the dynamic aspect of load balancing, we introduce the adversarialmodel in Chapter 6. In this model, tokens are created and/or destroyed in each step,and an adversary decides the number of these tokens and the location of each token.The goal of the balancing algorithm is to maintain a \small" imbalance at all times.Clearly, some restrictions have to be placed on the adversary to disallow scenariosin which an unbounded amount of imbalance may be created, for example, by adding alarge number of tokens at a single node. We place the following restriction: the adversarymay insert/delete any number of tokens on any subset of nodes subject to the constraintthat there exists an " > 0 such that for every subset S of nodes, the change in theimbalance of S is at most (1� ") times the number of edges coming out of S. In otherwords, the change in the imbalance of S is less than the number of edges connecting S tothe rest of the network. It follows from an easy bisection argument that if the change inthe imbalance of S is allowed to exceed the number of edges connecting S to the rest ofthe network, then an adversary may cause the imbalance of S to increase continuouslywith time.Given the adversarial model, we seek stable algorithms. An algorithm is said tobe stable if there exists � such that for all t � 0, the imbalance of G at the start of step tis at most �. In Chapter 6, we show that the local balancing algorithm of Aiello et al. [5]is stable for all networks for " > 0. This result is joint work with S. Muthukrishnan.1.3 Two Abbreviations for High Probability BoundsSeveral claims in this dissertation are probabilistic and we di�erentiate between two kindsof high probability bounds. Let n denote the number of nodes in the system. Throughout12

this document, we use the abbreviation \whp" to mean \with high probability" or, moreprecisely, with probability 1� n�c for some constant c. Throughout this document, weuse the abbreviation \wvhp" to mean \with very high probability" or, more precisely,with probability 1 � n�c, where c is a constant that can be set arbitrarily large byappropriately adjusting other constants de�ned within the relevant context.

13

Part I
Sharing Memory

14

Chapter 2
Fast Exclusive Access to SharedObjects
2.1 IntroductionIn this chapter, we consider the problem of emulating an EREW PRAM on a c-arbitrarycrossbar. We begin by reviewing the de�nitions of these two computational models. AnEREW PRAM [49] is a collection of n processors along with a global shared memory.Input and output are provided in the shared memory. In a single computational step,each processor can read or write one memory location. The sole restriction is that notwo processors are allowed to access the same memory location in a single step. (Iftwo processors attempt to access the same memory location in a single step, then themachine halts.)A c-arbitrary crossbar, which we introduced in Section 1.1.1, is a more realisticmodel of distributed computation in which the global shared memory is distributed overthe n nodes of the machine. Input and output are provided in the distributed memory,and the nodes access the distributed memory via a communication network. Recallthat the number of messages that a node of the c-arbitrary crossbar can send or receivein a single step is at most c. We now rephrase this property in terms of read/write15

operations to the distributed memory. We assume that each computational step of thecrossbar consists of a read/write phase followed by an acknowledgment phase. Duringthe read/write phase each node can issue one read or write request for a speci�c memorylocation. If the total number of read/write requests involving memory locations storedin any particular node A is less than or equal to c, then all requests involving A succeedand are acknowledged during the acknowledgment phase. On the other hand, if morethan c processors attempt to access memory locations stored in the same node A, thenan arbitrary subset of c of the requests succeed and are acknowledged.We obtain our emulation results for the c-arbitrary crossbar by analyzing ouremulations on a slight variant of the c-arbitrary crossbar, the c-collision crossbar. Ac-collision crossbar is de�ned in the same manner as a c-arbitrary crossbar, except thatif more than c requests are sent to a node A, then all requests involving A fail andno corresponding acknowledgments are sent. It is easy to see that given any emulationprotocol for the c-collision crossbar, we can construct an equally e�cient emulationprotocol for the c-arbitrary crossbar.The c-arbitrary and c-collision crossbars generalize some models that have beenstudied previously. The module parallel computer (MPC [9]) and the S*PRAM [116]correspond to the 1-arbitrary crossbar model. The local memory PRAM model of An-derson and Miller [10], later studied under the name OCPC (optical communicationparallel computer) in [51, 60, 61], corresponds to the 1-collision crossbar model. Thec-arbitrary and c-collision DMM models of [47, 75] are similar to the crossbar models inthat the underlying communication network is a complete network. The DMM models,however, limit only the total number of objects accessed from a node to c and, hence,allow unbounded concurrent access to an object stored in a node, while the crossbarmodels limit the total number of accesses satis�ed by a node to c.As mentioned in Section 1.1.1, the c-arbitrary crossbar is a distributed memorymodel that addresses the issue of contention by placing a restriction on the bandwidthat each node. Among shared memory models, a well-studied model that addressescontention is the QRQW PRAM [57, 55, 56]. The QRQW PRAM extends the EREW16

PRAM model by allowing simultaneous access to a cell in any step and allowing processorinstructions to be pipelined. The amount of contention that occurs in a step is takeninto account in the cost of performing the step.2.1.1 Overview of the ResultsAssume that we wish to emulate an EREW PRAM on a c-collision crossbar. If wemap each EREW PRAM processor to a unique node of the crossbar, and employ arandom hash function to map each location of the EREW PRAM shared memory to thememory module of some node of the crossbar, we can easily see the connection betweenthe desired emulation and a random \balls and bins" experiment in which n balls arethrown independently and uniformly at random into n bins. Each of the at most nread or write requests generated in a single step of the EREW PRAM computationcorresponds to a ball, and the memory module at each node corresponds to a bin.If c = O(1), we can conclude that the preceding scheme requires
(lgn= lg lgn)time whp1 to emulate one step of the EREW PRAM. On the other hand, Dietzfelbingerand Meyer auf der Heide [47] have recently shown that a bound of O(lg lgn) time perEREW PRAM step is attainable for constant c. They presented a contention resolutionprotocol that minimizes the e�ect of the inevitable \hot-spot" memory modules (e.g.,those memory modules receiving �(lgn= lg lgn) requests under a given hash function)by storing three copies of each shared memory cell in the crossbar. Thus, at the expenseof increasing the storage requirement by a factor of 3, the running time of the emulationis exponentially decreased.In the protocol of [47], a read or write operation of memory location x by EREWPRAM processor i is emulated by having processor i of the c-collision crossbar access 2out of the 3 copies corresponding to memory location x. The analysis presented in [47]requires some slack in the constants; in particular, they require c � 3, and are only ableto analyze the protocol when it is used to emulate "n processors at a time, where " is1Recall that the term whp, which is de�ned in Section 1.3, means with probability 1�n�� for someconstant �. 17

a su�ciently small positive constant. (Thus, the overall running time of the protocol isincreased by a factor of 1=".)The protocol of [47] is easily generalized to the \a out of b problem", in which bhash functions are used, and each node of the c-collision crossbar is required to accessa out of b copies of a particular memory location. Our results in this chapter consist ofthe following bounds for the a out of b problem.� In Section 2.4, we focus on the case a = 1, and pinpoint the asymptotic complexityof the resulting protocol on the c-collision crossbar for all possible choices of theparameter b and for c in f1; 2g. Furthermore, our analysis goes through with " = 1,that is, we consider the most basic form of the protocol in which the action of all nEREW PRAM processors is emulated at once. For c = 1, we prove that the protocolruns in �(lg lgn) time whp if b � 3. For c = 1 and b = 2, we prove that the protocolruns in
(lgn) time wvhp1. For c = 2 and b � 2, we prove that the protocol runsin �(lg lgn) time whp. Our results imply that for all constants c � 2, the 1 out of bprotocol terminates in �(log logn) time whp on a c-collision crossbar. (The protocolwill run faster for non-constant c. It would not be di�cult to extend our analysis toobtain tight bounds for non-constant c.)� In Section 2.5 we show that the above results hold even if the hash functions are onlyO(log� n)-wise independent, where � is a su�ciently large real constant.� In Section 2.6, we observe that any a out of b problem with a > 1 can be reduced toa sequence of 1 out of ` problems for an appropriate choice of `. Thus, we are ableto easily upper bound the complexity of a (new) protocol for essentially any a out ofb problem. Our results yield, for example, O(log logn) time protocols on 1-collisionand 2-collision crossbars, and hence on 1-arbitrary and 2-arbitrary crossbars as well,using 5 and 3 hash functions, respectively. One might suspect that a reduction of thissort, while making the analysis easier, is only doing so at the expense of a signi�cant1Recall that the term wvhp, which is de�ned in Section 1.3, means with probability 1�n��, where �is a constant that can be set arbitrarily large by appropriately adjusting other constants de�ned withinthe relevant context. 18

constant factor in performance. Interestingly, this is not the case; rather, as discussedin Section 2.6, our reduction yields a faster a out of b protocol than is obtained viathe natural generalization of [47] for virtually all possible values of a and b.2.1.2 Related WorkThe ideas of hashing and replication have played a central role in almost all of theknown shared memory simulations. Mehlhorn and Vishkin [91] proposed distributing theshared objects using universal hashing. Upfal and Wigderson [113] were the �rst to usereplication in the context of shared memory simulations. They presented a deterministicprotocol with delay O(logn(log logn)2). One of their main observations, which has beenused in several subsequent replication-based simulations, including ours, was that it issu�cient to access a majority of the copies. (The \majority trick" had been proposedearlier for concurrency control in replicated databases [112].)Following the work of Upfal and Wigderson, several EREW PRAM emulationson the crossbar have been proposed. A deterministic simulation with delay O(logn) waspresented in [9]; however, their result is non-constructive. Karp, Luby, and Meyer aufder Heide [75] presented a protocol that uses three hash functions and incurs O(log logn)delay. Subsequently, Dietzfelbinger and Meyer auf der Heide [47] proved the same boundfor a much simpler protocol which forms the basis for our work.Subsequent to our work, faster protocols for EREW PRAM emulation on theclosely related DMM model have been obtained. Czumaj, Meyer auf der Heide, andStemann presented two randomized protocols for DMMs with O(log logn=(log log logn))[44] and O(log log logn log� n) [43] delay whp, respectively. Their protocols consist ofcertain preprocessing steps in which all the nodes of the DMM cooperate in estimatingcertain quantities associated with the PRAM step (e.g, the number of requests directedto each module). Hence, these protocols are more complicated than the ones we considerhere. Moreover, the simulations of [44, 43] do not apply directly to the crossbar modelwhich, as mentioned before, is not as powerful as the DMM model.All of the protocols studied in this chapter and the ones discussed above are19

designed for distributed machines in which the underlying communication is by meansof a complete network. Several researchers have studied simulations of shared memoryon other topologies. Non-constructive simulations on networks of bounded degree werepresented in [9]. Ranade devised a novel routing algorithm for the buttery whichleads to a CRCW PRAM simulation protocol with O(logn) delay [105]. Simulations ofdi�erent PRAM models have been obtained on the mesh-connected computer [100] andits variants [82].From the point of view of contention resolution, our work is related to the vastbody of research on routing protocols for multiple-access channels (MACs) and opticalcomputers. In a MAC, a set of distributed processes contend for a single shared resource,the channel, and the problem is to allocate the channel among the participating clientprocesses. If two or more clients attempt to use the channel simultaneously, then thereis a collision, and no client succeeds. The standard Ethernet local area network [92] andthe classic ALOHA packet radio network [1] are two well-known examples of multipleaccess channels. (See [29, Chapter 4] for more examples.) An optical computer, whichcan be viewed as a collection of multiple access channels, is accurately modeled by a1-collision crossbar.There is a fundamental di�erence between the nature of contention arising in thecontext of routing for MACs and optical computers, on the one hand, and in sharedmemory simulations, on the other. While the \minimum unit of contention" in theformer case is the channel or the memory module, in the latter case it is an object whichis replicable. To illustrate this, consider a routing problem on a 1-collision crossbar inwhich h nodes send one message each to the same destination. It is easy to see that thereis a lower bound of h for this problem. However, if we consider the analogous scenarioof h nodes contending for objects that reside in the same memory module, a bound of hcan be overcome by replication.In the absence of replication, a natural approach to resolve contention for MACsis to use randomization to break the symmetry among the clients. This idea is centralto many MAC protocols, including the Ethernet protocol [92] and the slotted ALOHA20

protocol [1], and routing protocols for the optical computer [10, 116, 51]. (For more workin this direction, see [64, 65].) Lower bounds for routing in optical computers appearin [62, 88].2.2 The 1 out of ` ProtocolConsider the 1 out of ` problem where ` � 1. Let the ` hash functions be labeled hi,0 � i < `, and the shared memory request of node j be for cell xj . Node j needs tosuccessfully access one of the memory locations hi(xj), 0 � i < `. To solve the 1 out of` problem, the following sequence of ` rounds can be repeated until each processor hashad one successful access:� In the ith round, where 0 � i < `, if node j has not successfully accessed any copyof xj, then node j attempts to access hi(xj).Each round is executed in a synchronous fashion. We refer to this protocol as the 1 outof ` protocol. (This is analogous to Access Schedule 2 of [47], de�ned for the 2 out of 3problem.)2.3 Sketch of the AnalysisIn order to understand the execution of the 1 out of ` protocol, let us consider theunderlying process in an equivalent balls-and-bins setup. Assume for simplicity that theprotocol is running on a 1-collision crossbar. Let Ti (resp., ti) denote the set (resp.,number) of outstanding requests at the end of round i.2.3.1 Unbounded `To gain an initial intuition, let us assume that we have an in�nite number of hashfunctions (i.e., ` is unbounded). Consider round 0 of the protocol. Since h0 is chosenindependently and uniformly at random, round 0 corresponds to a random throw of nballs into n bins. In a 1-collision crossbar, if a node receives more than one request,21

then the node rejects all of its requests. Therefore, t0 is the number of non-singletons,where a non-singleton is a ball that lands into a bin with more than one ball. Followingthe same argument, we obtain that for all i, ti is the number of non-singletons obtainedin a random throw of ti�1 balls into n bins. Figure 2.1 illustrates rounds 0 and 1 of aninstance of the random process that begins with 16 balls and 16 bins.
8

13

1411 04

9

15 13

0

12 3

4

5

6

7 911

12

14 15

2

6

10

8

1

12

(a)

(b)Figure 2.1: Rounds 0 and 1 of the 1 out of ` protocol, with ` � 2 and n = 16. The 16balls are numbered 0 through 15. Round 0 (part (a)) is an instance of a random throwof 16 balls into 16 bins. Since balls 3, 5, 7, and 10 are singletons we remove them beforeround 1. Round 1 (part (b)) is an instance of a random throw of the remaining 12 ballsinto 16 bins.The process of throwing k balls into n bins is well understood and it is straight-forward to derive expected and high probability bounds on the number of non-singletons.As an example, consider the case when k is n. The probability that a bin receives exactlyone ball is (1� 1=n)n�1 � 1=e. Thus, the expected number of bins that receive exactlyone ball is approximately n=e. It follows that the expected number of non-singletonsis approximately (e � 1)n=e. More generally, we can show that if n=a balls are thrownindependently and uniformly at random into n bins, then the number of non-singletonsis O(n=a2) wvhp. (The intuition behind the preceding observation is the following: theprobability that a ball lands in a bin holding at least one other ball is most 1=a.) Usingthe above calculations, it is easy to show that there exist constants � > 1 and � > 1such that ti is O(n=��i) wvhp for all i. Thus, we obtain that for i = �(log logn), ti is22

zero wvhp, and hence all requests are satis�ed within �(log logn) rounds wvhp.2.3.2 Bounded `Unfortunately, the approach outlined in the preceding section does not carry throughfor the case of constant ` because the sequence of distributions arising in the analysisquickly deviates from the simple behavior associated with the process of throwing kballs randomly into n bins in round i. To see this, consider round ` of the protocol. Inthis round, each node j that has not successfully accessed a copy of xj in any of the�rst ` rounds attempts to access h0(xj). (Recall that the protocol cycles through the` hash functions.) Even though h0 is a hash function that is chosen independently anduniformly at random, it is not the case that round ` corresponds to a random throwof t`�1 balls into n bins. This is because there is a correlation between the set T`�1 ofrequests that are outstanding after round ` � 1 and the set of hash functions used inthe �rst ` rounds, which includes h0. Figure 2.2 illustrates round 2 of the experimentinitiated in Figure 2.1 under the assumption that ` is 2. The remaining rounds are shownin Figure 2.3.
8

1391

4

2 12Figure 2.2: Round 2 of the 1 out of 2 protocol for the example in Figure 2.1. Weobtain the distribution in round 2 by removing the four singletons obtained in round 1and the �ve singletons 0, 6, 11, 14, and 15 obtained in round 1 (Figure 2.1(b)) from thedistribution obtained in round 0 (Figure 2.1(a)).The key idea underlying our analysis is that we are able to characterize theprocess associated with round ` (and each of the subsequent rounds) in terms of certain\truncated k balls in n bins" distributions that are obtained by throwing k balls into nbins and removing balls until a certain condition holds. We then show that the truncateddistributions can be approximated by suitably chosen instances of the standard balls-and-bins distributions.Our approach can be illustrated by considering the relationship between rounds 023

14

8

13

84

(a)

(b)Figure 2.3: Rounds 3 and 4 of the 1 out of 2 protocol, for the example in Figure 2.1. Weobtain the distribution in round 3 (part (a)) by removing the �ve singletons obtained inround 1 and the three singletons 2, 9, and 12 obtained in round 2 (Figure 2.2) from thedistribution obtained in round 1 (Figure 2.1(b)). We obtain the distribution in round 4(part (b)) by removing the three singletons obtained in round 3 and the two singletons1 and 13 obtained in round 3 (Figure 2.2(b)) from the distribution obtained in round 2(Figure 2.1(b)). Since there are no balls left after round 4, the protocol terminates.and `. As mentioned before, T0 represents the set of non-singletons obtained in a randomthrow of a set (say S0) of n balls into n bins. Since T`�1 is a subset of T0, we obtain thatfor any request in T`�1, the location of the copy determined by h0 is no longer random.The following crucial property, however, still holds: the set T`�1 is a random subset ofT0. This property indicates that T` can be determined by the following experiment:� Remove balls from S0 at random until the number of balls remaining from T0 is t`�1.(Let S` denote the set of balls remaining from S0.)The set T` is precisely the set of non-singletons obtained at the end of the precedingexperiment. Moreover, the set S` is a nearly random jS`j-size subset of S0. (We say\nearly random" because S` is biased by the stopping condition of the experiment. Forexample, the number of balls in S` that also belong to T0 is t`�1.) An experiment inwhich we �rst throw k balls into n bins at random and then remove a random subsetof k0 balls is equivalent to a random throw of k � k0 balls into n bins. Hence, t` isclosely approximated by the number of non-singletons obtained in a random throw ofs` = jS`j balls into n bins. We have thus reduced the calculation of t` to that of s`. Itis easy to see that the expected value of s` is approximately nt`�1=t0. It follows from a24

Cherno�-type argument that s` is �(nt`�1=t0) wvhp. More generally, for all i � `, wecan show that there exists si = �(si�`ti�1=ti�`) such that ti approximates the numberof non-singletons obtained in a random throw of si balls into n bins.We now have all the ingredients that together complete the analysis of the 1 outof ` protocol. The �rst ingredient is a sharp estimate of the number of non-singletonsin a random throw of k balls into n bins. The second ingredient is the proof that tiapproximates the number of non-singletons obtained in a random throw of si balls inton bins. The third ingredient is that si can be determined from si�`, ti�`, and ti�1.Using the �rst and second ingredients, we obtain a relation between si and ti.Then, using the third ingredient, we obtain a recurrence relation among the ti's. Finally,the recurrence relation yields a bound on the number of rounds it takes for ti to be zero,and hence a bound on the running time of the protocol.The formal analysis is somewhat more complicated than the informal descriptionoutlined above. For example, it turns out that both our estimate of the number ofnon-singletons as well as our bounds relating the quantities si, si�`, ti�`, and ti�1,need to be accurate to within a 1 � o(1) factor. Fortunately, the theory of martingalesprovides a mechanism to obtain bounds that have the required level of accuracy. Anothercomplication arising in the analysis is that, as indicated above, ti is only approximatelygiven by the number of non-singletons in a random throw of si balls into n bins. Wemake the notion of approximation precise by deriving suitably tight upper and lowerbounds for ti.2.3.3 SummaryThe basic ideas sketched in Section 2.3.2 can be generalized to derive a bound on therunning time of the protocol for all values of ` and c. For example, when c is 1, weobtain that the running time is �(log logn) for all ` � 3.Finally, as mentioned in Section 2.1.1, we derive a protocol for the a out of bproblem by running a sequence of an appropriate number of 1 out of ` protocols. Theanalysis for the a out of b problem follows from the analysis for the 1 out of ` problem25

in a straightforward manner.2.4 Analysis of the 1 out of ` ProtocolIn this section we analyze the 1 out of ` protocol under the assumption that each hashfunction is chosen independently and uniformly at random. We begin our analysis bypresenting the 1 out of ` protocol in an equivalent balls-and-bins setup. Let n ballslabeled 0 through n � 1 represent the accesses, and n bins labeled 0 through n � 1represent the memory modules. Each hash function, a random function from [n] to [n],is equivalent to a random throw of n balls uniformly and independently into n bins. LethA denote the function h with domain restricted to the set A � [n]. Let Ri denote theset of balls remaining after round i. For convenience, de�ne R�1 to be the set of ballsleft before round 0, i.e., R�1 = [n]. Note that for i � 0, Ri is the subset of Ri�1 givenby the following recurrence:Ri = fj 2 Ri�1 : jf�1(f(j))j > cg; where f = hRi�1i mod `:Recall that a bag (or multiset) is an unordered set in which repetition is allowed.For any set A we de�ne a bag B to be an A-bag if every element of B is also an elementof A. For nonnegative integers m and n, let Fm;n denote the set of functions from [m]to [n]. For each f 2 Fm;n, note that the bag ff(j) : j 2 [m]g is an m-size [n]-bag. Forconvenience, given any f 2 Fm;n and A � [m], let the term bag f(A) denote the bagff(x) : x 2 Ag. The uniform distribution over Fm;n induces a probability distribution,which we denote Dm;n, over the set of all m-size [n]-bags. For any bag B and A � [n],let BA;B = ffA : f 2 Fn;n and bag f(A) = Bg.Let Si and Ti denote the bags hi mod `(Ri�1) and hi mod `(Ri), respectively. Letti = jTij = jRij (thus t�1 = n) and si = jSij. Note that htii is a nonincreasing sequence.The protocol terminates after the �rst round i for which ti = 0. The protocol fails toterminate if and only if ti = ti+` > 0 for some i � �1. (In such a case, the protocol26

enters an in�nite loop with tj = ti for all j � i.) The goal of our analysis is twofold:(i) to bound the probability that the protocol fails to terminate, and (ii) to analyzethe number of rounds required by the protocol when it does terminate. We begin ouranalysis by establishing some properties of Dm;n and BA;B.Let random variable X be drawn from Dm;n, B be an arbitrary [n]-bag of sizem, and mi be the number of copies of element i in B, 0 � i < n. We have:Pr[X = B] = m!m0! � � �mn�1! � 1nm : (2.1)Lemma 2.1: Let m and n be integers such that 0 � m < n and assume that X is arandom variable drawn from Dm+1;n. Let x be chosen uniformly at random from X. IfY is the random variable X n fxg, then the probability distribution of Y is Dm;n.Proof: Let B be any m-size [n]-bag and Bi = B [fig, 0 � i < n. Let the number ofcopies of element i in B be mi. (Hence Pn�1i=0 mi = m.) Using Equation 2.1 we havePr[Y = B] = n�1Xi=0 Pr[X = Bi] � mi + 1m+ 1= n�1Xi=0 0@ 1nm+1 � (m+ 1)!(mi + 1)!Yj 6=i 1mj!1A mi + 1m+ 1= n�1Xi=0 1nm+1 � m!m0! � � �mn�1!= m!m0! � � �mn�1! � 1nm :
Corollary 2.1.1: Let a, m, and n be integers such that 0 � a � m � n. Let X bea random variable drawn from Dm;n. If Y is a random a-size subbag of X, then theprobability distribution of Y is Da;n.Lemma 2.2: Let R be an arbitrary subset of [n] and B be an arbitrary [n]-bag. Let h bea function drawn uniformly at random from BR;B. For an arbitrary subset A of R, thebag h(A) is a random jAj-size subbag of B.27

Proof: Consider an arbitrary element x 2 R. Clearly h(x) is a random element of B.Applying this for each element in A, we obtain that the bag h(A) is a random jAj-sizesubbag of B.For any random variable X and any event E which occurs with non-zero proba-bility, let X j E denote the random variable whose probability distribution is the condi-tional probability distribution of X given E. Using Corollary 2.1.1 and Lemma 2.2, weprove the following claims about the 1 out of ` protocol.Lemma 2.3: Let R be an arbitrary subset of [n] and T be an arbitrary [n]-bag. For alli � 0, if Pr[fRi = R; Ti = Tg] is non-zero, then the random variable hRi mod ` j fRi =R; Ti = Tg is drawn uniformly at random from BR;T .Proof: The random variable hi mod ` is drawn uniformly at random from Fn;n. There-fore, given that Ri = R and bag hi mod `(R) = Ti = T , hRi mod ` is drawn uniformly atrandom from the set of functions whose domain is R and the range, viewed as a bag, isthe [n]-bag T . This set of functions is precisely BR;T .Lemma 2.4: For 0 � j < i, let bRj, bTj, and btj be an arbitrary subset of [n], an arbitrary[n]-bag, and an arbitrary integer, respectively, such that btj = j bRj j = jbTjj. Let S0i denotethe random variable Si j fRj = bRj ; Tj = bTj; tj = btj : 0 � j < ig. Let i be a nonnegativeinteger and Pr[fRj = bRj ; Tj = bTj; tj = btj : 0 � j < ig] be non-zero. If 0 � i < `, then S0iis drawn from Dbti�1;n; otherwise, S0i is a bti�1-size random subbag of bTi�`.Proof: By de�nition, Si equals the bag hi mod `(Ri�1). If 0 � i < `, then S0i equals thebag hi mod `(bRi�1) because hi mod ` is independent of all events associated with rounds0 through i � 1. Let C be an arbitrary n-bag and let h0 denote the random variablehi mod ` j fhi mod `([n]) = Cg. The probability distribution of bag hi mod `([n]) is Dn;nand hence h0 is drawn uniformly at random from B[n];C . Applying Lemma 2.2 with([n]; C; h0; bRi�1) for (R;B; h;A), we obtain that bag h0(bRi�1), i.e., S0i j fhi mod `([n]) =Cg, is a random bti�1-size subbag of C. Since the preceding statement holds for all C, we28

apply Corollary 2.1.1 with (bti�1; n; n; hi mod `([n]); S0i) for (a;m; n;X; Y) to obtain thatS0i is drawn from Dbti�1;n.We now consider the case i � `. Let h00 denote the random variable h bRi�`i mod ` jfRi�` = bRi�`; Ti�` = bTi�`g. Since h00 is independent of all events associated withrounds i� ` + 1 through i� 1, S0i equals the bag h00(bRi�1). Applying Lemma 2.3 with(bRi�`; bTi�`; i � `) for (R; T; i), we obtain that h00 is drawn uniformly at random fromB bRi�`; bTi�` . Applying Lemma 2.2 with (bRi�`; bTi�`; h00; bRi�1) for (R;B; h;A), we obtainthat bag h00(bRi�1), i.e., S0i, is a random bti�1-size subbag of bTi�`.We are now ready to describe the protocol in terms of the Si's and Ti's alone. LetRandomBag(m;n) return a bag drawn from Dm;n. Let RandomSubbag(B;m) returna new bag that is a random m-size subbag of B. Let PrunedBag(B; c) return a bagthat contains exactly those elements of S that have more than c copies. Alg1(n; `; c)algorithmically describes the random process established by Lemma 2.4 regarding the1-out-of-` protocol on a c-collision n-crossbar.Alg1(n; `; c)(1.1) i := 0;(1.2) repeat(1.3) if i < ` then(1.4) Si := RandomBag(jTi�1j; n)(1.5) else(1.6) Si := RandomSubbag(Ti�`; jTi�1j);(1.7) Ti := PrunedBag(Si; c);(1.8) i := i+ 1(1.9) until jTi�1j = 0In order to analyzeAlg1 we will estimate the size of Ti after round i. We proposea modi�ed version of the above algorithm that simpli�es the estimation of jTij. Observethat for 0 � i < `, Si is the bag obtained by throwing jSij balls at random into n bins,and Ti is PrunedBag(Si ; c). Below we present the modi�ed algorithm Alg2(n; `; c) that29

approximately maintains this invariant after every round, under a suitable rede�nitionof Si. The analysis in Section 2.4.3 will make this precise. Alg2 is the same as Alg1except that Lines (1.5) and (1.6) are replaced by Lines (2.1) through (2.7), stated below.(2.1) else f(2.2) Si; Ti := Si�`; Ti�`;(2.3) while jTij > jTi�1j f(2.4) \Select x at random from Si";(2.5) Si; Ti := Si n fxg; Ti n fxg(2.6) g(2.7) g;Since each element x in line (2.4) is selected at random from Si, any elementselected from Ti is also random in Ti. Moreover exactly jTi�1j of the elements from Ti�`are retained after the execution of the while loop.Lemma 2.5: Let S1i , T 1i (resp., S2i , T 2i) denote bags Si, Ti in Alg1 (resp., Alg2) afterround i, i � 0. Then T 1i and T 2i have the same probability distribution.Proof: We use induction on the number of rounds. For the basis, we observe thatT0; : : : ; T`�1 in Alg1 and Alg2 are obtained in exactly the same way. (Lines (1.5)and (1.6) of Alg1 and the corresponding lines (2.1) through (2.7) of Alg2 are notexecuted.)Consider round i � `. By the induction hypothesis T 1j and T 2j have the sameprobability distribution, 0 � j < i. In Line (1.6), Alg1 computes S1i by selectinga random subbag of size jT 1i�1j from the subbag T 1i�`. In Lines (2.3) through (2.6),Alg2 computes S2i by removing at random elements from S2i�` until jT 2i�1j elements areretained from subbag T 2i�`. Thus T 2i is a jT 2i�1j-size subbag chosen randomly from T 2i�`.By the induction hypothesis, the probability distribution of T 1i�` (resp., T 1i�1) is thesame as that of T 2i�` (resp., T 2i�1). Therefore, S1i after Line (1.6) of Alg1 and T 2i afterLine (2.6) of Alg2 have the same probability distribution. Let S0 (resp., T 0) denote S2i30

(resp., T 2i) after Line (2.6) of Alg2. Since T 2i�` contains all elements of S2i�` with morethan c copies, T 0 contains all elements of S0 with more than c copies.After Line (1.7), T 1i is the subbag of S1i containing all elements with more than ccopies, and T 2i is the subbag of S0 containing all elements with more than c copies. SinceT 0 contains all elements of S0 with more than c copies, T 2i is the subbag of T 0 containingall elements with more than c copies. Therefore, the probability distribution of T 1i afterround i is the same as that of T 2i after round i.Corollary 2.5.1: The probability that Alg1(n; `; c) terminates after round i, i � 0, isequal to the probability that Alg2(n; `; c) terminates after round i.In the remainder of this section, we analyze Alg2 for the cases where c is inf1; 2g and ` is arbitrary. The analysis can be easily generalized to apply for all valuesof c. We begin by presenting, in Section 2.4.1, some results on large deviations ofcertain probability distributions. In Section 2.4.2, we analyze certain \balls and bins"experiments. Section 2.4.3 uses these analyses to obtain tight bounds on the runningtimes ofAlg2(n; `; 1) andAlg2(n; `; 2). Among other results, we show thatAlg2(n; 3; 1)and Alg2(n; 2; 2) both terminate in �(log logn) rounds whp.2.4.1 Large DeviationsFor our analysis, we make frequent use of bounds on the tails of the binomial andhypergeometric distributions [8, 37, 38, 70]. These bounds are stated in Appendix A.Lemmas 2.6 and 2.7 are obtained from bounds on the tails of the hypergeometric andbinomial distributions, respectively.Lemma 2.6: Let S be a set of s balls, and T be a subset of S, t = jT j. Let s0 ballsbe chosen uniformly at random from S, and t0 be the random variable representing thenumber of balls that are chosen from T . Then,Pr[t0 � (1 + 1=(2 log3 n))s0t=s] � e�s0t2=(2s2 log6 n); andPr[t0 � (1� 1=(2 log3 n))s0t=s] � e�s0t2=(2s2 log6 n):31

Proof: Apply Theorem A.2 with " = t=(2s log3 n).Lemma 2.7: Let S be a set of s balls and T be a subset of S, t = jT j. Let s0 balls bechosen at random from S, and let t0 be the random variable representing the number ofballs that are chosen from T . If s0t=s � log2 n, then t0 � s0t=(3s) wvhp.Proof: Let p = t=s. Consider the s0 balls being chosen in s0 rounds (one ball in eachround). If the number of balls chosen from bag T in rounds 1; : : : ; i � 1 is less thanps0=3, the probability that a ball from T is chosen in round i is at least 2p=3. Let X bea random variable drawn from B(s0; 2p=3). The probability that t0 � ps0=3 is at leastthe probability that X � ps0=3. By Equation (A.1) of Theorem A.1, Pr[X � ps0=3] �1� e�ps0=12. Since ps0 � log2 n, the lemma is proven.In Alg2(n; `; 1), Ti is that subbag of Si, each element of which has at least 2copies. We call such elements (as well as the associated balls) non-singletons. Similarly,in Alg2(n; `; 2) each element of Ti has at least 3 copies. We call such elements (aswell as the associated balls) non-pairs. In Section 2.4.3, we show that the probabilitydistribution of Si is approximately Dsi;n. Thus, in Alg2(n; `; 1) (resp., Alg2(n; `; 2))ti is approximately the number of non-singletons (resp., non-pairs) in a random bagdrawn from Dsi;n. In order to get sharp estimates on the number of non-singletons andnon-pairs in a random bag drawn from Dm;n, we use a martingale analysis. Appendix Bde�nes a martingale and states certain useful bounds on large deviations for martingales.2.4.2 Lemmas on Balls and BinsIn this section, we estimate the number of non-singletons and non-pairs in a random bagwith distribution Dm;n using the large deviation bounds mentioned in Section 2.4.1. Bylinearity of expectation, the expected number of non-singletons (resp., non-pairs) of arandom bag X drawn from Dm;n is given by f(m;n) (resp., g(m;n)), wheref(m;n) = m 1� �1� 1n�m�1! , and32

g(m;n) = m 1� �1� 1n�m�1 � m� 1n �1� 1n�m�2! :Throughout this section n will be �xed, so we use f(m) (resp., g(m)) to denote f(m;n)(resp., g(m;n)). In Section C.1 of Appendix C, we derive certain properties of f and g.In particular, Lemmas C.1 and C.2 show that f(m) = �(m2=n), and g(m) = �(m3=n2).Let � = 1� 1= log3 n; and� = 1 + 1= log3 n:We now bound the probability that the number of non-singletons in a random bagdrawn from Dm;n deviates from the mean f(m). Lemma 2.8 is used to bound deviationsto within a o(1) factor for m suitably large, and Lemma 2.9 bounds deviations to withina constant factor for all m.Lemma 2.8: Let m and n be integers such that 3 � m � n, and h : [m] ! [n] bea random function drawn from Fm;n, and t(h) be the number of non-singletons in bagh([m]). If m � n2=3 log3 n, then �f(m) � t(h) � �f(m) wvhp.Proof: Consider the martingale X0; : : : ;Xm de�ned as:Xi(h) = E[t(p) j p and h agree on balls in [i]]:If two functions p and p0 di�er only on ball i, t(p) and t(p0) di�er by at most 2. We applyTheorem B.2 by scaling the random variable t by 2 and thus obtain, jXi+1 �Xij � 2.Similarly, after scaling Xi's by 2, we apply Theorem B.1 to getPr[jXm �X0j > 2�pm] < 2e��2=2: (2.2)The expected value X0 of t, is f(m). For a function h, t(h) is Xm(h). By Equation 2.2with � = f(m)=(2pm log3 n), we �nd thatPr �jt(p)� f(m)j > f(m)log3 n� < 2e�f(m)2=(8m log6 n):33

Since f(m) � m2=3n, for all m > 2Pr �jt(p)� f(m)j > f(m)log3 n� < 2e�m3=(72n2 log6 n):For m � n2=3 log3 n, m3=(722 log6 n) � (log3 n)=72. Therefore, �f(m) � t(p) � �f(m)wvhp.Corollary 2.8.1: Let m and n be integers such that 3 � m � n, S be a random bagdrawn from Dm;n, and t be the number of non-singletons in S. If m � n2=3 log3 n, then�f(m) � t � �f(m) wvhp.Lemma 2.9: Let m and n be integers such that 3 � m � n and S be a random bagdrawn from Dm;n. Let t represent the number of non-singletons in S. Then,1. The probability that a particular ball is a non-singleton is at most m=n.2. For pn log5 n � m � n, we have t � 4m2=n wvhp.3. For m � pn log5 n, we have t � 4 log10 n wvhp.Proof: Let the m balls be thrown one-by-one. Since the balls occupy at most m bins,when a ball i is thrown the probability that i falls into a bin that is non-empty beforei is thrown (referred to as a \non-empty bin" henceforth in this proof) is at most m=n.Thus, the probability that a particular ball is a non-singleton is at most m=n. Thisestablishes Part 1 of the lemma.Let X be the random variable representing the number of balls that fall intonon-empty bins. Thus, the number of non-singletons is at most 2X. Moreover, Xis stochastically dominated by the random variable Y drawn from B(m;m=n). Theexpected value of Y is m2=n.For m � pn log5 n, we apply Equation A.2 with " = 1, and obtain Pr[Y �2s2=n] � e�m2=3n � e�(log10 n)=3. Therefore the number of non-singletons is at most4m2=n wvhp, proving Part 2 of the lemma.34

For m � pn log5 n, we upper bound t by the number of non-singletons in a bagdrawn from Dpn log5 n;n. By Part 2, t � 4 log10 n wvhp, proving Part 3 of the lemma.The following two lemmas establish bounds on the number of non-pairs. We omit theproofs since they follow the lines of Lemmas 2.8 and 2.9, respectively.Lemma 2.10: Let m and n be integers such that 6 � m � n. Let h : [m] ! [n] be arandom function drawn from Fm;n, and t(h) be the number of non-pairs in bag h([m]).If m � n4=5 log3 n, then �g(m) � t(p) � �g(m) wvhp.Corollary 2.10.1: Let m and n be integers such that 6 � m � n, S be a random bagdrawn from Dm;n, and t be the number of non-pairs in S. If m � n4=5 log3 n, then�g(m) � t � �g(m) wvhp.Lemma 2.11: Let m and n be integers such that 6 � m � n, and S be a random bagdrawn from Dm;n. Let t be the random variable denoting the number of non-pairs in S.Then,1. The probability that a particular ball is a non-pair is at most the maximum of3m2=n2 and 3(log10 n)=n.2. For n2=3 log3 n � m � n, t is at most 12m3=n2 wvhp.3. For m � n2=3 log3 n, t is at most 12 log9 n wvhp.2.4.3 Analysis of Algorithm Alg2In this section, we analyze the number of rounds taken by Alg2 before termination. For0 � i < `, we have si = ti�1. Corollaries 2.12.1 and 2.12.2, and Lemma 2.13 establishbounds on si in terms of the s0j 's, 0 � j < i.Lemma 2.12: In Alg2(n; `; c) let i � `, s+ = �si�`ti�1=ti�` and s� = �si�`ti�1=ti�`.Then, Pr[si � s+] � e�s+t2i�`=(2s2i�` log6 n); andPr[si � s�] � e�s�t2i�`=(2s2i�` log6 n):35

Proof: In round i, Alg2 removes elements at random from Si�` until ti�1 elementsare left from the subbag Ti�` of Si�`. Hence, Pr[si � s+] equals the probability thatless than ti�1 elements are left from Ti�` after si�` � s+ elements are removed. This isequal to the probability that less than ti�1 elements are chosen from Ti�` in a randomselection of s+ elements from Si�`. Applying Lemma 2.6 with (s; t; s0) = (si�`; ti�`; s+),the desired probability is at most e�s+t2i�`=(2s2i�` log6 n). (Here we use the inequality(1� 1=(2 log3 n))� � 1 for n su�ciently large.)Similarly, Pr[si � s�] equals the probability that more than ti�1 elements are leftfrom Ti�` after si�`�s� elements are removed from Si�`. This is equal to the probabilitythat more than ti�1 elements are chosen from Ti�` in a random selection of s� elementsfrom Si�`. Applying Lemma 2.6 with (s; t; s0) = (si�`; ti�`; s�), the desired probabilityis at most e�s�t2i�`=(2s2i�` log6 n). (Here we use that inequality (1 + 1=(2 log3 n))� � 1 forn su�ciently large.)Corollary 2.12.1: In Alg2(n; `; c), if i � `, si�`ti�1=ti�` � 2n2=3 log3 n and ti�` �s2i�`=4n, then wvhp, �si�`ti�1=ti�` � si � �si�`ti�1=ti�`:Proof: Let s+; s� be as de�ned in Lemma 2.12. By Lemma 2.12, we havePr[si � �si�`ti�1=ti�`] � e�s+t2i�`=(2s2i�` log6 n):Since s+; si�` � 2n2=3 log3 n and ti�` � s2i�`=4n, the right hand side of the above in-equality is at most e�s+s2i�`=32n2 log6 n � e� log3 n=4. Similarly, we can prove the de-sired lower bound on si wvhp using the lower bound in Lemma 2.12. (Note thats� � 2�n2=3 log3 n � n2=3 log3 n for n su�ciently large.)Corollary 2.12.2: In Alg2(n; `; c), if si�`ti�1=ti�` � 2n4=5 log3 n and ti�` � s3i�`=13n2,then wvhp, �si�`ti�1=ti�` � si � �si�`ti�1=ti�`:36

Proof: Let s+; s� be as de�ned in Lemma 2.12. By Lemma 2.12, we havePr[si � �si�`ti�1=ti�`] � e�s+t2i�`=(2s2i�` log6 n):Since s+; si�` � 2n4=5 log3 n and ti�` � s3i�`=13n2, the right hand side of the aboveinequality is at most e�s+s4i�`=(2�132n4 log6 n) � e�(16 log9 n)=132 . Similarly, we can provethe desired lower bound on si wvhp using the lower bound in Lemma 2.12. (Note thats� � 2�n4=5 log3 n � n4=5 log3 n for n su�ciently large.)Lemma 2.13: Let i � `. In Alg2(n; `; c), if ti�1 � log2 n, then si � 3si�`ti�1=ti�`wvhp. If ti�1 � log2 n, then si � 3si�`(log2 n)=ti�` wvhp.Proof: In Alg2, Pr[si � 3si�`ti�1=ti�`] is equal to the probability that more than ti�1elements are selected from Ti�` in a random selection of 3si�`ti�1=ti�` elements fromSi�`. If ti�1 � log2 n, then we apply Lemma 2.7 with (s; t; s0) = (si�`; ti�`; 3si�`ti�1=ti�`)to establish that si � 3si�`ti�1=ti�` wvhp. Similarly, Pr[si � 3si�`(log2 n)=ti�`] is equalto the probability that more than ti�1 elements are selected from Ti�` in a random selec-tion of 3si�`(log2 n)=ti�` elements from Si�`. If ti�1 � log2 n, then we apply Lemma 2.7with (s; t; s0) = (si�`; ti�`; 3si�`(log2 n)=ti�`) to establish that si � 3si�`(log2 n)=ti�`wvhp.We now relate ti to si for i � `. First, we prove the following lemma.Lemma 2.14: Let m balls be thrown independently and uniformly at random into n binsand S be the associated random bag. Let balls be removed at random from S until theremaining bag, denoted by S0, satis�es a given condition C. Let X denote the set of ballsthat are non-singletons, m0 denote jS0j, and t0 denote jXj. Let condition C be such thatthere exist integers d and u satisfying d � m0 � u wvhp.1. If d; u � n2=3 log3 n, then �f(d) � t0 � �f(u) wvhp.2. If u � pn log5 n, then t0 � 4u2=n wvhp.3. If u � pn log5 n, then t0 � 4 log10 n wvhp.37

4. For any ball x, Pr[x 2 X] � u2=(mn) + 1=nc for any real constant c � 0.Proof: Consider the experiment of removing balls one-by-one at random from S. LetS1 (resp., X1) be the bag (resp., set of non-singleton balls) obtained when m� u ballshave been removed and S2 be the bag obtained when m � d balls have been removed.Therefore jS1j = u and jS2j = d. Also, S2 is a subbag of S1. Wvhp, the condition Coccurs after m� u balls are removed and before m� d balls are removed from S. Thuswvhp, S0 is a subbag of S1 and a superbag of S2. Let t1 (resp. t2) denote the number ofnon-singletons in S1 (resp., S2). Hence t2 � t0 � t1 wvhp. Note that by Corollary 2.1.1,S1 and S2 have probability distributions Du;n and Dd;n, respectively.1. If d; u � n2=3 log3 n, then by Corollary 2.8.1, t2 � �f(d) and t1 � �f(u) wvhp,thus establishing Part 1 of the lemma.2. If u � pn log5 n, then by Part 2 of Lemma 2.9, t1 � 4u2=n wvhp, thus establishingPart 2 of the lemma.3. If u � pn log5 n, then by Part 3 of Lemma 2.9, t1 � 4 log10 n wvhp. Hencet0 � 4 log10 n wvhp, thus establishing Part 3 of the lemma.4. For any ball x, Pr[x 2 X] � Pr[x 2 X1] + 1=nc for any c � 0. By symmetry, theprobability that x remains when u balls are left is u=m. Since S1 is drawn uniformlyat random from Du;n, by Part 1 of Lemma 2.9, Pr[x 2 X1] � (u=m)(u=n) =u2=(mn), thus establishing Part 4 of the lemma.
Corollary 2.14.1: In Alg2(n; `; 1), let i � ` and d; u � 0 be integers such that d �si � u wvhp. If t0 = ti, then Parts 1 through 3 of Lemma 2.14 hold. Also, for any ballx 2 [n], the probability that x remains after round i is at most (u2=n2) + 1=nc for anyreal constant c � 0.Proof: Fix integer i � `. Let k = i mod `. Consider the sequence of bags fSj`+k j j �0g in Alg2. Bag Sk is obtained by throwing tk�1 (n if k = 0) balls into n bins. Bag38

Sj`+k, j > 0, is obtained by removing balls at random from S(j�1)`+k until t(j�1)`+k�1balls are left in a particular subbag T(j�1)`+k of S(j�1)`+k.Bag Sk can be obtained equivalently the following way: remove n � tk�1 (0 ifk = 0) balls at random from S that is a random bag drawn from Dn;n. Thus each bagSj`+k, j � 0 (Si, in particular), can be viewed as having been obtained from bag Sby removing balls at random until a certain condition (say C) holds. For bag Si thusobtained, it is given that d � jSij � u wvhp. We invoke Lemma 2.14, substituting(S; Si; si; t0; n; d; u; C) for (S; S0;m0; t0;m; d; u; C), to establish the desired claims.Lemma 2.15 is the analogue of Corollary 2.14.1 for Alg2(n; `; 2) and can be proved alongthe same lines.Lemma 2.15: In Alg2(n; `; 2), let i � ` and d; u � 0 be integers such that d � si � uwvhp.1. If d; u � n4=5 log3 n, then �g(d) � ti � �g(u) wvhp.2. If u � n2=3 log3 n, then ti � 12u3=n2 wvhp.3. If u � n2=3 log3 n, then ti � 12 log9 n wvhp.4. For any x 2 [n] the probability that x remains after round i is at most the maximumof 3u3=n3 + 1=nc and (u log10 n)=n2 + 1=nc for any real constant c � 0.2.4.3.1 Analysis for the 1-Collision CrossbarUsing the results of Section 2.4.2, we show that the probability thatAlg2(n; `; 1) deviatessigni�cantly from the \expected behavior" is polynomially small. Let s0i be de�ned asfollows: s0i = 8>>><>>>: n if i = 0,f(s0i�1) if 0 < i < `, ands0i�` � f(s0i�1)f(s0i�`) otherwise.39

Let t0i = f(s0i) for all i � 0. (Note that for all i � 0, s0i is the expected value of sigiven that (sj ; tj) = (s0j ; t0j) for 0 � j < i. Similarly, t0i is the expected value of ti giventhat (sj ; tj) = (s0j ; t0j) for 0 � j < i and si = s0i.)Lemma 2.16: In Alg2(n; `; 1), for all 0 � i � 52 log3 logn, if s0i � 4n2=3 log3 n and n issu�ciently large, then wvhp, �3is0i � si � �3is0i; and (2.3)�2�3i+1t0i � ti � �2�3i+1t0i: (2.4)Proof: We use induction on i. For the basis, i = 0 and s0 = n = s00. By Lemma 2.8,�f(n) � t0 � �f(n) wvhp. Since t00 = f(n), the desired claims hold for i = 0.Assume the claim holds for all j < i. We �rst establish Equation 2.3 from whichwe then derive Equation 2.4. We consider two cases. If i < `, then si = ti�1. Sinces0i�1 � s0i � 4n2=3 log3 n, we obtain from the induction hypothesis that �2�3i�1+1t0i�1 �ti�1 � �2�3i�1+1t0i�1 wvhp. Since 3i � 2 � 3i�1 + 1 for i < `, �cis0i � si � s0i�ci wvhp.If i � `, we use Corollary 2.12.1 to bound si. By the induction hypothesis andusing the inequality minfs0i�1; s0i�`g � 4n2=3 log3 n,�ci�`s0i�` � si�` � �ci�`s0i�`;�2�3i�`+1t0i�` � ti�` � �2�3i�`+1t0i�`; and�2�3i�1+1t0i�1 � ti�1 � �2�3i�1+1t0i�1:Substituting appropriate bounds on si�`; ti�`; and ti�1, we get the following bounds ons = si�`ti�1=ti�` wvhp:�2�3i�1+3i�`+1s0i�`t0i�1�2�3i�`+1t0i�` � s � �2�3i�1+3i�`+1s0i�`t0i�1�2�3i�`+1t0i�` :Since � � ��1 and �2 � ��1 for n su�ciently large, we have�2�3i�1+3�3i�`+2s0i�`t0i�1t0i�` � s � �2�3i�1+5�3i�`+3s0i�`t0i�1t0i�` : (2.5)Since 3` � 2�3`�1+9 for ` � 3, 3i � 2�3i�1+3�3i�`+2. Therefore s � �3is0i�`t0i�1=t0i�` =�3is0i wvhp. Since i � 52 log3 logn, we have 3i � log5=2 n. Hence, �3i � � for any real40

� < 1 for n su�ciently large. We thus have s � 2n2=3 log3 n. We next show that ti�` �s2i�`=4n wvhp. By the induction hypothesis, ti�` � �2�3i�`+1t0i�` = �2�3i�`+1f(s0i�`)wvhp. Since f(s0i�`) � (s0i�`)2=3n and si�` � �3i�`s0i�` wvhp, we haveti�` � �2�3i�`+1s2i�`3�2�3i�`n � �4�3i�`+1s2i�`3nwvhp. In the last equation we use � � ��1. For any real � < 1, �3i�` � �3i � � for nsu�ciently large. Therefore, �4�3i�`+1 � 3=4 for n su�ciently large and thus it followsthat ti�` � s2i�`=4n wvhp.We now apply Corollary 2.12.1 to obtain �s � si � �s wvhp. By Equation 2.5,wvhp, �2�3i�1+3�3i�`+3s0i�`t0i�1t0i�` � si � �2�3i�1+5�3i�`+4s0i�`t0i�1t0i�` :Since for ` � 3, 3` � 2 � 3`�1 + 9, we have 3i � 2 � 3i�1 + 5 � 3i�` + +4 and 3i �2 � 3i�1 + 3 � 3i�` + 3. Since s0i = s0i�`t0i�1=t0i�`, Equation 2.3 holds wvhp.We now invoke Part 1 of Corollary 2.14.1 to obtain bounds on ti. Note that�3is0i;�3is0i � n2=3 log3 n for n su�ciently large. Thus wvhp,�f(�3is0i) � ti � �f(�3is0i);and hence by Corollary C.3.1,�2�3ci+1f(s0i) � ti � �2�3i+1f(s0i):Since t0i = f(s0i), Equation 2.4 follows wvhp.Lemma 2.16 implies that we can analyze Alg2(n; `; 1) by studying how s0i decreases asi increases.Lemma 2.17: For all 0 � i < `, we haveY0�j<i+1 s0j = s00 Y0�j<i f(s0j);and for i � `, we have Yi�`+1�j<i+1 s0j = s00 Yi�`+1�j<i f(s0j):41

Proof: For 0 � i < `, the desired claim follows directly from the de�nition of s0j , 0 �j < i+1. Observe that for i = `� 1, we have Qi�`+1�j<i+1 s0j = s00Qi�`+1�j<i f(s0j�1).We use this equality as a basis for the case i � `. Assume that for ` � 1 � k < i, wehave Qk�`+1�j<k+1 s0j = s00Qk�`+1�j<k f(s0j). ThenYi�`+1�j<i+1 s0j = s0is0i�` Yi�`�j<i s0j= s00f(s0i�1)f(s0i�`) Yi�`�j<i�1 f(s0j)= s00 Yi�`+1�j<i f(s0j):Lemma 2.18: For all 1 � i < `, if s0i�1 and n are su�ciently large, then13i�1 Y0�j<i s0jn � s0in � Y0�j<i s0jn :For i � `, if s0i�1 and n are su�ciently large, then13`�1 Yi�`+1�j<i s0jn � s0in � Yi�`+1�j<i s0jn :Proof: By Lemma 2.17 and Lemma C.1, if s0i�1 and n are su�ciently large, then forall 0 � i < `, we have s003i�1 Y0�j<i (s0j)2n � Y0�j<i+1 s0j � s00 Y0�j<i (s0j)2n ;and the claim of the lemma follows after dividing by s00Q0�j<i s0j. By Lemma 2.17 andLemma C.1, if s0i�1 and n are su�ciently large, then for all i � 0, we haves003`�1 Yi�`+1�j<i (s0j)2n � Yi�`+1�j<i+1 s0j � s00 Yi�`+1�j<i (s0j)2n ;and the claim of the lemma follows after dividing by s00Qi�`+1�j<i s0j .Lemma 2.18 can be used to analyze Alg2(n; `; 1) for any ` � 2. Let wi = logr(n=si) andw0i = logr(n=s0i), where r = n=f(n). (Note that e=(e� 1) � r � 2 for all n � 2.)42

Lemma 2.19: In Alg2(n; `; 1), for all i > 0, if s0i�1 and n are su�ciently large, thenX1�j�minfi;`�1gw0i�j � w0i � 2 logr 3 + X1�j�minfi;`�1gw0i�j :Proof: Follows directly from the de�nition of w0i and Lemma 2.18.We are now ready to place a bound on the number of rounds taken by Alg2(n; `; 1)before termination. We �rst show that for ` � 3, Alg2(n; `; 1) terminates in O(log logn)rounds whp. To prove this upper bound, it is enough to consider the case ` = 3. Theupper bound for ` > 3 follows from the bound for ` = 3.Lemma 2.20: In Alg2(n; 3; 1) for all i > 0, if s0i�1 and n are su�ciently large, thenw0i � pi�11 , where p1 > 1 satis�es the following inequality:p21 � p1 � 1 � 0 (2.6)Proof: The proof is by induction on i. For the induction basis, i is 1. We haves01 = n=r, hence w01 = 1 = p01.Let the claimed lower bound on w0i hold for all 0 < j < i, i > 1. By Lemma 2.19and the induction hypothesis, w0i � pi�31 + pi�21 :It thus follows from Equation 2.6 that w0k � pk�11 .We now place an upper bound on the number of rounds taken by Alg2(n; 3; 1) beforetermination.Lemma 2.21: There exists an integer j = O(log logn) such that sj � n2=5 wvhp inAlg2(n; 3; 1).Proof: Let � = (1+p5)=2. Since �2 � �� 1 = 0, Lemma 2.20 implies that w0i � �i�1for all i > 0. Let k = minfi : w0i � logr(n1=34 log3 n)g. For i = dlog� logr n1=34 log3 ne + 1, w0i �logr(n1=34 log3 n). Therefore, k � log� logr n1=34 log3 n +2. (Also note that since w02 � 1+2 logr 3,k � 3 for n su�ciently large.) Since �5=2 > 3, k � 5=2 log3 logn for n su�ciently43

large. Thus, Equations 2.3 and 2.4 of Lemma 2.16 hold for all i < k. (Also note thats0k = n=rw0k � 4n2=3 log3 n.)By Lemma 2.16, tk�1 � �2�3k�1+1t0k�1 wvhp. Since t0k�1 = f(s0k�1) � (s0k�1)2=3n,we have tk�1 � 16�2�3k�1+1(n1=3 log6 n)=3 � log2 nwvhp for n su�ciently large. By Lemma 2.13, sk � 3sk�3tk�1=tk�3 wvhp. Substitutingappropriate bounds on sk�3, tk�3, and tk�1 from Lemma 2.16, we have wvhpsk � 3�2�3k�1+5�3k�3+4s0k � 3�3ks0k � 4s0k: (2.7)The last equation follows from the inequality �3k < � for any real � < 1 and n su�-ciently large. We consider two cases depending on the value of s0k.Case 1: s0k � pn log5 n. By Equation 2.7, sk � 4pn log5 n wvhp. Therefore, by Part3 of Lemma 2.14.1, tk � 64 log10 n wvhp. We consider two cases. If tk � log2 n, byLemma 2.13, sk+1 � 3sk�2tk=tk�2 wvhp. If tk � log2 n, then sk+1 � 3sk�2 log2 n=tk�2.In any case, sk+1 � (192sk�2 log10 n)=tk�2 wvhp. We now substitute appropriate boundson sk�2 and tk�2 from Lemma 2.16 and obtain that wvhp,sk+1 � 192�3k�2s0k�2 log10 n�2�3k�2+1t0k�2� 576n�5�3k�2+2 log10 ns0k�2� 144�3kn1=3 log7 n� n2=5for n su�ciently large. (Note: The penultimate equation follows from the inequalities3k � 5 � 3k�2 + 2 and s0k�2 � 4n2=3 log3 n.)Case 2: s0k � pn log5 n. By Equation 2.7, sk � 4s0k wvhp. We again consider two cases,depending on whether tk � log2 n or tk � log2 n.If tk � log2 n then Lemma 2.13 implies that sk+1 � 3sk�2 log2 n=tk�2 wvhp.Arguing as in Case 2, sk+1 is at most n2=5 wvhp.44

If tk � log2 n then Lemma 2.13 implies that sk+1 � 3sk�2tk=tk�2 wvhp. Sincesk � 4s0k, by Part 2 of Lemma 2.14.1, tk � 64(s0k)2=n � 192t0k wvhp. Substituting thisupper bound on tk and appropriate bounds on sk�2 and tk�2 obtained from Lemma 2.16,we have sk+1 � 1000s0k+1 wvhp for n su�ciently large. We now derive an upper boundon s0k+1.By Lemma 2.19, w0k � w0k�1 + w0k�2 + 2 logr 3. Since w0k�1 � w0k�2, we havew0k�1 � 12(w0k � 2 logr 3) � logr n6 � 3 logr logn2 � logr 6:Thus, by Lemma 2.19,w0k+1 � w0k + w0k�1� logr n2 � 9 logr logn2 � logr 24; ands0k+1 � pn log5 n;for n su�ciently large. We now apply an analysis similar to Case 2 with k replaced byk + 1 to establish that sk+2 is at most n2=5 wvhp.Cases 1 and 2 establish that after j = k + 2 = O(log logn) rounds, sj is at mostn2=5 wvhp.Lemma 2.22: For any ball x 2 [n], the probability that x remains after O(log logn)rounds of Alg2(n; 3; 1) is at most 2=n6=5 for n su�ciently large.Proof: By Lemma 2.21, after j = O(log logn) rounds, sj � n2=5 wvhp. By Corol-lary 2.14.1, the probability that x remains after round j is at most 2n4=5=n2 for nsu�ciently large. Since 2n4=5=n2 = 2=n6=5, the desired claim follows.The following theorem is an easy consequence of the above lemma.Theorem 2.1: Alg2(n; 3; 1) terminates in O(log logn) rounds whp.Corollary 2.1.1: For ` � 3, Alg2(n; `; 1) terminates in O(log logn) rounds whp.45

We now establish a lower bound on the number of rounds taken by Alg2(n; `; 1) beforetermination. We �rst place an upper bound on w0i that complements the lower boundof Lemma 2.20. (Note that the following lemma applies for all `, while ` equals 3 inLemma 2.20.)Lemma 2.23: In Alg2(n; `; 1) for all i > 0, if s0i�1 and n are su�ciently large, thenw0i � pi�12 , where p2 > 1 satis�es the following inequality:pk2 � 2 logr 3� X0�j<k pj2 � 0 for all k � `� 1 (2.8)Proof: We �rst note that w00 = 0. The proof of the lemma is by induction on i. Forthe induction basis, i = 1. We have s01 = n=r, and hence w01 = 1 = p02.Let the claimed upper bound on w0i hold for all 0 < j < i, i > 1. By Lemma 2.19and the induction hypothesis, we have:w0i � 2 logr 3 + X1�j�minfi�1;`�1g pi�j�12 :By Equation 2.8 and the inequality p2 > 1, 2 logr 3 +P1�j�minfi�1;`�1g pi�j�12 � pi�12 .This completes the proof of the desired claim.Theorem 2.2: For any ` � 3, Alg2(n; `; 1) terminates in
(log logn) rounds wvhp.Proof: One solution to Equation 2.8 is p2 = 2 logr 3+1 = O(1). Thus, by Lemma 2.20,w0i � pi�12 for all i > 0. After k = blogp2((logr n)=4)c rounds, w0k � (logr n)=4 ands0k � n3=4. For n su�ciently large, n3=4 � 4n2=3 log3 n. Therefore, by Lemma 2.16, tk ��2�3k+1t0k � �2�3k+1(s0k)2=3n > 0 for n su�ciently large. This shows that Alg2(n; `; 1)executes at least logp2((logr n)=4) � logp2((logn)=4) =
(log logn) rounds before termi-nation.The recurrence in Lemma 2.18 for ` = 2 yields s0i+1=n � s0i=3n for all i � 0. Thusw0i = O(i). Using an analysis similar to the above theorem we establish an
(logn)lower bound for Alg2(n; 2; 1).Theorem 2.3: Alg2(n; 2; 1) terminates in
(logn) rounds wvhp.46

2.4.3.2 Analysis for the 2-Collision CrossbarThe analysis of Alg2 for the 2-collision crossbar is similar to that for the 1-collisioncrossbar. We begin by de�ning s0i as follows:s0i = 8>>><>>>: n if i = 0,g(s0i�1) if 0 < i < `,s0i�` � g(s0i�1)g(s0i�`) otherwise.For all i � 0 let t0i = g(s0i). As in Section 2.4.3.1, we next show that s0i and t0i aregood approximations for si and ti, respectively (Lemma 2.24). Lemmas 2.25 and 2.26determine the rate at which s0i decreases with increasing i. Using Lemma 2.24, we canthen determine the rate of change of si as i increases. The proofs of Lemmas 2.24, 2.25,and 2.26 are analogous to those of Lemmas 2.16, 2.17, and 2.18.Lemma 2.24: Let c be the positive root of c2 = 4c + 13. In Alg2(n; `; 2), for all0 � i � (11=4) logc logn, if s0i � 4n4=5 log3 n, then wvhp,�cis0i � si � �cis0i; and (2.9)�4ci+1t0i � ti � �4ci+1t0i: (2.10)Lemma 2.25: For all 0 � i < `, we haveY0�j<i+1 s0j = s00 Y0�j<i g(s0j);and for i � `, we have Yi�`+1�j<i+1 s0j = s00 Yi�`+1�j<i g(s0j):Lemma 2.26: For all 1 � i < `, if s0i�1 and n are su�ciently large, then112i�1 Y0�j<i�s0jn �2 � s0in � Y0�j<i�s0jn � :47

For i � `, if s0i�1 and n are su�ciently large, then112`�1 Yi�`+1�j<i�s0jn �2 � s0in � Yi�`+1�j<i�s0jn �2 :
Let wi = logr(n=si) and w0i = logr(n=s0i), where r = n=g(n). (Note that e=(e �2) � r � 9 for n � 3.)Lemma 2.27: In Alg2(n; `; 2), for all i > 0, if s0i�1 and n are su�ciently large, thenX1�j�minfi;`�1g 2w0i�j � w0i � logr 12 + X1�j�minfi;`�1g 2w0i�j:Proof: Follows directly from the de�nition of w0i and Lemma 2.26.We are now ready to place a tight bound on the number of rounds taken byAlg2(n; `; 2)before termination. We �rst show that Alg2(n; 2; 2) terminates in O(log logn) roundswhp. The upper bound for ` > 2 follows from the bound for ` = 2.Lemma 2.28: In Alg2(n; 2; 2) for all i > 0, if s0i�1 and n are su�ciently large, thenw0i � 2i�1.Proof: The proof is by induction on i. For the induction basis, i = 1. We haves01 = n=r, hence w01 = 1 = 20. Let the claimed lower bound on w0i hold for all 0 < j < i,i > 1. By Lemma 2.19 and the induction hypothesis, w0i � 2 � 2i�2 = 2i�1.We now place an upper bound on the number of rounds taken by Alg2(n; 2; 2) beforetermination.Lemma 2.29: There exists an integer j = O(log logn) such that sj � n5=8 wvhp inAlg2(n; 2; 2).Proof: By Lemma 2.28, w0i � 2i�1 for all i > 0. Let k = minfi j w0i � logr n1=34 log3 ng.Therefore k � dlog logr n1=54 log3 ne+ 1 � log logr n1=54 log3 n + 2. (Also note that since w01 = 1,we have k � 2 for n su�ciently large.) Now we apply Lemma 2.24 with ` = 2. Let �48

be the root of the equation �2 = 4� + 13. Since 211=4 > �, k � (11=4) log� logr n for nsu�ciently large. Therefore by Lemma 2.24, tk�1 � �4�k�1+1t0k�1 wvhp. Since t0k�1 �(s0k�1)3=(12n2), we have tk�1 � �4�k�1+1(16n2=5 log9 n)=3 � log2 n for n su�cientlylarge. By Lemma 2.13, sk � 3sk�2tk�1=tk�2 wvhp. Substituting the appropriate boundson sk�2, tk�1 and tk�2 given by Lemma 2.24, we have wvhp,sk � 3�4�k�1+�k�2+1s0k�2t0k�1�4�k�2+1t0k�2� 3�4�k�1 + 9�k�2 + 3s0k�2t0k � 1t0k�2 :Since �2 = 4� + 13, we have �k � 4�k�1 + 9�k�2 + 3. Therefore,sk � 3��ks0k � 4s0k; (2.11)wvhp for n su�ciently large.We consider two cases, depending on whether tk � log2 n or tk > log2 n.If tk � log2 n, then by Lemma 2.13, sk+1 � 3sk�1 log2 n=tk�1 wvhp. Substitutingappropriate bounds on sk�1 and tk�1 given by Lemma 2.24, we have wvhp,sk+1 � 3��k�1s0k�1 log2 n�4�k�1+1t0k�1� 36�9�k�1+2n2 log2 n(s0k�1)2� 9��k+1n2=54 log4 n� 92�n2=54 log4 n� n5=8for n su�ciently large. (The second equation follows from the lower bound on t0k�1 givenby Lemma C.2. In the third equation we use s0k�1 � n4=5 log3 n. And in the penultimateequation we use ��k � 2 for n su�ciently large.)If tk > log2 n then by Lemma 2.13, sk+1 � 3sk�1tk=tk�1 wvhp. If s0k �(n2=3 log3 n)=4, then since sk � 4s0k wvhp, by Part 3 of Lemma 2.15, tk � 12 log9 n49

wvhp. Hence, as in the case tk � log2 n above, we can establish that tk+1 is zero whp.If s0k � (n2=3 log3 n)=4, then by Lemma 2.15, tk � 768(s0k�1)3=n2 wvhp. Therefore, byLemma C.2, tk � 12 � 768t0k. Substituting this bound on tk and appropriate bounds onsk�1 and tk�1 given by Lemma 2.24, we have wvhp,sk+1 � 36 � 768��k�1s0k�1t0k�4�k�1+1t0k�1� 36 � 768�9�k�1+2s0k+1� 36 � 768 � 2�s0k+1:By Lemma 2.27 with ` = 2, w0k+1 � 2w0k. Thus w0k+1 � 2 logr(n1=54 log3 n), and s0k+1 �16n3=5 log6 n. Hence, sk+1 � n5=8 for n su�ciently large.In Lemma 2.30 we place a bound on the probability that a particular ball remains afterO(log logn) rounds.Lemma 2.30: For any ball x 2 [n], the probability that x remains after O(log logn)rounds of Alg2(n; 3; 1) is at most 4=n9=8 for n su�ciently large.Proof: By Lemma 2.29, after j = O(log logn) rounds, sj � n5=8 wvhp. By Part 4of Lemma 2.15, the probability that x remains after round j is at most 4n15=8=n3 for nsu�ciently large. Since 4n15=8=n3 = 4=n9=8, the desired claim follows.The following theorem follows easily from Lemma 2.30.Theorem 2.4: Alg2(n; 2; 2) terminates in O(log logn) rounds whp.Corollary 2.4.1: For ` � 2, Alg2(n; `; 2) terminates in O(log logn) rounds whp.We now establish a lower bound on the number of rounds taken by Alg2(n; `; 2) beforetermination. We �rst place a upper bound on w0i that complements the lower bound ofLemma 2.28. The proof of the following lemma follows the lines of Lemma 2.23 and isomitted here. 50

Lemma 2.31: In Alg2(n; `; 2) for all i > 0, if s0i�1 and n are su�ciently large, thenw0i � pi�1, where p > 1 satis�es the following inequality:pk � logr 12� 2 X0�j<k pj � 0 for all k � `� 1: (2.12)
Theorem 2.5: For all ` � 1, Alg2(n; `; 2) terminates in
(log logn) rounds wvhp.Proof: One solution to Equation 2.12 is p = logr 12 = O(1). Therefore, by Lemma 2.28,w0i � pi�1 for all i > 0. After k = blogp((logr n)=6)c, rounds w0k � (logr n)=6, ands0k � n5=6. For n su�ciently large n5=6 � 4n4=5 log3 n. Therefore, by Lemma 2.24, tk ��4ck+1t0k � �4�k+1(s0k)3=12n2 > 1 wvhp for n su�ciently large. (Here � is the positiveroot of �2 = 4� + 13. Note that �4�k+1 > 12pn for n su�ciently large.) This showsthatAlg2(n; 2; 2) executes at least blogp((logr n)=6)c � blogp((log9 n)=6)c =
(log logn)rounds wvhp before termination.2.5 Limited IndependenceIn this section we analyze the 1 out of ` protocol when the ` hash functions are chosenfrom a k-wise independent family of hash functions. We show that for any c-collisioncrossbar, the probability that a particular memory request remains after r rounds of thek-wise independent 1 out of ` protocol is close to that of the fully independent protocolfor r = O(log logn), even when k � n. Importing the results in Lemmas 2.22 and 2.30,we obtain the following main theorems.Theorem 2.6: For integers ` � 3 and c � 1, the 1 out of ` problem is solved on ac-collision crossbar in O(log logn) rounds whp, when the ` hash functions are chosen in-dependently and uniformly at random from a k-wise independent family of hash functionsfor any k =
(log� n), where � is a real constant chosen su�ciently large.51

Theorem 2.7: For integers ` � 2 and c � 2, the 1 out of ` problem is solved on ac-collision crossbar in O(log logn) rounds whp, when the ` hash functions are chosen in-dependently and uniformly at random from a k-wise independent family of hash functionsfor any k =
(log� n) where � is a real constant chosen su�ciently large.Let Fkm;n denote a k-wise independent family of functions from [m] to [n]. Thatis, for fxi : i 2 [j]g � [m], y0; : : : ; y`�1 2 [n]j, j 2 [k + 1], it holds that if h is drawnuniformly at random from Fkm;n, thenPr[h(xi) = yi for all i in [j]] = 1=nj:If k � pn, Fkm;n can be constructed as in [75] using the familiesHnd;n and H1m;nd de�nedin [35] and [107] respectively. (Here d is an appropriate constant.) A hash function hchosen uniformly at random from Fkm;n is de�ned as r � s, where r and s are chosenuniformly at random from Hnd;n and H1m;nd respectively. Both r and s can be evaluatedin constant time [107, 35], and hence the same is true of h.In order to analyze the 1 out of ` protocol, we restrict our attention to the atmostn memory requests of the processors. The hash functions with the domain restricted tothis set of requests can be viewed as mapping m � n memory locations into n memorymodules k-wise independently. First, we establish a few simple properties of k-wiseindependent hash functions.Lemma 2.32: Let k, m, and n be integers such that 0 < k � m � n. Let h be drawnuniformly at random from Fkm;n. For any A � [n], jAj � (k � 1)=e2, we havePr[h�1(A) = ;] � (1� jAj=n)m(1 + e�(k�1)=3):Proof: If k is even, let k0 = k; otherwise, let k0 = k � 1. By inclusion-exclusion wehave:Pr[h�1(A) = ;] = 1 + mXi=1 X0�x0<:::<xi�1<m(�1)i Pr[h(x0); : : : ; h(xi�1) 2 A]� 1 + k0Xi=1 X0�x0<:::<xi�1<m(�1)i Pr[h(x0); : : : ; h(xi�1) 2 A]52

= 1 + k0Xi=1 X0�x0<:::<xi�1<m(�1)i(jAj=n)i= 1 +0@k0�1Xi=1 X0�x0<:::<xi�1<m(�1)i(jAj=n)i1A+ �mk0�(jAj=n)k0� 1 +0@ mXi=1 X0�x0<:::<xi�1<m(�1)i(jAj=n)i1A+ �mk0�(jAj=n)k0� (1� jAj=n)m + �mk0�(jAj=n)k0� (1� jAj=n)m(1 + (em=k0)k0(jAj=n)k0e2mjAj=n)� (1� jAj=n)m(1 + (ejAj=k0)k0e2mjAj=n)� (1� jAj=n)m(1 + e�k0e2jAj)� (1� jAj=n)m(1 + e�k0=3):(In the seventh equation we use the inequalities 1 � x � e�2x for 0 � x � 1=2 andjAj � k0=e2 � n=2. The last equation follows since jAj � k0=e2.)Lemma 2.33: Let k, m, and n be integers such that 0 < k � m � n. Let h be drawnuniformly at random from Fkm;n. Let B � [n] satisfy jBj � k=�, where real � > 0. IfS = h�1(B), then Pr[jSj � �jBj] � (e=�)�jBj.Proof: By the de�nition of S, Pr[jSj � �jBj] is the probability that there exists a setT � [m], jT j = �jBj, such that h(T) � B. Since �jBj � k and h is chosen uniformlyfrom a k-wise independent family of hash functions, the desired probability is at most(m�jBj)(jBj=n)�jBj � (me=(�n))�jBj � (e=�)�jBj.Corollary 2.33.1: Let k, m, n, and p be integers such that 0 � p < k � m � n. Leth be drawn uniformly at random from Fkm;n. For i in [p], let X = fxi : i 2 [p]g � [m]and y = (y0; : : : ; yp�1) 2 [n]p. Let E be the event that for all i in [p], h(xi) = yi. LetA � [n], jAj � minfp; (k� p� 1)=e2g, and E0 be the event that for all x 62 X, h(x) 62 A.Let B � [n] satisfy jBj � (k � p � 1)=�, where real � � 0. If S = h�1(B), thenPr[jSj � �jBj+ p j E \ E0] � 2e2jAj(e=�)�jBj.53

Proof: Let Y denote [m]nX. Thus, g = hY j E is drawn uniformly from a (k�p)-wiseindependent family of functions from Y to [n]. The event E0 j E is equivalent to theevent that g�1(A) = ;. If k � p is odd, let k0 = k � p; otherwise, let k0 = k � p� 1. Byinclusion-exclusion we havePr[E0 j E] � (1� jAj=n)m�p � �m� pk0 �(jAj=n)k0� e�2jAj(m�p)=n � (ejAj=(k0))k0� e�2jAj � (2e)�2jAj� e�2jAj=2:(For the second equation we use the inequality (1� jAj=n) � e�2jAj=n, since jAj � n=2.The third equation follows from the inequality k0 � 2e2jAj � 2jAj.)Pr[(jSj � �jBj+ p) j E \ E0] = Pr[((jSj � �jBj+ p) \E0) j E]Pr[E0 j E]� Pr[(jSj � �jBj+ p) j E]Pr[E0 j E]� Pr[g�1(B) � �jBj]Pr[E0]� 2e2jAj(e=�)�jBj:(For the last equation we invoke Lemma 2.33 substituting (m � p; n; k � p; �;B; S) for(m;n; k; �;B; S).)For the rest of this section, we �x integers `; c � 1, and analyze the 1 out of ` protocolon the c-collision crossbar. Let ~h = (h0; : : : ; h`�1) represent a tuple of ` hash functions,where hi : [m] ! [n] for all i in [`]. For x 2 [m], let AFFECT i(~h; x) denote the set ofmemory requests that could a�ect the success of request x in round j for all j in [i+1].Formally, we de�neAFFECT i(~h; x) = 8>>><>>>: fxg if i = �1,fz 2 [m] : hi mod `(z) = hi mod `(y)for some y 2 AFFECT i�1(~h; x)g otherwise.54

Lemma 2.34: Let k, m, and n be integers such that 0 � k � m � n. Let ~h =(h0; : : : ; h`�1) denote ` hash functions chosen independently and uniformly at randomfrom Fkm;n, For any x 2 [m] and i � 0, if k � maxf4 log2 n; 10jAFFECT i�1(~h; x)jg, thenjAFFECT i(~h; x)j � maxf4 log2 n; 10jAFFECT i�1(~h; x)jg wvhp.Proof: In the following we use Ai as a shorthand for AFFECT i(~h; x). Fix i andlet j = i mod `. Let Ai�1 = fx0; : : : ; xp�1g, where p 2 [m + 1]. If i � ` � 1, letA = Ai�1 n Ai�`; otherwise, let A = Ai�1. Let B = hj(Ai�`), C = hj(A), andS = Ai n Ai�1. Thus S � h�1j (C). Fix y = (y0; : : : ; yp�1) 2 [n]p and let E be theevent that (hj(x0); : : : ; hj(xp�1)) = y. Let E0 be the event that for all x 62 Ai�1hj(x) 62 C. Set � = maxf(e2p)=jCj; (log2 n)=jCjg. We now apply Corollary 2.33.1, sub-stituting (k;m; n; hj; p;X; y;B;C; S;E;E0; �) for (k;m; n; h; p;X; y;A;B; S;E;E0; �), toobtain jSj � �jCj+p with probability at least 1�2e2jBj(e=�)�jCj. Since � � e2p=jCj � e2,we have 2e2jBj(e=�)�jCj � 2e2jBj��jCj� 2e��jCj=2� 2e�(log2 n)=2:(For the second equation we use the inequality 2jBj � 2p � 2�jCj=e2 � �jCj=2. Thelast equation follows from the de�nition of �.) Thus,jAij � jAi�1j+ jSj � maxfe2p; 2 log2 ng+ 2p � maxf4 log2 n; 10jAi�1jgwvhp.For r � 0, ~h = (h0; : : : ; h`�1), hi : [m] ! [n] for all i in [`], and x 2 [m], de�neASSIGN r(~h; x) as f(x0; h0(x0); : : : ; h`�1(x0)) : x0 2 AFFECT r(~h; x)g. We note thatASSIGN r(~h; x) completely determines whether x succeeds within r rounds under ~h.Any element in the set [m] � [n]` of (` + 1)-dimensional vectors is referred to as anassignment .In the following, let Prk[EVENT (~h)] denote the probability of EVENT (~h) wheneach hash function in ~h is chosen independently and uniformly from Fkm;n.55

Lemma 2.35: Let k, m, n, and p be integers such that 0 � k � m � n and 0 � p �(k�1)=(e2+1). Let xi, for all i in [p], be arbitrary distinct integers from [m] and yi;j, forall i in [p] and all j in [`], be arbitrary integers from [n]. Let A = f(xi; yi;0; : : : ; yi;`�1) :i 2 [p]g. For arbitrary x 2 [m] and integer r � 0, we havePrk[ASSIGN r(~h; x) = A] � Prm[ASSIGN r(~h; x) = A](1 + e�(k�p)=3)`:Proof: Let E be the event that hj(xi) = yi;j for all i in [p] and all j in [`]. LetX = fxi : i 2 [p]g and Yj = fyi;j : i 2 [p]g, j 2 [`]. (Note that jYj j � p for j in [`].) LetE0 be the event that AFFECT r(~h; x) = X. Thus ASSIGN r(~h; x) = A if and only if Eand E0 occur.We now consider E0 under the assumption that E occurs. Let ~g denote the tuple(hX0 ; : : : ; hX̀�1). Let E00 be the event that AFFECT r(~g; x) = X. Let E01 be the eventthat for j in [`], h�1j (Bj) is a subset of X, where for all j in [`], Bj is determined asfollows: If r < j then Bj = ;; otherwise, we consider two cases. If r mod ` � j, thenBj = hXj (AFFECT (br=`c�1)`+j(~g; x)); otherwise, Bj = hXj (AFFECT br=`c`+j(~g; x)). Wenow show that given E, E0 is equivalent to E00\E01. First, by the de�nition of AFFECT ,E0 implies E00 and E0 implies E01. Second, event E00 implies that AFFECT r(~h; x) � X.Since the domain of ~g is X, by the de�nitions of Bj and AFFECT , if h�1j (Bj) � X forall j, then the calculation of AFFECT r(~h; x) will be identical to that of the calculationof AFFECT r(~g; x), i.e., AFFECT r(~h; x) = AFFECT r(~g; x). Therefore, E00 \E01 impliesE0. Since the occurrence of event E completely determines ~g, and hence whether E00occurs, it follows that Prk[E00 j E] = Prm[E00 j E]. It remains to bound Prk[E01 j E \E00],which is the same as Prk[E01 j E].For any p � q � m, if hj is drawn from a q-wise independent family of hashfunctions from [m] to [n], then fj = h[m]nXj j E is drawn from a (q�p)-wise independentfamily of hash functions from [m] n X to [n]. We invoke Lemma 2.32, substituting(k � p;m� p; n; fj; Bj) for (k;m; n; h;A), to obtain that for all j in [`]:Prk[h�1j (Bj) � X j E] = Prk[f�1j (Bj) = ;]56

� Prm[f�1j (Bj) = ;](1 + e�(k�p)=3)= Prm[h�1j (Bj) � X j E](1 + e�(k�p)=3):Since Prq[E0 j E] is at most Q0�j<`Prq[h�1j (Bj) � X j E] for q in [m + 1], wehavePrk[E \ E0] = Prk[E]Prk[E00 j E]Prk[E01 j E]= Prk[E]Prk[E00 j E] Y0�j<`Prk[h�1j (Bj) � X j E]= Prm[E]Prm[E00 j E] Y0�j<`Prk[h�1j (Bj) � X j E]� Prm[E]Prm[E00 j E] Y0�j<`Prm[h�1j (Bj) � X j E](1 + e�(k�p)=3)`= Prm[E]Prm[E00 j E]Prm[E01 j E](1 + e�(k�p)=3)`= Prm[E \ E0](1 + e�(k�p)=3)`:
Lemma 2.36: Let k, m, and n be integers such that 0 � k < m � n. For any real � 0, x 2 [m] and integer r � log logn, if k � 8 log4+2 n, thenPrk[x remains after r rounds under ~h] � Prm[x remains after r rounds under ~h] + 1=n2for n su�ciently large.Proof: Let A be fASSIGN r(~h; x) : ~h 2 Fm;n and x remains after r rounds under ~hg.By Lemma 2.34, jASSIGN r(~h; x)j � 4(log2 n)10rg � 4 log4+2 n wvhp. By Lemma 2.35,for any assignment A such that jAj � 4 log4+2 n,Prk[ASSIGN r(~h; x) = A] � Prm[ASSIGN r(~h; x) = A](1 + e�(k�jAj)=3)`� Prm[ASSIGN r(~h; x) = A](1 + 1=n3);for n su�ciently large. (Here we use the inequality k � 8 log4+2 n � 2jAj.) Thus,Prk[x remains after r rounds under ~h]57

� Prk[ASSIGN r(~h; x) 2 A]� Prk[(ASSIGN r(~h; x) 2 A) and jASSIGN r(~h; x)j � 4 log4+2 n] + 1=n3� XA2AjAj�4 log4+2 n Prk[ASSIGN r(~h; x) = A] + 1=n3� XA2AjAj�4 log4+2 n Prm[ASSIGN r(~h; x) = A](1 + 1=n3) + 1=n3� Prm[ASSIGN r(~h; x) 2 A](1 + 1=n3) + 1=n3� Prm[x remains after r rounds under ~h] + 1=n2;for n su�ciently large.By Lemma 2.22, for any x 2 [n], Prn[x remains after O(log logn) rounds] is at most2=n6=5 in the 1 out of 3 protocol on the 1-collision crossbar. Similarly, for the 1 out of2 protocol on the 2-collision crossbar, Lemma 2.30 implies that 4=n9=8 is a lower boundon Prn[x remains after O(log logn) rounds] for any x 2 [n]. We now apply Lemma 2.36to establish Theorems 2.6 and 2.7.2.6 The Emulation ProtocolsAlg1 can be generalized to apply to any a out of b problem by changing the routinesRandomSubbag and PrunedBag appropriately; after each step, we need to keep trackof how many successes each processor has had, and only those processors with fewerthan a successes participate. In the following discussion, we refer to this protocol as thegeneric protocol. For given a and b, the analysis of the generic protocol can be doneusing the approach of Subsection 2.4.3, but involves more complicated calculations andrecurrences. A di�erent analysis of this protocol for the 2 out of 3 case is given in [47],where an O(log logn) upper bound is shown when the collision factor is greater than 3.In this section, we present a simple variant of the generic protocol that solves any a outof b problem on a 2-collision crossbar, and hence on a 2-arbitrary crossbar as well, inO(log logn) time whp. 58

In particular, we can solve any a out of a + 1 problem by running Alg1(n; 2; 1)with (a+12) di�erent hash-function pairs. Since each run fails with a polynomially smallprobability and there are only a constant number of runs, the entire algorithm succeedswhp. For instance, in the case of 2 out of 3, we simply perform 3 runs of Alg1. At�rst glance, it may appear that this revised protocol is only of interest because it issimpler to analyze. Actually, the new protocol is competitive with the generic one forsmall a and is much faster for large a. Comparing it for the 2 out of 3 problem, we�rst note that since each of the 3 runs use 2 hash functions only while the genericprotocol uses 3, the revised protocol will be at most twice as slow as the generic one.Moreover, the 1 out of 2 problem is clearly a simpler problem than the 2 out of 3problem. So each run will involve a fewer rounds than in the generic algorithm. Forlarge a, this phenomenon is pronounced. For a generic a out of a + 1 protocol to make\progress", a number of processors must have a large number of successes. But at theoutset, the fraction of processors that have succeeded on d � a hash functions decreasesexponentially with d. Therefore, while the revised protocol experiences only a quadraticslowdown in running time, the generic protocol will su�er an exponential increase inrunning time with increasing a. (We remark here that our notion of the generic protocoldoes not include the protocol studied in [94] that is shown to have a running time thatis polynomial in a when a, b, and c are suitably chosen.)The basic idea outlined above can be used to solve any a out of b problem bychoosing any a+1 hash functions and solving the corresponding a out of a+1 problem.Theorem 2.8: For integer constants a and b with 1 � a < b, the corresponding a outof b problem can be solved on a 2-collision or a 2-arbitrary crossbar in O(log logn) timewhp. The above generalizations can be made for the 1-collision and the 1-arbitrarycrossbars as well. Since Alg1 solves the 1 out of 3 problem on a 1-collision crossbar inO(log logn) time whp, any a out of a+2 problem can be solved in the same asymptotictime bound by running Alg1(n; 3; 1) on (a+23) di�erent triples of hash functions.59

Theorem 2.9: For integer constants a and b with 1 � a < b � 1, the corresponding aout of b problem can be solved on a 1-collision or a 1-arbitrary crossbar in O(log logn)time whp.2.7 Concluding RemarksIn this chapter, we have analyzed a class of simple local protocols for emulating anEREW PRAM on a c-arbitrary crossbar. As shown in Section 2.6, the delay associatedwith the emulations is O(log logn) whp. One way to reduce delay is to introduce parallelslackness by emulating a non-constant number of EREW PRAM processors on a nodeof the crossbar. The concept of parallel slackness has been used by [47, 63, 75] to obtainwork-optimal emulations. A work-optimal emulation with delay d(n) is a protocol thatemulates a d(n)-processor EREW PRAM on an n-processor crossbar in O(d(n)) time.It would be interesting to see if the techniques developed in this chapter can be appliedto obtain tight analyses of simple work-optimal emulations.An alternative approach to reduce delay is to allow the nodes of the crossbarto execute asynchronously. In other words, once a node has successfully accessed itsrequest, it need not wait for the successful completion of the access requests of othernodes before proceeding to its next access request. Such an approach not only reducesdelay, but is also preferable since no explicit synchronization is required. We adopt thisdynamic approach in the following chapter, where we build on the techniques of hashingand replication used here to develop a protocol that provides e�cient access to sharedobjects in the presence of faults and concurrency.Our main technical contribution in this chapter is the derivation of sharp thresh-old phenomena associated with certain random allocation experiments. Several recentpapers have studied similar processes that arise in dynamic resource allocation and par-allel load balancing [2, 25, 108].
60

Chapter 3
Fast Fault-Tolerant ConcurrentAccess to Shared Objects
3.1 IntroductionIn this chapter, we design and analyze a simple local protocol for providing fast con-current access to shared objects in a faulty distributed network. We model the networkas a faulty O(logn)-arbitrary crossbar. In particular, our model consists of n nodescommunicating via point-to-point messages, subject to the following constraints: In asingle step, (i) a node can only send or receive O(logn) words1, (ii) a constant fraction ofthe nodes may be \down" (i.e., unable to communicate with any other nodes), and (iii)each \up" node may be unable to directly communicate (i.e., via a single point-to-pointmessage) with a constant fraction of the other \up" nodes. See Section 3.2 for a precisede�nition of our model of computation.How can we provide e�cient concurrent access to a given popular object A ina network that supports only partially reliable point-to-point communication? In aconventional distributed �le system, a single \server" process (residing on a particularphysical node) is assigned the responsibility for storing the object A, and any \client"1Throughout this chapter, we use the term \word" to refer to an O(log n)-bit string.61

process wishing to read A sends a message to this server; the server then responds with amessage containing a copy of the object A. Unfortunately, this scheme su�ers from bothlow fault-tolerance (if a given client cannot connect to the server due to a network fault,an event that occurs with constant probability in our model, then that client cannotaccess the object) and high latency (since A is assumed to be a popular object, a longtime is needed for the server to sequentially service each of the incoming requests for A).Thus, to obtain either fault-tolerance or fast concurrent access we are led to con-sider schemes in which each object is replicated across a number of di�erent nodes. InChapter 2, we observed that a constant number of copies su�ces to provide e�cientaccess to shared objects under the assumption that there are no faults and no concur-rent accesses. Fault-tolerance considerations alone, however, would seem to imply thateach object should be replicated
(logn) times if we wish to guarantee access with afailure probability that is polynomially small in n, the number of nodes in the network,since each node can fail with constant probability. Unfortunately, this results in an
(logn)-fold increase in the space needed to store each object. The theory of erasurecodes, however, provides a convenient method for achieving fault-tolerance while payingonly a constant factor space penalty. For example, using Rabin's Information DispersalAlgorithm [104] (IDA), for any k > m, a given b-bit string can be encoded as a set ofk (b=m)-bit strings of length m, with the property that any m of the (b=m)-bit stringssu�ce to reconstruct the original b-bit string. Thus, IDA can be used to obtain fault-tolerance with only a constant factor space penalty by setting m to �(logn) and k to�(m), e.g., k = 2m. This powerful technique is used by Aumann et al. [17] as partof an e�cient scheme for emulating large-grained PRAM programs on an asynchronousparallel machine. In our protocol, we use the same technique to store the \primary"copy of each object.Of course, the IDA technique alone is not su�cient to guarantee fast (e.g.,O(logn) time) concurrent access to an object that is extremely popular. For exam-ple, suppose that the popularity of some object is pn, and that IDA has been used toencode the object in �(logn) \fragments", each of which is stored in a separate node.62

Assuming point-to-point communication, and assuming that a single node cannot sendor receive more than O(logn) messages in a single time step, it is clear that withoutfurther replication (either of the individual fragments, or of the object as a whole),
(pn= logn) steps are needed in order to service all pn requests.A central part of our protocol is a mechanism for on-line replication. At a highlevel, the replication mechanism provides fast concurrent access by enforcing the fol-lowing two invariants. Invariant 1: While the popularity of a given object exceeds thenumber of \server copies" (i.e., the number of server processes holding a copy of theobject), the number of server copies increases geometrically. Invariant 2: When thepopularity of a given object does not exceed the number of server copies by more than aconstant factor, each outstanding request is independently serviced with constant prob-ability at the current step. Thus, if the popularity of the object does not change duringsubsequent steps, each of the outstanding requests is serviced in O(1) expected steps,and in O(logn) steps wvhp1.3.1.1 Overview of the ResultsThe design of our protocol is presented in Sections 3.3, 3.4, and 3.7. Section 3.3 givesan informal overview of our protocol. Section 3.4 contains a formal de�nition of ourprotocol for read-only objects. Section 3.7 discusses write operations.In order to establish the fast performance of our protocol, we consider two naturalmodels for dynamic access patterns.� Our �rst model is the �xed model in which there is a �xed probability distributionfrom which each access request is independently drawn at all times. We show thatour protocol reaches a nice state in O(logn) steps, after which: (i) in each step, aconstant fraction of all requests are satis�ed wvhp, and (ii) each request is satis�edin expected O(1) steps and O(logn) steps wvhp.1Recall that the term wvhp, which is de�ned in Section 1.3, means with probability 1�n�c, where cis a constant that can be set arbitrarily large by appropriately adjusting other constants de�ned withinthe relevant context. 63

� Our second model is the dynamic model that allows constrained uctuations inthe access pattern over time. More precisely, in the dynamic model the number ofnew access requests for any object in any step may change arbitrarily subject tothe constraint that it does not grow beyond a constant factor times the maximumnumber of accesses to the same object in the previous O(logn) steps. For thedynamic model, we show that the protocol is always in a nice state.While the result for the �xed model establishes the rapid convergence of our protocol toa nice state in the presence of a �xed global access pattern, the result for the dynamicmodel shows that once a nice state is reached, the protocol tolerates \non-volatile"changes in the access pattern. In Section 3.5, we formally de�ne the two access patternmodels and state the performance bounds of the protocol. Section 3.6 contains ananalysis of the protocol, in which we �rst establish Invariants 1 and 2 under suitableassumptions, and then, by making use of the invariants, establish the bounds for the�xed and dynamic models.3.1.2 Related WorkMost of the details of our protocol are concerned with ensuring fast access to popularobjects. A variety of other well-known methods have been used for solving this prob-lem, including broadcast, combining [105], and multicast [45]. However, the class ofarchitectures that support the e�cient implementation of these methods is restricted.For example, a single-bus network can e�ciently support broadcast, which enables anarbitrary subset of the processors to obtain copies of a single object at the same time.On the other hand, the cost of implementing broadcast in a distributed network withpoint-to-point connections is signi�cant.Our hashing techniques are loosely related to Valiant's hashing-based combiningmechanism for simulating CRCW PRAM algorithms on parallel computers [114]. Inother related work, Gibbons, Matias, and Ramachandran [55] adopt a di�erent approachto account for contention in parallel algorithms. They introduce the QRQW PRAM64

model, which permits concurrent reading and writing but at a cost proportional to thenumber of readers/writers to a memory location in a given step. The focus of ouralgorithm design and analysis is di�erent. While [55] and [114] are primarily concernedwith the problem of PRAM emulation, we have optimized our protocol to obtain fastperformance (e.g., expected O(1) time) on a more restricted class of access patterns.The particular assumptions of our model and the design choices of our protocolare largely inuenced by the characteristics and requirements of wide-area network �lesystems. There is a growing need for e�cient protocols to access objects across wide-areanetworks and several solutions have been recently proposed. While all of these solutionsincorporate replication of objects, they di�er on the mechanism used to determine wherethe copies of a given object are stored. Very broadly, existing protocols can be classi�edinto two categories.The �rst category consists of implementations where a client accesses a givenobject by consulting the \manager" of the object to locate a copy (examples include[31], [67], and xFS [11]). The main drawback with this approach is that the manageris usually implemented as a process running at a single node and thus constitutes asequential bottleneck. Instead of sending each request for a given object through acentral server, the protocols in the second category forward the request along a path ina tree of nodes, the root of which is the \owner" of the object (examples include [74] andHarvest [33, 36]). An advantage of this approach is that if several copies of a given objectexist, then a request to the object is satis�ed within a small number of forwardings alongthe path. A request for an object with low popularity, however, may be signi�cantlydelayed because the request may have to be forwarded through all the nodes in therelevant path to the owner of the object. Our protocol overcomes the above drawbacksby sending each request to O(logn) nodes in parallel. By choosing the O(logn) nodesjudiciously, we are able to ensure that if the number of copies of an object is at leasta constant fraction of the number of requests, then the expected time for accessing theobject is O(1). 65

3.2 Model of ComputationIn this section we de�ne our model of computation. We assume a synchronous networkconsisting of n nodes, each with its own local memory. We specify the model by char-acterizing: (i) communication, (ii) faults, (iii) object size, (iv) cache size, and (v) localcomputation.Communication. Nodes communicate with one another by sending messages. Eachmessage contains at least one word, and at most O(logn) words, where a \word" isde�ned as an O(logn)-bit string.Sending messages. The total number of words in all messages sent by a singlenode in one step is required to be O(logn) (even if some or all of these messages are notsuccessfully transmitted due to faults in the network, which are discussed below).Receiving messages. The total number of words in all messages received by asingle node in one step is required to be O(logn). We place no upper bound on the totalnumber of words in all messages destined to a single node in one step; instead, we onlylimit to c0 logn the number of words in all messages successfully received by a node inone step, where c0 is some positive constant. We assume that a worst-case adversarydetermines which subset of the messages of total size c0 logn are successfully receivedby a given node if the c0 logn limit on total size would otherwise be exceeded.Message types. Our protocol makes use of a constant number of di�erent typesof messages. At times the protocol may result in, say, O(logn) messages of type �and �(pn) messages of type � being sent to a particular node. In such a scenario,the adversary referred to above has the freedom to decide that none of the messages oftype � get through. On the other hand, it may be important for the correctness of theprotocol that the type � messages be given priority over the type � messages. One wayto accomplish this is to modify the model stated above by associating a numeric prioritywith each message type to resolve contention among messages of di�erent types. Sinceour protocol only makes use of a constant number of di�erent message types, we couldavoid introducing such priorities by modifying the protocol to ensure that only one type66

of message is ever sent in a single step. We prefer the former solution since it is morecompatible with an asynchronous view of the protocol.Faults. As mentioned in Section 3.1, our model of computation also allows for thepossibility of faults in the network. More speci�cally, we assume that the network issubject to the following three classes of faults.Random static node faults. After we have �xed our initial storage layout forthe objects, we assume that a (su�ciently small) constant fraction �0 of the nodes areselected at random and marked as \dead". Such dead nodes cannot send or receive anymessages throughout the course of the computation.Dynamic node faults. An oblivious adversary selects, for each step, a (su�cientlysmall) constant fraction �1 of the nodes and marks them \down". Such down nodescannot send or receive any messages in the current step.Dynamic link faults. For each pair of up nodes (i.e., neither dead nor down) iand j in the network, an oblivious adversary determines whether communication betweennodes i and j is to be allowed in step t. In each step t, each up node must be allowedthe possibility of communicating with a (su�ciently large) constant fraction (1� �2) ofthe other nodes.With regard to the dynamic link faults, we should emphasize that the set offaulty links determined by the adversary are not provided to the non-dead nodes atexecution time. The only way that a non-dead node can �nd out whether it is possibleto communicate with some other non-dead node in step t is by attempting to send amessage in step t, with the hope of subsequently receiving some form of acknowledgmentin a later step. (Of course, any acknowledgment message is itself subject to possiblefaults.)Object size. Each object consists of �(logn) words. Note that this assumption canbe enforced by simply breaking up larger data items into �(logn)-word pieces, andpadding out smaller data items to �(logn) words. The main reason for assuming auniform object length is that it simpli�es our presentation and analysis. In a practicalimplementation, we would modify the protocol to handle messages of varying lengths;67

for larger objects, the associated optimizations can be expected to provide substantialconstant factor savings in overhead per object-word accessed.Cache size. We assume that each node of the network has a cache in which extra copiesof objects are stored. In our analysis, it is convenient to assume that the capacity ofeach cache is
(logn) objects.Local computation. In each step, a node is allowed to perform an arbitrary amount oflocal computation. Although the model of computation allows an arbitrary amount oflocal computation in each step, our protocol does not perform any particularly complexlocal operations in a single step.3.3 Overview of the ProtocolIn this section we provide an informal overview of our protocol for accessing read-onlyobjects. Our discussion is formalized in Section 3.4. See Section 3.7 for a discussionof write operations. As mentioned in Section 3.1, our protocol relies on maintainingInvariants 1 and 2.Enforcing Invariant 1. With each object we associate a number of disjoint blocks ofservers. The ith block contains �(2i logn) servers, 0 � i < log(n=�(logn)), so thatthe total number of servers in all blocks is n, the number of nodes in the network. Ahash function is used to map these logical blocks of servers to the physical nodes of thenetwork. The hash function is distributed to all nodes so that any node can rapidlycompute the physical node corresponding to the jth server of the ith block of a givenobject. The �(logn) servers of block 0 of an object are used to store the primary copyof that object, i.e., the �(logn) fragments computed using IDA. Each server in thehigher-numbered blocks (block 1 onwards) of an object is used to store a whole copy ofthat object. We choose to replicate whole copies of objects, as opposed to fragments,so that the encode-decode overhead associated with IDA can be avoided on retrieval ofpopular objects. This may be viewed as a minor optimization since the overhead of IDAis actually quite small [104]. 68

In our protocol, a client process attempting to read a particular object A sends�(logn) messages, one to each of the �(logn) servers in block 0 of A, and O(1) messagesto a randomly chosen set of servers in each of the �(logn) other blocks associated with A.(See Figure 3.1.) If the popularity of A is low (i.e., O(logn) where the hidden constantis su�ciently small), then wvhp a su�ciently high constant fraction of the messages sentto block 0 are successfully transmitted, and at the next step a su�ciently high numberof fragments are returned to the client, allowing the client to reconstruct a copy of thedesired object using IDA. (Note that a node can send O(logn) copies of a fragment ina single step, since a fragment only consists of a constant number of words.)
Block 2

C

Block 0 Block 1

Figure 3.1: The request messages sent by a client. Client C attempting to read aparticular object A sends messages to O(logn) of the n servers associated with A. Eachcell shown above represents a server associated with object A. The client sends onerequest message to each server in block 0, and O(1) messages to a randomly chosen setof servers in each of the other blocks.If the popularity of A is high (i.e.,
(logn) where the hidden constant is su�-ciently high), then so many clients attempt to access A that the servers in block 0 of Aare \ooded" with incoming messages requesting fragments of A. As a result, most ofthese messages are not successfully transmitted, and few if any of the clients receive (onthe next step) su�ciently many fragments to reconstruct A using IDA. On the otherhand, a su�ciently high constant fraction of the servers in block 0 of A receive �(logn)messages requesting a fragment of A.One might believe that all of the servers in block 0 receive �(logn) such messages;this is not necessarily the case, however, since some of these servers may be mapped to the69

same node as, for example, the servers in block 0 of one or more other popular objects, sothat the messages associated with Amight be \swamped out" by the messages associatedwith other objects. A critical part of our analysis is geared towards proving that wvhpa su�ciently high constant fraction of the nodes in block 0 of A is not the destinationof more than a total of O(logn) messages associated with other objects at the currentstep; these are the nodes that wvhp receive �(logn) requests for A.Each server in block 0 of A that detects a high level of popularity for A at aparticular step reacts by attempting to send a copy of the fragment of A that it holdsto all O(logn) servers in block 1 of A. (See Figure 3.2.) Although the servers in block 1may all be ooded with client requests for A (since the popularity of A is assumed to behigh), the fragment messages sent from servers in block 0 are not swamped out by suchclient requests because the fragment messages are given a higher priority. (Of course,we need to argue that these fragment messages are not swamped out by same-priorityfragment messages associated with other objects; this follows by essentially the sameargument as was mentioned in the preceding paragraph.) As a result of the fragmentmessages sent from servers in block 0 (the constant fraction detecting a high popularityfor A) to servers in block 1, wvhp a su�ciently high constant fraction of the servers inblock 1 of A reconstruct a copy of A using IDA.Thus, if the popularity of A is su�ciently high at time t, then at time t + 1, aconstant fraction of the servers in block 1 of A hold a copy of A wvhp. A minor variantof the above process is used to ensure that, if a su�ciently large constant fraction ofthe servers in block 1 hold a copy of A at time t, and if the popularity of A is
(logn),then a constant fraction of the servers in block 2 hold a copy of A at time t + 1. Theidea is that a server in block 1 \detects a high popularity" for A if it receives more thana certain constant threshold number of requests for A. Rather than sending O(logn)fragments of A to servers of block 2 (as were sent from servers of block 0 to serversof block 1 earlier), each server of block 1 detecting a high popularity for A sends O(1)copies of A to a randomly chosen set of servers in block 2 of A. (Note that O(1) copiesof A require O(logn) words.) 70

More generally, suppose that at time t a su�ciently high constant fraction of theservers in each of blocks 1 through i holds a copy of A, and that the popularity of A is
(2i logn), where the hidden constant is su�ciently large. Then a constant fraction ofthe servers in block i receive more than a certain constant threshold number of requestsfor A, and react by sending O(1) copies of A to randomly chosen servers in block i+ 1.(See Figure 3.3.) As a result, at time t + 1, a constant fraction of the servers in blocki+ 1 of A hold a copy of A wvhp.

Block 0 S Block 1

Figure 3.2: The response of a server in block 0. The unbroken arrows represent requestmessages from clients. The broken arrows represent responses from server S in block0. If the number of requests to S exceeds a certain
(logn) threshold, then S sends acopy of the fragment it holds to each server in block 1. This helps to enforce Invariant 1.Server S also sends a copy of the fragment it holds to each of the requesting clients.This helps to enforce Invariant 2.Enforcing Invariant 2. The total number of requests received by a server for objectfragments is O(logn) per step, simply because a node cannot receive more than O(logn)messages per step. Thus, in the following step (assuming it is not subject to a dynamicnode fault), a server can respond to each such request with a copy of the desired fragment.71

 Block i

S

Block i+1

Figure 3.3: The response of a server in block i, i > 0. The unbroken arrows representrequest messages from clients. The broken arrows represent responses from server S inblock i. If S holds a copy of the object, it sends the following messages. If the numberof requests to S exceeds a certain constant threshold, then S sends a constant numberof copies of the object randomly chosen servers in block i + 1. This helps to enforceInvariant 1. Server S also sends a copy to an arbitrarily chosen constant-size subset ofthe requesting clients. This helps to enforce Invariant 2.This is illustrated in Figure 3.2. (Recall that a fragment consists of a constant number ofwords and so the total number of words in all of these responses is O(logn).) Of course,each of these responses may or may not be received by the associated client due to thepossibility of dynamic faults in the network. On the other hand, the server in blocki > 0 may also receive as many as O(logn) requests for entire copies of objects, andsince each object consists of �(logn) words, only a constant number of these requestscan be handled in a single step. In our protocol, the server selects a constant-size subsetof the incoming requests for entire copies of objects, and responds only to this selectedsubset. (See Figure 3.3.)Now suppose that the hypothesis of Invariant 2 holds, that is, the popularity ofsome object A is less than or equal to the number of server copies of the object. Since ourmechanism for generating server copies �lls in the blocks in ascending order of index, we72

can deduce that a block of servers of A with size within a constant fraction of the currentpopularity of A satis�es the following two conditions wvhp: (i) a constant fraction ofthe servers in the block contain a copy of A, and (ii) each client requesting a copy of Asends a constant number of messages to randomly chosen servers within the block. Bya straightforward Cherno�-type argument [37], we can show that a constant fraction ofthe client requests for A are satis�ed at the current step, establishing Invariant 2.Cache management. Each node has a cache for holding extra object copies. When thiscache becomes full, an LRU (least-recently-used) replacement policy is invoked to decidewhich object copy to abandon.3.4 The Read-Only ProtocolIn this section, we formally de�ne our protocol for accessing read-only shared objects.With every object A we associate n server processes, which provide client processesaccess to A. Let the servers associated with A be labeled Si(A), 0 � i < n. Let bequal log(n=c1 logn) + 1, where c1 is a constant that is speci�ed later. We assume thatc1 logn and b are both integers. We partition the set of servers into blocks as follows.For each i in [b], the ith block, denoted by Bi(A), is the set fSj(A) : (2i � 1)c1 logn �j < (2i+1 � 1)c1 logng. For each i in [b], let bi = c12i logn be the size of the ith block.Each server associated with A is mapped to a physical node by means of a hashfunction hA; the function hA is chosen such that for any i in [b], block Bi(A) is mappedto a subset of jBi(A)j nodes chosen independently and uniformly at random. (Notethat several servers associated with di�erent objects may be mapped to the same node.)Using IDA [104], we encode A as a set of b0 fragments such that any b0=4 fragmentssu�ce to decode A. For each i in [b0], hA(Si(A)) stores the ith fragment of A. For eachinteger j in [1; b), and for each server S 2 Bj(A), hA(S) stores at most one replicatedcopy of the entire object. Let the cache at each node have the capacity to store themaximum number of object copies that may be received by the node in � rounds. Thus,the minimum cache capacity is �(�) objects. We assume that � is
(logn).73

We describe our access protocol in terms of the communication between the clientsattempting to access a given object A and the servers associated with A. In order tosimplify the presentation and analysis of the protocol, we assume that the clients sendmessages at even steps of the protocol and the servers send messages at odd steps of theprotocol. The clients always send messages to servers; servers send messages to bothclients and servers. For any nonnegative integer t, let round t denote the pair of steps2t and 2t+ 1 (steps are numbered from 0).In our description of the protocol, we di�erentiate between several kinds of mes-sages; these are listed in Table 3.1. In the priority-based model, any assignment ofpriorities that respects the following constraints can be used: (i) frag-req has a lowerpriority than each of client-obj and client-frag, and (ii) obj-req has a lower priority thaneach of client-obj, client-frag, server-obj, and server-frag, and (iii) each of server-frag andserver-obj has a lower priority than each of client-frag and client-obj.Message type Source Destination Size Contentsobj-req client server �(1) request for objectfrag-req client server �(1) request for fragmentclient-obj server client �(logn) copy of objectclient-frag server client �(1) copy of fragmentserver-obj server server �(logn) copy of objectserver-frag server server �(1) copy of fragmentTable 3.1: Types of messages.The protocol is de�ned in Figure 3.4, where we state the actions in round t of:(i) a client C attempting to access object A, and (ii) a server S associated with A. Itis convenient to divide each step into two phases, one in which messages are sent, andthe other in which messages are received. Thus, in Figure 3.4, Phase 0 (resp., Phase 2)is the \sending phase" for step 2t (resp., 2t + 1), while Phase 1 (resp., Phase 3) is the\receiving phase" for step 2t (resp., 2t+1). In Figure 3.4, �0, �1, �2, �3, �4, �5, and �6denote positive integer constants.The terms \send", \receive", and \attempt to send" are used in the protocol74

Phase 0: In step 2t clients send request messages.� Client. Attempt to send a frag-req message to each server in B0(A) and, for0 � i < b, an obj-req message to a random server in Bi(A).(Remark: Note that each message is actually sent since the bound on the numberof words that can be sent by a node is not exceeded.)Phase 1: Successfully transmitted Phase 0 messages are received by servers.� Server. Let D(S; t) denote the set of clients that are the sources of obj-req andfrag-req Phase 1 messages received by S.Phase 2: In step 2t+ 1, servers holding a copy or fragment of object A respond toPhase 1 messages. Let S 2 Bi(A).� Server, i = 0. Attempt to send a client-frag message to minf�0b0; jD(S; t)jg clientsin D(S; t), and if D(S; t) � �1b0 then attempt to send a server-frag message toeach server in B1(A).� Server, i > 0. If jD(S; t)j � �2 then attempt to send a client-obj message tominf�3; jD(S; t)jg random clients in D(S; t), and if D(S; t) � �4 then attempt tosend a server-obj message to �5 random servers in Bi+1(A).(Remark: If the bound on the number of words a node can send in a step would beexceeded, an arbitrary subset of these messages are actually sent.)Phase 3: Successfully transmitted Phase 2 messages are received by clients andservers.� Client. If C receives a client-obj message or c2 logn fragments, then the accessattempt is successful. Otherwise, C attempts to access A in round t+ 1.� Server, i = 1. If S receives at least c2 logn fragments, then decode A and store itin the LRU cache; otherwise, discard the fragments received.� Server, i > 1. If S receives at least �6 server-obj messages, then store A in theLRU cache.(Remarks: Note that C could receive more than one copy of A, and that S couldreceive a new copy of A even though S already has a copy. In a practical implemen-tation: (i) C would stop transmission of all but one copy of A, (ii) a check wouldbe added to ensure that a new copy is sent to S only if S does not already havea copy, and (iii) if fewer than c2 logn fragments are received by a client or server,then these fragments would be cached and not discarded since su�ciently manyadditional fragments are likely to be received in the near future.)Figure 3.4: The read-only protocol (object A, client C, server S, round t).75

de�nition. When we say that a client/server mapped to node u sends a message x, wemean that u initiates the transmission of x. When we say that a client/server mappedto node u receives a message x, we mean that the transmission of x is successful andx is at destination u. When we say that a client/server mapped to node u attempts tosend a message x, we mean that u sends x if x is in the subset of messages of total sizeat most c0 logn that is selected for transmission from u.3.5 Statement of the ResultsIn this section, we state our main performance bounds for the read-only protocol. LetA be a collection of m objects, labeled A0 through Am�1. For any round t, and anyi in [m], let qi(t), ri(t), and si(t) denote the number of new requests generated, thenumber of requests remaining, and the number of requests attempted, respectively, forAi at the start of round t. (For any nonnegative integer x, we use [x] to denote the setf0; : : : ; x� 1g.) Thus, for any round t, and any i in [m], si(t) = ri(t) + qi(t).We measure the performance of our protocol in terms of throughput, delay, andper-request communication. The throughput of the protocol is the average number ofaccess requests satis�ed per round. The delay of an individual access request is thenumber of rounds taken to satisfy that request. The per-request communication isde�ned as the total number of words in all messages sent divided by the number ofaccess requests satis�ed. We say that round t is nice if: (i) there exists a real constant�, 0 � � < 1, such that ri+1(t) � �si(t) for all i in [m], and (ii) the probability that anarbitrary access request is satis�ed in round t is
(1). Thus, if round t is nice, for everyobject A, an expected constant fraction of the requests for A are satis�ed in round t.The �rst access model we consider is the �xed model, in which each new accessrequest is independently drawn from a �xed probability distribution D on A. Thedistribution D is speci�ed by a vector (p0; : : : ; pm�1); for a random variable X drawnfrom D, we have Pr[X = Ai] = pi. At the start of each round t, new requests drawn fromD are generated and placed by an adversary on each of the nodes that do not currently76

have an outstanding request. The particular assignment of new requests to free clientscan be arbitrarily determined by the adversary.Theorem 3.1: In the �xed model, there exists t0 = O(logn) such that for any t, t0 �t � poly(n), round t is nice wvhp.It follows from Theorem 3.1 and the protocol de�nitions that in the �xed model, ourprotocol provides optimal throughput and optimal expected delay using optimal per-request communication.Corollary 3.1.1: In t rounds of the �xed model, where
(logn) � t � O(poly(n)), wvhp,the number of access requests satis�ed is
(nt) using O(logn) per-request communication.Moreover, after O(logn) rounds, each access request is satis�ed in expected O(1) rounds.We note that in Corollary 3.1.1 the per-request communication is optimal since eachobject is of size �(logn).The bounds stated in Corollary 3.1.1 also hold for certain access patterns in whichthe popularity of an object may change considerably over time. In the dynamic model,an adversary assigns new requests to free clients subject to the following constraints forall i in [m]: (i) qi(0) = O(logn), and (ii) for t > 0, qi(t) � �maxfqi(t0) : maxf0; t��g �t0 < tg, where � > 1 is a real constant. We note that the dynamic model permitsarbitrary decreases in the popularity of an object, and also permits large increases incertain cases.Theorem 3.2: In the dynamic model, for an appropriately chosen � it holds wvhp thateach round is nice, the number of access requests satis�ed per round is
(n), and theper-request communication is O(logn) words.The particular choice of the constant � in the above theorem depends on the rate ofgrowth of bi with i. As de�ned in Section 3.4, bi grows as 2i logn. We can establish theclaim of Theorem 4.5 for arbitrarily larger values of � by choosing an appropriately largegrowth rate for bi. 77

3.6 AnalysisOur analysis proceeds in two parts. In the �rst part, Sections 3.6.2 and 3.6.3, we establishcertain properties of our protocol which hold under any access pattern model. In thesecond part, Sections 3.6.4 and 3.6.5, we restrict our attention to the �xed and dynamicmodels and prove Theorems 3.1 and 3.2, respectively. Before delving into the formalproofs, we give a brief overview of the analysis in Section 3.6.1.To simplify the presentation, we assume that there is no contention among mes-sages of distinct types. The message priorities de�ned in Section 3.4 can easily be usedto remove this assumption.3.6.1 Sketch of the AnalysisA signi�cant portion of the analysis is devoted to establishing Invariants 1 and 2 undersuitable assumptions. In Section 3.3, we presented an informal argument describing howthe protocol maintains the invariants. The argument of Section 3.3, however, views eachblock in isolation and hence ignores the contention among messages that are destinedto di�erent blocks and, yet, to the same node. Such a contention is possible since allthe hash functions share a common range, namely, the set of all nodes. We begin ouranalysis by proving in Section 3.6.2 that for an arbitrary set of access requests, theinteraction among the di�erent blocks is \small" enough that each block can be viewedin isolation.We now give a brief sketch of the formal arguments developed in Section 3.6.2.The notion of a small interaction among di�erent blocks is captured formally in thede�nition of a good round (see De�nition 3.3 in Section 3.6.2.4). Loosely put, a roundis good if for every block B only a small fraction of servers in B are inaccessible due tofaults and/or contention with messages sent to other blocks.Suppose that at the start of a particular round, we are given xi requests forobject Ai, where the xi's are �xed integers such that Pi2[m] xi is O(n). Consider ablock B of an object A. Let us �rst determine the number of the servers of B that are78

inaccessible due to faults. Since the hash function mapping the servers in B to the nodesof the network is random and independent of the node and link faults, it follows froma straightforward Cherno�-type argument that only a constant fraction of the serversin B are unreachable wvhp. It now remains to consider the servers that are swampedby messages destined for other blocks. Let U be the set of nodes u such that O(logn)words associated with messages sent to blocks other than B are destined to u. The totalnumber of words sent in any round is O(n logn); therefore, jU j is
(n). Since the hashfunction mapping B to the nodes is independent of the xi's, it follows from a Cherno�-type argument that U contains a constant fraction of the nodes to which the servers inB are mapped. Hence, only a constant fraction of the servers in B are swamped withmessages sent to other blocks. Thus, if we are given a �xed set of access requests at thestart of any round t, then t is good wvhp.After de�ning the notion of a good round, we formalize the informal discussionof Section 3.3 in Section 3.6.3 and show that the Invariants 1 and 2 hold wvhp whenevera round is good. The remainder of the analysis concerns the �xed and dynamic modelsof access patterns and is contained in Sections 3.6.4 and 3.6.5, respectively. While it isnot too di�cult to derive Theorems 3.1 and 3.2 from the invariants, the main challengein the analysis of these models is to show that each round is good wvhp.If the set of access requests are �xed for each round, then our informal dis-cussion above implies that each round is good wvhp. However, in general, the vector(s0(t); : : : ; sm�1(t)) may depend on the particular actions of the protocol in the �rst trounds; hence, (s0(t); : : : ; sm�1(t)) and the hash functions may be correlated among oneanother. (Recall that si(t) denotes the number of outstanding requests for object Ai atthe start of round t.) For example, if the choice of hash functions for objects A0 and A1is such that a large number of servers in the 0th blocks for A0 and A1 map to the samesubset of nodes, there will be a correlation between the number of requests for A0 andA1 at the start of each round. Although, intuitively, we do not expect such seeminglyminor correlations to have a signi�cant impact on the performance of the protocol, it isa technical challenge to establish this. 79

We overcome the problems associated with the aforementioned dependencies byobtaining tight estimates on the number of requests for each object at the start of anyround. Our proof for each model is by an induction on the number of rounds. In theinduction argument for round t: (i) we use the invariants of Section 3.6.3 to place a tightbound on the number of requests for each object at the start of round t such that theupper bound on the total number of requests is O(n), and (ii) we invoke the results ofSection 3.6.2 to show that round t is good, and hence establish the invariants for thenext round.3.6.2 Good RoundsThe goal of this section is to formalize the notion of a good round which we alluded toin Section 3.6.1. Sections 3.6.2.1, 3.6.2.2, and 3.6.2.3 develop some technical machineryand Section 3.6.2.4 gives the formal de�nition.We begin by introducing some additional notation. Let an �-message refer toany message of type �. Let size(�) denote the number of words in an �-message. Forany � and i 2 [b], let N�(A; i; t) denote the set of servers in Bi(A) that attempt any�-message in round t. (Here and in the rest of this section, we use the word \attempt"as a short form for \attempt to send".) Let N 0�(A; i; t) denote the set of servers S inBi(A) such that all of the �-messages attempted by S in round t are sent.Let M�(A; i; t) be the set of �-messages that are sent to Bi(A) in round t. LetM 0�(A; i; t) denote the set of �-messages received by Bi(A) in round t. Let F (A; t) bethe set of servers in B0(A) that send b1 server-frag messages in round t. Let G(A; t)denote the set of clients that send b0 frag-req messages in round t.If we assume a fault-free model with no upper bound on the number of wordsa node can send/receive in a single step, then it is easy to show that some of the setsde�ned above are related by well-studied balls-and-bins experiments. Unfortunately, inthe presence of faults and contention, this is not true. However, we are able to establishsimilar relations using more complex balls-and-bins experiments which are de�ned in thefollowing section. 80

3.6.2.1 Two Balls and Bins ExperimentsDe�nition 3.1: Let X denote a set of labels, let U denote a set of bins, let " be a realin [0; 1), and let � be a nonnegative integer. In a uniform (X;U; "; �) experiment,we are given a set fVi : i 2 X;Vi � U; and jVij � "jU jg, and the following steps areperformed: (i) for each i in X, place a ball labeled i in each bin in U n Vi, and (ii) foreach bin that has more than � balls, discard all but an arbitrary subset of at least � balls.Let Y denote the set of remaining balls. We refer to the set of remaining balls as theoutcome of the experiment.De�nition 3.2: Let X denote a set of balls, and let U , ", and � be as de�ned inDe�nition 3.1. In a random (X;U; "; �) experiment, we are given a set fVi : i 2X;Vi � U; and jVij � "jU jg, the following steps are performed: (i) throw the ballsindependently and uniformly at random into U , (ii) for each i 2 X, if ball i lands ina bin in Vi, discard ball i, and (iii) for each bin that has more than � balls, discard allbut an arbitrary subset of at least � balls. We refer to the set of remaining balls as theoutcome of the experiment.The following two sections contain analyses of the experiments introduced in De�ni-tions 3.1 and 3.2, respectively.3.6.2.2 Analysis of the Uniform ExperimentIn this section, we analyze a uniform (X;U; "; �) experiment (see De�nition 3.1). Let xand u denote jXj and jU j, respectively. Throughout this section, we assume that u is atleast c1 logn. Also, c1 is assumed to be su�ciently large and " to be su�ciently small.For any ball i in X and bin j in U , we say that i is good for j if j is not in Vi; otherwise,we say that i is bad for j.Lemma 3.1: The number of bins that receive at most (1� c")x balls is at most u=c.Proof: For each ball in X, the number of bad bins is at most "u. Thus, the totalnumber of bad \ball-bin pairs" is at most "ux. By an averaging argument, we obtain81

that the number of bins that are bad for at least c"x balls is at most u=c.Corollary 3.1.1: The number of bins that receive at most x=2 balls is at most u=10.3.6.2.3 Analysis of the Random ExperimentIn this section, we analyze a random (X;U; "; �) experiment (see De�nition 3.2). Weare interested in bounds on random variables associated with the number of bins thatreceive at least (or at most) c balls for some positive integer c, where c is some positiveinteger. We refer to these variables as threshold variables. We are only concerned withthreshold variables for which c is at most � ; hence, we can assume � to be as large as jXj.Let x and u denote jXj and jU j, respectively. Throughout this section, we assume thatu is at least c1 logn. Also, c1 is assumed to be su�ciently large and " to be su�cientlysmall. The theory of martingales provides a useful tool for analyzing the random experi-ment. Appendix B contains a brief discussion of martingales, including a large deviationbound that is used in the following lemma.Lemma 3.2: Let Z be a threshold variable in a random (X;U; "; �) experiment. For any� > 0, we have: Pr �jZ � E[Z]j > �px� < 2e��2=2:Proof: The random experiment de�nes a probability distribution on the set of functions
 from X to U [f?g, where ? is a special bin that contains the discarded balls. Arandom function g drawn from
 satis�es the following. For any i in X, we have: (i)for any j in U n Vi, Pr[g(i) = j] = 1=u, (ii) for any j in Vi, Pr[g(i) = j] = 0, and (iii)Pr[g(i) = ?] = jVij=u. Fix a gradation ; = B0 � B1 � : : : � Bx = X. Given anyfunctional L :
 7! R, we de�ne a martingale Z0, Z1, . . . , Zx by settingZi(h) = E[L(g) : g(b) = h(b) for all b in Bi]:Since the function associated with Zi satis�es the Lipschitz condition de�ned inTheorem B.2, the desired claim follows from Theorem B.1.82

We extend the de�nition of threshold variables to a sequence of s random experiments,given by (X0; U0; "; �), . . . , (Xs�1; Us�1; "; �). A threshold variable Z for a sequence ofs random experiments is the number of bins that receive at least (or at most) c balls inat least one of the s experiments, for some positive integer c.Lemma 3.3: Let Z be a threshold variable associated with a sequence of s randomexperiments. For any � > 0, we have:Pr24jZ � E[Z]j > �sXi2[s]Xi35 < 2e��2=2:Proof: Similar to that of Lemma 3.2.In the remainder of the section, we use Lemmas 3.2 and 3.3 to obtain high probabilitybounds on certain threshold variables. Lemmas 3.4 and 3.5 consider a single random(X;U; "; �) experiment. As in Section 3.6.2.2, we say that bin j is good for ball i if j isnot in Vi; otherwise, we say that j is bad for i.Lemma 3.4: Let c be a real number greater than 4. If x is at least 4cu, then the numberof bins that receive less than c balls is at most u(1=ec+1=20+�) with probability at least(1� 2e��2u=(8c)).Proof: Let X 0 be an arbitrary 4cu-size subset of X. Let U 0 be the set of bins j suchthat j is bad for at most 4c0"cu balls in X 0. By an averaging argument, we obtain thatjU 0j is at least (c0 � 1)u=c0.Let Z denote the number of bins in U that receive less than c balls. Let i be abin in U 0. Let X 0i be the set of balls in X 0 that are good for i, and let x0i denote jX 0ij.By the de�nition of U 0, x0i is at least (1 � c0")4cu. The probability that i receives lessthan c balls is at most: X0�j<c�x0ij ��1� 1u�x0i�j 1uj� c�x0ic ��1� 1u�x0i�c iuc83

� c(4e(1� c0"))c�1� 1u�(1�c0")4cu�c� c� 4e(1� c0")e4(1�c0")�1=u�c� 1ec ;for c > 4 and " su�ciently smaller than 1=c0.We set c0 to 20. Thus, E[Z] is at most (1=ec + 1=20)u. By Lemma 3.2, theprobability that Z is at least (1=ec + 1=20 + �)u is at most 2e��2u=(8c).Corollary 3.4.1: If c is su�ciently large, c1 is su�ciently larger than c, and x is atleast 4cu, then the number of bins that receive less than c balls is at most u=10 wvhp.Lemma 3.5: If x is at most cu, then the number of bins that receive at least 2ec ballsis at most u(1=22ec + �) with probability at least 1� 2e��2u=(2c).Proof: Let Z denote the number of bins that receive at least 2ec balls. For any bin i,the probability that i receives at least 2ec balls is at most (cu2ec) 1u2ec � 122ec . Thus, E[Z] isat most u=22ec. By Lemma 3.2, the probability that Z exceeds u(1=22ec + �) is at most2e��2u=(2c).Corollary 3.5.1: If c is su�ciently large, c1 is su�ciently larger than c, and x is atmost cu, then the number of bins that receive at least 2ec balls is at most u=10 wvhp.In the following two lemmas, we analyze a sequence of random (X;U; "; �) experiments.Lemma 3.6: Let c be a positive integer constant. Consider a sequence of s randomexperiments, (X0; U0; "; �); : : : ; (Xs�1; Us�1; "; �), such that c � xi = jXij � u = jUij forall i in [s], and Ui \ Uj is ; for i 6= j. The number of bins in [i2[s]Ui that receive atleast c balls is O0@Xi2[s](xci=uc�1) +sXi2[s]xi logn1A wvhp.84

Proof: Let Zi be the number of bins in Ui that receive at least c balls. Let Z equalPi2[s]Zi. We �rst obtain an upper bound on E[Zi] for any i, and hence an upper boundon E[Z].Consider the ith experiment. The probability that j receives at least c balls is atmost (xic)(1=u)c = O((xi=c)c). Thus, E[Zi] isO(xci=uc�1) and E[Z] isO(Pi2[s](xci=uc�1)).The desired claim follows from Lemma 3.3.Lemma 3.7: Let "1 be a positive real constant in (0; 1], and let c be a positive integerconstant. If s is a suitably large integer constant, then in any sequence of s randomexperiments (X0; U; "; �); : : : ; (Xs�1; U; "; �) satisfying "1u � jXij � u for all i in [s], thenumber of bins in U that receive at least c balls in at least one of the s experiments is9u=10 wvhp.Proof: Let Z be the number of bins in U that receive at least c balls in at least oneof the s experiments. We �rst obtain a lower bound on E[Z].Consider the ith experiment, namely the random (Xi; U; "; �) experiment. LetX 0i be an arbitrary "1u-size subset of Xi. Let U 0i be the set of bins such that j is bad forat most 100""1u balls in X 0i. By an averaging argument, we obtain that jU 0i j is at least99u=100. Consider a bin j in U 0i . The probability that j receives at least c balls is atleast: �(1� 100""1)uc ��1� 1u�xi�c 1uc = f("; "1; c);where f("; "1; c) is a constant in [0; 1], dependent on ", "1, and c.Let U 0 be the set of bins j such that j is in U 0i for at least s=2 di�erent values ofi. By an averaging argument, we obtain that jU 0j is at least 49u=50. Consider any binj in U 0. The probability that j did not receive c balls in any of the s experiments is atmost (1� f("; "1; c))s=2 � 19=20;for s chosen a suitably large constant. Thus, E[Z] is at least 19u=20. By Lemma 3.3, itfollows that Z is 9u=10 wvhp. 85

3.6.2.4 De�nition of a Good RoundUsing De�nitions 3.1 and 3.2, we now de�ne the notion of a good round.De�nition 3.3: Round t is good if there exists a su�ciently small real " such that, forevery object A, the following conditions hold:1. Given any � and any i in [b], if jN�(A; i; t)j is
(logn), then jN 0�(A; i; t)j is
(jN�(A; i; t)j).2. If � is frag-req, then M 0�(A; 0; t) is the outcome of a uniform (G(A; t); B0(A); ";�(logn)) experiment.3. If � is server-frag, then M 0�(A; 1; t) is the outcome of a uniform (F (A; t); B1(A); ";�(logn)) experiment.4. If � is in fobj-req; server-objg, then for any i in [b], M 0�(A; i; t) is the outcome ofa random (M�(A; i; t); Bi(A); ";�(logn)= size(�)) experiment.Let T�(t) denote the set of all �-messages that are attempted in round t. For any setof messages X, let kXk denote the total number of words in X. The following lemmaplaces an upper bound on kT�(t)k.Lemma 3.8: For any i in [m], any round t, and any �, kT�(t)k is O(n logn) wvhp.Proof: The messages attempted in step 2t are described in Phase 0 of Figure 3.4. (Nomessages are attempted in Phase 1.) Only clients attempt messages in Phase 0 and atmost one client resides at any node. In Phase 0, each client attempts O(logn) frag-reqmessages and O(logn) obj-req messages. Thus, for � in ffrag-req; obj-reqg, kT�(t)k isO(logn).The messages attempted in step 2t + 1 are described in Phase 2 of Figure 3.4.(No messages are attempted in Phase 3.) We consider di�erent cases based on �. Letxi equal si(t).� Case � = client-frag: At most O(logn) �-messages are sent by servers in B0(Ai)to each client requesting Ai. Therefore, kT�(t)k is O(Pi2[m] xi logn) = O(n logn).86

� Case � = server-frag: A server S in B0(Ai) attempts an �-message only if Sreceives at least �1b0 client-frag messages. Since each client-frag message receivedby S is from a di�erent client, it follows that if S attempts any �-message, then xiis at least �1b0. Since the number of �-messages attempted by S is at most �0b0,the total number of �-messages attempted in step 2t + 1 by servers in B0(Ai) isO(log2 n) = O(xi logn). Since the size of each server-frag message is �(1), kT�(t)kis O(n logn).� Case � 2 fclient-obj; server-objg: A server S attempts a client-obj (resp., server-obj)message in step 2t+ 1 only if it receives at least �2 (resp., �4) obj-req messages instep 2t. We show for � = client-obj that kT�(t)k is O(n logn) wvhp. A similarproof holds for � = server-obj.We partition the set of objects into two disjoint subsets L and H. For each i in[m], if xi � logn, then Ai is in L; otherwise, Ai is in H. Consider an object Aiin H. Let j be the largest integer such that bj � xi. Since each server attemptsat most �3 �-messages, it follows that the total number of �-messages attemptedby servers in B1(Ai) through Bj(Ai) is O(xi). We now place an upper bound onthe number of �-messages attempted by servers in Bk(Ai) for k > j. Since eachobj-req message is destined to a random server, even if all of the obj-req messagesare received, we obtain by Lemma 3.6 that the number of servers in [k>jBk(Ai)that receive at least �2 obj-req messages in step 2t is O(xi) wvhp. Thus, the totalnumber of attempted client-obj messages associated with objects in H is O(n)wvhp.Consider the set L. Since each obj-req message is destined to a random server,even if all of the obj-req messages are received, we obtain by Lemma 3.6 that thenumber of servers in [Ai2L [k>0 Bk(Ai) that receive at least �2 obj-req messagesin step 2t is:O0@Xk>00@XAi2Lxi=2k +sXAi2Lxi logn1A1A = O(n) wvhp.87

Adding the bounds for the �-messages associated with L and H, we obtain thatkT�(t)k is O(n logn) wvhp.
Lemma 3.9: If there are nonnegative reals x0; : : : ; xm�1, independent of the hash func-tions, such that si(t) � xi and Pi2[m] xi = O(n), then round t is good wvhp.Proof: We �x indices i 2 [b] and j 2 [m]. We prove the desired claim by establishingthe four parts of De�nition 3.3. Let U denote the set of up nodes (i.e., neither dead nordown) in round t. Note that jU j is at least (1� (�0 + �1))n.1. Let � be any message-type that is attempted by a server. Since servers attemptmessages in odd steps only, this part concerns step 2t + 1 only. By Lemma 3.8,kT�(t)k is O(n logn) wvhp. Let U 0 be the set of nodes u such that at most(c0 logn)=2 words are attempted from u in step 2t+1. By an averaging argument,it follows that jU 0j is
(n), where the hidden constant can be made arbitrarilyclose to 1 by setting c0 su�ciently large. By de�nition, all messages in N�(Aj ; i; t)are attempted by servers. Since x0; : : : ; xm�1 are independent of the hash func-tions, the mapping of Bi(Aj) is independent of the source nodes associated withthe messages in T�(t) nN�(Aj ; i; t). It follows from bounds on the tail of the hy-pergeometric distribution [38], given in Theorem A.2, that a constant fraction ofthe messages in N(Aj; i; t) are attempted by nodes in U 0. By setting c0 and c1su�ciently large, we obtain that jN 0�(Aj ; i; t)j is
(jN�(Aj ; i; t)j) wvhp.2. Let � equal frag-req. We need to prove that M 0�(Aj ; 0; t) is the outcome of auniform (G(Aj ; t); B0(Aj); ";�(logn)) experiment. In our proof, the clients inG(Aj ; t) correspond to the labels, and the servers in B0(Aj) correspond to bins.Step (i) of the experiment corresponds to the following: each client in G(Aj ; t)sends one �-message to each server in B0(Aj). We now establish step (ii) of theexperiment. 88

Consider a client C in G(Aj ; t). Let v be the node associated with C. Let Uv be theset of up nodes u in U such that at most (c0 logn)=2 words in T�(t) nM�(Aj ; i; t)are destined to u and u has a non-faulty link to v. Since kT�(t)k is O(n logn), byan averaging argument, it follows that jUv j is
(n), where the hidden constant isarbitrarily close to 1 for c0 su�ciently large and �0, �1, and �2 su�ciently small.Let Wv be B0(Aj)\Uv. Since the mapping of servers in B0(Aj) is independent ofthe destination nodes associated with the messages in T�(t)nM�(Aj ; i; t), it followsfrom Theorem A.2 that jWvj is at least cbi wvhp, where c can be set arbitrarilyclose to 1 for appropriate values of c0, �0, �1, and �2.The correspondence to De�nition 3.1 is established by substitutingG(Aj ; t), B0(Aj),(1� c), �(logn), and B0(Aj) nWv for X, U , ", � , and Vi, respectively.3. Similar to Part 2.4. Let � be in fobj-req; server-objg. We need to prove that M 0�(Aj ; i; t) is the out-come of a random (M�(Aj ; i; t); Bi(Aj); ";�(logn)= size(�)) experiment. In ourproof, the messages in M�(Aj ; i; t) correspond to balls, and the servers in Bi(Aj)correspond to bins. Step (i) of the experiment corresponds to the following: each�-message is sent to a server chosen independently and uniformly at random fromBi(Aj). We now account for steps (ii) and (iii) of the experiment.Consider any message y in M(Aj; i; t). Let Uy be the set of up nodes u 2 Usuch that at most (c0 logn)=2 words in T�(t) nM�(Aj ; i; t) are destined to u andu has a non-faulty link to the source of message y. Since kT�(t)k is O(n logn), byan averaging argument, it follows that jUyj is
(n), where the hidden constant isarbitrarily close to 1 for c0 su�ciently large and �0, �1, and �2 su�ciently small.Let Wy be the set of servers in Bi(Aj) that are mapped to nodes in Uy. Since themapping of servers in Bi(Aj) is independent of T�(t) nM�(Aj ; i; t), it follows fromTheorem A.2 that jWyj is at least cbi wvhp, where c can be set arbitrarily close to1 for appropriate values of c0, �0, �1, and �2. For step (iii), it is enough to notethat each server in Wy can receive at least (c0 logn)=2 words from M 0(Aj ; i; t).89

The correspondence to De�nition 3.2 is established by substituting M�(Aj ; i; t),Bi(Aj), (1� c), �(logn)= size(�), and Bi(Aj) nWy for X, U , ", � , and Vi, respec-tively.
3.6.3 InvariantsFor any server S associated with object A, let a(S; t) be 1 if server S has a copy ofA or a fragment of A at the start of round t, and 0 otherwise. With each i in [b], weassociate a state variable s(A; i; t) 2 fcomplete; incompleteg that is de�ned as follows: ifthe number of servers S in Bi(A) such that a(S; t) = 1 is at least 9bi=10, then s(A; i; t)is complete; otherwise, s(A; i; t) is incomplete. Let R(A; t) denote the set of clients thatattempt to access A in round t. Let R0(A; t) denote the set of clients C that receive atleast b0=4 distinct client-frag messages or at least one client-obj message in round t. Wede�ne predicates P0 through P3 as follows:� P0(A; t): If jR(A; t)j is at least 2�1b0, then for t + 1 � t0 � t + �, s(A; 1; t0) iscomplete.� P1(A; i; t): If jR(A; t)j is at least 4�4bi and s(A; i; t) is complete, then for t + 1 �t0 � t+ �, s(A; i; t0) is complete.� P2(A; t): If jR(A; t)j is at most �0b0, then R0(A; t) = R(A; t).� P3(A; i; t): If s(A; i; t) is complete then: (i) if jR(A; t)j is at least �3bi=12, thenjR0(A; t)j is at least �3bi=120, and (ii) if 4�2bi � R(A; t) = O(bi), then for eachC 2 R(A; t), we have Pr[C 2 R0(A; t)] =
(1).The predicates P0(A; t) and P1(A; i; t) (resp., P2(A; t) and P3(A; i; t)) formalize Invari-ant 1 (resp., Invariant 2) of Section 3.1. We assume that �3 � maxf4�0; 24�1; 48�2g.Lemma 3.10: If round t is good, then the following predicates hold for every object Awvhp: (i) P0(A; t), (ii) 8i > 0 : P1(A; i; t), (iii) P2(A; t), and (iv) 8i > 0 : P3(A; i; t).90

Proof: Since at most one client resides at any node and each client attempts at mostc0 logn words, each attempted message of type client-frag or obj-req is sent.1. Proof of P0(A; t): Let � and � equal frag-req and server-frag, respectively. We aregiven that R(A; t) is 2�1b0. Since round t is good, it follows from part (ii) of De�-nition 3.3 thatM 0�(A; 0; t) is the outcome of a uniform (R(A; t); B0(A); ";�(logn))experiment.Let X be the set of servers in B0(A) that receive at least �1b0 �-messages in step2t. By Corollary 3.1.1, jXj is at least 9b0=10. Each server in X attempts b1 �-messages in step 2t + 1 (see Phase 2 of Figure 3.4), i.e., N�(A; 0; t) = X. Sincestep 2t+ 1 is good, it follows from part (i) of De�nition 3.3 that jN 0�(A; 0; t)j is atleast b0=2.By de�nition, F (A; t) equals N 0�(A; 0; t). Since round t is good, by part (iii) of Def-inition 3.3, M 0�(A; 1; t) is an outcome of a uniform (M�(A; 1; t); B1(A); ";�(logn))experiment. Let Y be the set of servers in B1(A) that receive at least b0=4 �-messages. By Corollary 3.1.1, jY j is at least 9b1=10. Therefore, s(A; 1; t + 1) iscomplete, and the desired claim follows from the cache capacity assumption.2. Proof of P1(A; i; t) for all i > 0: Let � and � equal obj-req and server-obj, re-spectively. We are given that R(A; t) is at least 4�4bi. Hence, jM�(A; i; t)j is atleast 4�4bi. Since round t is good, it follows from part (i) of De�nition 3.3 thatM 0�(A; i; t) is the outcome of an (M�(A; i; t); Bi(A); ";�(1)) experiment.Let X denote the set of servers in Bi(A) that receive at least �4 �-messages. ByCorollary 3.4.1, jXj is at least 9bi=10. Since s(A; i; t) is complete, at most bi=10servers in Bi(A) do not have a copy of A. Therefore, at least 4bi=5 servers in Xattempt �5 �-messages to Bi+1(A) in step 2t+1. Thus, jN�(A; i+1; t)j is at least4�5bi=5. Since round t is good, by part (ii) of De�nition 3.3, the number of serversin Bi(A) all of whose attempted �-messages are sent is at least 2bi=5. Therefore,jM�(A; i+ 1; t)j is 2�5bi=5. 91

Since round t is good, it follows from part (i) of De�nition 3.3 thatM 0�(A; i+1; t) isan outcome of an (M�(A; i+1; t); Bi+1(A); ";�(1)) experiment. By Corollary 3.4.1,the number of servers in Bi+1(A) that receive at least �5=20 �-messages is 9bi+1=10wvhp. Thus, s(A; i+1; t+1) is complete wvhp, and the desired claim follows fromthe cache capacity assumption.3. Proof of P2(A; t): Let � and � equal frag-req and client-frag, respectively. By thehypothesis of P2(A; t), we are given that jR(A; t)j is at most �0b0. Since round tis good, it follows from part (ii) of De�nition 3.3 that M 0�(A; 0; t) is the outcomeof a uniform (M�(A; 0; t); B0(A); ";�(logn)) experiment. Thus, for any client C,(1� ")b0 of the �-messages sent by C are received by (1� ")b0 di�erent servers inB0(A).Since each server that receives an �-message attempts at least one �-message, itfollows that jN�(A; 0; t)j is at least (1 � ")b0. Since round t is good, by part (i)of De�nition 3.3, all but 2b0=5 of the servers in B0(A) send all their attempted�-messages. All of the �-messages that are sent by servers in B0(A) are receivedby the clients. It follows that C receives �-messages from (1� "� 2=5)b0 di�erentservers in B0(A). Hence, the request by client C is satis�ed in round t.4. Proof of P3(A; i; t) for all i > 0: Let � and � equal obj-req and client-obj, re-spectively. By de�nition, jM�(A; i; t)j is jR(A; t)j. Since round t is good, itfollows from part (iv) of De�nition 3.3 that M 0�(A; i; t) is the outcome of an(M�(A; i; t); Bi(A); ";�(1)) experiment. For part (i) of P3, we are given that�3bi=12 � jR(A; t)j � �3bi=6. By Corollaries 3.4.1 and 3.5.1, at least 4bi=5 serversin Bi(A) receive at least �3=48 � �2 and at most �3 �-messages wvhp. Hence,jN�(A; i; t+ 1)j is 4bi=5 wvhp. Since round t is good, by part (i) of De�nition 3.3,it follows that jN 0�(A; i; t)j is 2bi=5. If a client C is sent at least one �-message, Creceives at least one �-message. Therefore, �3bi=120 � jR(A; t)j=20 of the clientsreceive a �-message wvhp, establishing part (i).The proof of part (ii) is similar. We are given that 4�2bi=12 � jR(A; t)j = O(bi).92

By Corollary 3.4.1 and Lemma 3.5, at least 4bi=5 servers in Bi(A) receive at least�2 and at most O(1) �-messages. By part (i) of De�nition 3.3, it follows thatjN 0�(A; i; t)j is 2bi=5. Thus,
(jR(A; t)j) of the clients receive a �-message. Sinceeach client C selects a server at random and each server sends �-messages to arandom subset of requesting clients, part (ii) of the claim follows.For any round t, we de�ne di(t) to be the largest index j such that s(Ai; k; t) is completefor all k in [j+1]. Let ei(t) be the smallest index j such that a(S; t) is 0 for every serverS in [k�jBk(Ai). In the following lemma, we use Lemma 3.10 to relate di(t), ei(t), ri(t),and si(t) when t is good.Lemma 3.11: Let t be a good round. For any i in [m]:1. If si(t) is at most �0b0, then ri(t+ 1) = 0 wvhp.2. If si(t) is at most �3bdi(t)=6, then si(t)� ri(t+ 1) is at least si(t)=20 wvhp.3. If si(t) is at least 4�4bj and di(t) is at least j, then di(t+ 1) is at least j + 1.4. si(t)� ri(t+ 1) is at most �3bei(t).Proof: By de�nition, si(t) equals jR(Ai; t)j and si(t)�ri(t+1) equals jR0(Ai; t)j. Sinceround t is good, we invoke Lemma 3.10 to prove the claims.1. The claim directly follows from Part (iii) of Lemma 3.10.2. There exists an integer j � di(t) such that �3bj=12 � si(t) � �3bj=6. Therefore,by Part (iv) of Lemma 3.10, si(t)� ri(t + 1) is at least si(k)=20 wvhp.3. If si(t) is at least 4�4bj and di(t) is at least j, then for each k in [j + 1], si(t) is atleast 4�4bk. Therefore, Parts (i) and (ii) of Lemma 3.10 imply that s(Ai; k; t+ 1)is complete for all j in [j + 2], establishing the desired claim.93

4. Each server in B0(A) sends at most �0b0 client-frag messages. Since each clientrequires b0=4 fragments to reconstruct the object, the number of clients whoserequests are satis�ed by B0 is at most 4�0b0 � �3b0. The number of requestssatis�ed by each server in a block Bj(Ai) for j > 0 is at most �3. Thereforesi(t)� ri(t+ 1) is at most P0�j<ei(t) �3bj , which is at most �3bei(t).
3.6.4 The Fixed ModelThe �xed model is speci�ed by a probability distributionD = (p0; : : : ; pm�1), where eachnew request is for Ai with probability pi. We use a number of positive real constants inour analysis. Constants a0 through a6 appear in the de�nitions and the statements ofthe lemmas and are required to satisfy the following inequalities.a0 � �0c1=a3;a1 � 9a3�23=(a2a4);a2 � maxf4�4; 2�1g;a2 � �3=12;a5 = 1=(1� 1=20 + a3=(a6 � a3)); anda6 > 21a3:The above inequalities are satis�ed if the constants are selected as follows. Constantsa3 and a4 are �rst selected according to the desired failure probability of the protocol.Then, a1, a2, and a6 are selected so that �4; �1 � a2 � �3 � a1 and a3 � a6. Finally,a0 is chosen appropriately. (The inequalities associated with other constants that arisein the proofs are speci�ed whenever such constants are introduced.)We partition the set A into O(logn) subsets as follows:Aj = 8<: fAi : npi � a0 logng; if j = 0;fAi : a0aj�11 logn < npi � a0aj1 logng; otherwise.94

Let A�i denote the set [j�iAj. We de�ne A�i, A>i, and A<i similarly. For eachi in [m], object Ai is said to be good in round t if si(t) � a2bdi(t); otherwise, Ai is saidto be bad in round t. Thus, if an object Ai is good in round t, then at the start of roundt, the number of requests for Ai is at most a constant factor times the number of copiesof Ai. Let B(m; p) be the random variable denoting the number of successes in m in-dependent Bernoulli trials with success probability p. Let a3 and a4 be real constantssuch that for p � a0 logn=n, a4np � B(n; p) � a3np wvhp; a3 and a4 may be obtainedfrom standard Cherno� bounds [37] given in Theorem A.1.Lemma 3.12: Let rounds 0 through r�1 be good. If object Ai is bad in rounds 0 throughr, then wvhp we have di(j) = j and ei(j) = j + 1 for 0 � j < r.Proof: The proof is by induction on j. The induction basis is trivial. For the inductionhypothesis, we assume that di(j) = j and ei(j) = j + 1 for all j in [k], where k is in[r� 1]. Since Ai is bad in round k� 1, we have si(k� 1) > a2bdi(k�1). Since round k� 1is good, by Part 3 of Lemma 3.11, di(k) is k wvhp. Since ei(k � 1) + 1 � ei(k) < di(k)and ei(k � 1) = k, ei(k) is k + 1 wvhp.Lemma 3.13: Let rounds 0 through r � 1 be good. If Ai is not in A0 and Ai is bad inrounds 0 through r, then si(r) � a2a4npi=(3�3) wvhp.Proof: By Lemma 3.12, di(j) is j for all j in [r + 1]. By Part 4 of Lemma 3.11, itfollows that si(j)� ri(j + 1) is at most 2�3bj . Thus, we have wvhp:si(r) = si(0) + X0�j�r qi(j)� X0�j<r(si(j)� ri(j + 1))� si(0)� X0�j<r 2�3bj� si(0)� 2�3br� a4npi � 2�3br� a4npi � 2�3si(r)=a295

� a4npi=(1 + 2�3=a2)� a2a4npi=(3�3):(The �rst equation follows from the de�nition of si. The fourth equation follows from aCherno� bound. The �fth equation holds since Ai is bad in round r. The last equationholds since a2 � �3.)Lemma 3.14 places an upper bound on the number of requests for object Ai at the startof a round subsequent to the �rst round in which Ai is good.Lemma 3.14: Let rounds 0 through r � 1 be good, where r is at most �. Assume thatAi does not belong to A0, and let j < r be the smallest integer such that Ai is good inround j. There exist constants a5 > 1 and a6 such that, for j � k < r, we have wvhp:si(k) � max(si(j)ak�j5 ; a6npi) : (3.1)Proof: By a Cherno� bound, qi(k+1) is at most a3npi wvhp. If si(k) � (a6� a3)npi,then si(k + 1) � si(k) + qi(k + 1) � a6npi wvhp, thus establishing the claim. For theremainder of the proof, we assume that:si(k) > (a6 � a3)npi: (3.2)We consider two cases depending on whether si(j) � a6npi.� Case si(j) � a6npi: We show by induction on k that Equation 3.1 holds wvhp.The induction basis is trivially true. Let Equation 3.1 be true for rounds j throughk, where j � k < r� 1. Since j is the �rst round in which Ai is good, Lemma 3.12implies that di(j) is j. Therefore, si(j) � a2bj wvhp.By the induction hypothesis, si(k) � si(j). Moreover, since r is at most �, di(k)is at least j. Therefore, si(k) � a2bj � a2bdi(k). Since a2 is at most �3=6, Part 2of Lemma 3.11 implies wvhp:si(k)� ri(k + 1) � si(k)=20: (3.3)96

Therefore we have wvhp:si(k + 1) = ri(k + 1) + qi(k + 1)= si(k)� (si(k)� ri(k + 1)) + qi(k + 1)� si(k)(1� 1=20) + a3si(k)=(a6 � a3)� si(k)(1� 1=20 + a3=(a6 � a3))� si(k)=a5� max(si(j)ak�j5 ; a6npi) :(The second equation follows from the de�nition of si. The third equation followsfrom Equations 3.2 and 3.3. The �fth equation follows from the choice of theconstants: a6 > 21a3 and 1=a5 = (1� 1=20 + a3=(a6 � a3)).)� Case si(j) < a6npi: We show that in this case si(k) � a6npi wvhp. The proofis by induction on k. The induction basis is trivial. Let the claim be true forrounds j through k where j � k < r. In the induction step, we need to show thatsi(k + 1) � a6npi.Let ` be the last round in which si(`) � a2bdi(`). (Such an ` exists since si(j) �a2bdi(j).) By Part 3 of Lemma 3.11 and the de�nition of `, di(k) � di(`) + (k � `)wvhp. By a Cherno� bound, si(`) is at least (a6 � (k� `)a3)npi wvhp. Therefore,bdi(`) is at least (a6 � (k � `)a3)npi=a2 wvhp. Moreover, since ` is at most �,di(`) � j. Therefore, we have wvhp:bdi(`) � bj� 2si(j � 1)2a2 + �3� 2a2a4npi9�23 :(The second equation holds since Ai is good in round j. The third equation followsfrom Lemma 3.13.) Therefore, we have wvhp:bdi(`) � max�(a6 � (k � `)a3); 2a22a49�23 � npia2 : (3.4)97

We select a6 and a new constant a7 such that 2a3a7 � a6 � 2a7+2a2a4=(9�23). Ifk � ` is at most a7, then bdi(k) is at least a6npi=2a2. By the induction hypothesis,si(k) is at most a6npi. Therefore, si(k) � 2a2bdi(k). If k � ` is at least a7, thenbdi(k) is at least 2a7+1a2a4npi=(9�23). By the choice of a6 and a7, we obtain thatsi(k) � 2a2bdi(k) wvhp.By Part 2 of Lemma 3.11, we have wvhp: si(k) � ri(k + 1) is at least si(k)=20.Therefore, si(k + 1) is at most 19si(k)=20 + a3npi, which is at most a6npi by thechoice of the constants.Lemma 3.15 relates the number of requests, in round r, for any two objects that are badin rounds 0 through r � 1.Lemma 3.15: Let rounds 0 through r� 1 be good. Let i1 and i2 be integers in [m] suchthat Ai1 and Ai2 are not in A0 and Ai2 is bad in rounds 0 through r. Then, wvhp wehave: si1(r) � 3a3�3pi1a2a4pi2 si2(r):Proof: Consider any round j, 0 � j < r. We are given that Ai2 does not becomegood in any of the r rounds. We invoke Lemma 3.12 and obtain that di2(j) = j wvhp.Therefore, si2(j) > a2bj wvhp. By Part 4 of Lemma 3.11 (si2(j)� ri2(j + 1)) is at most2�3bj wvhp. Let q denote the number of new requests generated in rounds 0 throughr. Since q � n and Ai1 ; Ai2 =2 A0 we have wvhp: P0�j�r qi1(j) is at least a4pi1q andP0�j�r qi2(j) is at most a3pi2q. We thus have:si1(r) � a3pi1q; (3.5)si2(j) � a4pi2q � X0�j<r 2�3bj : (3.6)From Equations 3.5 and 3.6, we obtain wvhp:si1(r) � a3pi1q98

� a3pi1a4pi2 (si2(r) + 2�3br)� 3a3�3pi1a2a4pi2 si2(r):(The �rst equation follows from Equation 3.5. The second equation follows from Equa-tion 3.6. The last equation holds since Ai2 is bad in round r and a2 � �3.)Lemma 3.16 shows that the number of rounds taken for an object to become good growsalmost logarithmically with its probability of access. Lemma 3.17 states that each objectin A0 is good in all rounds.Lemma 3.16: Let rounds 0 through r � 1 be good. Let i1 and i2 be in [m]. Let j in[r] be the smallest integer such that Ai1 is good in round j. If pi1 � ak1pi2 , where k isa positive integer, then there exists j0 � j � k + 1 such that Ai2 is good in round j0. Ifpi1 � pi2=a1, then there exists j0 � j +O(1) such that Ai2 is good in round j0.Proof: We �rst consider the case in which pi1 � ak1pi2 for some positive integer k.Since Ai1 is bad in rounds 0 through j � 1, di1(j) = j wvhp by Lemma 3.12. SinceAi1 is good in round j, we have si1(j) � a2bj wvhp, and we obtain an upper bound onsi1(j � k + 1) as follows:si1(j � k + 1) = si1(j) +0@ X0�`<k(si1(j � `)� r(j � `+ 1))� q(j � `+ 1)1A� si1(j) +0@ X0�`<k(si1(j � `)� r(j � `+ 1))1A� si1(j) + 2�3bj� 3�3bj : (3.7)(The �rst equality follows from the de�nition of si1 . The third equation follows fromPart 1 of Lemma 3.11. The last equation holds since Ai1 is good in round j and a2 � �3.)If Ai2 is good in some round j0 < j � k + 1, then the claim holds. Otherwise, byLemma 3.15, it holds wvhp that si2(j�k+1) � 3a3�3a2a4ak1 si1(j�k+1). Hence, Ai2 is good99

in round j � k + 1 wvhp because:si2(j � k + 1) � 9a3(�3)2ak1a2a4 bj� a2bj�k+1:(The �rst equation follows from Equation 3.7. The second equation follows from thechoice of constants: a1 � 9a3�23=(a2a4) � 2.)We now consider the case in which pi1 � pi2=a1. Let a8 be an integer constantsatisfying: 2a8 � 3a22(a2 + 3a8�3)(a2 + �3)a1a3�3=(a2a4):(Thus, a8 is a su�ciently large integer constant.) If Ai2 is good in some round j0 < j+a8,then the claim holds. Otherwise, Ai2 is good in round j + a8 wvhp because:si2(j + a8) � si2(j � 1) + a4a8npi2� si2(j � 1)(1 + 3�3a8=a2)� 3(1 + 3�3a8=a2)a1a3�3a2a4 si1(j � 1)� 3(1 + 3�3a8=a2)a1a3�3a2a4 (si1(j) + �3bj)� 3(1 + 3�3a8=a2)a1a3�3(a2 + �3)a2a4 bj� a2bj+a8 :(The �rst equation follows from the de�nition of si2 . The second equation follows fromLemma 3.13. The third equation follows from Lemma 3.15. The fourth equation followsfrom the de�nition of si1 . The �fth equation holds since Ai1 is good in round j. Thelast equation follows from the choice of a8.)Lemma 3.17: Let rounds 0 through r � 1 be good. For any nonnegative integer i suchthat 0 � i < m and Ai 2 A0, we have ri(r) = 0.Proof: We will prove by induction on j that for 0 � j � r, ri(j) is zero. The basecase is trivial. Let the claim hold for j. Consider round j + 1 � r. Since ri(j) is zero,100

si(j) equals qi(j), which is at most �0b0 wvhp. Since round j is good, by Part 1 ofLemma 3.11, it follows that ri(j + 1) equals zero wvhp.In De�nition 3.4, we de�ne O(logn) m-vectors of the form (s�0(j); : : : ; s�m�1(j)). Thesevectors are used in Lemma 3.9 to place an upper bound on the number of requests foreach object at the start of a given round.De�nition 3.4: For nonnegative integers i and j, 0 � i < m, we de�ne:s�i (j) = 8>>>><>>>>: B(n; pi) if Ai 2 A0;npiaj�`5 PAk2A�` pk + npi if Ai 2 A`; 0 < ` � jnpiPAk2A>j pk + npi otherwise.
Lemma 3.18: For all j > 0, P0�i<m s�i (j) is O(n) wvhp.Proof: We rewrite P0�i<m s�i (j) as follows:X0�i<m s�i (j) = Xi:Ai2A0 s�i (j) + Xi:Ai2A�j\A>0 s�i (j) + Xi:Ai2A>j s�i (j):We establish the lemma by obtaining upper bounds on the three terms in the right-handside of the above equation. The �rst sum is at most a4n wvhp. The second sum isbounded as follows:Xi:Ai2A�j\A>0 s�i (j) = 0@ X0<`�j Xi:Ai2A` npiaj�`5 PAk2A�` pk1A+ Xi:Ai2A�j npi� 0@ X0<`�j Xi:Ai2A` npiaj�`5 PAk2A` pk1A+ Xi:Ai2A�j npi= X0<`�j naj�`5 + Xi:Ai2A�j npi� n1� a5 + Xi:Ai2A�j npi: (3.8)101

Similarly, we bound the third sum as follows:Xi:Ai2A>j s�i (j) = 0@ Xi:Ai2A�j npiPAk2A�j pk1A+ Xi:Ai2A>j npi= n+ Xi:Ai2A>j npi: (3.9)It follows from the bounds on the three sums that P0�i<m s�j is O(n).Lemma 3.19 shows that each of the �rst O(logn) rounds is good wvhp.Lemma 3.19: Let rounds 0 through r � 1 be good, where r is at most �. Wvhp, roundr is good.Proof: We show that there exists an integer h such that for all i in [m], si(r) isO(s�i (h))wvhp. We divide A into three groups A0, S, and U . Let S be the set fAi 2 A n A0 :there exists j � r such that Ai is good in round jg. Let U be the set A n (S [A0).We �rst consider any object Ai in A0. By Lemma 3.17, we have si(r) = qi(r) �B(n; pi).Let h be the largest index such that Ah \ S is nonempty. If S is empty then weset h to 0. By Lemma 3.16 and the de�nition of Ai, it follows wvhp that for i in [h],every object in Ai is good in some round j0 � r � h+ i+ 1.Consider any object Aj 2 S \ Ai where 0 � i � h. Let rj be the smallest roundin which Aj is good. By Lemma 3.16 and the de�nition of Ai, it holds wvhp that everyobject Ak 2 A�i is bad in some round r0 = rj �O(1). By Lemma 3.15, it holds that forAk 2 A�i, we have sk(r0) =
(pksj(r0)=pj) wvhp. Therefore we have wvhp:sj(rj � 1) = O npjPAk2A�i pk + npj! ;and hence, sj(r) = O0@ npjar�rj5 PAk2A�i pk + npj1A= O npjah�i�15 PAk2A�i pk + npj!= O(s�j (h)):102

(The �rst equation follows from Lemma 3.15. The second equation follows from theearlier claim that rj � r � h + i + 1. The last equation follows from the de�nition ofs�j (h).) We now consider the objects in U . Let h0 be the smallest index such thatAh0\U 6=;. If U is empty, then let h0 equal h. By Lemma 3.16, h0 is at least h � 1 wvhp. ByLemma 3.16, it holds wvhp that every object in A�h0 is bad in some round r0 = r�O(1).Consider any object Aj 2 U \ Ai, i � h0. By Lemma 3.15, for all objects Ak 2 A�h0 , itholds wvhp that sk(r0) =
(pksj(r0)=pj). Therefore we have wvhp:sj(r) = O npjPAk2A�h0 pk + npj!= O(s�j (h)):(The �rst equation holds sinceP`2[m] s`(t) is at most n for any t. The second equationholds since A�h0 � A�h.)We have shown that for each j in [m], sj(r) is O(s�j (h)) wvhp. By Lemmas 3.9and 3.18, it follows that round r is good wvhp.We are now ready to establish tight bounds on si(t) for each object Ai and round t.These bounds, which are proved in Lemma 3.20, imply that after �(logn) rounds thenumber of copies of any object is at least a constant fraction of the number of requestsfor the object.Let t0 equal b+loga5 n. We assume that � is at least t0+�(1), where the hiddenconstant is speci�ed in the following proof.Lemma 3.20: For any i in [m] and for any t � t0, we have wvhp:1. If Ai is in A0, si(t) is B(�(n); pi).2. If Ai is not in A0, si(t) is �(npi), and bdi(t) is
(npi).3. Round t is good.Proof: By Lemma 3.19, rounds 0 through t0 are good wvhp. For any i in [m], ifAi is bad in rounds 0 through b � 2, then by Lemma 3.12, di(b � 1) is b � 1. Since103

a2c12b�1 logn > n � si(b � 1), Ai is good in round b � 1. We have thus shown that foreach i in [m], Ai is good in some round j in [b].Part 1 follows directly from Part 2. We establish Parts 2 and 3 by showing thatfor any Ai not in A0, and t � t0: (i) si(t) is at most a10npi, (ii) round t is good, (iii) ift > t0, si(t) is at least a12npi , and (iv) bdi(t) is at least a11npi. Constants a10, a11, anda12 are speci�ed below.The proof of the above four claims is by induction on t. For the inductionbasis, let t equal t0. By Lemma 3.14, si(t) is at most a6npi � a10npi wvhp, thusestablishing claim (i) (we set a10 � a6). Claim (ii) follows from claim (i) and Lemma 3.9.Claim (iii) holds vacuously. Since � is
(logn), Lemma 3.13 implies that bdi(t0) is atleast a2a4npi=(9�23) � a11npi, thus establishing claim (iv) (we set a11 � a2a4=(9�23)).This completes the induction basis.For the induction step, we assume that claims (i), (ii), (iii), and (iv) hold forrounds t0 through t. We �rst establish claim (i) for round t + 1. If si(t) is at most(a10 � a3)npi, then si(t + 1) � si(t) + qi(t + 1) � a10npi wvhp, and the desired claimholds. We now consider the case in which si(t) is at least (a10 � a3)npi. Let ` � t0be the last round in which si(`) � 9a6�23bdi(`)=(a2a4). (Such an ` exists as t0 satis�esthe inequality.) Since 9a6�23=(a2a4) � 4�4, Part 3 of Lemma 3.11 and the de�nitionof ` imply that di(t) is at least di(`) + t � `. By a Cherno� bound, si(`) is at least(a10 � (t� `)a3)npi wvhp. Therefore, bdi(`) is at least 2a2a4(a10 � (t� `)a3)npi=(9a6�23)wvhp. Moreover, by the induction hypothesis, bdi(`) is at least a11npi. Thus,bdi(`) � maxf2a2a4(a10 � (t� `)a3)9a6�23 ; a11gnpi: (3.10)We choose a13 and a10 such that 2a3a13 � a10 � a2a112a13 . If t�` is at most a13,then bdi(t) is at least a2a3a4a10npi=(9�23). By the induction hypothesis, si(t) is at mosta10npi. Therefore, si(t) is at most 18�23bdi(t)=(a2a4). By Part (iii) of Lemma 3.10, wehave wvhp: si(t)� ri(t+1) is at least a2a4si(t)=(2160a6�3) wvhp. If t� ` is at least a13,then bdi(t) is at least 2a13a11npi wvhp. By the choice of constants, we obtain that si(t)104

is at most a2bdi(t) wvhp. By Part 2 of Lemma 3.11, si(t)� ri(t+ 1) is at least si(t)=20.Thus, in either case, since si(t) is at least (a10�a3)npi, if a10 is chosen su�ciently largerthan �3, si(t + 1) is at most a10npi.Claim (ii) follows from claim (i) and Lemma 3.9. We now prove claim (iii).Since si(t) is at most a10npi and bdi(t) is at least a11npi, by Part (iii) of Lemma 3.10,si(t)� ri(t+1) is at least a11�3si(t)=(120a10) wvhp. Therefore, the total number of newrequests is at least a11�3n=(120a10). By a Cherno� bound, the number of new requestsfor each Ai in A>0 is at least a12npi wvhp for a suitable choice of a12.We now prove claim (iv). We need to show that s(Ai; j; t+ 1) is complete for allj such that bj is at most 2a11npi. Fix an index j such that bj is at most 2a11npi. Bythe induction hypothesis, si(t) is at least a12npi, and bdi(t) is at least a11npi. Part (ii)of Lemma 3.10 is applicable only if a12 were at least 4a11�4. Such a choice of a11 anda12 is not always possible. Therefore, instead of considering new copies made in Bj(Ai)in round t only (as is done in the Part (ii) of Lemma 3.10), we consider copies made inrounds t�a9 through t, where a9 is a su�ciently large constant. The proof of claim (iv)is as follows. If t � t0 + a9, then since the cache is assumed to hold copies created inrounds 0 through t0+a9, as in the induction basis, it follows that bdi(t) is at least a11npi.If t > t0 + a9, the induction hypothesis implies that for t � a9 � t0 � t, si(t0) is atleast a12npi. By Lemma 3.7, if a9 is chosen su�ciently large, the number of new copiescreated in Bj(Ai) in rounds t� a9 through t is at least 9bj=10. Thus, bdi(t+1) is at leasta11npi.Proof of Theorem 3.1: It follows from Lemmas 3.20 and 3.17, and Part (iv) ofLemma 3.10 that each round is nice. Since each round is nice, the number of accessrequests satis�ed in each round is
(n), thus establishing the bound on the number ofaccess requests. The bound on per-request communication follows from the protocolde�nition.
105

3.6.5 The Dynamic ModelThe proof for the dynamic model follows easily from the properties of the protocolderived in Sections 3.6.2 and 3.6.3. Recall that in the dynamic model, an adversaryassigns new requests to free clients subject to the following constraints for all i in [m]: (i)qi(0) = O(logn), and (ii) for t > 0, qi(t) � (21=20)maxfqi(t0) : maxf0; t� �g � t0 < tg.Lemma 3.21: For all i in [m] and 0 � t � poly(n), we have wvhp:1. si(t) is at most P0�j�t(19=20)(t�j)qi(j),2. Round t is good, and3. si(t) is at most 8�1bdi(t).Proof: Fix an i in [m]. We �rst show that Part 1 implies Part 2. Let xi denoteP0�j�t(19=20)t�jqi(j). For all i and t0, qi(t0) is chosen independent of the hash functions.Moreover, P0�i<m qi(t0) is at most n for all t0. Therefore, P0�i<m xi is O(n). It thusfollows from Lemma 3.9 that if Part 1 holds, then round t is good wvhp.The proof of the lemma is by induction on t. For the base case, we let t equal 0.Since si(0) equals qi(0), Part 1 holds, thus also implying Part 2. Since qi(0) is O(logn)and di(t) is at least 0, Part 3 holds.For the induction step, we assume that the statement of the lemma holds for allrounds before round t. Therefore, si(t) is at most 8�1bdi(t). By Part 2 of the induc-tion hypothesis, round t is good. Since 8�1 is at most �3=6, it follows from Part 2 ofLemma 3.11 that ri(t + 1) is at most 19si(t)=20. We thus have:si(t+ 1) � qi(t+ 1) + 19si(t)=20� qi(t+ 1) + (19=20) X0�j�t(19=20)t�jqi(j)� X0�j�t+1(19=20)t+1�jqi(j);which establishes Part 1 of the induction step. (The second equation follows from Part 1of the induction hypothesis.) Part 2 of the induction step is implied by Part 1.106

For Part 3 of the induction step, we �rst show that for any t0 in [maxf0; t��g; t],si(t0) is at most 4�1bdi(t+1). By Part 1 of the induction hypothesis, si(t0) is at most8�1bdi(t0). Let j be the largest integer such that si(t0) is at least 4�1bj. It follows fromthe de�nition of j that di(t0) is at least j. By Part 2 of the induction hypothesis, roundt is good. Hence, by Part 3 of Lemma 3.11, di(t + 1) is at least j + 1. Therefore,si(t0) < 4�1bdi(t+1).After round t, we have:si(t + 1) � (19=20)si(t) + qi(t + 1)� (19=20)si(t) + (21=20)maxfqi(t0) : maxf0; t ��(�)g � t0 < tg< (19=20)4�1bdi(t+1) + (21=20)4�1bdi(t+1)� 8�1bdi(t+1);thus completing the proof of the induction step.Proof of Theorem 3.2: It follows from Part (iv) of Lemma 3.10 and Parts 2 and 3of Lemma 3.21 that each round is nice. Since each round is nice, the number of accessrequests satis�ed in each round is
(n), thus establishing the bound on the number ofaccess requests. The bound on per-request communication follows from the protocolde�nition.3.7 Write OperationsThus far, we have focused our attention on read-only objects. In this section, we describeour algorithm for handling write operations. We consider two di�erent approaches: thewrite-and-update and the invalidate-and-write protocols.At a given time step, any number of clients may attempt to simultaneouslyinitiate a write operation on some object A. Each client communicates with serversin block B0(A) only, where the primary copy of A is stored. The �rst part of eachprotocol consists of a simple three-round randomized leader election procedure to select107

one of these clients to actually write the object A. We introduce four new types ofcontrol messages: write-req, write-may, write-try, and write-ok. In the �rst round, eachwriter attempts a write-req message to each server in B0(A). For a server S in B0(A),let Q(S) denote the set of clients whose write-req messages are received by S. If Q(S)is non-empty, S sends a write-may control message to an arbitrary client in Q(S). Inthe second round, each client that receives at least one write-may message attempts awrite-try control message to each server in B0(A). Let T (S) denote the set of clientswhose write-try messages are received by S. Server S selects the client C in T (S) withthe largest id and sends a write-ok message to C. In the third and �nal round, theunique client that receives more than b0=2 write-ok messages, writes A by sending thefragments of the new version of object A to B0(A). A time-stamp is sent along witheach of these fragments so that future clients reading the fragments can di�erentiate oldfragments from new ones.The two protocols di�er in the second part. In the write-and-update protocol,after the fragments are sent to block B0(A), updates are propagated to servers in higher-numbered blocks that hold copies of A, by the same method as is used to propagatecopies. The write is assumed to \complete" before these updates are propagated. As aresult, it is possible that a client reads an old version of an object. We use the followingvalidation scheme to ensure that each client receives a version that is at most O(logn)steps out of date. A steady stream of validation time-stamps is created by servers inB0(A) and propagated to higher-numbered blocks that hold copies of A. Each serverS that has a copy of A maintains a variable b(S) that denotes the last validation time-stamp received by S. A server S satis�es a request in round t only if b(S) is at leastt�O(logn), thus ensuring that the version sent to a client is at most O(logn) steps old.Since the per-request communication due to the validation time-stamps is asymptoticallysmaller than that required by the rest of the protocol, the results of Section 3.5 hold asstated. In the invalidate-and-write protocol, we maintain, for each object, a fault-tolerantdistributed list of all servers and clients holding a copy of the object. When a write oper-108

ation is performed, before updating the primary copy, the servers in block 0 participatein an invalidation scheme in which each client/server on the list is sent one or moreinvalidation messages wvhp. The main advantage of this extension is that clients canmake use of locally-cached copies of objects since they are informed once such a copybecomes out of date. The main disadvantage is that it is not possible to guarantee inthe worst case that these invalidation messages are all sent quickly (e.g., within O(logn)steps). The di�culty is that the lists can grow very long over time, and if a large num-ber of write operations are performed over a short period on a set of objects with longassociated client/server lists, then it is simply not possible to send all of the invalidationmessages quickly.3.8 Concluding RemarksIn order to achieve fault-tolerance and space-e�ciency, our protocol uses Rabin's IDAtechnique to encode each object as a set of fragments such that only a constant fractionof the fragments are needed to reconstruct an object. One shortcoming of IDA is thatit does not tolerate errors in the fragments. Suppose, for example, that a client readingan object receives a large number of fragments, each of which is noisy (i.e., contains ar-bitrarily many errors) with some constant probability " > 0. Unless the noisy fragmentscan be easily identi�ed as such, the client cannot e�ciently reconstruct the object usingIDA. In such a noisy setting, it would be worthwhile to consider variants of our protocolbased on the Berlekamp-Welch decoder [28] (see also [110, Appendix A]), which toleratesnoise in a constant fraction of the fragments.We would like to extend our protocols to other interesting models of distributedcomputation that incorporate asynchrony or locality information. We conjecture that,with suitably modi�ed de�nitions and appropriate technical assumptions, the perfor-mance bounds of the present chapter can be extended to apply to models allowinglimited forms of asynchrony (e.g., bounded asynchrony). To address the issue of locality,it would be interesting to consider a variant of our protocol in which the number of copies109

of an object that are created in any region of the network is proportional to its popular-ity within the region, and where regions are identi�ed on the basis of some hierarchicaldecomposition of the network. Recent work on locality issues includes algorithms forallocating �les on arbitrary networks [19, 26], protocols for accessing nearby objects onrestricted classes of networks [74, 103, 117], and caching schemes for the Internet [67].The most important technical problem left open in this chapter is to extend ouranalysis to more general models of access patterns. For example, we would like to studya model in which an adversary places an arbitrary sequence of requests at each nodeat the start of the computation. We conjecture that our protocol is provably e�cientunder the preceding model as well. We anticipate that the framework developed inSections 3.6.2 and 3.6.3 will be useful in generalizing our results to other models.

110

Part II
Sharing Processors

111

Chapter 4
Static Load Balancing on ArbitraryNetworks
4.1 IntroductionWe begin our discussion about processor sharing in a distributed system by consideringthe problem of static load balancing. We model the distributed system by an undirectedgraph G = (V;E) in which V is the set of nodes and E is the set of edges. Each node hasan initial collection of tokens and no tokens are created or destroyed while the tokensare being balanced. We assume that in one unit of time, at most one token can betransmitted across an edge of the network in each direction. Figure 4.1 illustrates aninstance of the static load balancing problem.In this chapter, we analyze the performance of simple local load balancing al-gorithms for both single-port and multi-port models of computation. In the single-portmodel, a node may send and/or receive at most one token per unit time. In the multi-port model, a node may send and/or receive a token across all of its edges (there maybe as many as d) per unit time.

112

1

2

3

4

5

6

7 8

Figure 4.1: An instance of the static load balancing problem. Each small rectanglerepresents a token. For example, node 5 has 4 tokens.4.1.1 The Single-Port and Multi-Port AlgorithmsThe single-port and multi-port algorithms are both based on the local balancing ap-proach, in which each node exchanges load with a subset of its neighbors at each step.In the single-port algorithm, a matching is randomly chosen at each step. First, each(undirected) edge in the network is independently selected to be a candidate with prob-ability 1=(4d). Then each candidate edge (u; v) for which there is another candidateedge (u; x) or (y; v) is removed from the set of candidates. The remaining candidatesform a matchingM in the network. For each edge (u; v) in M , if u and v have the samenumber of tokens, then no tokens are sent across (u; v). Otherwise, a token is sent fromthe node with more tokens to the node with fewer. Figure 4.2 illustrates one step ofthe single-port algorithm on the example given in Figure 4.1. This algorithm was �rstanalyzed in [54]. (The single-port algorithm is sometimes referred to as the dimension-exchange method in the load balancing literature [119].) The multi-port algorithm is113

1

2

3

4

5

6

7 8

Figure 4.2: A step of the single-port algorithm on the example given in Figure 4.1.The bold edges are the edges that are chosen in the random matching.simpler and deterministic. At each step, a token is sent from node u to node v acrossedge (u; v) if at the beginning of the step node u contains at least 2d + 1 more tokensthan node v. Figure 4.3 illustrates one step of the multi-port algorithm on the examplegiven in Figure 4.1. This algorithm was �rst analyzed in [5]. (The multi-port algorithmis sometimes referred to as the di�usion method in the load balancing literature [119].)We characterize the performance of a load balancing algorithm by the time that it takesto balance the tokens, and by the �nal imbalance that it achieves. The imbalance isde�ned to be the maximum di�erence between the number of tokens at any node andthe average number of tokens in the network. We say that an algorithm balances towithin t tokens if the �nal imbalance is at most t.4.1.2 Overview of the ResultsWe analyze the single-port and multi-port algorithms in terms of the initial imbalance,which we denote �, the number of nodes in the network, n, the maximum degree d of114

1

2

3

4

5

6

7 8

Figure 4.3: A step of the multi-port algorithm on the example given in Figure 4.1.the network, and the node and edge expansions of the network. We de�ne the nodeexpansion � of a network G to be the largest value such that every set S of n=2 or fewernodes in G has at least �jSj neighbors outside of S. We de�ne the edge expansion � ofa network G to be the largest value such that for every set S of n=2 or fewer nodes inG, there are at least �jSj edges in G with one endpoint in S and the other not in S.Consider the example in Figure 4.1. It is easy to see that � = 42=8, n = 8, and d = 3.To determine the node and edge expansions, note that each set S of at most 4 nodeshas at least 3jSj=4 neighbors (resp., 3jSj=4 edges) outside of S (resp., coming out of S).Moreover, the set f3; 6; 7; 8g has 3 neighbors and 3 edges outside of S. Thus, � and �are both 3=4.Our main results in this chapter are as follows:� In Section 4.3.1, we show that the single-port algorithm balances any network towithin O(d logn=�) tokens in O(d�=�) steps wvhp1. This bound is tight in the1Recall that the term wvhp, which is de�ned in Section 1.3, means with probability 1�n�c, where cis a constant that can be set arbitrarily large by appropriately adjusting other constants de�ned withinthe relevant context. 115

sense that for many values of n, d, �, and �, there is an n-node network withmaximum degree d, edge expansion �, and an initial placement of tokens withimbalance �, where the time (for any algorithm) to balance to within even �=2tokens is at least
(d�=�). We also establish a bound on the single-port algorithmin terms of node expansion.� As in the single-port case, we analyze the multi-port algorithm in terms of bothedge expansion and node expansion. We show that the multi-port algorithm bal-ances any network to within O(d2 logn=�) tokens in O(�=�) steps. This bound istight in the sense that for any network with edge expansion �, and any value �,there exists an initial distribution of tokens with imbalance � such that the timeto reduce the imbalance to even �=2 is
(�=�). Our analysis of the multi-portalgorithm is contained in Section 4.3.2.� Thus far we have described a network model in which the nodes are synchronizedby a global clock (i.e., a synchronous network), and in which the edges are assumednot to fail. In Section 4.4, we consider dynamic and asynchronous networks, inwhich edges may fail and recover dynamically. We show that a minor variant ofthe multi-port algorithm achieves the same bounds as for the synchronous case,if the network satis�es the following constraint: at each time step, the set of liveedges has edge expansion �, or node expansion �.� Finally, in Section 4.5, we study a centralized version of the static load balancingproblem, in which every node has knowledge of the global state of the network.We prove that any network can be balanced by a centralized algorithm to withinthree tokens in at most 2d(1 + �)�=�e steps in the single-port model. Moreover,there exists a network and an initial token distribution for which any single-portalgorithm takes more than d(1 + �)�=�e steps to balance the network to withinone token. Similarly, for the multi-port model, we show that that any network canbe balanced to within d+ 1 tokens by a centralized algorithm in at most 2d�=�esteps, while there exists an initial token distribution such that any algorithm will116

take at least d�=�e steps to balance the network to within one token.4.1.3 Related WorkLoad balancing has been studied extensively because it arises in a wide variety ofsettings including adaptive mesh partitioning [68, 118], �ne-grain functional program-ming [59], job scheduling in operating systems [48, 83], and distributed tree searching[76, 86]. A number of models have been proposed for studying load balancing prob-lems. These models can be classi�ed on the basis of three characteristics: (i) central-ized control (e.g., [93, 111]) versus distributed control (e.g., [30, Chapter 7] [42]), (ii)shared memory communication such as the PRAM model (e.g., [27]), uniform com-munication (e.g., [111]), or �xed-connection network communication (e.g., [5, 42]), and(iii) unbounded edge capacity (e.g., [30, Chapter 7] [109]) versus bounded edge capac-ity (e.g., [5, 101]) (the capacity of an edge is the maximum number of tokens it cantransmit per step). In the discussion that follows, we restrict our attention to models ofcomputation with the same basic characteristics as the model considered in this chap-ter, namely: distributed control, �xed-connection network communication, and boundededge capacity.Local algorithms restricted to particular networks have been studied on countingnetworks [15, 78], hypercubes [72, 101], and meshes [68, 93]. Another class of networkson which load balancing has been studied is the class of expanders. Peleg and Upfal [97]pioneered this study by identifying certain small-degree expanders as being suitable forload balancing. Their work was extended in [34, 69, 98]. These algorithms either usestrong expanders to approximately balance the network, or the AKS sorting network [6]to perfectly balance the network. Thus, they do not work on networks of arbitrarytopology. Also, these algorithms work by transferring load along �xed paths in thenetwork and, therefore, cannot cope with the changes in the network topology. Incontrast, our local algorithm works on any dynamic network that remains connected.On arbitrary topologies, load balancing algorithms that use bounded edge ca-pacity were �rst proposed and analyzed in [5] for the multi-port variant and in [54]117

for the single-port variant. The associated upper bounds are suboptimal by factors of
(log(n�)) and
(pn), respectively. We improve these results for both single-port andmulti-port variants.As remarked earlier, our multi-port results (and those in [5]) hold even for dy-namic or asynchronous networks. In general, work on dynamic and asynchronous net-works has been limited. In work related to load balancing, for instance, an end-to-endcommunication problem, namely one in which messages are routed from a single sourceto a single destination, has been studied in [4, 24] on dynamic networks. Our scenario issubstantially more involved since we are required to move load between several sourcesand destinations simultaneously. Another result on dynamic networks is the recentanalysis of a local algorithm for the approximate multicommodity ow problem [22, 23].While their result has several applications including the end-to-end communication prob-lem mentioned above, it does not seem to extend to load balancing. Our result on loadbalancing uses similar techniques; however, our algorithm and analysis are simpler andwe obtain worst-case optimal bounds for our problem.The convergence of local load balancing algorithms is related to that of randomwalks on Markov chains. Indeed the convergence bounds in both cases depend on theexpansion properties of the underlying network and they are established using potentialfunction arguments. There are however two important di�erences. First, the analysis ofthe rapid convergence of random walks [73, 95] relies on averaging arbitrary probabilitiesacross any edge. This corresponds to sending an arbitrary (possibly nonintegral) loadalong an edge, which is forbidden in our model. In this sense, the analysis in [42](and all references in the unbounded capacity model) are similar to the random walkanalysis. Second, our argument uses an exponential potential function. The analysesin [42, 73, 95], in contrast, use quadratic potential functions. Our potential function andour amortized analysis appear to be necessary since a number of previous attempts usingquadratic potential functions yielded suboptimal results [5, 54] for local load balancing.
118

4.2 PreliminariesFor any network G = (V;E) with n nodes and edge expansion �, we denote the numberof tokens at v 2 V by w(v). We denote the average number of tokens by �, i.e., � =(Pv2V w(v))=n. For simplicity, throughout this chapter we assume that � is an integer.We assign a unique rank from [1; w(v)] to every token at v. The height of a token is itsrank minus �. The height of a node is the maximum among the heights of all its tokens.Consider a partition of V given by fSig, where the index i is any integer (positive,negative, or zero) and Si may be empty for any i. Let S>j be [i>jSi. Similarly we de�neS�j , S<j, and S�j . We de�ne index i to be good if jSij � �jS>ij=2d. An index that isnot good is called a bad index. Thus, index i is good if there are at least �jS>ij=2 edgesfrom nodes in S>i to nodes in S<i. To observe this, note that the number of edges outof S>i is at least �jS>ij. On the other hand, the number of edges coming out of Si is atmost djSij which is at most �jS>ij=2 if i is good. Therefore, at least �jS>ij=2 edges gofrom nodes in S>i to nodes in S<i.For any bad index i, it follows from the equality jSij = jS>i�1j � jS>ij thatjS>ij < jS>i�1j=(1 + �=(2d)). Consider the reduction in jS>ij as i increases. For eachbad index, there is a reduction by a factor of 1=(1 + �=(2d)). Hence, there can be atmost dlog(1+�=(2d)) ne bad indices because (1 + �=(2d))log(1+�=(2d)) n � n. It follows thatat least half of the indices in [1; 2dlog(1+�=(2d)) ne] are good.4.3 Analysis for Static Synchronous Networks4.3.1 The Single-Port modelIn this section, we analyze the single-port load balancing algorithm that is described inSection 4.1.2.Theorem 4.1: For an arbitrary network G with n nodes, maximum degree d, edgeexpansion �, and initial imbalance �, the single-port algorithm balances G to withinO((d logn)=�) tokens in O((d�)=�) steps, wvhp.119

For the sake of analysis, before every step we partition the set of nodes accordingto how many tokens they contain. For every integer i, we denote the set of nodes having�+i tokens as Si. Consider the �rst T steps of the algorithm, with T to be speci�ed later.It holds that either jS>0j � n=2 at the start of at least half the steps, or jS�0j � n=2 atthe start of at least half the steps. Without loss of generality, assume the former is true.Thus, every subset of nodes in S>0 expands, and we will use this expansion propertyto show that the number of nodes that have at least �+ 2 log(1+�=(2d)) n tokens rapidlygoes to zero.Recall that at least half of the indices in [1; 2dlog(1+�=(2d)) ne] are good in anytime step. Therefore, there exists an index j in [1; 2dlog(1+�=(2d)) ne] that is good in atleast half of those time steps in which jS>0j � n=2. Hence j is good in at least T=4steps. With every token at height x we associate a potential of �(x), where � : N ! Ris de�ned as follows: �(x) = 8<: 0 if x � j,(1 + �)x otherwise, (4.1)where � = �=(cd), and c > 1 is a real constant to be speci�ed later. The potential of thenetwork is the sum of the potentials of all tokens in the network. While transmitting atoken, every node sends its token with maximum height. Similarly, any token arrivingat a node with height h is assigned height h + 1. It follows from the de�nition of thepotential function, and the fact that the height of a token never increases, that thepotential of the network never increases. In the following, we show that during any stepwhen j is good, the expected decrease in the potential of the network is at least an "�2fraction of the potential before the step, where " > 0 is a real constant to be speci�edlater. Before proving Theorem 4.1, we present an informal outline of the proof. Forsimplicity, let us assume that G is a constant-degree expander, i.e., d = O(1) and� =
(1). Consider the scenario in which all of the indices greater than j are bad. Inthis situation, for indices greater than j, the size of the set S�i decreases exponentially120

with increasing i, and hence the number of tokens with height i decreases exponentiallywith increasing i. If the rate of growth of �(x) with increasing x is smaller than the rateof decrease of jS�ij with increasing i, then the total potential due to tokens at height i\dominates" the total potential due to tokens at height greater than i. In such a case thepotential of S>j is essentially a constant times the potential of tokens at height j + 1.In addition, if the potential of tokens at height at most j is zero, then in every stepwhen j is good, there is a constant fraction potential drop, because a constant fractionof the nodes in S>j send tokens to S<j in such a step. The exponential function we havede�ned in Equation (4.1) satis�es the properties described above for c su�ciently large.In general, the indices greater than j may form any sequence of good and badindices, provided that the upper bound on the number of bad indices is respected. Weconsider the indices greater than j in reverse order and show by an amortized analysisthat for each index i we can \view" all indices greater than or equal to i as bad. If iis bad, then this view is trivially preserved; otherwise, the number of edges from S>ito S<i is at least �jS>ij=2 and hence there is a signi�cant potential drop across the cut(S�i; S>i). This drop can be used to rearrange the potential of S>i in order to maintainthe view that all indices greater than i are bad. We then invoke the argument for thecase in which all indices greater than j are bad, and complete the proof.Consider step t of the algorithm. Let �t denote the potential of the network afterstep t > 0. Let Mi be the set of tokens that are sent from a node in S>i to a node inS<i. Note that a token may appear in several di�erent sets Mi. Let mi = jMij. We saythat a token p has an i-drop of �(i+ 1)� �(i) if p moves from a node in S>i to a nodein S<i. Thus, the potential drop due to a token moving on an edge from node u 2 Sito node v 2 Si0 , i > i0 + 1, can be expressed as the sum of k-drops for i0 < k < i. InLemma 4.1, we use this notion of i-drops to relate the total potential drop in step t, 	,to the mi's.Lemma 4.1: 	 = 0@Xi>j mi�(1 + �)i1A+mj(1 + �)j+1:121

Proof: Let M be the set of tokens that are moved from a node in S>j . (Note thattokens that start from and end at nodes in S>j also belong to M .) For any token p, leta(p) (resp., b(p)) be the height of p after (resp., before) step t.	 = Xp2M (�(b(p)) � �(a(p)))= Xp2M Xa(p)�i<b(p) (�(i+ 1)� �(i))= Xi�j Xp2Mi(�(i+ 1)� �(i))= 0@Xi>j Xp2Mi(�(i+ 1)� �(i))1A+ Xp2Mj(�(j + 1)� �(j))= 0@Xi>j Xp2Mi �(1 + �)i1A+ Xp2Mj(1 + �)j+1= 0@Xi>j mi�(1 + �)i1A+mj(1 + �)j+1:(The second equation holds since the sum of �(i + 1) � �(i) over i telescopes. For thethird equation, we interchange the order of summation and use the fact that �(i) iszero for all i � j. The fourth equation is obtained by separating the case i � j intotwo cases i > j and i = j. For deriving the �fth equation, we use: (i) for all i > j,�(i+1)��(i) = �(1+�)i, and (ii) �(j) = 0. The last equation follows from the de�nitionof mi.)We now describe the amortized analysis, which we alluded to earlier in thissection, that we use to prove Theorem 4.1. We associate a charge of "�2�(h) with eachtoken at height h. We show that we can pay for all of the charges using the expectedpotential drop E[], which implies a lower bound on E[]. We consider the indices in[j + 1; `] in reverse order, where ` is the maximum token height. For every i in [j; `], wemaintain a \debt" term, given by �i below, which is the di�erence between the chargesdue to tokens at height greater than i and the sum of i0-drops for i0 > i. We will placean upper bound on E[�i] that lets us view all of the indices in [i+1; `] as bad indices. In122

other words, we upper bound E[�i] by "�jS�ij(1+ �)i. It follows from this upper boundand the informal argument outlined earlier in this section that the expected total debtcan be paid for by the expected drop across index j.Formally, for any i > j, we de�ne	i = Xk�imk�(1 + �)k; and�i = ("�2)0@ Xp:b(p)�i(1 + �)b(p)1A�	i:We also de�ne � = ("�2)0@ Xp:b(p)>j(1 + �)b(p)1A�	:Note that �t�1 = Xp:b(p)>j(1 + �)b(p) is the total potential of S>j prior to step t.In order to prove the upper bound on E[�i], we place a lower bound on E[mi]that is obtained from the following lemma of [54].Lemma 4.2 ([54]): For any edge e 2 E, the probability that e is selected in the matchingis at least 1=(8d).Lemma 4.3: There exists a real constant " > 0 such that for all i > j, we have E[�i] �("�)jS�ij(1 + �)i.Proof: The proof is by reverse induction on i. If i > `, then the claim holds triviallysince �i and jS�ij are both equal to zero. (Recall that ` denotes the maximum tokenheight.) Therefore, for the base case we consider i = `. Since m` = 0, we have 	` = 0.Thus, �` = ("�2)jS`j(1 + �)` � ("�)jS�`j(1 + �)`, since � = �=(cd) � 1=c � 1 by ourchoice of c.For the induction step we consider two cases, depending on whether i is goodor bad. We begin with the case when i is good. By the de�nition of a good index, wehave jSij � �jS>ij=2d. Since each node has at most d adjacent edges, there are at most�jS>ij=2 edges adjacent to nodes in Si. Therefore, there are at most �jS>ij=2 edges123

from S>i to Si. By the expansion property of the graph, S<i has at least �jS<ij edgesto nodes in S�i, so there are at least �jS>ij=2 edges from S>i to S<i. By Lemma 4.2,we have E[mi] � �jS>ij=(16d).We are now ready to place a bound on E[�i]. By de�nition, �i can be calculatedby subtracting the sum of i-drops from �i+1 and adding the charges due to tokens atheight i. Therefore, we have:E[�i] = E[�i+1] + ("�2)jS�ij(1 + �)i � E[mi]�(1 + �)i� E[�i+1] + ("�2)jS�ij(1 + �)i � c�2jS>ij(1 + �)i=16� E[�i+1]� (�2)jS�ij(1 + �)i(f(c; �; d)� ")� ("�)jS>ij(1 + �)i+1 � (�2)jS�ij(1 + �)i(f(c; �; d)� ")� ("�)jS�ij(1 + �)i((1 + �)� �(f(c; �; d)� ")=");where f(c; �; d) = c=(16(1 + �=(2d))). (The �rst equation holds since the number oftokens p such that b(p) = i is jS�ij. The second equation follows from the lower boundon E[mi]. The third equation holds since jS>ij � jS�ij=(1+�=(2d)) whenever i is a goodindex. The fourth equation follows from the induction hypothesis. The last equationfollows from the inequality jS>ij � jS�ij.)The second case is when i is bad. Thus jSij > �jS>ij=(2d). We now place anupper bound on E[�i] as follows.E[�i] � E[�i+1] + ("�2)jS�ij(1 + �)i� ("�)jS>ij(1 + �)i+1 + ("�2)jS�ij(1 + �)i� ("�)jS�ij(1 + �)i((1 + �)=(1 + c�=2) + �):(The �rst equation holds since the number of tokens p such that b(p) = i is jS�ij. Thesecond equation follows from the induction hypothesis. The third equation holds sincejS�ij > (1 + �=(2d))jS>ij whenever i is a bad index.)We now complete the induction step by determining values for c and " such thatthe following equations hold.((1 + �)� �(f(c; �; d)� ")=") � 1; and (4.2)124

(1 + �)=(1 + c�=2) + � � 1 (4.3)We set c to be any constant greater than or equal to (�=d) + 4 (e.g., c = 5). For thischoice of c, � = �=(cd) � (c� 4)=c, and hence 2� + c�2=2 � c�=2. Therefore, we have:(1 + �)=(1 + c�=2) + � = (1 + 2� + c�2=2)=(1 + c�=2)� (1 + c�=2)=(1 + c�=2)= 1:Thus, Equation (4.3) is satis�ed. Since � � d, we �nd that f(c; �; d) � c=24. We nowset " = c=48 to establish Equation (4.2). (For example, c = 5 and " = 5=48.)We are now in a position to bound E[�] on those steps in which j is good. Byapplying Lemma 4.3 with i = j + 1, we obtain that E[�j+1] � ("�)jS�j+1j(1 + �)j+1. Ifj is good, then by the de�nitions of �, �j+1, and 	, we have:E[�] = E[�j+1]� E[mj](1 + �)j+1� E[�j+1]� �jS>j j(1 + �)j+1=(16d)� ("�)jS>jj(1 + �)j+1 � �jS>j j(1 + �)j+1=(16d)= �jS>jj(1 + �)j+1("� c=16)� 0;(The second equation follows from the inequalityE[mj] � �jS>j j=16d which holds when-ever j is good. The third equation follows from the upper bound on E[�j+1]. The �fthequation holds since c=16 � ".)We now derive a lower bound on the expected drop in the potential of the networkduring a sequence of T steps. By the de�nitions of 	 and �, we have �t = �t�1 � 	and � = "�2�t�1 � 	. If j is good during step t, we have E[�] � 0, and therefore,E[�t] � �t�1(1�"�2), where the expectation is taken over the random matching selectedin step t. Since j is good in at least T=4 steps, we obtain that E[�t+T] � �t(1�"�2)T=4,where the expectation is over all the random matchings in the T steps. By setting125

T = d(4 ln 4)=("�2)e, we obtain E[�t+T] � �t=4. By Markov's inequality, the probabilitythat �t+T � �t=2 is at most 1=2. Therefore, using standard Cherno� bounds [37], wecan show that in T 0 = 8aTd(log �0 + logn)e steps, �T 0 > 1 with probability at mostO(1=(�0)a + 1=na) for any constant a > 0.If � is at most 2 log(1+�=(2d)) n, then the claim of the theorem holds trivially.Accordingly, we assume that � is greater than 2 log(1+�=(2d)) n in what follows. Since�0 is at least (1 + �)�, �0 is at least n2=c. Therefore, 1=(�0)a is inverse-polynomial inn. Since �0 � n(1+�)�+1=�, we have log�0 � (�+1)(�)+ log n� log �. Therefore, forT 0 = O(�d=� + d2 logn=�2), we have �T 0 < 1 wvhp which implies that after T 0 steps,jS>2 log(1+�=(2d)) nj = 0 wvhp.To establish an upper bound on the imbalance in the number of tokens below theaverage, we use an averaging argument to show that after T 0 steps jS<�2 log(1+�=(2d)) nj �n=2 wvhp, and then repeat the above arguments the potential rede�ned appropriately.This proves Theorem 4.1.4.3.2 The Multi-Port ModelIn this section, we analyze the deterministic multi-port algorithm described in Sec-tion 4.1.2.Theorem 4.2: For an arbitrary network G with n nodes, maximum degree d, edgeexpansion �, and initial imbalance �, the multi-port algorithm balances G to withinO((d2 logn)=�) tokens in O(�=�) steps.The proof of Theorem 4.2 is similar to that of Theorem 4.1. We assign a potentialto every token, where the potential is exponential in the height of the token. We thenshow by means of an amortized analysis that a suitable rearrangement of the potentialreduces every instance of the problem to a special instance that we understand well.For the sake of analysis, before every step we partition the set of nodes accordingto how many tokens they contain. For every integer i, we denote the set of nodes havingbetween ��d+2id and �+d�1+2id tokens as Si. (Recall that � is the average number126

of tokens per node.) Consider the �rst T steps of the algorithm, with T to be speci�edlater. Without loss of generality, we assume that jS>0j � n=2 holds in at least half ofthese steps. As shown in Section 4.2, there exists an index j in [1; 2dlog(1+�=(2d)) ne]that is good in at least half of those steps in which jS>0j � n=2. Hence in T steps of thealgorithm, j is good in at least T=4 steps.With every token at height h we associate a potential of �(h), where � : N ! Ris de�ned as follows: �(x) = 8<: 0 if x � 2jd,(1 + �)x otherwise,where � = �=(cd2), and c > 0 is a constant to be speci�ed later. The potential of thenetwork is the sum of the potentials of all tokens in the network.While transmitting some number, say m, of tokens in a particular step, a nodesends the m highest-ranked tokens. Similarly, if m tokens arrive at a node during astep, they are assigned the m highest ranks within the node. Thus, tokens that do notmove retain their ranks after the step. We now describe what speci�c ranks we assignto tokens that move during any step t. Let u be a node in S<i with height h at the startof step t. Let A (resp., B) be the set of tokens that u receives from nodes in S>i (resp.,S�i). We assign new ranks to tokens in A and B such that the rank of every token in Ais less than that of every token in B. Let C be the set of tokens in A that attain heightat most h + (d=2) after the step. Since jAj � d, by the choice of our ranking, we havejCj � jAj=2. We call C the set of primary tokens. We also note that for any node vwith height h all tokens leaving v during a step are at height at least h� d+ 1 prior tothe step.It follows from the de�nition of the potential function and the fact that the heightof a token never increases that the network potential never increases. In the following weshow that whenever j is good the potential of S>j decreases by a factor of "�2d2, where" > 0 is a real constant to be speci�ed later. (For the sake of simplicity, we assume thatd is even. If d is odd, we can replace d by d + 1 in our argument without a�ecting thebounds by more than constant factors.) 127

For any token p, let a(p) (resp., b(p)) be the index i such that Si contains p after(resp., before) the step. (Note that the indexing is done prior to the step.) Let Mi bethe set of primary tokens received by nodes in S<i. Let mi = jMij. Note that mi is atleast half the number of edges connecting nodes in S<i and nodes in S>i. This is becausea token is sent along every one of the edges connecting S<i and S>i and at least half thetokens received by any node in S<i from nodes in S>i are primary tokens. Lemma 4.4establishes the relationship between the total potential drop 	 in step t and the mi's.Lemma 4.4: 	 � 0@12Xi>j mi�d(1 + �)(2i�1)d1A+mj(1 + �)2jd+1:Proof: Let M be the set of primary tokens that are moved from nodes in S>j. (Notethat primary tokens that start from a node in S>j and end at a node in S>j are in M .)Let p be a token in M . By the de�nition of a primary token, the height of p prior to thestep is at least 2b(p)d � 2d + 1 and the height after the step is at most 2a(p)d + 3d=2.Moreover, p belongs to Mi for all i such that a(p) < i < b(p).	 � Xp2M[�(2b(p)d � 2d+ 1)� �(2a(p)d + 3d=2)]� Xp2M Xa(p)<i<b(p)[�(2(i+ 1)d� 2d+ 1)� �(2(i� 1)d+ 3d=2)]= Xi�j Xp2Mi[�(2(i+ 1)d� 2d+ 1)� �(2(i� 1)d+ 3d=2)]= Xi>j Xp2Mi[�(2(i+ 1)d� 2d+ 1)� �(2(i� 1)d+ 3d=2)]+ Xp2Mj[�(2(j + 1)d� 2d+ 1)� �(2(j � 1)d+ 3d=2)]� 0@12Xi>j Xp2Mi �d(1 + �)2id�d1A+ Xp2Mj(1 + �)2jd+1� 0@12Xi>j mi�d(1 + �)2id�d1A+mj(1 + �)2jd+1:128

(The �rst equation follows from the lower bound (resp., upper bound) on the heightof a token p in M before (resp., after) the step. For the second equation, note that2id� 2d+ 1 � 2(i� 1)d+ 3d=2. Therefore, �(2id� 2d+ 1) � �(2(i� 1)d+ 3d=2). Thesecond equation now follows since the sum telescopes. The third equation is obtainedby interchanging the sums and noting that �(x) is 0 for x � 2jd. The fourth equationis obtained by partitioning M into the subsets M nMj and Mj . The �fth equation isderived using the following calculations: (i) �(2id+1)��(2id�d=2) � ((1+�)d=2�1)(1+�)2id�d=2 � �d(1 + �)2id�d=2, (ii) �(2jd + 1) = (1 + �)2jd+1, and (iii) �(2jd � d=2) = 0.The last equation follows from the de�nition of mi.)We establish Theorem 4.2 by means of an amortized analysis similar to the one usedin Section 4.3.1. We associate a charge of "�2d2�(h) with every token at height h. Weshow that we can pay for all of the charges using the potential drop 	 and thus placea lower bound on 	. We consider the sets Si in reverse order and maintain a \debt"term �i for each i. Informally, �i indicates the di�erence between the total charges dueto tokens at height at least 2id� d and the current upper bound on the potential drop.Our amortized analysis terminates by showing that the total debt � is at most zero.We now formally de�ne �i and �. For any token p, let h(p) denote the height ofp prior to the step. Thus 2b(p)d�d � h(p) � 2b(p)d+d�1. For i > j and for a suitableconstant " > 0 to be speci�ed later, we de�ne	i = 12Xk�imk�d(1 + �)2kd�d; and�i = ("�2d2)0@ Xp:h(p)�2id�d(1 + �)h(p)1A�	i:We also de�ne � = ("�2d2)0@ Xp:h(p)>2jd(1 + �)h(p)1A�	:For any step t0, let �t0 denote the total potential after step t0. The total potential afterstep t� 1, �t�1, equals Xp:h(p)>2jd(1 + �)h(p).129

Lemma 4.5: There exists a real constant � > 0 such that for all i > j, we have�i � (��d2)jS�ij(1 + �)2id�d:Proof: The proof is by reverse induction on i. Let ` be the maximum token height.Consider �rst the case when i > b(`+ d)=2dc. Since 2id� d > `, there is no token withheight at least 2id� d. Hence �i � 0 and jS�ij = 0. Thus, the desired claim holds. Wenow consider i = b(`+ d)=2dc. Since 	i = 0, we have�i � (2"�2d3)jS�ij(1 + �)`� (2"�2d3)jS�ij(1 + �)2d(i+1)�d� (��d2)jS�ij(1 + �)2id�d:(The �rst equation holds because: (i) each node in Si has at most 2d tokens with heightat least 2id � d, and (ii) h(p) � ` for each token p. The second equation follows fromthe fact that ` < 2(i+1)d� d. The third equation is obtained by choosing � and " suchthat � > 2"�d(1 + �)2d. Note that for c su�ciently large, (1 + �)2d can be set to anarbitrarily small constant.)For the induction step we consider two cases. If i is good, then jSij � �jS>ij=(2d)and mi � �jS>ij=4. Therefore, we have�i � �i+1 + (2"�2d3)jS�ij(1 + �)2id+d�1 �mi�d(1 + �)2id�d=2� �i+1 + (2"�2d3)jS�ij(1 + �)2id+d�1 � c�2d3jS>ij(1 + �)2id�d=8� �i+1 � (�2d3)jS�ij(1 + �)2id�d(f(c; �; d)� 2"(1 + �)2d)� (��d2)jS>ij(1 + �)2(i+1)d�d � (�2d3)jS�ij(1 + �)2id�d(f(c; �; d)� 4")� (��d2)jS�ij(1 + �)2id�d((1 + �)2d � �d(f(c; �; d)� 4")=�);where f(c; �; d) = c=(8(1 + �=(2d))). (The �rst equation holds because: (i) each nodein Si has at most 2d tokens with height at least 2id� d, and (ii) h(p) � 2id+ d� 1 foreach token p that contributes to �i and not to �i+1. The third equation follows from theinequality jS>ij � jS�ij=(1 + �=(2d)). The fourth equation follows from the induction130

hypothesis and the inequality (1 + �)2d � 2 for c su�ciently large. The last equation isderived using straightforward algebra.)The second case is when i is bad. Thus jSij > �jS>ij=(2d). We have�i � �i+1 + (2"�2d3)jS�ij(1 + �)2id+d�1� (��d2)jS>ij(1 + �)2(i+1)d�d + 2"�2d3jS�ij(1 + �)2id+d�1� (��d2)jS�ij(1 + �)2id�d((1 + �)2d=(1 + �=(2d)) + 2"�d(1 + �)2d=�):We now set c, �, and " such that c > 4, c=12� 4" � 4�, and c=4� 2"=� � 4. (One setof choices is c = 50, � = 1, and " = 1=24.) Since � � d, we have f(c; �; d) � c=12. Sincec > 4, we have 2�d < 1=2, and hence (1 + �)2d � 1+Pi>0(2�d)i = 1+2�d=(1� 2�d) �1 + 4�d. Thus, ((1 + �)2d � �d(f(c; �; d)� 4")=�) � 1 + 4�d� 4�d � 1:Since �=(2d) � 1=2, we have 1=(1+�=(2d)) � 1��=2d+(�=2d)2 � 1��=(2d)+�=(4d) = 1� �=(4d), and hence,(1 + �)2d=(1 + �=(2d)) + 2"�d(1 + �)2d=� = (1 + �)2d(1=(1 + �=(2d)) + 2"�d=�)� (1 + �)2d(1� �=4d + 2"�d=�)= (1 + �)2d(1� c�d=4 + 2"�d=�)� (1 + 4�d)(1� 4�d) < 1:(The second equation follows from the upper bound on 1=(1 + �=(2d)). The fourthequation follows from the upper bound of (1 + 4�d) on (1 + �)2d.)Thus, in both cases, �i � (��d2)jS�ij(1 + �)2id�d. This completes the inductionstep.Corollary 4.5.1: If j is good on step t then we have 	 � "�2d2�t�1.Proof: Applying Lemma 4.5 with i = j + 1, it follows that �j+1 � (��d2)jS�j+1j(1 +�)2(j+1)d�d. If j is good then jS�j j � (1 + �=(2d))jS>j j � 3jS>j j=2 and mj � �jS>j j=2.131

Therefore,� � �j+1 + "�2d3jS�j j(1 + �)2jd+d�1 � �jS>j j(1 + �)2jd+1=2� (��d2)jS>j j(1 + �)2(j+1)d�d + (3"�2d3)jS>j j(1 + �)2jd+d�1=2� �2 jS>j j(1 + �)2jd+1� (�d2)jS>jj(1 + �)2(j+1)d�d(� + 3"�=(2cd)� c=4)� 0;for c, �, and " chosen above. (In the �rst equation, the term "�2d3jS�jj(1 + �)2jd+d�1is an upper bound on the contribution to �j by tokens in S�j since: (i) tokens withheight at least 2jd + d contribute to �j+1, and (ii) each node in S�j has d � 2 � dtokens with height in the interval [2jd+1; 2jd+ d� 1]. Also, the third term in the �rstequation is the second term in the right-hand side of the inequality of Lemma 4.4. Inthe second equation, we use the upper bounds on �j+1 and jS�j j. The third equationfollows from the choice of c, �, and ", and the observation that for c > 4, we have(1 + �)d � (1 + �=(cd2))d � (1 + 1=(cd))d < (1 + 1=(4d))d � e1=4 � 2.)By the de�nitions of � and 	, we have �t � �t�1 �	 and � = "�2d2�t�1 �	.If j is good during step t, then � � 0, and the desired claim follows.By Corollary 4.5.1, if j is good during step t then we have�t � �t�1(1� "�2d2):After T = d4 ln�0=("�2d2)e steps, we have �T � �0(1�"�2d2)T=4 < 1. Since the heightof each node is at most � initially, �0 � nP2jd<i��(1 + �)i � n(1 + �)�+1=�, ln�0 =O(�� + logn). Substituting �=(cd2) for �, we obtain that within O(�=� + d2 lnn=�2)steps, jS>2 log(1+�=(2d)) nj � jS>jj = 0.We use an averaging argument to show that after T steps, jS<�2 log(1+�=(2d)) nj �n=2. By rede�ning the potential function and repeating the above analysis in the otherdirection, we obtain that in another T steps jS<�4 log(1+�=(2d)) nj = 0. This completes theproof of Theorem 4.2. 132

4.3.3 Results in Terms of Node ExpansionThe proofs of Theorems 4.1 and 4.2 can be easily modi�ed to analyze the algorithm interms of the node expansion � of the graph instead of the edge expansion �. Recallthat � and � are related by the following inequalities: �=d � � � �. The primarymodi�cations that need to be done to obtain bounds in terms of node expansion are tochange the de�nition of a good index and to set � appropriately. We call index i goodif jSij � �jS>ij=2. We set � = �=c (resp., � = �=(cd)) for the single-port model (resp.,multi-port model).By an argument similar to the one used in Section 4.2, we obtain that the numberof bad indices is at most dlog(1+�) ne. (In fact, the argument in Section 4.2 uses �=d asa lower bound on �.) This bound on the number of bad indices leads to an upper boundof O((logn)=�) (resp., O(d(logn)=�)) on the �nal imbalance obtained by the single-portalgorithm (resp., multi-port algorithm). For a bound on the number of steps, note thatwhile deriving a bound on the potential drop in Sections 4.3.1 and 4.3.2, we use the edgeexpansion � to obtain a lower bound on the number of tokens leaving sets S>i. Sincethe best lower bound on � in terms of node expansion is �, our time bounds here areobtained by substituting � for � in the time bounds of Theorems 4.1 and 4.2, respectively.We thus obtain Theorems 4.3 and 4.4. Finally, Corollary 4.3.1 (resp., Corollary 4.4.1)follows from Theorems 4.1 and 4.3 (resp., Theorems 4.2 and 4.4).Theorem 4.3: For an arbitrary network G with n nodes, maximum degree d, node expan-sion �, and initial imbalance �, the single-port algorithm balances to within O((logn)=�)tokens in O(d�=�) steps wvhp.Corollary 4.3.1: If� � (d logn)=�, the single-port algorithm balances to within O(logn=�)tokens in O((d�)=�) steps wvhp. If � < (d logn)=�, the single-port algorithm balancesto within O(logn=�) tokens in O((d�)=�) steps wvhp.Theorem 4.4: For an arbitrary network G with n nodes, maximum degree d, nodeexpansion �, and initial imbalance �, the multi-port algorithm load balances to within133

O((d logn)=�) tokens in O(�=�) steps.Corollary 4.4.1: If� � (d2 logn)=�, the multi-port algorithm balances to within O((d logn)=�)tokens in O(�=�) steps. If � < (d2 logn)=�, the multi-port algorithm balances to withinO((d logn)=�) tokens in O(�=�) steps.4.4 Extension to Dynamic and Asynchronous NetworksIn this section, we extend our results of Section 4.3.2 for the multi-port model to dy-namic and asynchronous networks. We �rst prove that a variant of the local multi-portalgorithm is optimal on dynamic synchronous networks in the same sense as for staticsynchronous networks. We then use a result of [5] that relates the dynamic synchronousand asynchronous models to extend our results to asynchronous networks.In the dynamic synchronous model, the edges of the network may fail or succeeddynamically. An edge e 2 E is live during step t if e can transmit a message in eachdirection during step t. We assume that at each step each node knows which of its adja-cent edges are live. The local load balancing algorithm for static synchronous networkscan be modi�ed to work on dynamic synchronous networks. The algorithm presentedhere is essentially the same as in [5].Since edges may fail dynamically, a node u may have no knowledge of the heightof a neighboring node v and hence may be unable to decide whether to send a tokento v. In our algorithm, which we call DS, every node u maintains an estimate eu(v) ofthe number of tokens at v for every neighbor v of u. (The value of eu(v) at the startof the algorithm is arbitrary.) In every step of the algorithm, each node u performs thefollowing operations:(1) For each live neighbor v of u, if w(u)� eu(v) > 12d, u sends a message consisting ofw(u) and a token; otherwise, u sends a message consisting only of w(u). Next, w(u) isdecreased by the number of tokens sent.(2) For each message received from a live neighbor v, eu(v) is updated according to themessage and if the message contains a token, w(u) is increased by one.134

Unlike the algorithm for static networks, the above algorithm may (temporarily)worsen the imbalance since a node may have an old estimate of the height of one of itsneighbors. Two anomalies may occur while executingDS: (i) a token sent by u to v maygain height as it is possible for w(u) � eu(v) to be greater than 12d even if w(u) is atmost w(v), and (ii) node u may not send a token to v as it is possible for w(u)�eu(v) tobe at most 12d even if w(u)�w(v) is much larger than 12d. Consequently, the analysisfor dynamic networks is more di�cult than for static networks. We employ a morecomplicated amortized analysis to account for the above anomalies.For every integer i, let Si denote the set of nodes that have at least ��12d+24idand at most �+12d� 1+24id tokens. Consider T steps of DS. We assume without lossof generality that jS>0j � n=2 at the start of at least T=2 steps. As shown in Section 4.2,there exists an index j in [1; 2dlog(1+�=(2d)) ne] that is good in at least half of those stepsin which jS>0j � n=2. (Recall that index i is good if jSij � �jS>ij=2d.) If index j isgood at the start of step t, we call t a good step. For any token p, let ht(p) denote theheight of p after step t, t > 0. For convenience, we denote the height of p at the start ofDS by h0(p). Similarly, for t � 0, we de�ne ht(u) for every node u and eut (v) for everyedge (u; v).With every token at height h, we associate a potential of �(h), where � : N ! Ris de�ned as follows: �(x) = 8<: 0 if x � 24jd� 11d,(1 + �)x otherwise,where � = �=(cd2) and c > 0 is a constant to be speci�ed later. Let �t denote the totalpotential of the network after step t. Let 	t denote the potential drop during step t.We analyzeDS by means of an amortized analysis over the steps of the algorithm.Let Et be the set f(u; v) : (u; v) is live during step t, u 2 S>j and ht�1(u)� ht�1(v) �24dg. For every step t, we assign an amortized potential drop of	̂t = 150 X(u;v)2Etht�1(u)>ht�1(v)(�(ht�1(u)� d)� �(ht�1(v) + d)):135

The de�nition of 	̂t is analogous to the amount of potential drop that we use in step t inthe argument of Section 4.3.2 for the static case. By modifying that argument slightlyand choosing appropriate values for the constants c and ", we show the following lemma.Lemma 4.6: If the live edges of G have an edge expansion of � during every step ofDS, then for every good step t we have 	̂t � "�2d2�t�1, where " is an appropriatelychosen constant.Proof Sketch: Let Mi denote the set of live edges between nodes in S<i and nodesin S>i. Let mi = jMij. For any node u, let g(u) represent the group to which u belongsprior to step t. We now place a lower bound on 	̂t which is analogous to that on 	 inLemma 4.4 of Section 4.3.2. By the de�nition of 	̂t, we have	̂t = 150 X(u;v)2Etht�1(u)>ht�1(v)(�(ht�1(u)� d)� �(ht�1(v) + d))� 150 X(u;v)2Etht�1(u)>ht�1(v) Xg(v)<i<g(u)(�(24(i+ 1)d� 13d)� �(24(i� 1)d+ 13d))= 150Xi�j X(u;v)2Miht�1(u)>ht�1(v)(�(24(i+ 1)d� 13d)� �(24(i� 1)d+ 13d))= 150Xi>j X(u;v)2Miht�1(u)>ht�1(v)(�(24(i+ 1)d� 13d)� �(24(i� 1)d+ 13d))+ 150 X(u;v)2Mjht�1(u)>ht�1(v) �(24(j + 1)d� 13d)� 2250Xi>j X(u;v)2Miht�1(u)>ht�1(v) �d(1 + �)24id�11d + 150 X(u;v)2Mjht�1(u)>ht�1(v)(1 + �)24jd+11d� 2250Xi>jmi�d(1 + �)24id�11d + 150mj(1 + �)24jd+11d:(For the second equation, note that 24id� 13d � 24(i� 1)d+ 13d. Therefore, �(24id�13d) � �(24(i� 1)d+ 13d). The second equation now follows since the sum telescopes.The third equation is obtained by interchanging the sums and noting that �(x) is zero forx � 24jd� 11d. The fourth equation is obtained by partitioning the set M into subsets136

M nMj and Mj . The �fth equation uses the following calculations: (i) �(24id+ 11d)��(24id� 11d) � ((1+ �)22d� 1)(1+ �)24id�11d � 22d(1+ �)24id�11d, (ii) �(24jd+11d) =(1+�)24jd+11d, and (iii) �(24jd�11d) = 0. The last equation follows from the de�nitionof mi.)We next establish claims similar to Lemma 4.5 and Corollary 4.5.1 of Section 4.3.2by modifying the constants in the proofs. We thus have 	̂t � "�2d2�t�1 for an appro-priately chosen constant ".The following lemma relates the amortized potential drops to the actual potentialdrops.Lemma 4.7: For any initial load distribution and any step t0 > 0, we haveXt�t0 	t � 0@Xt�t0 	̂t1A� 2�0 � n2�(24jd): (4.4)In order to prove Lemma 4.7, we need to address two issues that arise in thedynamic setting: (i) potential gains, i.e., when a token gains height, and (ii) the lack ofa otential drop across edges that join nodes di�ering by at least 24d tokens. We showthat for any of the above events to occur, \many" tokens should have lost height inprevious steps. We use a part of this prior potential drop to account for (i) and (ii). Ata high level, our proof follows the lines of Lemma 3 of [5]. Since the potential functionsinvolved are di�erent, however, the two proofs di�er considerably in the details. Wehave included a complete proof of Lemma 4.7 in Appendix D.The main result follows from Lemmas 4.6 and 4.7. We �rst show that withinO(1=("�2d2)) steps, there is a step when the actual potential of the network eitherdecreases by a factor of 2 or falls below a threshold value.Lemma 4.8: Let t be any integer such that at least 7=("�2d2) of the �rst t steps aregood. There exists t0 � t such that �t0 � maxf�0=2; n2�(24jd)g.Proof: If �0 � n2�(24jd), then the claim is proved for t = 0. For the remainder ofthe proof, we assume that �0 � n2�(24jd). If �t0 � �0=2 for any t0 < t, the claim is137

proved. Otherwise, for all t0 < t, we have �t0 > �0=2. In this case, we obtain�t = �0 �Xt0<t	t0� 3�0 + n2�(24jd)�Xt0<t 	̂t0� 4�0 � Xt0<tt0good ("�2d2)�t0� �0=2:(To obtain the second equation, we invoke Lemma 4.7. For the third equation, we invokeLemma 4.6 and use the inequalities �0 � n2�(24jd), and 	̂t0 � 0 for every t0. The lastequation holds since at least 7=("�2d2) of the t steps are good and �t0 > �0=2 for everyt0 < t.)Theorem 4.5: For an arbitrary network G with n nodes, degree d, and initial imbalance�, if the live edges at every step t of G have edge expansion �, then the dynamic syn-chronous multi-port algorithm load balances to within O(d2(logn)=�) tokens in O(�=�)steps.Proof: We �rst place an upper bound on the number t of steps such that the heightof each node at the end of step t is O(d2(logn)=�2). If � is at most d2(logn)=�2, thena trivial upper bound is 0.We now consider the case when � is at least d2(logn)=�2. By repeatedly invokingLemma 4.8, we obtain that within T = d(7=("�2d2))edlog�0e good steps, there existsa step after which the potential of the network is at most n2�(24jd). (Note that therequirement that Lemma 4.7 hold for arbitrary initial values of the estimates, the eu(v)'s,is crucial here.) Since at least T=4 of the �rst T steps are good, there exists t �4d(7=("�2d2))edlog�0e such that �t � n2�(24jd). Since �0 � n(1 + �)(�+1)=�, we havelog�0 � logn + (� + 1) log(1 + �) � log �. Since � = �=(cd2) and log(1 + �) < �, wehave t = O((�=�) + d2(logn)=�2) = O(�=�).138

Let h be the maximum height of any node after step t. We thus have�(h) � �t� n2(1 + �)24jd:Therefore, if �(h) > 0, then h � log(1+�)(n2(1+�)24jd). If �(h) = 0, then h � 24jd�11d.In either case, h � 24jd+ (2 logn)= log(1 + �)� 24jd+ (4 logn)=�= O((d2 logn)=�):(The right-hand side of the �rst equation is an expansion of log(1+�)(n2(1+�)24jd). Thesecond equation holds since log(1+�) < �=2 for c appropriately large. The �nal equationfollows from the relations � = �=(cd2) and j = O((d logn)=�).)Thus, at the end of step t, no node has more than a = � + h tokens. We nowprove by contradiction that for every step after step t, no node has more than a + dtokens. Let t0 be the �rst step after step t such that there exists some node u with morethan a+d tokens. Of the d+1 highest tokens received by u after step t, at least 2 tokens(say p and q) were last sent by the same neighbor v of u. Without loss of generality, weassume that p arrived at u before q. Let t1 be the step when p was last sent by v to u.Therefore, we have evt1(u) � ht1(p) � d � a � d. Hence q can be sent to u only when vhas height at least a+ 11d, which contradicts our choice of t0.We have shown that after O(�=�) steps, no node ever has more than � +O((d2 logn)=�) tokens. An easy averaging argument shows that there exists k = O((d logn)=�)such that after every step t0 � t, jS<�kj � n=2. By de�ning an appropriate potentialfunction for tokens with heights below the average and repeating the analysis done forS>j , we show that in another O(�=�) steps, all nodes have more than ��O(d2(logn)=�)tokens.As suggested in [5], a simple variant of DS can be de�ned for asynchronous networks.139

As shown in [5], the analysis for the dynamic synchronous case can be used for asyn-chronous networks to yield the same time bounds. Hence, the multi-port local loadbalancing algorithm balances to within O(d2 logn=�) tokens in time O(�=�) on asyn-chronous networks.4.5 Tight Bounds on Centralized Load BalancingIn this section, we analyze the load balancing problem in the centralized setting forboth single-port and multi-port models. We derive nearly tight bounds on the minimumnumber of steps required to balance on arbitrary networks in terms of the node and edgeexpansion of the networks. We assume that the network is synchronous.We �rst consider the network G = (V;E) under the single-port model. For anysubset X of V , let X denote V nX, m(X) denote the number of edges in a maximummatching between X and X, A(X) denote the set fv 2 X : 9x 2 X such that (x; v) 2Eg, and B(X) denote the set fx 2 X : 9y 2 A(X) such that (x; y) 2 Eg. For subsetsX and Y of V , let M(X;Y) denote the set of edges with one endpoint in X and theother in Y .Lemma 4.9: For any network G = (V;E) with node expansion � and any subset Xof V , we have m(X) � �minfjXj; jXjg=(1 + �). Moreover, for any subset X of V ,m(X [A(X)) � jA(X)j.Proof: Without loss of generality, assume that jXj � jXj. Consider the bipartite graphH = (B(X); A(X);M(X;X)). A maximummatching inH is equal to a maximumow inthe graph I = (B(X)[A(X)[fs; tg;M(X;X)[f(s; x) : x 2 B(X)g[f(x; t) : x 2 A(X)g)from source s to sink t, where all of the edges of I have unit capacity. We will show thatevery cut C of I separating s and t is of cardinality at least �jXj=(1 + �). Considerany cut C = (S; T) with s 2 S and t 2 T . The set of edges in C is M(S; T). LetY = T \B(X) and Z = T \A(X). The capacity of C, given by jM(S; T)j, can be lowerbounded as follows.jM(S; T)j = jY j+ jM(Y;A(X) n Z)j+ jM(B(X) n Y; Z)j+ jA(X) n Zj140

� jY j+ jM(B(X) n Y; Z)j+ jA(X) n Zj� jA(X n Y)j� �jX n Y j= �(jXj � jY j)� �jXj=(1 + �):(For the third equation, see Figure 4.4. Three subsets of nodes contribute to the setA(X n Y): (i) the set of nodes in Y that have an edge to a node in X n Y , (ii) the set ofnodes in Z that have an edge to a node in X n Y , and (iii) the set of nodes in A(X) nZthat have an edge to a node in X n Y . The size of the three sets is bounded by jY j,jM(B(X) n Y; Z)j, and jA(X) n Zj, respectively. The fourth equation follows from thede�nition of A(X n Y). The �fth equation holds since Y is a subset of X. The lastequation holds since jY j � jM(S; T)j.) For the second part of the lemma, we note that
X

B(X)

A(X)

Y

Z

Figure 4.4: The sets X, Y , Z, A(X), and B(X) in the proof of Lemma 4.9.since all of the neighbors of X are in A(X), any node in X [A(X) that connects tosome node outside of X [A(X) is in A(X). Therefore, m(X [A(X)) � jA(X)j.141

Theorem 1 of [93] obtains tight bounds on the centralized complexity of loadbalancing in terms of the function m. We restate the theorem using our notation andterminology. Before stating the theorem, we need one additional notation. For anysubset X of nodes of any network, let I(X) denote the number of tokens held by nodesin X in the initial distribution.Theorem 4.6 ([93]): Consider a network G = (V;E) in the single-port model. The net-work G can be balanced in at most max;6�X 6�V d(I(X)��jXj)=m(X)e steps so that everynode has at most d�e+1 tokens. Moreover, any algorithm takes at least max;6�X 6�V d(I(X)��jXj)=m(X)e steps to balance the network so that every node has at most d�e tokens.Theorem 4.6 and Lemma 4.9 imply the following result.Lemma 4.10: Assume the single-port model. Any network G with node expansion �and initial imbalance � can be balanced in at most d�(1 + �)=�e steps so that everynode has at most d�e+ 1 tokens. Moreover, there exists a network G and an initial loaddistribution with imbalance � such that any algorithm takes at least d�(1 + �)=�e stepsto balance G such that every node has at most d�e tokens.Proof: If I(X) is the the total number of tokens belonging to nodes in X in theinitial distribution distribution, then we have: ��jXj � I(X) � �jXj � �jXj for allX. Moreover, jI(X) � �jXjj = jI(X) � �jXjj. Therefore, for all X, jI(X) � �jXjj =�minfjXj; jXjg. By Lemma 4.9, m(X) is at least �minfjXj; jXjg=(1 + �) for all X.Thus, the �rst claim of Theorem 4.6 establishes the �rst claim of the desired lemma.For the second claim of the lemma, given any �, we construct the followingnetwork G = (V;E) with node expansion �. The node set V is partitioned into 3 sets X,Y , and Z such that: (i) jY j = �jXj, and (ii) jZj = jXj(1+�)2=(1��). Let n and x denotejV j and jXj, respectively. Thus, n equals x(1+�+(1+�)2=(1��)) = 2x(1+�)=(1��).The edge set E is the union of the sets X �X, X � Y , Y � Y , Y � Z, Z � Z.We now show that the node expansion of G is �. Consider any nonempty subsetU of V of size at most n=2 and let X 0, Y 0, and Z 0 denote U \ X, U \ Y , and U \ Z,142

respectively. Let N(U) denote the number of neighbors of U that lie outside of U . Weneed to show that N(U) is at least �jU j.We consider two cases: (i) Y 0 and Z 0 are both empty, and (ii) Y 0 is nonempty orZ 0 is nonempty. In the �rst case, U = X 0. Therefore, N(U) � jY j = �x � �jU j. In thesecond case, we have:N(U) � jZj � jZ 0j� jZj � jU j� x((1 + �)2=(1� �)� (1 + �)=(1� �))= x�(1 + �)=(1� �)� �jU j:(The second equation holds since Z 0 is a subset of U . For the third equation, note thatjU j � n=2 = x(1 + �)=(1 � �). The last equation follows from the upper bound ofx(1 + �)=(1� �) on jU j.)We now apply the second claim of Lemma 4.9 to the subset X. Since A(X) = Y ,m(X[Y) = �x = �jX [Y j=(1+�). Given any �, consider the initial token distributionin which each node inX[Y has �+� tokens, and each node in Z has ���(1��)=(1+�)tokens, where � is any integer that is at least �(1� �)=(1 + �). (Note that the averagenumber of tokens is �.) By applying the second claim of Theorem 4.6, we obtain thatthe number of steps to balance G so that each node has at most � tokens is at least(I(X [Y) � �jX [Y j)=m(X [Y) � �jX [Y j=m(X [Y) � �(1 + �)=�. Since thenumber of steps is an integer, the desired claim follows.By using the techniques of [93], we can modify the proof of Lemma 4.10 to show thatany network G with node expansion � and initial imbalance � can be globally balancedto within 3 tokens in at most 2d�(1 + �)=�e steps. The extra factor of 2 is requiredbecause even after balancing the network so that each node has at most d�e+1 tokens,there may exist a node with considerably fewer than � tokens. It takes an additionald�(1 + �)=�e steps to bring the network to a state in which the global imbalance is at143

most 3.Lemma 4.10 implies that the time bound achieved by the single-port algorithm(see Theorems 4.1 and 4.3) is not optimal for all networks. An example of a networkfor which the single-port algorithm is not optimal is the hypercube whose maximumdegree is logn, edge expansion is 1, and node expansion is �(1=plogn). The localalgorithm balances in
(� logn) time, while there exists an O(�plogn + log2 n) timeload balancing algorithm for the hypercube [101] which is optimal for � su�ciently large.For the class of constant-degree networks, however, the time taken by the single-portalgorithm to reduce the global imbalance to O(logn=�) (see Theorem 4.3) is within aconstant factor of the time taken by any algorithm to completely balance the network(see Lemma 4.10).The proofs of Theorem 1 of [93] and Lemma 4.10 can be modi�ed to establishthe following result for the multi-port model.Lemma 4.11: Assume the multi-port model. Any network G with edge expansion � andinitial imbalance � can be balanced in at most d�=�e steps so that every node has at mostd�e + d tokens. Moreover, for every network G, there exists an initial load distributionwith imbalance � such that any algorithm takes at least d�=�e steps to balance G sothat every node has at most d�e tokens.Proof Sketch: We prove that there exists a centralized algorithm that balances towithin d tokens in at most T = max;�X�V l jI(X)��jXjjjM(X;X)j m steps. For all X � V , we have(i) jI(X) � �jXjj � �minfjXj; jXjg (see proof of Lemma 4.10), and (ii) jM(X;X)j ��minfjXj; jXjg. It follows from (i) and (ii) that T � d�=�e.We modify the proofs of Theorem 1 and Lemma 4 of [93] (where the single-port model was assumed) to establish the desired claims for the multi-port model. Wetransform the load balancing problem on G to a network ow problem on a directedgraph H = (V 0; E0) which is constructed as follows. Let Vi be fhv; ii : v 2 V g, 0 �i � T . Let Ei be f(hu; ii; hv; i + 1i) : (u; v) 2 E or u = vg, 0 � i < T . We set V 0 tofsg [S0�i�T Vi [ftg, and E0 to f(s; hv; 0i) : v 2 V g [S0�i<T Ei [f(hv; T i; t) : v 2 V g.144

For any v in V , the capacity of the edge (s; hv; 0i) is w(v). For any (u; v) in E, thecapacity of any edge (hu; ii; hv; i+ 1i), 0 � i < T , is 1. For any v in V , the capacity ofany edge (hv; ii; hv; i + 1i), 0 � i < T , is 1. For any v in V , the capacity of the edge(hv; T i; t) is d�e+ d.We show that the value of the maximum integral ow in H is equal to thetotal number of tokens N in V , from which it follows that there exists a centralizedalgorithm that balances to within d tokens in T steps. Consider any cut C = (S; T) ofH separating s 2 S and t 2 T . Let Si = S \ Vi and D(Si) = fv 2 V : hv; ii 2 Sig. IfS0 = ;, or ST = VT , or there is an edge of in�nite capacity, then the capacity of C isat least N . Otherwise, the number of edges from Vi to Vi+1 that belong to the cut is atleast jM(D(Si);D(Si))j � d(jSi+1j � jSij). Moreover, since there is no edge with in�nitecapacity in C, D(Si) is a subset of D(Si+1). Thus the capacity of C is at leastI(D(V0) nD(S0)) + (T�1Xi=0 �jM(D(Si); D(Si))j � d(jSi+1j � jSij)�+ (d�e+ d)jST j� I(D(V0) nD(S0)) + (T�1Xi=0 ((I(D(Si))� �jSij)=T � d(jSi+1j � jSij)) + (d�e+ d)jST j� I(D(V0) nD(S0)) + (T�1Xi=0 ((I(D(S0))� �jST j)=T � d(jST j � jS0j)) + (d�e+ d)jST j� I(D(V0) nD(S0)) + I(D(S0))� �jST j+ djS0j+ d�ejST j� N:(In the �rst equation: (i) I(D(V0)nD(S0)) is the capacity of the edges from s to V0 thatbelong to the cut, (ii) jM(D(Si); D(Si))j � d(jSi+1j � jSij) is the capacity of the edgesfrom Vi to Vi+1 that belong to the cut, and (iii) (d�e+d)jST j is the capacity of the edgesfrom ST to t that belong to the cut. The second equation follows from the de�nition ofT and the equality jD(Si)j = jSij. For the third equation, note that D(S0) is a subset ofD(Si) for all i and jST j � jSij for all i. The fourth equation is obtained since the sum ofjSi+1j � jSij telescopes. The �nal equation is obtained since I(D(V0)) = N .) Since thecapacity of the cut (fsg; V 0 n fsg) equals N , the maximum ow in H is N .To prove the second part of the lemma, given any network G with a partition145

(V1; V2) of its nodes such that jV1j � n=2 and jM(V1; V2)j = �jV1j, we de�ne an initialload distribution with average � in which each node in V1 has � + � tokens and eachnode in V2 has ���jV1j=jV2j tokens. The desired claim holds since at least �jV1j tokensneed to leave the set V1.Lemma 4.11 implies that the local multi-port algorithm is asymptotically optimal forall networks. As in the single-port case, we can modify the above proof to obtain upperbounds on the centralized complexity of globally balancing a network. We can show thatany network G with edge expansion � and initial imbalance � can be globally balancedto within d+ 1 tokens in at most 2d�=�e steps.4.6 Concluding RemarksIn this chapter, we have shown that the local balancing approach brings any network to astate of small global imbalance in time that is asymptotically optimal in the worst-case.Two natural questions come to mind. Can we improve the guarantee on the quality ofbalance achieved by the algorithms? Is the local balancing approach optimal, not justin the worst-case, but for all distributions?Quality of balance. It is easy to see that there exist distributions for which the globalimbalance guaranteed by the multi-port and single-port balancing algorithms cannot bebetter than the network diameter. However, even if a global imbalance that is within aconstant factor of the diameter is reached, the network may not be locally balanced towithin a small number (say O(1)) of tokens. We say that a network is locally balancedto within t tokens if the maximum di�erence between the number of tokens at any twoneighboring nodes is at most t. Both the single-port and multi-port algorithms willeventually locally balance the network, the single-port algorithm to within one token,and the multi-port algorithm to within 2d tokens. However, even after reducing theglobal imbalance to a small value, the time for either of these algorithms to reach alocally balanced state can be quite large. For example, it is shown in [53] that afterreaching a state that is globally balanced to within O((d logn)=�) tokens, the multi-port146

algorithm may take another
(n1=2) steps to reach a state that is locally balanced towithin 2d tokens. (A similar result for the single-port algorithm is also contained in [53].)Performance ratio for all distributions. It is open whether the time taken by the localbalancing approach is asymptotically optimal for all distributions on all networks. Webelieve that an improved analysis will require substantially new techniques that considerthe particular topology of the given network in greater detail.In the following chapter, we settle both of the questions raised above in thea�rmative for the special case of ring networks.

147

Chapter 5
Static Load Balancing on Rings
5.1 IntroductionWhile the results of Chapter 4 establish that the local balancing approach is optimal inthe worst-case, it is not the case that the upper bounds shown are optimal for all initialdistributions. In fact, for the class of ring networks, the upper bound may be suboptimalby an
(n) factor. To see this, note that the edge expansion of an n-node ring is �(n).Therefore, an application of Theorem 4.2 to the special case of a ring network yieldsthat if the initial imbalance is �, then the multi-port algorithm de�ned in Section 4.1.1balances in O(n�) steps. While there exists a distribution with imbalance � for whichany algorithm takes
(n�) steps to balance, it is easy to construct distributions withimbalance � that can be balanced in O(�) steps.In this chapter, we show that a simple variant of the multi-port algorithm ofSection 4.1.1 converges to a completely balanced distribution in near-optimal time forevery initial distribution on both synchronous and asynchronous rings. We are not awareof any other load balancing algorithm that has been shown to achieve such universal near-optimality with respect to a non-trivial family of networks (e.g., rings). All previousoptimality results known for load balancing are worst-case results.148

5.1.1 Overview of the ResultsLet R be a ring network with the set [n] = f0; 1; : : : ; n � 1g of nodes and the setf(i; (i + 1) mod ng of edges. The local balancing algorithm, which we denote by A, isde�ned as follows. In each step, for all i in [n], node i sends a token to node (i+ 1) mod nif and only if i has more tokens than (i+ 1) mod n. (See Section 5.2 for a message-passingimplementation of A.) We note that there is a single direction, say clockwise, in whichall the token movements in A take place. We refer to algorithms that move tokens inthe clockwise direction as unidirectional algorithms.We �rst consider a synchronous model of computation in which: (i) in each stepof the network, all of the nodes simultaneously perform one step of their computations,and (ii) each message sent during a step is delivered prior to the start of the subsequentstep. We show that:� The number of steps taken byA to balance any distribution b on a synchronous ringis at most 4OPT(b)+n, where OPT(b) is the time taken by an optimal centralizedalgorithm to balance b. The proof is given in Section 5.4.We note that the optimal centralized algorithm need not be a unidirectional algorithm;that is, OPT(b) is the time taken to balance b by the best algorithm among all algorithmsthat send and/or receive at most one token along each of its incident edges in each step.In fact, if OPT(b) was instead de�ned as the time taken by an optimal centralizedunidirectional algorithm to balance b, then the factor of 4 in the stated bound could bereplaced by 2.Our next result concerns an asynchronous model of computation, in which localcomputations may be performed at arbitrary speeds and messages may be delayed ar-bitrarily, subject to the constraint that each message is eventually delivered and eachcomputation is eventually performed [79]. In order to measure the time complexity inthe asynchronous model, we de�ne a round to be a minimal sequence of steps in whicheach component of the ring (i.e., each node or edge) is scheduled at least once. Thetime complexity of an algorithm is then de�ned as the maximum number of rounds149

taken among all possible schedulings of the components. (See Section 5.5 for a formaldescription of the asynchronous model.)The above notion of time is based on the model proposed in [13] for sharedmemory systems. An analogous model for message-passing systems was studied in [16].Moreover, our model is equivalent to that proposed in [87], where the time complexity ofan algorithm is de�ned to be the longest amount of elapsed real time from the start tothe completion of the algorithm, assuming that the time delay between two steps of thesame network component is at most unity [13]. (The model proposed in [87] has beensubsequently used in the study of several distributed computing problems [18, 20].)We generalize our result for the synchronous model to the asynchronous modelat the expense of a factor of 2 in the time complexity. In particular, we show that:� The number of rounds taken byA to balance any distribution b on an asynchronousring is at most 8OPT(b) + 2n. The proof is given in Section 5.5.We remark that if OPT(b) were instead de�ned as the time taken by an optimal cen-tralized unidirectional algorithm for b, then the factor of 8 in the stated bound could bereplaced by 4. We also show that in both the synchronous and asynchronous models, forevery initial token distribution, the message complexity of A is asymptotically optimalamong all unidirectional algorithms.5.1.2 Related WorkIn recent work [14], asynchronous balancing algorithms on several networks includingthe ring have been studied. However, the results of [14] are geared towards establishingeventual convergence in the presence of dynamic network changes, while we are interestedin determining the time to convergence for static load balancing. Also related is the resultof [39], where a worst-case bound on the number of token migrations is given for a modelin which tokens can be transferred between any two nodes.Our result for the asynchronous model is similar in spirit to that of [20], inthat our asynchronous algorithm is not obtained by using a general synchronizer [18] in150

conjunction with an algorithm optimized for a synchronous model. Instead, we showthat A is directly implementable on asynchronous rings and hence avoids the overheadand complexity of a synchronizer while achieving near-optimal bounds.5.2 The Unidirectional Algorithm AIn this section, we give a message-passing implementation of the unidirectional algorithmA introduced in Section 5.1. Recall that the nodes of the ring are assigned unique labelsfrom the set [n]. For convenience, we adopt the following notational convention: anyarithmetic expression referring to a node is interpreted modulo n. For example, we willoften refer to the neighbors of an arbitrary node i as node i� 1 and node i+ 1, ratherthan node (i� 1) mod n and node (i+ 1) mod n.In A, each node i repeatedly communicates with node i+ 1 and sends a token toi+ 1 whenever the number of tokens at i exceeds that at i+ 1. Figure 5.1(b) illustratesone step of the algorithm for the example given in Figure 5.1(a). In order to implementthis balancing scheme e�ciently, node i maintains three variables related to the numberof tokens at i+ 1: (i) a count x(i) of the number of tokens that i has sent to i+ 1 sincethe start of the algorithm, (ii) an estimate y(i) of the number of tokens that i+ 1 hassent to i+2 since the start of the algorithm, and (iii) the number z(i) of tokens at i+ 1initially. At a given point in the execution of the algorithm, let w(i) denote the numberof tokens at i. Thus, w(i) equals w0(i) initially. Also, at a given point in the executionof the algorithm, the expression z(i) + x(i) � y(i) represents the estimate at node i ofthe number of tokens at node i+ 1.In A, the nodes communicate with their neighbors using three types of messages:(i) height, a message that i sends to i� 1 indicating the number of tokens at i, (ii)update, a message that i sends to i� 1 indicating that i has sent a new token to i+ 1,and (iii) token, a message consisting of a token sent by i to i+ 1. In terms of thesemessages, the algorithm can be described as follows.� In the initial step, node i performs the following operations: (i) set x(i) and y(i)151

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(a)

(b)Figure 5.1: (a) An 8-node ring with an initial distribution of tokens. The value of �for this distribution is 7. (b) One step of A on the example given in part (a). Nodes 0,2, 6, and 7 send one token each to nodes 1, 3, 7, and 0, respectively.to zero and set z(i) to 1, and (ii) send a height message with value w(i) to i� 1.� In each subsequent step, i performs the following operation. If w(i) > z(i)+x(i)�y(i), then: (i) decrement w(i) by 1, (ii) increment x(i) by 1, (iii) send a tokenmessage to i+ 1, and (iv) send an update message to i� 1.� On receipt of a height message, i sets z(i) to the value of the message. On receiptof an update message, i increments y(i). On receipt of a token, i increments w(i).
152

5.3 PreliminariesLet Z andN denote the integers and nonnegative integers, respectively. Let V = [n] 7! Zdenote the set of n-tuples of integers. For any t in N and i in [n], let wt be de�ned asfollows: wt(i) is the number of tokens at node i at the start of step t. (We number thesteps from 0.) For any b in V , let �(b) = 1nPi2[n] b(i) denote the average number oftokens in b. We say that the ring is balanced in step t if wt(i) is b�(b)c or d�(b)e for alli in [n], where b is the initial distribution. For any subset S of [n], let wt(S) denote thetotal number of tokens in S at the start of step t.For any i and j in [n], let d(b; i; j) denote the total \imbalance" associated withthe set of contiguous nodes obtained when going from node i to node j in the clockwisedirection (i and j included). Formally, we have:d(b; i; j) = X0�k�(j�i) mod n(b(i+ k)� �(b)):(In other words, d(b; i; j) equalsPi�k�j(b(k)��(b)) if i � j, and [Pj�k<n(b(k)��(b)) +P0�k�i(b(k) � �(b))] otherwise.) For example, if b is the distribution given inFigure 5.1(a), then d(b; 2; 4) is �7, and d(b; 7; 2) is 2.Let `(b) and m(b) be two integers such that d(b; `(b);m(b)) is maxi;j d(b; i; j). Wede�ne the discrepancy of a distribution to be the maximum imbalance among all setsof contiguous nodes of the ring. Thus, the discrepancy D(b) of a distribution b is givenby d(b; `(b);m(b)). For the example in Figure 5.1(a), the values of ` and m are 6 and 1,respectively, and the discrepancy is 12.Without loss of generality, we assume for the remainder of this chapter that `(b) iszero as we can relabel the nodes appropriately otherwise. Moreover, we will be concernedwith applying the functions �, d, and m with respect to the initial token distribution.Therefore, as a shorthand, we let �, d(i; j), and m, denote �(w0), d(w0; i; j), and m(w0),respectively.
153

5.4 Analysis for Synchronous RingsIn this section, we analyze A under the synchronous model of computation. For simplic-ity, we assume, in both this section as well as Section 5.5, that �, the average numberof tokens in the initial distribution, is an integer.In the synchronous model, each node executes in a lock-step manner and eachmessage is transmitted in a single step. By the de�nitions of x(i), y(i), and z(i), weobtain that the value of z(i) + x(i)� y(i) at the start of step t equals wt(i+ 1) for anyt > 0. Therefore, each step of node i can be expressed as follows: if wt(i) > wt(i+ 1),then send a token to i+ 1. For our analysis, it is helpful to consider a generalization ofA given by De�nition 5.2 below.De�nition 5.1: We say that a step t of an algorithm is an S-step, where S is a subsetof [n], if each node not in S is idle in step t and each node i in S performs the followingoperation: if wt(i) > wt(i+ 1), then i sends a token to i+ 1.De�nition 5.2: A partial algorithm B is one in which each step is an S-step for somesubset S of [n]. For any t in N, we let B(t) denote the set S such that step t of B is anS-step.It follows from De�nitions 5.1 and 5.2 that A is a partial algorithm in whicheach step after step 0 is an [n]-step. We obtain a bound on the running time of A byproviding a general analysis that applies to all partial algorithms. Before proceeding tothis analysis, which is given in Section 5.4.1, we present some additional de�nitions.Given two partial algorithms B and C, we say that B covers (resp., is covered by)C if for all t, B(t) is a superset of (resp., subset of) C(t). Consider a partial algorithmB. For i in N, let ri be de�ned as follows: r0 is �1 and for all i > 0, ri is the smallestinteger greater than ri�1 such that [ri�1<j�riB(j) = [n]. We de�ne the ith round of Bto be the sequence of steps in the interval [ri + 1; ri+1].154

5.4.1 Analysis of Partial AlgorithmsWhile the number of tokens present at each node of the ring after t steps ofA or any otherpartial algorithm is easy to calculate, the particular token distribution obtained does notdirectly provide a good barometer for the progress of the algorithm. In Chapter 4, weanalyze load balancing algorithms by �rst assigning to each node a potential that growsexponentially with the imbalance at the node and then showing that the sum of thepotentials of the nodes decreases rapidly with time. While the preceding measure provesto be useful in reducing the complexity of the worst-case analysis for general networks,it appears to be overly simplistic for our purposes since information about the mannerin which the imbalance is distributed is lost.By exploiting the simple structure of ring networks, we are able to capture theprecise distribution of the imbalance of the network in a measure, referred to as thepre�x sum vector. For each t in N, let pt be de�ned as follows:pt(i) = X0�j�i(wt(j)� �) (5.1)for all i in [n]. (In other words, pt is the n-tuple of the pre�x sums of the di�erencebetween the number of tokens at each node at the start of step t and the average.) Givenan initial token distribution w0 = b, let T (b) denote Pi2[n] p0(i).Figure 5.2 gives the value of w0(j) � � for each node j in the instance given inFigure 5.1(a). (Note that the nodes have been relabeled so that ` is 0, i.e., the intervalof nodes with the largest total imbalance begins with 0.) Applying Equation 5.1, we�nd that the pre�x sum vector for the example is (7; 10; 12; 9; 10; 4; 2; 0).The following lemma gives a lower bound on the time complexity of any balancingalgorithm and the number of token transmissions of any unidirectional balancing algo-rithm in terms of D(b) and T (b), respectively, where b is the initial token distribution.Recall that D(b), which is formally de�ned in Section 5.3, is the discrepancy of b.Lemma 5.1: Any algorithm takes at least D(b)=2 steps to balance b. Any unidirectionalalgorithm incurs at least T (b) token transmissions to balance b.155

0 1 2 3 4 5 6 7Figure 5.2: The imbalance at each node of the ring given the distribution in Fig-ure 5.1(a). The unshaded tokens represent the number of tokens more than the averagewhile the shaded tokens represent the number of tokens less than the average. Notethat the nodes have been relabeled so that the value of ` is 0. Hence, the set [0; 2] hasthe maximum total imbalance, 12, which equals the discrepancy of the distribution. ByEquation 5.1, the pre�x sum vector is (7; 10; 12; 9; 10; 4; 2; 0).Proof: Consider the set S = fi : 0 � i � m(b)g of nodes. By de�nition, w0(S) isD(b) + �jSj. (Recall that `(b) is 0.) If the ring is balanced in t steps, then for each nodei in S, wt(i) is �. Therefore, wt(S) is at most �jSj, and hence, at least D(b) tokens aresent out of S in t steps. Since at most two tokens can be sent out of S per step, t is atleast D(b)=2.For each i in [n], the number of token transmissions across edge (i; i+1) requiredby any unidirectional algorithm is at least p0(i) since p0(i) is the excess number of tokensin the interval [0; i]. Therefore, the total number of token transmissions needed by anyunidirectional algorithm to balance b is at least T (b).The remainder of this section is devoted to proving that the number of rounds taken byany partial algorithm to balance a distribution b is at most 2D(b) + n � 1. We beginby determining the e�ect of a step of a partial algorithm on the pre�x sum vector. Forthis purpose, it is useful to de�ne a partial order � on V as follows: b � c if and onlyif b(i) � c(i) for all i in [n]. For convenience, we use 0 to denote the n-tuple each ofwhose components is 0. Lemma 5.2 expresses a partial algorithm as a recurrence relationamong the pre�x sum vectors. 156

Lemma 5.2: For any partial algorithm B, we have: if i is in B(t) and 2pt(i) > pt(i� 1)+pt(i+ 1), then pt+1(i) is pt(i)� 1; otherwise, pt+1(i) is pt(i).The proof of Lemma 5.2 follows from Lemmas 5.3 and 5.5 below.Lemma 5.3: For any partial algorithm B, if 0 � pt, then: if i is in B(t) and 2pt(i) >pt(i� 1) + pt(i+ 1), then pt+1(i) is pt(i)� 1; otherwise, pt+1(i) is pt(i).Proof: Since 0 � pt, pt(0) is nonnegative, and hence wt(0) is at least �. Moreover,by de�nition, pt(n � 1) is 0. Since pt(n � 2) is nonnegative, wt(n � 1) is at most �.Therefore, no token is sent from node n� 1 to node 0. It follows that for each i in [n],if node i sends a token to node i+1, then pt+1(i) is pt(i)� 1; otherwise, pt+1(i) is pt(i).Node i sends a token to i+ 1 if and only if i is in B(t) and pt(i) � pt(i� 1) is greaterthan pt(i+ 1)� pt(i). The desired claim follows.Lemma 5.4: For any token distribution, we have 0 � p0.Proof: The proof is by contradiction. Let i be the smallest nonnegative integersuch that p0(i) is negative. From the de�nition of i, it follows that d(i+ 1;m) equalsd(0;m) � d(0; i). Since d(0; i) = p0(i) < 0, we obtain that d(i+ 1;m) is greater thand(0;m) contradicting the de�nition of m.Lemma 5.5: For any partial algorithm B and all t in N, we have 0 � pt.Proof: The proof is by induction on t. The induction basis follows from Lemma 5.4.For the induction hypothesis, we assume that 0 � pt. For the induction step,we consider step t. We need to show that 0 � pt+1. By Lemma 5.3, we have: if2pt(i) > pt(i� 1) + pt(i+ 1), then pt+1(i) is pt(i) � 1; otherwise, pt+1(i) is pt(i). Ineither case, since pt(i) is nonnegative (by the induction hypothesis) and is an integer forall i, we obtain that pt+1(i) is nonnegative for all i, thus completing the induction step.Lemma 5.6 shows that the each step of a partial algorithm, when viewed as afunction on the pre�x sum vector, is monotonic with respect to �.157

Lemma 5.6: Let S be an arbitrary subset of [n]. Let p and q denote the pre�x sumvectors associated with token distributions b and c, respectively. Let p0 and q0 denote thepre�x sum vectors associated with the token distributions obtained after performing anS-step on distributions b and c, respectively. If p � q, then we have p0 � q0.Proof: Consider any i in [n]. If p(i) is less than q(i), then p0(i) � q(i) � 1 � q0(i).Otherwise, we have p(i) = q(i). By Lemma 5.2, if q0(i) is q(i)�1, then 2q(i) > q(i� 1)+q(i+ 1). It then follows from the hypothesis of the lemma that 2p(i) > p(i� 1)+p(i+ 1),which together with Lemma 5.2 implies that p0(i) is p(i) � 1. Thus, the desired claimholds.Corollary 5.6.1: Consider a partial algorithm B. Let p0 and q0 denote the pre�x sumvectors at the start of step 0 when the initial token distributions are b and c, respectively.If p0 � q0, then the number of rounds taken by B to balance b is at most that taken tobalance c.Corollary 5.7.1 states that if B covers C, then B balances any distribution at leastas quickly as C does.Lemma 5.7: Let B and C be two partial algorithm such that B covers C. Given an initialtoken distribution, let pt and qt denote the pre�x sum vectors at the start of step t of Band C, respectively. Then, for each step t, pt � qt.Proof: The proof is by induction on step t. The induction base is trivial since p0 = q0.For the induction hypothesis, we assume that pt � qt. Consider step t of B and C.Let D be a partial algorithm that is identical to C except that D(t) = B(t). Let rrepresent the pre�x sum vector obtained after step t of D. Since D(t) � C(t), it followsfrom Lemma 5.2 that r � qt+1. By Lemma 5.6 and the induction hypothesis, it followsthat pt+1 � r. By the transitivity of �, it follows that pt+1 � qt+1.Corollary 5.7.1: Let B and C be two partial algorithm such that B covers C. For any158

initial token distribution b, the number of rounds taken by B to balance b is at most thattaken by C.Given a nonnegative integer h, consider the set U(h) of token distributions withdiscrepancy h. Let P (h) denote the set of pre�x sum vectors associated with the distri-butions in U(h). It is easy to see that f(h) = (2h; h; : : : ; h; 0) is the distribution whosepre�x sum vector g(h) = (h; h; : : : ; h; 0) is the unique least upper bound (with respect to�) of P (h). It thus follows from Corollary 5.6.1 that the number of rounds taken by apartial algorithm B to balance any distribution in U(h) is at most the number of roundstaken by B to balance f(h). We now place an upper bound on the number of roundstaken by any partial algorithm to balance f(h).Lemma 5.8: For any nonnegative integer h, the number of rounds taken by any partialalgorithm B to balance f(h) is at most 2h+ n� 1.Proof: For any i, let the ith round of B consist of the steps [ri + 1; ri+1]. In orderto establish the desired claim, we construct a partial algorithm C that is covered byB. Since the rounds of C may di�er from those of B, to avoid ambiguity, we refer to[ri + 1; ri+1] as interval i.Given interval i and a node j, let yi;j be the smallest integer such that j is inB(yi;j). We now de�ne C as follows. For each interval i, and each step t in interval i, nodej is in C(t) if and only if: (i) t is yi;j and (ii) j equals t� 2k for some k � minfdt=2e; hg(i.e., j has the same parity as t). It follows directly from the de�nition that C is apartial algorithm and that B covers C. We now show that C balances f(h) before thestart of interval 2h+ n� 1.We mark the h excess tokens on node 0 with the labels 0 through h� 1 from thetop. We show that during the execution of C the following property holds: at the startof interval t, if i � minfdt=2e; hg, token i is at node minft� 2i; n� 1g; otherwise, tokeni is at node 0. The proof is by induction on t � 2h + n. The induction base is trivial.For the induction hypothesis, we assume that the above statement holds at the start ofinterval t. 159

Consider interval t. By the de�nition of C, we obtain that in interval t, if t � jis even, then node j sends token (t � j)=2 to node j; otherwise, node j does not sendany token. Thus, each node j sends at most one token to node i+ 1 in any interval.Furthermore, by the induction hypothesis, if t�j is even then node j has token (t�j)=2while node j + 1 has no marked token, thus completing the induction step.It follows from the aforementioned property that C balances f(h) before the startof interval 2h + n � 1. Hence, by Corollary 5.7.1, B balances f(h) within 2h + n � 1rounds.The following lemma shows that g(D(b)) is an upper bound (with respect to �)on the initial pre�x sum vector of c.Lemma 5.9: For any initial token distribution b, we have p0 � g(D(b)).Proof: By the de�nition of D and p0, for each i in [n], p0(i) is at most D(b). Moreover,since � is an integer, p0(n � 1) is zero. It thus follows from the de�nition of g thatp0 � g(D(b)).The upper bound on the time complexity of a partial algorithm now follows fromCorollary 5.6.1 and Lemma 5.9.Lemma 5.10: Given any initial token distribution b, the number of rounds taken by anypartial algorithm to balance b is at most 2D(b) + n� 1.Proof: By Lemma 5.9, p0 � g(D(b)). Therefore, by Corollary 5.6.1, the number ofrounds taken to balance b is at most that taken to balance f(D(b)). By Lemma 5.8, thenumber of rounds taken to balance f(D(b)) is at most 2D(b) +n� 1. The desired claimfollows.We now place a bound on the number of token transmissions before balancing adistribution b. Whenever a node i sends a token in step t, we have pt+1(i) = pt(i) � 1.Therefore, the total number of token transmissions by any partial algorithm is exactlyT (b), which, by Lemma 5.1, is optimal with respect to all unidirectional algorithms.160

Lemma 5.11: Given an initial token distribution b, the number of token transmissionsby any partial algorithm is T (b).5.4.2 Complexity of Algorithm AEvery step of A after step 0 is an [n]-step. It thus follows from Lemma 5.10 that thenumber of steps taken to balance any distribution b with an integral average is at most2D(b) + n.We now consider the message complexity ofA. In step 0 of the algorithm, n heightmessages are transmitted. The number of update messages transmitted is at most thetotal number of token transmissions since an update message is sent by a node i in stept only if i sends a token in step t. By Lemma 5.11, the number of token transmissionsis at most T (b). Hence the total number of message transmissions is at most 2T (b) + n.This completes the proof of the following theorem.Theorem 5.1: Consider the synchronous model of a ring network with n processorsmodel. If the initial token distribution is b, then the number of steps taken by A tobalance b is at most 2D(b) + n. The number of token transmissions and the number ofmessage transmissions are T (b) and 2T (b) + n, respectively.5.5 Analysis for asynchronous ringsIn this section, we analyze A under an asynchronous model of computation. We considerthe ring network as consisting of 3n di�erent components: n nodes given by the set [n]and 2n directed edges given by the set f(i; i+ 1); (i; i� 1)g. As de�ned in Section 5.2,each step of a node consists of sending a constant number of messages to its neighborstogether with performing a small number of local operations. Each edge (i; j) is adirected channel that transmits messages from i to j in FIFO order. At any instant,there may be several messages in transit from i to j on edge (i; j). Each step of edge(i; j) consists of delivering the �rst message (if any) in FIFO order among the messagescurrently in transit from i to j. 161

We model asynchrony by means of an adversary X that schedules the compo-nents of the network over a sequence of steps. In step t, each component in a set X (t)of components chosen by the adversary executes its next step simultaneously. Givenadversaries X1 and X2, we say that X1 is weaker (resp., stronger) than X2 if for all t,X1(t) is a superset (resp., subset) of X2(t). The notions of an adversary and that ofweakness generalize the notions of a partial algorithm and that of covering de�ned inSection 5.4. Indeed, we establish our results for the asynchronous model by generalizingsome of the claims of Section 5.4.As mentioned above, when an edge is scheduled, the �rst message (if any) inFIFO order is delivered to the destination node. In the de�nition of A, there are someoperations that are performed at the node on receipt of a message. (An example of suchan operation is changing the value of y(i) at node i on receipt of an update message.)Such operations can be executed either during the scheduling of the edge delivering theparticular message or at the next scheduling of the destination node, as determined bythe adversary.Given an adversary, we de�ne a round to consist of a minimal sequence of stepsin which each component of the network is scheduled at least once by the adversary.The sequence of steps is partitioned into a sequence of non-overlapping rounds. Thetime complexity of an algorithm is de�ned to be maximum, over all adversaries, of thenumber of rounds taken to balance the ring. The message complexity of an algorithmis the maximum, over all adversaries, of the number of messages transmitted by thealgorithm.We now begin the analysis of A under the asynchronous model de�ned above.For any t � 0 and any i in [n], let ut(i) denote the number of tokens in transit alongedge (i; i+ 1) at the start of step t. In analogy to Equation 5.1, we de�ne two notionsof pre�x sums. For each t in N, we de�ne pt and qt as follows:pt(i) = X0�j�i(wt(j) + ut(j)� �) andqt(i) = pt(i)� ut(i)162

for all i in [n]. We refer to pt and qt as the upper pre�x sum vector and the lower pre�xsum vector, respectively. Let �t(i) denote the last step t0 < t such that a height or anupdate message sent by i+ 1 in step t0 is received by i in some step before step t. If noheight or update message is received by i in any of the �rst t steps, we set �t(i) to �1.For convenience, we let q�1(i) equal 1 for all i.Lemmas 5.12, 5.13, 5.14, and 5.15 generalize Lemmas 5.3, 5.5, 5.2, and 5.6, re-spectively. The proofs of Lemmas 5.12 and 5.13 follow the same lines as the proofs ofLemmas 5.3 and 5.5, respectively.Lemma 5.12: Consider the execution of A against an adversary X . Assume that 0 � qsfor all s � t. If i is in X (t) and 2qt(i) > pt(i� 1)+q�t(i)(i+ 1), then qt+1(i) is qt(i)�1;otherwise, qt+1(i) is qt(i).Proof: Consider any s � t. Since 0 � qs, qs(0) is nonnegative, and hence ws(0) isat least �. Moreover, by de�nition, ps(n � 1) is 0. Since 0 � qs(n � 1) � ps(n � 1),qs(n� 1) and us(n� 1) are both 0. Since ps(n� 2) is nonnegative, ws(n� 1) is at most�. Therefore, no token is sent from node n � 1 to node 0 in step t. It follows that foreach i in [n], if node i sends a token to node i + 1, then qt+1(i) is qt(i)� 1; otherwise,qt+1(i) is qt(i).We now show that node i sends a token to node i+ 1 if and only if i is in X (t)and qt(i)� pt(i� 1) is greater than q�t(i)(i+1)� qt(i). It follows from the de�nitions ofqt and pt that wt(i) equals qt(i)� pt(i� 1). If �t(i) equals �1, then it follows from thede�nition of �t(i) that the value of the variable z(i) (see Section 5.2) at the start of stept is 1. Since the values of x(i), y(i) and qt(i) are all �nite, we obtain that if �t(i) is �1then at the start of step t, z(i)+x(i)� y(i) =1 = q�t(i)(i+1)� qt(i). We now considerthe case when �t(i) does not equal �1. By the de�nition of �t(i), the value of z(i) atthe start of step t is �nite. Moreover, by the de�nitions of the variables x(i), y(i), andz(i) of Section 5.2 and the fact that no token is sent from node n� 1 to node n in anystep s � t, we obtain that the value of the expression z(i) + x(i) � y(i) at the start of163

step t equals q0(i+ 1)� q0(i) + q0(i)� qt(i)� (q0(i+ 1)� q�t(i)(i+ 1))= q�t(i)(i+ 1)� qt(i):Therefore, in any step t, if node i is scheduled by the adversary, then node i sends atoken to i + 1 if and only if qt(i) � pt(i � 1) is greater than q�t(i)(i + 1) � qt(i). Thedesired claim follows.Lemma 5.13: Given any adversary, 0 � qt and 0 � pt hold for all t in N.Proof: The proof is by induction on t. The induction basis follows from Lemma 5.4.For the induction step, consider step t. By the induction hypothesis, 0 � qt. We�rst show that 0 � qt+1. By Lemma 5.12, we have: if 2qt(i) > pt(i� 1) + q�t(i)(i+ 1),then qt+1(i) is qt(i)�1; otherwise, qt+1(i) is qt(i). In either case, since pt(i), pt(i� 1), andq�t(i)(i+ 1) are nonnegative integers by the induction hypothesis, we obtain that qt+1(i)is nonnegative for all i. Since qt+1 � pt+1, it follows that 0 � pt+1, thus establishing theinduction step.Lemmas 5.12 and 5.13 together imply the following lemma.Lemma 5.14: Given any adversary X , if i is in X (t) and 2qt(i) > pt(i� 1)+q�t(i)(i+ 1),then qt+1(i) is qt(i)� 1; otherwise, qt+1(i) is qt(i).Given a �xed initial distribution of tokens and two di�erent adversaries, we now relate thepre�x sum vectors obtained after t steps of A against the two adversaries. Lemma 5.15states that both the upper and lower pre�x sum vectors associated with the weakeradversary are lower bounds (with respect to �) on the upper and lower pre�x sumvectors associated with the stronger adversary.Lemma 5.15: Let X1 and X2 be two adversaries such that X1 is weaker than X2. Givenan initial token distribution, let p1t (resp., q1t) denote the upper (resp., lower) pre�x sumvector at the start of step t of A against adversary X1, and let p2t (resp., q2t) denote the164

upper (resp., lower) pre�x sum vector at the start of step t of A against adversary X2.For each step t, we have q1t � q2t and p1t � p2t .Proof: Let �t(i) and �t(i) denote the value of �t(i) under adversaries X1 and X2,respectively. We prove by induction on t that: (i) q1t � q2t , (ii) p1t � p2t , and (iii) for alli, q1�t(i)(i+ 1) � q2�t(i)(i+ 1). The induction base is trivial since q10 = q20 and p10 = p20and �t(i) = �t(i) = �1 for all i. For the induction hypothesis we assume that (i), (ii),and (iii) hold for all steps less than or equal to t.We �rst show that q1t+1 � q2t+1. Consider any i in [n]. If q1t (i) < q2t (i), then ittrivially follows from Lemma 5.14 that q1t+1(i) � q2t+1(i). Otherwise, q1t (i) = q2t (i). Inthis case, by Lemma 5.14, if q2t+1(i) = q2t (i)�1, then 2q2t (i) > p2t (i� 1)+q2s(i+ 1), wheres equals �t(i). Let s0 equal �t(i). By the induction hypothesis, q1s0(i+ 1) � q2s(i+ 1) andp1t (i� 1) � p2t (i� 1). Since q1t (i) = q2t (i), we thus obtain 2q1t (i) > p1t (i� 1) + q1s0(i+ 1),which together with Lemma 5.14 implies that q1t+1(i) = q1t (i)� 1. Thus, we have q1t+1 �q2t+1. We next show that p1t+1 � p2t+1. In order to prove that p1t+1(i) � p2t+1(i), we needonly consider the case in which (i; i+ 1) is in X1(t), as otherwise the desired claim followsdirectly from the induction hypothesis. Accordingly, assume that (i; i+ 1) is in X1(t).Let u1t (i) and u2t (i) denote the values of ut(i) associated with adversaries X1 and X2,respectively. If u1t (i) is positive, then p1t+1(i) = p1t (i)�1 � p2t (i)�1 � p2t+1(i). Otherwise,we have p1t+1(i) = p1t (i) = q1t (i), and p2t+1(i) � p2t (i)� u2t (i) = q2t (i). Therefore, p1t+1(i)is at most p2t+1(i).We now complete the induction step by showing that for all i, q1�t+1(i)(i+ 1) �q2�t+1(i)(i+ 1). If (i+ 1; i) is not in X2(t), then �t+1(i) � �t(i) and �t+1(i) = �t(i), andhence the desired claim follows from the induction hypothesis and the trivial inferencefrom Lemma 5.14 that q1j is nonincreasing as j increases. We now consider the casein which (i+ 1; i) is in X2(t). If �t+1(i) 6= �t(i), then the desired claim holds sinceq1�t+1(i)(i+ 1) = q1�t(i)(i+ 1) � 1, while q2�t+1(i)(i+ 1) � q2�t(i)(i+ 1)� 1. Otherwise, weconsider two subcases: �t+1(i) � �t+1(i) and �t+1(i) < �t+1(i). In the �rst subcase,165

since q1j is nonincreasing as j increases, q1�t+1(i)(i+ 1) � q1�t+1(i)(i + 1). For the secondsubcase, we note that since �t+1(i) = �t(i), no update message is received by i instep t under adversary X1, which implies that no update message was sent by nodei + 1 to node i in the interval [�t+1(i) + 1; t � 1] of steps under adversary X1. Sinceevery token transmission from node i + 1 to node i + 2 is accompanied by an updatemessage from node i + 1 to node i, we obtain that for every t0 in [�t+1(i) + 1; t � 1],q1t0(i+ 1) = q1�t+1(i)(i+ 1). In particular, q1�t+1(i)(i+ 1) = q1�t+1(i)(i+ 1). Thus, in eitherof the two subcases, q1�t+1(i)(i+ 1) � q1�t+1(i)(i+ 1). The desired claim now follows fromthe induction hypothesis.Corollary 5.15.1: Let X1 and X2 be two adversaries such that X1 is weaker than X2.For any initial token distribution b, the number of rounds taken by A to balance b againstX1 is at most the number of rounds taken by A to balance b against X2.We are now ready to establish the main result for asynchronous rings.Theorem 5.2: The number of rounds taken by A to balance any initial token distributionb is at most 4D(b)+ 2n� 2. The number of token transmissions is at most T (b) and thenumber of message transmissions is at most 2T (b) + n.Proof: Given any adversary X1, we construct a stronger adversary X2 that scheduleseach component exactly once in each round, as follows: component � is in X2(t) if andonly if � is in X1(t) and t is the �rst step in the current round such that � is in X1(t).We next construct an adversary X3 that is stronger than X2 such that each round of X3consists of scheduling the components in the following order: �rst all edges of the form(i; i� 1) in any order, then all the nodes in any order, and �nally all edges of the form(i; i+ 1) in any order.By the de�nition of X2, the number of rounds taken by A against X1 is at mostthat taken by A against X2. By the de�nition of X3, the number of rounds taken byA against X3 equals the number taken by A in the synchronous model, which is atmost 2D(b) + n by Theorem 5.1. Moreover, it is easy to see that X3 can be constructed166

such that for any t, the number of rounds completed at the start of step t of X3 isat least half the number completed at the start of step t of X2. It thus follows fromCorollary 5.15.1 that for A, the number of rounds taken against X1 is at most twice thenumber taken against X3. Thus, the number of rounds taken by A to balance any initialtoken distribution b is at most 4D(b) + 2n.The bounds on the number of token and message transmissions follow as in thesynchronous case.5.6 Concluding RemarksIn Sections 5.4 and 5.5, we obtained bounds on the time taken for A to converge toa balanced state. One unfortunate characteristic of the bounds is the additive linearterm in the time complexity of A (see Theorems 5.1 and 5.2). We claim that suchan additive linear term is unavoidable for any distributed algorithm. To observe this,consider two initial token distributions b and c that are de�ned as follows. In bothdistributions, node 0 has two tokens and every other node except node bn=2c has onetoken. In distribution b, bn=2c has zero tokens, while in c, bn=2c has one token. Theoptimal centralized algorithm for either distribution takes at most one step. However,any distributed algorithm takes at least linear time to terminate for at least one of thetwo distributions, since it takes linear time for some node in the ring to distinguishbetween the two distributions.We would like to extend our study to more complicated, yet structured, networkssuch as the d-dimensional mesh. Although we do not expect the bounds to be as sharpas for the ring, results of a similar avor are conceivable.
167

Chapter 6
Dynamic Load Balancing onArbitrary Networks
6.1 IntroductionWe now turn to the dynamic aspect of load balancing. As before, we represent a dis-tributed system by an arbitrary network, and assume that the load consists of indepen-dent equally-sized tokens, that may be processed anywhere. The dynamic nature of theproblem is modeled by an on-line process that adds new tokens to and deletes old to-kens from the system. Since an arbitrary on-line process is di�cult to analyze, previouswork in this area has typically made certain probabilistic assumptions about the tokenarrival process (for example, see [85, 111]). We depart from this approach and insteadstudy a simpli�ed scenario of load balancing under a model that does not rely on anyprobabilistic assumptions about the process of token generation and destruction.Our model is based on an adversarial model that has been proposed recentlyfor studying routing problems [12, 32]. We assume that an adversary controls the on-line process of token arrival and departure. In each step, the adversary determines thelocations and the number of tokens that are to be added to or deleted from the system.Given such a model, a natural question to ask is whether there exist stable balancing168

algorithms, that is, algorithms which ensure that the imbalance of the network does notexceed a �xed (time-independent) bound.It is easy to see that we need to place certain restrictions on the adversary toallow for the possibility of stable algorithms. In our model, the sole restriction on theadversary is that there must exist r � 1 such that: in any step, for every set S of nodes,the increase in the imbalance of S due to the actions of the adversary does not exceed rtimes the number of edges coming out of S. (The imbalance of a set S is the di�erencebetween the total number of tokens in S and the product of the number of nodes in Sand the average number of tokens per node in the network.) See Section 6.2 for a formaldescription of the model.By a straightforward argument based on edge-cuts, we �nd that there is no stablebalancing algorithm if r is allowed to exceed 1. The main result of this chapter is thatthe multi-port local balancing algorithm de�ned in Section 4.1.1 is stable for all networksfor all r < 1. Section 6.3 contains a proof of this result.6.2 An Adversarial ModelLet G = (V;E) denote a network, where V is the set of nodes and E is the set ofbidirectional links. As before, let wt(v) denote the number of tokens at node v at thestart of step t. For any subset S of V , let wt(S) denote the total number of tokensin S at the start of step t. Let the average number of tokens (wt(V)=jV j) at the startof step t be denoted by �t. We de�ne the imbalance of G at the start of step t to bemaxfjwt(v)� �tj : v 2 V g.Each step of the computation proceeds in two phases. In the �rst phase, thebalancing phase, one \step" of the balancing algorithm is executed. We assume multi-port communication, whereby each node can send/receive at most one token along eachof its incident links.In the second phase of each step, the adversarial phase, an adversary insertsand/or deletes tokens from the network. Let e(S) denote the number of edges coming169

out of a set S of nodes. Let dt(S) denote the net increase in the number of tokens atnodes in set S in the second phase of step t. (Note that dt(S) may be negative.) Anadversary with rate r, where r � 0, can insert and/or delete any number of tokens onany subset of nodes subject to the following constraint for every subset S of nodes:jdt(S)� (�t+1 � �t)jSjj � r � e(S) (6.1)6.3 Stability of the Multi-Port AlgorithmRecall that in step t of the multi-port local balancing algorithm, each node u executesthe following operation: for each edge (u; v), if wt(u) � wt(v) � 2d + 1, then u sends atoken to v. This section is devoted to the proof of the following theorem.Theorem 6.1: For any r < 1, the multi-port local balancing algorithm is stable for rater. At the start of step t, for each node v, we assign a potential �t(v) of (wt(v)��t)2.We de�ne the height ht(v) of a node v at the start of step t to be wt(v) � �t. Let �tdenote the sum of the potentials of all the nodes. Let V +t (resp., V �t) denote the set ofnodes with nonnegative (resp., negative) heights at the start of step t. Let �+t (resp.,��t) denote the sum of the potentials of all the nodes in V +t (resp., V �t). We note that�t equals �+t + ��t . Let w0t(v) denote the number of tokens at v at the start of theadversarial phase of step t. Let �0t(v) denote (w0t(v)� �t)2.We prove the stability of the multi-port algorithm by placing time-independentupper bounds on both �+t and ��t . The key step in our analysis is the following lemma.Lemma 6.1: If there exists a node with height at least 5n2d2=(2") at the start of step t,then �+t+1 is at most �+t . If there exists a node with height at most �5n2d2=(2") at thestart of step t, then ��t+1 is at most ��t .Proof: We only prove the �rst claim of the lemma. The proof of the second claim issymmetric. 170

It is useful to extend the notion of height to tokens as well. For this purpose, weassign, for every node v, a unique rank from [1; wt(v)] to each token at v. Let the heightof a token be its rank minus �t. We note that for any node v with nonnegative height,�t(v) is the sum, over all the tokens x with positive height h(x), of the term 2h(x)� 1.Assume that there exists a node with height at least 5n2d2=(2") at the start ofstep t. We divide V +t into distinct sets in the following way. For any i in N, if [0�j<iSjis not equal to V +t , then let Si denote the minimal nonempty set of nodes such that forall u in Si and v in V +t n [0�j�iSj, wt(v)�wt(u) is at least 4d. Let k be the maximumvalue of i for which Si is de�ned. Since 5n2d2=(2") > 4nd, k is positive. Let S�i denote[j�iSj . Let hi and `i denote maxu2Si(wt(u)� �t) and minu2Si(wt(u)� �t), respectively.Thus, S0; S1; : : : ; Sk are disjoint sets that satisfy the following property: for 0 � i < k,each node in Si has at least 4d tokens less than each node in Si+1. Moreover, [0�i�kSiequals V +.We �rst study the balancing phase. Consider a token x transferred from a node uin Si to a node v not in Si. Since a token never gains height, the edge (u; v) belongs to thecut (S�i; V nS�i). In fact, (u; v) belongs to the cut (S�j; V nS�j) for each j � i such thatv is not in S�j. (For example, if v is not in V +t = S�0, then (u; v) belongs to (S�j ; V nS�j)for all j � i.) A lower bound on the drop in the potential of the nodes in V +t as a result ofthe transfer of the token x is obtained byP(u;v)2(S�j ;V nS�j)(`j�hj�1�2d). Thus, for anyi > 0, the potential drop due to the cut (S�i; V nS�i) is at least 2e(S�i)(`i�hi�1� 2d).During the balancing phase, in addition to the potential drop, there may be apositive contribution to the potential of the nodes with nonnegative heights by nodesfrom V n V +t which gain tokens and achieve nonnegative height. Since each node gainsat most d tokens, this positive contribution to the potential is at most nd2. Thus, wehave the total potential drop in the balancing phase to be at least:�nd2 +Xi>0 2e(S�i)(`i � hi�1 � 2d): (6.2)Let us now consider the adversarial phase in which the potential may increasedue to the tokens added by the adversary. The potential of any node v in V +t at the171

start of step t + 1 is (wt+1(v)� �t+1)2 = ((w0t(u)� �t) + (dt(u) � (�t+1 � �t)))2. Thus,the potential at the start of step t + 1 due to nodes in V +t is at most:Xi Xu2Si �0t(u) + 2(w0t(u)� �t)(dt(u)� (�t+1 � �t)) + (dt(u)� (�t+1 � �t))2� (Xi (�0t(Si) + Xu2Si 2hi(dt(u)� (�t+1 � �t)))) + nd2:In addition to nodes in V +t that remain in V +t+1, there may be nodes that do not belongto V +t but belong to V +t+1. By Equation 6.1, the potential of any such node is at mostd2. Thus, the total increase in potential in the adversarial phase is at most:2nd2 +Xi 2hi(dt(Si)� (�t+1 � �t)jSij): (6.3)It follows from Lemma 6.2 below that the right-hand side of Equation 6.3 is maximizedif the adversary adds as many tokens to Sk as the constraint in Equation 6.1 allows,then adds as many tokens to Sk�1 as the constraint allows and so on. We thus obtainan upper bound on the increase in potential by making the following substitution inEquation 6.3 for all i in [k + 1]:dt(Si)� (�t+1 � �t)jSij = (1� ")(e(S�i)� e(S>i)): (6.4)By Equations 6.2, 6.3, and 6.4, we obtain that the net decrease in potential is atleast: �3nd2 �Xi�0 2hi(1� ")(e(S�i)� e(S>i)) +Xi>0 2e(S�i)(`i � hi�1 � 2d)= �3nd2 � 2h0(1� ")e(S�0) +Xi>0 2e(S�i)(`i � (1� ")hi � "hi�1 � 2d)= �3nd2 � 2h0(1� ")e(S�0)�Xi>0 2e(S�i)(hi � li) +Xi>0 2e(S�i)("(hi � hi�1)� 2d)� �3nd2 � 4n2d2 +Xi>0 2e(S�i)("(hi � hi�1)� 2d)� �3nd2 � 4n2d2 + 2"(hk � 4nd)� 2nd2= �(4n2d2 + 5nd2 + 8"nd) + 2"hk� �5n2d2 + 2"hk; 172

for n su�ciently large. (In the �rst and second equations, we rearrange the summands.For the third equation we note that: (i) hi� `i is at most 4nd for all d, and (ii) the totalnumber of edges in the network is at most nd=2. For the fourth equation, we note that:(i) e(S�i) is at least one for all i, (ii) e(S) is at most nd=2 for all S, and (iii) h0 is atmost 4nd.)Since there exists a node with height at least 5n2d2=(2"), hk is at least 5n2d2=(2").Hence, the net decrease in potential is nonnegative.In the following lemma, we use the notation hxi to denote a sequence x0; x1; : : : ;of reals.Lemma 6.2: Let h�i be a sequence of k nonincreasing nonnegative reals. Let h�i be asequence of k nondecreasing reals. Then, an optimal solution to the linear program P:maximize Xi2[k]�ixisubject to Xi2[j]xi � �i; for all j in [1; k);is obtained when x0 is �0 and xi is �i � �i�1 for all i in [1; k).Proof: Given any solution hyi to P and any i in [k], we say that i is good ifP0�j�i yjequals �i. Let hx�i be de�ned as follows: x�0 is �0 and x�i is �i � �i�1 for all i in [1; k).We note that hx�i is the unique solution that has k good indices.Given an optimal solution hzi to P that has fewer than k good indices, we con-struct a new optimal solution hz0i that has more good indices than hzi. This constructionsu�ces to establish the lemma.Let ` be the largest index that is not good; thus, ` is the largest index such thatP0�j�` zj is less than �`. If ` is k � 1, then we set z0j to zj for all j in [k � 1] and z0k�1to �k�1 �P0�j<k�1 zj. We note that hz0i is a feasible solution to P . Also, hz0i is anoptimal solution since z0k�1 > zk�1 and �k�1 is nonnegative. Moreover, the number ofgood indices of hz0i is one more than that of hzi.173

If ` is less than k� 1, then we set z0j to zj for all j in [k] n f`; `+1g. Let � denotethe term �`�P0�j<` zj . We set z 0̀ to z`+ � and z 0̀+1 to z`+1� �. It follows that hz0i isa feasible solution to P . Also, hz0i is an optimal solution since:X0�i<k�iz0i = (�` � �`+1)� + X0�i<k�izi� X0�i<k�izi;where the last equation holds since �` � �`+1. An index i in [k] n f`g is good forsolution hzi if and only if i is good for solution hz0i. Moreover, ` is a good index forhz0i. Therefore, the number of good indices of hz0i is one more than that of hzi. Thiscompletes the proof of the desired claim.Proof of Theorem 6.1: We now show that for all t, �+t and ��t are both at mostn(5n2d2=(2") + d)2. Let, if possible, t be the �rst step such that �+t is greater thann(5n2d2=(2")+d)2. Therefore, there exists at least one node v such that ht(v) is at least(5n2d2=(2") + d). Since the height of a node increases by at most d in the balancingphase and by at most d in the adversarial phase, we obtain that ht(v) � ht�1(v) + 2dfor all v. Therefore, for all v in V , ht�1(v) is at least 5n2d2=(2"). This implies thatby Lemma 6.1, �+t�1 is at least �+t , which contradicts our choice of t. A symmetricargument establishes that ��t is at most n(5n2d2=(2") + d)2.Hence, the imbalance at the start of any step t is at mostpn(5n2d2=(2") + 2d)2,which is at most 3n5=2d2=" for n su�ciently large. This establishes the stability of themulti-port algorithm.6.4 Concluding RemarksConsider the following variation of the adversarial load balancing problem that is mo-tivated by job scheduling. We are given an arbitrary network and a dynamic tokenarrival/departure process in which each token represents a job that takes one unit oftime to process at any node of the network. In each step, we allow an adversary to174

create at most n new tokens and distribute them among the nodes of the network arbi-trarily subject to the constraint that for every subset S of nodes, dt(S)� jSj � r � e(S),where r � 1. (Recall that e(S) denotes the number of edges coming out of S.) A singlestep of any scheduling algorithm consists of: (i) a balancing phase in which each nodecan send and/or receive at most one token along each of its incident edges, and (ii) aprocessing phase in which each node may process at most one of its tokens. Once atoken is processed, it is deleted from the network. We say that a scheduling algorithm isstable if each token is processed within a bounded (time-independent) number of steps.It is easy to see that if we strengthen the adversary by either allowing more thann tokens to be added per step or letting r exceed 1, then no stable algorithm exists. Onthe other hand, we can show that the local load balancing algorithm can be combinedwith any work-preserving processing strategy to obtain a stable algorithm against alladversaries provided r < 1. (In a work-preserving strategy, a node is idle only if it hasno tokens to process.)The main technical problem left open by this chapter concerns the stability oflocal load balancing algorithm for rate 1. We conjecture that the algorithm is stable forrate 1 too. A proof technique di�erent from the one used in this chapter, however, maybe needed to establish such a result (if it holds).

175

Conclusions
In this dissertation, we have developed and analyzed mechanisms for sharing resources indistributed systems. We have demonstrated that simple local algorithms can e�cientlysolve certain problems related to sharing memory and processors in a distributed system.We now conclude by summarizing our results and by presenting a few directions for futureresearch.Sharing MemoryIn the �rst half of the dissertation, we considered the question of how to share memoryin a distributed system. Since the general problem is quite complicated, we focused ontwo speci�c aspects of the problem: memory contention and faults. Our main result is aprotocol that provides fast access to shared objects in an environment in which memorycontention can be unlimited and a constant fraction of the nodes and communicationlinks can be faulty at any time. We showed that if each access request is chosen accordingto a �xed probability distribution over the set of objects, then our protocol reaches asteady state in O(logn) steps. In the steady state, each request is satis�ed in expectedO(1) steps and the throughput of the protocol is asymptotically optimal. We also provedthat the protocol continues to remain in a steady state if changes in the access patternare moderate.There are a number of directions in which our work can be extended. The mostpressing need, perhaps, is that of proposing a model and developing some new techniques176

to incorporate nonuniform communication costs. One simplifying, yet useful, model fornonuniform networks is to set the cost of sending a message of length ` from a nodeu to v as some �xed function of u, v, and `. In addition, as done in this dissertation,we may place a bound on the number of messages that a node can send or receive perunit time. Even though the preceding model does not consider issues such as internalnetwork congestion, the following interesting questions can be posed for the model:� Placement of copies: In order to support high degrees of concurrency, on-linereplication will play a central role in any e�cient access scheme. The results inChapters 2 and 3 show that if the cost model is uniform, random hashing can beused to determine where to place the copies. For a nonuniform network, however,we would like the placement of copies of any object to be determined by the currentdistribution of requests for the object across the network. This leads us to awell-studied problem in combinatorial optimization, the facility location problem(e.g., see [40]). While the facility location problem is NP-complete, constant-factor approximation algorithms for important special cases have been obtainedrecently [84, 106]. All of the current solutions devised for this problem, however,assume centralized control; it would be interesting to obtain solutions that can beadapted to a dynamic and distributed environment. (For recent related work inthis area on speci�c network topologies, see [89].)� Locating nearby copies of objects: In a nonuniform network, changes in the patternof accesses across the network may cause changes in the locations of object copies.Hence, there is a need for a mechanism to dynamically locate nearby copies ofobjects. While this problem has been well-studied (see [96] for early work, and [19,26, 103] for recent results), existing solutions either hold for restricted cost modelsonly or su�er from large overhead in storage requirements. (By overhead in storage,we refer to the memory required to store information about the locations of theobjects.) Since the above problem has direct applications to the Internet [66, 117],an e�cient solution would be of great interest.177

Sharing ProcessorsIn the second part of the dissertation, we analyzed the e�ectiveness of a local balancingstrategy in which each node repeatedly balances its load with its neighbors. Our mainresults in this part concern the static aspect of the problem, i.e., we assume that the totalworkload does not change with time. We showed in Chapter 4 that the local balancingapproach is worst-case optimal for all networks. In Chapter 5, we improved the precedingresult for the special case of ring networks by showing that the local balancing approachis optimal (up to an additive linear term) for all distributions on the ring. Our resultsfor static load balancing hold in asynchronous environments as well.Our work on static load balancing leaves a number of interesting open questions.Can we improve the bounds obtained in Chapter 4 for arbitrary networks? In particular,we would like to determine whether the multi-port algorithm balances any network Gwith any initial distribution b in O(OPT(b)) + f(G) steps for some f(G) independentof b, where OPT(b) is the time taken by an optimal centralized algorithm to balance bon G. Recall that such a result was derived in Chapter 5 for the case of ring networks.A less ambitious goal is to extend the techniques of Chapter 5 to obtain similar boundsfor regular topologies closely related to the ring, e.g., �xed-dimensional meshes.We concluded the second half of the dissertation by showing that the local bal-ancing algorithm is a good candidate for dynamic load balancing as well. Our result inthis area, however, is limited in scope. An interesting enhancement of the basic loadbalancing problem is the following scheduling problem that considers dynamic job ar-rival. Let G = (V;E) be an arbitrary network with arbitrary capacities on edges. Givenan on-line stream of jobs indexed by N, job j characterized by the triple (aj ; vj; tj) suchthat: (i) job j arrives at node vj at time aj, and (ii) tj is the execution time of job j(on all nodes), the job scheduling problem is to allocate the jobs such that the averageresponse time is minimized. This problem has been studied under a model in which edgecapacities are in�nite [7, 21, 46]. For our model, however, results to date are limited tospeci�c instances of the problem [71]. 178

Appendix A
Tails of Probability Distributions
Theorems A.1 and A.2 provide bounds on the tails of the binomial and hypergeometricdistributions, respectively.Theorem A.1 ([37]): Let X be a random variable drawn from B(n; p), i.e., X is thenumber of successes in n independent Bernoulli trials, where each trial succeeds withprobability p. Then, Pr[X � (1� ")np] � e�"2np=2; 0 � " � 1 (A.1)Pr[X � (1 + ")np] � e�"2np=3; 0 � " � 1 (A.2)Pr[X � (1 + ")np] � [e"(1 + ")�(1+")]np (A.3)Theorem A.2 ([70, 38]): Let S be a set of s balls, T be a subset of S, t = jT j, andp = t=s. Let s0 balls be chosen uniformly at random from S, and t0 be the random variablerepresenting the number of balls that are chosen from T . Then, for any real " � 0,Pr[t0 � (p+ ")s0] � e�2"2s0 ; andPr[t0 � (p� ")s0] � e�2"2s0 :Proof: By [38, 70], Pr[t0 � (p+ ")s0] � e�2"2s0 :179

The lower bound on t0 can be proved by using the upper bound on s0 � t0. Thus,Pr[t0 � (p� ")s0] = Pr[s0 � t0 � (1� p+ ")s0] � e�2"2s0 :

180

Appendix B
Martingales
The theory of martingales provides a useful tool for analyzing certain random processesthat are not completely independent. Our presentation in this appendix is based on thatof [8]. A martingale is a sequence X0; : : : ;Xm of random variables so that for 0 � i < m,E[Xi+1 j Xi] = Xi. We use Azuma's inequality to obtain bounds on large deviations formartingales.Theorem B.1 (Azuma's Inequality [8]): Let X0; : : : ;Xk be a martingale with jXi+1�Xij � 1, for all 0 � i < k. Then for real � > 0,Pr hjXk �X0j > �pki < 2e��2=2:

The following theorem identi�es certain conditions that are su�cient for applyingAzuma's inequality.Theorem B.2 ([8]): Let
 = AB denote the set of functions g : B ! A. Fix a gradation; = B0 � B1 � � � � � Bm = B: Let L be a function from
 to R. De�ne a martingaleX0; : : : ;Xm by settingXi(h) = E[L(g) j g(b) = h(b) for all b 2 Bi]:181

We say that L satis�es the Lipschitz condition if the following holds for all i: wheneverh and h0 di�er only on Bi+1�Bi, we have jL(h0)�L(h)j � 1. If L satis�es the Lipschitzcondition, then jXi+1(h)�Xi(h)j � 1 for all 0 � i < m and h 2
.

182

Appendix C
Technical Inequalities
In this appendix, we prove certain inequalities concerning functions f and g of Sec-tion 2.4.2 and function � of Section 4.4.C.1 Expected Number of Non-Singletons and Non-PairsRecall that f(m;n) and g(m;n) are de�ned as follows:f(m;n) = m 1� �1� 1n�m�1! , andg(m;n) = m 1� �1� 1n�m�1 � m� 1n �1� 1n�m�2! :Lemma C.1: For all integers m and n such that 3 � m � n, we havem2=3n � f(m) � m2=n:Proof: By de�nition, f(m) = m(1� (1� 1=n)m�1):Since (1� 1=n)m�1 � 1� (m� 1)=n,f(m) � m(1� 1 + (m� 1)=n)� m2=n:183

For the lower bound, since (1� 1=n)m�1 � 1� (m�11)=n+ (m�12)=n2,f(m) � m(1� 1 + �m� 11 �=n� �m� 12 �=n2)� (m(m� 1)=n)(1� (m� 2)=2n)� m(m� 1)=(2n)� m2=3n:In the penultimate derivation, we use (m� 2)=2n � 1=2, and in the last derivation, weuse (m� 1)=2 � m=3 for m � 3.Lemma C.2: For all integers m and n such that 6 � m � n, we havem3=12n2 � g(m) � m3=n2:Proof: By de�nition,g(m) = m(1� (1� 1=n)m�1 � ((m� 1)=n)(1� 1=n)m�2:Since (1� 1=n)m�1 � 1� (m� 1)=n and (1� 1=n)m�2 � 1� (m� 2)=n ,g(m) � m(1� 1 + �m� 11 �=n� (m� 1)=n+ (m� 1)�m� 21 �=n2)� m3=n2:For the lower bound,g(m) � m(1� 1 + �m� 11 �=n� �m� 12 �=n2 + �m� 13 �=n3 � �m� 14 �=n4�(m� 1)=n+ (m� 1)�m� 21 �=n2 � (m� 1)�m� 22 �=n3+(m� 1)�m� 23 �=n4 � (m� 1)�m� 24 �=n5)� m((m� 1)(m� 2)=2n2 � (m� 1)(m� 2)(m� 3)=3n3+(m� 1)(m� 2)(m� 3)(m� 4)=24n4 � (m� 1)�m� 24 �=n5)� (m(m� 1)(m� 2)=n2)(1=2� (m� 3)=3n)� m(m� 1)(m� 2)=6n2� m3=12n2: 184

In the last derivation we use (m� 1)(m� 2) � m2=2 for m � 6.Lemma C.3: If n and m are integers such that 2pn � m � n, then for all real x � 0,f(m(1 + x)) � (1 + x)2f(m):Proof: By the de�nition of f ,f(m(1 + x)) = m(1 + x)(1� (1� 1=n)m(1+x)�1):We establish the desired inequality by proving that (1� (1�1=n)m�1+mx) � (1+x)(1�(1�1=n)m�1), which is equivalent to showing that (1�1=n)m�1+mx � (1�1=n)m�1(1+x)� x. Since (1� 1=n)mx � (1�mx=n),(1� 1=n)m�1+mx � (1� 1=n)m�1(1�mx=n)= (1� 1=n)m�1(1 + x)� x(1 +m=n)(1� 1=n)m�1� (1� 1=n)m�1(1 + x)� x:The last derivation follows from the observation that for m � 2pn, (1 +m=n) � (1 �1=n)1�m.Corollary C.3.1: If n and m are integers and x is real such that 0 � x < 1 and2pn � m(1� x) � m � n, then:f(m(1 + x)) � (1 + x)2f(m); andf(m(1� x)) � (1� x)2f(m):Proof: The �rst inequality follows directly from Lemma C.3. The second inequality isproved by applying Lemma C.3 substituting (m(1� x); 1=(1� x)� 1) for (m;x).Lemma C.4: If n and m are integers such that n � 9 and 10pn � m � n, then for realx � 0, g(m(1 + x)) � (1 + x)4g(m)185

Proof: By the de�nition of g,g(m(1 + x)) = m(1 + x)(1� (1� 1=n)m(1+x)�1 � ((m(1 + x)� 1)=n)(1� 1=n)m(1+x)�2):We establish the desired inequality by showing that (1 � (1 � 1=n)m(1+x)�1 �((m(1 + x) � 1)=n)(1 � 1=n)m(1+x)�2) � (1 + x)3(1� (1 � 1=n)m�1 � ((m � 1)=n)(1 �1=n)m�2). This is equivalent to showing that (1�1=n)m�1+mx+((m(1+x)�1)=n)(1�1=n)m�2+mx � (1+x)3(1�1=n)m�1+(1+x)3((m�1)=n)(1�1=n)m�2�x3�3x2�3x.(1� 1=n)m�1+mx + ((m(1 + x)� 1)=n)(1� 1=n)m�2+mx� (1� 1=n)m�1(1�mx=n) + ((m(1 + x)� 1)=n)(1� 1=n)m�2�((mx(m(1 + x)� 1))=n2)(1� 1=n)m�2� (1� 1=n)m�1(1�mx=n) + ((m� 1)(1 + x)=n)(1� 1=n)m�2+(x=n)(1� 1=n)m�2 � ((mx(m(1 + x)� 1))=n2)(1� 1=n)m�2= (1 + x)3(1� 1=n)m�1 � (x3 + 3x2 + 3x+mx=n)(1� 1=n)m�1+(1 + x)3((m� 1)=n)(1� 1=n)m�2 � (x3 + 3x2 + 2x)((m� 1)=n)(1� 1=n)m�2+(x=n�m2x=n2 �m2x2=n2 +mx=n2)(1� 1=n)m�2� (1 + x)3(1� 1=n)m�1 � (x3 + 3x2 + 3x+mx=n)(1� 1=n)m�2+(1 + x)3((m� 1)=n)(1� 1=n)m�2 � (x3 + 3x2 + 2x)((m� 1)=n)(1� 1=n)m�2+(x=n�m2x=n2 �m2x2=n2 +mx=n2)(1� 1=n)m�2� (1 + x)3(1� 1=n)m�1 + (1 + x)3((m� 1)=n)(1� 1=n)m�2�(1� 1=n)m�2(x3 + 3x2 + 3x+mx=n+mx3=n� x3=n+3mx2=n� 3x2=n+ 2mx=n� 2x=n� x=n+m2x=n2 +m2x2=n2 �mx=n2)� (1 + x)3(1� 1=n)m�1 + (1 + x)3((m� 1)=n)(1� 1=n)m�2�(1� 1=n)m�2(x3(1 +m=n� 1=n)+3x2(1 +m=n� 1=n+m2=3n2) + 3x(1 +m=n� 1=n+m2=3n2 �m=3n2))� (1 + x)3(1� 1=n)m�1 + (1 + x)3((m� 1)=n)(1� 1=n)m�2 � (x3 + 3x2 + 3x):186

The last derivation follows from the inequalities (1 + (m � 1)=n + m2=3n2) � (1 �1=n)�(m�2) for n � 9 and 10pn � m � n.Corollary C.4.1: If n and m are integers and x is real such that 0 � x < 1, n � 9, and10pn � m(1� x) � m � n, then:g(m(1 + x)) � (1 + x)4g(m); andg(m(1� x)) � (1� x)4g(m):Proof: The �rst inequality follows directly from Lemma C.4. The second inequality isproved by applying Lemma C.4 substituting (m(1� x); 1=(1� x)� 1) for (m;x).C.2 The Potential Function of Section 4.4The function � is de�ned in Section 4.4 as follows:�(x) = 8<: 0 if x � 24jd� 11d,(1 + �)x otherwise,where � equals �=(cd2). For the following we set c large enough so that (1+�)12d � 3=2.Lemma C.5: For any integer x, if �(x) > 0, then �(x+ 12d) � 3�(x)=2.Proof: Since �(x) > 0, we have �(x+ 12d) = (1 + �)12d�(x) � 3�(x)=2. (Note that if�(x) = 0 then �(x+ 12d) may not equal (1 + �)12d�(x).)Lemma C.6: For any integer x we havemaxf�(24jd); �(x� 12d)g � 2�(x)=3Proof: If �(x � 12d) > 0, then 2�(x)=3 � �(x � 12d) by Lemma C.5. Otherwise,x�12d � 24jd�11d, which implies that x � 24jd+d. Therefore, �(x) � �(24jd+d) ��(24jd)(1 + �)d � 3�(24jd)=2. 187

Lemma C.7: For any integers x and y, if �(x) > 0 and x � y � 11d, then we have�(x)� �(y) � 2(�(x+ 11d)� �(y))=5.Proof: 2(�(x+ 11d)� �(y))=5 = 2(�(x+ 11d)� �(x))=5+2(�(x)� �(y))=5� 2(1 + �)11d(�(x)� �(x� 11d))=5+2(�(x)� �(y))=5� 2(1 + �)11d(�(x)� �(y))=5+2(�(x)� �(y))=5� �(x)� �(y):(In the second equation we use: x� 11d � y. In the last equation we use: (1 + �)11d �3=2.)

188

Appendix D
Proof of Lemma 4.7
This appendix contains a proof of Lemma 4.7 that is stated in Section 4.4. We begin byde�ning a notion of goodness of the tokens. Initially, all tokens are unmarked. After anystep t, for every token p that is moved along an edge, p is marked good if ht�1(p)�ht(p) �6d; otherwise, p is marked bad . The marking of tokens that do not move is unchanged.Lemma D.1: For any two bad tokens p1 and p2 present at any node v at the start of anystep t, if p1 and p2 are last sent to v by the same neighbor u of v, then jht(p1)�ht(p2)j >4d.Proof: Let t1 (resp., t2) be the step during which p1 (resp., p2) is last sent to v.Without loss of generality, we assume t1 < t2 < t. Thus we have ht(p1) < ht(p2).Since u's estimate of the number of tokens at v is updated in step t1, we have eut1(v) ��+ht1(p1)�d. (Note that eut1(v) is u's estimate of the number of tokens at v after step t1.)Since p1 remains at v during the interval [t1; t2), we �nd that eut0(v) � �+ht0(p1)� d forevery step t0 in [t1; t2). In particular, we have eut2�1(v) � �+ht2�1(p1)�d. Since u sendsp2 to v in step t2, ht2�1(p2) � ht2�1(u)�d � eut2�1(v)��+11d � ht2�1(p1)+10d. Sincep2 is bad, we also have ht2(p2) > ht2�1(p2)�6d � ht2�1(p1)+4d. Since ht(p2) = ht2(p2)and ht(p1) = ht2�1(p1), the lemma follows.189

Corollary D.1.1: At any time, for any node u and integer i > 0, there are at most dbad tokens with heights in (i; i+ 4d].Proof of Lemma 4.7: Consider an arbitrary step t of the algorithm. For every tokenp transferred from u to v in step t, we assign some credit to every edge adjacent tou or v. Speci�cally, if p is marked good after step t we assign an outgoing credit of9(�(ht�1(p))� �(ht(p)))=(20d) units to every edge adjacent to u and an incoming creditof the same amount to every edge adjacent to v. If p is marked bad we assign an outgoingcredit of (�(ht(p) + d)� �(ht(p)))=(20d) + (�(ht�1(p))� �(ht�1(p)� d)) units to everyedge adjacent to u and an incoming credit of the same amount to every edge adjacentto v. Also, for each edge (u; v), we assign an initial credit of 2maxf�(24jd); (�(h0(u)�d)+�(h0(v)�d))g units at the start of the analysis. The total initial credit I is boundedas follows: I � 2�n2��(24jd) + X(u;v)2E 2(�(h0(u)� d) + �(h0(v)� d))� n2�(24jd) +Xu2V X0�`<d 2�(h0(u)� `)� n2�(24jd) + 2�0:(The �rst equation follows from the fact that the maximum of two quantities is at mostthe sum of the particular quantities. We also note that each undirected edge (u; v)appears at most once in the summation. For the second equation, we note that eachnode has at most d edges. Hence for any node u, the term 2�(h0(u) � d) appears inat most d terms of the sum. We complete the derivation of the second equation byobserving that �(h0(u)� `) is at least �(h0(u)� d) for 0 � ` < d. The third equation isobtained by the fact that P0�`<d �(h0(u)� `) is at most �(u).) The above bound on Icorresponds to the negative term in Equation (4.4).We now show that using the above accounting method, we can account for theamortized potential drop of (�(ht�1(u)�d)��(ht�1(v)+d))=50 units at step t for everyedge (u; v) 2 Et. To accomplish this, for every live edge (u; v) ((u; v) not necessarily in190

Et), we consider three cases: (i) a token p sent from u to v is marked good, (ii) a tokenp sent from u to v is marked bad, (iii) no token is sent from u to v.We �rst consider case (i). When a token p is marked good after being sent along(u; v), we use the actual potential drop of p to pay for the amortized drop D1 associatedwith (u; v) as well as the total credit D2 assigned to the edges adjacent to u or v due tothe transfer of a good token.D1 +D2 � (�(ht�1(u)� d)� �(ht�1(v) + d))=50 + 9(�(ht�1(p))� �(ht(p))))=10� (�(ht�1(p))� �(ht(p)))=50 + 9(�(ht�1(p))� �(ht(p)))=10� �(ht�1(p))� �(ht(p)):(The �rst term in the right-hand side of the �rst equation is the amortized potentialdrop. The second term is an upper bound on D2 since the number of edges adjacent toeither u or v is at most 2d. The second equation follows from the fact that ht�1(p) is atleast ht�1(u)� d and ht(p) is at most ht(u) + d.)We now consider case (ii). In this case we need to account for: (1) if ht(p) >ht�1(p), an amount equal to the potential increase of D1 = �(ht(p))� �(ht�1(p)) units,and (2) a credit of at most (�(ht(p)+d)��(ht(p)))=10+(�(ht�1(p))��(ht�1(p)�d))=10units. We pay for (�(ht�1(p)) � �(ht(p)))=10 units of the credit using the potentialchange. The remainder of the credit we need to account for is at most the sum ofD2 = (�(ht(p) + d)� �(ht(p)))=10 and D3 = (�(ht(p))� �(ht�1(p)� d))=10. (Note thatthis is true regardless of whether the potential of p decreases in step t.)We have two subcases, depending on whether t is the �rst step (u; v) is live(subcase (a)) or not (subcase (b)). In subcase (a), if h0(u) � ht(p)� d, the initial creditC0 associated with (u; v) is at least 2maxf�(24jd); �(ht(p)�2d)g. Since �(ht(p)�2d) ��(ht(p)�12d), it follows from Lemma C.6 that 3C0=4 � �(ht(p)) � D1. Since �(ht(p)�2d) � �(ht(p)�11d), C0=4 � �(ht(p)+d)=3 � �(ht(p)+d)=10+�(ht(p))=10 � D2+D3.Therefore, we have C0 � D1 +D2 +D3.We now consider subcase (a) under the assumption that h0(v) � ht(p) � d. Inorder to do the accounting, we use part of the incoming credit associated with the edge191

(u; v) due to the set X of good tokens of v with heights in the interval (h0(v); ht(p)�d].(Note that each token in X is marked and thus, has contributed incoming credit to alledges adjacent to v.) Since each token x in X is good, the height of the token beforethe transfer to node v was at least ht(q) + 6d. Therefore, the incoming credit assignedto (u; v) by a token x in X is at least 9(�(ht(q) + 6d)� �(ht(q)))=(20d) units. For eachtoken x in X, we use cx = 8(�(ht(q) + 6d) � �(ht(q)))=(20d) units of this incomingcredit. Let C1 denote Px2X cx. We obtain the following lower bound C1. By invokingCorollary D.1.1, we obtain:C1 � 820d X1�i�bht(p)�d�h0(v)4d c X1�k�3d (�(ht(p)� d� 4id+ k + 6d)� �(ht(p)� 4id+ k))� 820d X1�k�3d X1�i�bht(p)�d�h0(v)4d c (�(ht(p)� d� 4id+ k + 6d)� �(ht(p)� 4id+ k))� 820d X1�k�3d(�(ht(p)� d� 4d+ k + 6d)� �(ht(p)� 4dbht(p)� d� h0(v)4d c+ k))� 820d X1�k�3d (�(ht(p) + d)� �(h0(v) + 8d))= 6(�(ht(p) + d)� �(h0(v) + 8d))=5:(In the �rst equation we partition the interval (h0(v); ht(p) � d] into subintervals of 4dconsecutive integers starting from ht(p) � d. The last subinterval may have fewer than4d integers; if so, we ignore the last subinterval in the sum. The second summation inthe �rst equation is a lower bound on the sum of cx over each good token x in eachsubinterval. To obtain the second summation, we invoke Corollary D.1.1 which impliesthat there are at least 3d good tokens in every subinterval of 4d tokens. The secondequation is obtained by interchanging the order of sums. For the third equation, we usethe fact that �(ht(p)� d� 4(i� 1)d+ k + 6d) � �(ht(p)� 4id+ k) and then note thatthe sum telescopes. For the fourth equation, note that: (i) the index k is at least 0 andat most 3d, and (ii) ht(p)� 4dbht(p)�d�h0(v)4d c � h0(v) + 5d.)Since p is marked bad after step t, we have ht(p) > ht�1(p)� 6d. Therefore,C0 + C1 � 2maxf�(24jd); �(h0(v)� d)g+ 6(�(ht(p) + d)� �(h0(v) + 8d))=5192

� 6�(ht(p) + d)=5� �(ht(p))� �(ht�1(p)) + (�(ht(p) + d)� �(ht(p)))=10+(�(ht(p))� �(ht�1(p)� d))=10� D1 +D2 +D3:(The �rst equation states the lower bounds on C0 and C1 obtained above. For thesecond equation, we invoke Lemma C.6 as follows: 2maxf�(24jd); �(h0(v) � d)g �4�(h0(v)+11d)=3 � 6�(h0(v)+8d)=5. The third equation is obtained from the followingthree observations: (i) �(ht(p) + d) � �(ht(p)) � �(ht�1(p)), (ii) �(ht(p) + d)=10 �(�(ht(p)+d)��(ht(p)))=10, and (iii) �(ht(p)+d)=10 � (�(ht(p))��(ht�1(p)�d))=10.)We use a similar argument as above to handle subcase (b) where t is not the �rststep in which (u; v) is live. The set X is the set of good tokens of v with heights in theinterval (eut�1(v)� �; ht(p)� d]. Let cx and C1 be de�ned as in subcase (a). That is, cxequals 8(�(ht(x) + 6d)� �(ht(x)))=(20d) units of the incoming credit assigned to (u; v)by a token x in X, and C1 equalsPx2X cx. We will show that 11C1=12 � D1+D3, andC1=12 � D2, and hence obtain that C1 � D1 +D2 +D3.We �rst show that 11C1=12 � D1+D3. If ht(p) � ht�1(p)� d, then D1, and D3are both nonpositive and hence the desired claim holds trivially. We now assume thatht(p) > ht�1(p)�d. Let y denote eut�1(v)� �+8d. We observe that since u sent a tokento v during step t, y = eut�1(v)� �+ 8d � ht�1(u)� 4d � ht�1(p)� 3d. Since p is a badtoken, we have y � ht�1(p)� 3d < ht(p)� 2d. As in subcase (a), we divide the interval(eut�1(v)� �; ht(p)� d] into subintervals consisting of 4d consecutive integers. Note thateut�1(v)� � � ht(p)� 11d, and hence the number of subintervals is at least 1. We obtainthe following lower bound on 11C1=12.11C1=12 � (11=12) � 6(�(ht(p) + d)� �(y))=5� 11(�(ht(p) + d)� �(ht�1(p)� 2d))=10� (�(ht(p))� �(ht�1(p))) + (�(ht(p))� �(ht�1(p)� d))=10= D1 +D3 193

(The �rst equation is obtained in the same manner as the upper bound on C1 in sub-case (a). While the interval considered in subcase (a) is (h0(v); ht(p) � d], we considerhere the interval (eut�1(v)��; ht(p)�d] = [y�8d; ht(p)�d]. Hence, the term �(h0(v)+8d)obtained in the lower bound on C1 in subcase (a) is replaced by �(y) above. The secondequation is obtained by the upper bound on y.)We now show that C1=12 � D2. Since a token is sent by u to v in step t,eut�1(u)�� � ht�1(u)�12d � ht�1(p)�11d. Moreover, since p is a bad token, ht�1(p) �ht(p)� 6d. Therefore, eut�1(u)� � � ht(p)� 5d. It follows that (ht(p)� 5d; ht(p)� d] isa subinterval of (eut�1(u)� �; ht(p)� d]. Hence, C1 can be lower bounded by adding cxover all good tokens x whose height is in (ht(p)� 5d; ht(p)� d]. By Corollary D.1.1, atleast 3d of the tokens in [ht(p)� 5d; ht(p)� d] are good. We thus obtain:C1=12 � (3d=12) � 8(�(ht(p) + d)� �(ht(p)� d))=(20d)= (�(ht(p) + d)� �(ht(p))=10� D2:(For the �rst equation, note that cx = 8(�(ht(x) + 6d)� �(ht(x)))=(20d) � 8(�(ht(p) +d) � �(ht(p) � d))=(20d), for ht(x) in [ht(p) � 5d; ht(p) � d]. The last equation followsfrom the de�nition of D2.)To complete the proof for case (ii), we show that for any token x of v, anyincoming credit assigned by x to edge (u; v) that is used at step t for case (ii) is not usedagain for case (ii). To prove this, we note that for any x inX, for every further step t0 > tuntil x is transferred by u, we have ht0(x) � eut0�1(v)� �. While establishing case (ii) forstep t, we only use the incoming credit assigned by tokens in (eut0�1(v) � �; ht0(p) � d].Hence the incoming credit assigned by x to edges adjacent to u that is used at step twill never be used again.We need to consider case (iii) only under the assumption that (u; v) 2 Et, i.e.,(u; v) is live in step t. In this case we account forD = (�(ht�1(u)�d)��(ht�1(v)+d))=50units of potential. Again we consider two subcases depending on whether t is the laststep in which (u; v) is live (subcase (a)) or not (subcase (b)). We �rst consider subcase194

(a). If h0(u) � ht�1(u) � 12d, then we use C0 = 2maxf�(24jd); �(h0(u) � d)g units ofthe initial credit associated with (u; v). Since ht�1(u) � d � h0(u)� d + 12d, it followsfrom Lemma C.6 that C0 � 4�(ht�1(u)� d)=3 � �(ht�1(u)� d)=50 � D.We now consider subcase (a) of case (iii) under the assumption that h0(u) <ht�1(u)�12d. In addition to C0, we also use part of the incoming credit associated withthe set of tokens Y = fy : y is a token of u and h0(u) < ht(y) � ht�1(u)g. Speci�cally,for every token y in Y , we use (�(ht(y) + d)� �(ht(y)))=(20d) units of incoming creditthat is assigned to (u; v) by y. Note that since ht(y) > h0(u), token y has moved andhence has assigned some incoming credit to (u; v). If y is good, this credit is at least9(�(ht(y) + 6d) � �(ht(y)))=(20d) units; otherwise, this credit is at least (�(ht(y) +d) � �(ht(y)))=(20d). Moreover, if y is a good token, then at most 8(�(ht(y) + 6d) ��(ht(y)))=(20d) units of incoming credit were used in the analysis of case (ii). If y is abad token, none of the incoming credit was used in the analysis of case (ii). In eithercase, at least (�(ht(y) + d)� �(ht(y)))=(20d) units of incoming credit still remain. Letthis credit be denoted C1. We obtain the following lower bound on C0 + C1.C0 + C1 � C0 + Xh0(u)<k�ht�1(u)(�(k + d)� �(k))=(20d)= C0 + 120d X1�i�d (�(ht�1(u) + i)� �(h0(u) + i))� C0 + (�(ht�1(u))� �(h0(u) + d))=20� �(ht�1(u))=20� D:(The second equation holds since the sum in the �rst equation can be expressed as asum of d telescoping sums. For the third equation we invoke Lemma C.6 and obtainthat C0 � 2�(h0(u) + 11d)=3 � �(h0(u) + d)=20.)We now consider subcase (b) of (iii). Recall that by the de�nition of Et, u isin S>j at the start of step t. Therefore, ht�1(u) � 24(j + 1)d � 12d � 24jd + 12d.Since no token was sent along (u; v) in step t, we have eut�1(v) � � > ht�1(u) � 12d(� 24jd). By the de�nition of Et, we also have ht�1(u) � ht�1(v) + 24d. It follows195

that eut�1(v) � � > ht�1(v) + 12d. Subsequent to the last step in which (u; v) was live,at least eut�1(v) � � � ht�1(v) tokens have left v. We use the outgoing credit assignedto (u; v) due to these token transmissions. Consider a token x that is transmitted byv in step t0. If x is marked good after the step, then the outgoing credit assigned byx to (u; v) is at least 9(�(ht0�1(p)) � �(ht0(p)))=(20d) � 9(�(ht0�1(p)) � �(ht0�1(p) �6d))=(20d) units. Otherwise, the outgoing credit assigned by x to (u; v) is at least(�(ht0�1(p))��(ht0�1(p)�d))=(20d) units. In either case, the outgoing credit is at least(�(ht0�1(p)) � �(ht0�1(p) � d))=(20d) units. We thus obtain the following lower boundon the total outgoing credit C2 assigned to (u; v) by the at least eut�1(v)� � � ht�1(v)tokens. C2 � Xht�1(v)<k�eut�1(v)��(�(k)� �(k � d))=(20d)= 120d X1�i�d(�(eut�1(v)� �� d+ i)� �(ht�1(v)� d+ i))� (�(eut�1(v)� �� d)� �(ht�1(v)))=20� (�(eut�1(v)� �+ 11d)� �(ht�1(v) + d))=50� (�(ht�1(u)� d)� �(ht�1(v) + d))=50= D:(The second equation holds since the sum in the �rst equation can be expressed as a sumof d telescoping sums. For the third and fourth equations, we �rst note that since notoken was sent by u to v in step t, we have eut�1(v)� � > ht�1(u)� 12d � 24jd� d. Thethird equation now follows from Lemma C.7 and the equation �(eut�1(v) � � � d) > 0.The fourth equation follows directly from the lower bound on eut�1(v)� �.)We note that the outgoing credit assigned to edge (u; v) in the above analysis ofcase (iii) is used at most once in case (iii). To prove this, we observe that after step t,the value of eu(v) is updated by u to ht�1(v) + �. Therefore, if case (iii) of the analysissubsequently uses any outgoing credit assigned by a token x that leaves v and whoseheight in v is in (ht�1(v); eut�1(v)], then x must have arrived at v after step t. Hence, the196

outgoing credit assigned by the eut�1(v) � ht�1(v) tokens that are used in the analysisfor step t is not used again for a later step.

197

Bibliography
[1] N. Abramson. The ALOHA system. In N. Abramson and F. Kuo, editors,Computer-Communication Networks. Prentice-Hall, Englewood Cli�s, NJ, 1973.[2] M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel ran-domized load balancing. In Proceedings of the 27th Annual ACM Symposium onTheory of Computing, pages 238{247, May 1995.[3] M. Adler, P. B. Gibbons, Y. Matias, and V. Ramachandran. Modeling parallelbandwidth: Local vs. global restrictions. In Proceedings of the 9th Annual ACMSymposium on Parallel Algorithms and Architectures, pages 94{105, June 1997.[4] Y. Afek, E. Gafni, and A. Rosen. The slide mechanism with applications to dy-namic networks. In Proceedings of the 11th Annual ACM Symposium on Principlesof Distributed Computing, pages 35{46, August 1992.[5] W. Aiello, B. Awerbuch, B. Maggs, and S. Rao. Approximate load balancing ondynamic and asynchronous networks. In Proceedings of the 25th Annual ACMSymposium on Theory of Computing, pages 632{641, May 1993.[6] M. Ajtai, J. Koml�os, and E. Szemer�edi. Sorting in c logn parallel steps. Combi-natorica, 3:1{19, 1983.[7] N. Alon, G. Kalai, M. Ricklin, and L. Stockmeyer. Lower bounds on the com-petitive ratio for mobile user tracking and distributed job scheduling. TheoreticalComputer Science, 130:175{201, 1994.198

[8] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York, NY, 1991.[9] H. Alt, T. Hagerup, K. Mehlhorn, and F. P. Preparata. Deterministic simulation ofidealized parallel computers on more realistic ones. SIAM Journal on Computing,16(5):808{835, 1987.[10] R. J. Anderson and G. L. Miller. Optical communication for pointer based algo-rithms. Technical Report CRI{88{14, Computer Science Department, Universityof Southern California, 1988.[11] T. E. Anderson, M. D. Dahlin, J. N. Neefe, D. A. Patterson, D. S. Rosselli, andR. Y. Wang. Serverless network �le systems. In Proceedings of the 15th Symposiumon Operating Systems Principles, pages 109{126, 1995.[12] M. Andrews, B. Awerbuch, A. Fern�andez, J. Kleinberg, T. Leighton, and Z. Liu.Universal stability results for greedy contention-resolution protocols. In Proceed-ings of the 37th Annual IEEE Symposium on Foundations of Computer Science,pages 380{389, October 1996.[13] E. Arjomandi, M. J. Fischer, and N. A. Lynch. E�ciency of synchronous versusasynchronous distributed systems. Journal of the ACM, 30:449{456, 1983.[14] A. Arora and M. Gouda. Load balancing: An exercise in constrained convergence.In J-M. H�elary and M. Raynal, editors, Proceedings of the 9th International Work-shop on Distributed Algorithms, Lecture Notes in Computer Science, volume 972,pages 183{197. Springer-Verlag, 1995.[15] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM,41:1020{1048, 1994.[16] H. Attiya and M. Mavronicolas. E�ciency of semi-synchronous versus asyn-chronous networks. Mathematical Systems Theory, 27:547{571, 1994.199

[17] Y. Aumann, Z. Kedem, K. V. Palem, and M. O. Rabin. Highly e�cient asyn-chronous execution of large-grained parallel programs. In Proceedings of the 34thAnnual IEEE Symposium on Foundations of Computer Science, pages 271{280,November 1993.[18] B. Awerbuch. Complexity of network synchronization. Journal of the ACM,32:804{823, 1985.[19] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networks.In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,pages 574{583, January 1996.[20] B. Awerbuch, L. Cowen, and M. Smith. E�cient asynchronous distributed symme-try breaking. In Proceedings of the 26th Annual ACM Symposium on the Theoryof Computing, pages 214{223, 1994.[21] B. Awerbuch, S. Kutten, and D. Peleg. Competitive distributed job scheduling. InProceedings of the 24th Annual ACM Symposium on Theory of Computing, pages571{580, May 1992.[22] B. Awerbuch and F. T. Leighton. Improved approximation algorithms for themulti-commodity ow problem and local competitive routing in dynamic networks.In Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages487{496, May 1994.[23] B. Awerbuch and T. Leighton. A simple local-control approximation algorithmfor multi-commodity ow. In Proceedings of the 34th Annual IEEE Symposium onFoundations of Computer Science, pages 459{468, October 1993.[24] B. Awerbuch, Y. Mansour, and N. Shavit. End-to-end communication with polyno-mial overhead. In Proceedings of the 30th Annual IEEE Symposium on Foundationsof Computer Science, pages 358{363, October 1989.200

[25] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. InProceedings of the 26th Annual ACM Symposium on Theory of Computing, pages593{602, May 1994.[26] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed datamanagement. Journal of Computer and System Sciences, 51:341{358, 1995.[27] H. Bast and T. Hagerup. Fast parallel space allocation, estimation and integersorting. Information and Computation, 123:72{110, 1995.[28] E. Berlekamp and L. Welch. Error correction of algebraic block codes. U.S. PatentNumber 4,633,470.[29] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, Englewood Cli�s,New Jersey, 1992.[30] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Nu-merical Methods. Prentice-Hall, Englewood Cli�s, NJ, 1989.[31] M. A. Blaze. Caching in large-scale distributed �le systems. Technical Report TR-397-92, Department of Computer Science, Princeton University, January 1993.PhD Thesis.[32] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Ad-versarial queueing theory. In Proceedings of the 28th Annual ACM Symposium onTheory of Computing, pages 376{385, May 1996.[33] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz.The Harvest information discovery and access system. In Proceedings of the 2ndInternational World Wide Web Conference, pages 763{771, October 1994.[34] A. Broder, A. M. Frieze, E. Shamir, and E. Upfal. Near-perfect token distribution.Random Structures and Algorithms, pages 559{572, 5 1994.201

[35] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal ofComputer and System Sciences, 18:143{154, 1979.[36] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. Ahierarchical Internet object cache. In Proceedings of the USENIX 1996 TechnicalConference, pages 22{26, January 1996.[37] H. Cherno�. A measure of the asymptotic e�ciency for tests of a hypothesis basedon the sum of observations. Annals of Mathematical Statistics, 23:493{509, 1952.[38] V. Chv�atal. The tail of the hypergeometric distribution. Discrete Mathematics,25:285{287, 1979.[39] E. Cohen. On the convergence span of greedy load balancing. Information Pro-cessing Letters, 52:181{182, 1994.[40] G. Cornu�ejols, G. L. Nemhauser, and L. A. Wolsey. The uncapacitated facilitylocation problem. In P. Mirchandani and R. Francis, editors, Discrete LocationTheory, pages 119{171. John Wiley and Sons, Inc., New York, New York, 1990.[41] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos,R. Subramonian, and T. von Eicken. LogP: Towards a realistic model of parallelcomputation. In Proceedings of the 4th ACM SIGPLAN Symposium on Principlesand Practice of Parallel Programming, pages 1{12, May 1993.[42] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors.Journal of Parallel and Distributed Computing, 2:279{301, 1989.[43] A. Czumaj, Meyer auf der Heide F., and V. Stemann. Shared memory simula-tions with triple-logarithmic delay. In Proceedings of the 3rd Annual EuropeanSymposium on Algorithms, pages 46{59, September 1995.[44] A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Improved optimal sharedmemory simulations, and the power of recon�guration. In Proceedings of the 3rdIsrael Symposium on Theory of Computing and Systems, pages 11{19, 1995.202

[45] S. Deering and D. Cheriton. Multicast routing in datagram internetworks andextended LANs. ACM Transactions on Computer Systems, pages 85{111, 1990.[46] X. Deng, H. N. Liu, L. Long, and B. Xiao. Competitive analysis of network loadbalancing. Journal of Parallel and Distributed Computing, 40:162{172, 1997.[47] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, e�cient shared memorysimulations. In Proceedings of the 5th Annual ACM Symposium on Parallel Algo-rithms and Architectures, pages 110{119, June 1993.[48] D. Eager, D. Lazowska, and J. Zahorjan. Adaptive load sharing in homogeneousdistributed systems. IEEE Transactions on Software Engineering, 12:662{675,1986.[49] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings ofthe 10th Annual ACM Symposium on Theory of Computing, pages 114{118, May1978.[50] J. E. Gehrke, C. G. Plaxton, and R. Rajaraman. Rapid convergence of a localload balancing algorithm for asynchronous rings. In Proceedings of the 11th Inter-national Workshop on Distributed Algorithms, September 1997. To appear.[51] M. Ger�eb-Graus and T. Tsantilas. E�cient optical communication in parallel com-puters. In Proceedings of the 4th Annual ACM Symposium on Parallel Algorithmsand Architectures, pages 41{48, June 1992.[52] B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton, R. Ra-jaraman, A. W. Richa, R. E. Tarjan, and D. Zuckerman. Tight analyses of two localload balancing algorithms. In Proceedings of the 27th Annual ACM Symposium onTheory of Computing, pages 548{558, May 1995.[53] B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton, R. Ra-jaraman, A. W. Richa, R. E. Tarjan, and D. Zuckerman. Tight analyses of two local203

load balancing algorithms. In Proceedings of the 27th Annual ACM Symposium onTheory of Computing, pages 548{558, May 1995.[54] B. Ghosh and S. Muthukrishnan. Dynamic load balancing in parallel and dis-tributed networks by random matchings. In Proceedings of the 6th Annual ACMSymposium on Parallel Algorithms and Architectures, pages 226{235, June 1994.[55] P. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Accountingfor contention in parallel algorithms. In Proceedings of the 5th Annual ACM-SIAMSymposium on Discrete Algorithms, pages 638{648, January 1994. To appear inSIAM Journal on Computing.[56] P. Gibbons, Y. Matias, and V. Ramachandran. The queue-read queue-write asyn-chronous PRAM model. In Proceedings of Euro-Par'96, Lecture Notes in Com-puter Science, pages 279{292. Springer-Verlag, August 1996. To appear in thespecial issue of Theoretical Computer Science on Parallel Computing.[57] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention par-allel algorithms. In Proceedings of the 6th Annual ACM Symposium on ParallelAlgorithms and Architectures, pages 236{247, June 1994. To appear in the specialissue of Theoretical Computer Science on Parallel Computing.[58] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory modelserve as a bridging model for parallel computation? In Proceedings of the 9thAnnual ACM Symposium on Parallel Algorithms and Architectures, pages 72{83,June 1997.[59] B. Goldberg and P. Hudak. Implementing functional programs on a hypercubemultiprocessor. In Proceedings of the 4th Conference on Hypercubes, ConcurrentComputers and Applications, pages 489{503, 1989.[60] L. A. Goldberg and M. Jerrum. A sub-logarithmic communication algorithm forthe completely connected optical communication parallel computer. Technical Re-204

port ECS{LFCS{92{234, Laboratory for Foundations of Computer Science, De-partment of Computer Science, University of Edinburgh, September 1992.[61] L. A. Goldberg, M. Jerrum, F. T. Leighton, and S. B. Rao. A doubly logarith-mic communication algorithm for the completely connected optical communicationparallel computer. In Proceedings of the 5th Annual ACM Symposium on ParallelAlgorithms and Architectures, pages 300{309, June 1993.[62] L. A. Goldberg, M. Jerrum, and P. D. Mackenzie. An
(plog logn) lower boundfor routing on optical networks. In Proceedings of the 6th Annual ACM Symposiumon Parallel Algorithms and Architectures, pages 147{156, June 1994.[63] L. A. Goldberg, Y. Matias, and S. B. Rao. An optical simulation of shared memory.In Proceedings of the 6th Annual ACM Symposium on Parallel Algorithms andArchitectures, pages 257{267, June 1994.[64] A. G. Greenberg, P. Flajolet, and R. E. Ladner. Estimating the multiplicities ofconicts to speed their resolution in multiple access channels. Journal of the ACM,34:289{325, 1987.[65] A. G. Greenberg and S. Winograd. A lower bound on the time needed in the worstcase to resolve conicts deterministically in multiple access channels. Journal ofthe ACM, 32:589{596, 1985.[66] J. D. Guyton and M. F. Schwartz. Locating nearby copies of replicated Internetservers. In Proceedings of ACM SIGCOMM, pages 288{298, 1995.[67] J. S. Gwertzman and M. Seltzer. The case for geographical push-caching. InProceedings of the 5th Workshop on Hot Topics in Operating Systems, pages 51{57, May 1995.[68] A. Heirich and S. Taylor. A parabolic theory of load balance. Technical Re-port Caltech-CS-TR-93-22, Caltech Scalable Concurrent Computation Lab, March1993. 205

[69] K. Herley. A note on the token distribution problem. Information ProcessingLetters, 28:329{334, 1991.[70] W. Hoe�ding. Probability inequalities for sums of bounded random variables.Journal of the American Statistical Association, 58:13{30, 1963.[71] B. Hoppe and �E. Tardos. The quickest transshipment problem. In Proceedings ofthe 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 512{521,January 1996.[72] J. J�aj�a and K. W. Ryu. Load balancing and routing on the hypercube and relatednetworks. Journal of Parallel and Distributed Computing, 14:431{435, 1992.[73] M. R. Jerrum and A. Sinclair. Conductance and the rapid mixing property forMarkov chains: The approximation of the permanent resolved. In Proceedings ofthe 20th Annual ACM Symposium on Theory of Computing, pages 235{244, May1988.[74] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy.Relieving hot spots on the World Wide Web. In Proceedings of the 29th AnnualACM Symposium on the Theory of Computing, pages 654{663, May 1997.[75] R. Karp, M. Luby, and F. Meyer auf der Heide. E�cient PRAM simulation on adistributed memory machine. In Proceedings of the 24th Annual ACM Symposiumon Theory of Computing, pages 318{326, May 1992.[76] R. Karp and Y. Zhang. A randomized parallel branch-and-bound procedure. Jour-nal of the ACM, 40:765{789, 1993.[77] R. M. Karp. Parallel combinatorial computing. In J. P. Mesirov, editor, Very LargeScale Computation in the 21st Century, pages 221{238. Society for Industrial andApplied Mathematics, 1991. 206

[78] M. R. Klugerman and C. G. Plaxton. Small-depth counting networks. In Proceed-ings of the 24th Annual ACM Symposium on Theory of Computing, pages 417{428,May 1992.[79] L. Lamport and N. Lynch. Distributed computing: Models and methods. In J. vanLeeuwen, editor, Handbook of Theoretical Computer Science, Volume B: FormalModels and Semantics, pages 1157{1199. Elsevier/MIT Press, 1990.[80] E. L. Lawler and D. E. Wood. Branch and bound methods: a survey. OperationsResearch, 14:699{719, 1966.[81] C. E. Leiserson and B. M. Maggs. Communication-e�cient parallel graph algo-rithms for distributed random-access machines. Algorithmica, 3:53{77, 1988.[82] V. Lepp�anen. Studies on the Realization of PRAM. PhD thesis, Department ofComputer Science, University of Turku, November 1996.[83] F. C. H. Lin and R. M. Keller. The gradient model load balancing method. IEEETransactions on Software Engineering, 13:32{38, 1986.[84] J.-H. Lin and J. S. Vitter. �-approximations with minimum packing constraintviolation. In Proceedings of the 24th Annual ACM Symposium on the Theory ofComputing, pages 771{782, May 1997.[85] M. Livny and M. Melman. Load balancing in homogeneous broadcast distributedsystems. ACM Performance Evaluation Review, 11(1):47{55, 1982.[86] R. L�uling and B. Monien. Load balancing for distributed branch and bound al-gorithms. In Proceedings of the 6th International Parallel Processing Symposium,pages 543{549, March 1992.[87] N. Lynch and M. Fisher. On describing the behavior and implementation of dis-tributed systems. Theoretical Computer Science, 13:17{43, 1981.207

[88] P. D. MacKenzie, C. G. Plaxton, and R. Rajaraman. On contention resolution pro-tocols and associated probabilistic phenomena. In Proceedings of the 26th AnnualACM Symposium on Theory of Computing, pages 153{162, May 1994.[89] B. M. Maggs, F. Meyer auf der Heide, B. V�ocking, and M. Westermann. Exploitinglocality for data management in systems if limited bandwidth. In Proceedings ofthe 38th Annual IEEE Symposium on Foundations of Computer Science, October1997. To appear.[90] Y. Mansour, N. Nisan, and U. Vishkin. Trade-o�s between communicationthroughput and parallel time. In Proceedings of the 26th Annual ACM Sympo-sium on Theory of Computing, pages 372{381, May 1994.[91] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations ofPRAMs by parallel machines with restricted granularity of parallel memories. ActaInformatica, 21:339{374, 1984.[92] R. Metcalfe and D. Boggs. Ethernet: Distributed packet switching for local com-puter networks. Communications of the ACM, 19(7):395{404, 1976.[93] F. Meyer auf der Heide, B. Oesterdiekho�, and R. Wanka. Strongly adaptive tokendistribution. Algorithmica, 15:413{427, 1996.[94] F. Meyer auf der Heide, C. Scheideler, and V. Stemann. Exploiting storage re-dundancy to speed up randomized shared memory simulations. In Proceedings ofthe 12th Annual Symposium on Theoretical Aspects of Computer Science, LectureNotes in Computer Science, volume 900, pages 267{278. Springer-Verlag, March1995.[95] M. Mihail. Conductance and convergence of Markov chains { A combinatorialtreatment of expanders. In Proceedings of the 30th Annual IEEE Symposium onFoundations of Computer Science, pages 526{531, October 1989.208

[96] S. J. Mullender and P. M. B. Vit�anyi. Distributed match-making. Algorithmica,3:367{391, 1988.[97] D. Peleg and E. Upfal. The generalized packet routing problem. TheoreticalComputer Science, 53:281{293, 1987.[98] D. Peleg and E. Upfal. The token distribution problem. SIAM Journal on Com-puting, 18:229{243, 1989.[99] L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach. Chapter9. Morgan Kaufmann, San Francisco, California, 1996.[100] A. Pietracaprina, G. Pucci, and J. F. Sibeyn. Constructive deterministic PRAMsimulation on a mesh-connected computer. In Proceedings of the 6th Annual ACMSymposium on Parallel Algorithms and Architectures, pages 248{256, June 1994.[101] C. G. Plaxton. Load balancing, selection, and sorting on the hypercube. In Proceed-ings of the 1st Annual ACM Symposium on Parallel Algorithms and Architectures,pages 64{73, June 1989.[102] C. G. Plaxton and R. Rajaraman. Fast fault-tolerant concurrent access to sharedobjects. In Proceedings of the 37th Annual IEEE Symposium on Foundations ofComputer Science, pages 570{579, October 1996.[103] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies ofreplicated objects in a distributed environment. In Proceedings of the 9th AnnualACM Symposium on Parallel Algorithms and Architectures, pages 311{320, June1997.[104] M. O. Rabin. E�cient dispersal of information for security, load balancing andfault tolerance. Journal of the ACM, 36:335{348, 1989.[105] A. G. Ranade. How to emulate shared memory. Journal of Computer and SystemSciences, 42:307{326, 1991. 209

[106] D. Shmoys, �E. Tardos, and K. Aardal. Approximation algorithms for facilitylocation problems. In Proceedings of the 29th Annual ACM Symposium on Theoryof Computing, pages 265{274, May 1997.[107] A. Siegel. On universal classes of fast high performance hash functions, their time-space tradeo�, and their applications. In Proceedings of the 30th IEEE Symposiumon Foundations of Computer Science, pages 20{25, November 1989. Revised ver-sion.[108] V. Stemann. Parallel balanced allocations. In Proceedings of the 8th Annual ACMSymposium on Parallel Algorithms and Architectures, pages 261{269, June 1996.[109] R. Subramanian and I. D. Scherson. An analysis of di�usive load balancing. InProceedings of the 6th Annual ACM Symposium on Parallel Algorithms and Ar-chitectures, pages 220{225, June 1994.[110] M. Sudan. E�cient Checking of Polynomials and Proofs and the Hardness of Ap-proximation Problems. PhD thesis, Department of Computer Science, Universityof California at Berkeley, October 1992.[111] A. N. Tantawi and D. Towsley. Optimal static load balancing in distributed com-puter systems. Journal of the ACM, 32:445{465, 1985.[112] R. M. Thomas. A majority consensus approach to concurrency control for multiplecopy databases. ACM Transactions on Database Systems, 4:180{209, 1979.[113] E. Upfal and A. Wigderson. How to share memory in a distributed system. Journalof the ACM, 34:116{127, 1987.[114] L. Valiant. A combining mechanism for parallel computers. Technical Report TR-24-92, Center for Research in Computing Technology, Harvard University, January1992.[115] L. G. Valiant. A bridging model for parallel computation. Communications of theACM, 33(8):103{111, 1990. 210

[116] L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity,pages 943{971. Elsevier/MIT Press, 1990.[117] M. Van Steen, F. J. Hauck, and A. S. Tanenbaum. A model for worldwide trackingof distributed objects. In Proceedings of TINA'96, pages 203{212, September 1996.[118] R. D. Williams. Performance of dynamic load balancing algorithms for unstruc-tured mesh calculations. Concurrency: Practice and Experience, 3:457{481, 1991.[119] C.-Z. Xu and F. C. M. Lau. Iterative dynamic load balancing in multicomputers.Journal of the Operational Research Society, 45:786{796, 1994.

211

Vita
Rajmohan Rajaraman was born on January 4, 1971 in Calcutta, India, the son of LalitaRajaraman and Neelagudi Subramaniam Rajaraman. He did his schooling in SawaiMadhopur and New Delhi, India. He received the Bachelor of Technology degree inComputer Science and Engineering from the Indian Institute of Technology at Kanpurin July 1991. Thereafter, he entered graduate school at the University of Texas at Austinin August 1991. He received the Master of Sciences degree in Computer Sciences in May1993. He was employed as a consultant at Sandia National Laboratories, Albuquerque, inthe summer of 1996. He was awarded the MCD and Schlumberger graduate fellowshipsin August 1991 and November 1996, respectively.Permanent Address: c/o Mrs. Lalita Rajaraman28, Janak RoadCalcutta 700-029, IndiaThis dissertation was typeset with LATEX2"1 by the author.

1The macros used in formatting this dissertation were written by Dinesh Das, Department of Com-puter Sciences, The University of Texas at Austin.212

