Copyright
by
Norman Clayton McCain

1997

Causality in Commonsense Reasoning about Actions

by

Norman Clayton McCain, B.A., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 1997

Causality in Commonsense Reasoning about Actions

Approved by
Dissertation Committee:

To my parents

Acknowledgments

The central ideas in this dissertation are the product of a long and close collaboration
with my advisor, Vladimir Lifschitz, and my colleague, Hudson Turner. I do not
claim any of these ideas as exclusively my own; in all cases they have a complicated
“genealogy” and could not have arisen without many major contributions by Hudson
and Vladimir. On the other hand, the presentation is finally my own, so I take full
responsibility for any errors.

I wish to thank Vladimir for excellent advice and direction throughout my
career as a graduate student, and both Vladimir and Hudson for many helpful
suggestions. I also wish to thank Bob Boyer and Rob Koons for their advice and
encouragement, especially during the early stages of my research. My interest in

causation began in fact many years ago during a study of the logic of conditionals

under Rob.

NORMAN CLAYTON McCAIN

The University of Texas at Austin
May 1997

Causality in Commonsense Reasoning about Actions

Publication No.

Norman Clayton McCain, Ph.D.
The University of Texas at Austin, 1997

Co-Supervisors: Vladimir Lifschitz

Robert Koons

In this dissertation, we investigate the role of causal knowledge in commonsense
reasoning about action and change. We define a language in which a relatively simple
form of causal knowledge is expressed. Using this language, we describe a novel
approach to formalizing action domains as “causal theories” —including domains
that involve concurrency, nondeterminism, and things that change by themselves.
We show that a subclass of causal theories can be translated into propositional logic
by a generalization of Clark’s completion procedure for logic programs. Finally, we
describe an implemented approach to automated query answering and “satisfiability

planning” which is based on this translation.

vi

Contents

Acknowledgments v
Abstract vi
List of Figures xi

Chapter 1 Introduction 1
1.1 The Role of Causal Knowledge 2
1.2 What Kind of Causal Knowledge? 4
1.3 A Brief Preview L oL 7
1.4 Organization o i e 11

Chapter 2 Background 13

Chapter 3 A Causal Approach to Ramifications and Qualifications 19

3.1 Notation and Terminology, 21
3.2 Defining the Possible Next States 23
3.2.1 Constraints0 o 23
3.2.2 Analysiso 28
3.2.3 Static Causal Laws o o000 30
3.3 Ramification and Qualification Constraints 34
3.4 The Art of Causal Formalization 36

vii

Chapter 4 A Simple Action Description Language

4.1 Action Languages oo
4.1.1 Two Componentso .o v i
4.1.2 Action Description Languages
4.1.3 Action Query Languages.

4.2 The Language Ac - -« « « v v v v it
4.2.1 Syntax oL
4.2.2 Semantics Lo o

4.3 Examples e

Chapter 5 The Language of Causal Theories

5.1 Informal Motivation
B.2 Syntaxo e e
5.3 Semantics oL e e
5.4 Exampleso
5.5 Definitional Extension 0 0L,
5.5.1 Explicit Definitions Lo
5.5.2 Replacement oL o o
5.5.3 Proofs of Propositions 5.2 and 5.3
5.6 An Embedding in Default Logic,

Chapter 6 Objective Logic Programs

6.1 The Language of Objective Programs
6.1.1 Syntax e e e
6.1.2 Semantics

6.2 Literal Completion o oo

6.3 Other Connections to Logic Programming
6.3.1 Classical Semantics Lo
6.3.2 Stable Model Semantics 0oL

viii

42
42
42
43
45
46
46
47
49

57
58
59
60
63
64
65
65
67
69

6.3.3 An Embedding in Extended Programs
6.4 Some Standard Ways of Lending Support

Chapter 7 Formalizing Action Domains as Causal Theories
7.1 The Language Lcp, -« v v v v v v vt i e e e
7.2 The Suitcase Domain oL L oo
7.3 Inertial Fluents and Exogenous Facts
7.4 The Suitcase Domain (continued)
7.5 The Expressive Capacity of Lcp, - - o o o o o 00 0000 oo
7.5.1 Concurrent Actions Lo
7.5.2 Nondeterministic Actions
7.5.3 Actions with Delayed Effects
7.5.4 Things that Change by Themselves
7.5.5 Non-literal Consequents

7.6 Language Dependence and Inertia

Chapter 8 Two Action Query Languages
8.1 Action Query Languages for Ly, . . o o o o o oo oo oo
8.2 The Query Language L,: Actuality
8.2.1 Query Answeringo oo
8.2.2 Satisfiability Planning

8.3 The Query Language Ly: Historical Necessity

Chapter 9 Query Answering and Planning
9.1 Automated Query Answering
9.2 Automated Planning oo oo
9.3 Final Remarks on Query Anwering and Planning

9.4 Examples

ix

89
89
90
92
96
98
98
102
104
106
108
111

115
115
116
117
118
121

Chapter 10 Conclusion

10.1 Summary of Contributions
10.2 Topics for Future Work
10.3 A Final Word

Appendix A Related Formalisms

A.1 Causal Laws and Inference Rules

A.1.1 An Earlier Causal Framework

A.1.2 Formal Connections . . .

A.2 A Modal Generalization of Causal Theories

A.2.1 CEL: Causal Explanation Logic

A.2.2 A Modal Encoding for Causal Laws

A.2.3 CEL and Causal Theories

Appendix B The Program Listing

Bibliography

Vita

152
152
153
155

157
157
157
161
164
164
166
166

169

185

198

List of Figures

1.1
1.2

4.1
4.2
4.3
4.4
4.5

7.1
7.2

9.1
9.2
9.3
9.4
9.5
9.6

The Yale Shooting domain 8
Examples of Query Answering and Planning 10
A transition system for a Coin Tossing domain 44
Indefiniteness vs. nondeterminism oL 48
A transition system for the Two-Switches domain 51
A transition system for the Yale Shooting domain 52
A transition system for the Emperor domain 54
A possible world history in the Suitcase domain 96
Another possible world history in the Suitcase domain 98
An input file for the Yale Shooting domain 128
Query answering oo e e e 131
Planning to achieve a time-dependent goal 133
Planning to achieve a time-independent goal 135
An input file for the Coin Tossing domain 136
An unverifiable plan oL 0oL 137

xi

Chapter 1

Introduction

The cause “is the sum total of the conditions positive and negative taken
together ... which being realized, the consequent invariably follows.”"

John Stuart Mill

Beginning with John McCarthy’s classic paper, “Programs with Common
Sense” [1959], one of the main goals of artificial intelligence (Al) research has been
to develop a computer program capable of commonsense reasoning about action
and change—specifically, a program that is able to perform such tasks as predic-
tion, explanation, and planning. McCarthy envisioned that a program of this kind
might “reason” by manipulating explicit, declarative representations of the relevant
knowledge. Following this broadly logicist approach, the central problems are to
discover what this knowledge is and how it might be formalized. The aim of this

dissertation is to advance our understanding of these issues.

'The quotation is from A System of Logic, page 332, Volume V11, The Collected Works of John
Stuart Mill, [Robson, 1973].

1.1 The Role of Causal Knowledge

It has always been clear that causal knowledge plays a central role in commonsense
reasoning about action and change. However, it has not always been clear what
this role is, or that it cannot be played by non-causal knowledge as well. In the
AT literature, this is evident in the use of state constraints for deriving the indirect
effects of actions. Intuitively, a state constraint is a proposition that rules out certain
states of the world as impossible but says nothing about causation.

The attempt to use state constraints to infer the indirect effects of actions has
led to various difficulties in formalizing action domains. As an informal illustration
of one of these difficulties, imagine a domain in which there is a light and a single
switch. Ignoring such possibilities as a power failure or a burned out bulb, let us

suppose that the following sentence is true.
(1) The switch being closed causes the light to be on.?

Let us also suppose that the causal relationship described in (1) is static, i.e., that
there is no difference in time between the cause and the effect. In reality, there is a
very small difference in time, but let us pretend that there is not.

Now let us compare the meaning of (1) with the meaning of the following

state constraint.
(2) In every state in which the switch is closed, the light is on.

Given that the causal relationship described in (1) is static, intuitively it is clear
that (1) implies (2). However (2) is compatible not only with the causal relationship
described in (1) but also with other possibilities in which (1) may be false; for exam-

ple, with the possibility that the light being off causes the switch to be open, with

2We understand (1) in a general sense, so that it is implicitly about all possible worlds and all
times. In this respect, it is different from

The switch being closed caused the light to be on,

which intuitively relates the two mentioned facts only on a specific occasion.

the possibility that the switch being closed and the light being on are always joint
effects of common causes, and even with the possibility that there is no causation
at all. Therefore, (2) does not imply (1).

Now consider the following propositions about what can be achieved by per-

forming actions.

(3) The light can be turned on by closing the switch.

(4) The switch can be opened by turning off the light.

Intuitively, from (1) we can infer (3), but not (4). On the other hand, from (2) we
can infer neither (3) nor (4). The latter conclusion is not, however, the one usually
drawn in the Al literature on reasoning about action and change. Instead, it is
held that (3) in effect follows from (2), just as it does from (1). This conclusion is
based on the assumption that whatever follows from the explicitly described effects
of an action and known state constraints is an indirect effect. Conceptually, this is
a mistake, one which rests on a rather common confusion of causal and non-causal
grounds.? Technically, it leads to unintuitive results; for example, to the conclusion
that not only (3), but also (4), follows from (2). It is clear, however, that (4) does
not follow from (2). The explicit effect of turning off the light is that the light is
off. From this and (2), it indeed follows that the the switch is open. But it does not

follow that the switch being open is caused by turning off the light. So, intuitively,

% As evidence that the confusion is indeed common, we note that until recently a similar confusion
infected standard decision theory [Jeffrey, 1965], where conditional probabilities, e.g., Pr(S|A), were
used in place of probabilities of causal connections, e.g., Pr(A causes), in the definition of expected
utility. The difference between the two probabilities is illustrated by the following example from
[Stalnaker, 1981]. Suppose we discover a gene that causes both cancer and a predisposition to
smoking, and as a result we come to view smoking as evidence for cancer, but no longer as a cause.
Assuming that the probability function Pr maps propositions to degrees of belief, then in this
situation Pr(Cancer|Smoking) will be high, but Pr(Smoking causes Cancer) will be low. Intuitively,
however, it is the latter probability, not the former, that is relevant in deciding whether or not to
smoke. It is rational to act so as to change the facts from what they would have been had we not
acted. But it is irrational to act merely in order to change our evidence for what the facts are.
The confusion of evidential and causal conditions in standard decision theory has been set right
in newer systems of “causal decision theory.” See, for example, [Gibbard and Harper, 1981] and
[Lewis, 1986a).

it does not follow that the switch can be opened by turning off the light.*

In the AT literature, Judea Pearl [1988] has emphasized the importance of
the distinction between causal and non-causal grounds in general default reasoning.
Some of the difficulties encountered in using state constraints for determining the
indirect effects of actions were recognized by Ginsberg and Smith [1988b], Lifschitz
[1990], and Lin and Reiter [1995]. Several authors have proposed to overcome these
difficulties by replacing state constraints by representations of causal knowledge of
one kind or another. These include Geffner [1989,1990], Elkan [1992], Brewka and
Hertzberg [1993], Baral [1995], Lin [1995], McCain and Turner [1995], and Thielscher
[1995a,1996]. The representation of causal knowledge presented in this dissertation

is a simplification and generalization of the proposal of McCain and Turner.

1.2 What Kind of Causal Knowledge?

In view of the central role that causal knowledge plays in commonsense reasoning
about action and change, the reader may expect to find as the centerpiece of this
dissertation an analysis of the causal relation, and a logic of it. However, neither of
these things is attempted here.” These omissions may reasonably seem to doom our
project to failure, but in fact they do not.

To see why, consider, for example, the task of prediction. Suppose that ¢ is
a proposition about the state of the world at a future time and that I' is a set of
true propositions about matters of particular fact in the actual world. Intuitively,
in order to show that the prediction expressed by ¢ is also true in the actual world,
it suffices to show that ¢ holds in every “causally possible world history” in which

I’ is true. Thus, the task of prediction comes down to showing something about the

“Similar intuitions are appealed to in [Goldman, 1970]. If the reader does not share these
intuitions, the technical difficulties illustrated in Chapter 3 may still convince him of the ill effects
of using state constraints to infer the indirect of effects of actions.

5The problem of finding an adequate analysis and logic of the causal relation is a notoriously
difficult one. The first attempt at a logic of causality was [Burks, 1951]. More recent attempts can
be found in [von Wright, 1975], [Faye et al., 1994], and [Koons, 1995].

set of causally possible world histories. As we will see in Chapter 8, planning does
as well.

Our question, therefore, is this: for the purpose of determining the causally
possible world histories, is it necessary to be able to represent and reason about
relations of cause and effect? Apparently, it is not. Instead, it is sufficient to be
able to represent and reason about the conditions under which facts are caused.
Knowledge of the latter kind may be thought of as intermediate between non-causal
knowledge (such as is expressed by state constraints) and knowledge of causal rela-
tions. The differences are revealed in the following sentence forms, where ¢ and

stand in place of sentences.
(5) The fact that ¢ causes the fact that 1.
(6) Necessarily, if ¢ then the fact that 1 is caused.
(7) Necessarily, if ¢ then 1.

A sentence of form (5) asserts that there is a causal relationship between the facts
associated with ¢ and 1. A sentence of form (6) makes no such assertion, but instead
says only that whenever ¢ is true, something or other (possibly not the fact that ¢
itself) causes the fact that ©. A sentence of form (7) says nothing about causation
at all. Intuitively, (5) implies (6), and (6) implies (7), but neither implication holds
in the other direction.

To see that (6) does not imply (5), consider a domain in which there is a
switch S that controls two lights, A and B. Let ¢t be a time. Suppose that S being
closed at ¢t causes both A and B to be on at ¢, and S being open at ¢ causes both
A and B to be off at .5 Then, intuitively, the following is true: necessarily, if A
is on at ¢ then S is closed at ¢{. Since S being closed at ¢ causes B to be on at

t, the following sentence (which is easily rendered in form (6)) must also be true:

5In the regimented style of (5), we would say: The fact that S is closed at ¢ causes the fact that
A and B are on at t. We will continue to use less awkward phrasings such as those introduced
above.

necessarily, if A is on at ¢, B is caused to be on at t. However, A being on at ¢ does
not cause B to be on at ¢, so the corresponding sentence of form (5) is false. Thus,
in general, (6) does not imply (5).

We have argued that non-causal knowledge in the form of state constraints
is an inadequate basis for reasoning about action and change. The same point can
be made about knowledge of form (7). Causal knowledge is required. Our present
point, however, is that for certain commonsense reasoning tasks—such as prediction
and planning—whose solutions are definable in terms of the causally possible world
histories, the strongest form of causal knowledge, i.e., knowledge of the form (5), is
not required. Knowledge of form (6) is enough.

Although (6) is weaker than (5), this apparently makes no difference for the
purpose of specifying the causally possible world histories. Intuitively, substituting
knowledge of form (6) for (5) would have no effect on the facts that we judge to be
caused in a world history, and thus also would have no effect on the world histories
that we judge to be causally possible. Accordingly, we are in a very fortunate
position indeed: even though we lack a satisfactory formal account of the causal
relation itself, it seems we may nevertheless possess—in a relatively simple logic of
sentences of form (6)—a way of representing our commonsense knowledge about
causal relationships that is adequate for some our most important goals.

Unfortunately, not all commonsense reasoning tasks associated with domains
of action and change come down to showing something about the causally possible
world histories. Consider, for example, the task of finding a causal explanation for
a known fact . Intuitively, in order to find a causal explanation for) one would
need to show that (5) holds for some true formula ¢. (A good causal explanation
might also have to satisfy other conditions, such as that ¢ not include irrelevant or

redundant facts.) A similar conclusion of form (6), intuitively, would not suffice.”

"For example, in our two lights example, using knowledge of form (6) might lead us to answer
the query “Why is light B on?” by replying “Because light A is on,” since, as we have observed, in
every world in which A is on, B is caused to be on. But this is not a correct causal explanation.

Until we understand the logic of the relation “causes,” and not just the logic of
the predicate “is caused,” the goal of formalizing the task of causal explanation will
continue to lie beyond our reach.® We are fortunate that for at least some important
commonsense reasoning tasks less is required.

Causal knowledge of form (6) has been used by Geffner [1990] and, in a
restricted form, by Lin [1995] in previous work on formalizing action domains. We

owe a considerable debt to these authors.

1.3 A Brief Preview

As a preview of things to come, in this section we present our formalization of a
simple action domain—the famous “Yale Shooting” domain [Hanks and McDermott,
1987]—and use it to illustrate our approach to query answering and planning. The
example, which involves a turkey and a gun, is discussed in greater detail in later
chapters.

In Figure 1.1, we present an input file describing the Yale Shooting domain.
The file begins with the directive declare types, which is used to define the specific
language in which the domain is formalized. In this case, we declare the existence
of three actions, two fluents, and four times. The atoms of the language include
expressions such as h(loaded,1) and o(shoot,2), which we read as “the fluent
loaded holds at time 17 and “the action shoot occurs at time 2,” respectively.
In all there are twenty atoms. The second directive declare_variables is used
to declare the types of the variables used in the specification of the domain. The
remaining lines (a)—(i) in the file are the causal rules that we use to describe the
domain. Each of these rules can be understood to express knowledge of form (6).

According to rule (a), necessarily, if the load action occurs at a time ¢ then

the gun is caused to be loaded at t+1. According to rule (b), necessarily, if the gun is

8The same is true of the the problem of abduction, insofar as this is understood as the problem
of reasoning to the best causal explanation for given facts.

:— declare_types
type(action, [load,wait,shoot]),
type(fluent, [loaded,alive]),
type(time, [0..3]),
type(atom, [o(action,time) ,h(fluent,time)]).

:- declare_variables
var(A,action), var(T,time), var(F,fluent).

h(loaded,T+1) <- o(load,T). h
-h(alive,T+1) <- o(shoot,T), h(loaded,T). %
-h(loaded,T+1) <- o(shoot,T). h
o(A,T) <- o(A,T). h
-0(A,T) <- -o(A,T). h
h(F,0) <- h(F,0). h
-h(F,0) <- -h(F,0). h
h(F,T+1) <- h(F,T), h(F,T+1). h
-h(F,T+1) <- -h(F,T), -h(F,T+1). A

Figure 1.1: The Yale Shooting domain

(a)
(b)
(c)

(@
(e)
(£)
(g)

(h)
(1)

already loaded at a time ¢ and the shoot action occurs at ¢ then the turkey is caused
to be dead at t+ 1. According to rule (c), necessarily, if the shoot action occurs at a
time ¢ then the gun is caused to be unloaded at t4 1. According to rules (d)—(g), all
facts about action occurrences at all times and about the values of fluents at time
0 are to be regarded as caused simply by virtue of their obtaining. In effect, these
rules express that all such facts are exogenous to our formalization. Finally, rules
(h) and (i) express the so-called “commonsense law of inertia.” According to these
rules, it is necessarily the case that if a fluent preserves its value from one time to
the next, then its value of at the second time is caused.

In Figure 1.2, we illustrate query answering and planning with respect to
the input file of Figure 1.1.° In the query, we assume that the turkey is initially
alive, the gun is initially unloaded, and that the actions load, wait and shoot are
performed at times 0, 1, and 2, respectively. From these premises, it can be shown
that the turkey is not alive at time 3.!° In the planning problem, we again assume
that initially the turkey is alive and the gun is unloaded, and we pose the goal of
killing the turkey. A plan is found that consists in performing exactly the actions
load and shoot in that order. The goal is realized at time 2. (The action of loading
the gun at time 2, which also appears in the output displayed in Figure 1.2, is not
an essential part of the plan.)

The representational and computational ideas illustrated in the preceding

example are developed in Chapters 5-9.

?Notice that according to the second line of Figure 1.1 there are 22 atoms rather than 20. The
two extra atoms are true and false, which, for convenience, are automatically added to every
domain description.

°This is not the standard “temporal projection problem” associated with the Yale Shooting
domain, because we do not assume that load, wait, and shoot are the only actions performed at
times 0, 1, and 2.

| ?- load_file(yale).

% 22 atoms, 51 rules, 26 clauses loaded.
yes

| ?- query.

enter facts (then ctrl-d)

|: h(alive,0).
| : -h(loaded,0).
|: o(load,0).

|: o(wait,1).

| : o(shoot,2).
[:

enter query

|: -h(alive,3).

yes
| ?- plan.

enter facts (then ctrl-d)
|: h(alive,0).

| : -h(loaded,0).

[:

enter goal

|: -h(alive,T).

0. -loaded alive
Action(s): load

1. loaded alive
Action(s): shoot

2. -loaded -alive
Action(s): load

3. loaded -alive
Action(s):

Verify plan? vy
plan verified.

yes

Figure 1.2: Examples of Query Answering and Planning

10

1.4 Organization

We begin in Chapter 2 by reviewing the background literature on reasoning about
actions that is related to the present work.

The remaining chapters (up to the concluding one) can be divided into two
parts—Chapters 3 through 4 and Chapters 5 through 9—corresponding to the two
related formalisms that we will define.

In Chapter 3, we deepen our analysis of the inadequacies of state constraints.
We propose a representation for static causal knowledge and a new definition of the
possible next states. In Chapter 4, we describe an action description language which
is based upon the causal framework of Chapter 3.

In Chapter 5, we define a general language of causal theories in which both
static and dynamic causal laws are expressible. The semantics for the language of
causal theories is obtained by simplifying and generalizing the definition of possible
next states given in Chapter 3. In Chapter 6, we study the special class of causal
theories that syntactically correspond to logic programs. We call such theories “ob-
jective programs.” In Chapter 7, we describe how action domains can be formalized
in the language of causal theories. For this purpose, we define the action description
language L1, as a specialization of the language of causal theories. In Chapter 8,
we describe two action query languages for use in conjunction with the language
L. We also lay the theoretical groundwork for a satisfiability-based approach to
query answering and planning with respect to objective programs. In Chapter 9,
we describe the program satp, which implements our approach to query answering
and planning. We also present a number of examples.

Finally, in Chapter 10 we summarize our results and indicate some possible
directions for future work.

In Appendix A, we discuss two other formalisms that are related to those
defined in this dissertation. We compare the causal framework defined in Chapter 3

with the earlier framework of [McCain and Turner, 1995], and we generalize the

11

language of causal theories in a modal framework. In Appendix B, we include a

listing of the program satp, which is written in SICStus Prolog.

12

Chapter 2

Background

Although McCarthy began the study of commonsense reasoning about actions in
1959, it was later that he invented an adequate notation. This notation, called “the
situation calculus,” was first described in an unpublished memo [McCarthy, 1963]
and was first published in [McCarthy and Hayes, 1969]. We will not use the situation
calculus in this dissertation. However, since it is the most widely used notation for
describing action domains, it is an appropriate place to begin our review.

A situation, according to McCarthy, is a complete state of the universe at
an instant of time. A (propositional) fluent is a function whose domain is the set of
situations and whose co-domain is the set of truth values. The situation calculus is
a many-sorted, first-order language based on the ontology of situations, actions, and
fluents. Given a fluent F and a situation S, one writes F'(S) or Holds(F,S) in the
situation calculus to express that F'is true in the situation S. (In Holds(F,S), the
fluent F'is reified, i.e., treated as an object.) Given an action A and a situation 9,
one writes Result(A, S) to designate the situation that would result from performing

the action A in the situation S. As an example, the sentence
Vs[Holds(Loaded, s) D —Holds(Alive, Result(Shoot, s))] (2.1)

expresses the fact that in every situation s, if the gun is loaded in s then the turkey

13

is not alive in the situation that would result from shooting the gun in s. Here
Loaded and Alive are constants of sort fluent, Shoot is a constant of sort action, and
s is a variable of sort situation.!

The syntax of the situation calculus is simple and attractive but has seemed
to many researchers to be expressively weak. It has been claimed, for example, that
the situation calculus is unable to express the duration of actions, continuous time,
or concurrency. In [Gelfond et al., 1991b], these particular criticisms have been met
and overcome. However, one limitation of the situation calculus remains, that is, its
inability to represent nondeterministic actions—actions that can lead from a single
situation to more than one possible next situation.?

Besides the introduction of the situation calculus, another important contri-
bution of [McCarthy and Hayes, 1969] is the identification of the “frame problem.”
Typically, actions affect only a small number of fluents, while the values of the re-
maining fluents are assumed not to change. The frame problem is the problem of
finding a way to avoid the need to mention the fluents that actions do not affect. As

an example, a solution to the frame problem should make it unnecessary to include

such axioms as the following.

Vs[Holds(Cloudy, s) O Holds(Cloudy, Result(Shoot, s))]

Vs[= Holds(Cloudy, s) D = Holds(Cloudy, Result(Shoot, s))]

'The sentence (2.1) corresponds to the causal rule (b) of Figure 1.1. Our description of the
situation calculus deviates from [McCarthy and Hayes, 1969] in several inessential details.

2Tt may seem that the fact that Resultis a function—one that maps an action and a situation
to a unique resulting situation—precludes representing nondeterministic actions. However, this is
so only if we understand Resulf(A, S) to be the unique situation that could result from doing the
action A in the situation S. If instead we understand it, as in fact we do, to be the unique situation
that would result from doing A in S, then the functional nature of Resultis compatible with nonde-
terminism. It may be possible, therefore, to extend the situation calculus so that nondeterministic
actions can be represented without changing the Result function. (We will not explore this possi-
bility here.) From this perspective, what is presupposed by the situation calculus is not that all
actions are deterministic, but rather that even when an action is nondeterministic—so that more
than one situation could result from performing it—still a unique situation would result. In other
words, what is presupposed is a theory of counterfactuals like Stalnaker’s [1968], which employs a
“selection function” to pick out the world that would obtain under a possible counterfactual sup-
position, as opposed to a theory like Lewis’s [1973], which does not presuppose that a unique such
world exists.

14

Intuitively, these so-called “frame axioms” express that shooting the gun has no
effect on whether or not the sky is cloudy.

The frame problem can be straightforwardly solved when the syntactic form
of the represented knowledge is highly constrained. This is illustrated by the ap-
proaches described by Pednault [1989] and Reiter [1991]. Pednault automatically
generates the frame axioms from “effect axioms” (axioms, such as (2.1), describing
the effects of actions) in classical logic. This is possible if it is assumed that the
effect axioms describe all of the effects of the actions. Reiter builds on Pednault’s
proposal but achieves additional parsimony by quantifying over actions, as recom-
mended by Haas [1987] and Schubert [1990]. Elkan [1992] proposes an approach to
formalizing action domains directly in classical logic.

The reasoning formalized in classical logic is monotonic in the sense that
acquiring new information can only lead to additional conclusions being drawn, not
to earlier conclusions being retracted. Commonsense reasoning, on the other hand,
is not monotonic in this sense. Several general systems of nonmonotonic reasoning
were introduced in the 1980’s: McCarthy’s [1980,1986] method of circumscription,
Reiter’s [1980] default logic, McDermott and Doyle’s [1980] nonmonotonic logic, and
Moore’s [1985b] autoepistemic logic.

Because of the “negation as failure” rule, logic programming is also a system
of nonmonotonic reasoning. The first semantics for logic programs with negation as
failure was given by Clark [1978]. Many other semantics followed, the most influen-
tial being the well-founded semantics [Van Gelder et al., 1990] and the stable model
semantics [Gelfond and Lifschitz, 1988]. The connection between logic programming
and nonmonotonic reasoning was clarified by translations from logic programming
into the general nonmonotonic formalisms. Gelfond [1987], for example, showed how
to translate logic programs into autoepistemic logic.

Even assuming rather strongly restricted forms of knowledge, the frame prob-

lem turned out to be unexpectedly difficult to solve in some of the above-mentioned

15

systems of nonmonotonic reasoning. This was shown in the cases of circumscription
and default logic by Hanks and McDermott [1986,1987], using the Yale Shooting
problem as an example (cf. Section 1.3). In particular, they showed that an ap-
parently natural formalization in circcumscription turned out to have consequences
that were unexpectedly weak.

Various solutions to the Yale Shooting problem were proposed in the subse-
quent literature. Some, such as [Kautz, 1986] and [Shoham, 1986], employed alter-
natives to the above-mentioned systems of nonmonotonic reasoning. Others, such
as [Lifschitz, 1987], [Gelfond, 1988], [Morris, 1988], [Baker, 1989], [Apt and Bezem,
1990], [Baker, 1991], and [Lifschitz, 1991], discovered workable formalizations within
these systems.

In the early 1990’s two frameworks were proposed for the systematic study
of the problem of representing action domains, namely, the frameworks of Sandewall
[1992a] and Gelfond and Lifschitz [1993]. The aim in both cases was to supplement
the example-based methodology illustrated by earlier work on the Yale Shooting
problem. Sandewall defined the general notion of an “inhabited dynamical sys-
tem” and a extensive taxonomy of features and approaches to formalizing action
domains. Gelfond and Lifschitz proposed to define specific high-level action descrip-
tion languages—each with its own special syntax and semantics—and to study the
mathematical properties (for example, soundness and completeness) of translations
from these languages into various approaches to formalizing actions. As an illustra-
tion, Gelfond and Lifschitz defined a simple high-level action description language A
and proved the soundness of a translation from A into the language of extended logic
programs. Subsequently, Kartha [1993] proved the soundness and completeness of
translations from A into the above-mentioned approaches of Pednault, Reiter, and
Baker. Sound and complete translations from A were also given by Denecker and
De Schreye [1993] into the language of abductive logic programming and by Turner

[1994] into the language of disjunctive logic programming.

16

Other high-level action description languages have been defined as approx-
imate extensions of A; for example, [Baral and Gelfond, 1993], [Kartha and Lifs-
chitz, 1994], [Thielscher, 1994], [Giunchiglia and Lifschitz, 1995], [Giunchiglia et al.,
1995], [Baral et al., 1995], and [Turner, 1997b]. The languages defined in [Kartha
and Lifschitz, 1994] and [Giunchiglia et al., 1995], ARq and AR, respectively, are
particularly important in the present context, since they extend A to allow the rep-
resentation of the indirect effects of actions. (The language A¢;, that we will define
in Chapter 4 is closely related to AR and ARy, and even more closely related to
the somewhat simpler language AR~ of [Kartha, 1995].) In [Giunchiglia and Lifs-
chitz, 1995], a sound and complete translation is given from AR into the formalism
of nested abnormality theories [Lifschitz, 1994]. Nested abnormality theories allow
circumscription to be applied to parts of a theory, rather than only to the theory
as a whole. The idea of circumscribing parts of an action theory was advocated by
Crawford and Etherington [1992].

The central semantic definition in AR specifies the set of states that could
result when an action is performed in a given state. This definition is an elaboration
of a definition given by Winslett [1988], which in turn corrected an earlier definition
given by Ginsberg and Smith [1988a]. Winslett’s definition will be the starting point
for our own investigations. As such, it will be carefully analyzed in Chapter 3.

As remarked in the previous chapter, there have recently been several pro-
posals to replace the use of state constraints by causal knowledge of one form or
another. A list of references is given at the end of Section 1.1. In Chapter 5 we
will define a language of “causal theories,” which is based on many of the same
intuitions as Geffner’s [1990] formalism. (See also [Geffner, 1989].) In particular,
in describing action domains, both formalisms are used to represent knowledge of
the form: Necessarily, if ¢ then the fact that 1 is caused. Like Geffner, we do not
use the situation calculus but instead refer explicitly to times. In other respects,

however, our approaches to formalizing action domains—for example, our solutions

17

to the frame problem—are vastly different.
The proposals of Brewka and Hertzberg [1993] and McCain and Turner [1995]
represent causal laws by inference rules. Baral [1995] represents static and dynamic

i

causal laws in a notation of “state specifications,” which, like the proposal of McCain
and Turner, is closely related to the formalism of revision programs [Marek and
Truszcezyiniski, 1994]. In Chapter 3, we present a precursor to the language of causal
theories, which is a modification of the causal framework of [McCain and Turner,
1995]. This new framework is compared to the earlier one in Appendix A.

Thielscher [1995a,1996] proposes to compute the indirect effects of an action
by first modifying the initial state by the action’s direct effects and then, as a
“postprocessing” step, initiating a series of additional changes in accordance with
the dynamic causal laws of the domain. The changes continue until a given set of
state constraints is satisfied. Thielscher defines a procedure for generating causal
laws from the given state constraints and a binary “influence relation” which specifies
pairs of fluents such that the first can influence the second.

A simplified version of Lin’s [1995] formalism and the causal framework de-
fined in Chapter 3 are formally related in [McCain and Turner, 1997]. A variant of

the language of causal theories is formally related to Lin’s formalism in [Giunchiglia

and Lifschitz, 1997].

18

Chapter 3

A Causal Approach to

Ramifications and Qualifications

This chapter is concerned with the problem of determining the ramifications or
indirect effects of actions. The problem is usually investigated in a framework in
which action domains are described in part by state constraints. Informally, a state
constraint is a formula that says of a proposition that it is true in every possible
state of the world.! Our main objective in this chapter is to argue that an adequate
theory of ramifications requires the representation of information of a kind that
is not conveyed by state constraints, specifically, information about the conditions
under which facts are caused. It turns out that this is also the information that is
needed for an adequate theory of qualifications or derived action preconditions.
Previous approaches to the problem of ramifications have assumed a def-

inition of the following kind: A ramification, roughly speaking, is a change (not

'In the situation calculus, a state constraint is a formula of form

Vs ¢(s)

where s is the only siutation-valued term in the formula ¢. In modal logic, a state constraint is a
formula of the form

D¢

where ¢ is a non-modal formula.

19

explicitly described) that is implied by the performance of an action. In our ap-
proach, we impose a stronger requirement, namely, that it be implied not only that
the change occurs, but also that it is caused to occur. As we will see, this stronger
requirement makes it possible to avoid unintended ramifications and to infer qual-
ifications. (The importance of the latter is argued in [Ginsberg and Smith, 1988a]
and [Lin and Reiter, 1994].) Again roughly speaking, our theory of qualifications is
this: An action cannot be performed if the performance of the action implies that
a change occurs that is not caused.

The main points can be illustrated by the following example. Imagine that
Fred the turkey is on a walk. Consider the action of making Fred dead. Intuitively,
as an indirect effect of performing the action, Fred will no longer be walking. The
reason is that Fred’s being dead is a causally sufficient condition for his not walk-
ing. Now consider the action of making Fred walk, but suppose that Fred is dead.
Intuitively, the action cannot be performed. The reason is as follows: Fred can walk
only if he is alive, but making him walk does not cause him to be alive; so unless he
is already alive (or something in addition is done to cause him to become alive), he
cannot be made to walk.

The conclusions reached in the previous paragraph are supported by the
following facts about the so-called “by” relation. (The “by” relation is discussed in
[Goldman, 1970] and [Davidson, 1980].) Intuitively, Fred can be made to not walk
by making him be not alive, but he cannot be made to be alive by making him walk.
If the indirect effects of an action are the facts made true by making the explicit
effects of the action true, then we should expect Fred’s not walking to be an indirect
effect of making him not alive, but we should not expect Fred’s being alive to be an
indirect effect of making him walk.

In general, what can and cannot be done by doing something else is contin-
gent upon the underlying causal connections and other relations of determination

that hold among facts or states of affairs. (For a discussion of non-causal determi-

20

nation relations see [Kim, 1974].) Intuitively, state constraints say nothing about
these, so it is not surprising that background knowledge in the form of state con-
straints should prove to be inadequate. The present chapter is closely related to
[McCain and Turner, 1995]. However, the central definition in that paper is here

replaced by a different one. The two definitions are compared in Appendix A.

3.1 Notation and Terminology

We begin with a language of propositional logic whose signature is given by a
nonempty set of atoms. We view the atoms as propositions whose truth values
may vary from one state of the world to the next. Accordingly, we refer to the
atoms also as (propositional) fluents. By a literal we mean either an atom F or
its negation —F. Throughout this dissertation the symbol L will be used to stand
exclusively for literals. We use the expressions True and False as abbreviations for
(F'V =F) and (F' A —F), respectively, for some atom F. By an interpretation we
mean a function that maps each atom to a truth value. We identify an interpretation
I with the set of literals L such that I = L.

We will consider a number of different frameworks in which the notion of a
“state” is defined. In each of these frameworks, by a state we will mean an inter-
pretation that “satisfies” (in some sense) the given background knowledge. What
this means precisely will depend upon the kind of the background knowledge that is
given. We will consider two kinds of background knowledge, constraints and static
causal laws.

By a constraint we mean a formula. A standard example of a constraint
(from [Baker, 1991]) is the formula (Walking D Alive). Intuitively, by saying that

a formula is a constraint, we say that it holds in every possible state of the world.?

?In a fully semantic treatment, this would be expressed by explicitly quantifying over all possible
states, or by a modal operator with a similar meaning; for example, by a formula of one of the
following forms:

Vs(Walking(s) D Alive(s))

21

Formally, in a framework in which all background knowledge is given in the form
of constraints, the states will be identified with the interpretations in which every
constraint is true.

By a static causal law we mean an expression of the form

¢ = (3.1)

where ¢ and 1 are formulas (of the underlying propositional language). The ex-
pression (3.1) itself is not such a formula. In particular, it is different from the

corresponding material conditional

¢ D .

We call ¢ the antecedent of (3.1) and v the consequent.

Intuitively, (3.1) can be read as: in every state in which ¢ is true, v is
caused to be true. An alternative reading is: ¢’s being true (in a state) causes ¥ to
be true (in the same state). Intuitively, the first reading is weaker than the second
one. Roughly speaking, it says that 1) is caused whenever ¢ is true, but it does not
say that ¢ causes ¥. Something else that is true whenever ¢ is true may cause
instead.?

Formally, in a framework in which all background knowledge is given in the
form of static causal laws, the states will be identified with the interpretations [
such that for every static causal law ¢ = ¢, the corresponding material conditional

¢ D 1 is truein 1.

O(Walking D Alive).

There are advantages to such fully semantic treatments. However, for the sake of simplicity and
in order to ease comparison with previous work (specifically, [Winslett, 1988]), we have elected not
to use them. Because of this decision, we have had to say something about constraints that in a
fully semantic treatment the formulas say themselves, namely, that the constraints hold in every
possible state of the world.

*In this chapter, we will not define truth conditions for static causal laws. Accordingly, when-
ever we say that a static causal law is true or false, we refer only to the truth or falsity of its
informal reading. (Normally, it will not matter which of the two readings we adopt, though the
weaker reading is always safe.) In Appendix A, we will describe an encoding of “causal laws” (not
necessarily static) in modal logic. The truth conditions given by this encoding will correspond to
the weaker reading given above.

22

3.2 Defining the Possible Next States

In this section our ultimate aim is to define Resp(F,S), the set of states that can
result from performing an action with the explicit effect F in the state S, given
background knowledge in the form of a set D of static causal laws. Our intention
is that each state in Resp(F,S) should reflect the direct and indirect effects of
performing the action. We will begin by reviewing Winslett’s [1988] definition for

the case in which the set D of static causal laws is replaced by a set of constraints.

3.2.1 Constraints

Using the terminology of section 3.1, Winslett defines Res}év(E, S), the set of states
that can result from performing an action with the explicit effect F in the state S,
given the set B of constraints. (The superscript W is used merely to distinguish
Winslett’s definition from other definitions of Res to follow.) The states are the

interpretations that satisfy each of the constraints in B.

Definition W For any set B of constraints, any explicit effect I, and any state
S, ResW (I, S) is the set of states S’ such that

(1) S’ satisfies F, and

(2) no other state that satisfies I differs from S on fewer atoms, where “fewer” is

defined by set inclusion.?

*The following definition differs from the one given by Winslett in one respect. Whereas Res is
here defined for states S and S’, Winslett defines Res for arbitrary interpretations. The following
is a more faithful restatement of Winslett’s definition. For any set B of constraints, explicit effect
F, and interpretation 7, Res]‘;v(E, I) is the set of interpretations I’ such that

(1') I’ satisfies £ U B, and

(2') no other interpretation that satisfies £ U B differs from [on fewer atoms, where “fewer” is
defined by set inclusion.

The difference between this definition and Definition W is unimportant, because (i) for every I, by
(1'), every element of Resy (F,T) is a state, and (ii) we have no interest in the value of Resl (E, 1)
when 7 is not a state.

23

Example 3.1 Let us suppose that Fred the turkey is presently alive and walking,
and that it is a cloudy day. The explicit effect of, say, shooting a gun is to make
Fred be not alive. We also have the constraint that in every state Fred is walking

only if he is alive.

S = {Alive,Walking, Cloudy}
= {-Alive}
= {Walking O Alive}.
Then
ResW (B, S) = {{-Alive, ~-Walking, Cloudy}}.

Here, =W alking is a ramification. The requirement in Winslett’s definition that the

clements of Resly (E,S) differ minimally from S rules out
{—Alive, =W alking, ~Cloudy}

as a possible next state. The truth of the fluent Cloudy is, as we say, “preserved by

inertia.” &

Intuitively, Winslett’s definition behaves reasonably in the preceding exam-

ple, but in many cases it does not. We will give two examples.

Example 3.2 In the following variation on Example 3.1, we consider the action of
enticing Fred to walk. We suppose that this action has the explicit effect of making
Fred walk whenever it is performed. Consequently, if Fred does not walk, it is certain
that one cannot have enticed him to do so. (Of course, this does not mean that
one did not attempt to entice him to walk, but that is a different action.) As in the

introduction to this chapter, let us suppose that Fred is not alive.

= {=Alive,~Walking, Cloudy}
E = {Walking}

= {Walking D> Alive}

24

It is easy to see that Resp (F,S) = {{Walking, Alive, Cloudy}}. Hence, according
to Winslett’s definition, in this case Alive becomes true as a ramification of making
Walking true. Intuitively, of course, this is not the desired result. We should instead

conclude that, because Fred is dead, he cannot be enticed to walk. <&

In the preceding example, Winslett’s definition yields a ramification—Alive
becoming true—when the intuitively correct result would be a qualification—the
action of enticing Fred to walk cannot be performed. The next example shows that
Winslett’s definition can also yield unintended ramifications in cases in which the

action can be performed.

Example 3.3 The following domain is described in [Lifschitz, 1990]. Imagine that
there are two (“three-way”) switches that control the state of a single light. The
switches may be up or down, and the light may be on or off. The light is on just in

case the positions of the two switches agree, i.e., both are up or both are down.

S = {=Upt, Up2,-On}
= {Upi}
= {On=(Upl= Up2}.

Then
Resg (E,8) = {{Up1, Up2, On}, { Up1,~Up2,-On} }.

Each of the states in Resly (E,S) satisfies F and differs minimally from S among
such states. However, the second state, which includes the unintended ramification
= Up2, is anomalous. Intuitively, toggling switch 1 in state S will cause a change in

the state of the light; it cannot cause a change in the state of switch 2. <&

Examples 3.2 and 3.3 show that Winslett’s definition sometimes gives incor-
rect results. Later we will analyze what is wrong with Winslett’s definition and show

how it can be fixed by replacing background knowledge in the form of constraints

25

by static causal laws. For this purpose, however, it will be useful to first recast
Winslett’s definition in an equivalent form given in [McCain and Turner, 1995].

In order to motivate this reformulation, we will present a series of definitions
in which we introduce elements of Winslett’s definition in successive steps. First, we
introduce the assumption of inertia, which is needed to solve the frame problem. (In
Winslett’s definition, inertia is realized by condition (2).) Secondly, we introduce
background knowledge in the form of constraints. FEach definition will take the
following form: For any state S and explicit effect F, Res(F,.S) is the set of states
S’ such that S is precisely the set of literals that are entailed by F and the available
background knowledge, together with any information provided by the assumption
of inertia. Recall that the symbol L stands exclusively for literals.

In Definition 1, we do not admit the assumption of inertia or background

knowledge of any kind. The set of states is simply the set of interpretations.

Definition 1 For any explicit effect E and state S, Res'(F,S) is the set of states
S’ such that

S'={L:E kL.

According to Definition 1, every literal in a possible next state has to be
entailed by the explicit effect F. Consider, for example, the state S = {p, ¢} and an
action that makes p false. Choosing ' = {-p}, Res'(F,S) = (. This is because F
neither implies that ¢ is true nor implies that ¢ is false. On the other hand, choosing
E = {-pAq}, Res'(E,S) = {{-p,q}}. Since E is required to imply not only the
values of the fluents that change but also the values of those that do not, the frame
problem is unsolved in Definition 1.

In Definition 2, we add to Definition 1 the assumption of inertia, according
to which it is unnecessary to explain the values of fluents that do not change in
the transition from state S to next state S’. These fluents and their values are

represented by the set SN .S’. We obtain Definition 2 by adding the literals in S N.5’

26

as additional premises to the consequence relation in Definition 1. We still do not
include background knowledge of any kind, so again the set of states is simply the

set of interpretations.

Definition 2 For any explicit effect E and state S, Res*(F,S) is the set of states
S’ such that

S’ ={L:(SNS)UE &= L}.

Consider again the state S = {p, ¢} and an action that makes p false. Choos-
ing £ = {-p}, we find that Res*(F,S) = {{-p,q}}. Because of the assumption of
inertia, F/ now only has to specify the changes in the values of fluents. Consequently,
in the restricted setting of Definition 2—one without background knowledge—the
frame problem is solved.

Given a state S and an explicit effect F, the solutions to the equation in

Definition 2 are the states S’ that are fixpoints of the function
AXAL:(SNX)UFEE L}

The following example shows that there may be more than one such fixpoint. Let

S ={-p,—q} and F ={pV ¢q}. Then

ResQ(E7 S) = {{—-w,q},{p,~q}}.

Notice, for example, in the case of the possible next state {—p, ¢}, the literal ¢ is
not entailed by F alone, nor is it preserved by inertia. Rather, it is entailed only
by the union (SN S")UE, i.e., by {=p,pV ¢}. Intuitively, in determining what is
caused in a candidate next state, facts preserved by inertia play the same role as
facts belonging to the explicit effect.

The definition of the transition function for the language A of Gelfond and
Lifschitz [1993] corresponds to the special case of Definition 2 in which the explicit
effect F is required to be a consistent set of literals. Under this restriction, it is easy

to see that Res?(F,.S) will always be a singleton.

27

We are now ready to reformulate Winslett’s definition for the framework with
inertia and background knowledge in the form of a set B of constraints. The states
will be the interpretations that satisfy every constraint in B. We obtain Definition 3

by adding the constraints to the premises of the consequence relation in Definition 2.

Definition 3 For any set B of constraints, explicit effect F, and state S, Resg (F,S)

is the set of states S’ such that

S'={L:(SNSYUFUBE L}.

Winslett’s definition explicitly expresses the idea of minimizing change. Defi-
nition 3 has a very different form; it is given in terms of a fixpoint condition. Despite

this difference, the two definitions are equivalent, as the following proposition shows.

Proposition 3.1 [McCain and Turner, 1995] For any set B of constraints, explicit
effect E, and state S, Resy (F,S) = Resy(E, S).

By Proposition 3.1, we know that Definition 3—Ilike Winslett’s definition—
behaves incorrectly on Examples 3.2 and 3.3. (The reader is encouraged to check
that this is so.) We are, however, in a better position to diagnose what is wrong

with Definition 3, and we are in a better position to fix it.

3.2.2 Analysis

Let us consider, with respect to each of the Definitions 1-3, whether or not it requires
every change in the value of a fluent to be caused.

According to Definition 1, in any possible next state S’, every literal in S is
entailed by the explicit effect F. Since the formulas in F are understood to be the
effects of an action, we see that Definition 1 does indeed require every change to be
caused.

According to Definition 2, in any possible next state S’, every literal in S’ is

entailed by (SNS")UFE, i.e., by the literals preserved by inertia and formulas caused

28

to hold in S’. As in the case of Definition 1, we again see that Definition 2 requires
every change to be caused.

According to Definition 3, in any possible next state S’, every literal in S’
is entailed by (SN S')U F U B, i.e., by the literals preserved by inertia, formulas
caused to hold in S’, and by the constraints. Can we say that Definition 3 requires
every change to be caused? Intuitively, we cannot. The reason for this is that the
constraints in B (in contrast, for example, to the formulas in £) are not assumed
to be caused in every candidate next state S’. They are, indeed, assumed to hold
in S"—they are assumed to hold in every state—but they are not assumed to be
caused to do so. As a result, the consequences of (SN S’)UE U B are not in general
consequences only of what is preserved by inertia or caused to hold in S’.

As an example, consider the constraint
Walking D Alwve (3.2)

from Example 3.2. Intuitively, (3.2) is true in every possible state. However, we
do not know that (3.2) is caused to be true in every candidate next state. Rather,
what we know is that in certain states—namely, those in which —Alive is true—
=Walking is caused to be true. Indeed, it is presumably on the basis of this causal
knowledge that we know that (3.2) is true in every possible state.

As a second example, consider the constraint
On= (Upl = Up?2) (3.3)

from Example 3.3. Intuitively, (3.3) also is true in every possible state. However,
again we do not know that (3.3) is caused to be true in every candidate next state.
Rather, what we know is that in certain states—namely, those in which (Up! = Up2)
is true—On is caused to be true, and that in certain other states—namely, those in
which (Upl = Up?2) is false—On is caused to be false.

In order to ensure that every change is caused, we should modify Definition 3

so that instead of including the non-causal constraints in B as premises, we include

29

(in addition to the literals preserved by inertia) only formulas that we know to be
caused to be true in S’. Thus, in Example 3.2, we should include =Walking as a
premise if —Alive is true in S, while in Example 3.3, we should include On as a
premise if (Upl = Up?2) is true in S, and =On as a premise if (Upl = Up?2) is false
in S’. In the next section, we will modify Definition 3 to work in this way.
According to our analysis, the defect in Definition 3 is that it permits un-
caused premises (namely, the constraints in B) where caused premises are required.
We conclude, therefore, that Definition 3 rests on a confusion of causal and non-
causal grounds. We should observe, however, that this conclusion assumes that by
classifying a formula as a constraint we intend only to convey that the formula is
true in every state, and not that it is, moreover, caused to be true. If we were
to revise our view of the intended meaning of constraints to say that constraints
are formulas that are caused to be true in every state (so that the constraint
is understood in the same manner in which we understand the static causal law
True = 1), then Definition 3 would no longer rest upon the above mentioned con-
fusion. Instead, its less serious failing would be that it does not employ a sufficiently
expressive language for describing the conditions under which facts are caused. In
order to formalize Examples 3.2 and 3.3, we need to be able to write causal laws of

the form ¢ = 1, where ¢ is other than True.

3.2.3 Static Causal Laws

Given the reformulation of Winslett’s definition in Definition 3 and our analysis of
its defects in the preceding section, it is now a simple matter to define the possible
next states in the presence of background knowledge in the form of static causal
laws.

The states will now be the interpretations that satisfy, for each static causal

law ¢ = 1 in D, the corresponding material conditional ¢ D .

30

Given a set D of static causal laws and a state S, we define
D% = {¢: for some ¢, ¢ = 1h € D and S |= ¢}.

That is, D® is the set of consequents of all causal laws in D whose antecedents are

true in S.

Definition 4 For any set D of static causal laws, explicit effect F, and state 5,

Res},(F, S) is the set of states S’ such that

S'={L:(SNnS) YUEUDY E L.

Example 3.4 Consider the following variation on Example 3.1 in which the con-

straint is replaced by the static causal law in D below.

= {Alive, Walking, Cloudy}
E = {-Alive}
= {-Alive = =Walking}
We find that
Rest)(E, S) = {{—Alive, =W alking, Cloudy}}.

Again, =Walking is a ramification. <&

The superiority of Definition 4 over Definition 3, and of static causal laws

over constraints, is illustrated by the following example.

Example 3.5 As in Example 3.2, let us again consider the case in which we at-
tempt to entice Fred the turkey to walk. However, let us replace the constraint of

Example 3.2 by the static causal law in D below.

= {=Alive,~Walking, Cloudy}
= {Walking}

= {-Alive = —-Walking}

31

Now Res},(F,S) is empty, which means that the action cannot be performed in S.

Intuitively, this new result is correct. We cannot make Alive true by making
Walking true. Therefore, in the state S we cannot perform an action whose entire
explicit effect is { Walking}. The reason is that making Walking true implies a

5

change—namely, making Alive true—that the action does not cause.” This is an

example of a derived qualification. <&

Another advantage of using static causal laws is illustrated by the following

variation on Example 3.3.

Example 3.6 Again imagine that there are two switches and a light. The switches
may be up or down, and the light may be on or off. The light is caused to be on
if the positions of the two switches agree, i.e., both are up or both are down, and

caused to be off otherwise.
= {=Upl, Up2,—-On}
E = {Upl}
= {(Upl1=Up?2) = On, -(Upl= Up2) = —-On}.
Then
Resp,(E,S) = {{Up1, Up2, On}}.
<

Example 3.3 is identical to Example 3.6, except that in the former example,

instead of the set D of static causal laws, we had the set B of state constraints
{On= (Upl = Up2)}.

We found that Resp(FE,S) contained in addition to the state in Res},(F, S) also the

state

{Upl,—~Up2,-On} (3.4)

5Since D contains —Alive = —Walking, we know that the material conditional (Walking D
Alive) holds in every state. This is the sense in which Walking implies Alive.

32

which, as we observed, is anomalous and results from the unintended ramification
—Up2. In [Lifschitz, 1990] and [Kartha and Lifschitz, 1994], this ramification is
blocked by declaring Up! and Up2 to be “in the frame” and On to be “not in the
frame.” (The assumption of inertia is applied only to the fluents that are in the
frame.) By contrast, the use of static causal laws in place of constraints makes
the frame/nonframe distinction unnecessary for the purpose of limiting possible
ramifications.® Intuitively, (3.4) is ruled out as a possible next state according to
Definition 4 by the fact that there is no causal explanation for = Up2.

The next example illustrates a possibly unexpected feature of Definition 4.

Example 3.7 Consider the following extension to an example that we considered

earlier in relation to Definition 2.

= {_'p7 _‘(]}
= {pva}

= {p=4q}

Previously, we observed that

Res*(E,5) = {{-p, 4}, {p,~q}}.

Before calculating Res},(F,S), one might, therefore, expect that Res},(F,S) is
{{—p, g}, {p,q}}; the expectation being that the static causal law p = ¢ will leave
{=p, ¢} unchanged (since p is not satisfied in this state) but will transform {p, —¢}
into {p, ¢}. However, this expectation derives from mistakenly treating static causal
laws as if they were dynamic, that is, as if they related facts in successive states
rather than contemporaneously. Intuitively, given D, the state {p, ¢} does not

describe a causally possible state. Thus, {p, ¢} cannot first come into existence

5The frame/nonframe distinction is one of several closely related approaches to controlling rami-
fications by dividing fluents into different categories. These approaches are compared in [Sandewall,

1995]. An insightful analysis of the limitations of such categorization-based approaches is given in
[Thielscher, 1996].

33

and then be transformed into {p, ¢}, as the reasoning leading to this expectation
suggests.

In fact, Res},(F,S) includes only {—p, q}. Intuitively, the state {p, ¢} is not
a possible next state because there is no causal explanation for the change in the

value of p. <&

3.3 Ramification and Qualification Constraints

Lin and Reiter [1994] draw a pragmatic distinction between two kinds of state con-
straints: ramification constraints, which yield indirect effects, and qualification con-
straints, which yield action preconditions. As they observe, the same distinction
was drawn earlier by Ginsberg and Smith [1988b]. In the language of static causal
laws, we can give a syntactic form to this distinction. Suppose that ¢ is a constraint.

If we wish ¢ to function as a ramification constraint, we write the rule
True = ¢.
If instead we wish ¢ to function as a qualification constraint, we write the rule
—¢ = False.

In Definition 3, constraints function exclusively as ramification constraints.
The correctness of our encoding of ramification constraints is, therefore, corrobo-

rated by the following proposition.”

Proposition 3.2 Let B be a set of constraints, and
D = {True = v : ¢ € B}.

For any state S and explicit effect F, Resy(E,S) = Res},(E,S).

"The corroboration is peculiar because a constraint is properly understood not to convey causal
knowledge at all. Its intuitive meaning is expressed by a qualification constraint rather than a rami-
fication constraint. Nevertheless, constraints do function as ramification constraints in Definition 3.
This peculiar state of affairs is explained by the fact that Definition 3 only requires the literals in a
possible next state to be implied, not caused. Because of this weaker requirement on possible next
states, non-causal knowledge behaves in Definition 3 like causal knowledge.

34

Proof. It suffices to observe that for any state S, D% = B. a

As an example of a domain in which a state constraint is intended to function
as a qualification constraint, we consider a simplified version of a domain from [Lin

and Reiter, 1994].

Example 3.8 Imagine an ancient kingdom in which there are two blocks. Either
block may be painted yellow, but by order of the emperor at most one of the blocks
is permitted to be yellow at a time. Consider a state in which the second block
is yellow. Intuitively, in this state it is impossible to only perform the action of
painting the first block yellow. However, representing the emperor’s decree by a

ramification constraint does not conform to this intuition. Indeed, let

= {=Yellowl,Yellow2}
= {Yellowl}

= {True = =(Yellowl AYellow2)}.

Then
Resp)(E, S) = {{Yellowl,=Yellow2}}.

So painting the first block yellow changes the color of the second block! On the
other hand, if we represent the emperor’s decree as a qualification constraint by
redefining D as

D = {(Yellowl A Yellow2) = False}

then Res}(E,S) is empty. This result, unlike the previous one, agrees with our

intuition that it is impossible to (only) paint the first block yellow in state S. <

The following straightforward proposition shows that static causal laws of
the form we write for qualification constraints cannot lead to ramifications, but can

only rule them out.

35

Proposition 3.3 Let D be a set of static causal laws and ¢ be a formula. Let D' =
DU{=¢ = False}. For any explicit effect F, and states S and S’, S' € Res}, (F,S)
if and only if S’ € Res}(E,S) and S" |= ¢.

Proof. For the left-to-right direction, suppose S’ € Res}, (F,S). Then we know
that False ¢ D''. So §' |= ¢. Therefore, D5 = D', So S’ € Res})(I2, S). For the
right-to-left direction, suppose S’ € Res},(F,S) and S’ = ¢. Then again we know
that D' = D%, So S’ € Resh, (E, S). O

Brewka and Hertzberg [1993] propose a modification of Winslett’s definition
[1988] in which static causal laws (represented as inference rules) play a role in
the definition of minimal change between states. Roughly speaking, in their defi-
nition uncaused changes in the values of fluents are minimized. In our definition,
on the other hand, uncaused changes are strictly forbidden. Because of the role
that minimal change continues to play in their definition, Brewka and Hertzberg
cannot express qualification constraints in the manner shown in Example 3.8. Nor
do they obtain derived qualifications of the kind illustrated by Example 3.5. Notice
that the static causal law —Alive = — Walking has neither the form of a ramifica-
tion constraint nor the form of a qualification constraint. In fact, as illustrated in

Section 3.2.3, it sometimes leads to ramifications and sometimes qualifications.

3.4 The Art of Causal Formalization

In formulating the static causal laws of a domain, we are faced with many alterna-
tives that we do not face in writing constraints. Deciding among these alternatives
requires one to be sensitive to the existence and nature of the causal dependencies.

As an example, consider the following constraint from Example 3.1.

Walking D Alive (3.5)

36

Each of the following causal laws rules out the same possible states as (3.5), but in

other respects their meanings diverge.

True = (Walking D Alive)
—(Walking D Alive) = False
Walking = Alive

—Alive = ~Walking.

The static causal law (3.6) functions as a ramification constraint, and (3.7) as a
qualification constraint, while (3.8) and (3.9) are “proper” causal laws, with non-
trivial antecedents and consequents. Although all of these laws rule out the same
possible states, each has a potentially different impact on the possible next states
according to Definition 4. The art of causal formalization often lies in deciding
among such alternatives as these.

In this case, we know, by Proposition 3.2, that writing (3.6) would yield from
Definition 4 the same result that we have obtained from Definition 3 by writing the
constraint (3.5), namely, that Fred can be brought back to life by enticing him to
walk. (See Example 3.2.) It is easy to see that (3.8) would yield the same unintuitive
result. On the other hand, by Proposition 3.3 we know that writing (3.7) would not
yield any ramifications. Only (3.9) gives the desired results.

It is vital, however, that formal considerations such as these not be the
only basis we have for deciding among different formulations. A formalism that
required one to work out the mathematical consequences of alternative formulations
in order to decide among them would be of little use for representing commonsense
knowledge. Instead, it must be sufficient to consider which formulations are true.

Intuitively, not being alive is a causally sufficient condition for not walking,
so (3.9) satisfies the truth test. On the other hand, it is not the case that not
walking is a causally sufficient condition for being not alive, so (3.8) does not. The

informal readings of (3.6) and (3.7) are unusual, due to the appearance of True and

37

False in these expressions, so the truth test is difficult to apply to these. However, it
is not difficult to see that a qualification constraint such as (3.7) rules out possible
states without saying anything about causation. Accordingly, (3.7) has the same
intuitive meaning as (3.5), that is, it expresses a state constraint. When viewed in
this light, it is clear that (3.7) also satisfies the truth test, although, assuming (3.9),
it is redundant.®

Definition 4 implicitly assumes that the set D of static causal laws is com-
plete, in the sense that in every state S, D® entails exactly the formulas that are
statically caused to be true in .S. Accordingly, our aim in formalizing a domain is
to include in D any true static causal law that is non-redundant relative to D. This
explains why it would be insufficient to include (3.7) in our formalization but not
(3.9).

One of the most difficult problems in formalizing action domains is deciding
when to write a ramification constraint, such as (3.6), and when to write a “proper”
causal law, such as (3.9). In this regard, it is useful to ask oneself whether there is
a fixed causal ordering among the fluents involved, or whether the ordering might
vary from one possible occasion to the next. Applying this consideration to the
case at hand, we would ask does Fred’s being not alive always (on every imaginable
occasion) cause his not walking, or can Fred’s walking also sometimes cause his
being alive. Whereas (3.6) recognizes the latter possibility, (3.9) does not. Since we
know that Fred’s walking can never cause his being alive, we know in this case—even
before considering the mathematical consequences of the two formulations—that we
should write (3.9) rather than (3.6).

Von Wright [1975] distinguishes cases in which “the cause-effect distinction
refers to the history of an individual occasion” from cases in which it “resides in the
relation between the generic factors themselves.” Using this terminology, a proper

causal law, such as (3.9), describes a causal relationship between generic factors,

8Given a set D of static causal laws, a static causal law R is “redundant” if adding R to D has
no effect on the set of states and for every state S, D and (D U{R})® have the same models.

38

e.g., the fluents —Alive and =Walking. A ramification constraint, such as (3.6),
does not. It may give rise to different relations of cause and effect on different
occasions.

The importance of ramification constraints is illustrated by the following

example.

Example 3.9 Imagine a seesaw whose two ends are labeled A and B. Whenever
Ais up, B is down, and vice versa. Imagine that we are capable of directly raising
and lowering both A and B. The causal relationship between the positions of the

two ends of the seesaw can be formalized by the ramification constraint
True = Up(A) = - Up(B). (3.10)
Consider the following cases.

S1 = {Up(A),~Up(B)}
E = {_‘UP(A)}

D = {True= Up(A)=-Up(B)}

Sy = {Up(A),~Up(B)}
by = {UP(B)}

D = {True= Up(A)=-Up(B)}
Both cases yield, by Definition 4, the same unique possible next state, namely,
{=Up(A), Up(B)}.

Intuitively, in the first case we can say that lowering A caused B to go up, and in

the second case we can say that raising B caused A to go down. <&

Example 3.10 Now, let us attempt to reformalize the Seesaw domain, representing

the causal relationship between the positions of the two ends of the seesaw, A

39

and B, not by a ramification constraint, but by static causal laws with non-trivial
antecedents and consequents. We will need the following four laws to cover all of

the possibilities of raising and lowering the two ends of the seesaw.

w
—
O

w
—
w

Is this also a reasonable formalization? At first, it may appear that it is. For
instance, if we substitute (3.11)—(3.14) for D in the two cases above, the results
are unchanged. However, the following case shows that the formalization is not

reasonable after all.

S3 = {Up(A),~Up(B)}
Es = 0

Ds = (3.11)-(3.14)

Here we suppose that an action with no explicit effect (for example, the action
of waiting) is performed. Nevertheless, we find that Res}), (F3,S3) contains two
possible next states—mnot only the state Ss itself, which we expect, but also the
state S" = {=Up(A), Up(B)}, which we do not. To see that S’ is, indeed, a possible
next state, notice that D% is in fact S itself. Since (S3NS") U E3 = 0, it follows
that S” € Res}), (Es, 53). <&

According to the formalization of Example 3.10, one possible result of merely
waiting is that the seesaw spontaneously changes position. Intuitively, the reason for
this odd behavior is a loop through the laws (3.12) and (3.13). Intuitively, according
to these two laws, = Up(A) causes Up(B), and vice versa. If such causal laws were

true, it would make sense that = Up(A) and Up(B) could cause each other to be true,

40

and, by so doing, also cause the seesaw to spontaneously change positions. Thus, the
behavior of Definition 4 with respect to these static causal laws is arguably correct.
Intuitively, however, the causal laws themselves are false; the causal relationship
between = Up(A) and Up(B) is not between “the generic factors themselves,” but in
each case concerns “the history of an individual occasion.”®

A better formalization of the seesaw domain uses the static causal law (3.10),

which does not give rise to the possibility of spontaneous change.

Sy = {Up(A),~Up(B)}
Ey = 0

D = {True= Up(A)=-Up(B)}

We find that Res,(Fy, S4) = {{Up(A),=Up(B)}}.

?Under special syntactic conditions, which are violated in Example 3.10, spontaneous change is
impossible. This is shown in Appendix A (Proposition A.4).

41

Chapter 4

A Simple Action Description

Language

In this chapter, we define an action description language Agp,, which is based on
Definition 4 of Chapter 3. In addition to static causal laws, the language Ac
includes symbols that designate actions and a second type of proposition that is

used to describe their explicit effects.

4.1 Action Languages

The first high-level action language was the language A of Gelfond and Lifschitz
[1993]. Following A, a number of other high-level action languages have been defined.

References to some of these are given in Chapter 2.

4.1.1 Two Components

According to Lifschitz [1995], the language A and its successors can be viewed as
a combination of two sublanguages. First, there is an action description language
in which the effects of actions in states are described. A set of propositions in an

action description language specifies a transition system in approximately the sense

42

of finite automata theory. Secondly, there is an action query language in which
assertions about the paths in a transition system are expressed. (Intuitively, the
paths through a transition system represent causally possible world histories.) In A

itself, the action description language consists of “effect propositions” such as
Shoot causes —Alive if Loaded

and the action query language consists of “value propositions” such as
= Alive after Load; Wait; Shoot .

An action language is a combination of an action description language and an action
query language. A general method for combining two such languages with the same

signature is defined in [Lifschitz, 1995].

4.1.2 Action Description Languages

The signature for an action description language consists of two nonempty sets of
symbols: a set A of action names and a nonempty set F of fluent names. A set of
propositions in an action description language specifies, as we have said, a structure
called a transition system. Definitions similar to the following appear in [Boutilier
and Friedman, 1995] and [Lifschitz, 1995].

A transition system for an action description language with the signature

(A, F) consists of the following elements:
e a nonempty set S of objects called states,
e a function V from S X F into the set of truth values, and
e a function R from A X S into the powerset of S.

The function R is called the transition function of the system. The elements of
R(A, s) are the states that could result (nondeterministically) from performing the

action A in the state s.

43

Toss Toss

{_'H7 T} {_'H7 _'T} {H7 _'T}
PickUp PickUp

Figure 4.1: A transition system for a Coin Tossing domain

We say that A is executable in s if |[R(A, s)| > 0. We say that A is determin-
istic in s if |[R(A,s)| = 1. We say that A is nondeterministic in s if |R(A,s)| > 1.
We say that A is nondeterministic if, for some s € 5, A is nondeterministic in s.
Otherwise, we say that A is deterministic.

We identify an interpretation I of F with the set of literals L such that I = L.

By V (s) we denote the interpretation
{F:FeFand V(s,F)}U{=F : F €F and not V(s, F)}.

Employing terminology from [Carnap, 1947], we say that V (s) is the state descrip-
tion of s, and we say that s realizes the state description V(s).

It is common in giving the semantics of action description languages to take
the set S to be a set of state descriptions and to specify that for every s € 5,
V(s) = s. The significance of these decisions is discussed in Section 4.2.2.

As an example, let us suppose that the signature for a given action description
language is

(A, F) = ({Toss, Pickup}, { Heads, Tails}).

In the transition system pictured in Figure 4.1 we abbreviate Heads and Tails by H
and T, respectively. The states are the interpretations shown. (We assume that for
all s € S, V(s) = s.) The transition function R is depicted by the action-labeled
arcs between states.

Notice that the action Toss is a nondeterministic, while Pickup is determin-

44

istic. The path

(~H, 1} 2% (1, -1y 28 (ol -y 2% -l 1y 2 (-, Ty

represents one “causally possible world history.”

4.1.3 Action Query Languages

The signature for an action query language consists of the same two sets of symbols
as an action description language: a set A of action names and a nonempty set F
of fluent names. Two classes of expressions are defined, azioms and queries. The
two classes may be the same.

According to [Lifschitz, 1995], the semantics of an action query language with
signature o is defined by specifying, for every transition system T of o, every set I'
of axioms, and every query (), whether) is a consequence of I' in T'; in symbols,
I'7r Q.

An action language combines an action description and action query language
with same signature. A domain description of the combined language is a set D of
propositions from the action description language and a set I' of axioms from the

action query language. A query) is a consequence of a domain description if

F'er Q

where T is the transition system specified by D.

The language Aq;, described in this chapter is purely an action description
language. No query language is specified for it. Many choices of query language
are possible, including, for example, the query language of A, the query language of
AR [Giunchiglia and Lifschitz, 1995], the two query languages defined in [Lifschitz,
1995], and the language M PL of Boutilier and Friedman [1995].

45

4.2 The Language A,

In this section, we define the syntax and semantics of the language Aq,. We assume
a fixed signature (A, F), where A is a set of action names and F is a nonempty set

of fluent names.

4.2.1 Syntax

By a fluent literal we mean an expression either of the form F or —F, where F is
a fluent name. By a fluent formula we mean a propositional combination of fluent
names, that is, a formula of propositional logic whose atoms are fluent names. We
regard the expressions True and False as abbreviations for (F'V —=F) and (F'A—F),
respectively, for some F' € F.

An effect proposition is an expression of the form
A causes 1 if ¢ (4.1)

where A is an action name, and ¢ and ¥ are fluent formulas. If ¢ is True, we write
simply A causes . Intuitively, (4.1) says that in every state in which ¢ is true,
doing A causes 1 to be true in every possible next state. The truth of the formula
¢ is a fluent precondition for A causing 2.

We write the expression
impossible A if ¢ (4.2)

where A is an action name and ¢ is a fluent formula, as an abbreviation for an effect
proposition of the form A causes False if ¢. Intuitively, (4.2) expresses an action
precondition for A, since it implies that A cannot be performed in any state in which
¢ is true. The terminology of action and fluent preconditions is due to Reiter [1991].
The syntax of effect propositions and the method of expressing action preconditions

as abbreviations are due to Kartha and Lifschitz [1994].

46

A static causal law is an expression of the form

¢ =1 (4.3)

where ¢ and 1 are fluent formulas. As in Chapter 3, when ¢ is True, (4.3) will
function as a ramification constraint, and when 1 is False, (4.3) will function as a
qualification constraint.

A domain description (or domain) in Acy is a set of effect propositions and

static causal laws.

4.2.2 Semantics

Let D be a domain description in the signature (A, F), A be an action name in A,
and I be an interpretation of F. By the explicit effect of A in I according to D—in
symbols, Fp(A, I)—we designate the set of fluent formulas ¢ such that for some
fluent formula ¢, A causes ¥ if ¢ isin D and I = ¢. By C'(D) we designate the

set of static causal laws in D. Finally, we define
C(D) = {3 : for some ¢, ¢ = @ € C(D) and I |= $}.

Intuitively, C'(D)! is the set of fluent formulas that are explicitly caused to be true
in I according to the static causal laws in D.

The domain description D specifies a transition system (S5, V, R) as follows:

(1) Sis the set of interpretations [of F such that for all ¢ = ¢ € C'(D), I satisfies

the corresponding material conditional ¢ D 1,
(2) for all states s, V(s) = s, and

(3) for all action names A, and states s and s, s’ € R(A, s) if and only if

s'={L:(sNs)UEpAs)UC(D)® = L}.

47

S1 7~ 83

52 54

A
517 53

.

54

Figure 4.2: Indefiniteness vs. nondeterminism

It follows from conditions (1) and (2) that states are identified with state de-
scriptions. It follows from condition (3) that every change must be caused according
to the effect propositions and static causal laws in D. The fixpoint equation in (3)
is essentially that in Definition 4 of Chapter 3. The only differences are that here
the explicit effect and static causal laws are extracted from D (by the functions F
and C, respectively) rather being given directly as parameters.

The identification of states and state descriptions means that it is impossible
to specify in the language Aq, a transition system in which two distinct states
realize the same state description. As a consequence, it is impossible to represent
the possibility that an action may have different effects in two real-world states that
agree on the values of all of the fluents in F. Indefiniteness about the effects of actions
is not expressible in Acp. On the other hand, nondeterminism is expressible. The
distinction between indefiniteness and nondeterminism can be seen in the transitions
depicted in Figure 4.2. We suppose that s; and s; realize the same state description,
while s3 and s, realize different state descriptions.

In (i), even though s; and sy realize the same state description, the action

A nevertheless has different possible effects in the two states. Assuming that sy

48

and sy correspond to distinct real-world states, this means that there are features of
the two states which, although they cannot be described in the fluent language F,
nevertheless are responsible for the different possible effects of A. The identification
of states and state descriptions rules out the possibility of such hidden features. So
(i) cannot be specified in Acp. It is, however, possible to specify (ii).

In (i), an agent who knew that he was either in state sy or sy could, by doing
A and observing the results, experimentally determine which of the two states he was
in. Later, if he knew that he was in the same state again, he would know precisely
what the effect of doing A would be. On the other hand, in (ii) an agent who knew
that he was in state s; would have nothing to learn by such an experiment. This

illustrates the difference between indefiniteness and nondeterminism.t

4.3 Examples

In this section we show how several domains, including some of those discussed in

the abstract framework of Chapter 3, are encoded in Acqy.

Example 4.1 We begin with a domain, described in [Lifschitz, 1990], in which
there are two three-way switches and a light (cf. Examples 3.3 and 3.6).

The signature contains two action names,
Toggle(Switchl), Toggle(Switch?)
and three fluent names,
Up(Switchl), Up(Switch2), Light.

We specify the domain (in part) by means of schemas, in which s is a meta-variable

standing for Switchi or Switch?2.

'See [Sandewall, 1992b], page 118, for a closely related discussion. Giunchiglia and Lifschitz
[1995] have defined an action description language in which distinct states may realize the same
state description.

49

Domain Dy ;:

(Up(Switch1) = Up(Switch?)) = Light (4.4)
—(Up(Switch1) = Up(Switch?)) = —Light (4.5)
Toggle(s) causes Up(s) if —~Up(s) (4.6)
Toggle(s) causes —Up(s) if Up(s) (4.7)

According to (4.4), the switches being in the same position—either both up or both
down—is a causally sufficient condition for the light being on. According to (4.5),
it is also a causally necessary condition. The effect propositions represented by
schemas (4.6) and (4.7) describe the direct effects of toggling the switches.

The domain Dy specifies the transition system (S, V, R), in which S contains

four states,
s1 = {=Up(Switchl), = Up(Switch?2), Light}
sy = {=Up(Switchl), Up(Switch?2), - Light}
ss = {Up(Switchl),=Up(Switch?2), - Light}

sy = {Up(Switchi), Up(Switch?), Light}

and R is defined as

R(Toggle(Switchl), s1) = R(Toggle(Switch?2),s4) = {s3}
R(Toggle(Switchl), s3) = R(Toggle(Switch?), s3) = {s4}
R(Toggle(Switchl), s3) = R(Toggle(Switch?2), s3) = {s1}
R(Toggle(Switchl), s4) = R(Toggle(Switch?),s1) = {s2}.

The transition function is pictured in Figure 4.3. The action names Toggle(Switchl)

and Toggle(Switch?2) are abbreviated as T and Ty, respectively. <&

Example 4.2 The next example is a variant of the so-called Yale Shooting domain

[Hanks and McDermott, 1987] (cf. Example 3.5).

50

T
T2 H T2 T2HT2
_h,
32 T 34

Figure 4.3: A transition system for the Two-Switches domain

The language includes four action names,
Load, Wait, Shoot, Fntice to_ Walk

and three fluent names,

Alwe, Loaded, Walking.

Domain Dy s:

impossible Load if Loaded (

-
o0

-
o

Load causes Loaded (
Shoot causes —Alive if Loaded

Shoot causes —Loaded

=
—
O

Entice to_ Walk causes Walking

e e e N N
inNy
—_
—_

=
—
w

—Alive = —Walking

The effect proposition (4.8) says that the gun’s not being loaded is an action pre-
condition for loading the gun. The motivating idea is that the action of loading
the gun involves putting a bullet in it. (We assume that the gun holds at most one
bullet). If the gun is already loaded, this cannot be done. The effect propositions
(4.9)—(4.12) describe the explicit effects of the four actions. (Since the action Wait
has no effects, it is not mentioned.) The effect proposition (4.10) is conditional; it

says that the gun’s being loaded is a fluent precondition for shooting having the

51

Figure 4.4: A transition system for the Yale Shooting domain

effect of killing the turkey. The final propsosition (4.13) is our familiar static causal

law.

The domain Dy ; specifies the transition system (S, V, R) in which S contains

siX states,

S1

52

53

S4

S5

S6

{Alive, Loaded, Walking}
{Alive, Loaded, —W alking}
{—Alive, Loaded, =W alking}
{Alive, ~Loaded, Walking}
{Alive, = Loaded, =W alking}

{—Alive, —Loaded, =W alking}

and R is defined as pictured in Figure 4.4. (We abbreviate the action names by

their first letters.)

&

Example 4.3 The next example is a variant of the emperor domain of Lin and

Reiter [1994] (cf. Example 3.8). The language includes four action names of the

form Paint(z,c), and four fluent names of the form Color(x,c), where z and ¢ are

meta-variables standing for Blockl or Block2, and Yellow or Red, respectively.

52

Domain Dy 3:

Color(Blockl,Y ellow) A Color(Block2,Y ellow) = Fulse
True = = Color(x, Red) V = Color(z,Y ellow)
Paint(z, c) causes Color(z, c)

—Color(z, Red) N —~Color(z,Yellow) = False

The static causal law (4.14) encodes the emperor’s decree that there shall be at most
one yellow block at a time. Since painting one block does not change the color of
the other block, it is written as a qualification constraint. Schema (4.15) encodes,
as a ramification constraint, the fact that a single block cannot be both Red and
Yellow. Schema (4.16) describes the direct effect of painting a block. Schema (4.17)
expresses the assumption that the blocks are always either red or yellow. (We make
this assumption only in order to reduce the number of states.)

The domain of Dy 3 specifies the transition system (S, V|, R) in which S con-

tains three states. (Again, we use some natural abbreviations.)

s1 = {Color(Bl, R),—~Color(B1,Y), Color(B2, R),~Color(B2,Y)}
s = {Color(Bl, R),—~Color(B1,Y),—~Color(B2, R), Color(B2,Y)}
ss = {=Color(B1, R), Color(B1,Y), Color(B2, R),-Color(B2,Y)}
The transition function R is defined as pictured in Figure 4.5. The action name

Paint(Blockl, Y ellow) is abbreviated as Y;. The other action names are abbreviated

similarly. <&

In each of the preceding domains that we have formalized, all actions have
been deterministic. In the following domain, we attempt to formalize a nondeter-

ministic action.

Example 4.4 Let us formalize a simple coin tossing domain. The language contains

two action names—Toss and Pickup—and two fluent names— Heads and Tails.

53

Ry, Ry Ry, Y

L) 2 4]

S1<——= S

Ry
RlH Y

53

Figure 4.5: A transition system for the Emperor domain

Domain Dy 4:

True = —HeadsV —Tails (4.18)
impossible Toss if HeadsV Tails (4.19)
Toss causes HeadsV Tails (4.20)
impossible PickUp if —Heads N\ —Tails (4.21)
PickUp causes —Heads A\ ~Tails (4.22)

The proposition (4.18) expresses, as a ramification constraint, the fact the the coin
cannot lie both heads and tails. According to (4.19), it is impossible to toss a coin if
it is lying either heads or tails; the idea is that the coin must be in hand. According
to (4.20), tossing the coin causes it to lie either heads or tails. The disjunctive effect
is intended to express the nondeterminism of coin tossing (but see below). According
to (4.21), it is impossible to pick up a coin that is already in hand. Finally, (4.22)
describes the explicit effect of picking up the coin.

The domain Dy 4 specifies the transition system pictured in Figure 4.1. The
action Toss, as we previously remarked, is nondeterministic. Notice, however, that
the nondeterminism of Toss arises here for a rather curious reason. Consider, for
example, the transition

{~H,=T} 1% {H,~T}.

54

The correctness of this transition can be checked as follows. By inertia, we have
=T and by the explicit effect of Toss we have H V T. (Also, by (4.18t) we have
—H Vv —=T.) Since these premises entail exactly the literals H and =T, the transition

is correct. The transition

{~H, =T} 1% {~H,T}

can be checked by similar reasoning. We see, therefore, that the nondeterminism of
Toss arises from the combination of its disjunctive effect H VT and inertia.

What is curious about this is that when the state of the coin changes from
neither H nor T being true before the toss to, for example, H being true afterwards,
it is clear that the reason for =T being true after the toss is something other than
inertia. It is, indeed, true that —7T is true both before and after the toss. But,
intuitively, the reason that —7T is true after the toss is not inertia, but rather that
H is true, from which, by (4.18), =T follows.

We would like to specify that the fluent =7 is not preserved by inertia, but
in the language Aq, there is no way to do so. Moreover, if A, were modified to
make this possible, it would then be impossible to express the nondeterminism of
coin tossing by the disjunctive effect H vV T. Apparently, A, would have to be

2

modified again to provide some other means for expressing nondeterminism.* In

?In fact, even without altering inertia, it can be seen that the use of disjunctive effects alone is
an inadequate means for expressing nondeterminism. Imagine, for example, that we view tossing
the coin as an action that includes picking up the coin as a part, so that the coin can be tossed in
each of its three possible states. (Let us now view the state of the coin in which it is lying neither
heads nor tails as one in which the coin is balanced on its edge.) It is easy to see that, except
in the state in which the coin is balanced on its edge, the disjunctive effect H v T' does not yield
nondeterminism. Instead, in each of the states in which H or T' is already true, tossing the coin
leaves the state unchanged.

Similarly, if we were to attempt to model coin tossing in a language with only a single fluent,
say, Heads, it is clear that writing

Toss causes HeadsV —Heads

(essentially, Toss causes True) would not yield the desired results.

In natural language, we can indeed express the nondeterminism of coin tossing by expressions
such as “Toss causes heads or tails” and even “Toss causes heads or not heads.” But this works, we
suggest, only because of certain “conversational implicatures” [Grice, 1989] that these expressions
have in addition to their logical content; for example, in the latter case, the implicatures are
that “Toss possibly causes heads,” and “Toss possibly causes not heads.” That these are indeed

55

fact, extensions of both kinds, as well as others, are possible. However, we will not
pursue this course here. Instead, in the next chapter, we will define an alternative
formalism that is mathematically simpler and more expressive than the language
Acp. In this formalism, it will be possible to address the issues of inertia and

nondeterminism, among others, more directly. <&

implicatures and not part of the logical content is suggested by the fact that they are lost when the
phrase “heads or not heads” is replaced by other logically equivalent expressions (e.g., by True or
by “if heads then heads”). The key to representing nondeterminism is to explicitly represent the
implicatures of such natural language expressions. We will propose one way of doing this when we
again consider the formalization of coin tossing in Chapter 7 (Example 7.2).

56

Chapter 5

The Language of Causal

Theories

In the previous chapter, a domain description was taken to specify a transition
system, and, thereby, a set of causally possible world histories (represented by the
set of paths through the transition system). The possibility of representing the
causally possible world histories in this way rests on three simplifying assumptions.
The first assumption is that changes occur only when actions are performed. This
assumption enables us to represent a world history by a sequence of alternating

states and actions, e.g.,
Ay Ay As Ay
S§1 —= S9 —> 83 — S4 — S5.

(If one of the actions is Wait—an action with the empty explicit effect—then this is
not a simplifying assumption.) The second assumption is that actions are not per-
formed concurrently. The third assumption is that for each s;41 in such a sequence,
it is unnecessary to look beyond the facts represented in a single transition

S5 Ay Sit1

in order to find sufficient conditions for the facts in s;y; to be caused. In Ay,

effect propositions refer to conditions in s; and A;, while static causal laws refer to

57

conditions in s;41. In the remainder of this dissertation, we will abandon these three
assumptions and will adopt a more general framework according to which a set of
propositions in an action description language is understood to directly specify the
set of causally possible world histories.!

We will define the language of causal theories as an extension of propositional
logic. (Lifschitz [1997] has shown how to reformulate the central definitions for the
case of predicate logic.) We will delay until Chapter 7 the discussion of how action
domains are formalized in the language of causal theories. In this chapter and the

next, we will be concerned solely with the formalism itself, the motivating ideas

behind it, and some of its mathematical properties.

5.1 Informal Motivation

The world is governed by causal laws. The true causal laws determine which world
histories are causally possible. Intuitively, a causally possible world history is one
that conforms to the true causal laws, i.e., one in which every fact that is caused
obtains. We will assume the principle of universal causation, according to which
every fact that obtains is caused.? Accordingly, we can say that a causally possible
world history is one in which exactly the facts that obtain are caused.

Now suppose that D is a complete description of the conditions under which
facts are caused. (Intuitively, this means that whenever a fact is caused in a world
history, D says that this is so.) In this case, we can say that a causally possible
world history is one in which the facts that obtain are exactly those that are caused
according to D. This is the key to understanding the formal definitions that follow.

Notice that we make two assumptions: (1) the principle of universal causation

Tt is possible to generalize the definition of a transition system so that the transition function,
instead of mapping a single action and a state to a set of states, maps a set of actions and a state
to a set of states. Relative to this more general notion of a transition system, only the last of the
above-mentioned assumptions remains as a simplification.

2This philosophical commitment is rewarded by mathematical simplicity in the main definition
of causal theories. Moreover, as we will see in Chapter 7, in applications it is easily relaxed.

58

and (2) the completeness of D.

On the other hand, notice that we make no assumption about where in a
causally possible world history the sufficient conditions for facts being caused are
to be found. We assume only that they can be found somewhere within the world
history itself. Thus, we allow, for example, the possibility that future facts may be
sufficient conditions for facts in the past being caused. We also allow the possibility
that a fact may be a sufficient condition (or part of one) for itself being caused.
This last mentioned possibility turns out to play an important role in in formalizing
action domains as causal theories. In effect, it provides a means of exempting facts

from the principle of universal causation.

5.2 Syntax

We begin with a standard language of propositional logic, whose signature is given by
a nonempty set of atoms. (In application to formalizing action domains (Chapter 7),
the atoms will be taken to represent propositions about the values of fluents and
the occurrences of actions at specific times.) By a literal we mean either A or —A,
where A is an atom. We use the expressions True and False to stand for (A V —A)
and (A A —A), respectively, for some atom A.

By a causal law we mean an expression of the form

¢ = (5.1)

where ¢ and 1 are formulas of the underlying propositonal language. By a causal
theory we mean a set of causal laws.

By the antecedent and consequent of (5.1), we mean the formulas ¢ and 1,
respectively. Note that (5.1) is not the material conditional, ¢ D . The intended

reading of (5.1) is the following:

(i) Necessarily, if ¢ then the fact that v is caused.

59

Often, but not always, a stronger reading is also appropriate, namely:
(ii) The fact that ¢ causes the fact that 1.

The term “causal law” is suggested by reading (ii).

Recalling our earlier discussion of sentences of forms (i) and (ii) in Section 1.2,
notice that while sentence (ii) asserts the existence of a causal relationship between
the facts associated with ¢ and 1, sentence (i) does not. Intuitively, however, this
difference in meaning is irrelevant for determining which facts are caused in a world
history and (so also) which world histories are causally possible. Since the semantics
of causal theories is limited to determining the causally possible world histories (we
will not define truth conditions for causal laws, or the conditions under which causal
laws are entailed), it supports readings (i) and (ii) equally well.?

It would be possible to abandon reading (ii) entirely in favor of the weaker
reading (i)—but not vice versa, since sometimes we will write causal laws for which
only reading (i) is intended. However, the advantage of maintaining reading (ii) is
that it is often what we most naturally wish to say. In such cases, given the limited
scope of the semantics of causal theories, there is no reason why we should not

regard ourselves as having said it.*

5.3 Semantics

We identify an interpretation I for a propositional language with the set of literals
L such that I = L. Here, as throughout this dissertation, we will use the symbol L

to stand exclusively for literals.

*In Appendix A, we will define an encoding of causal laws in a modal language for which truth
conditions and entailment are defined. In this framework, only reading (i) (for the encodings) is
supported by the formal semantics; reading (ii) will be abandoned.

*Our two readings for causal laws have the same sort of justification as our readings of effect
propositions and static causal laws in Acy,. In Acy, the readings are justified by the intuitive ap-
propriateness of the transition systems that sets of such propositions are taken to specify. Readings
(i) and (ii) for causal laws are justified by the intuitive appropriateness of the set of “possible world
histories” that causal theories are taken to specify.

60

Let D be a causal theory, and I be an interpretation. We define
D! = {4 : for some ¢, ¢ = 1 € D and I |= ¢}.

That is, D! is the set of consequents of all causal laws in D whose antecedents are
true in /. Intuitively, whether we adopt reading (i) or (i), D! entails exactly the
formulas that are caused to be true in [according to D. (This assumes, as is our
intuition, that the set of formulas caused to be true in [is closed under entailment.)

We are now ready to state the main semantic definition.

Main Definition. Let D be a causal theory, and I be an interpretation. We say

that I is causally explained according to D if I is the unique model of DI.®

Intuitively, when D describes an action domain, the causally explained in-

terpretations according to D correspond to the causally possible world histories.

Proposition 5.1 Let D be a causal theory, and I be an interpretation. The follow-

ing propositions are equivalent.

(i) 1 is causally explained according to D.
(ii) For every formula ¢, I = ¢ if and only if D' |= 6.

(iii) For every literal L, I = L if and only if D! |= L.

Proof. To show that (i) implies (ii), suppose (i). Then [is the unique model of
D!, Let ¢ be an arbitrary formula. There are two cases: (i) I |= ¢, in which case
for every I’ such that I’ = D!, I' = ¢, s0 D! |= ¢, and (ii) I }£ ¢, in which case
there is an I’ such that I' = D! and I' [£ ¢, so D! [£ ¢. We conclude that I = ¢
if and only if D! |= ¢. It is obvious that (ii) implies (iii). To show that (iii) implies

“Heinrich Herre and Gerd Wegner [1996] have independently defined the notions of a generalized
logic program and a strongly supported model. The class of generalized logic programs turns out
to be essentially equivalent to the class of causal theories, and the notion of a strongly supported
model turns out to be equivalent to the notion of a causally explained interpretation. These equiva-
lences were discovered at the Dagstuhl Seminar on Disjunctive Logic Programming and Databases:
Nonmonotonic Aspects, 1996.

61

(i), suppose (iii). We will first show that D has no other model than I. Suppose
that there is an interpretation I’ such that I # I’ and I’ = D'. Let L be a literal
such that I |= L, but I’ & L. It follows that D! £ L, which contradicts (iii). We
conclude that D! has no other model than I. That D! has a model is clear from
(iii), since otherwise D! would entail every literal, including literals that are not
true in 1. We conclude that I is the unique model of D!, from which (i) follows by

definition. O

In view of the equivalence of (i) and (ii) in Proposition 5.1, we can now say
that I is causally explained according to D if and only if exactly the formulas that

are true in I are caused to be true in I according to D.

Corollary 5.1 Let D be a causal theory. An interpretation I is causally explained

according to D if and only if
I={L:D' =1} (5.2)

Proof. Notice that (5.2) is simply (iii) of Proposition 5.1, written in a different

form. O

Recall that Definition 4 of Chapter 3 contained the following fixpoint equa-

tion
S'={L:(SNnS) YUEUDY E L. (5.3)

In essence, (5.2) can be obtained from (5.3) by dropping the premises (SN .S’) and
FE, that is, the premises for inertia and the explicit effect, respectively. We will see
in Chapter 7 that in the framework of causal theories, these premises need not be
built in, since both inertia and the explicit effects of actions can be expressed by
causal laws.

Given a causal theory D and a formula ¢, we say that ¢ is a consequence

of D if ¢ is true in every interpretation that is causally explained according to

62

D. Intuitively, when D describes an action domain, the consequences of D are the
formulas that are true in all causally possible world histories.

In classical logic, adding a new axiom to a theory can never increase its set
of models or diminish its set of consequences. The set of models is monotonically
non-increasing, and the set of consequences is monotonically non-decreasing. In the
language of causal theories, by contrast, adding a new causal law can increase the
set of interpretations that are causally explained, and thereby diminish the set of
consequences. Thus, the consequence relation for the language of causal theories is

nonmonotonic. This is illustrated in the following section.

5.4 Examples
Example 5.1 Let Ds; be the causal theory (in the language with only the atom
a) consisting of the causal law

a=a. (5.4)

Take I = {a}. Notice that DI, = {a}. Since I is the unique model of D{,, I is
causally explained according to Ds ;. No other interpretation is causally explained.

Therefore, a is a consequence of Ds ;. <&

Example 5.2 Now, let D55 be the causal theory obtained by adding to Ds; the

causal law
a = a. (5.5)

One easily checks that both {a} and {—a} are causally explained according to Ds .
Thus, a is not a consequence of Ds 5. This shows that the consequence relation for

causal theories is nonmonotonic. &

Example 5.3 Let Ds 3 be the causal theory (in the language with the atoms a and

b) consisting of the causal laws

True=a Db

63

b= a.

Take I = {a,b}. Notice that DI, = {a D b,a}. Since I is the unique model of
D!, Iis causally explained according to Ds 3. No other interpretation is causally

explained. Therefore, a A b is a consequence of Ds 3. <&

Example 5.4 Let Ds 4 be the causal theory (in the language with the atoms a and

b) consisting of the causal laws

aANb=10
—a A b = b
a = a

—a = —d.

The reader may verify that exactly the following interpretations are causally ex-

plained according to Ds 4.

{a,b} {—a,—b}

Thus, the formula (a = b) is a consequence of Ds 4. &

With the exception of Ds3, in each of the preceding causal theories the
antecedent of every causal law is a conjunction of literals, and the consequent of
every causal law is a literal. Causal theories of this form correspond syntactically to
the class of basic logic programs [Lifschitz, 1996]. We will investigate this subclass

of causal theories in next chapter.

5.5 Definitional Extension

In this section, we examine the role of explicit definitions in the language of causal

theories.

64

5.5.1 Explicit Definitions

Let F be an atom. By an explicit definition of F', we mean a causal law of the form
True = F =1

where 1 is a formula that does not contain F.
Let D be a causal theory with the signature (set of atoms) A. A causal theory
D' is said to be a definitional extension of D if the signature of D' is AU {F}, for

some atom F that is not in A, and
D'=DU{True = F = ¢}

where True = F =1 is an explicit definition of F.

Let D and D’ be causal theories. We say that D’ is a conservative extension
of D if the signature of the language of D is a subset of the signature of the language
of D', every causal law in D belongs to D', and for all formulas ¢ in the language

of D, ¢ is a consequence of D’ if and only if ¢ is a consequence of D.

Proposition 5.2 Let D and D' be causal theories. If D' is a definitional extension

of D then D' is a conservative extension of D.

5.5.2 Replacement

The following proposition states a simple replacement property which causal theories

inherit from classical propositional logic.
Proposition 5.3 Let D be a causal theory that contains the causal law
True = ¢ = . (5.6)

Let D' be a causal theory that is obtained by replacing zero or more occurrences of v
by ¢ in D, excluding occurrences in (5.6). An interpretation I is causally explained

according to D if and only if I is causally explained according to D'.

65

Example 5.5 Recall the causal theory Ds4 above. By Proposition 5.2, we know
that the following causal theory D55 (in a language with the atoms a, b, and ¢) is
a conservative extension of Ds 4.

aNb=D>

—a A —b = —b

a=a

Q= a

True = ¢ = -b

The reader may verify that exactly the following interpretations are causally ex-

plained according to Ds 5.

{a,b,—c}

{—a,—b,c}
Notice that the formula (¢ = b), which, as we saw above, is a consequence of Ds 4,
is also a consequence of Dy 5.

By Proposition 5.3, we know that the causally explained interpretations, and
thus also the consequences, of D5 5 are unchanged by the replacements in the second
causal law below.

aANb=b
aANc=c
a=a

@ = a

True = ¢ = —b
&

According to Proposition 5.2, we can extend the underlying language of

a causal theory D by a new atom F and add an explicit definition for F to D

66

without changing the consequences of D in the original language. According to
Proposition 5.3, we can also freely replace the definiens of F' by F anywhere in
D (except in the explicit definition itself) without affecting the causally explained
interpretations. Together, these propositions allow us to introduce abbreviations
for complex formulas, via explicit definitions, and to use them to simplify causal
theories. The importance of conservative extension and replacement theorems for

formalizing action domains was recognized in [Kartha and Lifschitz, 1994].

5.5.3 Proofs of Propositions 5.2 and 5.3

Lemma 5.1 Let F be an atom, A be a set of atoms, and D and D' be causal theories
in languages with the signatures A and AU{F'}, respectively. Furthermore, suppose
that

D'=DU{True = F = ¢}

where True = F = 1 is an explicit definition of F. Let I be an interpretation of
the language of D, and let I' be defined as follows:

I'=1U{F}, if [E v
I'=TU{=FY, if I} .

If I is causally explained according to D, then I' is causally explained according to

D’

Proof. Notice that for every interpretation I of the language of D, D' = ply
{F = v}. Suppose that I is causally explained according to D. Then [is the
unique model of D!. By the definition of I’, it follows that I’ is the unique model
of D U{F = ¢}, and thus also the unique model of D'’ Therefore, I' is causally

explained according to D'. a

67

Lemma 5.2 Let F, A, D and D' be as specified in Lemma 5.1. Let I' be an

interpretation of the language of D', and let I be defined as follows:
I=1\{F-F}.

If I is causally explained according to D' then I is causally explained according to

D.

Proof. Notice that for every interpretation I’ of the language of D', D'I' =
D' U{F = +}. Suppose that I’ is causally explained according to D’. Then I’ is
the unique model of D'’ and thus also of DI U {F = 1}. It follows that I is the

unique model of D!. Therefore, I is causally explained according to D. O

Proof (of Proposition 5.2). Let D' be a definitional extension of D. Suppose
that the signature of the language of D is A, the signature of D" is AU {F}, and
D' = DU{True = F = }. It is clear that the signature of the language of D is a
subset of the signature of the language of D’ and that every causal law in D belongs
to D’. Thus, it remains only to show that for all formulas ¢ in the language of D,
¢ is a consequence of D’ if and only if ¢ is a consequence of D. For the left-to-right
direction, suppose that ¢ is not a consequence of). Then there is a interpretation
I that is causally explained according to D such that I [£ ¢. It follows that the
interpretation I’, as defined in Lemma 5.1, is causally explained according to D’.
Since I’ is identical to I, except for assigning a value to F, it follows that I’ [¢.
Therefore, ¢ is not a consequence of D’. For the right-to-left direction, suppose
that ¢ is not a consequence of D’. Then there is a interpretation I’ that is causally
explained according to D’ such that I’ [} ¢. It follows that the interpretation [as
defined in Lemma 5.2, is causally explained according to D. Since I’ is identical to
I, except for assigning a value to F, it follows that I [£ ¢. Therefore, ¢ is not a

consequence of D. a

Proof (of Proposition 5.3). To begin, let Dy = D\ {True = ¢ = ¢}, and let
D = D'\{True = ¢ = 1}. So D} is obtained from Dy by replacing zero or more

68

occurrences of 1 by ¢. Let I be an interpretation. Clearly, ¢ = 1 is contained in both
D" and D', Soif I £ ¢ = v then I is not causally explained according to either D
or D', and we are done. So suppose I = ¢ = . We will show that D! and D! have
the same models. Note that D! = (Do U {True = ¢ = ¢v})! = D{ U {¢ = ¥}, while
D' = (DLU{True = ¢ = })! = D U{p =1}. Since I |= ¢ = ¢, D and DY are
the same except that D} contains ¢ in place of v in zero or more of its occurrences
in D{. Tt follows by the replacement of equivalents in propositional logic that D'
and D! have the same models. Therefore, I is the unique model of D' if and only
if I is the unique model of D'!. Hence, I is causally explained according to D if and

only if I is causally explained according to D'. a

5.6 An Embedding in Default Logic

In this section we describe an embedding, suggested by Hudson Turner (personal
communication), of causal theories into default logic [Reiter, 1980]. The reader may
skip this section (and the related Section 6.3) without loss of continuity.

In defining the syntax and semantics of default logic, we will be concerned
only with propositional default theories. The definitions given here follow the style
of definition in [Gelfond et al., 1991a].

A default is an expression of the form

a:ﬁh'"vﬁm (57)

2l
where a, f1,..., 8, (m > 0), and v are formulas of propositional logic. The com-
ponents of a default are named as follows: « is called the prerequisite, 81,..., O

are called the justifications, and v is called the consequent. If m = 0, (5.7) is an
inference rule. If ais True, it may be dropped. If both m =0 and « is True, (5.7)
will be identified with v. A default theory is a set of defaults.

Given a set X of formulas, by Cn(X') we mean the set of formulas ¢ such that

X E ¢. Cn(X) is the smallest set that contains X and is closed under propositional

69

logic.
Given a set R of inference rules, by Cn*(R) we mean the smallest set X of

formulas such that
(i) X =Cn(X), and
(i) for every & € R, if a € X then vy € X.

Cn*(R) is the smallest set that is closed under propositional logic and the rules in
R.

Let T be a default theory and E be a set of formulas. The reduct of T" with
respect to £ (in symbols, T) is defined as

TE:{g:wET&Lndforalli(1§i§m)7 —ﬁZQE}
g g

Notice that TF is a set of inference rules. The set F is called an extension for T if
E = Cn*(TF).

We are now ready to define an embedding of causal theories into default
logic. Let D be a causal theory. We define the corresponding default theory T'(D)
as follows:

T(D):{%:cb:MbED}.

Proposition 5.4 Given a causal theory D, an interpretation I is causally explained

according to D if and only if Cn(I) is an extension for T'(D).
The following lemma is used in the proof of Proposition 5.4.

Lemma 5.3 For every causal theory D and interpretation I, D' = T(D)Cn(l).

Proof. For the left-to-right-direction, suppose that ¢» € D!. Then for some
o= €D, I = ¢. We know that E(b € T(D). Since I E ¢, we also know that
—¢ & Cn(l). Therefore, szue (equivalently, ?) is in T(D)Cn(l). For the right-to-
left-direction, suppose that 1 (equivalently, %) is in T(D)Cn(l). Then for some

70

% € T(D), ¢ ¢ Cn(l). We know that ¢ = ¢» € D. Since =¢ ¢ Cn(I), I E ¢.
Therefore, ¢ € D'. a

Proof (of Proposition 5.4). Let I be an interpretation. [is causally explained
according to D iff I is the unique model of D' iff (by Lemma 5.3) I is the unique
model of T(D)C"™D iff Cn(I) = Cn(T(D)CMDY iff Cn(T) = Cw*(T(D)CMD)Y iff
Cn([) is an extension for 7'(D).]

Let X be a set of formulas. We say that X is consistent if there is no formula
¢ such that X contains both ¢ and —¢. We say that X is is complete if for every

formula ¢, X contains either ¢ or —¢.

Corollary 5.2 The interpretations that are causally explained according to a causal

theory D correspond one-to-one to the complete, consistent extensions for T'(D).

Proof. An extension F for T'(D) is complete and consistent if and only if for some

interpretation I, ¥ = Cn(I). Thus, the corollary follows by Proposition 5.4. a

In the next chapter, we will see that in the special case in which for every
¢ = 1 in D, v is a literal and ¢ is a conjunction of literals, there is a similar

embedding into extended programs [Gelfond and Lifschitz, 1990].

71

Chapter 6

Objective Logic Programs

In this chapter we investigate the class of causal theories in which the antecedent of
every causal law is a conjunction of literals and the consequent of every causal law is
a literal. Syntactically, such literal-oriented causal theories correspond to the class
of basic logic programs [Lifschitz, 1996]. Semantically, however, they are different.
Informally speaking, basic programs represent possible belief states which are partial
(in that they do not necessarily assign a value to every atom), while causal theories
represent, possible world histories which are total. In this sense, basic programs are
“subjective” and causal theories are “objective.” In light of this, we refer to the
literal-oriented subclass of causal theories as “objective programs.”

Objective programs turn out to have close semantic connections to the clas-
sical semantics for positive programs and the completion semantics for normal pro-
grams. Indeed, the semantics of objective programs is the natural generalization of
the completion semantics [Clark, 1978] to the class of programs that allow negation
to occur in the heads as well as the bodies of rules. In Chapter 9 this connection
to the completion semantics will be exploited to provide a automated approach to
query answering and planning with respect to causal theories that belong to the

class of objective programs.

72

6.1 The Language of Objective Programs

In this section we define the syntax and semantics of objective programs.

6.1.1 Syntax

As in the case of general causal theories, we begin with a standard language of
propositional logic, whose signature is given by a nonempty set of atoms.

An objective program is a set of rules of the form
LO — Lh...,Ln (61)

where n > 0 and for all 7, 0 < ¢ < n, L; is a literal. By the head of the rule (6.1),
we mean the literal L. By the body, we mean the set of literals {Ly,...,L,}.

An objective program is simply a causal theory written in a conventional logic
programming notation. Accordingly, we will also use the term “objective program”

to refer to a set of causal laws of the form
LiNn...ANL, = Lg

where n > 0 and for all 7, 0 <17 < n, L; is a literal.

We will have reason to discuss the two subclasses of the class of objective
programs, namely, the class of positive programs and the class of normal programs.
The following definitions are standard in the logic programming literature.

By a positive program we mean a set of rules of the form
AO — A17---7An

where n > 0 and for all 7, 0 <1 < n, A; is an atom.

By a normal program we mean a set of rules of the form
AO — L17---7Ln
where Ag is an atom, and for all 7, 1 <1¢ <mn, L; is a literal.

73

We will also have reason to discuss the class of extended programs [Gelfond

and Lifschitz, 1990]. An exztended program is a set of rules of the form
Lo < Ly,...,Lg,not Lgyq,...,n0t L. (6.2)

Syntactically, an objective program is an extended program that does not contain

not, the symbol for default negation (also called negation as failure).

6.1.2 Semantics

Objective programs are a special case of causal theories. Therefore, their semantics
is already known. Nevertheless, it will be useful to also define the semantics of ob-
jective programs independently, since their restricted syntax makes possible certain
simplifications.

As before, we identify an interpretation I with the set of literals L such that
I = L. We continue to use the symbol L to stand exclusively for literals.

Let IT be an objective program, and I be an interpretation. We define the

set of literals supported in I by II, in symbols 117, as
1! = {L: forsome B, L + Beclland B CI}.
Let I be an interpretation. We say that I is a model of 11 if
nci.
We say that [is supported by 11 if
rcnl.
Finally, we say that I is a supported model of II if

=11,

74

We say that a formula ¢ is a consequence of 11 if ¢ is contained in every supported
model of II.!
Recall the definition

DI = {4 : forsome ¢, ¢ = 1 € D and I = ¢}

from Section 5.3. Since B is a set of literals, I is a model of B if and only if B C 1.
Thus, the definition of 17 is a specialization of the definition of D! to the case of
objective programs.

Recall that an interpretation [is said to be causally explained according to a
causal theory D just in case I is the unique model of D!. Since I! is a set of literals,
I is the unique model of T/ just in case I = I17. Thus, the definition of a supported
model is specialization of the definition of a causally explained interpretation to the
case of objective programs.

Finally, the definition of consequence for objective programs is an obvious

specialization of the notion of consequence for causal theories generally.?

Example 6.1 The following program llg; is a notational variant of the causal
theory of Example 5.4.

b + a,b

=b « -a,-b

4 — a

-6 — —a

Let I = {a,b}. Notice that 1}, = {a,b}. Since I = II{,, I is a supported model
of Ig1. Now let I’ = {=a,—=b}. Notice that I1L', = {=a,—b}. Since I' = 11}, I' is

'The notion of a supported model has been previously defined for the class of normal logic
programs by Apt, Blair, and Walker [1988]. According to their definition, a normal program II is
supported by an interpretation [if for every atom A in [there exists arule A « Li,..., L, in
IT such that I |= Li A ... A L,. For the class of objective programs, it is natural to modify this
definition to say that for every literal L in [there exists arule L « Li,..., L, in II such that
I'ELi A... A Ly. This is equivalent to the definition given above.

?Normally, the consequence relation for a logic program is defined to hold only between a program
and a literal, rather than, as here, between a program and a (propostional) formula.

75

also a supported model of Ilg;. There are no other supported models. Therefore,

(a = b) is a consequence of llg . &

6.2 Literal Completion

The original semantics for logic programs with negation was the completion seman-
tics for normal programs [Clark, 1978]. In this section, we show that the supported
model semantics for objective programs corresponds to a straightforward generaliza-
tion of completion semantics for the case of programs in which negation is allowed
to occur in the heads of rules.

We are interested only in the propositional case, where the completion se-
mantics for normal programs may be defined as follows. Let II be a normal program.
We say that Il is completable if for every atom A there are finitely many rules in I1
with the head A. Let Il be a completable normal program. By the completion of 11

(in symbols, comp(I1)) we mean the set of equivalences
A=ByVByV...V By (6.3)
for each atom A, where

AFBl

AFBQ

A%Bk

are the rules in Il with the head A. If there are no such rules (k = 0), (6.3) stands
for A = False.

According to the completion semantics [Clark, 1978], the models of a normal
program Il are the models of comp(Il).

The completion procedure for normal programs can be extended to the class

of objective programs as follows. We first extend the notion of a completable pro-

76

gram to the class of objective programs as follows. Let Il be an objective program.
We say that II is completable if for every literal L there are finitely many rules
in I with the head L. Let Il be a completable objective program. By the literal

completion of Il (in symbols, lcomp(I1)) we mean the set of formulas
L=B vVByVv...VvBg (6.4)
for each literal L, where

LFBl

LFBQ

L%Bk

are the rules in Il with the head L. If there are no such rules (k = 0), (6.4) stands
for L = False.
According to the following proposition, the supported models of a complet-

able objective program are precisely the models of its literal completion.

Proposition 6.1 Let I be a completable objective program. An interpretation I is

a supported model of 11 if and only if I is a model of lcomp(1l).

Proof. For the left-to-right direction, let I be a supported model of II. Suppose
that L = By V...V B, is an element of the literal completion of II. We will show
that I = L =By V...V B,. Since I’ c I, we know that for every rule L + B;
(1<i<mn)inll,if I E B; then I = L. Therefore, I = By V...V B, D L. Since
I C T if L € I then for some rule L < B; (1 <i < mn)in I, I = B;. Therefore,
IELD>BV...VB,.

For the right-to-left direction, let I be a model of the literal completion of
II. Suppose that L is an arbitrary literal in II/. Then for some L + B € II,
I E B. Consider the equivalence L = By V...V B, in the literal completion of II.

77

We know that [= L = By V...V By, and that for some i (1 < i < n), B= B,.
Therefore, I =L. So 117 C I. Now let L be an arbitrary literal in /. Again, consider
the equivalence L = By V...V B, in the literal completion of II. We know that
I'EL=B;V...VB,. Therefore, for some i (1 < <n), I E B;. We also know
that L < B;is in II. Therefore, L € II’. So I C I1'. a

Example 6.2 Consider the following program Ilg 5.

b + a,b

=b « -a,-b
—a +— b

-6 — —a

The literal completion of Ilg o is

b=aAnb
=b=-aA-b
a = Fulse

—a = —-aVb.

The unique of model of this propositional theory is {—a, —b}, which is also the unique

supported model of Ilg 5. <&

According to Proposition 6.1, questions about the nonmonotonic consequence
relation for completable objective programs can be transformed into questions about
the monotonic consequence relation for propositional logic. In Chapter 9, we will

exploit this fact in an approach to automated query answering and planning.

Proposition 6.2 Let II be a completable normal program and I1' be the objective

program obtained by adding to 11, for every atom A, the rule
-A « —-A.

78

An interpretation I is a supported model of TU' if and only if I is a model of comp(11).

Proof. Notice that the literal completion of IT' is simply the completion of II, plus,
for each atom A, the tautology
-A=-A.

This means that the completion of II and the literal completion of I’ have the same

models. Thus, the proposition follows by Proposition 6.1. a
Example 6.3 As an illustration of Proposition 6.2, consider the normal program
H6.37

a +— b
and the corresponding objective program IIf s,

a +— b
—q — —a

—b «— —b.

The unique supported model of 11§ 5 is {—a, —b}, which is also the unique model of
the completion of Ilg 3,

a=1b

b = Fualse.

Proposition 6.2 suggests that the completion semantics for normal programs
can be viewed as consisting of two parts. First, it requires supported models. Second,

it assumes automatic support for all negative literals in an interpretation. Since

79

negation is not allowed in the heads of normal program rules, a normal program
is incapable of supporting negative literals explicitly. Therefore, the assumption of
negative support in the case of normal programs is inevitable. For programs that
allow negation in the heads of rules, on the other hand, the assumption of negative
support is both unnecessary and inappropriate. Accordingly, a natural extension of
the completion semantics for this larger class of programs is one that retains the
requirement of supportedness but drops the assumption of negative support. This

is precisely the semantics of objective programs.

6.3 Other Connections to Logic Programming

In this section, we investigate the relationship between the semantics of objective
programs and other proposed semantics for logic programs. The reader may skip

this section without loss of continuity.

6.3.1 Classical Semantics

Historically, the first logic programs were positive programs. They did not allow
either classical or default negation but consisted simply of Horn clauses from resolu-
tion theorem proving. (Logic programming began with the realization that certain
linear resolution procedures behaved with respect to such clauses essentially as a
program interpreter [Kowalski, 1974].) As such, the first semantics for logic pro-
grams was the classical semantics in which <+ was understood as the material
conditional. The models of the program were the models of the clausal theory.
This is a special case of the definition of a model for an objective program given in
Section 5.3.

The following proposition shows a connection between the classical seman-
tics and the semantics of objective programs. This connection holds for arbitrary

objective programs, not only for positive programs.

80

Proposition 6.3 Let 11 be an objective program and I1' be the program obtained by

adding to 11, for every atom A, the rules

A+ A

-4 + —A.

An interpretation I is a supported model of 11" if and only if I is a model of 1.

Proof. By Proposition 6.1, it suffices to show that I is a model of the literal

completion of I’ if and only if T is a model of II. Let
L=LVvB/V...VB, (6.5)

be an arbitrary formula in the literal completion of II’. In light of the rules in
1"\ I, we know that the literal L which appears on the lefthand side of (6.5) also,
as shown, appears as a disjunct on the right. (In this case, we have written L as the

first disjunct on the right.) Now, (6.5) is equivalent to the conjunction of

LD>DLV B V...V B,

LVBV...VB, D L.

The first conditional is a tautology, and the second is equivalent to the conjunction

of the following material conditionals,

B, DL

By DL

B,D>L

which correspond precisely to the rules in Il with the head L. Since this holds for
every equivalence in II’, the models of the literal completion of I1’ are precisely the

classical models of II. O

81

Example 6.4 As an illustration of Proposition (6.3), consider the program Ilg 4,
a +— b
and the corresponding objective program Il ,,

a +— b
a +— a
—a — a
b« b

—b «— —b.

&4 has three supported models,

{av b}7 {av _'b}7 {_'av _'b}7

which are also the models of Ilg 4 according to the classical semantics of positive

programs. <&

6.3.2 Stable Model Semantics

Let IT be a positive program. The models of I are given by the classical semantics
defined in Section 6.3.1. We say that a model I of I is minimal if there is no model
I’ of II such that the set of atoms in I’ is a proper subset of the set of atoms in
1.3 It is well-known [van Emden and Kowalski, 1976] that every positive program
IT has a unique minimal model. Let us designate the minimal model of II by «(II).

Now let II instead be a normal program, and I be an interpretation. By Il

we designate the program that is obtained from II by deleting

*In the original definition of the stable model semantics for normal programs [Gelfond and
Lifschitz, 1988], an interpretation I was represented, not by a set of literals, but by a set of atoms.
Every atom in such a set M was taken to be true in I, and every atom not M was taken to be false
in /. Given this representation, a minimal model can be defined as a model which has no subset
that is also a model. Since we represent an interpretation by a set of literals, we require a different
definition that distinguishes between an interpretation and the set of atoms in it.

82

(i) each rule that contains a negative literal = A in its body with A € I, and
(ii) all negative literals in the bodies of the remaining rules.

Notice that Iy is a positive program. An interpretation [is said to be a stable
model of 1 if I = «(11}) [Gelfond and Lifschitz, 1988].

By the positive atom dependency graph for a normal program we mean the
directed graph which has atoms as nodes, and which has an edge from each atom
that appears in the head of a rule to each atom that appears positively in the body
of the rule. A normal program Il is called positive-order-consistent [Fages, 1994] if
there are no infinite paths in the positive atom dependency graph for II.

Fages has shown that the completion semantics and stable model semantics
coincide for positive-order-consistent normal programs. We, therefore, have the

following proposition.

Proposition 6.4 Let Il be a completable, positive-order-consistent, normal pro-
gram. Let II' be the objective program obtained by adding to I, for every atom
A, the rule

-A « —-A.

An interpretation I is a supported model of 1I' if and only if I is a stable model of
IT.

Example 6.5 As an illustration of Proposition 6.4, consider the normal program

H6.57

a +— —b
b +— —a
c +— a

c +— b

83

and the corresponding objective program IIj «,

a < —b
b« —a
c — a
c+— b
g — Ta
=b + -b

—C — C.

The stable models of 11g 5 are {a, —b, ¢} and {—a, b, c}. These are also the supported
models of TI 5. <&

Example 6.6 As motivation for the restriction to positive-order-consistent normal

programs consider the program Ilg g,
4+ a
and the corresponding objective program IIf 4,

a «— a

—a — a.

The unique stable model of Tlg g is {a}, but TI§ 4 has two supported models, {a} and

{—a}. Note that Il ¢ is not positive-order-consistent. &

Example 6.7 Similarly, the program Ilg 7,

ald «— al, al < a2,...

84

has a unique stable model in which for all ¢ (¢ > 0), a; is false. However, the

corresponding objective program, which includes in addition the rules
—ag — —ag, tal — —al, ...

has two supported models, one in which for all ¢ (¢ > 0), ; is false, and the other

in which for all ¢ (¢ > 0), a; is true. <&

6.3.3 An Embedding in Extended Programs

The “answer set” semantics [Gelfond and Lifschitz, 1990] for extended programs
can be defined by an embedding into default logic as follows. Given an extended
program II, we define D(II) to be the set of default rules

Ll/\---/\Lk:Lk+17---7L_n
Lo

(where L is the complement of L) such that
Lo < Ly,...,Lg,not Lgyq,...,n0t L,

is a rule in II.

The following proposition has been shown by Gelfond and Lifschitz.

Proposition 6.5 [Gelfond and Lifschitz, 1990]. For any extended program 11, if S
is an answer set for Il then Cn(S) is an extension for D(I1), and for every extension

E for D(I1) there is exactly one answer set S for 1l such that Cn(S) = E.

Corollary 6.1 Let Il be an extended program, and S be a set of literals. S is an
answer set for Il if and only if Cn(S) is an extension for D(11).

The preceding proposition shows that D(II) is a faithful embedding of ex-

tended programs into default logic.

85

Since objective programs are a special case of causal theories, we know by
Proposition 5.4 that objective programs can also be embedded in default logic. Let
IT be an objective program. We define an embedding 77(I1) of Il into default logic

as

:Ly,.... L,
T’(H):{l’T’:L — Ll,...,LneH}.

We have the following proposition.

Proposition 6.6 Let Il be an objective program. An interpretation I is a supported

model of 11 if and only if Cn(I) is an extension for T'(I1).

Proof. Recall the embedding T'(D) of a causal theory D in default logic of Sec-
tion 5.6. Since an objective program is a notational variant of a causal theory, we

can take T also to be defined for objective programs as

(1) = { AL R LlA‘L“AL” L« Ll,...,LneH}.
Let I be an interpretation. By Proposition 5.4, we know that I is a supported model
of 11 if and only if Cn([) is an extension for T'(Il). However, noticing that Cn([)
is the set of formulas true in [, it is easy to see that for any finite set B of literals,
“AB ¢ Cn(I) if and only if for every literal L € B, =L ¢ Cn(I). 1t follows that
(1) Cn(l) = T'(11) Cn(])7 and thus that Cn([) is an extension for T'(11) if and only
if Cn([l) is an extension for 7"(Il). We conclude that [is a supported model of II if
and only if Cn([) is an extension for 7”(Il). 0

Using the embeddings of extended and objective programs into default logic,
we can show that there is also the following embedding of objective programs into
extended programs. Given an objective program II, we define a corresponding ex-

tended program R(1I) as follows:

R(I)={L + notLy,...,not L, :L < Ly,..., L, €Ill}.

86

Proposition 6.7 Let I1 be an objective program. For any interpretation I, I is a

supported model of 11 if and only if I is an answer set for R(11).

Proof. Let Il be an objective program. Notice that 7"(Il) = D(R(1I)). It follows,
by Proposition 6.6, that I is a supported model of Il if and only if Cn([) is an
extension for D(R(Il)). By Corollary 6.1, Cn(I) is an extension for D(R(II)) if and
only if I is an answer set for R(Il). Therefore, I is a supported model of 11 if and

only if I is an answer set for R(II). o

6.4 Some Standard Ways of Lending Support

The supported model semantics imposes a rather strong completeness requirement
on objective programs. If an objective program is to have any supported models at
all, then it must include, for every atom A, rules that support either A or =A. (A
similar fact holds for causal theories generally.) The burden of writing programs that
satisfy this completeness requirement can be lessened by adopting certain standard
ways of augmenting a program. We have employed three such ways in the examples

of this chapter.

e Inertial support

b + a,b

—b < —a,=b

e Negative support

—a — a

e (Classical support

g — a

87

Inertial support was used in program llg;. Negative support was used in program
1§ 5. Classical support was used in program Il ,. The name “inertial support” is

motivated by an application in the next chapter.

88

Chapter 7

Formalizing Action Domains as

Causal Theories

In this chapter we describe a general approach to formalizing action domains as
causal theories. In doing so, we define a uniform action description language L.
Essentially, L, is the language of causal theories, restricted to a particular kind of
signature. In calling the language “uniform” we draw attention to the fact that—
unlike, for example, the language A.;,—the language L, contains only one kind of
proposition. Both static and dynamic causal laws can be expressed by propositions

of this one kind.

7.1 The Language L,

The signature for a specific L¢;, language is specified by a triple (A, F, T), where A
is a set of action names, F is a nonempty set of fluent names, and T is a nonempty
set of time names, corresponding to a subset of the integers. We view time as
continuous but refer to only a discrete subset of times by name. The atoms of
the language are expressions of the forms a; and f;, where a, f, and ¢ are action,

fluent, and time names, respectively. Intuitively, a; is true if and only if the action

89

named by @ begins to occur immediately after the time named by ¢ (normally, we
will express this by saying that ¢ occurs at t), and f; is true if and only if the
fluent named by f holds at the time named by ¢t.! A formula of the language is a
propositional combination of expressions of these two forms.

An Loy domain description is a causal theory—i.e., a set of causal laws—in
an L¢;, language.

Note that there are no restrictions on the times that may be referenced in
the antecedent or consequent of a causal law. In particular, the times referenced
in the antecedent are not required to precede (or not follow) those referenced in
the consequent. Thus, static causal laws—and even laws that intuitively describe

causation that runs backwards in time—are allowed.

7.2 The Suitcase Domain

As an initial illustration, we will formalize a domain from [Lin, 1995] in which there
is a suitcase with two latches, each of which may be in either of two positions, up
or down. The suitcase is spring-loaded so that whenever both latches are in the
up position the suitcase is caused to be open. We will model the opening of the
suitcase (as Lin does as well) as a static effect; that is, we will not model a state of
the domain in which both latches are up but the suitcase is not (yet) open.

To formalize the Suitcase domain in the language L1, we first choose a set of
actions and elementary fluents, and a set of names to designate them. One possible

choice is the following.

Toggle(L1) : the action of toggling Latch 1
Toggle(L2) : the action of toggling Latch 2

Close : the action of closing the Suitcase

"Normally, we will drop the phrase “named by” in contexts such as this. So, for example, given
an action name a, a fluent name f, and a time name ¢, we will allow ourselves to write “the action
a,” “the fluent f,” and “the time ¢t.” Our intention is to always make it clear by the accompanying
words whether we are referring to a name or to what it names.

90

Up(L1) : the fluent that Latch 1 is up
Up(L2) : the fluent that Latch 2 is up

Open : the fluent that the Suitcase is open

The first three symbols designate possible actions in the domain. The remaining
three symbols designate the states of objects in the domain, specifically, the states
of the latches and the suitcase.

Next, we choose a set of time names. In the Suitcase domain, we identify
time with the natural numbers. Other possible choices would be the integers, or
a finite sequence of the natural numbers or integers. There may be many reasons
for choosing to represent time as finite; the domain itself may exist for only a finite
time, the domain description may correctly describe the domain over only a finite
time, or we may simply be interested in what happens in the domain only over a
finite time.

We will normally specify the signature for an L., language by a BNF-style
grammar. For example, the signature for the Suitcase domain is specified as follows,

where nonterminal symbols are written in lowercase.

latch == L1 | L2
action ::= Toggle(latch) | Close
fluent ::= Up(latch) | Open

time == 0| 1| ---

The clauses for action, fluent, and time specify the signature (action, fluent, time)
for a specific Ly, language. The type latch is an auxiliary type which simplifies the
specification of the types action and fluent.

Given our choice of language, the Suitcase domain can be formalized (in part,
as we will see) by writing schemas as follows. Below and throughout this disseration,

t is used as a meta-variable of type time. Here we also use [as a meta-variable of

91

type latch.

Toggle(l) A Up(l)y = = Up(l) 141 (7.1)
Toggle(l); A= Up(l); = Up(D)¢41 (7.2)
Close; = —Open, (7.3)
Up(L1)¢ A Up(L2); = Open,. (7.4)

According to schemas (7.1) and (7.2), at every time ¢, toggling one of the latches
at ¢ causes it to be in the opposite state at time ¢ + 1. According to schema (7.3),
at every time ¢, closing the suitcase at ¢ causes it not to be open at time ¢ + 1.
According to schema (7.4), both latches being up at a time ¢ causes the suitcase to
be open also at t.

Schemas (7.1)—(7.3) are dynamic causal laws. Intuitively, they are similar in

meaning to the propositions

Toggle(l) causes Up(l) if = Up(l)
Toggle(l) causes = Up(l) if Up(l)

Close causes —Open

of the language Ac;. Schema (7.4) is a static causal law. Intuitively, it is similar in

meaning to the proposition
Up(L1) A Up(L2) = Open

of the language Acqp,. In fact, the static and dynamic laws shown above are only two
of many possible kinds. We will see other kinds of causal laws (with other patterns

of temporal reference) in the next section and in later examples.

7.3 Imnertial Fluents and Exogenous Facts

The causal theory (7.1)—(7.4) is incomplete, because it does not state sufficient

conditions for certain kinds of facts being caused—specifically, facts preserved by

92

inertia, facts about the initial situation, and facts about which actions occur (and
when). In this section we describe some standard ways of augmenting an L, domain

description in order to fill this gap.

Explaining Action Occurrences

Normally, in formalizing an action domain we do not describe the causes of actions.
This is not because we believe that the agent’s actions are not caused, or that they
are “self-caused,” or that the agent has free will. (We may or may not believe such
things; it does not matter.) Rather, the reason that we do not describe the causes
of actions is that they are irrelevant to the purposes of deliberation and planning.
For these purposes, we must be able to answer “what if” questions, such as the one

below, without regard to what the agent is or is not destined to do.

What if the agent were to simultaneously perform the actions Toggle(L1)
and Toggle(L2)?

Therefore, even if we did specify the causes of actions, we would somehow have to
ignore them for the purposes of deliberation and planning. For these purposes, the
agent’s abilities are relevant, but his destiny is not.

Nevertheless, we know that a causal theory must specify conditions that are
sufficient for every fact in a causally explained interpretation to be caused, including
facts about the occurrences (and non-occurrences) of actions. We can reconcile this
observation with the point made in the preceding paragraph by representing that
facts about action occurrences may be exogenous to the causal theory. We do this

by writing the following schemas,

ay = Qg (75)

Qg = TG (76)

where @ and t are meta-variables of type action and time, respectively. According

to schema (7.5), the occurrence of an action a¢ at a time ¢ is caused whenever a

93

occurs at t. According to schema (7.6), the non-occurrence of an action a at a time
t is caused whenever a does not occur at ¢t. Since this is so, no other cause for the
occurrence or non-occurrence of a at t is required. Intuitively, the effect of schemas
(7.5) and (7.6) is to exempt facts about action occurrences from the principle of

universal causation.

Explaining Facts about the Initial Situation

When, as in the Suitcase domain, we identify time with the natural numbers (rather
than, for example, the integers), we have to be concerned with how facts about the
initial state of a world (i.e., at time 0) are to be explained. In the Suitcase domain,
we can think of time 0 as the moment at which the suitcase came into existence, or as
simply an arbitrary moment during the “life” of the suitcase. Either way, whatever
in the real world causes the latches to be either up or down at time 0, and whatever
it is that causes the suitcase to be either open or closed at time 0 (except in the
case that both latches are initially up) lies outside of time as it is represented in our
theory. Therefore, except in the one case mentioned, we cannot hope to describe
the real causes of these facts. Instead, we represent that facts about time 0 may be

exogenous to our theory by writing the following schemas,

Jo=lo (7.7)

—fo= /o (7.8)

where f is a meta-variable of type fluent. According to schema (7.7), a fluent f is
caused to hold at time 0 whenever it does hold at time 0. According to schema (7.8),
a fluent f is caused to not hold at time 0 whenever it does not hold at time 0. Since
this is so, no other explanation for f’s holding or not holding at time 0 is required.
Intuitively, the effect of including schemas (7.7) and (7.8) is to exempt facts about

the initial situation from the principle of universal causation.

94

Explaining Facts by Inertia

In some instances, when a fluent remains true from one time to the next, its truth
at the second time can be explained by inertia. If this is true for all pairs of
successive times, we say that the fluent is “inertial.” In Chapters 3 and 4, we
tacitly assumed that every fluent literal designated an inertial fluent. (Recall that
in defining Res(F,S), for an explicit effect £ and state S, we denoted the literals
that were preserved by inertia in a candidate next state S’ by S N.S".) We will call
this the standard inertia assumption.

The standard inertia assumption is appropriate for the Suitcase domain and
many others. However, it is not always appropriate. Depending on the language,
there may be fluent literals that do not designate inertial fluents, and there may be
inertial fluents that are not designated by fluent literals. We will see examples of
both kinds later in this chapter.

By a fluent formula we mean a propositional combination of fluent names.
Given a fluent formula ¢ and a time name ¢, we write o; to stand for the formula
obtained from ¢ by simultaneously replacing each occurrence of each fluent name f
by the atom f;. As an example, the expression (—H A —T)g, for fluent names H and
T, stands for the formula (=Hy A =Tp).

Using this convention, the schematic form of the inertia law is
Ot NOtp1 = 041 (79)

where ¢ stands for a fluent formula, and ¢ is a meta-variable of type time.
Normally, it will be convenient to specify the inertial fluent formulas for a

domain by adding an extra clause to the specification of the signature. For example,

in the case of the Suitcase domain, we would specify the standard inertia assumption

by adding the clause

inertial-formula = [—]fluent.

95

e —Toggle(L1)y e —Toggle(L1); e —=Toggle(L1),
o Toggle(L2)y e —~Toggle(L2), o —=Toggle(L2),

o = (Closeg o = Closey o = (Closey
e Up(Ll)g e Up(L1)y e Up(L1),y
e = Up(L2)o Up(L2)y o Up(L2),
e = Openy Openy e Open,

Figure 7.1: A possible world history in the Suitcase domain

According to this specification, the following fluent formulas designate inertial flu-
ents: Up(L1), = Up(L1), Up(L2), = Up(L2), Open, and =Open. Intuitively, the effect
of including schema (7.9) is to exempt the persisting values of inertial fluents from

the principle of universal causation.

7.4 The Suitcase Domain (continued)

The complete description of the Suitcase domain is expressed by the schemas (7.1)—
(7.9). The schemas (7.1)-(7.4) are domain dependent. The schemas (7.5)—(7.9)
represent standard ways of augmenting an L., domain description. We will call
them the standard schemas. Notice that the set of causal laws represented by the
standard schemas is determined by the signature of the domain—specifically, by
the action, fluent, and time names—and by the specification of the inertial fluents.
In the terminology of Section 6.4, the schemas (7.5)—(7.6) and (7.7)—(7.8) provide
classical support to a causal theory, and the schema (7.9) provides inertial support.
The frame problem is solved by schema (7.9).

Given a causal theory D, we identify the causally possible world histories
according to D with the interpretations that are causally explained according to D.
As an example, let D be the domain description for the Suitcase domain, and let
I be the interpretation displayed in Figure 7.1. Notice that I specifies, for every

action @ and time ¢, whether or not a occurs at ¢, and, for every elementary fluent f

96

and time ¢, whether or not f holds at ¢. (In this instance, the ellipses are intended
to mean that after time 2 no action occurs and no fluent changes its value.) It is
not difficult to see that [is causally explained according to D. The bullets indicate
the literals at times 0, 1, and 2 that appear in D! due to the standard schemas
(7.5)—(7.9). The two literals that are not marked by bullets appear in D due to the
schemas (7.2) and (7.4). The remaining literals (represented by the ellipses) appear
in D! because of schemas (7.5)—(7.6) and (7.9). (The atoms Open,, for all t > 1,
also appear in D! due to schema (7.4).) Since D! contains no other formulas, we
conclude that I = D!. Thus, I is the unique model of D!. Therefore, I is causally
explained according to D.

The following formula is a consequence of D.?
Up(L1)o A Up(L2)o A Closeg D Toggle(L1)o V Toggle(L2)o (7.10)
To see this, notice that (7.10) is entailed by the formulas

—Openy = Closey V (- Openg A = Openy)
Open; = (Up(L1)1 A Up(L2)1) V (Openg A Openy)
—Up(L1)y = (Toggle(L1)o A Up(L1)o) V (= Up(L1)o A ~Up(L1)1)

~Up(L2)1 = (Toggle(L2)o A Up(L2)o) V (= Up(L2)o A = Up(L2)1)

which belong to the literal completion of D.

In general, whenever both latches are up, it is impossible to perform only
the action of closing the suitcase; one must also toggle one of the latches. This may
seem unintuitive. However, recall that we have chosen to model the suitcase being
open as a static effect of the latches being up, so there is no time in any causally
possible world history at which both latches are up and the suitcase is closed.

The reader may check that the interpretation displayed in Figure 7.2 is also

causally explained according to D. Notice that in this interpretation at time 0

2We assume the following order of precedence for the connectives: — binds most tightly, next A
and V, and finally D and =.

97

e Toggle(L1)g e —~Toggle(L1); e —=Toggle(L1),
e —Toggle(L2)y e —Toggle(L2), o —=Toggle(L2),

o Closeg o —(lose; o —(losey
e Up(Ll)g - Up(L1); o = Up(L1),
® Up(L2)0 [Up(L2)1 [Up(L2)2
e Openy —Open, e —Open,

Figure 7.2: Another possible world history in the Suitcase domain

two actions— Toggle(L1) and Close—are performed concurrently, and the suitcase

is successfully closed.

7.5 The Expressive Capacity of L,

In the course of formalizing the Suitcase domain, we have seen how static causal
laws, the explicit effects of actions, and fluent preconditions are represented in the
language L. Ramification and qualification constraints, as discussed in Section 3.3,

are expressed by schemas of the forms

True = oy

-0y = Fualse

respectively, where o (the constraint) is a fluent formula.
In this section we further illustrate the expressive potential of the language

Lcr, by means of a number of small examples.

7.5.1 Concurrent Actions

We have already observed in relation to the Suitcase domain the possibility of per-
forming actions concurrently. The need for concurrency is illustrated by the follow-

ing example.

98

Example 7.1 In this domain, from [Gelfond et al., 1991b], there is a bowl of soup.
We suppose that the agent, using his two hands, can raise or lower each side of the
bowl independently of the other. However, unless he performs the corresponding
actions concurrently, he will spill the soup.?

The signature is specified by the following grammar.

side = Left | Right
action ::= Raise(side) | Lower(side)
fluent == Up(side) | Down(side) | Spilled

time x= 0] --- | 5
We adopt the standard inertia assumption.
inertial-formula = [—]fluent

The causal theory D7 for the Soup domain is represented by the standard schemas
(7.5)—(7.9), plus the schemas (7.11)—(7.14) below. (Here s is a meta-variable of type
side.)

True = Down(s); = = Up(s),

=
—
O

Raise(s); = Up(s)i41

=
—
w

Lower(s); = Down(s)s11

Up(Left)y # Up(Right), = Spilled,

Schema (7.11) represents, for each side s and time ¢, an explicit definition of
Down(s)s; in effect, it defines Down in terms of Up. Schemas (7.12) and (7.13)
describe the explicit effects of raising and lowering each side of the bowl.* Schema

(7.14) says that bowl’s being tilted causes the soup to be spilled.

®As is noted in [Gelfond et al., 1991b], this is essentially the example from [Pednault, 1987] in
which two agents lift opposite sides of a table.

*When tis 5, t + 1 is not an expression of type time. Consequently, there are no corresponding
instances of (7.12) and (7.13) in D7.;. In general, schemas represent all and only those of their
instances whose atoms belong to the signature with respect to which they are defined.

99

The formulas

= Up(Left)o N = Up(Right)o N\ Raise(Left)o N = Raise(Right)o D Spilled,

—Spilledy A Raise(Left)g N Raise(Right)o D —Spilled,
are consequences of D7 1.° <&

In [Gelfond et al., 1991b], [Baral and Gelfond, 1993], and [Thielscher, 1995b)],
the Soup domain is described essentially as follows: (i) the action of raising either
side of the bowl causes the soup to be spilled, but (ii) assuming the soup is not al-
ready spilled, raising both sides of the bowl concurrently causes it not to be spilled.
The formal renderings of statements (i) and (ii) are made consistent by a mechanism
that cancels the normal “inheritance” of effects. In this case, since the effects of indi-
vidually raising each side of the bowl are inconsistent with the effect of concurrently
raising both sides, the effects of the individual subactions are not inherited.

In a framework in which it is impossible to write causal laws that describe
the indirect effects of actions, some kind of inheritance and cancellation mechanism
is necessary in order to efficiently specify the effects of concurrent actions. However,
in a framework in which such laws can be written, this is not the case. The reason
is that we can adopt the following formalization strategy. First, we describe the
explicit effects of individual actions at a sufficiently basic level so that they can be
said to hold without exception. Secondly, we describe the potential ramifications of

these effects on other fluents by means of additional causal laws.

®These claims are machine checked in Section 9.4. For this purpose, we first eliminate Down(s)y,
for all s of type side and t of type time, from the signature and the corresponding definitions from
the domain description. (See Section 5.5.) Notice that when —Up(s), is substituted for Down(s);
in the causal laws represented by the standard schemas, each of the new causal laws is redundant.
It is also necessary to replace (7.14) by the two causal laws

Up(Left): A= Up(Right); = Spilled,
= Up(Left)y A Up(Right); = Spilled,

in order to bring the domain description into the class of objective programs. These transformations
have no effect on the consequences of D7 in the reduced language.

100

The strategy just described was used in our formalization of the Soup domain,
where we explicitly described the effects of raising and lowering each side of the bowl,
not on the fluent Spilled, but on the fluents Up(s) and Down(s), where s is Left
or Right. The causal connections between facts about the values of these fluents
and facts about Spilled are reflected in the additional causal laws represented by
schema (7.14).6

It is possible in Lo to explicitly describe the effects of performing actions

concurrently. For example, if soup-raising were a contest, we might write
Raise(Right); A Raise(Left)y = Wingyq .

However, in L, if the explicitly described effect of performing a set of actions con-
currently is incompatible with the effect of its individual subactions, the result is
that the actions simply cannot be performed concurrently. No cancellation mecha-
nism is built into the semantics.

Notice that in our formalization of the Soup domain it is impossible, except
at the last time 5, to concurrently raise and lower the same side of the bowl. This
is because, according to (7.12) and (7.13), the actions have inconsistent effects.”
However, even when two actions have consistent effects and each is individually
performable—such as Raise(Left) and Raise(Right)—it may be impossible for an
agent to perform both actions concurrently. (Imagine, for example, that the agent
is a robot with only one arm.) When this is so, the domain description should
explicitly rule out this possibility.

We can rule out the possibility of the agent concurrently performing any pair

of distinct actions (even at the last time, if there is one) by writing the schema

a; A ay, = False where a # o (7.15)

A similar approach to formalizing the Soup domain is taken in [Turner, 1996].
It is necessary to exempt time 5 from the preceding remark, because when ¢ is 5, (7.12) and
(7.13) are not in the language of the domain.

101

where t is a meta-variable of type time, and a and &’ are meta-variables of type
action. Adding Schema 7.15 to D71 would lead to the consequence that the agent

could neither raise nor lower an unspilled bowl of soup without spilling it.

7.5.2 Nondeterministic Actions

The semantics of causal theories rests on the principle of universal causation, ac-
cording to which every fact is caused. Intuitively, in the case of a nondeterministic
action, there is no cause for one of its possible effects rather than another. We have
already seen, however—in schemas (7.5)—(7.9)—that there are ways of effectively
exempting facts from the principle of universal causation. We can use laws of a sim-
ilar form to describe nondeterministic actions. This is illustrated by the following

coin tossing example.

Example 7.2 When a coin is tossed, whether it will land heads or tails is deter-
mined (if at all) by an untold number of conditions—such as the exact force, spin,
and direction of the toss, and the velocities of specific molecules in the surrounding
air—of which common sense knows little or nothing. In view of this complexity,
whether or not coin tossing is truly nondeterministic, we may choose to model it as
if it were.® This can be done as follows.

The signature is specified by the following grammar.

action ::= Toss
fluent ::= Heads

time =0 | 1| ---
We adopt the standard inertia assumption.

inertial-formula = [—]fluent

8See [Lewis, 1986b] (Postcript B) for an argument against the presumption that coin tossing is
known to be deterministic.

102

The causal theory D7 o for the Coin Tossing domain is represented by the
standard schemas (7.5)—(7.9), plus the schemas (7.16)—(7.17) below.

Toss; N Heads;yy = Heads;yq (7.16)

Tossy N ~Heads;11 = —Heads;1q (7.17)

Intuitively, schema (7.16) says that tossing the coin possibly causes it to land heads,
and schema (7.17) says that tossing the coin possibly causes it to land tails.? In-
tuitively, according to schemas (7.16) and (7.17), for every time ¢, Toss; renders
Heads; 11 exogenous.

According to Dz, the set of causally explained interpretations in which the

coin is tossed at every time has the cardinality of the continuum. <&

In general, in order to express that at every time ¢, the action a possibly

causes the formula o to hold at ¢t + 1, we write the schema
ay N\ 0441 = Opyq1.

In the previous example, the two possible effects of Toss—namely, Heads and
= Heads—are inconsistent, so on each occasion Toss can bring about at most one
of them. The following example, which is credited to Ray Reiter in [Kartha and
Lifschitz, 1994] and [Shanahan, 1997, is different in this respect.

Example 7.3 Consider the action of dropping a block onto the surface of a table
that is painted black and white. The block may land entirely within a black area,
entirely within a white area, or on both a black and white area.

The signature is specified by the following grammar.
action = Drop
fluent ::= Black | White

time =0 | 1| ---

?Schemas (7.16) and (7.17), can be viewed as making explicit the conversational implicatures of
the natural language statement: “Toss causes heads or not heads.” (See the long footnote associated
with Example 4.4.)

103

We adopt the standard inertia assumption.
inertial-formula = [—]fluent

The domain description D73 for this domain is represented by the standard

schemas (7.5)—(7.9), plus the schemas (7.18)—(7.20) below.

Drop, = Blackiy, V Whiteryq (7.18)
Drop, N\ Blackiy1 = Black; 14 (7.19)
Drop, N White,11 = White 41 (7.20)

According to the schema (7.18), the action of dropping the block causes it to land
so that it is either on a black or a white area. According to schemas (7.19) and
(7.20), dropping the block possibly causes it to land on a black area and possibly
causes it to land on a white area.!”

According to Dz 3, the set of causally explained interpretations in which the

block is dropped at every time has the cardinality of the continuum. Whenever

Drop occurs, it has three possible effects: Black, White, and Black A White. <&

7.5.3 Actions with Delayed Effects

In each of the examples that we have considered so far, we have specified that the
effects of an action are realized at the next time after the the action occurs. This
is not required. We may also describe actions with delayed effects. Moreover, we
may do so without describing the mechanism by which the delay is caused. This is

illustrated by the following example.

Example 7.4 Consider a time bomb that, after being armed, ticks down from 3 to
0 and explodes at 0. In the following domain description, we do not represent the

process of ticking down.

193chemas (7.19) and (7.20) can be viewed as making explicit the conversational implicatures of
the natural language statement: “The action of dropping the block causes it to land either on a
black or a white area (or both).”

104

The signature is specified by the following grammar.

action = Arm
fluent := FExploded

time =0 | 1| ---
We adopt the standard inertia assumption.
inertial-formula = [—]fluent

The causal theory D74 is represented by the standard schemas (7.5)—(7.9),
plus the schemas (7.21)—(7.22) below.

Army = FEzploded, 5 (7.21)

Army A Exploded, = False (7.22)

According to (7.21), arming the bomb has the delayed effect after 3 time units of
causing the bomb to have exploded. Schema (7.22) expresses an action precondition
for arming the bomb.

The formula
Armg D Ezplodeds

is an obvious consequence of Dy 4. <&

A causal law such as (7.22), describing a delayed effect, is appropriate only if
it is impossible for events that could cancel the effect to intervene during the delay.
In the previous example, if we wished to allow the possibility that the bomb might
be disarmed after it is armed but before it has exploded, it would be necessary to
model the mechanism by which the delayed effect otherwise comes to pass. This

can be done by using the general approach illustrated in the next section.'!

"'Mendez, Lobo, Llopis, and Baral [1996] have defined an extension of the language A of Gel-
fond and Lifschitz [1992] which allows one to refer to facts about past states of the world in the
preconditions of effect propositions. Since there are no restrictions on the time references that may
appear in the antecedents and consequents of causal laws, references of a similar kind are possible
in the language of causal theories.

105

7.5.4 Things that Change by Themselves

In each of the examples that we have considered so far, changes have occurred only
when actions are performed. In the following example, by contrast, changes may

occur even at times when no action is performed.

Example 7.5 Imagine a row of five dominoes, numbered 1-5 and arranged in order
from left to right. A sufficient condition for a domino being (caused to be) down
is that the domino immediately to its left has just fallen down. For simplicity, we
assume that the dominoes can fall only from left to right. An agent can tip any
domino.

The signature is specified by the following grammar.

domino == 1|2 |3 |45
action = Tip(domino)
fluent = Down(domino) | Up(domino)

time x= 0] --- | 5
We adopt the standard inertia assumption.
inertial-formula = [—]fluent

We can express that a domino d has fallen in the time interval between ¢t and

t + 1 by writing the conjunction
Up(d)t A Down(d)H_l.

The causal theory D7 5 for the Domino domain is represented by the standard
schemas (7.5)—(7.9), plus the schemas (7.23)-(7.25) below. Here d and d’ are meta-
variables of type domino. (The expression d+ 1 stands for the name of the successor

of the number named by d.)

106

True = Down(d); = - Up(d), (7.23)
Tip(d)s = Down(d)i44 (7.24)

Up(d); A Down(d)t11 = Down(d')iy2 where d' = d+1 (7.25)

Schema (7.23) represents, for every domino d and time ¢, an explicit definition of
Down(d)y; in effect, it defines Down in terms of Up. Schema (7.24) describes the
explicit effect of tipping a domino. Intuitively, according to schema (7.25), a causally
sufficient condition for a domino being down is that the domino to its left has just
fallen down.!?

The formulas

[/\ Up(n)o] A Tip(1)o D [/\ Down(n)s]

n=1..5 n=1..5

Up(L)o A [/\ = Tip(1):] O Up(1)s

t=1..5

are consequences of Dy 5.'3 &

Notice that according to schema (7.25) it is not the state of a domino—the
fact that it is down—that causes its successor domino to subsequently be down.
Rather, it is the domino’s change of state—the fact that it fell down—that is the

cause. Consider the following alternative to (7.25).
Down(d); = Down(d')¢y1 where d' = d+1 (7.26)

According to (7.26), the fact that a domino is down causes its successor to subse-

quently be down. Intuitively, this is not what we wish to say; the domino is down

12Schema (7.25) represents a set of dynamic causal laws that do not mention the occurrences
of actions. Laws of this general kind have appeared previously in [Geffner, 1990] and [Thielscher,
1995b].

13These claims are machine checked in Section 9.4. For this purpose, we first eliminate Down(d)y,
for all d of type domino and t of type time, from the signature and the corresponding definitions from
the domain description. (See Section 5.5.) Notice that when —Up(d); is substituted for Down(d);
in the causal laws represented by the standard schemas, each of the new causal laws is redundant.
These transformations have no effect on the consequences of D75 in the reduced language.

107

either because its predecessor has just fallen down or because it was already down
and has remained so by inertia. To see this more clearly, imagine the following
scenario: all of the dominoes are initially up, we tip domino 1 and perform no other
actions. Then, whether we include (7.25) or (7.26), it will follow that all of the domi-
noes will be down at time 5 (cf. the first of the above-mentioned consequences).
However, if we were to replace (7.25) by (7.26), it would be impossible (even if such
an action were added to the domain description) to stand the dominoes back up in

reverse order. This is not what we intend.!*

7.5.5 Non-literal Consequents

In the preceding examples, we have seen causal laws with non-literal consequents
used in explicit definitions—(7.11) and (7.23)—and in connection with the specifi-
cation of nondeterminism—(7.18). The following example is of a different kind. The

domain is due to Marc Denecker (personal communication).

Example 7.6 Imagine that there are two gears, each powered by a separate motor.
There are switches that toggle the motors on and off, and there is a button that
moves the gears so as to connect or disconnect them from one another. The motors
turn the gears in opposite (i.e., compatible) directions. A gear is caused to turn if
either its motor is on or it is connected to a gear that is turning.

In our formalization of the Gears domain, the signature is specified by the

following grammar.

index == 1| 2
switch = S(index)
gear = G(index)

action = Toggle(switch) | Push

14See [Van Belleghem et al., 1996] and [Thielscher, 1996] for related discussions. We present
an alternative formalization of the Domino domain as the final example of Section 9.4. In this
formalization, we extend the language Lc1, to allow explicit reference to events.

108

fluent = MotorOn(gear) | Connected | Turning(gear)

time =0 | 1| ---
We adopt the following nonstandard inertia assumption.
inertial-formula ::= [=]MotorOn(gear) | [-]Connected | —Turning(gear)

Notice that Turning(G (1)) and Turning(G(2)) are not declared to be inertial. The
reason, as we shall suppose, is that in the absence of a cause for turning, friction
will cause a gear not to turn. In the terminology of Lifschitz and Rabinov [1989],
Turning(G (1)) and Turning(G(2)) are “momentary fluents.” They tend to revert to
being false.

The causal theory D7 g for the Gears domain is represented by the standard
schemas (7.5)—(7.9), plus the schemas (7.27)—(7.33) below. (Here ¢ is a meta-variable

of type indez.)

Toggle(S(i)); A MotorOn(G(i)); = —MotorOn(G ())es1 (7.27)
Toggle(S(i)); A = MotorOn(G(i)); = MotorOn(G ())es1 (7.28)
Pushy A Connected, = —Connectedy. (7.29)
Pushy A —Connected, = Connectedy. 1 (7.30)
MotorOn(G (i) = Turning(G(i)); (7.31)
Connected; = Turning(G/(1))¢ = Turning(G (2)): (7.32)
— Turning(G(i)); = — Turning(G (3)): (7.33)

Schemas (7.27)—(7.30) describe the explicit effects of toggling the switches and push-
ing the button. Schema (7.31) says that a gear’s motor being on causes it to turn.
Schema (7.32) says that the gears being connected causes them to turn (and not
turn) together. Schema (7.33) expresses the momentary nature of turning, that is,

the natural tendency of the gears not to turn.

109

The formulas

[\/ MotorOn(G(t))o] A | /\ —Toggle(S(t))o] A ~Connectedy N Pushg

1=1..2 1=1..2

D /\ Turning(G())4

1=1..2

[\/ —MotorOn(G(2))o] A | /\ —Toggle(S(i))o] A Connectedy N\ Pushy

1=1..2 1=1..2

D \/ = Turning(G(7))1

1=1..2

are consequences of Drg. &

According to the “physics” of the Gears domain, as we imagine it, the nat-
ural tendency of the gears is to remain from one time to the next—connected or
disconnected—as they are. Behavior in accordance with this tendency is explained
by the inertia laws for Connected and —Connected, and so need not be otherwise
explained. What remain to be explained are only the deviations from this natural
tendency, i.e., changes in the state of connectedness of the gears.

The momentary character of turning is a fact of a similar kind. According
to the “physics” of the Gears domain, as we imagine it, the natural tendency of
the gears from one time to the next is to stop turning. Behavior in accordance
with this tendency is explained by the “momentary laws” (represented by (7.33))
for = Turning(G(1)) and = Turning(G(2)), and so need not be otherwise explained.
What remain to be explained are only the deviations from this natural tendency,
i.e., the gears turning.!®

Causal statements with non-literal consequents, such as (7.32), have been a
point of some confusion in the Al literature. Often they are disallowed in formal

languages for describing actions, and when they are allowed, they tend to be viewed

13In addition to inertial and momentary fluents, we should also mention as a third class of fluents,
the class of exogenous fluents. Just as the inertia laws provide standard explanations for persistence
and the momentary laws provide standard explanations for falsity, so the exogenous fluent laws—
which are analogous to (7.5)—(7.6)—provide standard explanations for both truth and falsity, thus
leaving nothing to explain. The three classes of fluents correspond to the three kinds of standard
support listed in Section 6.4.

110

as a means of expressing nondeterminism. This view is encouraged by the fact that
in natural language we tend to describe nondeterministic actions by statements in
which “or” is used after “causes,” as in: Tossing a coin causes it to land heads or
tails. Tt is further encouraged by the fact that in some cases non-literal consequents
indeed do give rise to nondeterminism, although this often comes about only be-
cause certain noninertial fluents are mistakenly specified as inertial, as illustrated in
Example 4.4. In the language of causal theories, the connection between non-literal
consequents and nondeterminism is not particularly close. Notice, for example, that

(7.32) is not used to express nondeterminism.

7.6 Language Dependence and Inertia

In each of the preceding examples, every inertial fluent has been designated by a
fluent literal. In all examples but the last, every fluent literal has also been inertial.
In the next example, we show that it is sometimes necessary—depending on the

fluent language—to designate inertial fluents by complex formulas.

Example 7.7 Let us reformalize the Coin Tossing domain so that, instead of as-
suming that the coin is always lying heads or tails, we admit also the third possibility
that it might be balanced on its edge. We will continue to assume that tossing the
coin causes it land either heads or tails, but we will now allow the coin to be stood
on its edge by an explicit action of the agent.

One possible language is given by the following grammar.

action = Toss | Stand_on_Fdge
fluent ©:= Heads | Tails

time x= 0| 1| ---

In this language we have fluent names that correspond to two of the three possible

states of the coin. We do not have a fluent name which corresponds to the state

111

in which the coin is standing on its edge. Rather, the coin’s being in this state is
represented by the fluent formula = Heads A —Tails. Since the coin can persist in any

of its three states by inertia, we specify the following inertial fluents.
inertial-formula ::= Heads | Tails | —Heads A\ —Tails

Notice that the complements of the above-mentioned formulas——Heads, —Tails,
and —(—Heads A = Tails)—do not designate inertial fluents. This is because none of
these formulas corresponds to the coin’s being in one of its three possible states.
(Intuitively, it is these states that can persist by inertia.) Instead, each of them
corresponds to the coin’s being in either of two states. For example, = Tuils is true
when the coin is either lying heads or on its edge. To say that —7Tails is inertial
would mean that its truth is explained by inertia even when, for example, the state
of the coin changes from standing on its edge to lying heads. Intuitively, this is
incorrect (cf. our discussion of coin tossing in Section 4.3).

The causal theory D77 is represented by the standard schemas (7.5)—(7.9),
plus the schemas (7.34)—(7.38) below.

True = = Heads, V —Tails, (7.34)
Stand_on_Fdge, = —Heads 11 N = Tails;11 (7.35)
Toss; = Heads;11 V Tails;qq (7.36)
Toss; \ Heads;y1 = Heads;qq (7.37)
Toss; A\ Tailsiyy = Tailsiy (7.38)

According to schema (7.34), the coin is always caused to exist in one of its three
states. Schema (7.35) describes the effect of standing the coin on its edge. Schemas
(7.36)—(7.38) describe the possible effects of tossing the coin. According to schema
(7.36), whenever the coin is tossed, it is caused to land either heads or tails. Ac-
cording to schemas (7.37) and (7.38), the coin is possibly caused to land heads and
possibly caused to land tails. <&

112

Example 7.7 shows that it is not necessary to choose a fluent language in
which every inertial fluent is named by a fluent literal. Often, however, it is natural
to do so. If we wish, we can introduce a new fluent Edge as an abbreviation for the

fluent ~Heads A\ = Tails as follows.
Example 7.8 The signature is specified by the following grammar.

action = Toss | Stand_on_Fdge
fluent ©:= Heads | Tails | Fdge

time x= 0| 1| ---
We now specify the inertial fluents as follows.
inertial-formula = Heads | Tails | FEdge

The causal theory Drg for our new version of the Coin Tossing domain is
represented by the standard schemas (7.5)—(7.9), plus the schemas (7.39)—(7.44)

below.

True = Fdge, = = Heads; N = Tails,

=~
.
o

True = —Heads; V = Tails;

=~
B
—_

Stand_on_Edge, = FEdge,

=~
o
DN

Toss, = Heads;41 V Tails; 11

=~
.
(VS]

Tossy N Heads, 41 = Heads;+q

Tossy A Tailsy1q = Tails;q

The new domain description is obtained from the previous one by adding the explicit

definitions represented by (7.39) and the following new instances of schemas (7.7)

and (7.8)

Fdgey = Edge

—~Fdgey = —Fdge,

113

and by substituting Edge, (for all times t) for its definiens in the causal laws rep-
resented by (7.35) and the inertia schemas. It can be shown, using the results of

Section 5.5, that D7 g and D7 7 have the same consequences in the language of D7 ;.

&

What is inertia? Is it merely a communication or representation convention?
Or is there some real or imagined physical reality that underlies the claim that a
fluent is inertial? In formalizing domains as causal theories, we take the latter point
of view. Our aim is to correctly represent the causes of facts (or the conditions under
which facts are caused) according to the “physics” of the domain, as we imagine it.
It is common in action description formalisms to build in the assumption that every
fluent literal designates an inertial fluent, and it is nearly universally assumed that
every inertial fluent is designated by a fluent literal. Neither assumption is built into
the language of causal theories. As a consequence, the language of causal theories
provides a degree of language independence that is uncommon in action description

languages.'®

Y5 Typically, the phenonomenon of language dependence in action description formalisms has gone
unremarked upon in the Al literature. A notable exception is [Winslett, 1988].

114

Chapter 8

Two Action Query Languages

In this chapter, we define two action query languages for use with the language
Lcp. The first and simplest of these can be used to express facts and queries about
the actual world. The second action query language includes modal operators for
historical necessity and possibility. In this language, we are able to pose queries
that concern not only the actual world, but other causally possible worlds as well.

With respect to the first (non-modal) query language, we lay the theoretical
foundations for an approach to automated query answering and planning that is
based on satisfiability checking in propositional logic. This approach is described

and illustrated in Chapter 9.

8.1 Action Query Languages for £,

In Chapter 4, we described the distinction, due to Lifschitz [1995], between an action
description language which is used to specify a transition system and an action query
language which is used to describe properties of paths (representing causally possible
world histories) in a transition system. Recall that the central semantic definition
associated with an action query language, according to Lifschitz, is the definition

of the consequence relation that holds between a set I' of axioms and a query)

115

relative to a transition system 7’; in symbols, I' -7 Q.

Although we view the language L1, as an action description language, unlike
the action description languages described by Liftschitz, an £, domain description
does not specify a transition system. Instead, it specifies a set of interpretations.
These interpretations, like the paths of a transition system, represent causally pos-
sible world histories. Thus, despite the different ways in which causally possible
world histories are represented, domain descriptions in both kinds of action de-
scription languages can be said to specify the same kinds of informal objects. The
difference in representation, however, gives rise to a corresponding difference in how
the consequence relation for an action query language is specified in the two frame-
works; in particular, the transition system 7" in I' 7 Q) is replaced in an L¢y, (world
histories) framework by a set S of interpretations. In defining the semantics of each
of the action description languages defined below, we will write I' g () to say that a

query () is a consequence of a set I' of axioms, relative to a set S of interpretations.

8.2 The Query Language L,: Actuality

In this section, we define an action query language £, that can be used to ex-
press facts and queries about the actual world. We also lay the foundations for an
approach to automated query answering and planning (in the combined language
Ler, + L) for subclasses of L, domain descriptions.

The signature for a specific £, language is specified, as it is for an Lqp,
language, by a triple (A, F, T), where A is a set of action names, F is a nonempty
set of fluent names, and T is a nonempty set of time names. The set of atoms is the
set of expressions of the forms a; and f;, where a, f, and t are action, fluent, and
time names, respectively. By a formula of £, we mean a propositional combination
of atoms. By an aziom or a query of L, we simply mean a formula.

Let I' be a set of axioms, .5 be a set of interpretations of £,, and ¢ be a

query. We say that) is a consequence of I' in S—in symbols, I' g () —if @) is true

116

in every interpretation in S that is a model of I'.

Given specific Lq, and £, languages with the same signature, the conse-
quence relation for the combined language L, 4+ £, is defined as follows. Let D
be a domain description in L¢p, and let I' and) be a set of axioms and a query
of L,, respectively. We say that Q) is a consequence of I' according to D (in sym-
bols, I' Fp @) if I' Fg @, where S is the set of causally explained interpretations
according to D.

Notice that if T is finite, then I' Fp @ if and only if (AT D @) is a conse-

quence of D.

8.2.1 Query Answering

The following proposition justifies an approach to automated query answering in

the combined language L, + £, with respect to finite L, objective programs.

Proposition 8.1 Let D be a finite L, objective program. Let I' be a set of axioms
and QQ be a query in the underlying propositional language of D. Then I' Fp Q if
and only if lcomp(D)U T = Q.

Proof. Since D is finite, it is completable. Therefore, by Proposition 6.1, the
causally explained interpretations according to D are the models of lcomp(D). It
follows that I' Fp @ if and only if @ is true in every model of lcomp(D)U I, and
thus if and only if lcomp(D)UT E Q. O

The following corollary suggests an approach to query answering that is based

on satisfiability checking in propositional logic.

Corollary 8.1 Under the assumptions of Proposition 8.1, I' Fp Q) if and only if
lecomp(D) U T'U{=Q} is unsatisfiable.

117

8.2.2 Satisfiability Planning

In this section, we lay the theoretical foundations for satisfiability planning (in
the style of Kautz and Selman [1992,1996]) with respect to the class of finite L¢y,
objective programs in which all actions are “deterministic.”

By a complete initial state description, we mean a set I'g of formulas—each a
propositional combination of atoms of the form fy, where f is a fluent name—such
that for every atom of the form fy, either I'g Fp fo or I'g Fp —fy, but not both.

By a time-specific goal, we mean a propositional combination of atoms of
the form f;, where f is a fluent name. We do not require all of the atoms in a
time-specific goal to refer to the same time.

By a plan we mean a consistent set of literals of the forms a; and —a;, where
a and t are action and time names, respectively.

The notion of a plan, as just defined, differs from the common notion (ac-

1 First, a plan,

cording to which a plan is a sequence of actions) in two respects.
as defined here, may include actions performed concurrently; zero or more actions
may be performed at a time. Second, a plan may incompletely specify which actions
occur and do not occur at a time. Thus, for some action @ and time ¢ (in a plan),
the plan may include neither a; nor —a;.

Let D be a finite Loy objective program, 'y be a complete initial state

description, P be a plan, and GG be a time-specific goal. We say that P is ezecutable

if there is a causally explained interpretation according to D that satisfies I'g U P.2

'In [McCarthy and Hayes, 1969] and [Manna and Waldinger, 1987], a plan is not necessarily a
sequence of actions, but may have a more complex structure. Constructing such plans is in some
respects a more general and more difficult problem than the one we address here.

2This is a very weak notion of executability. In particular, even if P completely specifies which
actions occur and do not occur at all times, it may be inadequate in the presence of nondeterministic
actions. Informally, this can be seen by considering the plan that calls for one to first toss a coin
and then truly report that it has landed heads. Since (regardless of the initial state) there is a
causally possible world history that conforms to the execution of this plan, the plan is executable
in the sense defined. Intuitively, however, this does not guarantee that the plan can be executed,
since if the coin should land tails instead of heads, the second action would be impossible.

118

We say that P is effective if
I'yuPkpdG. (8.1)

By Corollary 8.1, we know under the conditions stated above that the ex-
ecutability and effectiveness of P can be verified by satisfiability checking. The
planning problem, however, is not the problem of verifying that a plan is executable
and effective, but rather the problem of finding a plan that can be so verified. The re-
alization of Kautz and Selman [1992] was that for some syntactically defined classes
of theories the problem of finding such a plan also can be solved by satisfiability
checking. They describe a class with this property in the language of propositional
logic. In the remainder of this section, we do the same in the language of causal
theories.

Let D be an objective program. The atom dependency graph of D is the
directed graph which has atoms as nodes, and which, for each rule Ly < Ly,..., L,
in D, has an edge from the atom in Ly to each of the atoms in Lq,..., L,.

An atom dependency graph defines an ordering between nodes as follows.
We say that a node m is less than a node n (in symbols, m < n) if there is a path
containing at least one edge from n to m in the graph. So the edges in the graph
point downward in the ordering.

We say that an L, domain description D is simple if it satisfies the following

conditions.

1. In the signature of D, time is defined as the natural numbers or an initial

segment of the natural numbers, i.e., for some n,
time := 0 | 1] --- | n.

2. D is an objective program, and D = D,UD;UD’, where D, is the set of rules
represented by the schemas (7.5)-(7.8), D; is the set of rules represented by

the inertial schema (7.9), and every rule in D’ has the form
e N

119

where f is a fluent name and, for all ¢ (1 < i < n), 2' is either an action or
fluent name, and ¢ is greater than or equal to ¢;. (Intuitively, the last condition

rules out backward causation.)

3. The ordering relation defined by the atom dependency graph of D’ is well-
founded.

The domain description for the Suitcase domain is simple. The domain description
for the Coin Tossing domain in Section 7.5.2 violates condition (3), and thus is not
simple.

By an action history we mean a set I', of literals such that for every action
name ¢ and time t, ', contains exactly one of the literals a; and —as, and contains
no other literals besides these. An action history specifies, for every time ¢, exactly
which actions occur at ¢.

Intuitively, every action in a simple Ly, domain description is deterministic.

This is made precise in the following proposition.

Proposition 8.2 Let D be a simple L, domain description. Let 'y be a complete
initial state description and L'y, be an action history. There is at most one causally

explained interpretation according to D that satisfies o UT,.

Proof. Since D is asimple L, domain description, we know that D = D, UD;UD’,
where D, D;, and D" are as defined in (2) above. Let H be the atom dependency
graph of D’. We proceed by the method of contradiction. Suppose that there are
two causally explained interpretations of D that satisfy I'o U 'y,. Call them I and
I'. We know that I and I’ assign different values to one or more nodes in H. Select
A to be such a node whose time subscript ¢ is minimal among all such nodes and
such that A is minimal in the ordering relation defined by H. (We know that this
selection is possible because D is simple.) Without loss of generality, let us suppose
that I = A and I’ = —A. By the definition of a supported model for objective

programs, there must be rules, A + B and =A <« B’,in D such that B C I

120

but B € I', and B" ¢ I but B" C I'. Since I and I’ both satisfy T'g, we know
that they agree on the values of all atoms of the form fy, where f is a fluent name.
(Recall that I'g is complete with respect to such atoms.) Similarly, since I and I’
both satisfy I'y, we know that they agree on the values of all atoms of the form ay,
where @ and t are action and time names, respectively. It follows that A must be
an atom of the form f,11, for some fluent name f. Thus, the rules 4 <+ B and
—A « B’in fact belong to D; U D’. By our choice of A, we know that neither rule
can belong to D' (because otherwise I and I’ assign different values to some atom in
B or some atom in B’, but all such atoms are less than A in the ordering). Nor, for
a similar reason, can both belong to D; (because otherwise I and I’ assign different
values to f;). Thus, there is no such node A to which I and I’ assign different
values. Consequently, there is at most one causally explained interpretation of D

that satisfies I'g U I',,. a

Corollary 8.2 Let D be a simple L., domain description, I'g be a complete initial
state description, and G be a time-specific goal. Suppose that I is a causally explained
interpretation according to D that satisfies I'o U G. Let I'y be the action history

contained in I. Then

IZyul', Fp G. (8.2)

Proof. By Proposition 8.2, we know that I is the only causally explained in-
terpretation according to D that satisfies I'g U I'y. By hypothesis, I also satisfies
G'. Therefore, every causally explained interpretation according to D that satisfies

o U T, satisfies G, that is, U T, Fp G. a

8.3 The Query Language £,: Historical Necessity

In this section we define an action query language Ly that can be used for expressing

facts about the actual world and time-dependent modal queries about both the

121

actual world and other causally possible worlds.

According to common sense, there is an asymmetry between the past and
present on the one hand and the future on the other. Whereas the past and present
cannot now be other than they are, the future in at least some respects can be.?
This asymmetry cannot be explained in terms of epistemic possibility, since we may
be equally ignorant of the past, present, and future. Instead, it is explained in terms
of the time-dependent modalities of historical necessity and possibility.

Intuitively, a proposition becomes historically necessary when the present
and the past determine that it is true, and it remains historically possible so long
as the present and past do not determine that it is false.

The concepts of historical necessity and possibility have been formalized in
the framework of modal-temporal logic by [Montague, 1968], [Chellas, 1971], and
[Kamp, 1979]. In these logics, formulas are understood to designate time-dependent
propositions and are evaluated with respect to a world and a time. In particular,
the accessibility relation for the historical necessity operator is defined as a function
of time. Since we are working in a framework in which propositions are not time-
dependent (the atoms of an action query language contain their own fixed time
references), we will find it convenient to proceed in a different manner. Instead
of introducing a single time-dependent necessity operator O, we will introduce a
distinct operator [, for each time .

The signature for an Ly language, as for an Lq;, language, is specified by a

triple (A, F,T), where A is a set of action names, F is a nonempty set of fluent

In speaking in this manner, we assume that even in a nondeterministic world there is a unique
actual future and that every proposition about it is presently true or presently false, even if it is
undetermined (by past and present facts) which it is.

The point at issue is the one discussed by Aristotle in a famous passage from De Interpretatione
(Chapter 9). Assuming that it is not presently determined whether or not there will be a sea battle
tomorrow, Aristotle asks whether it is true now that there will be a sea battle or true now that there
will not be. Although the passage is not entirely clear, he seems to deny that either is the case. We
look at this differently. The openness of the future (as opposed to the present and past) lies not, we
maintain, in there being propositions about the future that are neither presently true nor presently
false, but in there being propositions about the future that are neither presently determined to be
true nor presently determined to be false.

122

names, and T is a nonempty set of time names. The set of atoms is the set of
expressions of the forms a; and f;, where a, f, and ¢ are action, fluent, and time
names, respectively. The set of formulas of Ly is the smallest set that contains the
atoms and is closed under the following rules: if ¢ is a formula, then —¢ is a formula;
if ¢ and ¢ are formulas, then ¢ A ¢ is a formula; and if ¢ is a formula, then k¢ is
a formula, for every time name n. We define ®¢ as an abbreviation for =E—¢. We
assume that the other standard propositional connectives (V, D, and =) are defined
as abbreviations in the usual way.

Let £ be the sublanguage of Ly that consists of all formulas that do not
contain a modal operator. Since L is a language of propositional logic, the notion
of an interepretation of £ is defined. By an aziom we mean a formula of £. By a
query we mean a formula of L.

We will identify an interpretation I with the set of literals L such that I |= L.
Let I be an interpretation of £, and m be a time. By I|m we mean the set of all
literals in I of either the form [—]fz, where f is a fluent name and & < m, or of the
form [—]ag, where a is an action name and & < m.

A structure is a pair (1, .5), where [is an interpretation of £ and S is a set of
such interpretations with I € S. We define the conditions under which a structure

(I, 5) satisfies a formula ¢ (in symbols, (I, S) | ¢) as follows.

I,S)E ¢iff ¢ € 1, if ¢ is an atom

- iff (1,9) ¢

Eonyiff (1,5) F ¢and (1,5) v

= T iff (I, S) | ¢, for all I' € S s.t. I'lm = I|m.

(1,5)
(1,5)
(1,5)
(1,5)

Intuitively, according to the last clause, ¢ is true in a world [if and only if ¢ is
true in all worlds that coincide with I at all times up to and including time n. Notice
that these worlds are not required to coincide with I on facts about the actions that

occur, as we say, at time n, but only at earlier times.*

*In this regard, recall that an atom a;, where a is an action name and t is a time name, is

123

Let ¢ be a formula and I' be a set of formulas. We say that (1,5) is a model
of ¢ if (I,5) E ¢. We say that (1,9) is a model of I' if (I,S) is a model of every
formula in I'. We say that ¢ is a consequence of I' (in symbols, I' £ ¢) if every
model of I' is a model of ¢.

It is not difficult to see that for all formulas ¢ and all times r and n, if r <n
then ¢ = W¢ and ®¢ = ©p. This reflects the commonsense belief that with the
passage of time more tends to become necessary and less possible.

Let ' be a set of axioms, S be a set of interpretations of £, and) be a query.
We say that Q) is a consequence of I' in S (in symbols, I' Fg @) if every model (1, .5)
of I' is a model of).

Given specific Lq, and Ly languages with the same signature, the conse-
quence relation for the combined language L, + Ly is defined as follows. Let D
be a domain description in L¢p, and let I' and) be a set of axioms and a query
of Ly, respectively. We say that Q) is a consequence of I' according to D (in sym-
bols, I' Fp @) if I' Fg @, where S is the set of causally explained interpretations
according to D.

The modalities of historical necessity and possibility are dependent upon the
past and present facts of the actual world. As an illustration, let DD be the description
of the Domino domain from Example 7.5, modified so that the only possible action
is to tip domino 1, i.e., Tip(1). Let

C={ A Upi)o, N\ —Tip(1).}.

1=1..5 n=0..5

Intuitively, in I' we make the following assertions about the actual world: (i) initially
all five dominos are up, and (ii) domino 1 is not tipped at any time. Each of the
following is true.

I'tp A\ Up(3)n

n=0..5

I'tp N\ @=Up(3)s

n=0..2

understood to say that the action a occurs immediately after ¢.

124

I'tp N\ EUp(3)s

n=3..5
These results can be explained as follows. In the actual world, domino 3 remained
standing at all times. It was possible before time 3 to cause domino 3 to be down
by time 5 (by tipping domino 1 at time 0, 1, or 2). However, by time 3 this was no
longer possible.

The previous example shows that the modalities of historical necessity and
possibility are useful in formulating queries about action domains even in the absence
of nondeterministic actions. Intuitively, the reason for this is that the choices of
which (if any) action to perform lead to alternative historically possible worlds,
regardless of whether or not the actions themselves do so.

As a second example, we will consider a simple extension to the coin tossing
domain of Example 7.2. In this domain, there are two sources of nondeterminism:
(i) the decision whether or not to toss the coin, and (ii) the inherent nondeterminism

of coin tossing itself.

Example 8.1 Let us formalize a coin tossing game in which one wins by tossing
heads twice in a row.

The signature is specified by the following grammar.

action ::= Toss
fluent ::= Heads | Win

time == 0| 1| ---
We will adopt the standard inertia assumption.
inertial-formula = [—]fluent

The causal theory for the coin tossing domain Dg; is represented by the

standard schemas (7.5)—(7.9), plus the schemas (8.3)—(8.5) below.

125

Toss; \ Heads;y1 = Heads;qq (8.3)
Toss; N ~Heads; 11 = —Heads;1 (8.4)

Toss; N\ Heads;y1 N\ Tossiyy N Headsiy g = Winggo (8.5)

According to schema (8.5), tossing heads twice in a row causes one to win the game.’

Now let us suppose that I" is the following set of formulas.
{=Wing, Tossy, Toss,,~Heads,, Heads; }

Intuitively, according to I'; among the facts of the actual world are these: we had
not already won at time 0, we did toss the coin at times 0 and 1, the first toss came

up tails, and the second came up heads. Each of the following is true.

I'Fp ©Wing
I'Fp <> Wing
These results can be explained as follows. At time 0, it was possible to throw heads

twice in a row. In fact, however, we were unlucky. The first toss did not come up

heads, and so already by time 1 we had no chance of winning by time 2. <&

5Actually, this may be an example of a determination relation that is not, strictly speaking,
causal, although it is “causal-like.” (See [Kim, 1974] for a discussion of non-causal determination
relations.) As an aside, notice that it would be impossible to express the rule for winning in such
a straightforward way in a transition system-based language such as Act,.

126

Chapter 9

Query Answering and Planning

In this chapter, we describe and illustrate an approach to automated query answering
with respect to finite Lo, objective programs and to planning with respect to simple,
finite Lo objective programs. The approach is based on satisfiability checking in

propositional logic.

9.1 Automated Query Answering

A satisfiability algorithm searches for an interpretation that satisfies a given set I' of
(propositional) formulas. Some satisfiability algorithms search the space of possible
interpretations exhaustively and nonredundantly, and in this sense are “systematic.”
For such algorithms, failing to find a satisfying interpretation shows the unsatisfia-
bility of I'. For query answering on the basis of Corollary 8.1, we require a systematic
satisfiability algorithm.

Currently, one of the best implementations of a systematic satisfiability al-
gorithm is the program called ntab (previously known as tableau) by Crawford and
Auton [1993]. It is an efficient implementation of the Davis-Putnam procedure
[Davis and Putnam, 1960] and incorporates some surprisingly effective heuristics.

The program ntab reads a file of formulas in clausal form (literals are represented

127

:— declare_types
type(action, [load,wait,shoot]),
type(fluent, [loaded,alive]),
type(time, [0..3]),
type(atom, [o(action,time) ,h(fluent,time)]).

:- declare_variables
var(A,action), var(T,time), var(F,fluent).

h(loaded,T+1) <- o(load,T).
-h(alive,T+1) <- o(shoot,T), h(loaded,T).
-h(loaded,T+1) <- o(shoot,T).

o(A,T) <- o(4A,T).
-o(A,T) <- -0o(4A,T).
h(F,0) <- h(F,0).
-h(F,0) <- -h(F,0).

h(F,T+1) <- h(F,T), h(F,T+1).
-h(F,T+1) <- -h(F,T), -h(F,T+1).

Figure 9.1: An input file for the Yale Shooting domain

by postive and negative integers) and determines whether or not the given set of
clauses is satisfiable. If the set of clauses is satisfiable, the program responds by
writing “SAT” and (optionally) a satisfying interpretation. If the set of clauses is
unsatisfiable, the program responds by writing “UNSAT.”

In Appendix B, we list a Prolog program, called satp, which uses ntab to
do query answering with respect to finite Lo objective programs. This program
takes an input file representing an L, domain description, such as that displayed
in Figure 9.1. (This is the same program that we previewed in Chapter 1.) The
directive declare_types, which appears first in Figure 9.1, is used to define a specific
L1, language in a syntactic variant of the grammars illustrated in the previous
chapter. The terminal symbols now are not capitalized, but instead are distinguished

from the non-terminal symbols only by their failing to appear as the first argument

128

to the type/2 functor. The directive declare variables is used to declare any
meta-variables that we may wish to use in describing the causal theory. Following
these two directives, the file contains rules and schemas written in the syntax of
objective programs. (Meta-variables are represented as Prolog variables, and thus
are written in uppercase here, in contrast to the previous chapter.) An atom such as
Load, is here written as o(load,2) and read as: the action Load occurs at time 2.
An atom such as Alive; is here written as h(alive,2) and read as: the fluent Alive
holds at time 2. The last two rule schemas say that every fluent literal is inertial.

Notice that there are only finitely many time names in the signature specified
in Figure 9.1. This is essential, since otherwise the set of atoms and, therefore, also
the literal completion of the causal theory would be infinite.

The three main user-level procedures provided in safp are load file/1,
query/0, and plan/0. The procedure load file/1 reads in a file such as the one
displayed in Figure 9.1 and (using the language specification and the meta-variable
declarations) generates the ground causal theory D. It then also generates the
clausal form of lcomp(D) and stores the resulting clauses in the Prolog database.

After an input file has been loaded, queries are posed by calling the procedure
query/0. This procedure reads from the terminal a set I' of axioms and a query @)

and converts I'U {=Q} to clausal form. The clauses of
lecomp(D) U T'U{-Q} (9.1)

are then written to a file, and ntab is called with this file as input. After the call
to ntab returns, the procedure query/0 reads the output file generated by ntab,
decodes it (replacing integers by symbolic literals), and reports the results. The
procedure query/0 answers “yes”—meaning I' Fp Q—if ntab answers “UNSAT,”
and answers “no”—meaning I' /p Q—if ntab answers “SAT.” These answers are
justified by Corollary 8.1. In the case of a “no” answer, the intepretation found by
ntab to satisfy (9.1) is displayed as a counterexample.

Example calls to the procedures load file/1 and query/O are shown in

129

Figure 9.2.! The first query in Figure 9.2 poses the question: Will the turkey be
dead in the state that results from executing the actions load, wait, and shoot (in
that order), given that the gun is initially unloaded and the turkey is alive? As
noted in Section 1.3, we do not assume that load, wait, and shoot are the only
actions performed at times 0, 1, and 2. Therefore, this is not precisely the temporal
projection problem considered by Hanks and McDermott [1987]. The second query
asks whether it follows from the fact that the action of shooting the gun is performed
at times 0, 1, and 2 that the turkey will be dead at time 3. The answer of course is
“no,” since, as the displayed interpretation shows, we have said nothing to guarantee
that the gun is ever loaded. Additional examples of query answering are included

in Section 9.4.

9.2 Automated Planning

In this section we describe and illustrate the procedure plan/0, which implements
our approach to satisfiability planning (Kautz and Selman [1992, ,1996]) with respect
to simple, finite L., objective programs.

Let D be such a program. Assume that the input file for D (for example,
the file displayed in Figure 9.1) has already been loaded using load file/1. The
procedure plan/0 reads from the terminal a complete initial state description I'g

and a time-specific goal (G, and converts I'g U {G'} to clausal form. The clauses of
lecomp(D) U 'y U{G} (9.2)

are then written to a file, and ntab is called with this file as input. If ntab answers
“UNSAT,” then by Corollary 8.1 we know that I'g Fp =G, which means that it

is impossible to achieve the time-specific goal G, given I'g. In this case, plan/0

!The fact that there are fewer clauses than rules in this example is due to the elimination of
tautologies. Also, in case the reader should wish to check the counts reported by load file/1, we
note that, as a convenience, the atoms true and false and the rules true <- and -false <-, are
automatically added by load file/1 to every input domain description.

130

| ?- load_file(yale).

% 22 atoms, 51 rules, 26 clauses loaded.

yes
| ?- query.

enter facts (then ctrl-d)

|: h(alive,0).
| : -h(loaded,0).
|: o(load,0).

|: o(wait,1).

| : o(shoot,2).

|

enter query
| : -h(alive,3).

yes
| ?- query.

enter facts (then ctrl-d)

| : o(shoot,0).
| : o(shoot,1).
| : o(shoot,2).
[:

enter query

|: -h(alive,3).

0. -loaded alive
Action(s): shoot

1. -loaded alive
Action(s): shoot

2. -loaded alive
Action(s): shoot

3. -loaded alive
Action(s):

no

Figure 9.2: Query answering

131

answers “no.” If ntab answers “SAT,” then the interpretation I that was found to
satisfy (9.2) is displayed. The action history ', contained in I can be read off from
this display. If I'g is, indeed, a complete initial state description, then we know by
the fact that I satisfies (9.2) that [, is executable. If, moreover, D is simple, then
by Corollary 8.2 we also know that ', is effective.

Two example calls to plan/0 are displayed in Figure 9.3. In the first of
these, we assume that initially the turkey is alive and the gun is unloaded. We pose
the problem of finding a plan to achieve the goal of the turkey being dead and the
gun being loaded at time 3. A plan is found which calls for performing the actions
load, shoot, and load (and no other actions) at the times shown. In the second call
to plan/0 in Figure 9.3, we seek to find a plan to bring the turkey back to life.
Unfortunately, there is no way to achieve this goal.

In some cases we may not be sure whether an L., domain description is
simple, or we may even know that it is not simple, and yet we may hope to find
an executable and effective plan for achieving G (given a complete initial state
description I'g) by the method just described. In such cases, however, even if an
interpretation [is found that satisfies ['(U{G'}, there is no guarantee that it contains
an effective plan. Accordingly, if ntab finds an interpretation I that satisfies (9.2),
then, after displaying it, plan/0 asks the user whether an attempt should be made
to verify that the action history I', contained in [is effective. If the user requests

that this be done, ntab is then called again to check the satisfibability of
lecomp(D)U Ty UL, U{=G}. (9.3)
If ntab returns “UNSAT,” then by Corollary 8.1 we know that
hul, Fp G

which verifies that [', is effective. On the other hand, if ntab returns “SAT,” then

by Corollary 8.1 we know that
I'guly, |71D G

132

| ?- plan.

enter facts (then ctrl-d)

|: h(alive,0).

| : -h(loaded,0).

[:

enter goal

| : h(loaded,3) & -h(alive,3).

0. -loaded alive
Action(s): load

1. loaded alive
Action(s): shoot

2. -loaded -alive
Action(s): load

3. loaded -alive
Action(s):

Verify plan? vy
plan verified.

yes
| ?- plan.

enter facts (then ctrl-d)
|: -h(alive,0).

| : -h(loaded,0).

[:

enter goal

|: h(alive,3).

no

Figure 9.3: Planning to achieve a time-dependent goal

133

which shows that I'; is not effective. In the latter case, an interpretation satisfying
(9.3) is displayed as a counterexample, and plan/0 gives up.>

Since the Lo, domain description for the Yale shooting domain is simple and
the facts given in Figure 9.3 comprise a complete initial state description, the plan
verification step in this instance, while reassuring, is unnecessary.

The procedure plan/0 can be used to pose goals that are not time specific by
using a meta-variable for time in place of a specific time in the goal. On backtracking,
the program instantiates the meta-variable to successive times. If the time names are
declared in the natural order—from those designating smaller numbers to larger—
the result is to search for the earliest time at which the goal can be achieved by a
process of iterative deepening [Korf, 1985]. This is illustrated in Figure 9.4. The
goal is first instantiated to times 0 and 1, before it is finally solved at time 2.

Although we display an entire action history when a plan is found, normally
only a part of the action history is necessary for achieving a goal. For instance, in
the last example above, only the actions performed at times 0 and 1 are necessary;
the load action at time 2 is not. In this case and many others, it is natural to take
the plan to be the part of the action history that precedes the time at which the
goal is first achieved. However, in some cases—particularly in domains in which
there are delayed effects or in which things change by themselves—this part of an
action history may be too much. (Consider, for instance, an action that initiates
a process of change that inevitably causes a goal to be achieved, regardless of the
actions that may be performed after it.) Dealing appropriately with this issue is a
topic for future research.

As an illustration of the possibility that a candidate plan may not turn out to

2Tt should be noted that even if a plan is shown to be effective and executable in the weak sense
in which we have defined the term, in the event of nondeterminism there is no guarantee that the
plan can be carried out. Consider again, for example, the plan that consists in performing precisely
the following actions: first toss a coin and then truly report that it has landed heads. Assuming that
the goal is for the coin to be lying heads, this an effective plan. However, as previously observed,
there is no guarantee that the plan can be carried out, since it is (historically) possible (at time 0)
that tossing the coin will result in its landing tails.

134

| ?- plan.

enter facts (then ctrl-d)
|: h(alive,0).

| : -h(loaded,0).

[:

enter goal

|: -h(alive,T).

0. -loaded alive
Action(s): load

1. loaded alive
Action(s): shoot

2. -loaded -alive
Action(s): load

3. loaded -alive
Action(s):

Verify plan? vy
plan verified.

yes

Figure 9.4: Planning to achieve a time-independent goal

135

:— declare_types
type(action, [toss]),
type(fluent, [heads]),
type(time, [0..2]),
type(atom, [o(action,time) ,h(fluent,time)]).

:- declare_variables
var(A,action), var(F,fluent), var(T,time).

h(heads,T+1) <- o(toss,T), h(heads,T+1).
-h(heads,T+1) <- o(toss,T), -h(heads,T+1).

o(A,T) <- o(4A,T).
-o(A,T) <- -0o(4A,T).
h(F,0) <- h(F,0).
-h(F,0) <- -h(F,0).

h(F,T+1) <- h(F,T), h(F,T+1).
-h(F,T+1) <- -h(F,T), -h(F,T+1).

Figure 9.5: An input file for the Coin Tossing domain

be effective, consider the L, domain description for nondeterministic coin tossing
displayed in Figure 9.5.

The first two rule schemas represent the part of the causal theory that cor-
responds to the set D’ in the definition of a simple L, domain description. Notice
that the ordering relation defined by the atom dependency graph for this set is not
well-founded. Consequently, this is not a simple L, domain description.

In the session displayed in Figure 9.6, we assert that the coin is not lying
heads at time 0 and pose the problem of finding a plan to cause the coin to be lying
heads at time 2. A candidate plan is found, namely, the plan of tossing the coin at
time 0 and performing no other actions. However, the attempt to verify the plan
fails, because tossing the coin at time 0 could just as well result in its landing tails,
as the final displayed interpretation shows.

Additional examples of planning—including an example of planning in a

136

| ?- load_file(toss).

% 8 atoms, 18 rules, 6 clauses loaded.

yes
| ?- plan.

enter facts (then ctrl-d)
| : -h(heads,0).

enter goal

| : htheads,
0. -heads
Action(s):
1. heads
Action(s):
2. heads
Action(s):

Verify plan?
verification failed.

0. -heads
Action(s):
1. -heads
Action(s):
2. -heads
Action(s):
no

2).

toss

toss

y

Figure 9.6: An unverifiable plan

137

dynamic domain—are included in Section 9.4.

9.3 Final Remarks on Query Anwering and Planning

Kautz and Selman [1996] have experimentally investigated the application of sys-
tematic and unsystematic satisfiability algorithms in planning. Specifically, they
have compared the systematic program tableau [Crawford and Auton, 1993] and
an unsystematic (stochastic) program called Walksat [Selman et al., 1994]. They
report solving much larger planning problems using Walksat than tableau. Indeed,
at the present time, satisfiability planning using Walksat may be the most efficient
approach to planning that is known.

Since Walksat is unsystematic, it cannot be used for query answering or plan
verification, where testing for unsatisfiability is required. It can, however, be used
for planning with respect to simple L, domain descriptions, since in this case the
plan verification step is unnecessary.?

Finally, we wish to emphasize that the restriction in this section to Lcp
domain descriptions that belong to the class of objective programs is a very serious
limitation. It is not difficult to find domains that can be properly formalized only
by writing causal laws that have non-literal consequents.*

There is, however, some reason to hope that the restriction to literal conse-
quents can be relaxed. Lifschitz [1997] has shown how to reformulate the syntax
and semantics of causal theories in classical logic. In the propositional case, this
reformulation introduces second-order quantifiers. However, it is always possible

to eliminate these quantifiers, and doing so again yields a standard propositional

FWe should remark in this context that our central concern in this dissertation is not with the
efficiency of planning, but rather with finding a natural and expressive language for formalizing
domains of action and change. The appeal of satisfiability planning methods—as opposed to meth-
ods, such the one described in [McAllester and Rosenblitt, 1991], which presupposes STRIPS-like
[Fikes and Nilsson, 1971] add and delete lists—is that satisfiability planning methods can be used
with any formalism that can be translated into classical propositional logic.

* Attempting to formalize such domains by writing causal laws with only literal consequents can
lead to unintended causal loops. Compare the Seesaw domain of Example 3.9.

138

theory. This means that query answering and planning can still, in principle, be
carried out by satisfiability checking, even for causal theories that contain laws with
non-literal consequents. It remains to be seen, however, whether the process of
eliminating the second-order quantifiers can be done with acceptable efficiency, and
how their elimination impacts the size of the resulting theory. These are topics for

future research.

9.4 Examples

In this section, we present several additional examples showing the behavior of the
program satp. We will not comment on the individual examples, but rather in each
case will simply list the program file and a session in which the program is loaded
and used in query answering and planning. In all cases, the run times are no more
than a few seconds on a Sun SPARCstation 5.

Meta-variables appearing in the formulas given as “facts” to query/0 or
plan/0 are implicitly universally quantified, as they are in rule schemas. Meta-
variables appearing in a “query” or a “goal” are implicitly existentially quantified.
As in rule schemas, it is possible to restrict the instantiations of facts, queries, and
goals by using where clauses.

In the final two examples of this section—the Airport domain and the second
Domino domain—we extend the Lq;, language to include atoms of two new forms.
In the Airport domain, we include atoms that describe features of the domain that
do not vary with time, and in the second Domino domain, we include atoms of the
form o(event,time). Events, like actions, are properly said to occur, and facts
about them may be causes of change. Unlike actions, however, events are typically
endogenous to our causal theories. In the second Domino domain, we describe the
conditions under which falling events occur. In the absence of such conditions, we

specify that falling events do not occur by writing causal laws similar to those used

139

to specify momentary fluents.’

% File: suitcase (see Chapter 7)

:— declare_types
type(latch,[11,12]),
type(action, [toggle(latch) ,close]),
type(fluent, [up(latch),open]),
type(time, [0..5]),
type(atom, [o(action,time) ,h(fluent,time)]).

:— declare_variables
var(L,latch),
var(A,action),
var (F,fluent),
var(T,time).

-h(up(L),T+1) <- o(toggle(L),T), h(up(L),T).
h(up(L),T+1) <- o(toggle(L),T), -h(up(L),T).
-h(open,T+1) <- o(close,T).

h(open,T) <- h(up(11),T), h(up(12),T).

o(A,T) <- o(4A,T).
-o(A,T) <- -0o(4A,T).
h(F,0) <- h(F,0).
-h(F,0) <- -h(F,0).

h(F,T+1) <- h(F,T), h(F,T+1).
-h(F,T+1) <- -h(F,T), -h(F,T+1).

| 7- load_file(suitcase).

% loading file /v/hank/v18/mccain/d/pl/suitcase
% 38 atoms, 105 rules, 68 clauses loaded.

yes

5Since in the last two examples of this section we extend the language Lc1,, the domain de-
scriptions in these cases are not simple, and so the effectiveness of our plans is not guaranteed by
Corollary 8.2. Also, in each of these examples and in the Stuffy Room domain which precedes them,
we use the special atom false. For this reason also, these examples fall outside the class of simple
Lc1, domain descriptions. Presumably, our definitions can be generalized to account for examples
such as these, but this remains to be done.

140

| ?- query.

enter facts (then ctrl-d)
|: h(up(11),0).

|: h(up(12),0).

|: o(close,0).

[:

enter query

|: o(toggle(11),0) | o(toggle(12),0).

yes
| ?- plan.
enter facts (then ctrl-d)

|: -h(open,0).
|: -h(up(11),0).
|: -h(up(12),0).
|

enter goal

% 1’ is ’or’

|: h(open,5) & -h(up(11),5) & -h(up(12),5).

0. -up(11) -up(1l2) -open
Actions: toggle(ll) toggle(1l2)

1. up(1l1) wup(l2) open
Actions:

2. up(l1l) wup(l2) open
Actions:

3. up(l1l) wup(l2) open
Actions:

4. up(1l1) wup(l2) open
Actions: toggle(ll) toggle(1l2)

5. -up(11) -up(12) open
Actions:

Verify plan? vy
plan verified.

yes

141

% File: soup (see Chapter 7)

:— declare_types
type(side, [left,right]),
type(action, [raise(side),lower(side)]),
type(fluent, [up(side),spilled]),
type(time, [0..5]),
type(atom, [o(action,time) ,h(fluent,time)]).

:— declare_variables
var([S,S1],side),
var(A,action),
var (F,fluent),
var(T,time).

h(up(S),T+1) <- o(raise(S),T).
-h(up(S),T+1) <- o(lower(S),T).
h(spilled,T) <- h(up(S),T), -h(up(S1),T) where S \== S1.

o(A,T) <- o(4A,T).
-o(A,T) <- -0o(4A,T).
h(F,0) <- h(F,0).
-h(F,0) <- -h(F,0).

h(F,T+1) <- h(F,T), h(F,T+1).
-h(F,T+1) <- -h(F,T), -h(F,T+1).

| ?- load_file(soup).

% loading file /v/hank/v18/mccain/d/pl/soup
% 44 atoms, 118 rules, 69 clauses loaded.
yes

| ?- query.

enter facts (then ctrl-d)

|: -h(up(S),0).

| : o(raise(left),0).

|: -o(raise(right),0).

| :

enter query

|: h(spilled,1).

yes

142

| ?- query.

enter facts (then ctrl-d)
|: -h(spilled,0).

| : o(raise(S),0).

[:

enter query

|: -h(spilled,1).

yes

% File: domino (see Chapter 7)

:— declare_types
type(domino, [1,2,3,4,5]),
type(action, [tip(domino)]),
type(fluent, [up(domino)]),
type(time, [0..5]),
type(atom, [o(action,time) ,h(fluent,time)]).

:— declare_variables
var([D,D1] ,domino),
var(A,action),
var(T,time),
var (F,fluent).

-h(up(D),T+1) <- o(tip(D),T).
-h(up(D1),T+2) <= h(up(D),T), -h(up(D),T+1) where D1 is D+1.

o(A,T) <- o(4A,T).
-o(A,T) <- -0o(4A,T).
h(F,0) <- h(F,0).
-h(F,0) <- -h(F,0).

h(F,T+1) <- h(F,T), h(F,T+1).
-h(F,T+1) <- -h(F,T), -h(F,T+1).

| 7- load_file(domino).
% loading file /v/hank/v18/mccain/d/pl/domino
% 62 atoms, 163 rules, 109 clauses loaded.

143

yes
| ?- query.
enter facts (then ctrl-d)
|: h(up(D),0).
|: o(tip(1),0).
[:
enter query
|: -h(up(1),5) & -h(up(2),5) &
-h(up(3),5) & -h(up(4),5) & -h(up(5),5).

yes

| ?- query.

enter facts (then ctrl-d)
|: h(up(1),0).

|: -o(tip(1),T).

[:

enter query

|: h(up(1),5).

yes

h File: stuffy (derived from [Ginsberg and Smith,1988])

:— declare_types
type(location, [d1,d2,floor]),
type(duct, [d1,d2]),
type(object, [01,02]),
type(action, [move(object,location)]),
type(fluent, [on(object,location) ,blocked(duct),stuffyl),
type(time, [0..3]),
type(atom, [o(action,time) ,h(fluent,time)]).

:— declare_variables
var([L,L1],location),
var(D,duct),
var([0,01] ,object),
var([A,A1] ,action),
var(T,time),
var (F,fluent),
var(G,inertial_fluent).

144

:- display_literals(positive).

h(on(0,L),T+1) <- o{move(O,L),T).
h(blocked(D),T) <- h(on(0,D),T).

-h(blocked(D),T) <- -h(on(o1,D),T), -h(on(o2,D),T).
h(stuffy,T) <- h(blocked(d1),T), h(blocked(d2),T).
-h(stuffy,T) <- -h(blocked(D),T).

-h(on(0,L),T) <- h(on(0,L1),T) where L\== L1.

false <- h(on(0,D),T), h(on(01,D),T) where 0O @< O1.
false <- o(A,T), o(A1,T) where A @< Al.

o(A,T) <- o(4A,T).
-o(A,T) <- -0o(4A,T).
h(F,0) <- h(F,0).
-h(F,0) <- -h(F,0).

h(on(0,L),T+1) <- h(on(0,L),T), h(on(0,L),T+1).

| ?- load_file(stuffy).

% loading file /v/hank/v18/mccain/d/pl/stuffy
% 62 atoms, 256 rules, 235 clauses loaded.
yes

| ?- query.

enter facts (then ctrl-d)

| : h(on(ol,floor),0).

| : —o(move(o1,D),T).

[:

enter query

|: -h(stuffy,3).

yes

| ?- plan.

enter facts (then ctrl-d)

| : h(on(ol1,d1),0).

| : h(on(02,d2),0).

[:

enter goal

|: h(on(o1,d2),T) & h(stuffy,T).

145

0. on(ol1,d1) on(02,d2) blocked(dl) blocked(d2) stuffy
Action(s): move(o2,floor)

1. on(ol1,d1) on(o2,floor) blocked(dl)
Action(s): move(ol,d2)

2. on(o1,d2) on(o2,floor) blocked(d2)
Action(s): move(o02,d1)

3. on(o02,d1) on(ol1,d2) blocked(dl) blocked(d2) stuffy
Action(s):

Verify plan? vy
plan verified.

yes

% File: airport (derived from [McCarthy,1959])

:— declare_types

type(location, [desk,garage,airport]),

type(entity, [i,car]),

type(action, [walk(location,location),

drive(location,location)]),

type(fluent, [at(entity,location)]),

type(time, [0..4]),

type(atom, [walkable(location,location),
drivable(location,location),
o(action,time) ,h(fluent,time)]).

:— declare_variables
var([A,A1] ,action),
var ([F],fluent),
var([T,T1],time),
var([E] ,entity),
var([L,L1],location).

:- display_literals(positive).
walkable(desk,garage) <- true.

walkable(garage,desk) <- true.
-walkable(L,L1) <- -walkable(L,L1).

146

drivable(garage,airport) <- true.
drivable(airport,garage) <- true.
-drivable(L,L1) <- -drivable(L,L1).

h(at(i,L1),T+1) <- o(walk(L,L1),T).

false <- o(walk(L,L1),T), -h(at(i,L),T).
false <- o(walk(L,L1),T), -walkable(L,L1).

h(at(i,L1),T+1) <- o(drive(L,L1),T).
h(at(car,L1),T+1) <- o(drive(L,L1),T).

false <- o(drive(L,L1),T), -h(at(i,L),T).
false <- o(drive(L,L1),T), -h(at(car,L),T).
false <- o(drive(L,L1),T), -drivable(L,L1).

-h(at(E,L),T) <- h(at(E,L1),T) where L \== L1.

o(A,T) <- o(4A,T).
-o(A,T) <- -0o(4A,T).
h(F,0) <- h(F,0).
-h(F,0) <- -h(F,0).

h(F,T+1) <- h(F,T), h(F,T+1).
-h(F,T+1) <- -h(F,T), -h(F,T+1).

| ?- load_file(airport).

% loading file /v/hank/v18/mccain/d/pl/airport
% 140 atoms, 657 rules, 461 clauses loaded.
yes

| ?- query.

enter facts (then ctrl-d)

| : h(at(i,desk),0).

|: h(at(car,airport),0).

[:

enter query

|: -h(at(i,airport),4).

yes
| ?- plan.

147

enter facts (then ctrl-d)
| : h(at(i,desk),0).

|: h(at(car,garage),0).
[:

enter goal

|: h(at(i,airport),T).

0. at(i,desk) at(car,garage)
Actions: walk(desk,garage)

1. at(i,garage) at(car,garage)
Actions: drive(garage,airport)

2. at(i,airport) at(car,airport)
Actions: drive(airport,garage)

3. at(i,garage) at(car,garage)
Actions: drive(garage,airport)

4. at(i,airport) at(car,airport)
Actions:

Verify plan? vy
plan verified.

yes
| ?- plan.

enter facts (then ctrl-d)

| : h(at(i,desk),0).

|: h(at(car,garage),0).

[:

enter goal

|: h(at(i,airport),T) & h(at(i,desk),T1l) where T1 > T.

0. at(i,desk) at(car,garage)
Actions: walk(desk,garage)

1. at(i,garage) at(car,garage)
Actions: drive(garage,airport)

2. at(i,airport) at(car,airport)
Actions: drive(airport,garage)

148

3. at(i,garage) at(car,garage)
Actions: walk(garage,desk)

4. at(i,desk) at(car,garage)
Actions:

Verify plan? vy
plan verified.

yes

File: domino-events (see Chapter 7)

:— declare_types
type(domino, [1,2,3,4,5]),
type(action, [tip(domino)]),
type(fluent, [up(domino)]),
type(time, [0..5]),
type(event, [fall(domino)]),
type(atom, [o(action,time),o(event,time) ,h(fluent,time)]).

:— declare_variables
var([D,D1] ,domino),
var([A,A1] ,action),
var (E,event),
var(T,time),
var (F,fluent).

o(£fall(D),T) <- o(tip(D),T).
-h(up(D),T+1) <- o(£fall(D),T).
0(fall(D1),T+1) <- o(£fall(D),T), h(up(D1),T+1) where D1 is D+1.

false <- o(£fall(D),T), -h(up(D),T).
false <- o(A,T), o(A1,T) where A \== A1l.

-o(E,T) <- -o(E,T).
o(A,T) <- o(4A,T).

-o(A,T) <- -0o(4A,T).
h(F,0) <- h(F,0).

149

-h(F,0) <- -h(F,0).

h(F,T+1) <- h(F,T), h(F,T+1).
-h(F,T+1) <- -h(F,T), -h(F,T+1).

| ?- load_file(’domino-events’).
% loading file /v/hank/v18/mccain/d/pl/domino-events
% 92 atoms, 377 rules, 327 clauses loaded.
yes
| ?- query.
enter facts (then ctrl-d)
|: h(up(D),0).
|: o(tip(1),0).
[:
enter query
|: -h(up(1),5) & -h(up(2),5) &
-h(up(3),5) & -h(up(4),5) & -h(up(5),5).

yes

| ?- query.

enter facts (then ctrl-d)
|: h(up(1),0).

|: -o(tip(1),T).

[:

enter query

|: h(up(1),5).

yes
| ?- plan.
enter facts (then ctrl-d)
[: h(up(D),0).
| :
enter goal
|: -h(up(1),T) & -h(up(2),T) &
-h(up(3),T) & -h(up(4),T) & -h(up(5),T).

0. up(1) up(2) up(3) up(4) up(s)
Events: fall(2)
Actions: tip(2)

1. up(1) -up(2) up(3) up(4) up(5)

150

Events: fall(1l) fall(3)
Actions: tip(1)

2. -up(1) -up(2) -up(d)
Events: fall(4) fall(5s)
Actions: tip(5)

3. -up(1) -up(2) -up(3)
Actions:

4. -up(1) -up(2) -up(3)
Actions:

5. -up(1) -up(2) -up(3)
Actions:

Verify plan? vy
plan verified.

yes

up(4) up(5)

-up(4) -up(5)

-up(4) -up(5)

-up(4) -up(5)

151

Chapter 10

Conclusion

We have investigated the role of causal knowledge in commonsense reasoning about
action and change. In this section, we summarize our main contributions and list a

number of topics for future work.

10.1 Summary of Contributions

The main contributions are the following.

e We have defined two formalisms in which “causal laws” representing the con-
ditions under which facts are caused can be expressed—the action description
language Ac¢y, and the language of causal theories and its specialization Lgy,.
In Appendix A, we also define a modal formalism, called CEL, which gener-
alizes the language of causal theories and indirectly gives truth conditions for

causal laws.

e We have studied the relationship between the language of causal theories and
default logic, and the relationship between objective programs (the logic pro-

gram subclass of causal theories) and various semantics for logic programming.

152

e We have defined a translation from objective programs into classical proposi-
tional logic via a generalization of the completion procedure [Clark, 1978] for

normal logic programs.

e We have described and illustrated a general approach to formalizing action
domains as causal theories. We have shown how to formalize inertial, momen-
tary, and exogenous fluents, and we have shown how to express ramification
and qualification constraints, explicit definitions, concurrency, nondeterminis-
tic actions, actions with delayed effects, and dynamic domains in which things

change by themselves.

e We have defined two action query languages, including one that contains op-

erators for the natural modalities of historical necessity and possibility.

e On the basis of the above-mentioned generalization of Clark’s completion pro-
cedure, we have described and implemented an approach to automated query
answering and planning which is based on satisfiability checking [Kautz and

Selman, 1992].

e Finally, we have attempted to illuminate several conceptual issues that arise in
formalizing action domains: (i) the inappropriateness of using state constraints
to infer the indirect effects of actions, (ii) the meaning of inertia, (iii) the issue
of language dependence in action formalisms, and (iv) the significance of causal
laws with non-literal consequents and their role in specifying nondeterministic

actions.

10.2 Topics for Future Work

The following is a list of items for future work that would improve upon the results

that we have described.

153

e The approach to query answering and planning described in Chapter 9 is
limited to the class of objective programs. This limitation—specifically, the
restriction to causal laws with literal consequents—is, as we have remarked, a
serious limitation which must be overcome. We discussed one potential remedy

in Section 9.3.

e In our version of satisfiability planning, we find complete action histories in
which the goal is achieved. As discussed in Section 9.2, this leaves open the
problem of finding a part of an action history that is truly essential to achieving

the goal.

e When time is infinite, the literal completion of an objective program is also
infinite. It would be useful to know syntactic conditions that would guarantee
that specific classes of consequences (in the reduced language) are unaffected
when time is changed from infinite to finite, or from a larger finite size to a

smaller one.

e Satisfiability planning methods are not effective when there are nondetermin-
istic actions or when there is incomplete knowledge of the initial state. It is

important to investigate other planning methods for these cases.

In addition to the above topics, there are a variety of other issues of interest
related to formalizing action domains about which we have said little or nothing.

We will mention only a few of these.

e In the language L, we describe when an action begins to occur and when
its effects appear, but we do not describe the duration of the action itself. It
would be interesting to investigate the usefulness of taking the atoms of causal
theories to be expressions which reference two time points, rather than one.
For example, we might write Load; 45 to say that the action of loading the

gun occurs in the interval from time ¢ to t + 5. Such expressions would be

154

similar to the “temporal propositions” (e.g., True(t,t+5, Load)) that Shoham

[1987,1990] has proposed as the participants of causal relations.

e The correspondence between the causally possible world histories and the
causally explained interpretations of a causal theory rests on the assump-
tion that the causal theory is complete with respect to the conditions under
which facts are caused. Thus, no allowance is made in the semantics of causal
theories for ignorance or uncertainty. It is not easy to see how the demand
for completeness might be lessened while preserving, for example, our solution
to the frame problem. Perhaps uncertainty could be represented by a set of

complete causal theories. If so, how should such a set be represented?!

e We have not attempted to model the knowledge state of the agent. Nor have
we addressed the issue of knowledge producing actions. To this end, one would

hope to adapt the methods of [Moore, 1985a] and [Scherl and Levesque, 1993].

10.3 A Final Word

In each of the formalisms that we have defined, we have been guided by three con-
cerns: conceptual plausibility, mathematical simplicity, and expressiveness. In an
attempt to satisfy the first of these concerns, we have endeavored to explain the
ideas behind each of our semantic definitions. It is primarily by means of such
explanations, we believe, that mathematical formalisms gain content, primarily in
relation to them that semantic definitions can be judged right or wrong, and pri-

marily through the construction and criticism of such explanations that progess will

'In some cases, it is possible to model incomplete knowledge of the conditions under which facts
are caused by nondeterminism. For instance, our various formalizations of coin tossing can be
viewed in this light—mnot as models of nondeterminism but of ignorance. However, this strategy is
not always possible. For instance, suppose that we know that a coin either has two heads or two
tails, but we do not know which. In this case, modeling coin tossing as nondeterministic would
exaggerate the extent of our ignorance. It would admit causally possible world histories that we
know are not possible, namely, those in which the coin is tossed more than once and comes up
sometimes heads and sometimes tails.

155

be made.

What is perhaps most responsible for the degree to which we have achieved
the goals of mathematical simplicity and expressiveness is our decision not to in-
troduce “foundationalist” assumptions into the semantics of our formalisms; for ex-
ample, the assumption that every fact in a causally possible world history must be
“causally grounded” in facts about the initial state of the world (if any), facts about
the actions performed, and facts preserved by inertia. In each of our formalisms,
we have required the facts in any causally possible world history (or possible next
state) to be exactly those that are caused according to our theory. But we have
not required the facts to be causally grounded in any smaller foundation than the
set of all facts itself. (By contrast, the causal framework of [McCain and Turner,
1995]—described in Appendix A—presupposes foundationalism, requiring the facts
in any possible next state to be grounded in inertia and the explicit effect.) Because
we do not presuppose foundationalism, our formalisms are mathematically simpler
than they otherwise would have been, and in important ways they are more ex-
pressive. Specifically, in each of our formalisms it is possible to say that a fact is a
condition for itself being caused. As we have seen, this expressive possibility is the
key to representing—in the language of causal theories—inertia, exogenous facts,

momentary fluents, and nondeterminism.

156

Appendix A

Related Formalisms

In this appendix, we discuss two additional formalisms that are related to those
defined in this dissertation. We compare the causal framework defined in Chapter 3
with the earlier framework of [McCain and Turner, 1995] in which static causal laws
are represented by inference rules, and we present a nonmonotonic modal formalism

that generalizes the language of causal theories.

A.1 Causal Laws and Inference Rules

In Chapter 3, we defined Resp(F,S), the set of states that can result after perform-
ing an action with the explicit effect IV in the state S, given background knowledge
in the form of a set D of static causal laws. The definition given there differs from
an earlier definition given in [McCain and Turner, 1995]. In this section, we present

the earlier definition and compare it with the new one.

A.1.1 An Earlier Causal Framework

Let X be a set of formulas of propositional logic and D be a set of static causal
laws. We say that X is closed under D, if for every static causal law ¢ = 1 in D,
if € X then ¢ € X.

157

The derivability relation - in propositional logic is easily extended to take
account of static causal laws. Given a set I' of formulas, a set D of static causal

laws, and a formula ¢, we write

'kp ¢

to mean that ¢ is an element of the smallest set of formulas that contains I' and is
closed with respect to propositional logic and closed under D.

As in the case of Definition 4 of Chapter 3, the states are the interpretations
that satisfy, for each static causal law ¢ = 1 in D, the corresponding material

conditional ¢ D .

Definition 5 [McCain and Turner, 1995] For any set D of static causal laws, explicit
effect I/, and state S, Res), (I, S) is the set of states S’ such that

S'={L:(SNS)YUEFp L}

For each of the examples considered in Chapter 3, with the exception of
Example 3.10, Definitions 4 and 5 yield identical results. As an illustration, consider

again Fxample 3.6.
Example A.1
S = {=Upt, Up2,-0On}

E = {Upl}

= {(Upl1= Up?2) = On, =(Upl= Up2) = —0On}.

Previously, we observed that Res},(F,S) contained the single possible next state

S' = {Upl, Up2, On}. Now, we find that Res},(F,S) is the same. &

Both Definitions 4 and 5 require exactly the literals that are true in any
possible next state to be caused. However, they differ on how what is caused is to

be determined. Consider, for example, the fluent On, which holds in S’. According

158

to both definitions, On’s becoming true in S’ is a ramification induced by the first
of the two causal laws in D). However, the grounds for inferring that On is caused
differ in the two cases. In the case of Definition 4, the ground is that Up? = Up2is
true in S’. In the case of Definition 5, the ground is that Upl = Up2 is derivable
from (S NS") U E. Definition 5 is based on the foundationalist assumption that
all literals in any possible next state are “causally grounded” in the subset of facts
preserved by inertia and the explicit effect. Definition 4 makes no such assumption.

Definitions 4 and 5 agree in the preceding example and in many others, but

they do not always agree, as the following examples show.

Example A.2 In this example, we illustrate the behaviors of the two definitions

with respect to “reflexive” causal laws of the form ¢ = ¢. Let

S = {_'p7 _‘(]}

E = {p}

D = 0.

According to both Definitions 4 and 5, the unique possible next state is {p, —q}.

However, if we change the example by adding to D the static causal law ¢ = ¢, the

two definitions yield different results. Let

= {_'pv_'q}
E = {p}
D' = {¢=q}

According to Definition 5, there is still the same unique possible next state,

Resp(E,S) = {{p,~q}}.

However, according to Definition 4 there is now a second possibility,

Rest(E,S) = {{p,~q},{p, 4} }-

159

Example A.3 The following example, which is due to Hudson Turner (personal
communication), illustrates the fact that Definition 4 possesses a certain disjunction

property that Definition 5 lacks.

S = {_'p7 _‘(]}
E={q}

D ={True = (p=q)}.

According to both Definitions 4 and 5, the unique possible next state is {p,q}.
However, if we modify the example, replacing D by D’ below, we find different

results. Let

S = {_'p7 _‘(]}
E={q}

D={p= (=9, p=p=9}

According to Definition 4, there is the same unique possible next state,

Resp(E,S) = {{p.q}}.

So Res}h(E,S) = Res},(E,S). According to definition 5, on the other hand, there
is no possible next state,

Resh(E,S)=10.

So Res}(F,S) # Resy, (E,S). &

Intuitively, the behavior of Definition 4 in the preceding examples is com-
patible with reading ¢ = 1 as: in every state in which ¢ is true, ¥ is caused to
be true, or ¢’s being true (in a state) causes ¥ to be true (in the same state). The
behavior of Definition 5, on the other hand, is intuitively incompatible with these
readings. Instead, Definition 5 supports the reading: necessarily, if ¢ is caused to

be true (in a state) then 1 is caused to be true (in the same state). In order to

160

test these intuitions, the reader is encouraged to apply the different readings to the
static causal laws in Examples A.2 and A.3 and to ask himself in each case what

intuitively follows about the possible next states.

A.1.2 Formal Connections

In this section, we investigate the relationship between Definitions 4 and 5 more
precisely.

The following proposition and corollary show that, according to Definition 5,
the possible next states always differ minimally from the initial state among the
states that satisfy the explicit effect. This property is not possessed by Definition 4,

as is shown in Example A.2.

Proposition A.1 [McCain and Turner, 1995]. Let D be a set of inference rules,
and B = {¢ D ¢ : ¢ = € D}. For every state S and explicit effect F,
Res},(E, S) C Resy(E,S).

Corollary A.1 Let D and B be as in Proposition A.1. For every state S and
explicit effect F, the states in Res),(F,S) differ minimally from S (as defined by set

inclusion) among the states that satisfy F.

Proof. By the Propositions A.1 and 3.1, we know that Res},(E,S) C Resp (E, S).
Since, by definition, every state in Res}év(E, S) differs minimally from S among the

states that satisfy F, the same is true of Res},(F,S). O

The following proposition shows that the set of possible next states according
to Definition 5 is always a subset of the set of possible next states according to

Definition 4.

Proposition A.2 For any state S, explict effect F, and set D of static causal laws,
Res},(E,S) C Resp(E,S).

161

Proof. Suppose S’ € Res},(E,S). Then
S'={L:(SNSYUFEFp L}. (A.1)
It follows that
DY ={¢: for some ¢, » = ¥ € D and (SNS)UFE Fp ¢}.
So
S'={L:(SNnS) YUEUDY E L.

Therefore, S’ € Rest,(E, S). 0

The containment relation described in Proposition A.2 does not, in general,
hold in the opposite direction. It does so, however, in special cases. This is shown
by the following proposition, where we direct our attention to a set of static causal
laws only if (i) it belongs to the class of objective programs (so all of its laws have
the form B = L, where B is a conjunction of literals and L is a literal), and (ii) its
atom dependency graph contains no infinite paths. (The atom dependency graph
of an objective program is defined in Section 8.2.2.) Notice that the explicit effect

is required to be a set of literals.

Proposition A.3 Let D be a set of static causal laws that belongs to the class of
objective programs. If the atom dependency graph for D contains no infinite paths,

then for every state S and set I of literals, Resh(E,S) = Res)(E, S).

Proof. By Proposition A.2, we know that Res},(F,S) C Res},(E,S). To show

inclusion in the opposite direction, let us suppose that S’ € Res},(F,S). Then
S'={L:(SnSYUEUD = L}. (A.2)
We wish to show that S’ € Res},(F, S), i.e., that
S'={L:(SNSYUFEFp L}.

162

By (A.2), we know that
{L:(SNSYUFEFp L} C S

To prove that
S'CHA{L:(SNSYUFEFp L}

we proceed by contradiction. Suppose there exists a literal L; € S’ such that
(SNS")UEtp Li. By (A.2), we know that (SN S)UEU DY = L. It follows
that L, € DS, Thus, for some conjunction of literals By there exists a static causal
law By = Ly € D such that S’ = By and (SN S)U E t/p By. It follows that for
some literal conjunct Ly in By, Ly € S" but (SN S')U F t/p Ly. The preceding
argument can be repeated indefinitely to show the existence of similar literals Ls,
L4, and so on. This contradicts our assumption that there are no infinite paths in
the atom dependency graph of D. We conclude that there is no literal L € S’ such
that (SNS)UEp L. Thus, 8" C{L:(SNS)ULEFp L}. a

In Example 3.10, we observed that the presence of loops in a set of static
causal laws (for example, as occurs in = Up(A) = Up(B) and Up(B) = -~ Up(A))
could lead, by Definition 4, to the possibility of spontaneous change. The follow-
ing proposition shows that spontaneous change is impossible under the conditions

described in Proposition A.3.

Proposition A.4 Let D be a set of static causal laws that belongs to the class of
objective programs. If the atom dependency graph for D contains no infinite paths,

then for every state S, Resh((,S) = {S}.

Proof. Let S be a state. It is clear that S = {L: (SN S)UPU D® = L}. So we
know that S € Res},(0,5). By Proposition A.3 and Corollary A.1, every state in
Res}, (0, S) differs minimally from S among the states that satisfy . It follows that

Rest, (0, S) contains no state other than S. O

163

A.2 A Modal Generalization of Causal Theories

In this section, we define a system of modal logic called CEL (for Causal Explanation
Logic) and an embedding of causal theories into CEL.

In defining the semantics of causal theories in Chapter 5, we defined the
notion of a causally explained interpretation, but we did not specify truth conditions
for causal laws. This deficiency is remedied by the above-mentioned embedding. We
will see that the truth conditions for causal laws given by the embedding conform
to the weaker of the two readings for causal laws that we have used throughout this
dissertation. The ideas in this chapter are the product of joint work with Hudson

Turner. CEL is related to the work of Geffner [1990, 1992].

A.2.1 CEL: Causal Explanation Logic

CEL is obtained by augmenting S5 modal logic by a definition of the causally ex-
plained interpretations. We begin by briefly reviewing the syntax and semantics of
S5 modal logic.

A propositional modal language is given by a set of atoms. The formulas of

the language are inductively defined as follows:
e an atom is a formula,
o if ¢ and 1 are formulas, then ¢ A ¢ is a formula, and
e if ¢ is a formula, then both —¢ and C¢ are formulas.

Here C is the modal necessity operator. The other standard propositional connec-
tives (V, D, and =) are introduced by abbreviations in the usual way.

An S5 structure is a pair (/,5), where [is an interpretation (of the set of
atoms) and S is a set of interpretations such that I € S. We continue to identify

an interpretation I with the set of literals L such that [= L. Truth in a structure

164

is defined as follows. (Here ¢ and 1 are arbitrary formulas.)

I,SYEA iff Ael, if Aisan atom,
F e iff (1,5) ¥ ¢,
= oy it (1,8) 6 and (1,5) = 0,

ECo iff forall I'e S, (I')S) = ¢

I,

(1,5)
(1,5)
(1,5)
(1,5)

I,

Given an S5 theory T, we write (I,5) = T to mean that (/,5) E ¢, for
every ¢ € T'. In this case, we say that (/,5) is a model of T'. We also say that (1, .5)
is an I-model of T, emphasizing the distinguished interpretation I.

The following definition was first formulated by Hudson Turner. An inter-
pretation I is causally explained according to a CEL theory T if for every set S of

interpretations
(1,9 =Tiff S={I}.

This means that (/,{/}) is the unique /-model of T
An alternative characterization of the causally explained interpretations is

given by the following proposition.

Proposition A.5 An interpretation I is causally explained according to a CEIL

theory T if and only if
I={L:TUIlECL}.

Proof. For the left-to-right direction, suppose that for every set .S of interpretations
(1,9 =Tiff S={I}. (A.3)

Every model of T'U I has the form (I,5"), where S’ is a set of interpretations that
contains /. By (A.3), there is only one such model, (I,{/}). It follows that L € I

165

if and only if U [= CL. Therefore, I = {L : TUI = CL}. For the right-to-left

direction, suppose that
I={L:TUIlECL}. (A.4)

In order to show that I is causally explained according to T, let S be a set of
interpretations, and suppose (/,5) = T. We will show that S = {[}. It follows that
(I,S)ETUI. By (A4), TUl = CL, for every L € I. Therefore, we know that for
all Lel, (1,9 CL. So S ={I}. Now for the opposite direction, suppose that
S = {I}. We will show that (1,5) = T. Suppose instead that (I,{l}) £ T. Then
(I,{I})ETUl. By (A4), we know that 7"U I has a model. So it must have the
form (I,5’), for some S” other than {/}. Thus, there is a literal L € I such that
T U1 B~ CL, which contradicts (A.4). We conclude that (1,5) = T. a

A.2.2 A Modal Encoding for Causal Laws

A causal law can be encoded in CEL by the formula

¢ D Cy.

Intuitively, (A.5) says that: if ¢ then the fact that 1 is caused. This reading does
not capture the necessity of causal laws. However, if we use CEL only to express
propositions that are true in all possible worlds (that is, if we use CEL as an action
description language, not also as an action query language), then we can safely read
(A.5) instead as: necessarily, if ¢ then the fact that 1 is caused. This is the weaker

of our two readings for ¢ = .

A.2.3 CEL and Causal Theories

We have described when an interpretation [is causally explained in two different
frameworks. In the language of causal theories, an interpretation [is causally

explained according to a causal theory D if I is the unique model of D!. Here

166

“model” is understood in the sense of propositional logic. In CEL, an interpretation
I is causally explained according to a CEL theory 7" if (I, {/})is the unique /-model
of T. Here “model” is understood instead in the sense of S5 modal logic. In this
section, we show, under the modal encoding defined in Section A.2.2, that the two
definitions agree.

Let D be a causal theory. We define

T(D)={¢>Ci:é= e D}

Geffner [1990, 1992] used the same representation of causal knowledge, but in the
modal logic T' rather than S5.

Proposition A.6 An interpretation 1 is causally explained according to a causal

theory D if and only if I is causally explained according to T (D).
The proof of this proposition is given below, using the following lemmas.

Lemma A.1 For every causal theory D and interpretation I, I = D! if and only

if (1 A1}) ET(D).

Proof. For the left-to-right direction, suppose (/,{[}) = T'(D). Then there is a
formula ¢ D C¢ in T'(D) such that (I,{/}) = ¢ O Ci. It follows that I = ¢ but
I B~ 1. We know that ¢ = v is in D. Since I |= ¢, 1 is in D!. Since I [1,
I = D', For the right-to-left direction, suppose I = D', Then there is a causal law
¢ = v in D such that I = ¢ but I [£ ¢. We know that the formula ¢ D Ct is in
T(D). Therefore, (I,{I})E T(D).]

Lemma A.2 Let D be a causal theory and I be an interpretation such that I = D',
There is no interpretation I' such that I' # I and I' = D' if and only if there is no
set S of interpretations such that S # {1} and (1,5) =T (D).

Proof. For the left-to-right direction, suppose there is a set S of interpretations

such that S # {[/} and (1,5) E T(D). Then for some I" in S such that I’ # I and

167

for all formulas ¢ D Ct in T(D), if I |= ¢ then I' |= ¢. It follows that I’ | D,
For the right-to-left direction, suppose there is an interpretation I’ such that I’ # I
and I' = D!. By hypothesis, I |= D!. Therefore, (I,{I,I'}) = T(D). So there is a
set S of interpretations such that S # {I} and (1, 5) ET(D). a

Proof (of Proposition A.6). We will show that: I is the unique model of D if
and only if (I, {/})is the unique /-model of T'(D). (Let us call this proposition X.)
By Lemma A.1, we know that I = D' if and only if (I, {I}) = T(D). So if I = D',
we are done (both sides of proposition X are false). So let us assume that I = DI
By Lemma A.1, we know that (/,{I}) = T(D). Thus, proposition X follows by

Lemma A.2. O

It follows by Proposition A.6 that every causal theory can be equivalently
represented as a theory in CEL. The same does not hold in reverse, however, since
in CEL we can write formulas of other forms than ¢ O C¢. This possibility raises
the following question: Is the additional expressiveness of CEL useful in formalizing

action domains? This is a topic for future research.!

'"Hudson Turner has explored some possible uses for the additional expressiveness of CEL in his
recent dissertation [Turner, 1997a).

168

Appendix B

The Program Listing

/* File: satp.pl
Language: SICStus Prolog (Release 3)
Date: 12/24/96
Author: Norman C. McCain

This program uses the satisfiability checker ’ntab’ (previously
known as ’tableau’), of Crawford and Auton (AAAI-93) to
solve query answering and planning problems (in the
style of Kautz and Selman (ECAI 92)) with respect to L_{CL}
objective programs.

The three main user level procedures are:

load_file(+Filename): reads in an objective program and
asserts its literal completion in clausal form into
the Prolog database.

query: prompts for facts Gamma and a query Q and using
the literal completion of the objective program
(previously loaded by load_file/1) determines
whether lcomp(D) \cup Gamma \cup -Q is satisfiable.

plan: prompts for facts Gamma about the initial state
and a goal G and using
the literal completion of the objective program
(previously loaded by load_file/1) determines
whether lcomp(D) \cup Gamma \cup G 1is satisfiable.

169

See Chapter 9 for additional details. */

:- use_module(library(lists)).
:- use_module(library(ordsets)).
:- use_module(library(system)).

:- op(1150,fx,declare_types).

:- op(1150,fx,declare_variables).
:= op(700,xfx,’..%).

:= op(1150,xfx,<-).

:= op(1150,fx,<-).

:= op(1170,xfx,where).

:= op(1000,xfy,&) .

:= op(1155,xfx,<->).

:— dynamic
’$fo0$’/1, ’num’ /1, (-)/2, type/2, var/2, atom/2,
clause/1, display_list/1.

Whh load_file/1 %%%
load_file(File) :-
write(’}, loading file ’), absolute_file_name(File,A),
write(A), nl, ttyflush,
expand_file(File),
write(?Y%),
count_atoms(N), write(N), write(’ atoms, ’),
count_rules(R), write(R), write(’ rules, ’),
ttyflush, assert_law_clauses,
count_clauses(M), write(M), write(’ clauses loaded.’).

expand_file(File) :-
init, seen, see(File), read_pass, seen.

read_pass :-
read_fail_loop.

read_pass :-
find_atom(N,true), assertz((N<-[])),
find_atom(M,false), C is 0-M, assertz((C<-[]1)).

read_fail_loop :-

170

repeat,
read_term(Term, [variable_names(Names)]),
((Term = (H<-B where Tests) ;

Term = (H<-B), Tests = true ;
Term = (<- B where Tests), H = false ;
Term = (<- B), H = false, Tests = true)

-> process_rule((H<-B where Tests) ,Names)
; Term = (:- declare_types B)
-> process_types(B),
enumerate_atoms
; Term = (:- declare_variables B)
-> bind_vars_to_names(Names),
process_variables(B)
; Term = (:- Com)

-> call(Com) % other directives
; Term == end_of_file
-> 1, fail
; nl, write(’unexpected input: ’), write(Term), nl),
fail.
init :- seen, told,

retractall(type(_ ,_)),
retractall(var(_,_)),
retractall(atom(_,_)),
retractall((_<-_)),
retractall(clause(_)),
retractall(’num’ (_)),
retractall(display_list(_)).

process_types((4A,B)) :-
!, process_types(A), process_types(B).
process_types(type(time,Cs)) :-

[}
3

(Cs = [X..Y]
-> expand_times(X,Y,Es) ; Es = Cs),
assertz(type(time,Es)).
process_types(type(Type,Cs)) :-
expand_list(Cs,Es), assertz(type(Type,Es)).

enumerate_atoms :-

type(atom,As), member(A,As), next_num(N), assertz(atom(N,A)),
fail.

171

enumerate_atoms :-
next_num(M), assertz(atom(M, true)),
next_num(N), assertz(atom(N,false)).

expand_times(S,S,[S]) :-
]
expand_times(S,T,[S|Ts]) :-
S1 is S + 1, expand_times(S1,T,Ts).

expand_list([CICs],Fs) :-
subst_vars_for_type_names(C,D,Vs),
retractall(’foo’(_)),
(bind_vars_to_terms(Vs),
assertz(’$foo0$’ (D)),
fail
; £indall(D,’$foo0$’(D),Ds),
expand_list(Cs,Es), append(Ds,Es,Fs)).
expand_list([1,[]).

subst_vars_for_type_names(C,D,Vs) :-

atom(C),

[}
3

(type(C,Cs) -> Vs = [D/Cs] ; D =2C, Vs = []
subst_vars_for_type_names(C,D,Vs) :-
functor(C,F,N),
functor(D,F,N),
subst_vars_for_type_names_arg(C,N,D,Vs).

subst_vars_for_type_names_arg(_C,0,_D,[]1) :-
[}

subst_vars_for_type_names_arg(C,N,D,Vs) :-
arg(N,C,A),
subst_vars_for_type_names(A,B,Xs),
arg(N,D,B),
M is N-1,
subst_vars_for_type_names_arg(C,M,D,Ys),
append(Xs,Ys,Vs).

bind_vars_to_terms([V/Cs|Vs]) :-

member(V,Cs), bind_vars_to_terms(Vs).
bind_vars_to_terms([]).

172

process_variables((A,B)) :-
!, process_variables(A), process_variables(B).
process_variables(var(V,S)) :-
(list(S)
-> Cs =85
; type(s,Cs)),
(list(V)
-> assert_variables(V,Cs)
; assertz(var(V,Cs))).

bind_vars_to_names([=(Var,Var) |Names]) :-
bind_vars_to_names(Names).
bind_vars_to_names([]).

list([_I_1). 1ist([1).

assert_variables([],_Cs).
assert_variables([V]|Vs],Cs) :-
assertz(var(V,Cs)), assert_variables(Vs,Cs).

process_rule((H<-B where Tests),Names) :-
listify(B,Bs),
bind_vars(Names),
(call(Tests)

-> eval_time(H,H1),
eval_times(Bs,Bs1l),
number_1it (H1,N),
number_lits(Bs1,Ns),
assertz{(N<-Ns))),

fail.
process_rule(_,_).

bind_vars([=(Name,Var) |Bs]) :-
(var(Name,Cs) -> member(Var,Cs) ; true),
bind_vars(Bs).

bind_vars([]).

eval_times([L|Ls],[L1|Ls1]) :-

eval_time(L,L1), eval_times(Ls,Lsl).
eval_times([]1,[1).

173

eval_time(o(A,T),0(A,T1)) :-
', T1 is T.
eval_time(-o(A,T),-0(A,T1)) :-
', T1 is T.
eval_time(h(A,T),h(A,T1)) :-
', T1 is T.
eval_time(-h(A,T),-h(A,T1)) :-
', T1 is T.
eval_time(L,L).

assert_law_clauses :-
atom(N,H), C is O-N,
(H = true
-> assertz(clause([N])),
findall(Ms, (N<-Ms),Nss),
member_of_each(Ns,Nss),
assert_clause([C|Ns]),
fail
; H = false
-> assertz(clause([C])),
findall(Ms, (N<-Ms),Nss),
member (Ns,Nss),
negate_lits(Ns,Cs),
assert_clause([N]|Cs]),
fail
; (findall(Ms, (N<-Ms),Nss),
(member(Ns,Nss),
negate_lits(Ns,Cs),
assert_clause([N|Cs]),
fail
; member_of_each(Ns,Nss),
assert_clause([C|Ns]),
fail)
; findall(Ms, (C<-Ms),Nss),
(member(Ns,Nss),
negate_lits(Ns,Cs),
assert_clause([CI|Cs]),
fail
; member_of_each(Ns,Nss),
assert_clause([N|Ns]),
fail))).
assert_law_clauses.

174

assert_clauses([C|Cs]) :-
assert_clause(C), assert_clauses(Cs).
assert_clauses([]).

assert_clause(Ns) :-
sort(Ns,Cs),
(eliminable(Cs) -> true; assertz(clause(Cs))).

eliminable(Cs) :-
find_atom(N,true), ord_member(N,Cs),
Cs \== [N].
eliminable(Cs) :-
find_atom(N,false), M is (0-N), ord_member(M,Cs),
Cs \== [M].
eliminable(Cs) :-
tautology(Cs) .

tautology ([N|_Ns]) :-
N>0, ', fail.
tautology ([N|Ns]) :-
M is (0-N),
(ord_member(M,Ns)
-> true
; tautology(Ns)).

listify(true,[]1) :-
]
listify((A,B),[AlBs]) :-
', 1listify(B,Bs).
listify(A, [A]).

member_of_each([N|Rs], [Ns|Nss]) :-
member (N,Ns), member_of_ecach(Rs,Nss).
member_of_each([],[]).

negate_lits([NINs],[CICs]) :-

C is 0-N, negate_lits(Ns,Cs).
negate_lits([1,[1).
number_lits([L|Ls], [M|Ms]) :-

number_1it(L,M), number_lits(Ls,Ms).

175

number_lits([],[1).

number_1lit(-A,N) :-

1, find_atom(M,A), N is O-M.
number_1it(A,N) :-

find_atom(N,4).

find_atom(N,A) :- atom(N,A), !.

next_num(I) :-
retract (’num’ (N)),
', I is N+1,
assert (’num’ (I)).
next_num(1l) :-
assert (’num’ (1)).

last_num(N) :- ’num’(N), ! ; N = 0.

WAk query/0 %A%

query :-
write(’enter facts (then ctrl-d4d)’),
nl,
read_facts(Facts),
clausify_list(Facts,FCs),
nl,
write(’enter query’),
nl,
read_query(Query),
clausify(-Query,QCs),
told,
tell(’ntab.in’),
write_law_clauses,
write_clauses(FCs),
write_clauses(QCs),
told,
ntab_call(Call),
system(Call),
seen,
see(’ntab.out’),
read_line(Ans),
(atom_chars(’UNSAT’,Ans)

176

-> seen
; read_line(),
read_line(Chars),
seen,
get_numbers(Chars,Model),
display_model(Model), fail).

ntab_call(Call) :-
count_atoms(N), M is N+1,
name(M,Cs),
append("ntab -p -v",Cs,Half),
append(Half," <ntab.in >ntab.out',Whole),
name(Call,Whole).

W% plan/o %A%
plan :-

write(’enter facts (then ctrl-d4d)’),

nl,

read_facts(Facts),

clausify_list(Facts,FCs),

nl,

write(’enter goal’),

nl,

read_query(Goal),

clausify(Goal,GCs),

told,

tell(’ntab.in’),

write_law_clauses,

write_clauses(FCs),

write_clauses(GCs),

told,

ntab_call(Call),

system(Call),

seen,

see(’ntab.out’),

read_line(Ans),

(atom_chars(’UNSAT’,Ans)
-> seen, fail

; read_line(),
read_line(Chars),
seen,

177

get_numbers(Chars,Model),
display_model(Model),
nl, nl,
write(’Verify plan?),
get(X), skip_line,
(X =0y
-> extract_plan(Model,PCs),
clausify(-Goal,QCs),
verify_plan(FCs,PCs,QCs)
; true)).

verify_plan(FCs,PCs,QCs) :-
told,
tell(’ntab.in’),
write_law_clauses,
write_clauses(FCs),
write_clauses(PCs),
write_clauses(QCs),
told,
ntab_call(Call),
system(Call),
seen,
see(’ntab.out’),
read_line(Ans),
(atom_chars(’UNSAT’,Ans)
-> seen, write(’plan verified.’),
nl
; write(’verification failed.’), nl,
read_line(),
read_line(Chars),
seen,
get_numbers(Chars,Model),
display_model(Model), nl, !, fail).

extract_plan(Model ,PCs) :-
findall([M],
(atom(N,o(_A,_T)),
(member(N,Model) -> M =N ; M is O0-N)),
PCs).

read_facts(Facts) :-
findall(Fact, (repeat,

178

read_fact(Fact),
(Fact == end_of_file -> !, fail; true)),
Facts).

read_fact(Fact) :-
read_term(Term, [variable_names(Names)]),
(Term == end_of_file
-> !, Fact = end_of_file
; (Term = (Wff where Tests);
Term = Wff, Tests = true)
-> bind_vars(Names),
call(Tests),
number_atoms (Wff,Fact)).

read_query(Fact) :-
read_term(Term, [variable_names(Names)]),
(Term == end_of_file
-> !, read_query(Fact)
; (Term (Wff where Tests);
Term = Wff, Tests = true)
-> bind_vars(Names),
call(Tests),
number_atoms (Wff,Fact)).

number_atoms ((A <-> B),(M <-> N)) :-

[}
L)

number_atoms(A,M), number_atoms(B,N).

number_atoms((A -> B),(M -> N)) :-

[}
L)

number_atoms(A,M), number_atoms(B,N).

number_atoms((A & B),(M & N)) :-

[}
L)

number_atoms(A,M), number_atoms(B,N).

number_atoms((A | B),(M | N)) :-

[}

number_atoms(A,M), number_atoms(B,N).
number_atoms(-4,-M) :-

!, number_atoms(A,M).
number_atoms(A,M) :-

eval_time(A,B), find_atom(M,B).

clausify_list([W|Ws],Cs) :-

179

clausify(W,Cs1),

clausify_list(Ws,Cs2),

append(Cs1,Cs2,Cs).
clausify_list([],[1).

clausify(W,Cs) :-
move_negations(W,W1),
distribute(W1,W2),
clause_list(W2,Cs).

move_negations(A,Al) :-
iff_1(A,A2),

[}
L)

move_negations(A2,A1).

move_negations((A & B),(A1l & B1)) :-
]
move_negations(A,Al),
move_negations(B,B1).

move_negations((A | B),(A1 | B1)) :-
|
move_negations(A,Al),
move_negations(B,B1).
move_negations(-A,N) :-
', N is 0 - A.
move_negations(A,A).

iff_1(- (A <> B),((A & -B) | (-A & B))).
iff_1((A <> B),((-A | B) & (-B | A))).
iff_1(- (Ao -> B),(A & -B)).

iff_1((A -> B),(-A | B)).

iff_1(- (A & B),(-A | -B)).

iff_1(- (A | B),(-A & -B)).

iff_1(- (-4),4).

distribute((A | B),R) :-

[}
3

distribute(A,Al),

distribute(B,B1),

(A1 =(Pe&Q

-> dist1((P | B1),D1),
dist1((Q | B1),D2),
R = (D1 & D2)

180

; Bl = (P& Q)
-> dist1((A1 | P),D1),
dist1((a1 | Q),D2),
R = (D1 & D2)
; R = (a1 | B1)).

distribute((A & B), (A1 & B1)) :-

[}
3

distribute(A,Al),
distribute(B,B1).
distribute(A,4).

dist1((A | B),R) :-
(A= (P&Q
-> dist1((P | B),D1),
dist1((Q | B),D2),
R = (D1 & D2)
i B= (P &Q
-> dist1((B | P),D1),
dist1((B | Q),D2),
R = (D1 & D2)
; R=(A | B)).

clause_list((A & B),Cs) :-
]
clause_list(A,As),
clause_list(B,Bs),
append(As,Bs,Cs).

clause_list(A,[As]) :-

literal_list(A,As).

literal_list((A | B),Ls) :-
]
literal_list(A,As),
literal_list(B,Bs),
append(As,Bs,Ls).

literal_list(A,[A]).
write_law_clauses :-

clause(Cs), write_clause(Cs), nl, fail.
write_law_clauses.

181

write_clauses([C|Cs]) :-
write_clause(C), nl, write_clauses(Cs).
write_clauses([]).

write_clause([L|Ls]) :-
write(L), write(’ ’), write_clause(Ls).
write_clause([]).

report(Model) :-

seen, see(’ntab.out’),

read_line(Ans),

(atom_chars(’UNSAT’,Ans)

-> write(?UNSAT’), nl, Model = none

; write(?SAT’),
read_line(),
read_line(Model),
get_numbers (Model,Ns),
display_model(Ns), nl),

seen.

read_line([]) :-

at_end_of_line, skip_line, !.
read_line([C|Cs]) :-

get0(C), read_line(Cs).

get_numbers(String,Nums) :-
drop_spaces (String,NewS),
(NewS = []
=> Nums = []
; get_number(NewS,Num,Rest),
Nums = [Num|Numsi],
get_numbers(Rest,Numsl)).

drop_spaces([C|Cs],Cs1) :-

(C = 32 -> drop_spaces(Cs,Cs1) ; Cs1 = [CICs]).
drop_spaces([]1,[1).
get_number(String,Num,Rest) :-

get_until(String, [32,10],Chars,Rest),

number_chars (Num,Chars) .

get_until ([Char|Cs] ,Delimiters,[],Cs) :-

182

member (Char,Delimiters), !.
get_until ([C|Cs] ,Delimiters, [C|Chars],Rest) :-
get_until(Cs,Delimiters,Chars,Rest).
get_until([],_,[1,0[1).

display_model(Ns) :-
display_literals(Ls),

(type(action,As) -> true; As = [

(type(event,Es) -> true; Es = [])

(type(fluent,Fs) -> true; Fs = [

(type(time,Ts) -> true; Ts = []

member (T,Ts),

nl,

(nl, write(T), write(’. ?),
member (F,Fs),
find_atom(N,h(F,T)),

(member(N,Ns)
-> (member(F,Ls)
-> write(’ ?), write(F), write(’® ?), fail)
; (member(-F,Ls)
-> write(’-?), write(F), write(’® ?’), fail)
)
; £indall(E, (member(E,Es),
find_atom(N,o(E,T)) ,member(N,Ns)),Es1),
(Est \== []
-> nl, write(’Events: ’),
(member(E,Es1), write(E), write(’ ?), fail))
; £indall(A, (member(A,As),
find_atom(N,o(A,T)) ,member(N,Ns)),Asl),
nl, write(’Actions: ’),
(member(A,Asl), write(d), write(’ ?), fail)
).
display_model(_).

count_atoms(N) :- findall(x,atom(_,_),S), length(S,N).
count_rules(N) :- findall(x,(_<-_),S), length(S,N).
count_clauses(N) :- findall(x,clause(_),S), length(S,N).

display_literals(V) :-

var(V),

[}
3

(display_list(V)

183

-> true
; display_literals(all), display_list(V)).
display_literals(all) :-
[}
retractall(display_list(_)),
type(fluent,Fs),
complement_list(Fs,Ls),
append(Fs,Ls,Zs),
assert(display_list(Zs)).
display_literals(positive) :-
[}
retractall(display_list(_)),
type(fluent,Fs),
assert(display_list(Fs)).
display_literals(Ls) :-
retractall(display_list(_)),
assert(display_list(Ls)).

complement_list([FI|Fs],[G|Gs]) :-
comp(F,G),
complement_list(Fs,Gs).

complement_list([],[]).

comp(-F,F) :-

comp(F,-F).

184

Bibliography

[Apt and Bezem, 1990] Krzysztof Apt and Marc Bezem. Acyclic programs. In David
Warren and Peter Szeredi, editors, Logic Programming: Proc. of the Seventh Int’l
Conf., pages 617-633, 1990.

[Apt et al., 1988] Krzysztof Apt, Howard Blair, and Adrian Walker. Towards a
theory of declarative knowledge. In Jack Minker, editor, Foundations of Deductive

Databases and Logic Programming, pages 89-148. Morgan Kaufmann, San Mateo,
CA, 1988.

[Baker, 1989] Andrew Baker. A simple solution to the Yale Shooting Problem. In
Ronald Brachman, Hector Levesque, and Raymond Reiter, editors, Proc. of the

First Int’l Conf. on Principles of Knowledge Representation and Reasoning, pages

11-20, 1989.

[Baker, 1991] Andrew Baker. Nonmonotonic reasoning in the framework of situation

calculus. Artificial Intelligence, 49:5-23, 1991.

[Baral and Gelfond, 1993] Chitta Baral and Michael Gelfond. Representing concur-
rent actions in extended logic programming. In Proc. of IJCAI-93, pages 866871,
1993.

[Baral et al., 1995] Chitta Baral, Michael Gelfond, and Alessandro Provetti. Repre-

senting actions I: (Laws, observations and hypotheses). In Working Notes: AAAI

185

Spring Symposium on Fatending Theories of Action: Formal Theory and Practical

Applications, pages 17-22, 1995.

[Baral, 1995] Chitta Baral. Reasoning about actions: non-deterministic effects, con-

straints, and qualification. In Proc. of IJCAI-95, pages 2017-2023, 1995.

[Boutilier and Friedman, 1995] Craig Boutilier and Nir Friedman. Nondeterministic
actions and the frame problem. In Working Notes: AAAI Spring Symposium on
Ezxtending Theories of Action: Formal Theory and Practical Applications, pages
39-44, 1995.

[Brewka and Hertzberg, 1993] Gerhard Brewka and Joachim Hertzberg. How to
do things with worlds: On formalizing actions and plans. Journal of Logic and

Computation, 3(5), 1993.

[Burks, 1951] Arthur W. Burks. The logic of causal propositions. Mind, 60:363-382,
1951.

[Carnap, 1947] Rudolph Carnap. Meaning and Necessity. University of Chicago
Press, Chicago, Ill., 1947.

[Chellas, 1971] Brian. Chellas. Imperatives. Theoria, 37:114-129, 1971.

[Clark, 1978] Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 293-322. Plenum Press, New York, 1978.

[Crawford and Auton, 1993] J.M. Crawford and L.D. Auton. Experimental results
on the cross-over point in satisfiability problems. In Proc. AAAI-93, pages 21-27,
1993.

[Crawford and Etherington, 1992] James Crawford and David Etherington. Formal-
izing reasoning about change: A qualitative reasoning approach. In Proc. AAAI-

92, pages 577583, 1992.

186

[Davidson, 1980] Donald. Davidson. Agency. In Donald Davidson, editor, Fssays
on Actions and Fvents, pages 43-62. Oxford University Press, 1980.

[Davis and Putnam, 1960] M Davis and H. Putnam. A computing procedure for
quantification theory. J. ACM, 7(3):201-215, 1960.

[Denecker and De Schreye, 1993] Marc Denecker and Danny De Schreye. Repre-
senting incomplete knowledge in abductive logic programming. In Dale Miller,
editor, Logic Programming: Proceedings of the 1993 Int’l Symposium, pages 147—
163, 1993.

[Elkan, 1992] Charles Elkan. Reasoning about action in first-order logic. In Proc. of
the 1992 Canadian Conf. on Artificial Intelligence, 1992.

[Fages, 1994] Francois Fages. Consistency of Clark’s completion and existence of

stable models. Journal of Methods of Logic in Computer Science, 1:51-60, 1994.

[Faye et al., 1994] J. Faye, U. Scheffler, and Urchs M. Logic and Causal Reasoning.
Akademie Verlag, Berlin, 1994.

[Fikes and Nilsson, 1971] Richard Fikes and Nils Nilsson. STRIPS: A new approach
to the application of theorem proving to problem solving. Artificial Intelligence,

2(3-4):189-208, 1971.

[Geffner, 1989] Hector Geffner. Default reasoning, minimality and coherence. In
Ronald Brachman, Hector Levesque, and Raymond Reiter, editors, Proc. of the

First Int’l Conf. on Principles of Knowledge Representation and Reasoning, pages

137-148, 1989.

[Geffner, 1990] Hector Geffner. Causal theories of nonmonotonic reasoning. In

Proc. AAAI-90, pages 524-530, 1990.

[Geffner, 1992] Hector Geffner. Reasoning with defaults: causal and conditional
theories. MIT Press, Cambridge, MA, 1992.

187

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert Kowalski and Kenneth Bowen,
editors, Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., pages 1070—
1080, 1988.

elfond and Lifschitz ichael Gelfond an adimir Lifschitz. Logic pro-
[Gelfond and Lifschitz, 1990] Michael Gelfond and Vladimir Lifschi Logic p
grams with classical negation. In David Warren and Peter Szeredi, editors, Logic

Programming: Proc. of the Seventh Int’l Conf., pages 579-597, 1990.

[Gelfond and Lifschitz, 1992] Michael Gelfond and Vladimir Lifschitz. Representing
actions in extended logic programming. In Krzysztof Apt, editor, Proc. Joint Int’l

Conf. and Symp. on Logic Programming, pages 559-573, 1992.

[Gelfond and Lifschitz, 1993] Michael Gelfond and Vladimir Lifschitz. Representing
action and change by logic programs. Journal of Logic Programming, 17:301-322,
1993.

[Gelfond et al., 1991a] Michael Gelfond, Vladimir Lifschitz, Halina Przymusifska,
and Mirostaw Truszezyniski. Disjunctive defaults. In James Allen, Richard Fikes,
and Erik Sandewall, editors, Principles of Knowledge Representation and Rea-

soning: Proc. of the Second Int’l Conf., pages 230-237, 1991.

[Gelfond et al., 1991b] Michael Gelfond, Vladimir Lifschitz, and Arkady Rabinov.
What are the limitations of the situation calculus? In Robert Boyer, editor,
Automated Reasoning: Fssays in Honor of Woody Bledsoe, pages 167-179. Kluwer
Academic, Dordrecht, 1991.

[Gelfond, 1987] Michael Gelfond. On stratified autoepistemic theories. In Proceed-
ings of AAAI-87, pages 207-211, 1987.

[Gelfond, 1988] Michael Gelfond. Autoepistemic logic and formalization of com-
monsense reasoning: preliminary report. In Proc. 2nd Int’l Workshop on Non-

Monotonic Reasoning, pages 176-186, 1988.

188

[Gibbard and Harper, 1981] Allan Gibbard and William L. Harper. Counterfactuals
and two kinds of expected utility. In W.L Harper, R. Stalnaker, and G. Pearce,
editors, Ifs: conditionals, belief, decision, chance, and time, pages 153-190. D.

Reidel Publishing Company, Dordrecht, Holland, 1981.

[Ginsberg and Smith, 1988a] Matthew L. Ginsberg and David E. Smith. Reasoning
about action I: a possible worlds approach. Artificial Intelligence, 35(2):165-195,
1988.

[Ginsberg and Smith, 1988b] Matthew L. Ginsberg and David E. Smith. Reasoning
about action II: the qualification problem. Artificial Intelligence, 35(3):311-342,
1988.

[Giunchiglia and Lifschitz, 1995] Enrico Giunchiglia and Vladimir Lifschitz. Depen-
dent fluents. In Proc. IJCAI-95, pages 1964-1969, 1995.

[Giunchiglia and Lifschitz, 1997] Enrico Giunchiglia and Vladimir Lifschitz. An ac-

tion language based on causal logic. Unpublished manuscript, 1997.

[Giunchiglia et al., 1995] Enrico Giunchiglia, G. Neelakantan Kartha, and Vladimir
Lifschitz. Actions with indirect effects (extended abstract). In Working Notes of

the Symposium on Extending Theories of Actions, 1995.

[Goldman, 1970] Alvin I. Goldman. A theory of human action. Prentice-Hall, En-
glewood Cliffs, N.J., 1970.

[Grice, 1989] Paul Grice. Studies in the way of words. Harvard University Press,
Cambridge, Mass., 1989.

[Haas, 1987] Andrew Haas. The case for domain-specific frame axioms. In Frank M.
Brown, editor, The Frame Problem in Artificial Intelligence, Proc. of the 1987
Workshop, 1987.

189

[Hanks and McDermott, 1986] Steve Hanks and Drew McDermott. Default rea-
soning, nonmonotonic logics, and the frame problem. In Proc. AAAI-86, pages

328-333, 1986.

[Hanks and McDermott, 1987] Steve Hanks and Drew McDermott. Nonmonotonic

logic and temporal projection. Artificial Intelligence, 33(3):379-412, 1987.

[Herre and Wagner, 1996] Heinrich Herre and Gerd Wagner. Stable generated mod-
els of generalized logic programs. This was a talk delivered at the Dagstuhl

Seminar 9627, Disjunctive Logic Programming and Databases: Nonmonotonic

Aspects, July 1-5, 1996.

[Jeffrey, 1965] Richard C. Jeffrey. The logic of decision. McGraw-Hill, New York,
1965.

[Kamp, 1979] J. A. W. Kamp. The logic of historical necessity, part I. unpublished

typescript, 1979.

[Kartha and Lifschitz, 1994] G. Neelakantan Kartha and Vladimir Lifschitz. Ac-
tions with indirect effects (preliminary report). In Proc. of the Fourth Int’l
Conf. on Principles of Knowledge Representation and Reasoning, pages 341-350,
1994.

[Kartha, 1993] G. Neelakantan Kartha. Soundness and completeness theorems for
three formalizations of action. In Proc. of IJCAI-93, pages 724-729, 1993.

[Kartha, 1995] G. Neelakantan Kartha. A mathematical investigation of reasoning

about actions. Dissertation, The University of Texas at Austin, 1995.

[Kautz and Selman, 1992] Henry Kautz and Bart Selman. Planning as satisfiability.
In J. Lloyd, editor, Proceedings of the 10th Furopean Conference on Artificial
Intelligence (ECAI 92), Vienna, Austria, 1992.

190

[Kautz and Selman, 1996] Henry Kautz and Bart Selman. Pushing the envelope:
planning, propositional logic, and stochastic search. In Proceedings of AAAI-96,
1996.

[Kautz, 1986] Henry Kautz. The logic of persistence. In Proc. of AAAI-86, pages
401-405, 1986.

[Kim, 1974] Jaegwon Kim. Noncausal connections. Nots, 8:41-52, 1974.

[Koons, 1995] Robert C. Koons. The logic of causation. Unpublished manuscript,
1995.

[Korf, 1985] Richard E. Korf. Depth-first iterative deepening: an optimal admissible
tree search. Artificial Intelligence, 27:97-109, 1985.

[Kowalski, 1974] Robert Kowalski. Predicate logic as a programming language. In
J.L. Rosenfeld, editor, Information Processing, 1974, pages 569-574. North Hol-
land, 1974.

[Lewis, 1973] David Lewis. Counterfactuals. Harvard University Press, Cambridge,
Massachusetts, 1973.

[Lewis, 1986a)] David Lewis. Causal decision theory. In David Lewis, editor, Philo-
sophical Papers, Volume II, pages 305-339. Oxford University Press, New York,
1986.

[Lewis, 1986b] David Lewis. A subjectivist’s guide to objective chance. In David
Lewis, editor, Philosophical Papers, Volume II, pages 83-132. Oxford University
Press, New York, 1986.

[Lifschitz and Rabinov, 1989] Vladimir Lifschitz and Arkady Rabinov. Things that
change by themselves. In Proc. of IJCAI-89, pages 864-867, 1989.

191

[Lifschitz, 1987] Vladimir Lifschitz. Formal theories of action. In Frank M. Brown,
editor, The Frame Problem in Artificial Intelligence, Proc. of the 1987 Workshop,
pages 35-H8, 1987.

[Lifschitz, 1990] Vladimir Lifschitz. Frames in the space of situations. Artificial
Intelligence, 16:365-376, 1990.

[Lifschitz, 1991] Vladimir Lifschitz. Towards a metatheory of action. In James
Allen, Richard Fikes, and Erik Sandewall, editors, Proc. of the Second Int’l
Conf. on Principles of Knowledge Representation and Reasoning, pages 376-386,
1991.

[Lifschitz, 1994] Vladimir Lifschitz. Nested abnormality theories. Submitted for
publication, 1994.

[Lifschitz, 1995] Vladimir Lifschitz. Two components of an action language. Un-

published manuscript, 1995.

[Lifschitz, 1996] Vladimir Lifschitz. Foundations of logic programming. In Prin-
ciples of Knowledge Representation, volume 3, pages 69-127. CSLI publications,
1996.

[Lifschitz, 1997] Vladimir Lifschitz. A logic for causal reasoning. Unpublished

manuscript, 1997.

[Lin and Reiter, 1994] Fangzhen Lin and Raymond Reiter. State constraints revis-
ited. Journal of Logic and Computation, Special Issue on Actions and Processes,

4(5):655-678, 1994.

[Lin, 1995] Fangzhen Lin. Embracing causality in specifying the indirect effects of
actions. In Proc. of IJCAI-95, 1995.

[Manna and Waldinger, 1987] Zohar Manna and Richard Waldinger. How to clear
a block: A theory of plans. Journal of Automated Reasoning, 3:343-377, 1987.

192

[Marek and Truszezynski, 1994] W. Marek and M. Truszczyiiski. Revision specifi-
cations by means of revision programs. In Logics in Al. Proceedings of JELIA

’94. Lecture Notes in Artificial Intelligence. Springer-Verlag, 1994.

[McAllester and Rosenblitt, 1991] David McAllester and David Rosenblitt. System-
atic nonlinear planning. In Proc. AAAI-91, 1991.

[McCain and Turner, 1995] Norman McCain and Hudson Turner. A causal theory
of ramifications and qualifications. In Proc. of IJCAI-95, pages 19781984, 1995.

[McCain and Turner, 1997] Norman McCain and Hudson Turner. On relating

causal theories to other formalisms. Unpublished manuscript, 1997.

[McCarthy and Hayes, 1969] John McCarthy and Patrick Hayes. Some philosoph-
ical problems from the standpoint of artificial intelligence. In B. Meltzer and
D. Michie, editors, Machine Intelligence, volume 4, pages 463-502. Edinburgh
University Press, Edinburgh, 1969. Reproduced in [McCarthy, 1990].

[McCarthy, 1959] John McCarthy. Programs with common sense. In Proc. of the
Teddington Conference on the Mechanization of Thought Processes, pages 75-91,
London, 1959. Her Majesty’s Stationery Office. Reproduced in [McCarthy, 1990].

[McCarthy, 1963] John McCarthy. Situations, actions and causal laws. Stanford
Artificial Intelligence Project, Memo 2, 1963.

[McCarthy, 1980] John McCarthy. Circumscription—a form of non-monotonic rea-
soning. Artificial Intelligence, 13(1, 2):27-39,171-172, 1980. Reproduced in [Mec-
Carthy, 1990].

[McCarthy, 1986] John McCarthy. Applications of circumscription to formalizing
common sense knowledge. Artificial Intelligence,26(3):89-116, 1986. Reproduced
in [McCarthy, 1990].

193

[McCarthy, 1990] John McCarthy. Formalizing common sense: papers by John Mc-
Carthy. Ablex, Norwood, NJ, 1990.

[McDermott and Doyle, 1980] Drew McDermott and Jon Doyle. Nonmonotonic
logic 1. Artificial Intelligence, 13(1,2):41-72, 1980.

[Mendez et al., 1996] G. Mendez, J. Lobo, J. Llopis, and C. Baral. Temporal logic
in action description languages. In M. Zelkowitz and P. Straub, editors, Proc. the
XVI International Conference of the Chilean Computer Science Society, pages
10-21, Valdivia, Chile, 1996.

[Montague, 1968] Richard Montague. Pragmatics. In R. Klibansky, editor, Con-
temporary Philosophy a Survey, pages 102-122. Florence, 1968.

[Moore, 1985a] Robert Moore. A formal theory of knowledge and action. In J.R.
Hobbs and R.C. Moore, editors, Formal Theories of the Commonsense World,
pages 319-358. Ablex, Norwood, N.J., 1985.

[Moore, 1985b] Robert Moore. Semantical considerations on nonmonotonic logic.

Artificial Intelligence, 25(1):75-94, 1985.

[Morris, 1988] Paul Morris. The anomalous extension problem in default reasoning.

Artificial Intelligence, 35(3):383-399, 1988.

[Pearl, 1988] Judea Pearl. Embracing causality in default reasoning. Artificial In-
telligence, 35:259-271, 1988.

[Pednault, 1987] Edwin Pednault. Formulating multi-agent, dynamic world prob-
lems in the classical planning framework. In Michael Georgeff and Amy Lansky,
editors, Reasoning about Actions and Plans, pages 417-82. Morgan Kaufmann, San

Mateo, CA, 1987.

[Pednault, 1989] Edwin Pednault. ADL: Exploring the middle ground between

STRIPS and the situation calculus. In Ronald Brachman, Hector Levesque, and

194

Raymond Reiter, editors, Proc. of the First Int’l Conf. on Principles of Knowledge
Representation and Reasoning, pages 324-332, 1989.

[Reiter, 1980] Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13(1,2):81-132, 1980.

[Reiter, 1991] Raymond Reiter. The frame problem in the situation calculus: a sim-
ple solution (sometimes) and a completeness result for goal regression. In Vladimir
Lifschitz, editor, Artificial Intelligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthy, pages 359-380. Academic Press, 1991.

[Robson, 1973] J. M. Robson. The Collected Works of John Stuart Mill. Univ. of
Toronto Press, Toronto and Buffalo, 1973.

[Sandewall, 1992a] Erik Sandewall. Features and fluents. Oxford University Press,
1992.

[Sandewall, 1992b] Erik Sandewall. Features and fluents: A systematic approach
to the representation of knowledge about dynamical systems. Technical Report

LiTH-IDA-R-92-30, Link6ping University, 1992.

[Sandewall, 1995] Erik Sandewall. Systematic comparison of approaches to ramifi-
cation using restricted minimization of change. Technical Report LiTH-IDA-R-

95-15, Link6ping University, 1995.

[Scherl and Levesque, 1993] Richard B. Scherl and Hector Levesque. The frame
que, q
problem and knowledge-producing actions. In Proceedings of the AAAI National
Conference, pages 689-695, 1993.

[Schubert, 1990] Lenhart Schubert. Monotonic solution of the frame problem in the
situation calculus: an efficient method for worlds with fully specified actions. In
H.E. Kyburg, R. Loui, and G. Carlson, editors, Knowledge Representation and
Defeasible Reasoning, pages 23—67. Kluwer, 1990.

195

[Selman et al., 1994] B. Selman, H. Kautz, and B. Cohen. Noise strategies for local
search. In Proceedings of AAAI-94, pages 337-343, Seattle, WA, 1994.

[Shanahan, 1997] Murray Shanahan. Solving the frame problem: a mathematical
wvestigation of the common sense law of inertia. MIT Press, Cambridge, MA,

1997.

[Shoham, 1986] Yoav Shoham. Chronological ignorance: Time, nonmonotonicity,

necessity and causal theories. In Proc. of AAAI-86, pages 389-393, 1986.

[Shoham, 1987] Yoav Shoham. Reasoning about change. MIT Press, Boston, MA,
1987.

[Shoham, 1990] Yoav Shoham. Nonmonotonic reasoning and causation. Cognitive

Science, 14:213-252, 1990.

[Stalnaker, 1968] Robert C. Stalnaker. A theory of conditionals. American Philo-
sophical Quarterly, 2:98-112, 1968.

[Stalnaker, 1981] Robert C. Stalnaker. Letter to David Lewis. In W.L Harper,
R. Stalnaker, and G. Pearce, editors, Ifs: conditionals, belief, decision, chance,
and time, pages 153-190. D. Reidel Publishing Company, Dordrecht, Holland,
1981.

[Thielscher, 1994] Michael Thielscher. Representing actions in equational logic pro-
gramming. In Proc. ICLP-94, pages 207-224, 1994.

[Thielscher, 1995a] Michael Thielscher. Computing ramifications by postprocessing.
In Proc. of IJCAI-95, pages 1994-2000, 1995.

[Thielscher, 1995b] Michael Thielscher. On the logic of dynamic systems. In Proc. of
LJCAI-95, pages 1956-1962, 1995.

[Thielscher, 1996] Michael Thielscher. Ramification and causality. Technical Report
TR-96-003, International Computer Science Institute, 1996.

196

[Turner, 1994] Hudson Turner. Signed logic program. In Logic Programming: Pro-
ceedings of the 1994 International Symposium, pages 61-75, 1994.

[Turner, 1996] Hudson Turner. Splitting a default theory. In Proceedings of AAAI-
96, pages 645-651, 1996.

[Turner, 1997a) Hudson Turner. Inference rules and causality in representations of
common sense reasoning about actions. Dissertation, The University of Texas at

Austin, 1997.

[Turner, 1997b] Hudson Turner. Representing actions in logic programs and default
theories: A situation calculus approach. Journal of Logic Programming, 31(1-

3):245-298, 1997.

[Van Belleghem et al., 1996] Kristof Van Belleghem, Marc Denecker, and Daniele
Dupré. Dependencies and ramifications in an event-based language. Draft, sub-

mitted, 1996.

[van Emden and Kowalski, 1976] Maarten van Emden and Robert Kowalski. The
semantics of predicate logic as a programming language. Journal of the ACM,

23(4):733-742, 1976.

[Van Gelder et al., 1990] Allen Van Gelder, Kenneth Ross, and John Schlipf. The
well-founded semantics for general logic programs. Journal of ACM, pages 221—

230, 1990.

[von Wright, 1975] G. H. von Wright. The logic and the epistemology of the causal
relation. In Ernest Sosa, editor, Causation and Conditionals, pages 95-113. Ox-

ford University Press, London, 1975.

[Winslett, 1988] Marianne Winslett. Reasoning about action using a possible mod-
els approach. In Proc. AAAI-88, pages 89-93, 1988.

197

Vita

Norman Clayton McCain was born in Springfield, Missouri on December 3, 1950,
the son of Norman Clayton McCain, Sr. and Dorothy Lou McCain. After obtaining
a B.A. degree in philosophy from Baker University, he first attended graduate school
in philosophy at the University of Kansas and then worked in bookstores for some
years before returning to study computer science. After obtaining an M.S. degree in
computer science from the University of Kansas in 1982, he worked in the Central
Research Lab at Texas Instruments in Dallas for three and half years. He began
the Ph.D. program at the University of Texas at Austin in 1986 and was married to

Nancy Poteet Kaul in 1992. He has the following publications.

Norman McCain and Hudson Turner. Causal Theories of Action and Change. In

the Proceedings of AAAI-97, 1997. To appear.

Norman McCain and Hudson Turner. A Causal Theory of Ramifications and Qual-
ifications. In the Proceedings of the 1995 International Joint Conference on Arti-
ficial Intelligence, pages 1978-1984, 1995. (A preliminary version appeared in the
Working Notes: AAAI Spring Symposium on Extending Theories of Action, pages
130-135, 1995.)

Vladimir Lifschitz, Norman McCain, Teodor Przymusinski, and Robert Stark. Loop
Checking and the Well-Founded Semantics, in Logic Programming and Non-Mono-

tonic Reasoning: Proceedings of the Third International Conference, pages 127-142,

198

1995.

Norman McCain and Hudson Turner. Language Independence and Language Toler-
ance in Logic Programs. In the Proceedings of the Fleventh International Conference
on Logic Programming (Pascal Van Hentenryck, editor), pages 38-57, MIT Press,
1994.

Vladimir Lifschitz, Norman McCain, and Hudson Turner. Automated Reasoning
about Action: A Logic Programming Approach (abstract). In Logic Programming:
Proceedings of the 1993 International Symposium (Dale Miller, editor), page 641,
MIT Press, 1993.

Aditya Srivastava and Norman McCain. The Explorer PROLOG Toolkit, in the

Texas Instruments Engineering Journal, pages 93—-107, Vol. 3, No. 1, 1986.

Permanent Address: 812 Avondale Rd.
Austin, TX 78704

This dissertation was typeset with BTEX 22! by the author.

'ATEX 2¢ is an extension of IWTEX. IA4TEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

199

