
CopyrightbyNorman Clayton McCain1997

Causality in Commonsense Reasoning about ActionsbyNorman Clayton McCain, B.A., M.S.DissertationPresented to the Faculty of the Graduate School ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDoctor of PhilosophyThe University of Texas at AustinMay 1997

Causality in Commonsense Reasoning about Actions
Approved byDissertation Committee:

To my parents

AcknowledgmentsThe central ideas in this dissertation are the product of a long and close collaborationwith my advisor, Vladimir Lifschitz, and my colleague, Hudson Turner. I do notclaim any of these ideas as exclusively my own; in all cases they have a complicated\genealogy" and could not have arisen without many major contributions by Hudsonand Vladimir. On the other hand, the presentation is �nally my own, so I take fullresponsibility for any errors.I wish to thank Vladimir for excellent advice and direction throughout mycareer as a graduate student, and both Vladimir and Hudson for many helpfulsuggestions. I also wish to thank Bob Boyer and Rob Koons for their advice andencouragement, especially during the early stages of my research. My interest incausation began in fact many years ago during a study of the logic of conditionalsunder Rob. Norman Clayton McCainThe University of Texas at AustinMay 1997 v

Causality in Commonsense Reasoning about ActionsPublication No.Norman Clayton McCain, Ph.D.The University of Texas at Austin, 1997Co-Supervisors: Vladimir LifschitzRobert KoonsIn this dissertation, we investigate the role of causal knowledge in commonsensereasoning about action and change. We de�ne a language in which a relatively simpleform of causal knowledge is expressed. Using this language, we describe a novelapproach to formalizing action domains as \causal theories"|including domainsthat involve concurrency, nondeterminism, and things that change by themselves.We show that a subclass of causal theories can be translated into propositional logicby a generalization of Clark's completion procedure for logic programs. Finally, wedescribe an implemented approach to automated query answering and \satis�abilityplanning" which is based on this translation.
vi

ContentsAcknowledgments vAbstract viList of Figures xiChapter 1 Introduction 11.1 The Role of Causal Knowledge . 21.2 What Kind of Causal Knowledge? 41.3 A Brief Preview . 71.4 Organization . 11Chapter 2 Background 13Chapter 3 A Causal Approach to Rami�cations and Quali�cations 193.1 Notation and Terminology . 213.2 De�ning the Possible Next States . 233.2.1 Constraints . 233.2.2 Analysis . 283.2.3 Static Causal Laws . 303.3 Rami�cation and Quali�cation Constraints 343.4 The Art of Causal Formalization . 36vii

Chapter 4 A Simple Action Description Language 424.1 Action Languages . 424.1.1 Two Components . 424.1.2 Action Description Languages 434.1.3 Action Query Languages . 454.2 The Language ACL . 464.2.1 Syntax . 464.2.2 Semantics . 474.3 Examples . 49Chapter 5 The Language of Causal Theories 575.1 Informal Motivation . 585.2 Syntax . 595.3 Semantics . 605.4 Examples . 635.5 De�nitional Extension . 645.5.1 Explicit De�nitions . 655.5.2 Replacement . 655.5.3 Proofs of Propositions 5.2 and 5.3 675.6 An Embedding in Default Logic . 69Chapter 6 Objective Logic Programs 726.1 The Language of Objective Programs 736.1.1 Syntax . 736.1.2 Semantics . 746.2 Literal Completion . 766.3 Other Connections to Logic Programming 806.3.1 Classical Semantics . 806.3.2 Stable Model Semantics . 82viii

6.3.3 An Embedding in Extended Programs 856.4 Some Standard Ways of Lending Support 87Chapter 7 Formalizing Action Domains as Causal Theories 897.1 The Language LCL . 897.2 The Suitcase Domain . 907.3 Inertial Fluents and Exogenous Facts 927.4 The Suitcase Domain (continued) . 967.5 The Expressive Capacity of LCL . 987.5.1 Concurrent Actions . 987.5.2 Nondeterministic Actions . 1027.5.3 Actions with Delayed E�ects 1047.5.4 Things that Change by Themselves 1067.5.5 Non-literal Consequents . 1087.6 Language Dependence and Inertia 111Chapter 8 Two Action Query Languages 1158.1 Action Query Languages for LCL . 1158.2 The Query Language LA: Actuality 1168.2.1 Query Answering . 1178.2.2 Satis�ability Planning . 1188.3 The Query Language LH: Historical Necessity 121Chapter 9 Query Answering and Planning 1279.1 Automated Query Answering . 1279.2 Automated Planning . 1309.3 Final Remarks on Query Anwering and Planning 1389.4 Examples . 139ix

Chapter 10 Conclusion 15210.1 Summary of Contributions . 15210.2 Topics for Future Work . 15310.3 A Final Word . 155Appendix A Related Formalisms 157A.1 Causal Laws and Inference Rules . 157A.1.1 An Earlier Causal Framework 157A.1.2 Formal Connections . 161A.2 A Modal Generalization of Causal Theories 164A.2.1 CEL: Causal Explanation Logic 164A.2.2 A Modal Encoding for Causal Laws 166A.2.3 CEL and Causal Theories . 166Appendix B The Program Listing 169Bibliography 185Vita 198
x

List of Figures1.1 The Yale Shooting domain . 81.2 Examples of Query Answering and Planning 104.1 A transition system for a Coin Tossing domain 444.2 Inde�niteness vs. nondeterminism 484.3 A transition system for the Two-Switches domain 514.4 A transition system for the Yale Shooting domain 524.5 A transition system for the Emperor domain 547.1 A possible world history in the Suitcase domain 967.2 Another possible world history in the Suitcase domain 989.1 An input �le for the Yale Shooting domain 1289.2 Query answering . 1319.3 Planning to achieve a time-dependent goal 1339.4 Planning to achieve a time-independent goal 1359.5 An input �le for the Coin Tossing domain 1369.6 An unveri�able plan . 137xi

Chapter 1IntroductionThe cause \is the sum total of the conditions positive and negative takentogether . . . which being realized, the consequent invariably follows."1John Stuart MillBeginning with John McCarthy's classic paper, \Programs with CommonSense" [1959], one of the main goals of arti�cial intelligence (AI) research has beento develop a computer program capable of commonsense reasoning about actionand change|speci�cally, a program that is able to perform such tasks as predic-tion, explanation, and planning. McCarthy envisioned that a program of this kindmight \reason" by manipulating explicit, declarative representations of the relevantknowledge. Following this broadly logicist approach, the central problems are todiscover what this knowledge is and how it might be formalized. The aim of thisdissertation is to advance our understanding of these issues.1The quotation is from A System of Logic, page 332, Volume VII, The Collected Works of JohnStuart Mill , [Robson, 1973]. 1

1.1 The Role of Causal KnowledgeIt has always been clear that causal knowledge plays a central role in commonsensereasoning about action and change. However, it has not always been clear whatthis role is, or that it cannot be played by non-causal knowledge as well. In theAI literature, this is evident in the use of state constraints for deriving the indirecte�ects of actions. Intuitively, a state constraint is a proposition that rules out certainstates of the world as impossible but says nothing about causation.The attempt to use state constraints to infer the indirect e�ects of actions hasled to various di�culties in formalizing action domains. As an informal illustrationof one of these di�culties, imagine a domain in which there is a light and a singleswitch. Ignoring such possibilities as a power failure or a burned out bulb, let ussuppose that the following sentence is true.(1) The switch being closed causes the light to be on.2Let us also suppose that the causal relationship described in (1) is static, i.e., thatthere is no di�erence in time between the cause and the e�ect. In reality, there is avery small di�erence in time, but let us pretend that there is not.Now let us compare the meaning of (1) with the meaning of the followingstate constraint.(2) In every state in which the switch is closed, the light is on.Given that the causal relationship described in (1) is static, intuitively it is clearthat (1) implies (2). However (2) is compatible not only with the causal relationshipdescribed in (1) but also with other possibilities in which (1) may be false; for exam-ple, with the possibility that the light being o� causes the switch to be open, with2We understand (1) in a general sense, so that it is implicitly about all possible worlds and alltimes. In this respect, it is di�erent fromThe switch being closed caused the light to be on,which intuitively relates the two mentioned facts only on a speci�c occasion.2

the possibility that the switch being closed and the light being on are always jointe�ects of common causes, and even with the possibility that there is no causationat all. Therefore, (2) does not imply (1).Now consider the following propositions about what can be achieved by per-forming actions.(3) The light can be turned on by closing the switch.(4) The switch can be opened by turning o� the light.Intuitively, from (1) we can infer (3), but not (4). On the other hand, from (2) wecan infer neither (3) nor (4). The latter conclusion is not, however, the one usuallydrawn in the AI literature on reasoning about action and change. Instead, it isheld that (3) in e�ect follows from (2), just as it does from (1). This conclusion isbased on the assumption that whatever follows from the explicitly described e�ectsof an action and known state constraints is an indirect e�ect. Conceptually, this isa mistake, one which rests on a rather common confusion of causal and non-causalgrounds.3 Technically, it leads to unintuitive results; for example, to the conclusionthat not only (3), but also (4), follows from (2). It is clear, however, that (4) doesnot follow from (2). The explicit e�ect of turning o� the light is that the light iso�. From this and (2), it indeed follows that the the switch is open. But it does notfollow that the switch being open is caused by turning o� the light. So, intuitively,3As evidence that the confusion is indeed common, we note that until recently a similar confusioninfected standard decision theory [Je�rey, 1965], where conditional probabilities, e.g., Pr(SjA), wereused in place of probabilities of causal connections, e.g., Pr(A causes S), in the de�nition of expectedutility. The di�erence between the two probabilities is illustrated by the following example from[Stalnaker, 1981]. Suppose we discover a gene that causes both cancer and a predisposition tosmoking, and as a result we come to view smoking as evidence for cancer, but no longer as a cause.Assuming that the probability function Pr maps propositions to degrees of belief, then in thissituation Pr(CancerjSmoking) will be high, but Pr(Smoking causes Cancer) will be low. Intuitively,however, it is the latter probability, not the former, that is relevant in deciding whether or not tosmoke. It is rational to act so as to change the facts from what they would have been had we notacted. But it is irrational to act merely in order to change our evidence for what the facts are.The confusion of evidential and causal conditions in standard decision theory has been set rightin newer systems of \causal decision theory." See, for example, [Gibbard and Harper, 1981] and[Lewis, 1986a]. 3

it does not follow that the switch can be opened by turning o� the light.4In the AI literature, Judea Pearl [1988] has emphasized the importance ofthe distinction between causal and non-causal grounds in general default reasoning.Some of the di�culties encountered in using state constraints for determining theindirect e�ects of actions were recognized by Ginsberg and Smith [1988b], Lifschitz[1990], and Lin and Reiter [1995]. Several authors have proposed to overcome thesedi�culties by replacing state constraints by representations of causal knowledge ofone kind or another. These include Ge�ner [1989,1990], Elkan [1992], Brewka andHertzberg [1993], Baral [1995], Lin [1995], McCain and Turner [1995], and Thielscher[1995a,1996]. The representation of causal knowledge presented in this dissertationis a simpli�cation and generalization of the proposal of McCain and Turner.1.2 What Kind of Causal Knowledge?In view of the central role that causal knowledge plays in commonsense reasoningabout action and change, the reader may expect to �nd as the centerpiece of thisdissertation an analysis of the causal relation, and a logic of it. However, neither ofthese things is attempted here.5 These omissions may reasonably seem to doom ourproject to failure, but in fact they do not.To see why, consider, for example, the task of prediction. Suppose that � isa proposition about the state of the world at a future time and that � is a set oftrue propositions about matters of particular fact in the actual world. Intuitively,in order to show that the prediction expressed by � is also true in the actual world,it su�ces to show that � holds in every \causally possible world history" in which� is true. Thus, the task of prediction comes down to showing something about the4Similar intuitions are appealed to in [Goldman, 1970]. If the reader does not share theseintuitions, the technical di�culties illustrated in Chapter 3 may still convince him of the ill e�ectsof using state constraints to infer the indirect of e�ects of actions.5The problem of �nding an adequate analysis and logic of the causal relation is a notoriouslydi�cult one. The �rst attempt at a logic of causality was [Burks, 1951]. More recent attempts canbe found in [von Wright, 1975], [Faye et al., 1994], and [Koons, 1995].4

set of causally possible world histories. As we will see in Chapter 8, planning doesas well.Our question, therefore, is this: for the purpose of determining the causallypossible world histories, is it necessary to be able to represent and reason aboutrelations of cause and e�ect? Apparently, it is not. Instead, it is su�cient to beable to represent and reason about the conditions under which facts are caused.Knowledge of the latter kind may be thought of as intermediate between non-causalknowledge (such as is expressed by state constraints) and knowledge of causal rela-tions. The di�erences are revealed in the following sentence forms, where � and stand in place of sentences.(5) The fact that � causes the fact that .(6) Necessarily, if � then the fact that is caused .(7) Necessarily, if � then .A sentence of form (5) asserts that there is a causal relationship between the factsassociated with � and . A sentence of form (6) makes no such assertion, but insteadsays only that whenever � is true, something or other (possibly not the fact that �itself) causes the fact that . A sentence of form (7) says nothing about causationat all. Intuitively, (5) implies (6), and (6) implies (7), but neither implication holdsin the other direction.To see that (6) does not imply (5), consider a domain in which there is aswitch S that controls two lights, A and B. Let t be a time. Suppose that S beingclosed at t causes both A and B to be on at t, and S being open at t causes bothA and B to be o� at t.6 Then, intuitively, the following is true: necessarily, if Ais on at t then S is closed at t. Since S being closed at t causes B to be on att, the following sentence (which is easily rendered in form (6)) must also be true:6In the regimented style of (5), we would say: The fact that S is closed at t causes the fact thatA and B are on at t. We will continue to use less awkward phrasings such as those introducedabove. 5

necessarily, if A is on at t, B is caused to be on at t. However, A being on at t doesnot cause B to be on at t, so the corresponding sentence of form (5) is false. Thus,in general, (6) does not imply (5).We have argued that non-causal knowledge in the form of state constraintsis an inadequate basis for reasoning about action and change. The same point canbe made about knowledge of form (7). Causal knowledge is required. Our presentpoint, however, is that for certain commonsense reasoning tasks|such as predictionand planning|whose solutions are de�nable in terms of the causally possible worldhistories, the strongest form of causal knowledge, i.e., knowledge of the form (5), isnot required. Knowledge of form (6) is enough.Although (6) is weaker than (5), this apparently makes no di�erence for thepurpose of specifying the causally possible world histories. Intuitively, substitutingknowledge of form (6) for (5) would have no e�ect on the facts that we judge to becaused in a world history, and thus also would have no e�ect on the world historiesthat we judge to be causally possible. Accordingly, we are in a very fortunateposition indeed: even though we lack a satisfactory formal account of the causalrelation itself, it seems we may nevertheless possess|in a relatively simple logic ofsentences of form (6)|a way of representing our commonsense knowledge aboutcausal relationships that is adequate for some our most important goals.Unfortunately, not all commonsense reasoning tasks associated with domainsof action and change come down to showing something about the causally possibleworld histories. Consider, for example, the task of �nding a causal explanation fora known fact . Intuitively, in order to �nd a causal explanation for one wouldneed to show that (5) holds for some true formula �. (A good causal explanationmight also have to satisfy other conditions, such as that � not include irrelevant orredundant facts.) A similar conclusion of form (6), intuitively, would not su�ce.77For example, in our two lights example, using knowledge of form (6) might lead us to answerthe query \Why is light B on?" by replying \Because light A is on," since, as we have observed, inevery world in which A is on, B is caused to be on. But this is not a correct causal explanation.6

Until we understand the logic of the relation \causes," and not just the logic ofthe predicate \is caused," the goal of formalizing the task of causal explanation willcontinue to lie beyond our reach.8 We are fortunate that for at least some importantcommonsense reasoning tasks less is required.Causal knowledge of form (6) has been used by Ge�ner [1990] and, in arestricted form, by Lin [1995] in previous work on formalizing action domains. Weowe a considerable debt to these authors.1.3 A Brief PreviewAs a preview of things to come, in this section we present our formalization of asimple action domain|the famous \Yale Shooting" domain [Hanks and McDermott,1987]|and use it to illustrate our approach to query answering and planning. Theexample, which involves a turkey and a gun, is discussed in greater detail in laterchapters.In Figure 1.1, we present an input �le describing the Yale Shooting domain.The �le begins with the directive declare types, which is used to de�ne the speci�clanguage in which the domain is formalized. In this case, we declare the existenceof three actions, two
uents, and four times. The atoms of the language includeexpressions such as h(loaded,1) and o(shoot,2), which we read as \the
uentloaded holds at time 1" and \the action shoot occurs at time 2," respectively.In all there are twenty atoms. The second directive declare variables is usedto declare the types of the variables used in the speci�cation of the domain. Theremaining lines (a){(i) in the �le are the causal rules that we use to describe thedomain. Each of these rules can be understood to express knowledge of form (6).According to rule (a), necessarily, if the load action occurs at a time t thenthe gun is caused to be loaded at t+1. According to rule (b), necessarily, if the gun is8The same is true of the the problem of abduction, insofar as this is understood as the problemof reasoning to the best causal explanation for given facts.7

:- declare_typestype(action,[load,wait,shoot]),type(fluent,[loaded,alive]),type(time,[0..3]),type(atom,[o(action,time),h(fluent,time)]).:- declare_variablesvar(A,action), var(T,time), var(F,fluent).h(loaded,T+1) <- o(load,T). % (a)-h(alive,T+1) <- o(shoot,T), h(loaded,T). % (b)-h(loaded,T+1) <- o(shoot,T). % (c)o(A,T) <- o(A,T). % (d)-o(A,T) <- -o(A,T). % (e)h(F,0) <- h(F,0). % (f)-h(F,0) <- -h(F,0). % (g)h(F,T+1) <- h(F,T), h(F,T+1). % (h)-h(F,T+1) <- -h(F,T), -h(F,T+1). % (i)Figure 1.1: The Yale Shooting domain
8

already loaded at a time t and the shoot action occurs at t then the turkey is causedto be dead at t+1. According to rule (c), necessarily, if the shoot action occurs at atime t then the gun is caused to be unloaded at t+1. According to rules (d){(g), allfacts about action occurrences at all times and about the values of
uents at time0 are to be regarded as caused simply by virtue of their obtaining. In e�ect, theserules express that all such facts are exogenous to our formalization. Finally, rules(h) and (i) express the so-called \commonsense law of inertia." According to theserules, it is necessarily the case that if a
uent preserves its value from one time tothe next, then its value of at the second time is caused.In Figure 1.2, we illustrate query answering and planning with respect tothe input �le of Figure 1.1.9 In the query, we assume that the turkey is initiallyalive, the gun is initially unloaded, and that the actions load, wait and shoot areperformed at times 0, 1, and 2, respectively. From these premises, it can be shownthat the turkey is not alive at time 3.10 In the planning problem, we again assumethat initially the turkey is alive and the gun is unloaded, and we pose the goal ofkilling the turkey. A plan is found that consists in performing exactly the actionsload and shoot in that order. The goal is realized at time 2. (The action of loadingthe gun at time 2, which also appears in the output displayed in Figure 1.2, is notan essential part of the plan.)The representational and computational ideas illustrated in the precedingexample are developed in Chapters 5{9.9Notice that according to the second line of Figure 1.1 there are 22 atoms rather than 20. Thetwo extra atoms are true and false, which, for convenience, are automatically added to everydomain description.10This is not the standard \temporal projection problem" associated with the Yale Shootingdomain, because we do not assume that load, wait, and shoot are the only actions performed attimes 0, 1, and 2. 9

| ?- load_file(yale).% 22 atoms, 51 rules, 26 clauses loaded.yes| ?- query.enter facts (then ctrl-d)|: h(alive,0).|: -h(loaded,0).|: o(load,0).|: o(wait,1).|: o(shoot,2).|:enter query|: -h(alive,3).yes| ?- plan.enter facts (then ctrl-d)|: h(alive,0).|: -h(loaded,0).|:enter goal|: -h(alive,T).0. -loaded aliveAction(s): load1. loaded aliveAction(s): shoot2. -loaded -aliveAction(s): load3. loaded -aliveAction(s):Verify plan? yplan verified.yes Figure 1.2: Examples of Query Answering and Planning10

1.4 OrganizationWe begin in Chapter 2 by reviewing the background literature on reasoning aboutactions that is related to the present work.The remaining chapters (up to the concluding one) can be divided into twoparts|Chapters 3 through 4 and Chapters 5 through 9|corresponding to the tworelated formalisms that we will de�ne.In Chapter 3, we deepen our analysis of the inadequacies of state constraints.We propose a representation for static causal knowledge and a new de�nition of thepossible next states. In Chapter 4, we describe an action description language whichis based upon the causal framework of Chapter 3.In Chapter 5, we de�ne a general language of causal theories in which bothstatic and dynamic causal laws are expressible. The semantics for the language ofcausal theories is obtained by simplifying and generalizing the de�nition of possiblenext states given in Chapter 3. In Chapter 6, we study the special class of causaltheories that syntactically correspond to logic programs. We call such theories \ob-jective programs." In Chapter 7, we describe how action domains can be formalizedin the language of causal theories. For this purpose, we de�ne the action descriptionlanguage LCL as a specialization of the language of causal theories. In Chapter 8,we describe two action query languages for use in conjunction with the languageLCL. We also lay the theoretical groundwork for a satis�ability-based approach toquery answering and planning with respect to objective programs. In Chapter 9,we describe the program satp, which implements our approach to query answeringand planning. We also present a number of examples.Finally, in Chapter 10 we summarize our results and indicate some possibledirections for future work.In Appendix A, we discuss two other formalisms that are related to thosede�ned in this dissertation. We compare the causal framework de�ned in Chapter 3with the earlier framework of [McCain and Turner, 1995], and we generalize the11

language of causal theories in a modal framework. In Appendix B, we include alisting of the program satp, which is written in SICStus Prolog.

12

Chapter 2BackgroundAlthough McCarthy began the study of commonsense reasoning about actions in1959, it was later that he invented an adequate notation. This notation, called \thesituation calculus," was �rst described in an unpublished memo [McCarthy, 1963]and was �rst published in [McCarthy and Hayes, 1969]. We will not use the situationcalculus in this dissertation. However, since it is the most widely used notation fordescribing action domains, it is an appropriate place to begin our review.A situation, according to McCarthy, is a complete state of the universe atan instant of time. A (propositional)
uent is a function whose domain is the set ofsituations and whose co-domain is the set of truth values. The situation calculus isa many-sorted, �rst-order language based on the ontology of situations, actions, and
uents. Given a
uent F and a situation S, one writes F (S) or Holds(F; S) in thesituation calculus to express that F is true in the situation S. (In Holds(F; S), the
uent F is rei�ed, i.e., treated as an object.) Given an action A and a situation S,one writes Result(A; S) to designate the situation that would result from performingthe action A in the situation S. As an example, the sentence8s[Holds(Loaded; s) � :Holds(Alive;Result(Shoot; s))] (2.1)expresses the fact that in every situation s, if the gun is loaded in s then the turkey13

is not alive in the situation that would result from shooting the gun in s. HereLoaded and Alive are constants of sort
uent, Shoot is a constant of sort action, ands is a variable of sort situation.1The syntax of the situation calculus is simple and attractive but has seemedto many researchers to be expressively weak. It has been claimed, for example, thatthe situation calculus is unable to express the duration of actions, continuous time,or concurrency. In [Gelfond et al., 1991b], these particular criticisms have been metand overcome. However, one limitation of the situation calculus remains, that is, itsinability to represent nondeterministic actions|actions that can lead from a singlesituation to more than one possible next situation.2Besides the introduction of the situation calculus, another important contri-bution of [McCarthy and Hayes, 1969] is the identi�cation of the \frame problem."Typically, actions a�ect only a small number of
uents, while the values of the re-maining
uents are assumed not to change. The frame problem is the problem of�nding a way to avoid the need to mention the
uents that actions do not a�ect. Asan example, a solution to the frame problem should make it unnecessary to includesuch axioms as the following.8s[Holds(Cloudy; s) � Holds(Cloudy;Result(Shoot; s))]8s[:Holds(Cloudy; s) � :Holds(Cloudy;Result(Shoot; s))]1The sentence (2.1) corresponds to the causal rule (b) of Figure 1.1. Our description of thesituation calculus deviates from [McCarthy and Hayes, 1969] in several inessential details.2It may seem that the fact that Result is a function|one that maps an action and a situationto a unique resulting situation|precludes representing nondeterministic actions. However, this isso only if we understand Result(A;S) to be the unique situation that could result from doing theaction A in the situation S. If instead we understand it, as in fact we do, to be the unique situationthat would result from doing A in S, then the functional nature of Result is compatible with nonde-terminism. It may be possible, therefore, to extend the situation calculus so that nondeterministicactions can be represented without changing the Result function. (We will not explore this possi-bility here.) From this perspective, what is presupposed by the situation calculus is not that allactions are deterministic, but rather that even when an action is nondeterministic|so that morethan one situation could result from performing it|still a unique situation would result. In otherwords, what is presupposed is a theory of counterfactuals like Stalnaker's [1968], which employs a\selection function" to pick out the world that would obtain under a possible counterfactual sup-position, as opposed to a theory like Lewis's [1973], which does not presuppose that a unique suchworld exists. 14

Intuitively, these so-called \frame axioms" express that shooting the gun has noe�ect on whether or not the sky is cloudy.The frame problem can be straightforwardly solved when the syntactic formof the represented knowledge is highly constrained. This is illustrated by the ap-proaches described by Pednault [1989] and Reiter [1991]. Pednault automaticallygenerates the frame axioms from \e�ect axioms" (axioms, such as (2.1), describingthe e�ects of actions) in classical logic. This is possible if it is assumed that thee�ect axioms describe all of the e�ects of the actions. Reiter builds on Pednault'sproposal but achieves additional parsimony by quantifying over actions, as recom-mended by Haas [1987] and Schubert [1990]. Elkan [1992] proposes an approach toformalizing action domains directly in classical logic.The reasoning formalized in classical logic is monotonic in the sense thatacquiring new information can only lead to additional conclusions being drawn, notto earlier conclusions being retracted. Commonsense reasoning, on the other hand,is not monotonic in this sense. Several general systems of nonmonotonic reasoningwere introduced in the 1980's: McCarthy's [1980,1986] method of circumscription,Reiter's [1980] default logic, McDermott and Doyle's [1980] nonmonotonic logic, andMoore's [1985b] autoepistemic logic.Because of the \negation as failure" rule, logic programming is also a systemof nonmonotonic reasoning. The �rst semantics for logic programs with negation asfailure was given by Clark [1978]. Many other semantics followed, the most in
uen-tial being the well-founded semantics [Van Gelder et al., 1990] and the stable modelsemantics [Gelfond and Lifschitz, 1988]. The connection between logic programmingand nonmonotonic reasoning was clari�ed by translations from logic programminginto the general nonmonotonic formalisms. Gelfond [1987], for example, showed howto translate logic programs into autoepistemic logic.Even assuming rather strongly restricted forms of knowledge, the frame prob-lem turned out to be unexpectedly di�cult to solve in some of the above-mentioned15

systems of nonmonotonic reasoning. This was shown in the cases of circumscriptionand default logic by Hanks and McDermott [1986,1987], using the Yale Shootingproblem as an example (cf. Section 1.3). In particular, they showed that an ap-parently natural formalization in circcumscription turned out to have consequencesthat were unexpectedly weak.Various solutions to the Yale Shooting problem were proposed in the subse-quent literature. Some, such as [Kautz, 1986] and [Shoham, 1986], employed alter-natives to the above-mentioned systems of nonmonotonic reasoning. Others, suchas [Lifschitz, 1987], [Gelfond, 1988], [Morris, 1988], [Baker, 1989], [Apt and Bezem,1990], [Baker, 1991], and [Lifschitz, 1991], discovered workable formalizations withinthese systems.In the early 1990's two frameworks were proposed for the systematic studyof the problem of representing action domains, namely, the frameworks of Sandewall[1992a] and Gelfond and Lifschitz [1993]. The aim in both cases was to supplementthe example-based methodology illustrated by earlier work on the Yale Shootingproblem. Sandewall de�ned the general notion of an \inhabited dynamical sys-tem" and a extensive taxonomy of features and approaches to formalizing actiondomains. Gelfond and Lifschitz proposed to de�ne speci�c high-level action descrip-tion languages|each with its own special syntax and semantics|and to study themathematical properties (for example, soundness and completeness) of translationsfrom these languages into various approaches to formalizing actions. As an illustra-tion, Gelfond and Lifschitz de�ned a simple high-level action description language Aand proved the soundness of a translation from A into the language of extended logicprograms. Subsequently, Kartha [1993] proved the soundness and completeness oftranslations from A into the above-mentioned approaches of Pednault, Reiter, andBaker. Sound and complete translations from A were also given by Denecker andDe Schreye [1993] into the language of abductive logic programming and by Turner[1994] into the language of disjunctive logic programming.16

Other high-level action description languages have been de�ned as approx-imate extensions of A; for example, [Baral and Gelfond, 1993], [Kartha and Lifs-chitz, 1994], [Thielscher, 1994], [Giunchiglia and Lifschitz, 1995], [Giunchiglia et al.,1995], [Baral et al., 1995], and [Turner, 1997b]. The languages de�ned in [Karthaand Lifschitz, 1994] and [Giunchiglia et al., 1995], AR0 and AR, respectively, areparticularly important in the present context, since they extend A to allow the rep-resentation of the indirect e�ects of actions. (The language ACL that we will de�nein Chapter 4 is closely related to AR and AR0, and even more closely related tothe somewhat simpler language AR� of [Kartha, 1995].) In [Giunchiglia and Lifs-chitz, 1995], a sound and complete translation is given from AR into the formalismof nested abnormality theories [Lifschitz, 1994]. Nested abnormality theories allowcircumscription to be applied to parts of a theory, rather than only to the theoryas a whole. The idea of circumscribing parts of an action theory was advocated byCrawford and Etherington [1992].The central semantic de�nition in AR speci�es the set of states that couldresult when an action is performed in a given state. This de�nition is an elaborationof a de�nition given by Winslett [1988], which in turn corrected an earlier de�nitiongiven by Ginsberg and Smith [1988a]. Winslett's de�nition will be the starting pointfor our own investigations. As such, it will be carefully analyzed in Chapter 3.As remarked in the previous chapter, there have recently been several pro-posals to replace the use of state constraints by causal knowledge of one form oranother. A list of references is given at the end of Section 1.1. In Chapter 5 wewill de�ne a language of \causal theories," which is based on many of the sameintuitions as Ge�ner's [1990] formalism. (See also [Ge�ner, 1989].) In particular,in describing action domains, both formalisms are used to represent knowledge ofthe form: Necessarily, if � then the fact that is caused. Like Ge�ner, we do notuse the situation calculus but instead refer explicitly to times. In other respects,however, our approaches to formalizing action domains|for example, our solutions17

to the frame problem|are vastly di�erent.The proposals of Brewka and Hertzberg [1993] and McCain and Turner [1995]represent causal laws by inference rules. Baral [1995] represents static and dynamiccausal laws in a notation of \state speci�cations," which, like the proposal of McCainand Turner, is closely related to the formalism of revision programs [Marek andTruszczy�nski, 1994]. In Chapter 3, we present a precursor to the language of causaltheories, which is a modi�cation of the causal framework of [McCain and Turner,1995]. This new framework is compared to the earlier one in Appendix A.Thielscher [1995a,1996] proposes to compute the indirect e�ects of an actionby �rst modifying the initial state by the action's direct e�ects and then, as a\postprocessing" step, initiating a series of additional changes in accordance withthe dynamic causal laws of the domain. The changes continue until a given set ofstate constraints is satis�ed. Thielscher de�nes a procedure for generating causallaws from the given state constraints and a binary \in
uence relation" which speci�espairs of
uents such that the �rst can in
uence the second.A simpli�ed version of Lin's [1995] formalism and the causal framework de-�ned in Chapter 3 are formally related in [McCain and Turner, 1997]. A variant ofthe language of causal theories is formally related to Lin's formalism in [Giunchigliaand Lifschitz, 1997].
18

Chapter 3A Causal Approach toRami�cations and Quali�cationsThis chapter is concerned with the problem of determining the rami�cations orindirect e�ects of actions. The problem is usually investigated in a framework inwhich action domains are described in part by state constraints. Informally, a stateconstraint is a formula that says of a proposition that it is true in every possiblestate of the world.1 Our main objective in this chapter is to argue that an adequatetheory of rami�cations requires the representation of information of a kind thatis not conveyed by state constraints, speci�cally, information about the conditionsunder which facts are caused. It turns out that this is also the information that isneeded for an adequate theory of quali�cations or derived action preconditions.Previous approaches to the problem of rami�cations have assumed a def-inition of the following kind: A rami�cation, roughly speaking, is a change (not1In the situation calculus, a state constraint is a formula of form8s �(s)where s is the only siutation-valued term in the formula �. In modal logic, a state constraint is aformula of the form 2 �where � is a non-modal formula. 19

explicitly described) that is implied by the performance of an action. In our ap-proach, we impose a stronger requirement, namely, that it be implied not only thatthe change occurs, but also that it is caused to occur. As we will see, this strongerrequirement makes it possible to avoid unintended rami�cations and to infer qual-i�cations. (The importance of the latter is argued in [Ginsberg and Smith, 1988a]and [Lin and Reiter, 1994].) Again roughly speaking, our theory of quali�cations isthis: An action cannot be performed if the performance of the action implies thata change occurs that is not caused.The main points can be illustrated by the following example. Imagine thatFred the turkey is on a walk. Consider the action of making Fred dead. Intuitively,as an indirect e�ect of performing the action, Fred will no longer be walking. Thereason is that Fred's being dead is a causally su�cient condition for his not walk-ing. Now consider the action of making Fred walk, but suppose that Fred is dead.Intuitively, the action cannot be performed. The reason is as follows: Fred can walkonly if he is alive, but making him walk does not cause him to be alive; so unless heis already alive (or something in addition is done to cause him to become alive), hecannot be made to walk.The conclusions reached in the previous paragraph are supported by thefollowing facts about the so-called \by" relation. (The \by" relation is discussed in[Goldman, 1970] and [Davidson, 1980].) Intuitively, Fred can be made to not walkby making him be not alive, but he cannot be made to be alive by making him walk.If the indirect e�ects of an action are the facts made true by making the explicite�ects of the action true, then we should expect Fred's not walking to be an indirecte�ect of making him not alive, but we should not expect Fred's being alive to be anindirect e�ect of making him walk.In general, what can and cannot be done by doing something else is contin-gent upon the underlying causal connections and other relations of determinationthat hold among facts or states of a�airs. (For a discussion of non-causal determi-20

nation relations see [Kim, 1974].) Intuitively, state constraints say nothing aboutthese, so it is not surprising that background knowledge in the form of state con-straints should prove to be inadequate. The present chapter is closely related to[McCain and Turner, 1995]. However, the central de�nition in that paper is herereplaced by a di�erent one. The two de�nitions are compared in Appendix A.3.1 Notation and TerminologyWe begin with a language of propositional logic whose signature is given by anonempty set of atoms. We view the atoms as propositions whose truth valuesmay vary from one state of the world to the next. Accordingly, we refer to theatoms also as (propositional)
uents . By a literal we mean either an atom F orits negation :F . Throughout this dissertation the symbol L will be used to standexclusively for literals. We use the expressions True and False as abbreviations for(F _ :F) and (F ^ :F), respectively, for some atom F . By an interpretation wemean a function that maps each atom to a truth value. We identify an interpretationI with the set of literals L such that I j= L.We will consider a number of di�erent frameworks in which the notion of a\state" is de�ned. In each of these frameworks, by a state we will mean an inter-pretation that \satis�es" (in some sense) the given background knowledge. Whatthis means precisely will depend upon the kind of the background knowledge that isgiven. We will consider two kinds of background knowledge, constraints and staticcausal laws.By a constraint we mean a formula. A standard example of a constraint(from [Baker, 1991]) is the formula (Walking � Alive). Intuitively, by saying thata formula is a constraint, we say that it holds in every possible state of the world.22In a fully semantic treatment, this would be expressed by explicitly quantifying over all possiblestates, or by a modal operator with a similar meaning; for example, by a formula of one of thefollowing forms: 8s(Walking(s) � Alive(s))21

Formally, in a framework in which all background knowledge is given in the formof constraints, the states will be identi�ed with the interpretations in which everyconstraint is true.By a static causal law we mean an expression of the form�) (3.1)where � and are formulas (of the underlying propositional language). The ex-pression (3.1) itself is not such a formula. In particular, it is di�erent from thecorresponding material conditional � � :We call � the antecedent of (3.1) and the consequent .Intuitively, (3.1) can be read as: in every state in which � is true, iscaused to be true. An alternative reading is: �'s being true (in a state) causes tobe true (in the same state). Intuitively, the �rst reading is weaker than the secondone. Roughly speaking, it says that is caused whenever � is true, but it does notsay that � causes . Something else that is true whenever � is true may cause instead.3Formally, in a framework in which all background knowledge is given in theform of static causal laws, the states will be identi�ed with the interpretations Isuch that for every static causal law �) , the corresponding material conditional� � is true in I . 2(Walking � Alive):There are advantages to such fully semantic treatments. However, for the sake of simplicity andin order to ease comparison with previous work (speci�cally, [Winslett, 1988]), we have elected notto use them. Because of this decision, we have had to say something about constraints that in afully semantic treatment the formulas say themselves, namely, that the constraints hold in everypossible state of the world.3In this chapter, we will not de�ne truth conditions for static causal laws. Accordingly, when-ever we say that a static causal law is true or false, we refer only to the truth or falsity of itsinformal reading. (Normally, it will not matter which of the two readings we adopt, though theweaker reading is always safe.) In Appendix A, we will describe an encoding of \causal laws" (notnecessarily static) in modal logic. The truth conditions given by this encoding will correspond tothe weaker reading given above. 22

3.2 De�ning the Possible Next StatesIn this section our ultimate aim is to de�ne ResD(E; S), the set of states that canresult from performing an action with the explicit e�ect E in the state S, givenbackground knowledge in the form of a set D of static causal laws. Our intentionis that each state in ResD(E; S) should re
ect the direct and indirect e�ects ofperforming the action. We will begin by reviewing Winslett's [1988] de�nition forthe case in which the set D of static causal laws is replaced by a set of constraints.3.2.1 ConstraintsUsing the terminology of section 3.1, Winslett de�nes ResWB (E; S), the set of statesthat can result from performing an action with the explicit e�ect E in the state S,given the set B of constraints. (The superscript W is used merely to distinguishWinslett's de�nition from other de�nitions of Res to follow.) The states are theinterpretations that satisfy each of the constraints in B.De�nition W For any set B of constraints, any explicit e�ect E, and any stateS, ResWB (E; S) is the set of states S 0 such that(1) S 0 satis�es E, and(2) no other state that satis�es E di�ers from S on fewer atoms, where \fewer" isde�ned by set inclusion.44The following de�nition di�ers from the one given by Winslett in one respect. Whereas Res ishere de�ned for states S and S0, Winslett de�nes Res for arbitrary interpretations. The followingis a more faithful restatement of Winslett's de�nition. For any set B of constraints, explicit e�ectE, and interpretation I, ResWB (E; I) is the set of interpretations I 0 such that(10) I 0 satis�es E [B, and(20) no other interpretation that satis�es E [B di�ers from I on fewer atoms, where \fewer" isde�ned by set inclusion.The di�erence between this de�nition and De�nition W is unimportant, because (i) for every I, by(10), every element of ResWB (E; I) is a state, and (ii) we have no interest in the value of ResWB (E; I)when I is not a state. 23

Example 3.1 Let us suppose that Fred the turkey is presently alive and walking,and that it is a cloudy day. The explicit e�ect of, say, shooting a gun is to makeFred be not alive. We also have the constraint that in every state Fred is walkingonly if he is alive. S = fAlive;Walking; CloudygE = f:AlivegB = fWalking � Aliveg:Then ResWB (E; S) = ff:Alive;:Walking; Cloudygg:Here, :Walking is a rami�cation. The requirement in Winslett's de�nition that theelements of ResWB (E; S) di�er minimally from S rules outf:Alive;:Walking;:Cloudygas a possible next state. The truth of the
uent Cloudy is, as we say, \preserved byinertia." 3Intuitively, Winslett's de�nition behaves reasonably in the preceding exam-ple, but in many cases it does not. We will give two examples.Example 3.2 In the following variation on Example 3.1, we consider the action ofenticing Fred to walk. We suppose that this action has the explicit e�ect of makingFred walk whenever it is performed. Consequently, if Fred does not walk, it is certainthat one cannot have enticed him to do so. (Of course, this does not mean thatone did not attempt to entice him to walk, but that is a di�erent action.) As in theintroduction to this chapter, let us suppose that Fred is not alive.S = f:Alive;:Walking; CloudygE = fWalkinggB = fWalking � Aliveg24

It is easy to see that ResWB (E; S) = ffWalking; Alive; Cloudygg. Hence, accordingto Winslett's de�nition, in this case Alive becomes true as a rami�cation of makingWalking true. Intuitively, of course, this is not the desired result. We should insteadconclude that, because Fred is dead, he cannot be enticed to walk. 3In the preceding example, Winslett's de�nition yields a rami�cation|Alivebecoming true|when the intuitively correct result would be a quali�cation|theaction of enticing Fred to walk cannot be performed. The next example shows thatWinslett's de�nition can also yield unintended rami�cations in cases in which theaction can be performed.Example 3.3 The following domain is described in [Lifschitz, 1990]. Imagine thatthere are two (\three-way") switches that control the state of a single light. Theswitches may be up or down, and the light may be on or o�. The light is on just incase the positions of the two switches agree, i.e., both are up or both are down.S = f:Up1;Up2;:OngE = fUp1gB = fOn � (Up1 � Up2)g:Then ResWB (E; S) = f fUp1;Up2;Ong; fUp1;:Up2;:Ong g:Each of the states in ResWB (E; S) satis�es E and di�ers minimally from S amongsuch states. However, the second state, which includes the unintended rami�cation:Up2, is anomalous. Intuitively, toggling switch 1 in state S will cause a change inthe state of the light; it cannot cause a change in the state of switch 2. 3Examples 3.2 and 3.3 show that Winslett's de�nition sometimes gives incor-rect results. Later we will analyze what is wrong with Winslett's de�nition and showhow it can be �xed by replacing background knowledge in the form of constraints25

by static causal laws. For this purpose, however, it will be useful to �rst recastWinslett's de�nition in an equivalent form given in [McCain and Turner, 1995].In order to motivate this reformulation, we will present a series of de�nitionsin which we introduce elements of Winslett's de�nition in successive steps. First, weintroduce the assumption of inertia, which is needed to solve the frame problem. (InWinslett's de�nition, inertia is realized by condition (2).) Secondly, we introducebackground knowledge in the form of constraints. Each de�nition will take thefollowing form: For any state S and explicit e�ect E, Res(E; S) is the set of statesS0 such that S0 is precisely the set of literals that are entailed by E and the availablebackground knowledge, together with any information provided by the assumptionof inertia. Recall that the symbol L stands exclusively for literals.In De�nition 1, we do not admit the assumption of inertia or backgroundknowledge of any kind. The set of states is simply the set of interpretations.De�nition 1 For any explicit e�ect E and state S, Res1(E; S) is the set of statesS0 such that S0 = fL : E j= Lg:According to De�nition 1, every literal in a possible next state has to beentailed by the explicit e�ect E. Consider, for example, the state S = fp; qg and anaction that makes p false. Choosing E = f:pg, Res1(E; S) = ;. This is because Eneither implies that q is true nor implies that q is false. On the other hand, choosingE = f:p ^ qg, Res1(E; S) = ff:p; qgg. Since E is required to imply not only thevalues of the
uents that change but also the values of those that do not, the frameproblem is unsolved in De�nition 1.In De�nition 2, we add to De�nition 1 the assumption of inertia, accordingto which it is unnecessary to explain the values of
uents that do not change inthe transition from state S to next state S0. These
uents and their values arerepresented by the set S\S 0. We obtain De�nition 2 by adding the literals in S \S026

as additional premises to the consequence relation in De�nition 1. We still do notinclude background knowledge of any kind, so again the set of states is simply theset of interpretations.De�nition 2 For any explicit e�ect E and state S, Res2(E; S) is the set of statesS0 such that S 0 = fL : (S \ S 0) [E j= Lg:Consider again the state S = fp; qg and an action that makes p false. Choos-ing E = f:pg, we �nd that Res2(E; S) = ff:p; qgg. Because of the assumption ofinertia, E now only has to specify the changes in the values of
uents. Consequently,in the restricted setting of De�nition 2|one without background knowledge|theframe problem is solved.Given a state S and an explicit e�ect E, the solutions to the equation inDe�nition 2 are the states S 0 that are �xpoints of the function�X:fL : (S \X) [E j= Lg:The following example shows that there may be more than one such �xpoint. LetS = f:p;:qg and E = fp _ qg. ThenRes2(E; S) = ff:p; qg; fp;:qgg:Notice, for example, in the case of the possible next state f:p; qg, the literal q isnot entailed by E alone, nor is it preserved by inertia. Rather, it is entailed onlyby the union (S \ S0) [E, i.e., by f:p; p _ qg. Intuitively, in determining what iscaused in a candidate next state, facts preserved by inertia play the same role asfacts belonging to the explicit e�ect.The de�nition of the transition function for the language A of Gelfond andLifschitz [1993] corresponds to the special case of De�nition 2 in which the explicite�ect E is required to be a consistent set of literals. Under this restriction, it is easyto see that Res2(E; S) will always be a singleton.27

We are now ready to reformulate Winslett's de�nition for the framework withinertia and background knowledge in the form of a set B of constraints. The stateswill be the interpretations that satisfy every constraint in B. We obtain De�nition 3by adding the constraints to the premises of the consequence relation in De�nition 2.De�nition 3 For any set B of constraints, explicit e�ect E, and state S, Res3B(E; S)is the set of states S 0 such thatS0 = fL : (S \ S 0) [E [B j= Lg:Winslett's de�nition explicitly expresses the idea of minimizing change. De�-nition 3 has a very di�erent form; it is given in terms of a �xpoint condition. Despitethis di�erence, the two de�nitions are equivalent, as the following proposition shows.Proposition 3.1 [McCain and Turner, 1995] For any set B of constraints, explicite�ect E, and state S, ResWB (E; S) = Res3B(E; S).By Proposition 3.1, we know that De�nition 3|like Winslett's de�nition|behaves incorrectly on Examples 3.2 and 3.3. (The reader is encouraged to checkthat this is so.) We are, however, in a better position to diagnose what is wrongwith De�nition 3, and we are in a better position to �x it.3.2.2 AnalysisLet us consider, with respect to each of the De�nitions 1{3, whether or not it requiresevery change in the value of a
uent to be caused.According to De�nition 1, in any possible next state S 0, every literal in S 0 isentailed by the explicit e�ect E. Since the formulas in E are understood to be thee�ects of an action, we see that De�nition 1 does indeed require every change to becaused.According to De�nition 2, in any possible next state S 0, every literal in S 0 isentailed by (S\S0)[E, i.e., by the literals preserved by inertia and formulas caused28

to hold in S 0. As in the case of De�nition 1, we again see that De�nition 2 requiresevery change to be caused.According to De�nition 3, in any possible next state S 0, every literal in S 0is entailed by (S \ S0) [E [B, i.e., by the literals preserved by inertia, formulascaused to hold in S 0, and by the constraints. Can we say that De�nition 3 requiresevery change to be caused? Intuitively, we cannot. The reason for this is that theconstraints in B (in contrast, for example, to the formulas in E) are not assumedto be caused in every candidate next state S0. They are, indeed, assumed to holdin S0|they are assumed to hold in every state|but they are not assumed to becaused to do so. As a result, the consequences of (S \S 0)[E [B are not in generalconsequences only of what is preserved by inertia or caused to hold in S0.As an example, consider the constraintWalking � Alive (3.2)from Example 3.2. Intuitively, (3.2) is true in every possible state. However, wedo not know that (3.2) is caused to be true in every candidate next state. Rather,what we know is that in certain states|namely, those in which :Alive is true|:Walking is caused to be true. Indeed, it is presumably on the basis of this causalknowledge that we know that (3.2) is true in every possible state.As a second example, consider the constraintOn � (Up1 � Up2) (3.3)from Example 3.3. Intuitively, (3.3) also is true in every possible state. However,again we do not know that (3.3) is caused to be true in every candidate next state.Rather, what we know is that in certain states|namely, those in which (Up1 � Up2)is true|On is caused to be true, and that in certain other states|namely, those inwhich (Up1 � Up2) is false|On is caused to be false.In order to ensure that every change is caused, we should modify De�nition 3so that instead of including the non-causal constraints in B as premises, we include29

(in addition to the literals preserved by inertia) only formulas that we know to becaused to be true in S 0. Thus, in Example 3.2, we should include :Walking as apremise if :Alive is true in S0, while in Example 3.3, we should include On as apremise if (Up1 � Up2) is true in S 0, and :On as a premise if (Up1 � Up2) is falsein S 0. In the next section, we will modify De�nition 3 to work in this way.According to our analysis, the defect in De�nition 3 is that it permits un-caused premises (namely, the constraints in B) where caused premises are required.We conclude, therefore, that De�nition 3 rests on a confusion of causal and non-causal grounds. We should observe, however, that this conclusion assumes that byclassifying a formula as a constraint we intend only to convey that the formula istrue in every state, and not that it is, moreover, caused to be true. If we wereto revise our view of the intended meaning of constraints to say that constraintsare formulas that are caused to be true in every state (so that the constraint is understood in the same manner in which we understand the static causal lawTrue)), then De�nition 3 would no longer rest upon the above mentioned con-fusion. Instead, its less serious failing would be that it does not employ a su�cientlyexpressive language for describing the conditions under which facts are caused. Inorder to formalize Examples 3.2 and 3.3, we need to be able to write causal laws ofthe form �) , where � is other than True.3.2.3 Static Causal LawsGiven the reformulation of Winslett's de�nition in De�nition 3 and our analysis ofits defects in the preceding section, it is now a simple matter to de�ne the possiblenext states in the presence of background knowledge in the form of static causallaws. The states will now be the interpretations that satisfy, for each static causallaw �) in D, the corresponding material conditional � � .30

Given a set D of static causal laws and a state S, we de�neDS = f : for some �, �) 2 D and S j= �g:That is, DS is the set of consequents of all causal laws in D whose antecedents aretrue in S.De�nition 4 For any set D of static causal laws, explicit e�ect E, and state S,Res4D(E; S) is the set of states S 0 such thatS0 = fL : (S \ S 0) [E [DS0 j= Lg:Example 3.4 Consider the following variation on Example 3.1 in which the con-straint is replaced by the static causal law in D below.S = fAlive;Walking; CloudygE = f:AlivegD = f:Alive) :WalkinggWe �nd that Res4D(E; S) = ff:Alive;:Walking; Cloudygg:Again, :Walking is a rami�cation. 3The superiority of De�nition 4 over De�nition 3, and of static causal lawsover constraints, is illustrated by the following example.Example 3.5 As in Example 3.2, let us again consider the case in which we at-tempt to entice Fred the turkey to walk. However, let us replace the constraint ofExample 3.2 by the static causal law in D below.S = f:Alive;:Walking; CloudygE = fWalkinggD = f:Alive) :Walkingg31

Now Res4D(E; S) is empty, which means that the action cannot be performed in S.Intuitively, this new result is correct. We cannot make Alive true by makingWalking true. Therefore, in the state S we cannot perform an action whose entireexplicit e�ect is fWalkingg. The reason is that making Walking true implies achange|namely, making Alive true|that the action does not cause.5 This is anexample of a derived quali�cation. 3Another advantage of using static causal laws is illustrated by the followingvariation on Example 3.3.Example 3.6 Again imagine that there are two switches and a light. The switchesmay be up or down, and the light may be on or o�. The light is caused to be onif the positions of the two switches agree, i.e., both are up or both are down, andcaused to be o� otherwise.S = f:Up1;Up2;:OngE = fUp1gD = f(Up1 � Up2)) On; :(Up1 � Up2)) :Ong:Then Res4D(E; S) = ffUp1;Up2;Ongg: 3Example 3.3 is identical to Example 3.6, except that in the former example,instead of the set D of static causal laws, we had the set B of state constraintsfOn � (Up1 � Up2)g:We found that Res3B(E; S) contained in addition to the state in Res4D(E; S) also thestate fUp1;:Up2;:Ong (3.4)5Since D contains :Alive) :Walking, we know that the material conditional (Walking �Alive) holds in every state. This is the sense in which Walking implies Alive.32

which, as we observed, is anomalous and results from the unintended rami�cation:Up2. In [Lifschitz, 1990] and [Kartha and Lifschitz, 1994], this rami�cation isblocked by declaring Up1 and Up2 to be \in the frame" and On to be \not in theframe." (The assumption of inertia is applied only to the
uents that are in theframe.) By contrast, the use of static causal laws in place of constraints makesthe frame/nonframe distinction unnecessary for the purpose of limiting possiblerami�cations.6 Intuitively, (3.4) is ruled out as a possible next state according toDe�nition 4 by the fact that there is no causal explanation for :Up2.The next example illustrates a possibly unexpected feature of De�nition 4.Example 3.7 Consider the following extension to an example that we consideredearlier in relation to De�nition 2.S = f:p;:qgE = fp _ qgD = fp) qgPreviously, we observed thatRes2(E; S) = ff:p; qg; fp;:qgg:Before calculating Res4D(E; S), one might, therefore, expect that Res4D(E; S) isff:p; qg; fp; qgg; the expectation being that the static causal law p) q will leavef:p; qg unchanged (since p is not satis�ed in this state) but will transform fp;:qginto fp; qg. However, this expectation derives from mistakenly treating static causallaws as if they were dynamic, that is, as if they related facts in successive statesrather than contemporaneously. Intuitively, given D, the state fp;:qg does notdescribe a causally possible state. Thus, fp;:qg cannot �rst come into existence6The frame/nonframe distinction is one of several closely related approaches to controlling rami-�cations by dividing
uents into di�erent categories. These approaches are compared in [Sandewall,1995]. An insightful analysis of the limitations of such categorization-based approaches is given in[Thielscher, 1996]. 33

and then be transformed into fp; qg, as the reasoning leading to this expectationsuggests.In fact, Res4D(E; S) includes only f:p; qg. Intuitively, the state fp; qg is nota possible next state because there is no causal explanation for the change in thevalue of p. 33.3 Rami�cation and Quali�cation ConstraintsLin and Reiter [1994] draw a pragmatic distinction between two kinds of state con-straints: rami�cation constraints , which yield indirect e�ects, and quali�cation con-straints , which yield action preconditions. As they observe, the same distinctionwas drawn earlier by Ginsberg and Smith [1988b]. In the language of static causallaws, we can give a syntactic form to this distinction. Suppose that � is a constraint.If we wish � to function as a rami�cation constraint, we write the ruleTrue) �:If instead we wish � to function as a quali�cation constraint, we write the rule:�) False:In De�nition 3, constraints function exclusively as rami�cation constraints.The correctness of our encoding of rami�cation constraints is, therefore, corrobo-rated by the following proposition.7Proposition 3.2 Let B be a set of constraints, andD = fTrue) : 2 Bg:For any state S and explicit e�ect E, Res3B(E; S) = Res4D(E; S).7The corroboration is peculiar because a constraint is properly understood not to convey causalknowledge at all. Its intuitive meaning is expressed by a quali�cation constraint rather than a rami-�cation constraint. Nevertheless, constraints do function as rami�cation constraints in De�nition 3.This peculiar state of a�airs is explained by the fact that De�nition 3 only requires the literals in apossible next state to be implied, not caused. Because of this weaker requirement on possible nextstates, non-causal knowledge behaves in De�nition 3 like causal knowledge.34

Proof. It su�ces to observe that for any state S0, DS0 = B. 2As an example of a domain in which a state constraint is intended to functionas a quali�cation constraint, we consider a simpli�ed version of a domain from [Linand Reiter, 1994].Example 3.8 Imagine an ancient kingdom in which there are two blocks. Eitherblock may be painted yellow, but by order of the emperor at most one of the blocksis permitted to be yellow at a time. Consider a state in which the second blockis yellow. Intuitively, in this state it is impossible to only perform the action ofpainting the �rst block yellow. However, representing the emperor's decree by arami�cation constraint does not conform to this intuition. Indeed, letS = f:Y ellow1; Y ellow2gE = fY ellow1gD = fTrue) :(Y ellow1 ^ Y ellow2)g:Then Res4D(E; S) = ffY ellow1;:Y ellow2gg:So painting the �rst block yellow changes the color of the second block! On theother hand, if we represent the emperor's decree as a quali�cation constraint byrede�ning D as D = f(Y ellow1^ Y ellow2)) Falsegthen Res4D(E; S) is empty. This result, unlike the previous one, agrees with ourintuition that it is impossible to (only) paint the �rst block yellow in state S. 3The following straightforward proposition shows that static causal laws ofthe form we write for quali�cation constraints cannot lead to rami�cations, but canonly rule them out. 35

Proposition 3.3 Let D be a set of static causal laws and � be a formula. Let D0 =D[f:�) Falseg. For any explicit e�ect E, and states S and S 0, S0 2 Res4D0(E; S)if and only if S0 2 Res4D(E; S) and S 0 j= �.Proof. For the left-to-right direction, suppose S0 2 Res4D0(E; S). Then we knowthat False 62 D0S0 . So S0 j= �. Therefore, DS0 = D0S0 . So S0 2 Res4D(E; S). For theright-to-left direction, suppose S0 2 Res4D(E; S) and S 0 j= �. Then again we knowthat D0S0 = DS0 . So S0 2 Res4D0(E; S). 2Brewka and Hertzberg [1993] propose a modi�cation of Winslett's de�nition[1988] in which static causal laws (represented as inference rules) play a role inthe de�nition of minimal change between states. Roughly speaking, in their de�-nition uncaused changes in the values of
uents are minimized. In our de�nition,on the other hand, uncaused changes are strictly forbidden. Because of the rolethat minimal change continues to play in their de�nition, Brewka and Hertzbergcannot express quali�cation constraints in the manner shown in Example 3.8. Nordo they obtain derived quali�cations of the kind illustrated by Example 3.5. Noticethat the static causal law :Alive) :Walking has neither the form of a rami�ca-tion constraint nor the form of a quali�cation constraint. In fact, as illustrated inSection 3.2.3, it sometimes leads to rami�cations and sometimes quali�cations.3.4 The Art of Causal FormalizationIn formulating the static causal laws of a domain, we are faced with many alterna-tives that we do not face in writing constraints. Deciding among these alternativesrequires one to be sensitive to the existence and nature of the causal dependencies.As an example, consider the following constraint from Example 3.1.Walking � Alive (3.5)36

Each of the following causal laws rules out the same possible states as (3.5), but inother respects their meanings diverge.True) (Walking � Alive) (3.6):(Walking � Alive)) False (3.7)Walking) Alive (3.8):Alive) :Walking: (3.9)The static causal law (3.6) functions as a rami�cation constraint, and (3.7) as aquali�cation constraint, while (3.8) and (3.9) are \proper" causal laws, with non-trivial antecedents and consequents. Although all of these laws rule out the samepossible states, each has a potentially di�erent impact on the possible next statesaccording to De�nition 4. The art of causal formalization often lies in decidingamong such alternatives as these.In this case, we know, by Proposition 3.2, that writing (3.6) would yield fromDe�nition 4 the same result that we have obtained from De�nition 3 by writing theconstraint (3.5), namely, that Fred can be brought back to life by enticing him towalk. (See Example 3.2.) It is easy to see that (3.8) would yield the same unintuitiveresult. On the other hand, by Proposition 3.3 we know that writing (3.7) would notyield any rami�cations. Only (3.9) gives the desired results.It is vital, however, that formal considerations such as these not be theonly basis we have for deciding among di�erent formulations. A formalism thatrequired one to work out the mathematical consequences of alternative formulationsin order to decide among them would be of little use for representing commonsenseknowledge. Instead, it must be su�cient to consider which formulations are true.Intuitively, not being alive is a causally su�cient condition for not walking,so (3.9) satis�es the truth test. On the other hand, it is not the case that notwalking is a causally su�cient condition for being not alive, so (3.8) does not. Theinformal readings of (3.6) and (3.7) are unusual, due to the appearance of True and37

False in these expressions, so the truth test is di�cult to apply to these. However, itis not di�cult to see that a quali�cation constraint such as (3.7) rules out possiblestates without saying anything about causation. Accordingly, (3.7) has the sameintuitive meaning as (3.5), that is, it expresses a state constraint. When viewed inthis light, it is clear that (3.7) also satis�es the truth test, although, assuming (3.9),it is redundant.8De�nition 4 implicitly assumes that the set D of static causal laws is com-plete, in the sense that in every state S, DS entails exactly the formulas that arestatically caused to be true in S. Accordingly, our aim in formalizing a domain isto include in D any true static causal law that is non-redundant relative to D. Thisexplains why it would be insu�cient to include (3.7) in our formalization but not(3.9). One of the most di�cult problems in formalizing action domains is decidingwhen to write a rami�cation constraint, such as (3.6), and when to write a \proper"causal law, such as (3.9). In this regard, it is useful to ask oneself whether there isa �xed causal ordering among the
uents involved, or whether the ordering mightvary from one possible occasion to the next. Applying this consideration to thecase at hand, we would ask does Fred's being not alive always (on every imaginableoccasion) cause his not walking, or can Fred's walking also sometimes cause hisbeing alive. Whereas (3.6) recognizes the latter possibility, (3.9) does not. Since weknow that Fred's walking can never cause his being alive, we know in this case|evenbefore considering the mathematical consequences of the two formulations|that weshould write (3.9) rather than (3.6).Von Wright [1975] distinguishes cases in which \the cause-e�ect distinctionrefers to the history of an individual occasion" from cases in which it \resides in therelation between the generic factors themselves." Using this terminology, a propercausal law, such as (3.9), describes a causal relationship between generic factors,8Given a set D of static causal laws, a static causal law R is \redundant" if adding R to D hasno e�ect on the set of states and for every state S, DS and (D [fRg)S have the same models.38

e.g., the
uents :Alive and :Walking. A rami�cation constraint, such as (3.6),does not. It may give rise to di�erent relations of cause and e�ect on di�erentoccasions.The importance of rami�cation constraints is illustrated by the followingexample.Example 3.9 Imagine a seesaw whose two ends are labeled A and B. WheneverA is up, B is down, and vice versa. Imagine that we are capable of directly raisingand lowering both A and B. The causal relationship between the positions of thetwo ends of the seesaw can be formalized by the rami�cation constraintTrue) Up(A) � :Up(B): (3.10)Consider the following cases.S1 = fUp(A);:Up(B)gE1 = f:Up(A)gD = fTrue) Up(A) � :Up(B)gS2 = fUp(A);:Up(B)gE2 = fUp(B)gD = fTrue) Up(A) � :Up(B)gBoth cases yield, by De�nition 4, the same unique possible next state, namely,f:Up(A);Up(B)g:Intuitively, in the �rst case we can say that lowering A caused B to go up, and inthe second case we can say that raising B caused A to go down. 3Example 3.10 Now, let us attempt to reformalize the Seesaw domain, representingthe causal relationship between the positions of the two ends of the seesaw, A39

and B, not by a rami�cation constraint, but by static causal laws with non-trivialantecedents and consequents. We will need the following four laws to cover all ofthe possibilities of raising and lowering the two ends of the seesaw.Up(A)) :Up(B) (3.11):Up(A)) Up(B) (3.12)Up(B)) :Up(A) (3.13):Up(B)) Up(A): (3.14)Is this also a reasonable formalization? At �rst, it may appear that it is. Forinstance, if we substitute (3.11){(3.14) for D in the two cases above, the resultsare unchanged. However, the following case shows that the formalization is notreasonable after all. S3 = fUp(A);:Up(B)gE3 = ;D3 = (3.11){(3.14)Here we suppose that an action with no explicit e�ect (for example, the actionof waiting) is performed. Nevertheless, we �nd that Res4D3(E3; S3) contains twopossible next states|not only the state S3 itself, which we expect, but also thestate S 0 = f:Up(A);Up(B)g, which we do not. To see that S 0 is, indeed, a possiblenext state, notice that DS0 is in fact S0 itself. Since (S3 \ S 0) [E3 = ;, it followsthat S 0 2 Res4D3(E3; S3). 3According to the formalization of Example 3.10, one possible result of merelywaiting is that the seesaw spontaneously changes position. Intuitively, the reason forthis odd behavior is a loop through the laws (3.12) and (3.13). Intuitively, accordingto these two laws, :Up(A) causes Up(B), and vice versa. If such causal laws weretrue, it would make sense that :Up(A) and Up(B) could cause each other to be true,40

and, by so doing, also cause the seesaw to spontaneously change positions. Thus, thebehavior of De�nition 4 with respect to these static causal laws is arguably correct.Intuitively, however, the causal laws themselves are false; the causal relationshipbetween :Up(A) and Up(B) is not between \the generic factors themselves," but ineach case concerns \the history of an individual occasion."9A better formalization of the seesaw domain uses the static causal law (3.10),which does not give rise to the possibility of spontaneous change.S4 = fUp(A);:Up(B)gE4 = ;D = fTrue) Up(A) � :Up(B)gWe �nd that Res4D(E4; S4) = ffUp(A);:Up(B)gg:

9Under special syntactic conditions, which are violated in Example 3.10, spontaneous change isimpossible. This is shown in Appendix A (Proposition A.4).41

Chapter 4A Simple Action DescriptionLanguageIn this chapter, we de�ne an action description language ACL, which is based onDe�nition 4 of Chapter 3. In addition to static causal laws, the language ACLincludes symbols that designate actions and a second type of proposition that isused to describe their explicit e�ects.4.1 Action LanguagesThe �rst high-level action language was the language A of Gelfond and Lifschitz[1993]. Following A, a number of other high-level action languages have been de�ned.References to some of these are given in Chapter 2.4.1.1 Two ComponentsAccording to Lifschitz [1995], the language A and its successors can be viewed asa combination of two sublanguages. First, there is an action description languagein which the e�ects of actions in states are described. A set of propositions in anaction description language speci�es a transition system in approximately the sense42

of �nite automata theory. Secondly, there is an action query language in whichassertions about the paths in a transition system are expressed. (Intuitively, thepaths through a transition system represent causally possible world histories.) In Aitself, the action description language consists of \e�ect propositions" such asShoot causes :Alive if Loadedand the action query language consists of \value propositions" such as:Alive after Load;Wait; Shoot :An action language is a combination of an action description language and an actionquery language. A general method for combining two such languages with the samesignature is de�ned in [Lifschitz, 1995].4.1.2 Action Description LanguagesThe signature for an action description language consists of two nonempty sets ofsymbols: a set A of action names and a nonempty set F of
uent names. A set ofpropositions in an action description language speci�es, as we have said, a structurecalled a transition system. De�nitions similar to the following appear in [Boutilierand Friedman, 1995] and [Lifschitz, 1995].A transition system for an action description language with the signaturehA;Fi consists of the following elements:� a nonempty set S of objects called states ,� a function V from S � F into the set of truth values, and� a function R from A� S into the powerset of S.The function R is called the transition function of the system. The elements ofR(A; s) are the states that could result (nondeterministically) from performing theaction A in the state s. 43

f:H; Tg f:H;:Tg fH;:TgToss� PickUp - Toss -PickUp�Figure 4.1: A transition system for a Coin Tossing domainWe say that A is executable in s if jR(A; s)j > 0. We say that A is determin-istic in s if jR(A; s)j = 1. We say that A is nondeterministic in s if jR(A; s)j > 1.We say that A is nondeterministic if, for some s 2 S, A is nondeterministic in s.Otherwise, we say that A is deterministic.We identify an interpretation I of F with the set of literals L such that I j= L.By V (s) we denote the interpretationfF : F 2 F and V (s; F)g [f:F : F 2 F and not V (s; F)g:Employing terminology from [Carnap, 1947], we say that V (s) is the state descrip-tion of s, and we say that s realizes the state description V (s).It is common in giving the semantics of action description languages to takethe set S to be a set of state descriptions and to specify that for every s 2 S,V (s) = s. The signi�cance of these decisions is discussed in Section 4.2.2.As an example, let us suppose that the signature for a given action descriptionlanguage is hA;Fi = hfToss;Pickupg; fHeads;Tailsgi:In the transition system pictured in Figure 4.1 we abbreviate Heads and Tails by Hand T , respectively. The states are the interpretations shown. (We assume that forall s 2 S, V (s) = s.) The transition function R is depicted by the action-labeledarcs between states.Notice that the action Toss is a nondeterministic, while Pickup is determin-44

istic. The pathf:H;:Tg Toss�! fH;:Tg Pkp�! f:H;:Tg Toss�! f:H; Tg Pkp�! f:H;:Tgrepresents one \causally possible world history."4.1.3 Action Query LanguagesThe signature for an action query language consists of the same two sets of symbolsas an action description language: a set A of action names and a nonempty set Fof
uent names. Two classes of expressions are de�ned, axioms and queries . Thetwo classes may be the same.According to [Lifschitz, 1995], the semantics of an action query language withsignature � is de�ned by specifying, for every transition system T of �, every set �of axioms, and every query Q, whether Q is a consequence of � in T ; in symbols,� `T Q.An action language combines an action description and action query languagewith same signature. A domain description of the combined language is a set D ofpropositions from the action description language and a set � of axioms from theaction query language. A query Q is a consequence of a domain description if� `T Qwhere T is the transition system speci�ed by D.The language ACL described in this chapter is purely an action descriptionlanguage. No query language is speci�ed for it. Many choices of query languageare possible, including, for example, the query language of A, the query language ofAR [Giunchiglia and Lifschitz, 1995], the two query languages de�ned in [Lifschitz,1995], and the language MPL of Boutilier and Friedman [1995].45

4.2 The Language ACLIn this section, we de�ne the syntax and semantics of the language ACL. We assumea �xed signature hA;Fi, where A is a set of action names and F is a nonempty setof
uent names.4.2.1 SyntaxBy a
uent literal we mean an expression either of the form F or :F , where F isa
uent name. By a
uent formula we mean a propositional combination of
uentnames, that is, a formula of propositional logic whose atoms are
uent names. Weregard the expressions True and False as abbreviations for (F _ :F) and (F ^ :F),respectively, for some F 2 F.An e�ect proposition is an expression of the formA causes if � (4.1)where A is an action name, and � and are
uent formulas. If � is True, we writesimply A causes . Intuitively, (4.1) says that in every state in which � is true,doing A causes to be true in every possible next state. The truth of the formula� is a
uent precondition for A causing .We write the expressionimpossible A if � (4.2)where A is an action name and � is a
uent formula, as an abbreviation for an e�ectproposition of the form A causes False if �. Intuitively, (4.2) expresses an actionprecondition for A, since it implies that A cannot be performed in any state in which� is true. The terminology of action and
uent preconditions is due to Reiter [1991].The syntax of e�ect propositions and the method of expressing action preconditionsas abbreviations are due to Kartha and Lifschitz [1994].46

A static causal law is an expression of the form�) (4.3)where � and are
uent formulas. As in Chapter 3, when � is True, (4.3) willfunction as a rami�cation constraint, and when is False, (4.3) will function as aquali�cation constraint.A domain description (or domain) in ACL is a set of e�ect propositions andstatic causal laws.4.2.2 SemanticsLet D be a domain description in the signature hA;Fi, A be an action name in A,and I be an interpretation of F. By the explicit e�ect of A in I according to D|insymbols, ED(A; I)|we designate the set of
uent formulas such that for some
uent formula �, A causes if � is in D and I j= �. By C(D) we designate theset of static causal laws in D. Finally, we de�neC(D)I = f : for some �, �) 2 C(D) and I j= �g:Intuitively, C(D)I is the set of
uent formulas that are explicitly caused to be truein I according to the static causal laws in D.The domain description D speci�es a transition system hS; V;Ri as follows:(1) S is the set of interpretations I of F such that for all �) 2 C(D), I satis�esthe corresponding material conditional � � ,(2) for all states s, V (s) = s, and(3) for all action names A, and states s and s0, s0 2 R(A; s) if and only ifs0 = fL : (s \ s0) [ED(A; s) [C(D)s0 j= Lg:47

(i) s2s1 s3s4A -A -(ii) s1 s3s4A -AQQQsFigure 4.2: Inde�niteness vs. nondeterminismIt follows from conditions (1) and (2) that states are identi�ed with state de-scriptions. It follows from condition (3) that every change must be caused accordingto the e�ect propositions and static causal laws in D. The �xpoint equation in (3)is essentially that in De�nition 4 of Chapter 3. The only di�erences are that herethe explicit e�ect and static causal laws are extracted from D (by the functions Eand C, respectively) rather being given directly as parameters.The identi�cation of states and state descriptions means that it is impossibleto specify in the language ACL a transition system in which two distinct statesrealize the same state description. As a consequence, it is impossible to representthe possibility that an action may have di�erent e�ects in two real-world states thatagree on the values of all of the
uents in F. Inde�niteness about the e�ects of actionsis not expressible in ACL. On the other hand, nondeterminism is expressible. Thedistinction between inde�niteness and nondeterminism can be seen in the transitionsdepicted in Figure 4.2. We suppose that s1 and s2 realize the same state description,while s3 and s4 realize di�erent state descriptions.In (i), even though s1 and s2 realize the same state description, the actionA nevertheless has di�erent possible e�ects in the two states. Assuming that s148

and s2 correspond to distinct real-world states, this means that there are features ofthe two states which, although they cannot be described in the
uent language F,nevertheless are responsible for the di�erent possible e�ects of A. The identi�cationof states and state descriptions rules out the possibility of such hidden features. So(i) cannot be speci�ed in ACL. It is, however, possible to specify (ii).In (i), an agent who knew that he was either in state s1 or s2 could, by doingA and observing the results, experimentally determine which of the two states he wasin. Later, if he knew that he was in the same state again, he would know preciselywhat the e�ect of doing A would be. On the other hand, in (ii) an agent who knewthat he was in state s1 would have nothing to learn by such an experiment. Thisillustrates the di�erence between inde�niteness and nondeterminism.14.3 ExamplesIn this section we show how several domains, including some of those discussed inthe abstract framework of Chapter 3, are encoded in ACL.Example 4.1 We begin with a domain, described in [Lifschitz, 1990], in whichthere are two three-way switches and a light (cf. Examples 3.3 and 3.6).The signature contains two action names,Toggle(Switch1); Toggle(Switch2)and three
uent names, Up(Switch1); Up(Switch2); Light:We specify the domain (in part) by means of schemas, in which s is a meta-variablestanding for Switch1 or Switch2.1See [Sandewall, 1992b], page 118, for a closely related discussion. Giunchiglia and Lifschitz[1995] have de�ned an action description language in which distinct states may realize the samestate description. 49

Domain D4:1: (Up(Switch1) � Up(Switch2))) Light (4.4):(Up(Switch1) � Up(Switch2))) :Light (4.5)Toggle(s) causes Up(s) if :Up(s) (4.6)Toggle(s) causes :Up(s) if Up(s) (4.7)According to (4.4), the switches being in the same position|either both up or bothdown|is a causally su�cient condition for the light being on. According to (4.5),it is also a causally necessary condition. The e�ect propositions represented byschemas (4.6) and (4.7) describe the direct e�ects of toggling the switches.The domain D4:1 speci�es the transition system hS; V;Ri, in which S containsfour states, s1 = f:Up(Switch1);:Up(Switch2);Lightgs2 = f:Up(Switch1);Up(Switch2);:Lightgs3 = fUp(Switch1);:Up(Switch2);:Lightgs4 = fUp(Switch1);Up(Switch2);Lightgand R is de�ned asR(Toggle(Switch1); s1) = R(Toggle(Switch2); s4) = fs3gR(Toggle(Switch1); s2) = R(Toggle(Switch2); s3) = fs4gR(Toggle(Switch1); s3) = R(Toggle(Switch2); s2) = fs1gR(Toggle(Switch1); s4) = R(Toggle(Switch2); s1) = fs2g:The transition function is pictured in Figure 4.3. The action names Toggle(Switch1)and Toggle(Switch2) are abbreviated as T1 and T2, respectively. 3Example 4.2 The next example is a variant of the so-called Yale Shooting domain[Hanks and McDermott, 1987] (cf. Example 3.5).50

s2s1 s3s4T1� -T1T1-�T1T2 ?6T2 T26?T2Figure 4.3: A transition system for the Two-Switches domainThe language includes four action names,Load; Wait; Shoot; Entice to Walkand three
uent names, Alive; Loaded; Walking:Domain D4:2: impossible Load if Loaded (4.8)Load causes Loaded (4.9)Shoot causes :Alive if Loaded (4.10)Shoot causes :Loaded (4.11)Entice to Walk causes Walking (4.12):Alive) :Walking (4.13)The e�ect proposition (4.8) says that the gun's not being loaded is an action pre-condition for loading the gun. The motivating idea is that the action of loadingthe gun involves putting a bullet in it. (We assume that the gun holds at most onebullet). If the gun is already loaded, this cannot be done. The e�ect propositions(4.9){(4.12) describe the explicit e�ects of the four actions. (Since the action Waithas no e�ects, it is not mentioned.) The e�ect proposition (4.10) is conditional; itsays that the gun's being loaded is a
uent precondition for shooting having the51

s4 s5s1 s2s6s3 E� L?L? E� S?S@@@RL� S-
W;S;E? W;S?W;E? W?W;S6W 6Figure 4.4: A transition system for the Yale Shooting domaine�ect of killing the turkey. The �nal propsosition (4.13) is our familiar static causallaw. The domain D4:2 speci�es the transition system hS; V;Ri in which S containssix states, s1 = fAlive; Loaded;Walkinggs2 = fAlive; Loaded;:Walkinggs3 = f:Alive; Loaded;:Walkinggs4 = fAlive;:Loaded;Walkinggs5 = fAlive;:Loaded;:Walkinggs6 = f:Alive;:Loaded;:Walkinggand R is de�ned as pictured in Figure 4.4. (We abbreviate the action names bytheir �rst letters.) 3Example 4.3 The next example is a variant of the emperor domain of Lin andReiter [1994] (cf. Example 3.8). The language includes four action names of theform Paint(x; c), and four
uent names of the form Color(x; c), where x and c aremeta-variables standing for Block1 or Block2, and Y ellow or Red, respectively.52

Domain D4:3:Color(Block1; Y ellow) ^ Color(Block2; Y ellow)) False (4.14)True) :Color(x;Red) _ :Color(x; Y ellow) (4.15)Paint(x; c) causes Color(x; c) (4.16):Color(x;Red) ^ :Color(x; Y ellow)) False (4.17)The static causal law (4.14) encodes the emperor's decree that there shall be at mostone yellow block at a time. Since painting one block does not change the color ofthe other block, it is written as a quali�cation constraint. Schema (4.15) encodes,as a rami�cation constraint, the fact that a single block cannot be both Red andYellow. Schema (4.16) describes the direct e�ect of painting a block. Schema (4.17)expresses the assumption that the blocks are always either red or yellow. (We makethis assumption only in order to reduce the number of states.)The domain of D4:3 speci�es the transition system hS; V;Ri in which S con-tains three states. (Again, we use some natural abbreviations.)s1 = fColor(B1; R);:Color(B1; Y);Color(B2; R);:Color(B2; Y)gs2 = fColor(B1; R);:Color(B1; Y);:Color(B2; R);Color(B2; Y)gs3 = f:Color(B1; R);Color(B1; Y);Color(B2; R);:Color(B2; Y)gThe transition function R is de�ned as pictured in Figure 4.5. The action namePaint(Block1; Y ellow) is abbreviated as Y1. The other action names are abbreviatedsimilarly. 3In each of the preceding domains that we have formalized, all actions havebeen deterministic. In the following domain, we attempt to formalize a nondeter-ministic action.Example 4.4 Let us formalize a simple coin tossing domain. The language containstwo action names|Toss and Pickup|and two
uent names|Heads and Tails.53

s1 s2s3 Y2-R2�Y1?R16R1; R2? R1; Y2?R2; Y16Figure 4.5: A transition system for the Emperor domainDomain D4:4: True) :Heads _ :Tails (4.18)impossible Toss if Heads _ Tails (4.19)Toss causes Heads _ Tails (4.20)impossible PickUp if :Heads ^ :Tails (4.21)PickUp causes :Heads ^ :Tails (4.22)The proposition (4.18) expresses, as a rami�cation constraint, the fact the the coincannot lie both heads and tails. According to (4.19), it is impossible to toss a coin ifit is lying either heads or tails; the idea is that the coin must be in hand. Accordingto (4.20), tossing the coin causes it to lie either heads or tails. The disjunctive e�ectis intended to express the nondeterminism of coin tossing (but see below). Accordingto (4.21), it is impossible to pick up a coin that is already in hand. Finally, (4.22)describes the explicit e�ect of picking up the coin.The domain D4:4 speci�es the transition system pictured in Figure 4.1. Theaction Toss, as we previously remarked, is nondeterministic. Notice, however, thatthe nondeterminism of Toss arises here for a rather curious reason. Consider, forexample, the transition f:H;:Tg Toss�! fH;:Tg:54

The correctness of this transition can be checked as follows. By inertia, we have:T and by the explicit e�ect of Toss we have H _ T . (Also, by (4.18t) we have:H _:T .) Since these premises entail exactly the literals H and :T , the transitionis correct. The transition f:H;:Tg Toss�! f:H; Tgcan be checked by similar reasoning. We see, therefore, that the nondeterminism ofToss arises from the combination of its disjunctive e�ect H _ T and inertia.What is curious about this is that when the state of the coin changes fromneither H nor T being true before the toss to, for example, H being true afterwards,it is clear that the reason for :T being true after the toss is something other thaninertia. It is, indeed, true that :T is true both before and after the toss. But,intuitively, the reason that :T is true after the toss is not inertia, but rather thatH is true, from which, by (4.18), :T follows.We would like to specify that the
uent :T is not preserved by inertia, butin the language ACL there is no way to do so. Moreover, if ACL were modi�ed tomake this possible, it would then be impossible to express the nondeterminism ofcoin tossing by the disjunctive e�ect H _ T . Apparently, ACL would have to bemodi�ed again to provide some other means for expressing nondeterminism.2 In2In fact, even without altering inertia, it can be seen that the use of disjunctive e�ects alone isan inadequate means for expressing nondeterminism. Imagine, for example, that we view tossingthe coin as an action that includes picking up the coin as a part, so that the coin can be tossed ineach of its three possible states. (Let us now view the state of the coin in which it is lying neitherheads nor tails as one in which the coin is balanced on its edge.) It is easy to see that, exceptin the state in which the coin is balanced on its edge, the disjunctive e�ect H _ T does not yieldnondeterminism. Instead, in each of the states in which H or T is already true, tossing the coinleaves the state unchanged.Similarly, if we were to attempt to model coin tossing in a language with only a single
uent,say, Heads, it is clear that writing Toss causes Heads_ :Heads(essentially, Toss causes True) would not yield the desired results.In natural language, we can indeed express the nondeterminism of coin tossing by expressionssuch as \Toss causes heads or tails" and even \Toss causes heads or not heads." But this works, wesuggest, only because of certain \conversational implicatures" [Grice, 1989] that these expressionshave in addition to their logical content; for example, in the latter case, the implicatures arethat \Toss possibly causes heads," and \Toss possibly causes not heads." That these are indeed55

fact, extensions of both kinds, as well as others, are possible. However, we will notpursue this course here. Instead, in the next chapter, we will de�ne an alternativeformalism that is mathematically simpler and more expressive than the languageACL. In this formalism, it will be possible to address the issues of inertia andnondeterminism, among others, more directly. 3

implicatures and not part of the logical content is suggested by the fact that they are lost when thephrase \heads or not heads" is replaced by other logically equivalent expressions (e.g., by True orby \if heads then heads"). The key to representing nondeterminism is to explicitly represent theimplicatures of such natural language expressions. We will propose one way of doing this when weagain consider the formalization of coin tossing in Chapter 7 (Example 7.2).56

Chapter 5The Language of CausalTheoriesIn the previous chapter, a domain description was taken to specify a transitionsystem, and, thereby, a set of causally possible world histories (represented by theset of paths through the transition system). The possibility of representing thecausally possible world histories in this way rests on three simplifying assumptions.The �rst assumption is that changes occur only when actions are performed. Thisassumption enables us to represent a world history by a sequence of alternatingstates and actions, e.g., s1 A1�! s2 A2�! s3 A3�! s4 A4�! s5:(If one of the actions is Wait|an action with the empty explicit e�ect|then this isnot a simplifying assumption.) The second assumption is that actions are not per-formed concurrently. The third assumption is that for each si+1 in such a sequence,it is unnecessary to look beyond the facts represented in a single transitionsi Ai�! si+1in order to �nd su�cient conditions for the facts in si+1 to be caused. In ACL,e�ect propositions refer to conditions in si and Ai, while static causal laws refer to57

conditions in si+1. In the remainder of this dissertation, we will abandon these threeassumptions and will adopt a more general framework according to which a set ofpropositions in an action description language is understood to directly specify theset of causally possible world histories.1We will de�ne the language of causal theories as an extension of propositionallogic. (Lifschitz [1997] has shown how to reformulate the central de�nitions for thecase of predicate logic.) We will delay until Chapter 7 the discussion of how actiondomains are formalized in the language of causal theories. In this chapter and thenext, we will be concerned solely with the formalism itself, the motivating ideasbehind it, and some of its mathematical properties.5.1 Informal MotivationThe world is governed by causal laws. The true causal laws determine which worldhistories are causally possible. Intuitively, a causally possible world history is onethat conforms to the true causal laws, i.e., one in which every fact that is causedobtains. We will assume the principle of universal causation, according to whichevery fact that obtains is caused.2 Accordingly, we can say that a causally possibleworld history is one in which exactly the facts that obtain are caused.Now suppose that D is a complete description of the conditions under whichfacts are caused. (Intuitively, this means that whenever a fact is caused in a worldhistory, D says that this is so.) In this case, we can say that a causally possibleworld history is one in which the facts that obtain are exactly those that are causedaccording to D. This is the key to understanding the formal de�nitions that follow.Notice that we make two assumptions: (1) the principle of universal causation1It is possible to generalize the de�nition of a transition system so that the transition function,instead of mapping a single action and a state to a set of states, maps a set of actions and a stateto a set of states. Relative to this more general notion of a transition system, only the last of theabove-mentioned assumptions remains as a simpli�cation.2This philosophical commitment is rewarded by mathematical simplicity in the main de�nitionof causal theories. Moreover, as we will see in Chapter 7, in applications it is easily relaxed.58

and (2) the completeness of D.On the other hand, notice that we make no assumption about where in acausally possible world history the su�cient conditions for facts being caused areto be found. We assume only that they can be found somewhere within the worldhistory itself. Thus, we allow, for example, the possibility that future facts may besu�cient conditions for facts in the past being caused. We also allow the possibilitythat a fact may be a su�cient condition (or part of one) for itself being caused.This last mentioned possibility turns out to play an important role in in formalizingaction domains as causal theories. In e�ect, it provides a means of exempting factsfrom the principle of universal causation.5.2 SyntaxWe begin with a standard language of propositional logic, whose signature is given bya nonempty set of atoms. (In application to formalizing action domains (Chapter 7),the atoms will be taken to represent propositions about the values of
uents andthe occurrences of actions at speci�c times.) By a literal we mean either A or :A,where A is an atom. We use the expressions True and False to stand for (A _ :A)and (A ^ :A), respectively, for some atom A.By a causal law we mean an expression of the form�) (5.1)where � and are formulas of the underlying propositonal language. By a causaltheory we mean a set of causal laws.By the antecedent and consequent of (5.1), we mean the formulas � and ,respectively. Note that (5.1) is not the material conditional, � � . The intendedreading of (5.1) is the following:(i) Necessarily, if � then the fact that is caused.59

Often, but not always, a stronger reading is also appropriate, namely:(ii) The fact that � causes the fact that .The term \causal law" is suggested by reading (ii).Recalling our earlier discussion of sentences of forms (i) and (ii) in Section 1.2,notice that while sentence (ii) asserts the existence of a causal relationship betweenthe facts associated with � and , sentence (i) does not. Intuitively, however, thisdi�erence in meaning is irrelevant for determining which facts are caused in a worldhistory and (so also) which world histories are causally possible. Since the semanticsof causal theories is limited to determining the causally possible world histories (wewill not de�ne truth conditions for causal laws, or the conditions under which causallaws are entailed), it supports readings (i) and (ii) equally well.3It would be possible to abandon reading (ii) entirely in favor of the weakerreading (i)|but not vice versa, since sometimes we will write causal laws for whichonly reading (i) is intended. However, the advantage of maintaining reading (ii) isthat it is often what we most naturally wish to say. In such cases, given the limitedscope of the semantics of causal theories, there is no reason why we should notregard ourselves as having said it.45.3 SemanticsWe identify an interpretation I for a propositional language with the set of literalsL such that I j= L. Here, as throughout this dissertation, we will use the symbol Lto stand exclusively for literals.3In Appendix A, we will de�ne an encoding of causal laws in a modal language for which truthconditions and entailment are de�ned. In this framework, only reading (i) (for the encodings) issupported by the formal semantics; reading (ii) will be abandoned.4Our two readings for causal laws have the same sort of justi�cation as our readings of e�ectpropositions and static causal laws in ACL. In ACL the readings are justi�ed by the intuitive ap-propriateness of the transition systems that sets of such propositions are taken to specify. Readings(i) and (ii) for causal laws are justi�ed by the intuitive appropriateness of the set of \possible worldhistories" that causal theories are taken to specify.60

Let D be a causal theory, and I be an interpretation. We de�neDI = f : for some �, �) 2 D and I j= �g:That is, DI is the set of consequents of all causal laws in D whose antecedents aretrue in I . Intuitively, whether we adopt reading (i) or (ii), DI entails exactly theformulas that are caused to be true in I according to D. (This assumes, as is ourintuition, that the set of formulas caused to be true in I is closed under entailment.)We are now ready to state the main semantic de�nition.Main De�nition. Let D be a causal theory, and I be an interpretation. We saythat I is causally explained according to D if I is the unique model of DI .5Intuitively, when D describes an action domain, the causally explained in-terpretations according to D correspond to the causally possible world histories.Proposition 5.1 Let D be a causal theory, and I be an interpretation. The follow-ing propositions are equivalent.(i) I is causally explained according to D.(ii) For every formula �, I j= � if and only if DI j= �.(iii) For every literal L, I j= L if and only if DI j= L.Proof. To show that (i) implies (ii), suppose (i). Then I is the unique model ofDI . Let � be an arbitrary formula. There are two cases: (i) I j= �, in which casefor every I 0 such that I 0 j= DI , I 0 j= �, so DI j= �, and (ii) I 6j= �, in which casethere is an I 0 such that I 0 j= DI and I 0 6j= �, so DI 6j= �. We conclude that I j= �if and only if DI j= �. It is obvious that (ii) implies (iii). To show that (iii) implies5Heinrich Herre and Gerd Wegner [1996] have independently de�ned the notions of a generalizedlogic program and a strongly supported model . The class of generalized logic programs turns outto be essentially equivalent to the class of causal theories, and the notion of a strongly supportedmodel turns out to be equivalent to the notion of a causally explained interpretation. These equiva-lences were discovered at the Dagstuhl Seminar on Disjunctive Logic Programming and Databases:Nonmonotonic Aspects, 1996. 61

(i), suppose (iii). We will �rst show that DI has no other model than I . Supposethat there is an interpretation I 0 such that I 6= I 0 and I 0 j= DI . Let L be a literalsuch that I j= L, but I 0 6j= L. It follows that DI 6j= L, which contradicts (iii). Weconclude that DI has no other model than I . That DI has a model is clear from(iii), since otherwise DI would entail every literal, including literals that are nottrue in I . We conclude that I is the unique model of DI , from which (i) follows byde�nition. 2In view of the equivalence of (i) and (ii) in Proposition 5.1, we can now saythat I is causally explained according to D if and only if exactly the formulas thatare true in I are caused to be true in I according to D.Corollary 5.1 Let D be a causal theory. An interpretation I is causally explainedaccording to D if and only if I = fL : DI j= Lg: (5.2)Proof. Notice that (5.2) is simply (iii) of Proposition 5.1, written in a di�erentform. 2Recall that De�nition 4 of Chapter 3 contained the following �xpoint equa-tion S0 = fL : (S \ S 0) [E [DS0 j= Lg: (5.3)In essence, (5.2) can be obtained from (5.3) by dropping the premises (S \ S0) andE, that is, the premises for inertia and the explicit e�ect, respectively. We will seein Chapter 7 that in the framework of causal theories, these premises need not bebuilt in, since both inertia and the explicit e�ects of actions can be expressed bycausal laws.Given a causal theory D and a formula �, we say that � is a consequenceof D if � is true in every interpretation that is causally explained according to62

D. Intuitively, when D describes an action domain, the consequences of D are theformulas that are true in all causally possible world histories.In classical logic, adding a new axiom to a theory can never increase its setof models or diminish its set of consequences. The set of models is monotonicallynon-increasing, and the set of consequences is monotonically non-decreasing. In thelanguage of causal theories, by contrast, adding a new causal law can increase theset of interpretations that are causally explained, and thereby diminish the set ofconsequences. Thus, the consequence relation for the language of causal theories isnonmonotonic. This is illustrated in the following section.5.4 ExamplesExample 5.1 Let D5:1 be the causal theory (in the language with only the atoma) consisting of the causal law a) a : (5.4)Take I = fag. Notice that DI5:1 = fag. Since I is the unique model of DI5:1, I iscausally explained according to D5:1. No other interpretation is causally explained.Therefore, a is a consequence of D5:1. 3Example 5.2 Now, let D5:2 be the causal theory obtained by adding to D5:1 thecausal law :a) :a : (5.5)One easily checks that both fag and f:ag are causally explained according to D5:2.Thus, a is not a consequence of D5:2. This shows that the consequence relation forcausal theories is nonmonotonic. 3Example 5.3 Let D5:3 be the causal theory (in the language with the atoms a andb) consisting of the causal laws True) a � b63

b) a:Take I = fa; bg. Notice that DI5:3 = fa � b; ag. Since I is the unique model ofDI5:3, I is causally explained according to D5:3. No other interpretation is causallyexplained. Therefore, a ^ b is a consequence of D5:3. 3Example 5.4 Let D5:4 be the causal theory (in the language with the atoms a andb) consisting of the causal laws a ^ b) b:a ^ :b) :ba) a:a) :a:The reader may verify that exactly the following interpretations are causally ex-plained according to D5:4. fa; bg f:a;:bgThus, the formula (a � b) is a consequence of D5:4. 3With the exception of D5:3, in each of the preceding causal theories theantecedent of every causal law is a conjunction of literals, and the consequent ofevery causal law is a literal. Causal theories of this form correspond syntactically tothe class of basic logic programs [Lifschitz, 1996]. We will investigate this subclassof causal theories in next chapter.5.5 De�nitional ExtensionIn this section, we examine the role of explicit de�nitions in the language of causaltheories. 64

5.5.1 Explicit De�nitionsLet F be an atom. By an explicit de�nition of F , we mean a causal law of the formTrue) F � where is a formula that does not contain F .Let D be a causal theory with the signature (set of atoms)A. A causal theoryD0 is said to be a de�nitional extension of D if the signature of D0 is A [fFg, forsome atom F that is not in A, andD0 = D [fTrue) F � gwhere True) F � is an explicit de�nition of F .Let D and D0 be causal theories. We say that D0 is a conservative extensionof D if the signature of the language of D is a subset of the signature of the languageof D0, every causal law in D belongs to D0, and for all formulas � in the languageof D, � is a consequence of D0 if and only if � is a consequence of D.Proposition 5.2 Let D and D0 be causal theories. If D0 is a de�nitional extensionof D then D0 is a conservative extension of D.5.5.2 ReplacementThe following proposition states a simple replacement property which causal theoriesinherit from classical propositional logic.Proposition 5.3 Let D be a causal theory that contains the causal lawTrue) � � : (5.6)Let D0 be a causal theory that is obtained by replacing zero or more occurrences of by � in D, excluding occurrences in (5.6). An interpretation I is causally explainedaccording to D if and only if I is causally explained according to D0.65

Example 5.5 Recall the causal theory D5:4 above. By Proposition 5.2, we knowthat the following causal theory D5:5 (in a language with the atoms a, b, and c) isa conservative extension of D5:4. a ^ b) b:a ^ :b) :ba) a:a) :aTrue) c � :bThe reader may verify that exactly the following interpretations are causally ex-plained according to D5:5. fa; b;:cgf:a;:b; cgNotice that the formula (a � b), which, as we saw above, is a consequence of D5:4,is also a consequence of D5:5.By Proposition 5.3, we know that the causally explained interpretations, andthus also the consequences, of D5:5 are unchanged by the replacements in the secondcausal law below. a ^ b) b:a ^ c) ca) a:a) :aTrue) c � :b 3According to Proposition 5.2, we can extend the underlying language ofa causal theory D by a new atom F and add an explicit de�nition for F to D66

without changing the consequences of D in the original language. According toProposition 5.3, we can also freely replace the de�niens of F by F anywhere inD (except in the explicit de�nition itself) without a�ecting the causally explainedinterpretations. Together, these propositions allow us to introduce abbreviationsfor complex formulas, via explicit de�nitions, and to use them to simplify causaltheories. The importance of conservative extension and replacement theorems forformalizing action domains was recognized in [Kartha and Lifschitz, 1994].5.5.3 Proofs of Propositions 5.2 and 5.3Lemma 5.1 Let F be an atom, A be a set of atoms, and D and D0 be causal theoriesin languages with the signatures A and A[fFg, respectively. Furthermore, supposethat D0 = D [fTrue) F � gwhere True) F � is an explicit de�nition of F . Let I be an interpretation ofthe language of D, and let I 0 be de�ned as follows:I 0 = I [fFg; if I j= I 0 = I [f:Fg; if I 6j= :If I is causally explained according to D, then I 0 is causally explained according toD0.Proof. Notice that for every interpretation I of the language of D, D0I 0 = DI [fF � g. Suppose that I is causally explained according to D. Then I is theunique model of DI . By the de�nition of I 0, it follows that I 0 is the unique modelof DI [fF � g, and thus also the unique model of D0I 0 . Therefore, I 0 is causallyexplained according to D0. 267

Lemma 5.2 Let F , A, D and D0 be as speci�ed in Lemma 5.1. Let I 0 be aninterpretation of the language of D0, and let I be de�ned as follows:I = I 0 n fF;:Fg:If I 0 is causally explained according to D0 then I is causally explained according toD.Proof. Notice that for every interpretation I 0 of the language of D0, D0I 0 =DI [fF � g. Suppose that I 0 is causally explained according to D0. Then I 0 isthe unique model of D0I 0 , and thus also of DI [fF � g. It follows that I is theunique model of DI . Therefore, I is causally explained according to D. 2Proof (of Proposition 5.2). Let D0 be a de�nitional extension of D. Supposethat the signature of the language of D is A, the signature of D0 is A [fFg, andD0 = D [fTrue) F � g. It is clear that the signature of the language of D is asubset of the signature of the language of D0 and that every causal law in D belongsto D0. Thus, it remains only to show that for all formulas � in the language of D,� is a consequence of D0 if and only if � is a consequence of D. For the left-to-rightdirection, suppose that � is not a consequence of D. Then there is a interpretationI that is causally explained according to D such that I 6j= �. It follows that theinterpretation I 0, as de�ned in Lemma 5.1, is causally explained according to D0.Since I 0 is identical to I , except for assigning a value to F , it follows that I 0 6j= �.Therefore, � is not a consequence of D0. For the right-to-left direction, supposethat � is not a consequence of D0. Then there is a interpretation I 0 that is causallyexplained according to D0 such that I 0 6j= �. It follows that the interpretation I asde�ned in Lemma 5.2, is causally explained according to D. Since I 0 is identical toI , except for assigning a value to F , it follows that I 6j= �. Therefore, � is not aconsequence of D. 2Proof (of Proposition 5.3). To begin, let D0 = D n fTrue) � � g, and letD00 = D0 n fTrue) � � g. So D00 is obtained from D0 by replacing zero or more68

occurrences of by �. Let I be an interpretation. Clearly, � � is contained in bothDI and D0I . So if I 6j= � � then I is not causally explained according to either Dor D0, and we are done. So suppose I j= � � . We will show that DI and D0I havethe same models. Note that DI = (D0 [fTrue) � � g)I = DI0 [f� � g, whileD0I = (D00 [fTrue) � � g)I = D0I0 [f� � g. Since I j= � � , DI0 and D0I0 arethe same except that D0I0 contains � in place of in zero or more of its occurrencesin DI0. It follows by the replacement of equivalents in propositional logic that DIand D0I have the same models. Therefore, I is the unique model of DI if and onlyif I is the unique model of D0I . Hence, I is causally explained according to D if andonly if I is causally explained according to D0. 25.6 An Embedding in Default LogicIn this section we describe an embedding, suggested by Hudson Turner (personalcommunication), of causal theories into default logic [Reiter, 1980]. The reader mayskip this section (and the related Section 6.3) without loss of continuity.In de�ning the syntax and semantics of default logic, we will be concernedonly with propositional default theories. The de�nitions given here follow the styleof de�nition in [Gelfond et al., 1991a].A default is an expression of the form� : �1; : : : ; �m
 (5.7)where �, �1; : : : ; �m (m � 0), and
 are formulas of propositional logic. The com-ponents of a default are named as follows: � is called the prerequisite, �1; : : : ; �mare called the justi�cations , and
 is called the consequent . If m = 0, (5.7) is aninference rule. If � is True, it may be dropped. If both m = 0 and � is True, (5.7)will be identi�ed with
. A default theory is a set of defaults.Given a set X of formulas, by Cn(X) we mean the set of formulas � such thatX j= �. Cn(X) is the smallest set that contains X and is closed under propositional69

logic. Given a set R of inference rules, by Cn�(R) we mean the smallest set X offormulas such that(i) X = Cn(X), and(ii) for every �
 2 R, if � 2 X then
 2 X .Cn�(R) is the smallest set that is closed under propositional logic and the rules inR. Let T be a default theory and E be a set of formulas. The reduct of T withrespect to E (in symbols, TE) is de�ned asTE = ��
 : � : �1; : : : ; �m
 2 T and for all i (1 � i � m); :�i 62 E� :Notice that TE is a set of inference rules. The set E is called an extension for T ifE = Cn�(TE).We are now ready to de�ne an embedding of causal theories into defaultlogic. Let D be a causal theory. We de�ne the corresponding default theory T (D)as follows: T (D) = � : � : �) 2 D � :Proposition 5.4 Given a causal theory D, an interpretation I is causally explainedaccording to D if and only if Cn(I) is an extension for T (D).The following lemma is used in the proof of Proposition 5.4.Lemma 5.3 For every causal theory D and interpretation I, DI = T (D)Cn(I).Proof. For the left-to-right-direction, suppose that 2 DI . Then for some�) 2 D, I j= �. We know that :� 2 T (D). Since I j= �, we also know that:� 62 Cn(I). Therefore, True (equivalently,) is in T (D)Cn(I). For the right-to-left-direction, suppose that (equivalently, True) is in T (D)Cn(I). Then for some70

:� 2 T (D), :� 62 Cn(I). We know that �) 2 D. Since :� 62 Cn(I), I j= �.Therefore, 2 DI . 2Proof (of Proposition 5.4). Let I be an interpretation. I is causally explainedaccording to D i� I is the unique model of DI i� (by Lemma 5.3) I is the uniquemodel of T (D)Cn(I) i� Cn(I) = Cn(T (D)Cn(I)) i� Cn(I) = Cn�(T (D)Cn(I)) i�Cn(I) is an extension for T (D). 2Let X be a set of formulas. We say that X is consistent if there is no formula� such that X contains both � and :�. We say that X is is complete if for everyformula �, X contains either � or :�.Corollary 5.2 The interpretations that are causally explained according to a causaltheory D correspond one-to-one to the complete, consistent extensions for T (D).Proof. An extension E for T (D) is complete and consistent if and only if for someinterpretation I , E = Cn(I). Thus, the corollary follows by Proposition 5.4. 2In the next chapter, we will see that in the special case in which for every�) in D, is a literal and � is a conjunction of literals, there is a similarembedding into extended programs [Gelfond and Lifschitz, 1990].
71

Chapter 6Objective Logic ProgramsIn this chapter we investigate the class of causal theories in which the antecedent ofevery causal law is a conjunction of literals and the consequent of every causal law isa literal. Syntactically, such literal-oriented causal theories correspond to the classof basic logic programs [Lifschitz, 1996]. Semantically, however, they are di�erent.Informally speaking, basic programs represent possible belief states which are partial(in that they do not necessarily assign a value to every atom), while causal theoriesrepresent possible world histories which are total. In this sense, basic programs are\subjective" and causal theories are \objective." In light of this, we refer to theliteral-oriented subclass of causal theories as \objective programs."Objective programs turn out to have close semantic connections to the clas-sical semantics for positive programs and the completion semantics for normal pro-grams. Indeed, the semantics of objective programs is the natural generalization ofthe completion semantics [Clark, 1978] to the class of programs that allow negationto occur in the heads as well as the bodies of rules. In Chapter 9 this connectionto the completion semantics will be exploited to provide a automated approach toquery answering and planning with respect to causal theories that belong to theclass of objective programs. 72

6.1 The Language of Objective ProgramsIn this section we de�ne the syntax and semantics of objective programs.6.1.1 SyntaxAs in the case of general causal theories, we begin with a standard language ofpropositional logic, whose signature is given by a nonempty set of atoms.An objective program is a set of rules of the formL0 L1; : : : ; Ln (6.1)where n � 0 and for all i, 0 � i � n, Li is a literal. By the head of the rule (6.1),we mean the literal L0. By the body , we mean the set of literals fL1; : : : ; Lng.An objective program is simply a causal theory written in a conventional logicprogramming notation. Accordingly, we will also use the term \objective program"to refer to a set of causal laws of the formL1 ^ : : :^ Ln) L0where n � 0 and for all i, 0 � i � n, Li is a literal.We will have reason to discuss the two subclasses of the class of objectiveprograms, namely, the class of positive programs and the class of normal programs.The following de�nitions are standard in the logic programming literature.By a positive program we mean a set of rules of the formA0 A1; : : : ; Anwhere n � 0 and for all i, 0 � i � n, Ai is an atom.By a normal program we mean a set of rules of the formA0 L1; : : : ; Lnwhere A0 is an atom, and for all i, 1 � i � n, Li is a literal.73

We will also have reason to discuss the class of extended programs [Gelfondand Lifschitz, 1990]. An extended program is a set of rules of the formL0 L1; : : : ; Lk; not Lk+1; : : : ; not Ln: (6.2)Syntactically, an objective program is an extended program that does not containnot , the symbol for default negation (also called negation as failure).6.1.2 SemanticsObjective programs are a special case of causal theories. Therefore, their semanticsis already known. Nevertheless, it will be useful to also de�ne the semantics of ob-jective programs independently, since their restricted syntax makes possible certainsimpli�cations.As before, we identify an interpretation I with the set of literals L such thatI j= L. We continue to use the symbol L to stand exclusively for literals.Let � be an objective program, and I be an interpretation. We de�ne theset of literals supported in I by �, in symbols �I , as�I = fL : for some B, L B 2 � and B � Ig:Let I be an interpretation. We say that I is a model of � if�I � I:We say that I is supported by � if I � �I :Finally, we say that I is a supported model of � ifI = �I :74

We say that a formula � is a consequence of � if � is contained in every supportedmodel of �.1Recall the de�nitionDI = f : for some �, �) 2 D and I j= �gfrom Section 5.3. Since B is a set of literals, I is a model of B if and only if B � I .Thus, the de�nition of �I is a specialization of the de�nition of DI to the case ofobjective programs.Recall that an interpretation I is said to be causally explained according to acausal theory D just in case I is the unique model of DI . Since �I is a set of literals,I is the unique model of �I just in case I = �I . Thus, the de�nition of a supportedmodel is specialization of the de�nition of a causally explained interpretation to thecase of objective programs.Finally, the de�nition of consequence for objective programs is an obviousspecialization of the notion of consequence for causal theories generally.2Example 6.1 The following program �6:1 is a notational variant of the causaltheory of Example 5.4. b a; b:b :a;:ba a:a :aLet I = fa; bg. Notice that �I6:1 = fa; bg. Since I = �I6:1, I is a supported modelof �6:1. Now let I 0 = f:a;:bg. Notice that �I 06:1 = f:a;:bg. Since I 0 = �I 06:1, I 0 is1The notion of a supported model has been previously de�ned for the class of normal logicprograms by Apt, Blair, and Walker [1988]. According to their de�nition, a normal program � issupported by an interpretation I if for every atom A in I there exists a rule A L1; : : : ; Ln in� such that I j= L1 ^ : : : ^ Ln. For the class of objective programs, it is natural to modify thisde�nition to say that for every literal L in I there exists a rule L L1; : : : ; Ln in � such thatI j= L1 ^ : : : ^ Ln. This is equivalent to the de�nition given above.2Normally, the consequence relation for a logic program is de�ned to hold only between a programand a literal, rather than, as here, between a program and a (propostional) formula.75

also a supported model of �6:1. There are no other supported models. Therefore,(a � b) is a consequence of �6:1. 36.2 Literal CompletionThe original semantics for logic programs with negation was the completion seman-tics for normal programs [Clark, 1978]. In this section, we show that the supportedmodel semantics for objective programs corresponds to a straightforward generaliza-tion of completion semantics for the case of programs in which negation is allowedto occur in the heads of rules.We are interested only in the propositional case, where the completion se-mantics for normal programs may be de�ned as follows. Let � be a normal program.We say that � is completable if for every atom A there are �nitely many rules in �with the head A. Let � be a completable normal program. By the completion of �(in symbols, comp(�)) we mean the set of equivalencesA � B1 _B2 _ : : :_Bk (6.3)for each atom A, where A B1A B2: : :A Bkare the rules in � with the head A. If there are no such rules (k = 0), (6.3) standsfor A � False.According to the completion semantics [Clark, 1978], the models of a normalprogram � are the models of comp(�).The completion procedure for normal programs can be extended to the classof objective programs as follows. We �rst extend the notion of a completable pro-76

gram to the class of objective programs as follows. Let � be an objective program.We say that � is completable if for every literal L there are �nitely many rulesin � with the head L. Let � be a completable objective program. By the literalcompletion of � (in symbols, lcomp(�)) we mean the set of formulasL � B1 _ B2 _ : : :_ Bk (6.4)for each literal L, where L B1L B2: : :L Bkare the rules in � with the head L. If there are no such rules (k = 0), (6.4) standsfor L � False.According to the following proposition, the supported models of a complet-able objective program are precisely the models of its literal completion.Proposition 6.1 Let � be a completable objective program. An interpretation I isa supported model of � if and only if I is a model of lcomp(�).Proof. For the left-to-right direction, let I be a supported model of �. Supposethat L � B1 _ : : : _ Bn is an element of the literal completion of �. We will showthat I j= L � B1 _ : : : _ Bn. Since �I � I , we know that for every rule L Bi(1 � i � n) in �, if I j= Bi then I j= L. Therefore, I j= B1 _ : : : _ Bn � L. SinceI � �I , if L 2 I then for some rule L Bi (1 � i � n) in �, I j= Bi. Therefore,I j= L � B1 _ : : : _Bn.For the right-to-left direction, let I be a model of the literal completion of�. Suppose that L is an arbitrary literal in �I . Then for some L B 2 �,I j= B. Consider the equivalence L � B1 _ : : : _ Bn in the literal completion of �.77

We know that I j= L � B1 _ : : : _ Bn, and that for some i (1 � i � n), B = Bi.Therefore, I j=L. So �I � I . Now let L be an arbitrary literal in I . Again, considerthe equivalence L � B1 _ : : : _ Bn in the literal completion of �. We know thatI j= L � B1 _ : : : _ Bn. Therefore, for some i (1 � i � n), I j= Bi. We also knowthat L Bi is in �. Therefore, L 2 �I . So I � �I . 2Example 6.2 Consider the following program �6:2.b a; b:b :a;:b:a b:a :aThe literal completion of �6:2 is b � a ^ b:b � :a ^ :ba � False:a � :a _ b:The unique of model of this propositional theory is f:a;:bg, which is also the uniquesupported model of �6:2. 3According to Proposition 6.1, questions about the nonmonotonic consequencerelation for completable objective programs can be transformed into questions aboutthe monotonic consequence relation for propositional logic. In Chapter 9, we willexploit this fact in an approach to automated query answering and planning.Proposition 6.2 Let � be a completable normal program and �0 be the objectiveprogram obtained by adding to �, for every atom A, the rule:A :A:78

An interpretation I is a supported model of �0 if and only if I is a model of comp(�).Proof. Notice that the literal completion of �0 is simply the completion of �, plus,for each atom A, the tautology :A � :A:This means that the completion of � and the literal completion of �0 have the samemodels. Thus, the proposition follows by Proposition 6.1. 2Example 6.3 As an illustration of Proposition 6.2, consider the normal program�6:3, a band the corresponding objective program �06:3,a b:a :a:b :b:The unique supported model of �06:3 is f:a;:bg, which is also the unique model ofthe completion of �6:3, a � bb � False: 3Proposition 6.2 suggests that the completion semantics for normal programscan be viewed as consisting of two parts. First, it requires supported models. Second,it assumes automatic support for all negative literals in an interpretation. Since79

negation is not allowed in the heads of normal program rules, a normal programis incapable of supporting negative literals explicitly. Therefore, the assumption ofnegative support in the case of normal programs is inevitable. For programs thatallow negation in the heads of rules, on the other hand, the assumption of negativesupport is both unnecessary and inappropriate. Accordingly, a natural extension ofthe completion semantics for this larger class of programs is one that retains therequirement of supportedness but drops the assumption of negative support. Thisis precisely the semantics of objective programs.6.3 Other Connections to Logic ProgrammingIn this section, we investigate the relationship between the semantics of objectiveprograms and other proposed semantics for logic programs. The reader may skipthis section without loss of continuity.6.3.1 Classical SemanticsHistorically, the �rst logic programs were positive programs. They did not alloweither classical or default negation but consisted simply of Horn clauses from resolu-tion theorem proving. (Logic programming began with the realization that certainlinear resolution procedures behaved with respect to such clauses essentially as aprogram interpreter [Kowalski, 1974].) As such, the �rst semantics for logic pro-grams was the classical semantics in which was understood as the materialconditional. The models of the program were the models of the clausal theory.This is a special case of the de�nition of a model for an objective program given inSection 5.3.The following proposition shows a connection between the classical seman-tics and the semantics of objective programs. This connection holds for arbitraryobjective programs, not only for positive programs.80

Proposition 6.3 Let � be an objective program and �0 be the program obtained byadding to �, for every atom A, the rulesA A:A :A:An interpretation I is a supported model of �0 if and only if I is a model of �.Proof. By Proposition 6.1, it su�ces to show that I is a model of the literalcompletion of �0 if and only if I is a model of �. LetL � L _ B1 _ : : :_Bn (6.5)be an arbitrary formula in the literal completion of �0. In light of the rules in�0 n�, we know that the literal L which appears on the lefthand side of (6.5) also,as shown, appears as a disjunct on the right. (In this case, we have written L as the�rst disjunct on the right.) Now, (6.5) is equivalent to the conjunction ofL � L _ B1 _ : : :_ BnL _B1 _ : : :_Bn � L:The �rst conditional is a tautology, and the second is equivalent to the conjunctionof the following material conditionals, B1 � LB2 � L: : :Bn � Lwhich correspond precisely to the rules in � with the head L. Since this holds forevery equivalence in �0, the models of the literal completion of �0 are precisely theclassical models of �. 281

Example 6.4 As an illustration of Proposition (6.3), consider the program �6:4,a band the corresponding objective program �06:4,a ba a:a :ab b:b :b:�06:4 has three supported models,fa; bg; fa;:bg; f:a;:bg;which are also the models of �6:4 according to the classical semantics of positiveprograms. 36.3.2 Stable Model SemanticsLet � be a positive program. The models of � are given by the classical semanticsde�ned in Section 6.3.1. We say that a model I of � is minimal if there is no modelI 0 of � such that the set of atoms in I 0 is a proper subset of the set of atoms inI .3 It is well-known [van Emden and Kowalski, 1976] that every positive program� has a unique minimal model. Let us designate the minimal model of � by �(�).Now let � instead be a normal program, and I be an interpretation. By �Iwe designate the program that is obtained from � by deleting3In the original de�nition of the stable model semantics for normal programs [Gelfond andLifschitz, 1988], an interpretation I was represented, not by a set of literals, but by a set of atoms.Every atom in such a set M was taken to be true in I, and every atom not M was taken to be falsein I. Given this representation, a minimal model can be de�ned as a model which has no subsetthat is also a model. Since we represent an interpretation by a set of literals, we require a di�erentde�nition that distinguishes between an interpretation and the set of atoms in it.82

(i) each rule that contains a negative literal :A in its body with A 2 I , and(ii) all negative literals in the bodies of the remaining rules.Notice that �I is a positive program. An interpretation I is said to be a stablemodel of � if I = �(�I) [Gelfond and Lifschitz, 1988].By the positive atom dependency graph for a normal program we mean thedirected graph which has atoms as nodes, and which has an edge from each atomthat appears in the head of a rule to each atom that appears positively in the bodyof the rule. A normal program � is called positive-order-consistent [Fages, 1994] ifthere are no in�nite paths in the positive atom dependency graph for �.Fages has shown that the completion semantics and stable model semanticscoincide for positive-order-consistent normal programs. We, therefore, have thefollowing proposition.Proposition 6.4 Let � be a completable, positive-order-consistent, normal pro-gram. Let �0 be the objective program obtained by adding to �, for every atomA, the rule :A :A:An interpretation I is a supported model of �0 if and only if I is a stable model of�.Example 6.5 As an illustration of Proposition 6.4, consider the normal program�6:5, a :bb :ac ac b83

and the corresponding objective program �06:5,a :bb :ac ac b:a :a:b :b:c :c:The stable models of �6:5 are fa;:b; cg and f:a; b; cg. These are also the supportedmodels of �06:5. 3Example 6.6 As motivation for the restriction to positive-order-consistent normalprograms consider the program �6:6, a aand the corresponding objective program �06:6,a a:a :a:The unique stable model of �6:6 is fag, but �06:6 has two supported models, fag andf:ag. Note that �6:6 is not positive-order-consistent. 3Example 6.7 Similarly, the program �6:7,a0 a1; a1 a2; : : :84

has a unique stable model in which for all i (i > 0), ai is false. However, thecorresponding objective program, which includes in addition the rules:a0 :a0; :a1 :a1; : : :has two supported models, one in which for all i (i > 0), ai is false, and the otherin which for all i (i > 0), ai is true. 36.3.3 An Embedding in Extended ProgramsThe \answer set" semantics [Gelfond and Lifschitz, 1990] for extended programscan be de�ned by an embedding into default logic as follows. Given an extendedprogram �, we de�ne D(�) to be the set of default rulesL1 ^ : : :^ Lk : Lk+1; : : : ; LnL0(where L is the complement of L) such thatL0 L1; : : : ; Lk; not Lk+1; : : : ; not Lnis a rule in �.The following proposition has been shown by Gelfond and Lifschitz.Proposition 6.5 [Gelfond and Lifschitz, 1990]. For any extended program �, if Sis an answer set for � then Cn(S) is an extension for D(�), and for every extensionE for D(�) there is exactly one answer set S for � such that Cn(S) = E.Corollary 6.1 Let � be an extended program, and S be a set of literals. S is ananswer set for � if and only if Cn(S) is an extension for D(�).The preceding proposition shows that D(�) is a faithful embedding of ex-tended programs into default logic. 85

Since objective programs are a special case of causal theories, we know byProposition 5.4 that objective programs can also be embedded in default logic. Let� be an objective program. We de�ne an embedding T 0(�) of � into default logicas T 0(�) = � : L1; : : : ; LnL : L L1; : : : ; Ln 2 � � :We have the following proposition.Proposition 6.6 Let � be an objective program. An interpretation I is a supportedmodel of � if and only if Cn(I) is an extension for T 0(�).Proof. Recall the embedding T (D) of a causal theory D in default logic of Sec-tion 5.6. Since an objective program is a notational variant of a causal theory, wecan take T also to be de�ned for objective programs asT (�) = � : L1 ^ : : :^ LnL : L L1; : : : ; Ln 2 � � :Let I be an interpretation. By Proposition 5.4, we know that I is a supported modelof � if and only if Cn(I) is an extension for T (�). However, noticing that Cn(I)is the set of formulas true in I , it is easy to see that for any �nite set B of literals,:VB 62 Cn(I) if and only if for every literal L 2 B, :L 62 Cn(I). It follows thatT (�)Cn(I) = T 0(�)Cn(I), and thus that Cn(I) is an extension for T (�) if and onlyif Cn(I) is an extension for T 0(�). We conclude that I is a supported model of � ifand only if Cn(I) is an extension for T 0(�). 2Using the embeddings of extended and objective programs into default logic,we can show that there is also the following embedding of objective programs intoextended programs. Given an objective program �, we de�ne a corresponding ex-tended program R(�) as follows:R(�) = fL not L1; : : : ; not Ln : L L1; : : : ; Ln 2 �g:86

Proposition 6.7 Let � be an objective program. For any interpretation I, I is asupported model of � if and only if I is an answer set for R(�).Proof. Let � be an objective program. Notice that T 0(�) = D(R(�)). It follows,by Proposition 6.6, that I is a supported model of � if and only if Cn(I) is anextension for D(R(�)). By Corollary 6.1, Cn(I) is an extension for D(R(�)) if andonly if I is an answer set for R(�). Therefore, I is a supported model of � if andonly if I is an answer set for R(�). 26.4 Some Standard Ways of Lending SupportThe supported model semantics imposes a rather strong completeness requirementon objective programs. If an objective program is to have any supported models atall, then it must include, for every atom A, rules that support either A or :A. (Asimilar fact holds for causal theories generally.) The burden of writing programs thatsatisfy this completeness requirement can be lessened by adopting certain standardways of augmenting a program. We have employed three such ways in the examplesof this chapter.� Inertial support b a; b:b :a;:b� Negative support :a :a� Classical support a a:a :a87

Inertial support was used in program �6:1. Negative support was used in program�06:3. Classical support was used in program �06:4. The name \inertial support" ismotivated by an application in the next chapter.

88

Chapter 7Formalizing Action Domains asCausal TheoriesIn this chapter we describe a general approach to formalizing action domains ascausal theories. In doing so, we de�ne a uniform action description language LCL.Essentially, LCL is the language of causal theories, restricted to a particular kind ofsignature. In calling the language \uniform" we draw attention to the fact that|unlike, for example, the language ACL|the language LCL contains only one kind ofproposition. Both static and dynamic causal laws can be expressed by propositionsof this one kind.7.1 The Language LCLThe signature for a speci�c LCL language is speci�ed by a triple hA;F;Ti, where Ais a set of action names, F is a nonempty set of
uent names, and T is a nonemptyset of time names, corresponding to a subset of the integers. We view time ascontinuous but refer to only a discrete subset of times by name. The atoms ofthe language are expressions of the forms at and ft, where a, f , and t are action,
uent, and time names, respectively. Intuitively, at is true if and only if the action89

named by a begins to occur immediately after the time named by t (normally, wewill express this by saying that a occurs at t), and ft is true if and only if the
uent named by f holds at the time named by t.1 A formula of the language is apropositional combination of expressions of these two forms.An LCL domain description is a causal theory|i.e., a set of causal laws|inan LCL language.Note that there are no restrictions on the times that may be referenced inthe antecedent or consequent of a causal law. In particular, the times referencedin the antecedent are not required to precede (or not follow) those referenced inthe consequent. Thus, static causal laws|and even laws that intuitively describecausation that runs backwards in time|are allowed.7.2 The Suitcase DomainAs an initial illustration, we will formalize a domain from [Lin, 1995] in which thereis a suitcase with two latches, each of which may be in either of two positions, upor down. The suitcase is spring-loaded so that whenever both latches are in theup position the suitcase is caused to be open. We will model the opening of thesuitcase (as Lin does as well) as a static e�ect; that is, we will not model a state ofthe domain in which both latches are up but the suitcase is not (yet) open.To formalize the Suitcase domain in the language LCL, we �rst choose a set ofactions and elementary
uents, and a set of names to designate them. One possiblechoice is the following.Toggle(L1) : the action of toggling Latch 1Toggle(L2) : the action of toggling Latch 2Close : the action of closing the Suitcase1Normally, we will drop the phrase \named by" in contexts such as this. So, for example, givenan action name a, a
uent name f , and a time name t, we will allow ourselves to write \the actiona," \the
uent f ," and \the time t." Our intention is to always make it clear by the accompanyingwords whether we are referring to a name or to what it names.90

Up(L1) : the
uent that Latch 1 is upUp(L2) : the
uent that Latch 2 is upOpen : the
uent that the Suitcase is openThe �rst three symbols designate possible actions in the domain. The remainingthree symbols designate the states of objects in the domain, speci�cally, the statesof the latches and the suitcase.Next, we choose a set of time names. In the Suitcase domain, we identifytime with the natural numbers. Other possible choices would be the integers, ora �nite sequence of the natural numbers or integers. There may be many reasonsfor choosing to represent time as �nite; the domain itself may exist for only a �nitetime, the domain description may correctly describe the domain over only a �nitetime, or we may simply be interested in what happens in the domain only over a�nite time.We will normally specify the signature for an LCL language by a BNF-stylegrammar. For example, the signature for the Suitcase domain is speci�ed as follows,where nonterminal symbols are written in lowercase.latch ::= L1 j L2action ::= Toggle(latch) j Close
uent ::= Up(latch) j Opentime ::= 0 j 1 j � � �The clauses for action,
uent, and time specify the signature haction;
uent; timeifor a speci�c LCL language. The type latch is an auxiliary type which simpli�es thespeci�cation of the types action and
uent.Given our choice of language, the Suitcase domain can be formalized (in part,as we will see) by writing schemas as follows. Below and throughout this disseration,t is used as a meta-variable of type time. Here we also use l as a meta-variable of91

type latch. Toggle(l)t ^Up(l)t) :Up(l)t+1 (7.1)Toggle(l)t ^ :Up(l)t) Up(l)t+1 (7.2)Closet) :Opent+1 (7.3)Up(L1)t ^Up(L2)t) Opent: (7.4)According to schemas (7.1) and (7.2), at every time t, toggling one of the latchesat t causes it to be in the opposite state at time t + 1. According to schema (7.3),at every time t, closing the suitcase at t causes it not to be open at time t + 1.According to schema (7.4), both latches being up at a time t causes the suitcase tobe open also at t.Schemas (7.1){(7.3) are dynamic causal laws. Intuitively, they are similar inmeaning to the propositionsToggle(l) causes Up(l) if :Up(l)Toggle(l) causes :Up(l) if Up(l)Close causes :Openof the language ACL. Schema (7.4) is a static causal law. Intuitively, it is similar inmeaning to the proposition Up(L1)^ Up(L2)) Openof the language ACL. In fact, the static and dynamic laws shown above are only twoof many possible kinds. We will see other kinds of causal laws (with other patternsof temporal reference) in the next section and in later examples.7.3 Inertial Fluents and Exogenous FactsThe causal theory (7.1){(7.4) is incomplete, because it does not state su�cientconditions for certain kinds of facts being caused|speci�cally, facts preserved by92

inertia, facts about the initial situation, and facts about which actions occur (andwhen). In this section we describe some standard ways of augmenting an LCL domaindescription in order to �ll this gap.Explaining Action OccurrencesNormally, in formalizing an action domain we do not describe the causes of actions.This is not because we believe that the agent's actions are not caused, or that theyare \self-caused," or that the agent has free will. (We may or may not believe suchthings; it does not matter.) Rather, the reason that we do not describe the causesof actions is that they are irrelevant to the purposes of deliberation and planning.For these purposes, we must be able to answer \what if" questions, such as the onebelow, without regard to what the agent is or is not destined to do.What if the agent were to simultaneously perform the actions Toggle(L1)and Toggle(L2)?Therefore, even if we did specify the causes of actions, we would somehow have toignore them for the purposes of deliberation and planning. For these purposes, theagent's abilities are relevant, but his destiny is not.Nevertheless, we know that a causal theory must specify conditions that aresu�cient for every fact in a causally explained interpretation to be caused, includingfacts about the occurrences (and non-occurrences) of actions. We can reconcile thisobservation with the point made in the preceding paragraph by representing thatfacts about action occurrences may be exogenous to the causal theory. We do thisby writing the following schemas, at) at (7.5):at) :at (7.6)where a and t are meta-variables of type action and time, respectively. Accordingto schema (7.5), the occurrence of an action a at a time t is caused whenever a93

occurs at t. According to schema (7.6), the non-occurrence of an action a at a timet is caused whenever a does not occur at t. Since this is so, no other cause for theoccurrence or non-occurrence of a at t is required. Intuitively, the e�ect of schemas(7.5) and (7.6) is to exempt facts about action occurrences from the principle ofuniversal causation.Explaining Facts about the Initial SituationWhen, as in the Suitcase domain, we identify time with the natural numbers (ratherthan, for example, the integers), we have to be concerned with how facts about theinitial state of a world (i.e., at time 0) are to be explained. In the Suitcase domain,we can think of time 0 as the moment at which the suitcase came into existence, or assimply an arbitrary moment during the \life" of the suitcase. Either way, whateverin the real world causes the latches to be either up or down at time 0, and whateverit is that causes the suitcase to be either open or closed at time 0 (except in thecase that both latches are initially up) lies outside of time as it is represented in ourtheory. Therefore, except in the one case mentioned, we cannot hope to describethe real causes of these facts. Instead, we represent that facts about time 0 may beexogenous to our theory by writing the following schemas,f0) f0 (7.7):f0) :f0 (7.8)where f is a meta-variable of type
uent. According to schema (7.7), a
uent f iscaused to hold at time 0 whenever it does hold at time 0. According to schema (7.8),a
uent f is caused to not hold at time 0 whenever it does not hold at time 0. Sincethis is so, no other explanation for f 's holding or not holding at time 0 is required.Intuitively, the e�ect of including schemas (7.7) and (7.8) is to exempt facts aboutthe initial situation from the principle of universal causation.94

Explaining Facts by InertiaIn some instances, when a
uent remains true from one time to the next, its truthat the second time can be explained by inertia. If this is true for all pairs ofsuccessive times, we say that the
uent is \inertial." In Chapters 3 and 4, wetacitly assumed that every
uent literal designated an inertial
uent. (Recall thatin de�ning Res(E; S), for an explicit e�ect E and state S, we denoted the literalsthat were preserved by inertia in a candidate next state S0 by S \ S0.) We will callthis the standard inertia assumption.The standard inertia assumption is appropriate for the Suitcase domain andmany others. However, it is not always appropriate. Depending on the language,there may be
uent literals that do not designate inertial
uents, and there may beinertial
uents that are not designated by
uent literals. We will see examples ofboth kinds later in this chapter.By a
uent formula we mean a propositional combination of
uent names.Given a
uent formula � and a time name t, we write �t to stand for the formulaobtained from � by simultaneously replacing each occurrence of each
uent name fby the atom ft. As an example, the expression (:H ^:T)0, for
uent names H andT , stands for the formula (:H0 ^ :T0).Using this convention, the schematic form of the inertia law is�t ^ �t+1) �t+1 (7.9)where � stands for a
uent formula, and t is a meta-variable of type time.Normally, it will be convenient to specify the inertial
uent formulas for adomain by adding an extra clause to the speci�cation of the signature. For example,in the case of the Suitcase domain, we would specify the standard inertia assumptionby adding the clause inertial-formula ::= [:]
uent :95

� :Toggle(L1)0 � :Toggle(L1)1 � :Toggle(L1)2 � � �� Toggle(L2)0 � :Toggle(L2)1 � :Toggle(L2)2 � � �� :Close0 � :Close1 � :Close2 � � �� Up(L1)0 � Up(L1)1 � Up(L1)2 � � �� :Up(L2)0 Up(L2)1 � Up(L2)2 � � �� :Open0 Open1 � Open2 � � �Figure 7.1: A possible world history in the Suitcase domainAccording to this speci�cation, the following
uent formulas designate inertial
u-ents: Up(L1), :Up(L1), Up(L2), :Up(L2), Open, and :Open. Intuitively, the e�ectof including schema (7.9) is to exempt the persisting values of inertial
uents fromthe principle of universal causation.7.4 The Suitcase Domain (continued)The complete description of the Suitcase domain is expressed by the schemas (7.1){(7.9). The schemas (7.1){(7.4) are domain dependent. The schemas (7.5){(7.9)represent standard ways of augmenting an LCL domain description. We will callthem the standard schemas . Notice that the set of causal laws represented by thestandard schemas is determined by the signature of the domain|speci�cally, bythe action,
uent, and time names|and by the speci�cation of the inertial
uents.In the terminology of Section 6.4, the schemas (7.5){(7.6) and (7.7){(7.8) provideclassical support to a causal theory, and the schema (7.9) provides inertial support.The frame problem is solved by schema (7.9).Given a causal theory D, we identify the causally possible world historiesaccording to D with the interpretations that are causally explained according to D.As an example, let D be the domain description for the Suitcase domain, and letI be the interpretation displayed in Figure 7.1. Notice that I speci�es, for everyaction a and time t, whether or not a occurs at t, and, for every elementary
uent f96

and time t, whether or not f holds at t. (In this instance, the ellipses are intendedto mean that after time 2 no action occurs and no
uent changes its value.) It isnot di�cult to see that I is causally explained according to D. The bullets indicatethe literals at times 0, 1, and 2 that appear in DI due to the standard schemas(7.5){(7.9). The two literals that are not marked by bullets appear in DI due to theschemas (7.2) and (7.4). The remaining literals (represented by the ellipses) appearin DI because of schemas (7.5){(7.6) and (7.9). (The atoms Opent, for all t > 1,also appear in DI due to schema (7.4).) Since DI contains no other formulas, weconclude that I = DI . Thus, I is the unique model of DI . Therefore, I is causallyexplained according to D.The following formula is a consequence of D.2Up(L1)0 ^ Up(L2)0 ^ Close0 � Toggle(L1)0 _ Toggle(L2)0 (7.10)To see this, notice that (7.10) is entailed by the formulas:Open1 � Close0 _ (:Open0 ^ :Open1)Open1 � (Up(L1)1 ^Up(L2)1) _ (Open0 ^Open1):Up(L1)1 � (Toggle(L1)0 ^Up(L1)0) _ (:Up(L1)0 ^ :Up(L1)1):Up(L2)1 � (Toggle(L2)0 ^Up(L2)0) _ (:Up(L2)0 ^ :Up(L2)1)which belong to the literal completion of D.In general, whenever both latches are up, it is impossible to perform onlythe action of closing the suitcase; one must also toggle one of the latches. This mayseem unintuitive. However, recall that we have chosen to model the suitcase beingopen as a static e�ect of the latches being up, so there is no time in any causallypossible world history at which both latches are up and the suitcase is closed.The reader may check that the interpretation displayed in Figure 7.2 is alsocausally explained according to D. Notice that in this interpretation at time 02We assume the following order of precedence for the connectives: : binds most tightly, next ^and _, and �nally � and �. 97

� Toggle(L1)0 � :Toggle(L1)1 � :Toggle(L1)2 � � �� :Toggle(L2)0 � :Toggle(L2)1 � :Toggle(L2)2 � � �� Close0 � :Close1 � :Close2 � � �� Up(L1)0 :Up(L1)1 � :Up(L1)2 � � �� Up(L2)0 � Up(L2)1 � Up(L2)2 � � �� Open0 :Open1 � :Open2 � � �Figure 7.2: Another possible world history in the Suitcase domaintwo actions|Toggle(L1) and Close|are performed concurrently, and the suitcaseis successfully closed.7.5 The Expressive Capacity of LCLIn the course of formalizing the Suitcase domain, we have seen how static causallaws, the explicit e�ects of actions, and
uent preconditions are represented in thelanguage LCL. Rami�cation and quali�cation constraints, as discussed in Section 3.3,are expressed by schemas of the formsTrue) �t:�t) Falserespectively, where � (the constraint) is a
uent formula.In this section we further illustrate the expressive potential of the languageLCL by means of a number of small examples.7.5.1 Concurrent ActionsWe have already observed in relation to the Suitcase domain the possibility of per-forming actions concurrently. The need for concurrency is illustrated by the follow-ing example. 98

Example 7.1 In this domain, from [Gelfond et al., 1991b], there is a bowl of soup.We suppose that the agent, using his two hands, can raise or lower each side of thebowl independently of the other. However, unless he performs the correspondingactions concurrently, he will spill the soup.3The signature is speci�ed by the following grammar.side ::= Left j Rightaction ::= Raise(side) j Lower(side)
uent ::= Up(side) j Down(side) j Spilledtime ::= 0 j � � � j 5We adopt the standard inertia assumption.inertial-formula ::= [:]
uentThe causal theory D7:1 for the Soup domain is represented by the standard schemas(7.5){(7.9), plus the schemas (7.11){(7.14) below. (Here s is a meta-variable of typeside.) True) Down(s)t � :Up(s)t (7.11)Raise(s)t) Up(s)t+1 (7.12)Lower(s)t) Down(s)t+1 (7.13)Up(Left)t 6� Up(Right)t) Spilledt (7.14)Schema (7.11) represents, for each side s and time t, an explicit de�nition ofDown(s)t; in e�ect, it de�nes Down in terms of Up. Schemas (7.12) and (7.13)describe the explicit e�ects of raising and lowering each side of the bowl.4 Schema(7.14) says that bowl's being tilted causes the soup to be spilled.3As is noted in [Gelfond et al., 1991b], this is essentially the example from [Pednault, 1987] inwhich two agents lift opposite sides of a table.4When t is 5, t+ 1 is not an expression of type time. Consequently, there are no correspondinginstances of (7.12) and (7.13) in D7:1. In general, schemas represent all and only those of theirinstances whose atoms belong to the signature with respect to which they are de�ned.99

The formulas:Up(Left)0 ^ :Up(Right)0 ^ Raise(Left)0 ^ :Raise(Right)0 � Spilled1:Spilled0 ^ Raise(Left)0 ^ Raise(Right)0 � :Spilled1are consequences of D7:1.5 3In [Gelfond et al., 1991b], [Baral and Gelfond, 1993], and [Thielscher, 1995b],the Soup domain is described essentially as follows: (i) the action of raising eitherside of the bowl causes the soup to be spilled, but (ii) assuming the soup is not al-ready spilled, raising both sides of the bowl concurrently causes it not to be spilled.The formal renderings of statements (i) and (ii) are made consistent by a mechanismthat cancels the normal \inheritance" of e�ects. In this case, since the e�ects of indi-vidually raising each side of the bowl are inconsistent with the e�ect of concurrentlyraising both sides, the e�ects of the individual subactions are not inherited.In a framework in which it is impossible to write causal laws that describethe indirect e�ects of actions, some kind of inheritance and cancellation mechanismis necessary in order to e�ciently specify the e�ects of concurrent actions. However,in a framework in which such laws can be written, this is not the case. The reasonis that we can adopt the following formalization strategy. First, we describe theexplicit e�ects of individual actions at a su�ciently basic level so that they can besaid to hold without exception. Secondly, we describe the potential rami�cations ofthese e�ects on other
uents by means of additional causal laws.5These claims are machine checked in Section 9.4. For this purpose, we �rst eliminate Down(s)t,for all s of type side and t of type time, from the signature and the corresponding de�nitions fromthe domain description. (See Section 5.5.) Notice that when :Up(s)t is substituted for Down(s)tin the causal laws represented by the standard schemas, each of the new causal laws is redundant.It is also necessary to replace (7.14) by the two causal lawsUp(Left)t ^ :Up(Right)t) Spilledt:Up(Left)t ^ Up(Right)t) Spilledtin order to bring the domain description into the class of objective programs. These transformationshave no e�ect on the consequences of D7:1 in the reduced language.100

The strategy just described was used in our formalization of the Soup domain,where we explicitly described the e�ects of raising and lowering each side of the bowl,not on the
uent Spilled, but on the
uents Up(s) and Down(s), where s is Leftor Right. The causal connections between facts about the values of these
uentsand facts about Spilled are re
ected in the additional causal laws represented byschema (7.14).6It is possible in LCL to explicitly describe the e�ects of performing actionsconcurrently. For example, if soup-raising were a contest, we might writeRaise(Right)t ^ Raise(Left)t) Wint+1 :However, in LCL if the explicitly described e�ect of performing a set of actions con-currently is incompatible with the e�ect of its individual subactions, the result isthat the actions simply cannot be performed concurrently. No cancellation mecha-nism is built into the semantics.Notice that in our formalization of the Soup domain it is impossible, exceptat the last time 5, to concurrently raise and lower the same side of the bowl. Thisis because, according to (7.12) and (7.13), the actions have inconsistent e�ects.7However, even when two actions have consistent e�ects and each is individuallyperformable|such as Raise(Left) and Raise(Right)|it may be impossible for anagent to perform both actions concurrently. (Imagine, for example, that the agentis a robot with only one arm.) When this is so, the domain description shouldexplicitly rule out this possibility.We can rule out the possibility of the agent concurrently performing any pairof distinct actions (even at the last time, if there is one) by writing the schemaat ^ a0t) False where a 6= a0 (7.15)6A similar approach to formalizing the Soup domain is taken in [Turner, 1996].7It is necessary to exempt time 5 from the preceding remark, because when t is 5, (7.12) and(7.13) are not in the language of the domain. 101

where t is a meta-variable of type time, and a and a0 are meta-variables of typeaction. Adding Schema 7.15 to D7:1 would lead to the consequence that the agentcould neither raise nor lower an unspilled bowl of soup without spilling it.7.5.2 Nondeterministic ActionsThe semantics of causal theories rests on the principle of universal causation, ac-cording to which every fact is caused. Intuitively, in the case of a nondeterministicaction, there is no cause for one of its possible e�ects rather than another. We havealready seen, however|in schemas (7.5){(7.9)|that there are ways of e�ectivelyexempting facts from the principle of universal causation. We can use laws of a sim-ilar form to describe nondeterministic actions. This is illustrated by the followingcoin tossing example.Example 7.2 When a coin is tossed, whether it will land heads or tails is deter-mined (if at all) by an untold number of conditions|such as the exact force, spin,and direction of the toss, and the velocities of speci�c molecules in the surroundingair|of which common sense knows little or nothing. In view of this complexity,whether or not coin tossing is truly nondeterministic, we may choose to model it asif it were.8 This can be done as follows.The signature is speci�ed by the following grammar.action ::= Toss
uent ::= Headstime ::= 0 j 1 j � � �We adopt the standard inertia assumption.inertial-formula ::= [:]
uent8See [Lewis, 1986b] (Postcript B) for an argument against the presumption that coin tossing isknown to be deterministic. 102

The causal theory D7:2 for the Coin Tossing domain is represented by thestandard schemas (7.5){(7.9), plus the schemas (7.16){(7.17) below.Tosst ^Headst+1) Headst+1 (7.16)Tosst ^ :Headst+1) :Headst+1 (7.17)Intuitively, schema (7.16) says that tossing the coin possibly causes it to land heads,and schema (7.17) says that tossing the coin possibly causes it to land tails.9 In-tuitively, according to schemas (7.16) and (7.17), for every time t, Tosst rendersHeadst+1 exogenous.According to D7:2, the set of causally explained interpretations in which thecoin is tossed at every time has the cardinality of the continuum. 3In general, in order to express that at every time t, the action a possiblycauses the formula � to hold at t + 1, we write the schemaat ^ �t+1) �t+1:In the previous example, the two possible e�ects of Toss|namely, Heads and:Heads|are inconsistent, so on each occasion Toss can bring about at most oneof them. The following example, which is credited to Ray Reiter in [Kartha andLifschitz, 1994] and [Shanahan, 1997], is di�erent in this respect.Example 7.3 Consider the action of dropping a block onto the surface of a tablethat is painted black and white. The block may land entirely within a black area,entirely within a white area, or on both a black and white area.The signature is speci�ed by the following grammar.action ::= Drop
uent ::= Black j Whitetime ::= 0 j 1 j � � �9Schemas (7.16) and (7.17), can be viewed as making explicit the conversational implicatures ofthe natural language statement: \Toss causes heads or not heads." (See the long footnote associatedwith Example 4.4.) 103

We adopt the standard inertia assumption.inertial-formula ::= [:]
uentThe domain description D7:3 for this domain is represented by the standardschemas (7.5){(7.9), plus the schemas (7.18){(7.20) below.Dropt) Blackt+1 _Whitet+1 (7.18)Dropt ^ Blackt+1) Blackt+1 (7.19)Dropt ^Whitet+1) Whitet+1 (7.20)According to the schema (7.18), the action of dropping the block causes it to landso that it is either on a black or a white area. According to schemas (7.19) and(7.20), dropping the block possibly causes it to land on a black area and possiblycauses it to land on a white area.10According to D7:3, the set of causally explained interpretations in which theblock is dropped at every time has the cardinality of the continuum. WheneverDrop occurs, it has three possible e�ects: Black, White, and Black ^White. 37.5.3 Actions with Delayed E�ectsIn each of the examples that we have considered so far, we have speci�ed that thee�ects of an action are realized at the next time after the the action occurs. Thisis not required. We may also describe actions with delayed e�ects. Moreover, wemay do so without describing the mechanism by which the delay is caused. This isillustrated by the following example.Example 7.4 Consider a time bomb that, after being armed, ticks down from 3 to0 and explodes at 0. In the following domain description, we do not represent theprocess of ticking down.10Schemas (7.19) and (7.20) can be viewed as making explicit the conversational implicatures ofthe natural language statement: \The action of dropping the block causes it to land either on ablack or a white area (or both)." 104

The signature is speci�ed by the following grammar.action ::= Arm
uent ::= Explodedtime ::= 0 j 1 j � � �We adopt the standard inertia assumption.inertial-formula ::= [:]
uentThe causal theory D7:4 is represented by the standard schemas (7.5){(7.9),plus the schemas (7.21){(7.22) below.Armt) Explodedt+3 (7.21)Armt ^ Explodedt) False (7.22)According to (7.21), arming the bomb has the delayed e�ect after 3 time units ofcausing the bomb to have exploded. Schema (7.22) expresses an action preconditionfor arming the bomb.The formula Arm0 � Exploded3is an obvious consequence of D7:4. 3A causal law such as (7.22), describing a delayed e�ect, is appropriate only ifit is impossible for events that could cancel the e�ect to intervene during the delay.In the previous example, if we wished to allow the possibility that the bomb mightbe disarmed after it is armed but before it has exploded, it would be necessary tomodel the mechanism by which the delayed e�ect otherwise comes to pass. Thiscan be done by using the general approach illustrated in the next section.1111Mendez, Lobo, Llopis, and Baral [1996] have de�ned an extension of the language A of Gel-fond and Lifschitz [1992] which allows one to refer to facts about past states of the world in thepreconditions of e�ect propositions. Since there are no restrictions on the time references that mayappear in the antecedents and consequents of causal laws, references of a similar kind are possiblein the language of causal theories. 105

7.5.4 Things that Change by ThemselvesIn each of the examples that we have considered so far, changes have occurred onlywhen actions are performed. In the following example, by contrast, changes mayoccur even at times when no action is performed.Example 7.5 Imagine a row of �ve dominoes, numbered 1{5 and arranged in orderfrom left to right. A su�cient condition for a domino being (caused to be) downis that the domino immediately to its left has just fallen down. For simplicity, weassume that the dominoes can fall only from left to right. An agent can tip anydomino.The signature is speci�ed by the following grammar.domino ::= 1 j 2 j 3 j 4 j 5action ::= Tip(domino)
uent ::= Down(domino) j Up(domino)time ::= 0 j � � � j 5We adopt the standard inertia assumption.inertial-formula ::= [:]
uentWe can express that a domino d has fallen in the time interval between t andt + 1 by writing the conjunctionUp(d)t ^Down(d)t+1:The causal theoryD7:5 for the Domino domain is represented by the standardschemas (7.5){(7.9), plus the schemas (7.23){(7.25) below. Here d and d0 are meta-variables of type domino. (The expression d+1 stands for the name of the successorof the number named by d.) 106

True) Down(d)t � :Up(d)t (7.23)Tip(d)t) Down(d)t+1 (7.24)Up(d)t ^ Down(d)t+1) Down(d0)t+2 where d0 = d+1 (7.25)Schema (7.23) represents, for every domino d and time t, an explicit de�nition ofDown(d)t; in e�ect, it de�nes Down in terms of Up. Schema (7.24) describes theexplicit e�ect of tipping a domino. Intuitively, according to schema (7.25), a causallysu�cient condition for a domino being down is that the domino to its left has justfallen down.12The formulas [^n=1::5Up(n)0] ^ Tip(1)0 � [^n=1::5Down(n)5]Up(1)0 ^ [^t=1::5:Tip(1)t] � Up(1)5are consequences of D7:5.13 3Notice that according to schema (7.25) it is not the state of a domino|thefact that it is down|that causes its successor domino to subsequently be down.Rather, it is the domino's change of state|the fact that it fell down|that is thecause. Consider the following alternative to (7.25).Down(d)t) Down(d0)t+1 where d0 = d+1 (7.26)According to (7.26), the fact that a domino is down causes its successor to subse-quently be down. Intuitively, this is not what we wish to say; the domino is down12Schema (7.25) represents a set of dynamic causal laws that do not mention the occurrencesof actions. Laws of this general kind have appeared previously in [Ge�ner, 1990] and [Thielscher,1995b].13These claims are machine checked in Section 9.4. For this purpose, we �rst eliminate Down(d)t,for all d of type domino and t of type time, from the signature and the corresponding de�nitions fromthe domain description. (See Section 5.5.) Notice that when :Up(d)t is substituted for Down(d)tin the causal laws represented by the standard schemas, each of the new causal laws is redundant.These transformations have no e�ect on the consequences of D7:5 in the reduced language.107

either because its predecessor has just fallen down or because it was already downand has remained so by inertia. To see this more clearly, imagine the followingscenario: all of the dominoes are initially up, we tip domino 1 and perform no otheractions. Then, whether we include (7.25) or (7.26), it will follow that all of the domi-noes will be down at time 5 (cf. the �rst of the above-mentioned consequences).However, if we were to replace (7.25) by (7.26), it would be impossible (even if suchan action were added to the domain description) to stand the dominoes back up inreverse order. This is not what we intend.147.5.5 Non-literal ConsequentsIn the preceding examples, we have seen causal laws with non-literal consequentsused in explicit de�nitions|(7.11) and (7.23)|and in connection with the speci�-cation of nondeterminism|(7.18). The following example is of a di�erent kind. Thedomain is due to Marc Denecker (personal communication).Example 7.6 Imagine that there are two gears, each powered by a separate motor.There are switches that toggle the motors on and o�, and there is a button thatmoves the gears so as to connect or disconnect them from one another. The motorsturn the gears in opposite (i.e., compatible) directions. A gear is caused to turn ifeither its motor is on or it is connected to a gear that is turning.In our formalization of the Gears domain, the signature is speci�ed by thefollowing grammar.index ::= 1 j 2switch ::= S(index)gear ::= G(index)action ::= Toggle(switch) j Push14See [Van Belleghem et al., 1996] and [Thielscher, 1996] for related discussions. We presentan alternative formalization of the Domino domain as the �nal example of Section 9.4. In thisformalization, we extend the language LCL to allow explicit reference to events.108

uent ::= MotorOn(gear) j Connected j Turning(gear)time ::= 0 j 1 j � � �We adopt the following nonstandard inertia assumption.inertial-formula ::= [:]MotorOn(gear) j [:]Connected j :Turning(gear)Notice that Turning(G(1)) and Turning(G(2)) are not declared to be inertial. Thereason, as we shall suppose, is that in the absence of a cause for turning, frictionwill cause a gear not to turn. In the terminology of Lifschitz and Rabinov [1989],Turning(G(1)) and Turning(G(2)) are \momentary
uents." They tend to revert tobeing false.The causal theory D7:6 for the Gears domain is represented by the standardschemas (7.5){(7.9), plus the schemas (7.27){(7.33) below. (Here i is a meta-variableof type index.) Toggle(S(i))t ^MotorOn(G(i))t) :MotorOn(G(i))t+1 (7.27)Toggle(S(i))t ^ :MotorOn(G(i))t) MotorOn(G(i))t+1 (7.28)Pusht ^ Connectedt) :Connectedt+1 (7.29)Pusht ^ :Connectedt) Connectedt+1 (7.30)MotorOn(G(i))t) Turning(G(i))t (7.31)Connectedt) Turning(G(1))t � Turning(G(2))t (7.32):Turning(G(i))t) :Turning(G(i))t (7.33)Schemas (7.27){(7.30) describe the explicit e�ects of toggling the switches and push-ing the button. Schema (7.31) says that a gear's motor being on causes it to turn.Schema (7.32) says that the gears being connected causes them to turn (and notturn) together. Schema (7.33) expresses the momentary nature of turning, that is,the natural tendency of the gears not to turn.109

The formulas[_1=1::2MotorOn(G(i))0] ^ [^1=1::2:Toggle(S(i))0] ^ :Connected0 ^ Push0� ^1=1::2Turning(G(i))1[_1=1::2:MotorOn(G(i))0] ^ [^1=1::2:Toggle(S(i))0] ^ Connected0 ^ Push0� _1=1::2:Turning(G(i))1are consequences of D7:6. 3According to the \physics" of the Gears domain, as we imagine it, the nat-ural tendency of the gears is to remain from one time to the next|connected ordisconnected|as they are. Behavior in accordance with this tendency is explainedby the inertia laws for Connected and :Connected, and so need not be otherwiseexplained. What remain to be explained are only the deviations from this naturaltendency, i.e., changes in the state of connectedness of the gears.The momentary character of turning is a fact of a similar kind. Accordingto the \physics" of the Gears domain, as we imagine it, the natural tendency ofthe gears from one time to the next is to stop turning. Behavior in accordancewith this tendency is explained by the \momentary laws" (represented by (7.33))for :Turning(G(1)) and :Turning(G(2)), and so need not be otherwise explained.What remain to be explained are only the deviations from this natural tendency,i.e., the gears turning.15Causal statements with non-literal consequents, such as (7.32), have been apoint of some confusion in the AI literature. Often they are disallowed in formallanguages for describing actions, and when they are allowed, they tend to be viewed15In addition to inertial and momentary
uents, we should also mention as a third class of
uents,the class of exogenous
uents. Just as the inertia laws provide standard explanations for persistenceand the momentary laws provide standard explanations for falsity, so the exogenous
uent laws|which are analogous to (7.5){(7.6)|provide standard explanations for both truth and falsity, thusleaving nothing to explain. The three classes of
uents correspond to the three kinds of standardsupport listed in Section 6.4. 110

as a means of expressing nondeterminism. This view is encouraged by the fact thatin natural language we tend to describe nondeterministic actions by statements inwhich \or" is used after \causes," as in: Tossing a coin causes it to land heads ortails . It is further encouraged by the fact that in some cases non-literal consequentsindeed do give rise to nondeterminism, although this often comes about only be-cause certain noninertial
uents are mistakenly speci�ed as inertial, as illustrated inExample 4.4. In the language of causal theories, the connection between non-literalconsequents and nondeterminism is not particularly close. Notice, for example, that(7.32) is not used to express nondeterminism.7.6 Language Dependence and InertiaIn each of the preceding examples, every inertial
uent has been designated by a
uent literal. In all examples but the last, every
uent literal has also been inertial.In the next example, we show that it is sometimes necessary|depending on the
uent language|to designate inertial
uents by complex formulas.Example 7.7 Let us reformalize the Coin Tossing domain so that, instead of as-suming that the coin is always lying heads or tails, we admit also the third possibilitythat it might be balanced on its edge. We will continue to assume that tossing thecoin causes it land either heads or tails, but we will now allow the coin to be stoodon its edge by an explicit action of the agent.One possible language is given by the following grammar.action ::= Toss j Stand on Edge
uent ::= Heads j Tailstime ::= 0 j 1 j � � �In this language we have
uent names that correspond to two of the three possiblestates of the coin. We do not have a
uent name which corresponds to the state111

in which the coin is standing on its edge. Rather, the coin's being in this state isrepresented by the
uent formula :Heads^:Tails. Since the coin can persist in anyof its three states by inertia, we specify the following inertial
uents.inertial-formula ::= Heads j Tails j :Heads ^ :TailsNotice that the complements of the above-mentioned formulas|:Heads, :Tails,and :(:Heads ^ :Tails)|do not designate inertial
uents. This is because none ofthese formulas corresponds to the coin's being in one of its three possible states.(Intuitively, it is these states that can persist by inertia.) Instead, each of themcorresponds to the coin's being in either of two states. For example, :Tails is truewhen the coin is either lying heads or on its edge. To say that :Tails is inertialwould mean that its truth is explained by inertia even when, for example, the stateof the coin changes from standing on its edge to lying heads. Intuitively, this isincorrect (cf. our discussion of coin tossing in Section 4.3).The causal theory D7:7 is represented by the standard schemas (7.5){(7.9),plus the schemas (7.34){(7.38) below.True) :Headst _ :Tailst (7.34)Stand on Edget) :Headst+1 ^ :Tailst+1 (7.35)Tosst) Headst+1 _ Tailst+1 (7.36)Tosst ^Headst+1) Headst+1 (7.37)Tosst ^ Tailst+1) Tailst+1 (7.38)According to schema (7.34), the coin is always caused to exist in one of its threestates. Schema (7.35) describes the e�ect of standing the coin on its edge. Schemas(7.36){(7.38) describe the possible e�ects of tossing the coin. According to schema(7.36), whenever the coin is tossed, it is caused to land either heads or tails. Ac-cording to schemas (7.37) and (7.38), the coin is possibly caused to land heads andpossibly caused to land tails. 3112

Example 7.7 shows that it is not necessary to choose a
uent language inwhich every inertial
uent is named by a
uent literal. Often, however, it is naturalto do so. If we wish, we can introduce a new
uent Edge as an abbreviation for the
uent :Heads ^ :Tails as follows.Example 7.8 The signature is speci�ed by the following grammar.action ::= Toss j Stand on Edge
uent ::= Heads j Tails j Edgetime ::= 0 j 1 j � � �We now specify the inertial
uents as follows.inertial-formula ::= Heads j Tails j EdgeThe causal theory D7:8 for our new version of the Coin Tossing domain isrepresented by the standard schemas (7.5){(7.9), plus the schemas (7.39){(7.44)below. True) Edget � :Headst ^ :Tailst (7.39)True) :Headst _ :Tailst (7.40)Stand on Edget) Edget+1 (7.41)Tosst) Headst+1 _ Tailst+1 (7.42)Tosst ^ Headst+1) Headst+1 (7.43)Tosst ^ Tailst+1) Tailst+1 (7.44)The new domain description is obtained from the previous one by adding the explicitde�nitions represented by (7.39) and the following new instances of schemas (7.7)and (7.8) Edge0) Edge0:Edge0) :Edge0113

and by substituting Edget (for all times t) for its de�niens in the causal laws rep-resented by (7.35) and the inertia schemas. It can be shown, using the results ofSection 5.5, that D7:8 and D7:7 have the same consequences in the language of D7:7.3What is inertia? Is it merely a communication or representation convention?Or is there some real or imagined physical reality that underlies the claim that a
uent is inertial? In formalizing domains as causal theories, we take the latter pointof view. Our aim is to correctly represent the causes of facts (or the conditions underwhich facts are caused) according to the \physics" of the domain, as we imagine it.It is common in action description formalisms to build in the assumption that every
uent literal designates an inertial
uent, and it is nearly universally assumed thatevery inertial
uent is designated by a
uent literal. Neither assumption is built intothe language of causal theories. As a consequence, the language of causal theoriesprovides a degree of language independence that is uncommon in action descriptionlanguages.16
16Typically, the phenonomenon of language dependence in action description formalisms has goneunremarked upon in the AI literature. A notable exception is [Winslett, 1988].114

Chapter 8Two Action Query LanguagesIn this chapter, we de�ne two action query languages for use with the languageLCL. The �rst and simplest of these can be used to express facts and queries aboutthe actual world. The second action query language includes modal operators forhistorical necessity and possibility. In this language, we are able to pose queriesthat concern not only the actual world, but other causally possible worlds as well.With respect to the �rst (non-modal) query language, we lay the theoreticalfoundations for an approach to automated query answering and planning that isbased on satis�ability checking in propositional logic. This approach is describedand illustrated in Chapter 9.8.1 Action Query Languages for LCLIn Chapter 4, we described the distinction, due to Lifschitz [1995], between an actiondescription language which is used to specify a transition system and an action querylanguage which is used to describe properties of paths (representing causally possibleworld histories) in a transition system. Recall that the central semantic de�nitionassociated with an action query language, according to Lifschitz, is the de�nitionof the consequence relation that holds between a set � of axioms and a query Q115

relative to a transition system T ; in symbols, � `T Q.Although we view the language LCL as an action description language, unlikethe action description languages described by Liftschitz, an LCL domain descriptiondoes not specify a transition system. Instead, it speci�es a set of interpretations.These interpretations, like the paths of a transition system, represent causally pos-sible world histories. Thus, despite the di�erent ways in which causally possibleworld histories are represented, domain descriptions in both kinds of action de-scription languages can be said to specify the same kinds of informal objects. Thedi�erence in representation, however, gives rise to a corresponding di�erence in howthe consequence relation for an action query language is speci�ed in the two frame-works; in particular, the transition system T in � `T Q is replaced in an LCL (worldhistories) framework by a set S of interpretations. In de�ning the semantics of eachof the action description languages de�ned below, we will write � `S Q to say that aquery Q is a consequence of a set � of axioms, relative to a set S of interpretations.8.2 The Query Language LA: ActualityIn this section, we de�ne an action query language LA that can be used to ex-press facts and queries about the actual world. We also lay the foundations for anapproach to automated query answering and planning (in the combined languageLCL + LA) for subclasses of LCL domain descriptions.The signature for a speci�c LA language is speci�ed, as it is for an LCLlanguage, by a triple hA;F;Ti, where A is a set of action names, F is a nonemptyset of
uent names, and T is a nonempty set of time names. The set of atoms is theset of expressions of the forms at and ft, where a, f , and t are action,
uent, andtime names, respectively. By a formula of LA we mean a propositional combinationof atoms. By an axiom or a query of LA we simply mean a formula.Let � be a set of axioms, S be a set of interpretations of LA, and Q be aquery. We say that Q is a consequence of � in S|in symbols, � `S Q|if Q is true116

in every interpretation in S that is a model of �.Given speci�c LCL and LA languages with the same signature, the conse-quence relation for the combined language LCL + LA is de�ned as follows. Let Dbe a domain description in LCL, and let � and Q be a set of axioms and a queryof LA, respectively. We say that Q is a consequence of � according to D (in sym-bols, � `D Q) if � `S Q, where S is the set of causally explained interpretationsaccording to D.Notice that if � is �nite, then � `D Q if and only if (V� � Q) is a conse-quence of D.8.2.1 Query AnsweringThe following proposition justi�es an approach to automated query answering inthe combined language LCL + LA with respect to �nite LCL objective programs.Proposition 8.1 Let D be a �nite LCL objective program. Let � be a set of axiomsand Q be a query in the underlying propositional language of D. Then � `D Q ifand only if lcomp(D) [� j= Q.Proof. Since D is �nite, it is completable. Therefore, by Proposition 6.1, thecausally explained interpretations according to D are the models of lcomp(D). Itfollows that � `D Q if and only if Q is true in every model of lcomp(D) [�, andthus if and only if lcomp(D) [� j= Q. 2The following corollary suggests an approach to query answering that is basedon satis�ability checking in propositional logic.Corollary 8.1 Under the assumptions of Proposition 8.1, � `D Q if and only iflcomp(D) [� [f:Qg is unsatis�able. 117

8.2.2 Satis�ability PlanningIn this section, we lay the theoretical foundations for satis�ability planning (inthe style of Kautz and Selman [1992,1996]) with respect to the class of �nite LCLobjective programs in which all actions are \deterministic."By a complete initial state description, we mean a set �0 of formulas|each apropositional combination of atoms of the form f0, where f is a
uent name|suchthat for every atom of the form f0, either �0 `D f0 or �0 `D :f0, but not both.By a time-speci�c goal , we mean a propositional combination of atoms ofthe form ft, where f is a
uent name. We do not require all of the atoms in atime-speci�c goal to refer to the same time.By a plan we mean a consistent set of literals of the forms at and :at, wherea and t are action and time names, respectively.The notion of a plan, as just de�ned, di�ers from the common notion (ac-cording to which a plan is a sequence of actions) in two respects.1 First, a plan,as de�ned here, may include actions performed concurrently; zero or more actionsmay be performed at a time. Second, a plan may incompletely specify which actionsoccur and do not occur at a time. Thus, for some action a and time t (in a plan),the plan may include neither at nor :at.Let D be a �nite LCL objective program, �0 be a complete initial statedescription, P be a plan, and G be a time-speci�c goal. We say that P is executableif there is a causally explained interpretation according to D that satis�es �0 [P .21In [McCarthy and Hayes, 1969] and [Manna and Waldinger, 1987], a plan is not necessarily asequence of actions, but may have a more complex structure. Constructing such plans is in somerespects a more general and more di�cult problem than the one we address here.2This is a very weak notion of executability. In particular, even if P completely speci�es whichactions occur and do not occur at all times, it may be inadequate in the presence of nondeterministicactions. Informally, this can be seen by considering the plan that calls for one to �rst toss a coinand then truly report that it has landed heads. Since (regardless of the initial state) there is acausally possible world history that conforms to the execution of this plan, the plan is executablein the sense de�ned. Intuitively, however, this does not guarantee that the plan can be executed,since if the coin should land tails instead of heads, the second action would be impossible.118

We say that P is e�ective if �0 [P `D G: (8.1)By Corollary 8.1, we know under the conditions stated above that the ex-ecutability and e�ectiveness of P can be veri�ed by satis�ability checking. Theplanning problem, however, is not the problem of verifying that a plan is executableand e�ective, but rather the problem of �nding a plan that can be so veri�ed. The re-alization of Kautz and Selman [1992] was that for some syntactically de�ned classesof theories the problem of �nding such a plan also can be solved by satis�abilitychecking. They describe a class with this property in the language of propositionallogic. In the remainder of this section, we do the same in the language of causaltheories.Let D be an objective program. The atom dependency graph of D is thedirected graph which has atoms as nodes, and which, for each rule L0 L1; : : : ; Lnin D, has an edge from the atom in L0 to each of the atoms in L1; : : : ; Ln.An atom dependency graph de�nes an ordering between nodes as follows.We say that a node m is less than a node n (in symbols, m < n) if there is a pathcontaining at least one edge from n to m in the graph. So the edges in the graphpoint downward in the ordering.We say that an LCL domain description D is simple if it satis�es the followingconditions.1. In the signature of D, time is de�ned as the natural numbers or an initialsegment of the natural numbers, i.e., for some n,time := 0 j 1 j � � � j n:2. D is an objective program, and D = Dx[Di [D0, where Dx is the set of rulesrepresented by the schemas (7.5){(7.8), Di is the set of rules represented bythe inertial schema (7.9), and every rule in D0 has the form[:]ft [:]x1t1 ; : : : ; [:]xntn119

where f is a
uent name and, for all i (1 � i � n), xi is either an action or
uent name, and t is greater than or equal to ti. (Intuitively, the last conditionrules out backward causation.)3. The ordering relation de�ned by the atom dependency graph of D0 is well-founded.The domain description for the Suitcase domain is simple. The domain descriptionfor the Coin Tossing domain in Section 7.5.2 violates condition (3), and thus is notsimple.By an action history we mean a set �a of literals such that for every actionname a and time t, �a contains exactly one of the literals at and :at, and containsno other literals besides these. An action history speci�es, for every time t, exactlywhich actions occur at t.Intuitively, every action in a simple LCL domain description is deterministic.This is made precise in the following proposition.Proposition 8.2 Let D be a simple LCL domain description. Let �0 be a completeinitial state description and �a be an action history. There is at most one causallyexplained interpretation according to D that satis�es �0 [�a.Proof. Since D is a simple LCL domain description, we know thatD = Dx[Di[D0,where Dx, Di, and D0 are as de�ned in (2) above. Let H be the atom dependencygraph of D0. We proceed by the method of contradiction. Suppose that there aretwo causally explained interpretations of D that satisfy �0 [�a. Call them I andI 0. We know that I and I 0 assign di�erent values to one or more nodes in H . SelectA to be such a node whose time subscript t is minimal among all such nodes andsuch that A is minimal in the ordering relation de�ned by H . (We know that thisselection is possible because D is simple.) Without loss of generality, let us supposethat I j= A and I 0 j= :A. By the de�nition of a supported model for objectiveprograms, there must be rules, A B and :A B0, in D such that B � I120

but B 6� I 0, and B0 6� I but B0 � I 0. Since I and I 0 both satisfy �0, we knowthat they agree on the values of all atoms of the form f0, where f is a
uent name.(Recall that �0 is complete with respect to such atoms.) Similarly, since I and I 0both satisfy �a, we know that they agree on the values of all atoms of the form at,where a and t are action and time names, respectively. It follows that A must bean atom of the form ft+1, for some
uent name f . Thus, the rules A B and:A B0 in fact belong to Di [D0. By our choice of A, we know that neither rulecan belong to D0 (because otherwise I and I 0 assign di�erent values to some atom inB or some atom in B0, but all such atoms are less than A in the ordering). Nor, fora similar reason, can both belong to Di (because otherwise I and I 0 assign di�erentvalues to ft). Thus, there is no such node A to which I and I 0 assign di�erentvalues. Consequently, there is at most one causally explained interpretation of Dthat satis�es �0 [�a. 2Corollary 8.2 Let D be a simple LCL domain description, �0 be a complete initialstate description, and G be a time-speci�c goal. Suppose that I is a causally explainedinterpretation according to D that satis�es �0 [G. Let �a be the action historycontained in I. Then �0 [�a `D G: (8.2)Proof. By Proposition 8.2, we know that I is the only causally explained in-terpretation according to D that satis�es �0 [�a. By hypothesis, I also satis�esG. Therefore, every causally explained interpretation according to D that satis�es�0 [�a satis�es G, that is, �0 [�a `D G. 28.3 The Query Language LH: Historical NecessityIn this section we de�ne an action query language LH that can be used for expressingfacts about the actual world and time-dependent modal queries about both the121

actual world and other causally possible worlds.According to common sense, there is an asymmetry between the past andpresent on the one hand and the future on the other. Whereas the past and presentcannot now be other than they are, the future in at least some respects can be.3This asymmetry cannot be explained in terms of epistemic possibility, since we maybe equally ignorant of the past, present, and future. Instead, it is explained in termsof the time-dependent modalities of historical necessity and possibility.Intuitively, a proposition becomes historically necessary when the presentand the past determine that it is true, and it remains historically possible so longas the present and past do not determine that it is false.The concepts of historical necessity and possibility have been formalized inthe framework of modal-temporal logic by [Montague, 1968], [Chellas, 1971], and[Kamp, 1979]. In these logics, formulas are understood to designate time-dependentpropositions and are evaluated with respect to a world and a time. In particular,the accessibility relation for the historical necessity operator is de�ned as a functionof time. Since we are working in a framework in which propositions are not time-dependent (the atoms of an action query language contain their own �xed timereferences), we will �nd it convenient to proceed in a di�erent manner. Insteadof introducing a single time-dependent necessity operator 2, we will introduce adistinct operator 2n , for each time n.The signature for an LH language, as for an LCL language, is speci�ed by atriple hA;F;Ti, where A is a set of action names, F is a nonempty set of
uent3In speaking in this manner, we assume that even in a nondeterministic world there is a uniqueactual future and that every proposition about it is presently true or presently false, even if it isundetermined (by past and present facts) which it is.The point at issue is the one discussed by Aristotle in a famous passage from De Interpretatione(Chapter 9). Assuming that it is not presently determined whether or not there will be a sea battletomorrow, Aristotle asks whether it is true now that there will be a sea battle or true now that therewill not be. Although the passage is not entirely clear, he seems to deny that either is the case. Welook at this di�erently. The openness of the future (as opposed to the present and past) lies not, wemaintain, in there being propositions about the future that are neither presently true nor presentlyfalse, but in there being propositions about the future that are neither presently determined to betrue nor presently determined to be false. 122

names, and T is a nonempty set of time names. The set of atoms is the set ofexpressions of the forms at and ft, where a, f , and t are action,
uent, and timenames, respectively. The set of formulas of LH is the smallest set that contains theatoms and is closed under the following rules: if � is a formula, then :� is a formula;if � and are formulas, then � ^ is a formula; and if � is a formula, then 2n� isa formula, for every time name n. We de�ne 3n � as an abbreviation for :2n :�. Weassume that the other standard propositional connectives (_, �, and �) are de�nedas abbreviations in the usual way.Let L be the sublanguage of LH that consists of all formulas that do notcontain a modal operator. Since L is a language of propositional logic, the notionof an interepretation of L is de�ned. By an axiom we mean a formula of L. By aquery we mean a formula of LH.We will identify an interpretation I with the set of literals L such that I j= L.Let I be an interpretation of L, and m be a time. By I jm we mean the set of allliterals in I of either the form [:]fk , where f is a
uent name and k � m, or of theform [:]ak, where a is an action name and k < m.A structure is a pair (I; S), where I is an interpretation of L and S is a set ofsuch interpretations with I 2 S. We de�ne the conditions under which a structure(I; S) satis�es a formula � (in symbols, (I; S) j= �) as follows.(I; S) j= � i� � 2 I; if � is an atom(I; S) j= :� i� (I; S) 6j= �(I; S) j= � ^ i� (I; S) j= � and (I; S) j= (I; S) j= 2n� i� (I 0; S) j= �, for all I 0 2 S s.t. I 0jm = I jm.Intuitively, according to the last clause, 2n � is true in a world I if and only if � istrue in all worlds that coincide with I at all times up to and including time n. Noticethat these worlds are not required to coincide with I on facts about the actions thatoccur, as we say, at time n, but only at earlier times.44In this regard, recall that an atom at, where a is an action name and t is a time name, is123

Let � be a formula and � be a set of formulas. We say that (I; S) is a modelof � if (I; S) j= �. We say that (I; S) is a model of � if (I; S) is a model of everyformula in �. We say that � is a consequence of � (in symbols, � j= �) if everymodel of � is a model of �.It is not di�cult to see that for all formulas � and all times r and n, if r � nthen 2r� j= 2n � and 3n � j= 3r �. This re
ects the commonsense belief that with thepassage of time more tends to become necessary and less possible.Let � be a set of axioms, S be a set of interpretations of L, and Q be a query.We say that Q is a consequence of � in S (in symbols, � `S Q) if every model (I; S)of � is a model of Q.Given speci�c LCL and LH languages with the same signature, the conse-quence relation for the combined language LCL + LH is de�ned as follows. Let Dbe a domain description in LCL, and let � and Q be a set of axioms and a queryof LH, respectively. We say that Q is a consequence of � according to D (in sym-bols, � `D Q) if � `S Q, where S is the set of causally explained interpretationsaccording to D.The modalities of historical necessity and possibility are dependent upon thepast and present facts of the actual world. As an illustration, let D be the descriptionof the Domino domain from Example 7.5, modi�ed so that the only possible actionis to tip domino 1, i.e., Tip(1). Let� = f ^i=1::5Up(i)0; ^n=0::5:Tip(1)ng:Intuitively, in � we make the following assertions about the actual world: (i) initiallyall �ve dominos are up, and (ii) domino 1 is not tipped at any time. Each of thefollowing is true. � `D ^n=0::5Up(3)n� `D ^n=0::23n:Up(3)5understood to say that the action a occurs immediately after t.124

� `D ^n=3::52nUp(3)5These results can be explained as follows. In the actual world, domino 3 remainedstanding at all times. It was possible before time 3 to cause domino 3 to be downby time 5 (by tipping domino 1 at time 0, 1, or 2). However, by time 3 this was nolonger possible.The previous example shows that the modalities of historical necessity andpossibility are useful in formulating queries about action domains even in the absenceof nondeterministic actions. Intuitively, the reason for this is that the choices ofwhich (if any) action to perform lead to alternative historically possible worlds,regardless of whether or not the actions themselves do so.As a second example, we will consider a simple extension to the coin tossingdomain of Example 7.2. In this domain, there are two sources of nondeterminism:(i) the decision whether or not to toss the coin, and (ii) the inherent nondeterminismof coin tossing itself.Example 8.1 Let us formalize a coin tossing game in which one wins by tossingheads twice in a row.The signature is speci�ed by the following grammar.action ::= Toss
uent ::= Heads j Wintime ::= 0 j 1 j � � �We will adopt the standard inertia assumption.inertial-formula ::= [:]
uentThe causal theory for the coin tossing domain D8:1 is represented by thestandard schemas (7.5){(7.9), plus the schemas (8.3){(8.5) below.125

Tosst ^Headst+1) Headst+1 (8.3)Tosst ^ :Headst+1) :Headst+1 (8.4)Tosst ^Headst+1 ^ Tosst+1 ^ Headst+2) Wint+2 (8.5)According to schema (8.5), tossing heads twice in a row causes one to win the game.5Now let us suppose that � is the following set of formulas.f:Win0;Toss0;Toss1;:Heads1;Heads2gIntuitively, according to �, among the facts of the actual world are these: we hadnot already won at time 0, we did toss the coin at times 0 and 1, the �rst toss cameup tails, and the second came up heads. Each of the following is true.� `D 30Win2� `D :31Win2These results can be explained as follows. At time 0, it was possible to throw headstwice in a row. In fact, however, we were unlucky. The �rst toss did not come upheads, and so already by time 1 we had no chance of winning by time 2. 3
5Actually, this may be an example of a determination relation that is not, strictly speaking,causal, although it is \causal-like." (See [Kim, 1974] for a discussion of non-causal determinationrelations.) As an aside, notice that it would be impossible to express the rule for winning in sucha straightforward way in a transition system-based language such as ACL.126

Chapter 9Query Answering and PlanningIn this chapter, we describe and illustrate an approach to automated query answeringwith respect to �nite LCL objective programs and to planning with respect to simple,�nite LCL objective programs. The approach is based on satis�ability checking inpropositional logic.9.1 Automated Query AnsweringA satis�ability algorithm searches for an interpretation that satis�es a given set � of(propositional) formulas. Some satis�ability algorithms search the space of possibleinterpretations exhaustively and nonredundantly, and in this sense are \systematic."For such algorithms, failing to �nd a satisfying interpretation shows the unsatis�a-bility of �. For query answering on the basis of Corollary 8.1, we require a systematicsatis�ability algorithm.Currently, one of the best implementations of a systematic satis�ability al-gorithm is the program called ntab (previously known as tableau) by Crawford andAuton [1993]. It is an e�cient implementation of the Davis-Putnam procedure[Davis and Putnam, 1960] and incorporates some surprisingly e�ective heuristics.The program ntab reads a �le of formulas in clausal form (literals are represented127

:- declare_typestype(action,[load,wait,shoot]),type(fluent,[loaded,alive]),type(time,[0..3]),type(atom,[o(action,time),h(fluent,time)]).:- declare_variablesvar(A,action), var(T,time), var(F,fluent).h(loaded,T+1) <- o(load,T).-h(alive,T+1) <- o(shoot,T), h(loaded,T).-h(loaded,T+1) <- o(shoot,T).o(A,T) <- o(A,T).-o(A,T) <- -o(A,T).h(F,0) <- h(F,0).-h(F,0) <- -h(F,0).h(F,T+1) <- h(F,T), h(F,T+1).-h(F,T+1) <- -h(F,T), -h(F,T+1).Figure 9.1: An input �le for the Yale Shooting domainby postive and negative integers) and determines whether or not the given set ofclauses is satis�able. If the set of clauses is satis�able, the program responds bywriting \SAT" and (optionally) a satisfying interpretation. If the set of clauses isunsatis�able, the program responds by writing \UNSAT."In Appendix B, we list a Prolog program, called satp, which uses ntab todo query answering with respect to �nite LCL objective programs. This programtakes an input �le representing an LCL domain description, such as that displayedin Figure 9.1. (This is the same program that we previewed in Chapter 1.) Thedirective declare types, which appears �rst in Figure 9.1, is used to de�ne a speci�cLCL language in a syntactic variant of the grammars illustrated in the previouschapter. The terminal symbols now are not capitalized, but instead are distinguishedfrom the non-terminal symbols only by their failing to appear as the �rst argument128

to the type/2 functor. The directive declare variables is used to declare anymeta-variables that we may wish to use in describing the causal theory. Followingthese two directives, the �le contains rules and schemas written in the syntax ofobjective programs. (Meta-variables are represented as Prolog variables, and thusare written in uppercase here, in contrast to the previous chapter.) An atom such asLoad2 is here written as o(load,2) and read as: the action Load occurs at time 2 .An atom such as Alive2 is here written as h(alive,2) and read as: the
uent Aliveholds at time 2 . The last two rule schemas say that every
uent literal is inertial.Notice that there are only �nitely many time names in the signature speci�edin Figure 9.1. This is essential, since otherwise the set of atoms and, therefore, alsothe literal completion of the causal theory would be in�nite.The three main user-level procedures provided in satp are load file/1,query/0, and plan/0. The procedure load file/1 reads in a �le such as the onedisplayed in Figure 9.1 and (using the language speci�cation and the meta-variabledeclarations) generates the ground causal theory D. It then also generates theclausal form of lcomp(D) and stores the resulting clauses in the Prolog database.After an input �le has been loaded, queries are posed by calling the procedurequery/0. This procedure reads from the terminal a set � of axioms and a query Qand converts � [f:Qg to clausal form. The clauses oflcomp(D) [� [f:Qg (9.1)are then written to a �le, and ntab is called with this �le as input. After the callto ntab returns, the procedure query/0 reads the output �le generated by ntab,decodes it (replacing integers by symbolic literals), and reports the results. Theprocedure query/0 answers \yes"|meaning � `D Q|if ntab answers \UNSAT,"and answers \no"|meaning � 6`D Q|if ntab answers \SAT." These answers arejusti�ed by Corollary 8.1. In the case of a \no" answer, the intepretation found byntab to satisfy (9.1) is displayed as a counterexample.Example calls to the procedures load file/1 and query/0 are shown in129

Figure 9.2.1 The �rst query in Figure 9.2 poses the question: Will the turkey bedead in the state that results from executing the actions load, wait, and shoot (inthat order), given that the gun is initially unloaded and the turkey is alive? Asnoted in Section 1.3, we do not assume that load, wait, and shoot are the onlyactions performed at times 0, 1, and 2. Therefore, this is not precisely the temporalprojection problem considered by Hanks and McDermott [1987]. The second queryasks whether it follows from the fact that the action of shooting the gun is performedat times 0, 1, and 2 that the turkey will be dead at time 3. The answer of course is\no," since, as the displayed interpretation shows, we have said nothing to guaranteethat the gun is ever loaded. Additional examples of query answering are includedin Section 9.4.9.2 Automated PlanningIn this section we describe and illustrate the procedure plan/0, which implementsour approach to satis�ability planning (Kautz and Selman [1992, ,1996]) with respectto simple, �nite LCL objective programs.Let D be such a program. Assume that the input �le for D (for example,the �le displayed in Figure 9.1) has already been loaded using load file/1. Theprocedure plan/0 reads from the terminal a complete initial state description �0and a time-speci�c goal G, and converts �0 [fGg to clausal form. The clauses oflcomp(D) [�0 [fGg (9.2)are then written to a �le, and ntab is called with this �le as input. If ntab answers\UNSAT," then by Corollary 8.1 we know that �0 `D :G, which means that itis impossible to achieve the time-speci�c goal G, given �0. In this case, plan/01The fact that there are fewer clauses than rules in this example is due to the elimination oftautologies. Also, in case the reader should wish to check the counts reported by load file/1, wenote that, as a convenience, the atoms true and false and the rules true <- and -false <-, areautomatically added by load file/1 to every input domain description.130

| ?- load_file(yale).% 22 atoms, 51 rules, 26 clauses loaded.yes| ?- query.enter facts (then ctrl-d)|: h(alive,0).|: -h(loaded,0).|: o(load,0).|: o(wait,1).|: o(shoot,2).|:enter query|: -h(alive,3).yes| ?- query.enter facts (then ctrl-d)|: o(shoot,0).|: o(shoot,1).|: o(shoot,2).|:enter query|: -h(alive,3).0. -loaded aliveAction(s): shoot1. -loaded aliveAction(s): shoot2. -loaded aliveAction(s): shoot3. -loaded aliveAction(s):no Figure 9.2: Query answering131

answers \no." If ntab answers \SAT," then the interpretation I that was found tosatisfy (9.2) is displayed. The action history �a contained in I can be read o� fromthis display. If �0 is, indeed, a complete initial state description, then we know bythe fact that I satis�es (9.2) that �a is executable. If, moreover, D is simple, thenby Corollary 8.2 we also know that �a is e�ective.Two example calls to plan/0 are displayed in Figure 9.3. In the �rst ofthese, we assume that initially the turkey is alive and the gun is unloaded. We posethe problem of �nding a plan to achieve the goal of the turkey being dead and thegun being loaded at time 3. A plan is found which calls for performing the actionsload, shoot, and load (and no other actions) at the times shown. In the second callto plan/0 in Figure 9.3, we seek to �nd a plan to bring the turkey back to life.Unfortunately, there is no way to achieve this goal.In some cases we may not be sure whether an LCL domain description issimple, or we may even know that it is not simple, and yet we may hope to �ndan executable and e�ective plan for achieving G (given a complete initial statedescription �0) by the method just described. In such cases, however, even if aninterpretation I is found that satis�es �0[fGg, there is no guarantee that it containsan e�ective plan. Accordingly, if ntab �nds an interpretation I that satis�es (9.2),then, after displaying it, plan/0 asks the user whether an attempt should be madeto verify that the action history �a contained in I is e�ective. If the user requeststhat this be done, ntab is then called again to check the satis�bability oflcomp(D) [�0 [�a [f:Gg: (9.3)If ntab returns \UNSAT," then by Corollary 8.1 we know that�0 [�a `D Gwhich veri�es that �a is e�ective. On the other hand, if ntab returns \SAT," thenby Corollary 8.1 we know that �0 [�a 6`D G132

| ?- plan.enter facts (then ctrl-d)|: h(alive,0).|: -h(loaded,0).|:enter goal|: h(loaded,3) & -h(alive,3).0. -loaded aliveAction(s): load1. loaded aliveAction(s): shoot2. -loaded -aliveAction(s): load3. loaded -aliveAction(s):Verify plan? yplan verified.yes| ?- plan.enter facts (then ctrl-d)|: -h(alive,0).|: -h(loaded,0).|:enter goal|: h(alive,3).no Figure 9.3: Planning to achieve a time-dependent goal133

which shows that �a is not e�ective. In the latter case, an interpretation satisfying(9.3) is displayed as a counterexample, and plan/0 gives up.2Since the LCL domain description for the Yale shooting domain is simple andthe facts given in Figure 9.3 comprise a complete initial state description, the planveri�cation step in this instance, while reassuring, is unnecessary.The procedure plan/0 can be used to pose goals that are not time speci�c byusing a meta-variable for time in place of a speci�c time in the goal. On backtracking,the program instantiates the meta-variable to successive times. If the time names aredeclared in the natural order|from those designating smaller numbers to larger|the result is to search for the earliest time at which the goal can be achieved by aprocess of iterative deepening [Korf, 1985]. This is illustrated in Figure 9.4. Thegoal is �rst instantiated to times 0 and 1, before it is �nally solved at time 2.Although we display an entire action history when a plan is found, normallyonly a part of the action history is necessary for achieving a goal. For instance, inthe last example above, only the actions performed at times 0 and 1 are necessary;the load action at time 2 is not. In this case and many others, it is natural to takethe plan to be the part of the action history that precedes the time at which thegoal is �rst achieved. However, in some cases|particularly in domains in whichthere are delayed e�ects or in which things change by themselves|this part of anaction history may be too much. (Consider, for instance, an action that initiatesa process of change that inevitably causes a goal to be achieved, regardless of theactions that may be performed after it.) Dealing appropriately with this issue is atopic for future research.As an illustration of the possibility that a candidate plan may not turn out to2It should be noted that even if a plan is shown to be e�ective and executable in the weak sensein which we have de�ned the term, in the event of nondeterminism there is no guarantee that theplan can be carried out. Consider again, for example, the plan that consists in performing preciselythe following actions: �rst toss a coin and then truly report that it has landed heads. Assuming thatthe goal is for the coin to be lying heads, this an e�ective plan. However, as previously observed,there is no guarantee that the plan can be carried out, since it is (historically) possible (at time 0)that tossing the coin will result in its landing tails.134

| ?- plan.enter facts (then ctrl-d)|: h(alive,0).|: -h(loaded,0).|:enter goal|: -h(alive,T).0. -loaded aliveAction(s): load1. loaded aliveAction(s): shoot2. -loaded -aliveAction(s): load3. loaded -aliveAction(s):Verify plan? yplan verified.yes Figure 9.4: Planning to achieve a time-independent goal
135

:- declare_typestype(action,[toss]),type(fluent,[heads]),type(time,[0..2]),type(atom,[o(action,time),h(fluent,time)]).:- declare_variablesvar(A,action), var(F,fluent), var(T,time).h(heads,T+1) <- o(toss,T), h(heads,T+1).-h(heads,T+1) <- o(toss,T), -h(heads,T+1).o(A,T) <- o(A,T).-o(A,T) <- -o(A,T).h(F,0) <- h(F,0).-h(F,0) <- -h(F,0).h(F,T+1) <- h(F,T), h(F,T+1).-h(F,T+1) <- -h(F,T), -h(F,T+1).Figure 9.5: An input �le for the Coin Tossing domainbe e�ective, consider the LCL domain description for nondeterministic coin tossingdisplayed in Figure 9.5.The �rst two rule schemas represent the part of the causal theory that cor-responds to the set D0 in the de�nition of a simple LCL domain description. Noticethat the ordering relation de�ned by the atom dependency graph for this set is notwell-founded. Consequently, this is not a simple LCL domain description.In the session displayed in Figure 9.6, we assert that the coin is not lyingheads at time 0 and pose the problem of �nding a plan to cause the coin to be lyingheads at time 2. A candidate plan is found, namely, the plan of tossing the coin attime 0 and performing no other actions. However, the attempt to verify the planfails, because tossing the coin at time 0 could just as well result in its landing tails,as the �nal displayed interpretation shows.Additional examples of planning|including an example of planning in a136

| ?- load_file(toss).% 8 atoms, 18 rules, 6 clauses loaded.yes| ?- plan.enter facts (then ctrl-d)|: -h(heads,0).|:enter goal|: h(heads,2).0. -headsAction(s): toss1. headsAction(s):2. headsAction(s):Verify plan? yverification failed.0. -headsAction(s): toss1. -headsAction(s):2. -headsAction(s):no Figure 9.6: An unveri�able plan137

dynamic domain|are included in Section 9.4.9.3 Final Remarks on Query Anwering and PlanningKautz and Selman [1996] have experimentally investigated the application of sys-tematic and unsystematic satis�ability algorithms in planning. Speci�cally, theyhave compared the systematic program tableau [Crawford and Auton, 1993] andan unsystematic (stochastic) program called Walksat [Selman et al., 1994]. Theyreport solving much larger planning problems using Walksat than tableau. Indeed,at the present time, satis�ability planning using Walksat may be the most e�cientapproach to planning that is known.Since Walksat is unsystematic, it cannot be used for query answering or planveri�cation, where testing for unsatis�ability is required. It can, however, be usedfor planning with respect to simple LCL domain descriptions, since in this case theplan veri�cation step is unnecessary.3Finally, we wish to emphasize that the restriction in this section to LCLdomain descriptions that belong to the class of objective programs is a very seriouslimitation. It is not di�cult to �nd domains that can be properly formalized onlyby writing causal laws that have non-literal consequents.4There is, however, some reason to hope that the restriction to literal conse-quents can be relaxed. Lifschitz [1997] has shown how to reformulate the syntaxand semantics of causal theories in classical logic. In the propositional case, thisreformulation introduces second-order quanti�ers. However, it is always possibleto eliminate these quanti�ers, and doing so again yields a standard propositional3We should remark in this context that our central concern in this dissertation is not with thee�ciency of planning, but rather with �nding a natural and expressive language for formalizingdomains of action and change. The appeal of satis�ability planning methods|as opposed to meth-ods, such the one described in [McAllester and Rosenblitt, 1991], which presupposes STRIPS-like[Fikes and Nilsson, 1971] add and delete lists|is that satis�ability planning methods can be usedwith any formalism that can be translated into classical propositional logic.4Attempting to formalize such domains by writing causal laws with only literal consequents canlead to unintended causal loops. Compare the Seesaw domain of Example 3.9.138

theory. This means that query answering and planning can still, in principle, becarried out by satis�ability checking, even for causal theories that contain laws withnon-literal consequents. It remains to be seen, however, whether the process ofeliminating the second-order quanti�ers can be done with acceptable e�ciency, andhow their elimination impacts the size of the resulting theory. These are topics forfuture research.9.4 ExamplesIn this section, we present several additional examples showing the behavior of theprogram satp. We will not comment on the individual examples, but rather in eachcase will simply list the program �le and a session in which the program is loadedand used in query answering and planning. In all cases, the run times are no morethan a few seconds on a Sun SPARCstation 5.Meta-variables appearing in the formulas given as \facts" to query/0 orplan/0 are implicitly universally quanti�ed, as they are in rule schemas. Meta-variables appearing in a \query" or a \goal" are implicitly existentially quanti�ed.As in rule schemas, it is possible to restrict the instantiations of facts, queries, andgoals by using where clauses.In the �nal two examples of this section|the Airport domain and the secondDomino domain|we extend the LCL language to include atoms of two new forms.In the Airport domain, we include atoms that describe features of the domain thatdo not vary with time, and in the second Domino domain, we include atoms of theform o(event,time). Events, like actions, are properly said to occur, and factsabout them may be causes of change. Unlike actions, however, events are typicallyendogenous to our causal theories. In the second Domino domain, we describe theconditions under which falling events occur. In the absence of such conditions, wespecify that falling events do not occur by writing causal laws similar to those used139

to specify momentary
uents.5% File: suitcase (see Chapter 7):- declare_typestype(latch,[l1,l2]),type(action,[toggle(latch),close]),type(fluent,[up(latch),open]),type(time,[0..5]),type(atom,[o(action,time),h(fluent,time)]).:- declare_variablesvar(L,latch),var(A,action),var(F,fluent),var(T,time).-h(up(L),T+1) <- o(toggle(L),T), h(up(L),T).h(up(L),T+1) <- o(toggle(L),T), -h(up(L),T).-h(open,T+1) <- o(close,T).h(open,T) <- h(up(l1),T), h(up(l2),T).o(A,T) <- o(A,T).-o(A,T) <- -o(A,T).h(F,0) <- h(F,0).-h(F,0) <- -h(F,0).h(F,T+1) <- h(F,T), h(F,T+1).-h(F,T+1) <- -h(F,T), -h(F,T+1).| ?- load_file(suitcase).% loading file /v/hank/v18/mccain/d/pl/suitcase% 38 atoms, 105 rules, 68 clauses loaded.yes5Since in the last two examples of this section we extend the language LCL, the domain de-scriptions in these cases are not simple, and so the e�ectiveness of our plans is not guaranteed byCorollary 8.2. Also, in each of these examples and in the Stu�y Room domain which precedes them,we use the special atom false. For this reason also, these examples fall outside the class of simpleLCL domain descriptions. Presumably, our de�nitions can be generalized to account for examplessuch as these, but this remains to be done. 140

| ?- query.enter facts (then ctrl-d)|: h(up(l1),0).|: h(up(l2),0).|: o(close,0).|:enter query|: o(toggle(l1),0) | o(toggle(l2),0). % '|' is 'or'yes| ?- plan.enter facts (then ctrl-d)|: -h(open,0).|: -h(up(l1),0).|: -h(up(l2),0).|:enter goal|: h(open,5) & -h(up(l1),5) & -h(up(l2),5).0. -up(l1) -up(l2) -openActions: toggle(l1) toggle(l2)1. up(l1) up(l2) openActions:2. up(l1) up(l2) openActions:3. up(l1) up(l2) openActions:4. up(l1) up(l2) openActions: toggle(l1) toggle(l2)5. -up(l1) -up(l2) openActions:Verify plan? yplan verified.yes 141

% File: soup (see Chapter 7):- declare_typestype(side,[left,right]),type(action,[raise(side),lower(side)]),type(fluent,[up(side),spilled]),type(time,[0..5]),type(atom,[o(action,time),h(fluent,time)]).:- declare_variablesvar([S,S1],side),var(A,action),var(F,fluent),var(T,time).h(up(S),T+1) <- o(raise(S),T).-h(up(S),T+1) <- o(lower(S),T).h(spilled,T) <- h(up(S),T), -h(up(S1),T) where S \== S1.o(A,T) <- o(A,T).-o(A,T) <- -o(A,T).h(F,0) <- h(F,0).-h(F,0) <- -h(F,0).h(F,T+1) <- h(F,T), h(F,T+1).-h(F,T+1) <- -h(F,T), -h(F,T+1).| ?- load_file(soup).% loading file /v/hank/v18/mccain/d/pl/soup% 44 atoms, 118 rules, 69 clauses loaded.yes| ?- query.enter facts (then ctrl-d)|: -h(up(S),0).|: o(raise(left),0).|: -o(raise(right),0).|:enter query|: h(spilled,1).yes 142

| ?- query.enter facts (then ctrl-d)|: -h(spilled,0).|: o(raise(S),0).|:enter query|: -h(spilled,1).yes% File: domino (see Chapter 7):- declare_typestype(domino,[1,2,3,4,5]),type(action,[tip(domino)]),type(fluent,[up(domino)]),type(time,[0..5]),type(atom,[o(action,time),h(fluent,time)]).:- declare_variablesvar([D,D1],domino),var(A,action),var(T,time),var(F,fluent).-h(up(D),T+1) <- o(tip(D),T).-h(up(D1),T+2) <- h(up(D),T), -h(up(D),T+1) where D1 is D+1.o(A,T) <- o(A,T).-o(A,T) <- -o(A,T).h(F,0) <- h(F,0).-h(F,0) <- -h(F,0).h(F,T+1) <- h(F,T), h(F,T+1).-h(F,T+1) <- -h(F,T), -h(F,T+1).| ?- load_file(domino).% loading file /v/hank/v18/mccain/d/pl/domino% 62 atoms, 163 rules, 109 clauses loaded.143

yes| ?- query.enter facts (then ctrl-d)|: h(up(D),0).|: o(tip(1),0).|:enter query|: -h(up(1),5) & -h(up(2),5) &-h(up(3),5) & -h(up(4),5) & -h(up(5),5).yes| ?- query.enter facts (then ctrl-d)|: h(up(1),0).|: -o(tip(1),T).|:enter query|: h(up(1),5).yes% File: stuffy (derived from [Ginsberg and Smith,1988]):- declare_typestype(location,[d1,d2,floor]),type(duct,[d1,d2]),type(object,[o1,o2]),type(action,[move(object,location)]),type(fluent,[on(object,location),blocked(duct),stuffy]),type(time,[0..3]),type(atom,[o(action,time),h(fluent,time)]).:- declare_variablesvar([L,L1],location),var(D,duct),var([O,O1],object),var([A,A1],action),var(T,time),var(F,fluent),var(G,inertial_fluent). 144

:- display_literals(positive).h(on(O,L),T+1) <- o(move(O,L),T).h(blocked(D),T) <- h(on(O,D),T).-h(blocked(D),T) <- -h(on(o1,D),T), -h(on(o2,D),T).h(stuffy,T) <- h(blocked(d1),T), h(blocked(d2),T).-h(stuffy,T) <- -h(blocked(D),T).-h(on(O,L),T) <- h(on(O,L1),T) where L\== L1.false <- h(on(O,D),T), h(on(O1,D),T) where O @< O1.false <- o(A,T), o(A1,T) where A @< A1.o(A,T) <- o(A,T).-o(A,T) <- -o(A,T).h(F,0) <- h(F,0).-h(F,0) <- -h(F,0).h(on(O,L),T+1) <- h(on(O,L),T), h(on(O,L),T+1).| ?- load_file(stuffy).% loading file /v/hank/v18/mccain/d/pl/stuffy% 62 atoms, 256 rules, 235 clauses loaded.yes| ?- query.enter facts (then ctrl-d)|: h(on(o1,floor),0).|: -o(move(o1,D),T).|:enter query|: -h(stuffy,3).yes| ?- plan.enter facts (then ctrl-d)|: h(on(o1,d1),0).|: h(on(o2,d2),0).|:enter goal|: h(on(o1,d2),T) & h(stuffy,T). 145

0. on(o1,d1) on(o2,d2) blocked(d1) blocked(d2) stuffyAction(s): move(o2,floor)1. on(o1,d1) on(o2,floor) blocked(d1)Action(s): move(o1,d2)2. on(o1,d2) on(o2,floor) blocked(d2)Action(s): move(o2,d1)3. on(o2,d1) on(o1,d2) blocked(d1) blocked(d2) stuffyAction(s):Verify plan? yplan verified.yes% File: airport (derived from [McCarthy,1959]):- declare_typestype(location,[desk,garage,airport]),type(entity,[i,car]),type(action,[walk(location,location),drive(location,location)]),type(fluent,[at(entity,location)]),type(time,[0..4]),type(atom,[walkable(location,location),drivable(location,location),o(action,time),h(fluent,time)]).:- declare_variablesvar([A,A1],action),var([F],fluent),var([T,T1],time),var([E],entity),var([L,L1],location).:- display_literals(positive).walkable(desk,garage) <- true.walkable(garage,desk) <- true.-walkable(L,L1) <- -walkable(L,L1).146

drivable(garage,airport) <- true.drivable(airport,garage) <- true.-drivable(L,L1) <- -drivable(L,L1).h(at(i,L1),T+1) <- o(walk(L,L1),T).false <- o(walk(L,L1),T), -h(at(i,L),T).false <- o(walk(L,L1),T), -walkable(L,L1).h(at(i,L1),T+1) <- o(drive(L,L1),T).h(at(car,L1),T+1) <- o(drive(L,L1),T).false <- o(drive(L,L1),T), -h(at(i,L),T).false <- o(drive(L,L1),T), -h(at(car,L),T).false <- o(drive(L,L1),T), -drivable(L,L1).-h(at(E,L),T) <- h(at(E,L1),T) where L \== L1.o(A,T) <- o(A,T).-o(A,T) <- -o(A,T).h(F,0) <- h(F,0).-h(F,0) <- -h(F,0).h(F,T+1) <- h(F,T), h(F,T+1).-h(F,T+1) <- -h(F,T), -h(F,T+1).| ?- load_file(airport).% loading file /v/hank/v18/mccain/d/pl/airport% 140 atoms, 657 rules, 461 clauses loaded.yes| ?- query.enter facts (then ctrl-d)|: h(at(i,desk),0).|: h(at(car,airport),0).|:enter query|: -h(at(i,airport),4).yes| ?- plan. 147

enter facts (then ctrl-d)|: h(at(i,desk),0).|: h(at(car,garage),0).|:enter goal|: h(at(i,airport),T).0. at(i,desk) at(car,garage)Actions: walk(desk,garage)1. at(i,garage) at(car,garage)Actions: drive(garage,airport)2. at(i,airport) at(car,airport)Actions: drive(airport,garage)3. at(i,garage) at(car,garage)Actions: drive(garage,airport)4. at(i,airport) at(car,airport)Actions:Verify plan? yplan verified.yes| ?- plan.enter facts (then ctrl-d)|: h(at(i,desk),0).|: h(at(car,garage),0).|:enter goal|: h(at(i,airport),T) & h(at(i,desk),T1) where T1 > T.0. at(i,desk) at(car,garage)Actions: walk(desk,garage)1. at(i,garage) at(car,garage)Actions: drive(garage,airport)2. at(i,airport) at(car,airport)Actions: drive(airport,garage) 148

3. at(i,garage) at(car,garage)Actions: walk(garage,desk)4. at(i,desk) at(car,garage)Actions:Verify plan? yplan verified.yesFile: domino-events (see Chapter 7):- declare_typestype(domino,[1,2,3,4,5]),type(action,[tip(domino)]),type(fluent,[up(domino)]),type(time,[0..5]),type(event,[fall(domino)]),type(atom,[o(action,time),o(event,time),h(fluent,time)]).:- declare_variablesvar([D,D1],domino),var([A,A1],action),var(E,event),var(T,time),var(F,fluent).o(fall(D),T) <- o(tip(D),T).-h(up(D),T+1) <- o(fall(D),T).o(fall(D1),T+1) <- o(fall(D),T), h(up(D1),T+1) where D1 is D+1.false <- o(fall(D),T), -h(up(D),T).false <- o(A,T), o(A1,T) where A \== A1.-o(E,T) <- -o(E,T).o(A,T) <- o(A,T).-o(A,T) <- -o(A,T).h(F,0) <- h(F,0). 149

-h(F,0) <- -h(F,0).h(F,T+1) <- h(F,T), h(F,T+1).-h(F,T+1) <- -h(F,T), -h(F,T+1).| ?- load_file('domino-events').% loading file /v/hank/v18/mccain/d/pl/domino-events% 92 atoms, 377 rules, 327 clauses loaded.yes| ?- query.enter facts (then ctrl-d)|: h(up(D),0).|: o(tip(1),0).|:enter query|: -h(up(1),5) & -h(up(2),5) &-h(up(3),5) & -h(up(4),5) & -h(up(5),5).yes| ?- query.enter facts (then ctrl-d)|: h(up(1),0).|: -o(tip(1),T).|:enter query|: h(up(1),5).yes| ?- plan.enter facts (then ctrl-d)|: h(up(D),0).|:enter goal|: -h(up(1),T) & -h(up(2),T) &-h(up(3),T) & -h(up(4),T) & -h(up(5),T).0. up(1) up(2) up(3) up(4) up(5)Events: fall(2)Actions: tip(2)1. up(1) -up(2) up(3) up(4) up(5)150

Events: fall(1) fall(3)Actions: tip(1)2. -up(1) -up(2) -up(3) up(4) up(5)Events: fall(4) fall(5)Actions: tip(5)3. -up(1) -up(2) -up(3) -up(4) -up(5)Actions:4. -up(1) -up(2) -up(3) -up(4) -up(5)Actions:5. -up(1) -up(2) -up(3) -up(4) -up(5)Actions:Verify plan? yplan verified.yes

151

Chapter 10ConclusionWe have investigated the role of causal knowledge in commonsense reasoning aboutaction and change. In this section, we summarize our main contributions and list anumber of topics for future work.10.1 Summary of ContributionsThe main contributions are the following.� We have de�ned two formalisms in which \causal laws" representing the con-ditions under which facts are caused can be expressed|the action descriptionlanguage ACL, and the language of causal theories and its specialization LCL.In Appendix A, we also de�ne a modal formalism, called CEL, which gener-alizes the language of causal theories and indirectly gives truth conditions forcausal laws.� We have studied the relationship between the language of causal theories anddefault logic, and the relationship between objective programs (the logic pro-gram subclass of causal theories) and various semantics for logic programming.152

� We have de�ned a translation from objective programs into classical proposi-tional logic via a generalization of the completion procedure [Clark, 1978] fornormal logic programs.� We have described and illustrated a general approach to formalizing actiondomains as causal theories. We have shown how to formalize inertial, momen-tary, and exogenous
uents, and we have shown how to express rami�cationand quali�cation constraints, explicit de�nitions, concurrency, nondeterminis-tic actions, actions with delayed e�ects, and dynamic domains in which thingschange by themselves.� We have de�ned two action query languages, including one that contains op-erators for the natural modalities of historical necessity and possibility.� On the basis of the above-mentioned generalization of Clark's completion pro-cedure, we have described and implemented an approach to automated queryanswering and planning which is based on satis�ability checking [Kautz andSelman, 1992].� Finally, we have attempted to illuminate several conceptual issues that arise informalizing action domains: (i) the inappropriateness of using state constraintsto infer the indirect e�ects of actions, (ii) the meaning of inertia, (iii) the issueof language dependence in action formalisms, and (iv) the signi�cance of causallaws with non-literal consequents and their role in specifying nondeterministicactions.10.2 Topics for Future WorkThe following is a list of items for future work that would improve upon the resultsthat we have described. 153

� The approach to query answering and planning described in Chapter 9 islimited to the class of objective programs. This limitation|speci�cally, therestriction to causal laws with literal consequents|is, as we have remarked, aserious limitation which must be overcome. We discussed one potential remedyin Section 9.3.� In our version of satis�ability planning, we �nd complete action histories inwhich the goal is achieved. As discussed in Section 9.2, this leaves open theproblem of �nding a part of an action history that is truly essential to achievingthe goal.� When time is in�nite, the literal completion of an objective program is alsoin�nite. It would be useful to know syntactic conditions that would guaranteethat speci�c classes of consequences (in the reduced language) are una�ectedwhen time is changed from in�nite to �nite, or from a larger �nite size to asmaller one.� Satis�ability planning methods are not e�ective when there are nondetermin-istic actions or when there is incomplete knowledge of the initial state. It isimportant to investigate other planning methods for these cases.In addition to the above topics, there are a variety of other issues of interestrelated to formalizing action domains about which we have said little or nothing.We will mention only a few of these.� In the language LCL, we describe when an action begins to occur and whenits e�ects appear, but we do not describe the duration of the action itself. Itwould be interesting to investigate the usefulness of taking the atoms of causaltheories to be expressions which reference two time points, rather than one.For example, we might write Loadt;t+5 to say that the action of loading thegun occurs in the interval from time t to t + 5. Such expressions would be154

similar to the \temporal propositions" (e.g., True(t; t+5;Load)) that Shoham[1987,1990] has proposed as the participants of causal relations.� The correspondence between the causally possible world histories and thecausally explained interpretations of a causal theory rests on the assump-tion that the causal theory is complete with respect to the conditions underwhich facts are caused. Thus, no allowance is made in the semantics of causaltheories for ignorance or uncertainty. It is not easy to see how the demandfor completeness might be lessened while preserving, for example, our solutionto the frame problem. Perhaps uncertainty could be represented by a set ofcomplete causal theories. If so, how should such a set be represented?1� We have not attempted to model the knowledge state of the agent. Nor havewe addressed the issue of knowledge producing actions. To this end, one wouldhope to adapt the methods of [Moore, 1985a] and [Scherl and Levesque, 1993].10.3 A Final WordIn each of the formalisms that we have de�ned, we have been guided by three con-cerns: conceptual plausibility, mathematical simplicity, and expressiveness. In anattempt to satisfy the �rst of these concerns, we have endeavored to explain theideas behind each of our semantic de�nitions. It is primarily by means of suchexplanations, we believe, that mathematical formalisms gain content, primarily inrelation to them that semantic de�nitions can be judged right or wrong, and pri-marily through the construction and criticism of such explanations that progess will1In some cases, it is possible to model incomplete knowledge of the conditions under which factsare caused by nondeterminism. For instance, our various formalizations of coin tossing can beviewed in this light|not as models of nondeterminism but of ignorance. However, this strategy isnot always possible. For instance, suppose that we know that a coin either has two heads or twotails, but we do not know which. In this case, modeling coin tossing as nondeterministic wouldexaggerate the extent of our ignorance. It would admit causally possible world histories that weknow are not possible, namely, those in which the coin is tossed more than once and comes upsometimes heads and sometimes tails. 155

be made.What is perhaps most responsible for the degree to which we have achievedthe goals of mathematical simplicity and expressiveness is our decision not to in-troduce \foundationalist" assumptions into the semantics of our formalisms; for ex-ample, the assumption that every fact in a causally possible world history must be\causally grounded" in facts about the initial state of the world (if any), facts aboutthe actions performed, and facts preserved by inertia. In each of our formalisms,we have required the facts in any causally possible world history (or possible nextstate) to be exactly those that are caused according to our theory. But we havenot required the facts to be causally grounded in any smaller foundation than theset of all facts itself. (By contrast, the causal framework of [McCain and Turner,1995]|described in Appendix A|presupposes foundationalism, requiring the factsin any possible next state to be grounded in inertia and the explicit e�ect.) Becausewe do not presuppose foundationalism, our formalisms are mathematically simplerthan they otherwise would have been, and in important ways they are more ex-pressive. Speci�cally, in each of our formalisms it is possible to say that a fact is acondition for itself being caused. As we have seen, this expressive possibility is thekey to representing|in the language of causal theories|inertia, exogenous facts,momentary
uents, and nondeterminism.
156

Appendix ARelated FormalismsIn this appendix, we discuss two additional formalisms that are related to thosede�ned in this dissertation. We compare the causal framework de�ned in Chapter 3with the earlier framework of [McCain and Turner, 1995] in which static causal lawsare represented by inference rules, and we present a nonmonotonic modal formalismthat generalizes the language of causal theories.A.1 Causal Laws and Inference RulesIn Chapter 3, we de�ned ResD(E; S), the set of states that can result after perform-ing an action with the explicit e�ect E in the state S, given background knowledgein the form of a set D of static causal laws. The de�nition given there di�ers froman earlier de�nition given in [McCain and Turner, 1995]. In this section, we presentthe earlier de�nition and compare it with the new one.A.1.1 An Earlier Causal FrameworkLet X be a set of formulas of propositional logic and D be a set of static causallaws. We say that X is closed under D, if for every static causal law �) in D,if � 2 X then 2 X . 157

The derivability relation ` in propositional logic is easily extended to takeaccount of static causal laws. Given a set � of formulas, a set D of static causallaws, and a formula �, we write � `D �to mean that � is an element of the smallest set of formulas that contains � and isclosed with respect to propositional logic and closed under D.As in the case of De�nition 4 of Chapter 3, the states are the interpretationsthat satisfy, for each static causal law �) in D, the corresponding materialconditional � � .De�nition 5 [McCain and Turner, 1995] For any set D of static causal laws, explicite�ect E, and state S, Res5D(E; S) is the set of states S 0 such thatS 0 = fL : (S \ S 0) [E `D Lg:For each of the examples considered in Chapter 3, with the exception ofExample 3.10, De�nitions 4 and 5 yield identical results. As an illustration, consideragain Example 3.6.Example A.1S = f:Up1;Up2;:OngE = fUp1gD = f(Up1 � Up2)) On; :(Up1 � Up2)) :Ong:Previously, we observed that Res4D(E; S) contained the single possible next stateS0 = fUp1;Up2;Ong. Now, we �nd that Res5D(E; S) is the same. 3Both De�nitions 4 and 5 require exactly the literals that are true in anypossible next state to be caused. However, they di�er on how what is caused is tobe determined. Consider, for example, the
uent On, which holds in S 0. According158

to both de�nitions, On's becoming true in S 0 is a rami�cation induced by the �rstof the two causal laws in D. However, the grounds for inferring that On is causeddi�er in the two cases. In the case of De�nition 4, the ground is that Up1 � Up2 istrue in S 0. In the case of De�nition 5, the ground is that Up1 � Up2 is derivablefrom (S \ S0) [E. De�nition 5 is based on the foundationalist assumption thatall literals in any possible next state are \causally grounded" in the subset of factspreserved by inertia and the explicit e�ect. De�nition 4 makes no such assumption.De�nitions 4 and 5 agree in the preceding example and in many others, butthey do not always agree, as the following examples show.Example A.2 In this example, we illustrate the behaviors of the two de�nitionswith respect to \re
exive" causal laws of the form �) �. LetS = f:p;:qgE = fpgD = ;:According to both De�nitions 4 and 5, the unique possible next state is fp;:qg.However, if we change the example by adding to D the static causal law q) q, thetwo de�nitions yield di�erent results. LetS = f:p;:qgE = fpgD0 = fq) qg:According to De�nition 5, there is still the same unique possible next state,Res5D(E; S) = ffp;:qgg:However, according to De�nition 4 there is now a second possibility,Res4D0(E; S) = ffp;:qg; fp; qgg: 3159

Example A.3 The following example, which is due to Hudson Turner (personalcommunication), illustrates the fact that De�nition 4 possesses a certain disjunctionproperty that De�nition 5 lacks.S = f:p;:qgE = fqgD = fTrue) (p � q)g:According to both De�nitions 4 and 5, the unique possible next state is fp; qg.However, if we modify the example, replacing D by D0 below, we �nd di�erentresults. Let S = f:p;:qgE = fqgD0 = fp) (p � q);:p) (p � q)g:According to De�nition 4, there is the same unique possible next state,Res4D0(E; S) = ffp; qgg:So Res4D(E; S) = Res4D0(E; S). According to de�nition 5, on the other hand, thereis no possible next state, Res5D(E; S) = ;:So Res5D(E; S) 6= Res5D0(E; S). 3Intuitively, the behavior of De�nition 4 in the preceding examples is com-patible with reading �) as: in every state in which � is true, is caused tobe true, or �'s being true (in a state) causes to be true (in the same state). Thebehavior of De�nition 5, on the other hand, is intuitively incompatible with thesereadings. Instead, De�nition 5 supports the reading: necessarily, if � is caused tobe true (in a state) then is caused to be true (in the same state). In order to160

test these intuitions, the reader is encouraged to apply the di�erent readings to thestatic causal laws in Examples A.2 and A.3 and to ask himself in each case whatintuitively follows about the possible next states.A.1.2 Formal ConnectionsIn this section, we investigate the relationship between De�nitions 4 and 5 moreprecisely.The following proposition and corollary show that, according to De�nition 5,the possible next states always di�er minimally from the initial state among thestates that satisfy the explicit e�ect. This property is not possessed by De�nition 4,as is shown in Example A.2.Proposition A.1 [McCain and Turner, 1995]. Let D be a set of inference rules,and B = f� � : �) 2 Dg. For every state S and explicit e�ect E,Res5D(E; S)� Res3B(E; S).Corollary A.1 Let D and B be as in Proposition A.1. For every state S andexplicit e�ect E, the states in Res5D(E; S) di�er minimally from S (as de�ned by setinclusion) among the states that satisfy E.Proof. By the Propositions A.1 and 3.1, we know that Res5D(E; S)� ResWB (E; S).Since, by de�nition, every state in ResWB (E; S) di�ers minimally from S among thestates that satisfy E, the same is true of Res5D(E; S). 2The following proposition shows that the set of possible next states accordingto De�nition 5 is always a subset of the set of possible next states according toDe�nition 4.Proposition A.2 For any state S, explict e�ect E, and set D of static causal laws,Res5D(E; S)� Res4D(E; S). 161

Proof. Suppose S 0 2 Res5D(E; S). ThenS 0 = fL : (S \ S 0) [E `D Lg: (A.1)It follows thatDS0 = f : for some �, �) 2 D and (S \ S 0) [E `D �g:So S0 = fL : (S \ S 0) [E [DS0 j= Lg:Therefore, S0 2 Res4D(E; S). 2The containment relation described in Proposition A.2 does not, in general,hold in the opposite direction. It does so, however, in special cases. This is shownby the following proposition, where we direct our attention to a set of static causallaws only if (i) it belongs to the class of objective programs (so all of its laws havethe form B) L, where B is a conjunction of literals and L is a literal), and (ii) itsatom dependency graph contains no in�nite paths. (The atom dependency graphof an objective program is de�ned in Section 8.2.2.) Notice that the explicit e�ectis required to be a set of literals.Proposition A.3 Let D be a set of static causal laws that belongs to the class ofobjective programs. If the atom dependency graph for D contains no in�nite paths,then for every state S and set E of literals, Res4D(E; S) = Res5D(E; S).Proof. By Proposition A.2, we know that Res5D(E; S) � Res4D(E; S). To showinclusion in the opposite direction, let us suppose that S0 2 Res4D(E; S). ThenS0 = fL : (S \ S 0) [E [DS0 j= Lg: (A.2)We wish to show that S0 2 Res5D(E; S), i.e., thatS 0 = fL : (S \ S 0) [E `D Lg:162

By (A.2), we know that fL : (S \ S 0) [E `D Lg � S 0:To prove that S 0 � fL : (S \ S 0) [E `D Lgwe proceed by contradiction. Suppose there exists a literal L1 2 S0 such that(S \ S 0) [E 6`D L1. By (A.2), we know that (S \ S 0) [E [DS0 j= L1. It followsthat L1 2 DS0 . Thus, for some conjunction of literals B1 there exists a static causallaw B1) L1 2 D such that S 0 j= B1 and (S \ S 0) [E 6`D B1. It follows that forsome literal conjunct L2 in B1, L2 2 S0 but (S \ S0) [E 6`D L2. The precedingargument can be repeated inde�nitely to show the existence of similar literals L3,L4, and so on. This contradicts our assumption that there are no in�nite paths inthe atom dependency graph of D. We conclude that there is no literal L 2 S0 suchthat (S \ S 0) [E 6`D L. Thus, S0 � fL : (S \ S 0) [E `D Lg. 2In Example 3.10, we observed that the presence of loops in a set of staticcausal laws (for example, as occurs in :Up(A)) Up(B) and Up(B)) :Up(A))could lead, by De�nition 4, to the possibility of spontaneous change. The follow-ing proposition shows that spontaneous change is impossible under the conditionsdescribed in Proposition A.3.Proposition A.4 Let D be a set of static causal laws that belongs to the class ofobjective programs. If the atom dependency graph for D contains no in�nite paths,then for every state S, Res4D(;; S) = fSg.Proof. Let S be a state. It is clear that S = fL : (S \ S) [; [DS j= Lg. So weknow that S 2 Res4D(;; S). By Proposition A.3 and Corollary A.1, every state inRes4D(;; S) di�ers minimally from S among the states that satisfy ;. It follows thatRes4D(;; S) contains no state other than S. 2163

A.2 A Modal Generalization of Causal TheoriesIn this section, we de�ne a system of modal logic called CEL (for Causal ExplanationLogic) and an embedding of causal theories into CEL.In de�ning the semantics of causal theories in Chapter 5, we de�ned thenotion of a causally explained interpretation, but we did not specify truth conditionsfor causal laws. This de�ciency is remedied by the above-mentioned embedding. Wewill see that the truth conditions for causal laws given by the embedding conformto the weaker of the two readings for causal laws that we have used throughout thisdissertation. The ideas in this chapter are the product of joint work with HudsonTurner. CEL is related to the work of Ge�ner [1990, 1992].A.2.1 CEL: Causal Explanation LogicCEL is obtained by augmenting S5 modal logic by a de�nition of the causally ex-plained interpretations. We begin by brie
y reviewing the syntax and semantics ofS5 modal logic.A propositional modal language is given by a set of atoms. The formulas ofthe language are inductively de�ned as follows:� an atom is a formula,� if � and are formulas, then � ^ is a formula, and� if � is a formula, then both :� and C� are formulas.Here C is the modal necessity operator. The other standard propositional connec-tives (_, �, and �) are introduced by abbreviations in the usual way.An S5 structure is a pair (I; S), where I is an interpretation (of the set ofatoms) and S is a set of interpretations such that I 2 S. We continue to identifyan interpretation I with the set of literals L such that I j= L. Truth in a structure164

is de�ned as follows. (Here � and are arbitrary formulas.)(I; S) j= A i� A 2 I; if A is an atom;(I; S) j= :� i� (I; S) 6j= �;(I; S) j= � ^ i� (I; S) j= � and (I; S) j= ;(I; S) j= C� i� for all I 0 2 S; (I 0; S) j= �Given an S5 theory T , we write (I; S) j= T to mean that (I; S) j= �, forevery � 2 T . In this case, we say that (I; S) is a model of T . We also say that (I; S)is an I-model of T , emphasizing the distinguished interpretation I .The following de�nition was �rst formulated by Hudson Turner. An inter-pretation I is causally explained according to a CEL theory T if for every set S ofinterpretations (I; S) j= T i� S = fIg:This means that (I; fIg) is the unique I-model of T .An alternative characterization of the causally explained interpretations isgiven by the following proposition.Proposition A.5 An interpretation I is causally explained according to a CELtheory T if and only if I = fL : T [I j= CLg:Proof. For the left-to-right direction, suppose that for every set S of interpretations(I; S) j= T i� S = fIg: (A.3)Every model of T [I has the form (I; S0), where S 0 is a set of interpretations thatcontains I . By (A.3), there is only one such model, (I; fIg). It follows that L 2 I165

if and only if T [I j= CL. Therefore, I = fL : T [I j= CLg. For the right-to-leftdirection, suppose that I = fL : T [I j= CLg: (A.4)In order to show that I is causally explained according to T , let S be a set ofinterpretations, and suppose (I; S) j= T . We will show that S = fIg. It follows that(I; S) j= T [I . By (A.4), T [I j= CL, for every L 2 I . Therefore, we know that forall L 2 I , (I; S) j= CL. So S = fIg. Now for the opposite direction, suppose thatS = fIg. We will show that (I; S) j= T . Suppose instead that (I; fIg) 6j= T . Then(I; fIg) 6j= T [I . By (A.4), we know that T [I has a model. So it must have theform (I; S 0), for some S0 other than fIg. Thus, there is a literal L 2 I such thatT [I 6j= CL, which contradicts (A.4). We conclude that (I; S) j= T . 2A.2.2 A Modal Encoding for Causal LawsA causal law can be encoded in CEL by the formula� � C :Intuitively, (A.5) says that: if � then the fact that is caused . This reading doesnot capture the necessity of causal laws. However, if we use CEL only to expresspropositions that are true in all possible worlds (that is, if we use CEL as an actiondescription language, not also as an action query language), then we can safely read(A.5) instead as: necessarily, if � then the fact that is caused. This is the weakerof our two readings for �) .A.2.3 CEL and Causal TheoriesWe have described when an interpretation I is causally explained in two di�erentframeworks. In the language of causal theories, an interpretation I is causallyexplained according to a causal theory D if I is the unique model of DI . Here166

\model" is understood in the sense of propositional logic. In CEL, an interpretationI is causally explained according to a CEL theory T if (I; fIg) is the unique I-modelof T . Here \model" is understood instead in the sense of S5 modal logic. In thissection, we show, under the modal encoding de�ned in Section A.2.2, that the twode�nitions agree.Let D be a causal theory. We de�neT (D) = f� � C : �) 2 Dg:Ge�ner [1990, 1992] used the same representation of causal knowledge, but in themodal logic T rather than S5.Proposition A.6 An interpretation I is causally explained according to a causaltheory D if and only if I is causally explained according to T (D).The proof of this proposition is given below, using the following lemmas.Lemma A.1 For every causal theory D and interpretation I, I j= DI if and onlyif (I; fIg) j= T (D).Proof. For the left-to-right direction, suppose (I; fIg) 6j= T (D). Then there is aformula � � C in T (D) such that (I; fIg) 6j= � � C . It follows that I j= � butI 6j= . We know that �) is in D. Since I j= �, is in DI . Since I 6j= ,I 6j= DI . For the right-to-left direction, suppose I 6j= DI . Then there is a causal law�) in D such that I j= � but I 6j= . We know that the formula � � C is inT (D). Therefore, (I; fIg) 6j= T (D). 2Lemma A.2 Let D be a causal theory and I be an interpretation such that I j= DI .There is no interpretation I 0 such that I 0 6= I and I 0 j= DI if and only if there is noset S of interpretations such that S 6= fIg and (I; S) j= T (D).Proof. For the left-to-right direction, suppose there is a set S of interpretationssuch that S 6= fIg and (I; S) j= T (D). Then for some I 0 in S such that I 0 6= I and167

for all formulas � � C in T (D), if I j= � then I 0 j= . It follows that I 0 j= DI .For the right-to-left direction, suppose there is an interpretation I 0 such that I 0 6= Iand I 0 j= DI . By hypothesis, I j= DI . Therefore, (I; fI; I 0g) j= T (D). So there is aset S of interpretations such that S 6= fIg and (I; S) j= T (D). 2Proof (of Proposition A.6). We will show that: I is the unique model of DI ifand only if (I; fIg) is the unique I-model of T (D). (Let us call this proposition X .)By Lemma A.1, we know that I j= DI if and only if (I; fIg) j= T (D). So if I 6j= DI ,we are done (both sides of proposition X are false). So let us assume that I j= DI .By Lemma A.1, we know that (I; fIg) j= T (D). Thus, proposition X follows byLemma A.2. 2It follows by Proposition A.6 that every causal theory can be equivalentlyrepresented as a theory in CEL. The same does not hold in reverse, however, sincein CEL we can write formulas of other forms than � � C . This possibility raisesthe following question: Is the additional expressiveness of CEL useful in formalizingaction domains? This is a topic for future research.1
1Hudson Turner has explored some possible uses for the additional expressiveness of CEL in hisrecent dissertation [Turner, 1997a]. 168

Appendix BThe Program Listing/* File: satp.plLanguage: SICStus Prolog (Release 3)Date: 12/24/96Author: Norman C. McCainThis program uses the satisfiability checker 'ntab' (previouslyknown as 'tableau'), of Crawford and Auton (AAAI-93) tosolve query answering and planning problems (in thestyle of Kautz and Selman (ECAI 92)) with respect to L_{CL}objective programs.The three main user level procedures are:load_file(+Filename): reads in an objective program andasserts its literal completion in clausal form intothe Prolog database.query: prompts for facts Gamma and a query Q and usingthe literal completion of the objective program(previously loaded by load_file/1) determineswhether lcomp(D) \cup Gamma \cup -Q is satisfiable.plan: prompts for facts Gamma about the initial stateand a goal G and usingthe literal completion of the objective program(previously loaded by load_file/1) determineswhether lcomp(D) \cup Gamma \cup G is satisfiable.169

See Chapter 9 for additional details. */:- use_module(library(lists)).:- use_module(library(ordsets)).:- use_module(library(system)).:- op(1150,fx,declare_types).:- op(1150,fx,declare_variables).:- op(700,xfx,'..').:- op(1150,xfx,<-).:- op(1150,fx,<-).:- op(1170,xfx,where).:- op(1000,xfy,&).:- op(1155,xfx,<->).:- dynamic'foo'/1, 'num'/1, (<-)/2, type/2, var/2, atom/2,clause/1, display_list/1.%%% load_file/1 %%%load_file(File) :-write('% loading file '), absolute_file_name(File,A),write(A), nl, ttyflush,expand_file(File),write('% '),count_atoms(N), write(N), write(' atoms, '),count_rules(R), write(R), write(' rules, '),ttyflush, assert_law_clauses,count_clauses(M), write(M), write(' clauses loaded.').expand_file(File) :-init, seen, see(File), read_pass, seen.read_pass :-read_fail_loop.read_pass :-find_atom(N,true), assertz((N<-[])),find_atom(M,false), C is 0-M, assertz((C<-[])).read_fail_loop :- 170

repeat,read_term(Term,[variable_names(Names)]),((Term = (H<-B where Tests) ;Term = (H<-B), Tests = true ;Term = (<- B where Tests), H = false ;Term = (<- B), H = false, Tests = true)-> process_rule((H<-B where Tests),Names); Term = (:- declare_types B)-> process_types(B),enumerate_atoms; Term = (:- declare_variables B)-> bind_vars_to_names(Names),process_variables(B); Term = (:- Com)-> call(Com) % other directives; Term == end_of_file-> !, fail; nl, write('unexpected input: '), write(Term), nl),fail.init :- seen, told,retractall(type(_ ,_)),retractall(var(_,_)),retractall(atom(_,_)),retractall((_<-_)),retractall(clause(_)),retractall('num'(_)),retractall(display_list(_)).process_types((A,B)) :-!, process_types(A), process_types(B).process_types(type(time,Cs)) :-!,(Cs = [X..Y]-> expand_times(X,Y,Es) ; Es = Cs),assertz(type(time,Es)).process_types(type(Type,Cs)) :-expand_list(Cs,Es), assertz(type(Type,Es)).enumerate_atoms :-type(atom,As), member(A,As), next_num(N), assertz(atom(N,A)),fail. 171

enumerate_atoms :-next_num(M), assertz(atom(M, true)),next_num(N), assertz(atom(N,false)).expand_times(S,S,[S]) :-!.expand_times(S,T,[S|Ts]) :-S1 is S + 1, expand_times(S1,T,Ts).expand_list([C|Cs],Fs) :-subst_vars_for_type_names(C,D,Vs),retractall('foo'(_)),(bind_vars_to_terms(Vs),assertz('foo'(D)),fail; findall(D,'foo'(D),Ds),expand_list(Cs,Es), append(Ds,Es,Fs)).expand_list([],[]).subst_vars_for_type_names(C,D,Vs) :-atom(C),!,(type(C,Cs) -> Vs = [D/Cs] ; D = C, Vs = []).subst_vars_for_type_names(C,D,Vs) :-functor(C,F,N),functor(D,F,N),subst_vars_for_type_names_arg(C,N,D,Vs).subst_vars_for_type_names_arg(_C,0,_D,[]) :-!.subst_vars_for_type_names_arg(C,N,D,Vs) :-arg(N,C,A),subst_vars_for_type_names(A,B,Xs),arg(N,D,B),M is N-1,subst_vars_for_type_names_arg(C,M,D,Ys),append(Xs,Ys,Vs).bind_vars_to_terms([V/Cs|Vs]) :-member(V,Cs), bind_vars_to_terms(Vs).bind_vars_to_terms([]). 172

process_variables((A,B)) :-!, process_variables(A), process_variables(B).process_variables(var(V,S)) :-(list(S)-> Cs = S; type(S,Cs)),(list(V)-> assert_variables(V,Cs); assertz(var(V,Cs))).bind_vars_to_names([=(Var,Var)|Names]) :-bind_vars_to_names(Names).bind_vars_to_names([]).list([_|_]). list([]).assert_variables([],_Cs).assert_variables([V|Vs],Cs) :-assertz(var(V,Cs)), assert_variables(Vs,Cs).process_rule((H<-B where Tests),Names) :-listify(B,Bs),bind_vars(Names),(call(Tests)-> eval_time(H,H1),eval_times(Bs,Bs1),number_lit(H1,N),number_lits(Bs1,Ns),assertz((N<-Ns))),fail.process_rule(_,_).bind_vars([=(Name,Var)|Bs]) :-(var(Name,Cs) -> member(Var,Cs) ; true),bind_vars(Bs).bind_vars([]).eval_times([L|Ls],[L1|Ls1]) :-eval_time(L,L1), eval_times(Ls,Ls1).eval_times([],[]). 173

eval_time(o(A,T),o(A,T1)) :-!, T1 is T.eval_time(-o(A,T),-o(A,T1)) :-!, T1 is T.eval_time(h(A,T),h(A,T1)) :-!, T1 is T.eval_time(-h(A,T),-h(A,T1)) :-!, T1 is T.eval_time(L,L).assert_law_clauses :-atom(N,H), C is 0-N,(H = true-> assertz(clause([N])),findall(Ms,(N<-Ms),Nss),member_of_each(Ns,Nss),assert_clause([C|Ns]),fail; H = false-> assertz(clause([C])),findall(Ms,(N<-Ms),Nss),member(Ns,Nss),negate_lits(Ns,Cs),assert_clause([N|Cs]),fail; (findall(Ms,(N<-Ms),Nss),(member(Ns,Nss),negate_lits(Ns,Cs),assert_clause([N|Cs]),fail; member_of_each(Ns,Nss),assert_clause([C|Ns]),fail); findall(Ms,(C<-Ms),Nss),(member(Ns,Nss),negate_lits(Ns,Cs),assert_clause([C|Cs]),fail; member_of_each(Ns,Nss),assert_clause([N|Ns]),fail))).assert_law_clauses. 174

assert_clauses([C|Cs]) :-assert_clause(C), assert_clauses(Cs).assert_clauses([]).assert_clause(Ns) :-sort(Ns,Cs),(eliminable(Cs) -> true; assertz(clause(Cs))).eliminable(Cs) :-find_atom(N,true), ord_member(N,Cs),Cs \== [N].eliminable(Cs) :-find_atom(N,false), M is (0-N), ord_member(M,Cs),Cs \== [M].eliminable(Cs) :-tautology(Cs).tautology([N|_Ns]) :-N>0, !, fail.tautology([N|Ns]) :-M is (0-N),(ord_member(M,Ns)-> true; tautology(Ns)).listify(true,[]) :-!.listify((A,B),[A|Bs]) :-!, listify(B,Bs).listify(A,[A]).member_of_each([N|Rs],[Ns|Nss]) :-member(N,Ns), member_of_each(Rs,Nss).member_of_each([],[]).negate_lits([N|Ns],[C|Cs]) :-C is 0-N, negate_lits(Ns,Cs).negate_lits([],[]).number_lits([L|Ls],[M|Ms]) :-number_lit(L,M), number_lits(Ls,Ms).175

number_lits([],[]).number_lit(-A,N) :-!, find_atom(M,A), N is 0-M.number_lit(A,N) :-find_atom(N,A).find_atom(N,A) :- atom(N,A), !.next_num(I) :-retract('num'(N)),!, I is N+1,assert('num'(I)).next_num(1) :-assert('num'(1)).last_num(N) :- 'num'(N), ! ; N = 0.%%% query/0 %%%query :-write('enter facts (then ctrl-d)'),nl,read_facts(Facts),clausify_list(Facts,FCs),nl,write('enter query'),nl,read_query(Query),clausify(-Query,QCs),told,tell('ntab.in'),write_law_clauses,write_clauses(FCs),write_clauses(QCs),told,ntab_call(Call),system(Call),seen,see('ntab.out'),read_line(Ans),(atom_chars('UNSAT',Ans)176

-> seen; read_line(_),read_line(Chars),seen,get_numbers(Chars,Model),display_model(Model), fail).ntab_call(Call) :-count_atoms(N), M is N+1,name(M,Cs),append("ntab -p -v",Cs,Half),append(Half," <ntab.in >ntab.out",Whole),name(Call,Whole).%%% plan/0 %%%plan :- write('enter facts (then ctrl-d)'),nl,read_facts(Facts),clausify_list(Facts,FCs),nl,write('enter goal'),nl,read_query(Goal),clausify(Goal,GCs),told,tell('ntab.in'),write_law_clauses,write_clauses(FCs),write_clauses(GCs),told,ntab_call(Call),system(Call),seen,see('ntab.out'),read_line(Ans),(atom_chars('UNSAT',Ans)-> seen, fail; read_line(_),read_line(Chars),seen, 177

get_numbers(Chars,Model),display_model(Model),nl, nl,write('Verify plan? '),get(X), skip_line,(X = 0'y-> extract_plan(Model,PCs),clausify(-Goal,QCs),verify_plan(FCs,PCs,QCs); true)).verify_plan(FCs,PCs,QCs) :-told,tell('ntab.in'),write_law_clauses,write_clauses(FCs),write_clauses(PCs),write_clauses(QCs),told,ntab_call(Call),system(Call),seen,see('ntab.out'),read_line(Ans),(atom_chars('UNSAT',Ans)-> seen, write('plan verified.'),nl; write('verification failed.'), nl,read_line(_),read_line(Chars),seen,get_numbers(Chars,Model),display_model(Model), nl, !, fail).extract_plan(Model,PCs) :-findall([M],(atom(N,o(_A,_T)),(member(N,Model) -> M = N ; M is 0-N)),PCs).read_facts(Facts) :-findall(Fact,(repeat, 178

read_fact(Fact),(Fact == end_of_file -> !, fail; true)),Facts).read_fact(Fact) :-read_term(Term,[variable_names(Names)]),(Term == end_of_file-> !, Fact = end_of_file; (Term = (Wff where Tests);Term = Wff, Tests = true)-> bind_vars(Names),call(Tests),number_atoms(Wff,Fact)).read_query(Fact) :-read_term(Term,[variable_names(Names)]),(Term == end_of_file-> !, read_query(Fact); (Term = (Wff where Tests);Term = Wff, Tests = true)-> bind_vars(Names),call(Tests),number_atoms(Wff,Fact)).number_atoms((A <-> B),(M <-> N)) :-!,number_atoms(A,M), number_atoms(B,N).number_atoms((A -> B),(M -> N)) :-!,number_atoms(A,M), number_atoms(B,N).number_atoms((A & B),(M & N)) :-!,number_atoms(A,M), number_atoms(B,N).number_atoms((A | B),(M | N)) :-!,number_atoms(A,M), number_atoms(B,N).number_atoms(-A,-M) :-!, number_atoms(A,M).number_atoms(A,M) :-eval_time(A,B), find_atom(M,B).clausify_list([W|Ws],Cs) :- 179

clausify(W,Cs1),clausify_list(Ws,Cs2),append(Cs1,Cs2,Cs).clausify_list([],[]).clausify(W,Cs) :-move_negations(W,W1),distribute(W1,W2),clause_list(W2,Cs).move_negations(A,A1) :-iff_1(A,A2),!,move_negations(A2,A1).move_negations((A & B),(A1 & B1)) :-!,move_negations(A,A1),move_negations(B,B1).move_negations((A | B),(A1 | B1)) :-!,move_negations(A,A1),move_negations(B,B1).move_negations(-A,N) :-!, N is 0 - A.move_negations(A,A).iff_1(- (A <-> B),((A & -B) | (-A & B))).iff_1((A <-> B),((-A | B) & (-B | A))).iff_1(- (A -> B),(A & -B)).iff_1((A -> B),(-A | B)).iff_1(- (A & B),(-A | -B)).iff_1(- (A | B),(-A & -B)).iff_1(- (-A),A).distribute((A | B),R) :-!,distribute(A,A1),distribute(B,B1),(A1 = (P & Q)-> dist1((P | B1),D1),dist1((Q | B1),D2),R = (D1 & D2) 180

; B1 = (P & Q)-> dist1((A1 | P),D1),dist1((A1 | Q),D2),R = (D1 & D2); R = (A1 | B1)).distribute((A & B),(A1 & B1)) :-!,distribute(A,A1),distribute(B,B1).distribute(A,A).dist1((A | B),R) :-(A = (P & Q)-> dist1((P | B),D1),dist1((Q | B),D2),R = (D1 & D2); B = (P & Q)-> dist1((B | P),D1),dist1((B | Q),D2),R = (D1 & D2); R = (A | B)).clause_list((A & B),Cs) :-!,clause_list(A,As),clause_list(B,Bs),append(As,Bs,Cs).clause_list(A,[As]) :-literal_list(A,As).literal_list((A | B),Ls) :-!,literal_list(A,As),literal_list(B,Bs),append(As,Bs,Ls).literal_list(A,[A]).write_law_clauses :-clause(Cs), write_clause(Cs), nl, fail.write_law_clauses. 181

write_clauses([C|Cs]) :-write_clause(C), nl, write_clauses(Cs).write_clauses([]).write_clause([L|Ls]) :-write(L), write(' '), write_clause(Ls).write_clause([]).report(Model) :-seen, see('ntab.out'),read_line(Ans),(atom_chars('UNSAT',Ans)-> write('UNSAT'), nl, Model = none; write('SAT'),read_line(_),read_line(Model),get_numbers(Model,Ns),display_model(Ns), nl),seen.read_line([]) :-at_end_of_line, skip_line, !.read_line([C|Cs]) :-get0(C), read_line(Cs).get_numbers(String,Nums) :-drop_spaces(String,NewS),(NewS = []-> Nums = []; get_number(NewS,Num,Rest),Nums = [Num|Nums1],get_numbers(Rest,Nums1)).drop_spaces([C|Cs],Cs1) :-(C = 32 -> drop_spaces(Cs,Cs1) ; Cs1 = [C|Cs]).drop_spaces([],[]).get_number(String,Num,Rest) :-get_until(String,[32,10],Chars,Rest),number_chars(Num,Chars).get_until([Char|Cs],Delimiters,[],Cs) :-182

member(Char,Delimiters), !.get_until([C|Cs],Delimiters,[C|Chars],Rest) :-get_until(Cs,Delimiters,Chars,Rest).get_until([],_,[],[]).display_model(Ns) :-display_literals(Ls),(type(action,As) -> true; As = []),(type(event,Es) -> true; Es = []),(type(fluent,Fs) -> true; Fs = []),(type(time,Ts) -> true; Ts = []),member(T,Ts),nl,(nl, write(T), write('. '),member(F,Fs),find_atom(N,h(F,T)),(member(N,Ns)-> (member(F,Ls)-> write(' '), write(F), write(' '), fail); (member(-F,Ls)-> write('-'), write(F), write(' '), fail)); findall(E,(member(E,Es),find_atom(N,o(E,T)),member(N,Ns)),Es1),(Es1 \== []-> nl, write('Events: '),(member(E,Es1), write(E), write(' '), fail)); findall(A,(member(A,As),find_atom(N,o(A,T)),member(N,Ns)),As1),nl, write('Actions: '),(member(A,As1), write(A), write(' '), fail)).display_model(_).count_atoms(N) :- findall(x,atom(_,_),S), length(S,N).count_rules(N) :- findall(x,(_<-_),S), length(S,N).count_clauses(N) :- findall(x,clause(_),S), length(S,N).display_literals(V) :-var(V),!,(display_list(V) 183

-> true; display_literals(all), display_list(V)).display_literals(all) :-!,retractall(display_list(_)),type(fluent,Fs),complement_list(Fs,Ls),append(Fs,Ls,Zs),assert(display_list(Zs)).display_literals(positive) :-!,retractall(display_list(_)),type(fluent,Fs),assert(display_list(Fs)).display_literals(Ls) :-retractall(display_list(_)),assert(display_list(Ls)).complement_list([F|Fs],[G|Gs]) :-comp(F,G),complement_list(Fs,Gs).complement_list([],[]).comp(-F,F) :-!.comp(F,-F).
184

Bibliography[Apt and Bezem, 1990] Krzysztof Apt and Marc Bezem. Acyclic programs. In DavidWarren and Peter Szeredi, editors, Logic Programming: Proc. of the Seventh Int'lConf., pages 617{633, 1990.[Apt et al., 1988] Krzysztof Apt, Howard Blair, and Adrian Walker. Towards atheory of declarative knowledge. In Jack Minker, editor, Foundations of DeductiveDatabases and Logic Programming, pages 89{148. Morgan Kaufmann, San Mateo,CA, 1988.[Baker, 1989] Andrew Baker. A simple solution to the Yale Shooting Problem. InRonald Brachman, Hector Levesque, and Raymond Reiter, editors, Proc. of theFirst Int'l Conf. on Principles of Knowledge Representation and Reasoning, pages11{20, 1989.[Baker, 1991] Andrew Baker. Nonmonotonic reasoning in the framework of situationcalculus. Arti�cial Intelligence, 49:5{23, 1991.[Baral and Gelfond, 1993] Chitta Baral and Michael Gelfond. Representing concur-rent actions in extended logic programming. In Proc. of IJCAI-93, pages 866{871,1993.[Baral et al., 1995] Chitta Baral, Michael Gelfond, and Alessandro Provetti. Repre-senting actions I: (Laws, observations and hypotheses). In Working Notes: AAAI185

Spring Symposium on Extending Theories of Action: Formal Theory and PracticalApplications, pages 17{22, 1995.[Baral, 1995] Chitta Baral. Reasoning about actions: non-deterministic e�ects, con-straints, and quali�cation. In Proc. of IJCAI-95, pages 2017{2023, 1995.[Boutilier and Friedman, 1995] Craig Boutilier and Nir Friedman. Nondeterministicactions and the frame problem. In Working Notes: AAAI Spring Symposium onExtending Theories of Action: Formal Theory and Practical Applications, pages39{44, 1995.[Brewka and Hertzberg, 1993] Gerhard Brewka and Joachim Hertzberg. How todo things with worlds: On formalizing actions and plans. Journal of Logic andComputation, 3(5), 1993.[Burks, 1951] Arthur W. Burks. The logic of causal propositions. Mind, 60:363{382,1951.[Carnap, 1947] Rudolph Carnap. Meaning and Necessity. University of ChicagoPress, Chicago, Ill., 1947.[Chellas, 1971] Brian. Chellas. Imperatives. Theoria, 37:114{129, 1971.[Clark, 1978] Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker,editors, Logic and Data Bases, pages 293{322. Plenum Press, New York, 1978.[Crawford and Auton, 1993] J.M. Crawford and L.D. Auton. Experimental resultson the cross-over point in satis�ability problems. In Proc. AAAI-93, pages 21{27,1993.[Crawford and Etherington, 1992] James Crawford and David Etherington. Formal-izing reasoning about change: A qualitative reasoning approach. In Proc. AAAI-92, pages 577{583, 1992. 186

[Davidson, 1980] Donald. Davidson. Agency. In Donald Davidson, editor, Essayson Actions and Events, pages 43{62. Oxford University Press, 1980.[Davis and Putnam, 1960] M Davis and H. Putnam. A computing procedure forquanti�cation theory. J. ACM, 7(3):201{215, 1960.[Denecker and De Schreye, 1993] Marc Denecker and Danny De Schreye. Repre-senting incomplete knowledge in abductive logic programming. In Dale Miller,editor, Logic Programming: Proceedings of the 1993 Int'l Symposium, pages 147{163, 1993.[Elkan, 1992] Charles Elkan. Reasoning about action in �rst-order logic. In Proc. ofthe 1992 Canadian Conf. on Arti�cial Intelligence, 1992.[Fages, 1994] Fran�cois Fages. Consistency of Clark's completion and existence ofstable models. Journal of Methods of Logic in Computer Science, 1:51{60, 1994.[Faye et al., 1994] J. Faye, U. Sche�er, and Urchs M. Logic and Causal Reasoning.Akademie Verlag, Berlin, 1994.[Fikes and Nilsson, 1971] Richard Fikes and Nils Nilsson. STRIPS: A new approachto the application of theorem proving to problem solving. Arti�cial Intelligence,2(3{4):189{208, 1971.[Ge�ner, 1989] Hector Ge�ner. Default reasoning, minimality and coherence. InRonald Brachman, Hector Levesque, and Raymond Reiter, editors, Proc. of theFirst Int'l Conf. on Principles of Knowledge Representation and Reasoning, pages137{148, 1989.[Ge�ner, 1990] Hector Ge�ner. Causal theories of nonmonotonic reasoning. InProc. AAAI-90, pages 524{530, 1990.[Ge�ner, 1992] Hector Ge�ner. Reasoning with defaults: causal and conditionaltheories. MIT Press, Cambridge, MA, 1992.187

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stablemodel semantics for logic programming. In Robert Kowalski and Kenneth Bowen,editors, Logic Programming: Proc. of the Fifth Int'l Conf. and Symp., pages 1070{1080, 1988.[Gelfond and Lifschitz, 1990] Michael Gelfond and Vladimir Lifschitz. Logic pro-grams with classical negation. In David Warren and Peter Szeredi, editors, LogicProgramming: Proc. of the Seventh Int'l Conf., pages 579{597, 1990.[Gelfond and Lifschitz, 1992] Michael Gelfond and Vladimir Lifschitz. Representingactions in extended logic programming. In Krzysztof Apt, editor, Proc. Joint Int'lConf. and Symp. on Logic Programming, pages 559{573, 1992.[Gelfond and Lifschitz, 1993] Michael Gelfond and Vladimir Lifschitz. Representingaction and change by logic programs. Journal of Logic Programming, 17:301{322,1993.[Gelfond et al., 1991a] Michael Gelfond, Vladimir Lifschitz, Halina Przymusi�nska,and Miros law Truszczy�nski. Disjunctive defaults. In James Allen, Richard Fikes,and Erik Sandewall, editors, Principles of Knowledge Representation and Rea-soning: Proc. of the Second Int'l Conf., pages 230{237, 1991.[Gelfond et al., 1991b] Michael Gelfond, Vladimir Lifschitz, and Arkady Rabinov.What are the limitations of the situation calculus? In Robert Boyer, editor,Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 167{179. KluwerAcademic, Dordrecht, 1991.[Gelfond, 1987] Michael Gelfond. On strati�ed autoepistemic theories. In Proceed-ings of AAAI-87, pages 207{211, 1987.[Gelfond, 1988] Michael Gelfond. Autoepistemic logic and formalization of com-monsense reasoning: preliminary report. In Proc. 2nd Int'l Workshop on Non-Monotonic Reasoning, pages 176{186, 1988.188

[Gibbard and Harper, 1981] Allan Gibbard and William L. Harper. Counterfactualsand two kinds of expected utility. In W.L Harper, R. Stalnaker, and G. Pearce,editors, Ifs: conditionals, belief, decision, chance, and time, pages 153{190. D.Reidel Publishing Company, Dordrecht, Holland, 1981.[Ginsberg and Smith, 1988a] Matthew L. Ginsberg and David E. Smith. Reasoningabout action I: a possible worlds approach. Arti�cial Intelligence, 35(2):165{195,1988.[Ginsberg and Smith, 1988b] Matthew L. Ginsberg and David E. Smith. Reasoningabout action II: the quali�cation problem. Arti�cial Intelligence, 35(3):311{342,1988.[Giunchiglia and Lifschitz, 1995] Enrico Giunchiglia and Vladimir Lifschitz. Depen-dent
uents. In Proc. IJCAI-95, pages 1964{1969, 1995.[Giunchiglia and Lifschitz, 1997] Enrico Giunchiglia and Vladimir Lifschitz. An ac-tion language based on causal logic. Unpublished manuscript, 1997.[Giunchiglia et al., 1995] Enrico Giunchiglia, G. Neelakantan Kartha, and VladimirLifschitz. Actions with indirect e�ects (extended abstract). In Working Notes ofthe Symposium on Extending Theories of Actions, 1995.[Goldman, 1970] Alvin I. Goldman. A theory of human action. Prentice-Hall, En-glewood Cli�s, N.J., 1970.[Grice, 1989] Paul Grice. Studies in the way of words. Harvard University Press,Cambridge, Mass., 1989.[Haas, 1987] Andrew Haas. The case for domain-speci�c frame axioms. In Frank M.Brown, editor, The Frame Problem in Arti�cial Intelligence, Proc. of the 1987Workshop, 1987. 189

[Hanks and McDermott, 1986] Steve Hanks and Drew McDermott. Default rea-soning, nonmonotonic logics, and the frame problem. In Proc. AAAI-86, pages328{333, 1986.[Hanks and McDermott, 1987] Steve Hanks and Drew McDermott. Nonmonotoniclogic and temporal projection. Arti�cial Intelligence, 33(3):379{412, 1987.[Herre and Wagner, 1996] Heinrich Herre and Gerd Wagner. Stable generated mod-els of generalized logic programs. This was a talk delivered at the DagstuhlSeminar 9627, Disjunctive Logic Programming and Databases: NonmonotonicAspects, July 1{5, 1996.[Je�rey, 1965] Richard C. Je�rey. The logic of decision. McGraw-Hill, New York,1965.[Kamp, 1979] J. A. W. Kamp. The logic of historical necessity, part I. unpublishedtypescript, 1979.[Kartha and Lifschitz, 1994] G. Neelakantan Kartha and Vladimir Lifschitz. Ac-tions with indirect e�ects (preliminary report). In Proc. of the Fourth Int'lConf. on Principles of Knowledge Representation and Reasoning, pages 341{350,1994.[Kartha, 1993] G. Neelakantan Kartha. Soundness and completeness theorems forthree formalizations of action. In Proc. of IJCAI-93, pages 724{729, 1993.[Kartha, 1995] G. Neelakantan Kartha. A mathematical investigation of reasoningabout actions. Dissertation, The University of Texas at Austin, 1995.[Kautz and Selman, 1992] Henry Kautz and Bart Selman. Planning as satis�ability.In J. Lloyd, editor, Proceedings of the 10th European Conference on Arti�cialIntelligence (ECAI 92), Vienna, Austria, 1992.190

[Kautz and Selman, 1996] Henry Kautz and Bart Selman. Pushing the envelope:planning, propositional logic, and stochastic search. In Proceedings of AAAI-96,1996.[Kautz, 1986] Henry Kautz. The logic of persistence. In Proc. of AAAI-86, pages401{405, 1986.[Kim, 1974] Jaegwon Kim. Noncausal connections. Noûs, 8:41{52, 1974.[Koons, 1995] Robert C. Koons. The logic of causation. Unpublished manuscript,1995.[Korf, 1985] Richard E. Korf. Depth-�rst iterative deepening: an optimal admissibletree search. Arti�cial Intelligence, 27:97{109, 1985.[Kowalski, 1974] Robert Kowalski. Predicate logic as a programming language. InJ.L. Rosenfeld, editor, Information Processing, 1974, pages 569{574. North Hol-land, 1974.[Lewis, 1973] David Lewis. Counterfactuals. Harvard University Press, Cambridge,Massachusetts, 1973.[Lewis, 1986a] David Lewis. Causal decision theory. In David Lewis, editor, Philo-sophical Papers, Volume II, pages 305{339. Oxford University Press, New York,1986.[Lewis, 1986b] David Lewis. A subjectivist's guide to objective chance. In DavidLewis, editor, Philosophical Papers, Volume II, pages 83{132. Oxford UniversityPress, New York, 1986.[Lifschitz and Rabinov, 1989] Vladimir Lifschitz and Arkady Rabinov. Things thatchange by themselves. In Proc. of IJCAI-89, pages 864{867, 1989.191

[Lifschitz, 1987] Vladimir Lifschitz. Formal theories of action. In Frank M. Brown,editor, The Frame Problem in Arti�cial Intelligence, Proc. of the 1987 Workshop,pages 35{58, 1987.[Lifschitz, 1990] Vladimir Lifschitz. Frames in the space of situations. Arti�cialIntelligence, 46:365{376, 1990.[Lifschitz, 1991] Vladimir Lifschitz. Towards a metatheory of action. In JamesAllen, Richard Fikes, and Erik Sandewall, editors, Proc. of the Second Int'lConf. on Principles of Knowledge Representation and Reasoning, pages 376{386,1991.[Lifschitz, 1994] Vladimir Lifschitz. Nested abnormality theories. Submitted forpublication, 1994.[Lifschitz, 1995] Vladimir Lifschitz. Two components of an action language. Un-published manuscript, 1995.[Lifschitz, 1996] Vladimir Lifschitz. Foundations of logic programming. In Prin-ciples of Knowledge Representation, volume 3, pages 69{127. CSLI publications,1996.[Lifschitz, 1997] Vladimir Lifschitz. A logic for causal reasoning. Unpublishedmanuscript, 1997.[Lin and Reiter, 1994] Fangzhen Lin and Raymond Reiter. State constraints revis-ited. Journal of Logic and Computation, Special Issue on Actions and Processes,4(5):655{678, 1994.[Lin, 1995] Fangzhen Lin. Embracing causality in specifying the indirect e�ects ofactions. In Proc. of IJCAI-95, 1995.[Manna and Waldinger, 1987] Zohar Manna and Richard Waldinger. How to cleara block: A theory of plans. Journal of Automated Reasoning, 3:343{377, 1987.192

[Marek and Truszczy�nski, 1994] W. Marek and M. Truszczy�nski. Revision speci�-cations by means of revision programs. In Logics in AI. Proceedings of JELIA'94. Lecture Notes in Arti�cial Intelligence. Springer-Verlag, 1994.[McAllester and Rosenblitt, 1991] David McAllester and David Rosenblitt. System-atic nonlinear planning. In Proc. AAAI-91, 1991.[McCain and Turner, 1995] Norman McCain and Hudson Turner. A causal theoryof rami�cations and quali�cations. In Proc. of IJCAI-95, pages 1978{1984, 1995.[McCain and Turner, 1997] Norman McCain and Hudson Turner. On relatingcausal theories to other formalisms. Unpublished manuscript, 1997.[McCarthy and Hayes, 1969] John McCarthy and Patrick Hayes. Some philosoph-ical problems from the standpoint of arti�cial intelligence. In B. Meltzer andD. Michie, editors, Machine Intelligence, volume 4, pages 463{502. EdinburghUniversity Press, Edinburgh, 1969. Reproduced in [McCarthy, 1990].[McCarthy, 1959] John McCarthy. Programs with common sense. In Proc. of theTeddington Conference on the Mechanization of Thought Processes, pages 75{91,London, 1959. Her Majesty's Stationery O�ce. Reproduced in [McCarthy, 1990].[McCarthy, 1963] John McCarthy. Situations, actions and causal laws. StanfordArti�cial Intelligence Project, Memo 2, 1963.[McCarthy, 1980] John McCarthy. Circumscription|a form of non-monotonic rea-soning. Arti�cial Intelligence, 13(1, 2):27{39,171{172, 1980. Reproduced in [Mc-Carthy, 1990].[McCarthy, 1986] John McCarthy. Applications of circumscription to formalizingcommon sense knowledge. Arti�cial Intelligence, 26(3):89{116, 1986. Reproducedin [McCarthy, 1990]. 193

[McCarthy, 1990] John McCarthy. Formalizing common sense: papers by John Mc-Carthy. Ablex, Norwood, NJ, 1990.[McDermott and Doyle, 1980] Drew McDermott and Jon Doyle. Nonmonotoniclogic I. Arti�cial Intelligence, 13(1,2):41{72, 1980.[Mendez et al., 1996] G. Mendez, J. Lobo, J. Llopis, and C. Baral. Temporal logicin action description languages. In M. Zelkowitz and P. Straub, editors, Proc. theXVI International Conference of the Chilean Computer Science Society, pages10{21, Valdivia, Chile, 1996.[Montague, 1968] Richard Montague. Pragmatics. In R. Klibansky, editor, Con-temporary Philosophy a Survey, pages 102{122. Florence, 1968.[Moore, 1985a] Robert Moore. A formal theory of knowledge and action. In J.R.Hobbs and R.C. Moore, editors, Formal Theories of the Commonsense World,pages 319{358. Ablex, Norwood, N.J., 1985.[Moore, 1985b] Robert Moore. Semantical considerations on nonmonotonic logic.Arti�cial Intelligence, 25(1):75{94, 1985.[Morris, 1988] Paul Morris. The anomalous extension problem in default reasoning.Arti�cial Intelligence, 35(3):383{399, 1988.[Pearl, 1988] Judea Pearl. Embracing causality in default reasoning. Arti�cial In-telligence, 35:259{271, 1988.[Pednault, 1987] Edwin Pednault. Formulating multi-agent, dynamic world prob-lems in the classical planning framework. In Michael George� and Amy Lansky,editors, Reasoning about Actions and Plans, pages 47{82. Morgan Kaufmann, SanMateo, CA, 1987.[Pednault, 1989] Edwin Pednault. ADL: Exploring the middle ground betweenSTRIPS and the situation calculus. In Ronald Brachman, Hector Levesque, and194

Raymond Reiter, editors, Proc. of the First Int'l Conf. on Principles of KnowledgeRepresentation and Reasoning, pages 324{332, 1989.[Reiter, 1980] Raymond Reiter. A logic for default reasoning. Arti�cial Intelligence,13(1,2):81{132, 1980.[Reiter, 1991] Raymond Reiter. The frame problem in the situation calculus: a sim-ple solution (sometimes) and a completeness result for goal regression. In VladimirLifschitz, editor, Arti�cial Intelligence and Mathematical Theory of Computation:Papers in Honor of John McCarthy, pages 359{380. Academic Press, 1991.[Robson, 1973] J. M. Robson. The Collected Works of John Stuart Mill. Univ. ofToronto Press, Toronto and Bu�alo, 1973.[Sandewall, 1992a] Erik Sandewall. Features and
uents. Oxford University Press,1992.[Sandewall, 1992b] Erik Sandewall. Features and
uents: A systematic approachto the representation of knowledge about dynamical systems. Technical ReportLiTH-IDA-R-92-30, Link�oping University, 1992.[Sandewall, 1995] Erik Sandewall. Systematic comparison of approaches to rami�-cation using restricted minimization of change. Technical Report LiTH-IDA-R-95-15, Link�oping University, 1995.[Scherl and Levesque, 1993] Richard B. Scherl and Hector Levesque. The frameproblem and knowledge-producing actions. In Proceedings of the AAAI NationalConference, pages 689{695, 1993.[Schubert, 1990] Lenhart Schubert. Monotonic solution of the frame problem in thesituation calculus: an e�cient method for worlds with fully speci�ed actions. InH.E. Kyburg, R. Loui, and G. Carlson, editors, Knowledge Representation andDefeasible Reasoning, pages 23{67. Kluwer, 1990.195

[Selman et al., 1994] B. Selman, H. Kautz, and B. Cohen. Noise strategies for localsearch. In Proceedings of AAAI-94, pages 337{343, Seattle, WA, 1994.[Shanahan, 1997] Murray Shanahan. Solving the frame problem: a mathematicalinvestigation of the common sense law of inertia. MIT Press, Cambridge, MA,1997.[Shoham, 1986] Yoav Shoham. Chronological ignorance: Time, nonmonotonicity,necessity and causal theories. In Proc. of AAAI-86, pages 389{393, 1986.[Shoham, 1987] Yoav Shoham. Reasoning about change. MIT Press, Boston, MA,1987.[Shoham, 1990] Yoav Shoham. Nonmonotonic reasoning and causation. CognitiveScience, 14:213{252, 1990.[Stalnaker, 1968] Robert C. Stalnaker. A theory of conditionals. American Philo-sophical Quarterly, 2:98{112, 1968.[Stalnaker, 1981] Robert C. Stalnaker. Letter to David Lewis. In W.L Harper,R. Stalnaker, and G. Pearce, editors, Ifs: conditionals, belief, decision, chance,and time, pages 153{190. D. Reidel Publishing Company, Dordrecht, Holland,1981.[Thielscher, 1994] Michael Thielscher. Representing actions in equational logic pro-gramming. In Proc. ICLP-94, pages 207{224, 1994.[Thielscher, 1995a] Michael Thielscher. Computing rami�cations by postprocessing.In Proc. of IJCAI-95, pages 1994{2000, 1995.[Thielscher, 1995b] Michael Thielscher. On the logic of dynamic systems. In Proc. ofIJCAI-95, pages 1956{1962, 1995.[Thielscher, 1996] Michael Thielscher. Rami�cation and causality. Technical ReportTR-96-003, International Computer Science Institute, 1996.196

[Turner, 1994] Hudson Turner. Signed logic program. In Logic Programming: Pro-ceedings of the 1994 International Symposium, pages 61{75, 1994.[Turner, 1996] Hudson Turner. Splitting a default theory. In Proceedings of AAAI-96, pages 645{651, 1996.[Turner, 1997a] Hudson Turner. Inference rules and causality in representations ofcommon sense reasoning about actions. Dissertation, The University of Texas atAustin, 1997.[Turner, 1997b] Hudson Turner. Representing actions in logic programs and defaulttheories: A situation calculus approach. Journal of Logic Programming, 31(1{3):245{298, 1997.[Van Belleghem et al., 1996] Kristof Van Belleghem, Marc Denecker, and DanieleDupr�e. Dependencies and rami�cations in an event-based language. Draft, sub-mitted, 1996.[van Emden and Kowalski, 1976] Maarten van Emden and Robert Kowalski. Thesemantics of predicate logic as a programming language. Journal of the ACM,23(4):733{742, 1976.[Van Gelder et al., 1990] Allen Van Gelder, Kenneth Ross, and John Schlipf. Thewell-founded semantics for general logic programs. Journal of ACM, pages 221{230, 1990.[von Wright, 1975] G. H. von Wright. The logic and the epistemology of the causalrelation. In Ernest Sosa, editor, Causation and Conditionals, pages 95{113. Ox-ford University Press, London, 1975.[Winslett, 1988] Marianne Winslett. Reasoning about action using a possible mod-els approach. In Proc. AAAI-88, pages 89{93, 1988.197

VitaNorman Clayton McCain was born in Spring�eld, Missouri on December 3, 1950,the son of Norman Clayton McCain, Sr. and Dorothy Lou McCain. After obtaininga B.A. degree in philosophy from Baker University, he �rst attended graduate schoolin philosophy at the University of Kansas and then worked in bookstores for someyears before returning to study computer science. After obtaining an M.S. degree incomputer science from the University of Kansas in 1982, he worked in the CentralResearch Lab at Texas Instruments in Dallas for three and half years. He beganthe Ph.D. program at the University of Texas at Austin in 1986 and was married toNancy Poteet Kaul in 1992. He has the following publications.Norman McCain and Hudson Turner. Causal Theories of Action and Change. Inthe Proceedings of AAAI-97, 1997. To appear.Norman McCain and Hudson Turner. A Causal Theory of Rami�cations and Qual-i�cations. In the Proceedings of the 1995 International Joint Conference on Arti-�cial Intelligence, pages 1978{1984, 1995. (A preliminary version appeared in theWorking Notes: AAAI Spring Symposium on Extending Theories of Action, pages130{135, 1995.)Vladimir Lifschitz, Norman McCain, Teodor Przymusinski, and Robert St�ark. LoopChecking and the Well-Founded Semantics, in Logic Programming and Non-Mono-tonic Reasoning: Proceedings of the Third International Conference, pages 127{142,198

1995.Norman McCain and Hudson Turner. Language Independence and Language Toler-ance in Logic Programs. In the Proceedings of the Eleventh International Conferenceon Logic Programming (Pascal Van Hentenryck, editor), pages 38{57, MIT Press,1994.Vladimir Lifschitz, Norman McCain, and Hudson Turner. Automated Reasoningabout Action: A Logic Programming Approach (abstract). In Logic Programming:Proceedings of the 1993 International Symposium (Dale Miller, editor), page 641,MIT Press, 1993.Aditya Srivastava and Norman McCain. The Explorer PROLOG Toolkit, in theTexas Instruments Engineering Journal , pages 93{107, Vol. 3, No. 1, 1986.Permanent Address: 812 Avondale Rd.Austin, TX 78704This dissertation was typeset with LATEX 2"1 by the author.
1LATEX2" is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark ofthe American Mathematical Society. The macros used in formatting this dissertation were writtenby Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.199

