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Abstract

First-literal hyper-resolution (FLH) is a refinement of ordinary hyper-resolution
in that positive clauses are only resolved upon their first literals. In this respect,
positive literals are ordered in every clause, but negative literals are not. Due to the
ordering of literals in this resolution method, standard techniques for demonstrating
ground completeness have proven ineffective. In this paper we prove both the ground
completeness and the general completeness of first-literal hyper-resolution for first-
order logic (FOL) using a clause-ordering and modeling procedure. This technique
also suggests a new proof procedure, ETOS-FLH-resolution, a refinement of FLH-
resolution, which is more restrictive in that clauses are ordered in a tree with the
consequent advantage that only one resolvent is generated at each resolution step.
This proof also has an important implication in the completeness of a version of the
interactive prover IMPLY.

1 Introduction

First-literal hyper-resolution (FLH) is a refinement on hyper-resolution [7], requiring that
all positive literals be ordered in every clause in which they occur. There is no pre-defined
order; consequently, an arbitrary order might be dictated by implementation issues. Ac-
cordingly, literals in one input clause might be ordered differently than literals in another.
The technique derives its name from the requirement that resolution only proceed on the
first (i.e. leftmost in an ordered clause) literals of positive clauses. An obvious advantage
of this is that search is thereby restricted to these literals because only positive clauses are
generated as resolvents; the initial set of negative clauses is never changed. To maintain
the ordering through the resolution process, the further device of merging literals right



is employed. It is this ordering and merging right of literals which has made the com-
pleteness of this method difficult to prove by traditional techniques, such as those given
in [1, 6]. The method of proof used in this paper employs a clause-ordering and modeling
procedure, which not only provides a technique for showing the completeness of first-literal
hyper-resolution, but also suggests a refinement of this resolution method. This technique
may prove to be even more powerful by its device of ordering positive clauses in a tree
and thereby specifying a particular resolvent at each resolution step, while retaining the
advantage of confining the search space during the proof process.

First-Literal hyper-resolution is closely related to the interactive prover, IMPLY, of
Bledsoe, et al [2]. IMPLY can also act as a stand-alone prover. The question of whether
the stand-alone mode of IMPLY is complete for FOL was first raised by Bledsoe several
years ago. He determined that IMPLY itself is equivalent to FLH, if the theorem being
proved is first “clausified” (put into disjunctive-normal form after it is skolemized), and if
iterative deepening, variable renaming, and factoring are employed. So this provides an
added motivation for showing that FLH is complete for FOL, because it will then follow
that the above version of IMPLY is also complete. The ground completeness of first-literal
hyper-resolution has been an open question for about ten years.

This technique also bears some similarities to Locking [3] and Indexing [5] in that one
can impose an arbitrary order on the literals of a clause by means of indices. However, it
differs from these in two important respects: (1) no literal ever appears more than once
in a clause, and (2) the order of the positive literals in any nucleus are preserved upon
resolution.

A primary objective of this paper is the proof of the following theorem, from which we
are then able to show, with the appropriate lifting lemma, the general completeness of FLH
for first-order logic.

Theorem 1. (Ground Completeness of FLH-resolution). If S is a finite unsat-
isfiable set of ordered ground clauses, then O € res-flh(.S, m) for some m.

The proof of this theorem is given in Section 3. We outline the proof as follows:

1. Since S is a finite set of ground clauses, it follows that res-flh(S, m+1) = res-flh (.S, m)
for some m. Let S’ = res-flh(S,m). Thus, if FLH is complete, then O € S’

2. If O ¢ 5, then there is a flh-resolvent R’ of S” which is not in S” and is not subsumed
by any member of S’ (i.e., res-flh(.S,m + 1) # res-flh(.S,m)). Contradiction.

3. Such an R is generated as follows:



(a) Since S’ is unsatisfiable and O ¢ S, we are able to describe an interpretation
T of S” which satisfies all the electrons in S’ and falsifies one of the nuclei N
(non-negative clause) in S’

(b) In order to define the interpretation Z, we first ETOS-order the electrons of 5.
This procedure is described in full in Section 2.

(c) We can then use this interpretation Z to show that N can be flh-resolved against
a specific set of electrons to obtain an R’ that is not subsumed by any electron
in 57, but which cannot be placed in S’ consistently according to Z.

In Section 2 we give definitions and lemmas which will be used in Section 3 to prove
Theorem 1. In Section 4 we give some definitions for the predicate case from Section 2
and finish the completeness proof of general flh-resolution by proving and using the appro-
priate lifting lemma. In Sections 5 we define ETOS-FLH-Resolution for the propositional
case. Section 6 describes future research toward generalizing ETOS-FLH-Resolution to the
predicate level. In Section 7 we make concluding remarks.

2 Definitions and Lemmas

In this paper, we employ the convention of juxtaposition to indicate the order of literals in
a clause. When this is not clear, or if emphasis is desired, we will use the concatenation
operator ‘|” to indicate the ordering. Thus, to show that the literal a« is followed by a
sequence of literals 3, which is in turn followed by literal ¢ in a clause, we can write a|f3|c,
or, simply, a 3 ¢. 1t should be understood that each literal is connected by the disjunction
‘V,” as in ordinary resolution. Moreover, small Roman letters are used to indicate specific
literals while small Greek letters are used to represent unspecified literal sequences. The
subscripted capital letter L represents a single unspecified literal.

Definition. Let ¢ = ' C" be a sequence of literals L, L,_y...Ly L;. Then " is a
suffiz of C'. That is, C" = L;... L, for some 0 < i < nl.

Definition. An electron is a positive ground clause. This is a ground clause in which
every literal is positive.

Definition. A nucleus is a non-positive ground clause. This is a ground clause in which
at least one literal is negative.

If ¢ = ', then C" = ¢ = O is the empty clause, which is a suffix of every clause. Also, every clause
1s a suffix of itself.



We require that no literal appear more than once in any given clause. This leads us to
the following definitions:

Definition. The sequence difference of two sequences of literals € and (5, denoted by
(1 ~ (s, is analogous to the notion of set difference, with the added stipulation that order
is preserved.

Example. Let (4, =ce feband C; =gbaed. Then
Ci~Cy=(cefeb)~(gbaed)=cf.

Definition. If C is a sequence of literals, Ly Lo ... L,, then
merge-right(Ly Ly... L,)

is defined recursively as

merge-right(L) = L
merge-right(Ly Ly...L,) = [mergeright(Ly Ly...Ly—1)~ L,]| L,

Example.
merge-right(ce febgbaed)=cfgbaed.
Definition. Let

N:N/ NLO NLl...NLnN

be a nucleus in S and £y be the electron set (depending on N) composed of the electrons?

EO — LO E(/J
E1 — Ll E{
Eoy = Loy B .

Then

R = flh-resolvent(N, Ey) = merge-right(N' [y, EY,..., E] ])

We use F; and E! to stand for literal sequences while L; is the first literal of each F;.
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is a flh-resolvent of clauses Ey,..., E,, and N. Note the brackets “[ ]” signify that the
enclosed arguments may be permuted in any order. Thus, for any n electrons, there may be
at most n! flh-resolvents. That there is more than one possible flh-resolvent, unlike ordinary
resolution, is a consequence of the ordering of literals within a clause. This permutation is
required for completeness.? (However, if ETOS-ordering is used (described below), it will

be shown that a single flh-resolvent can be specified and completeness preserved. This is

the basis for ETOS-FLH-resolution, which is described in Section 5.)

Example. Let

Ey = dbf
Ey = ag
E2 = hbg

be electrons and

N=gc ~a ~d ~h
be a nucleus. Then the following are possible flh-resolvents of Ey, Ky, Fy, and N:

R = ¢fbyg
or R = cgbf
orR = ¢bfyg

Note that it is possible for two or more permutations to yield the same flh-resolvent.

Initially, all clauses are merged-right (i.e., the positive literals are strictly ordered and
no positive literal appears more than once in the clause).

Definition. flh-resolvents(S) = {R : R = flh-resolvent(N, Ey) for some nucleus N and
electron set Ey = {Fo, F1,..., F,,} in S}.

Definition. If '} and C3 are two ordered ground clauses, then C; flh-subsumes Cy if
Cy = C C for some literal sequence C' (i.e. if C; is a suffix of Cy).

Definition. res-flh(.S,m) is defined recursively as follows:

1. res-flh(5,0) = S.

3Consider the set of clauses {{a b}, {b c}, {c a}, {~a ~b}, {~b ~c}, {~c ~a}}
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2. res-flh'(S,i+ 1) = res-flh(.S,7) U flh-resolvents(res-flh (.S, 1))
3. res-flh(S,1 + 1) = res-flh’(S,¢ + 1) with all flh-subsumed clauses removed

for 0 <1 <m.

Definition. Let S be a list, Co, C4,...,C,, of ordered electrons. Then S is said to be
ETOS-ordered, if, for each 1, j,k, and C’, if 1 < j < k and C" is a suffix of both C; and C},
then € is also a suffix of C}.

Thus, if two members of S have a common suffix, then any clauses between them has
that same suffix.

Example. One possible ETOS-ordering of the set

bgdea
acfd

fbyg

be fd

fedea
cabyg

ge fd
hea

eb fd

could be

bgdea
fedea
hea
acfd
be fd
ge fd
eb fd
cabyg
fbag.

Note that this is one of many possible ETOS-orderings. Also observe that, although
be fdand eb fdhave the same literals, neither flh-subsumes the other since neither is a
suffix of the other.



Lemma1l. Any finite set of ground clauses P can be arranged into an ETOS-ordered
list.

Proof. One way to do this would be to perform a reverse lexicographical sort of the
clauses. That is, sort the clauses according to the last literal, then according to the penul-
timate literal, and so on. Any arbitrary ordering of the atoms may be taken beforehand.

Lemma 2. Let

R = merge-right(a,, ... a1a0).

Then R can be represented by

where
T
Qg = Op
Oéll = 071~ Oy
/ JR—
Oy = Qg (ozlozo)
ro_
a, = ap~ (o1 ... 0100).

Proof. The primed literal sequences o/ follow from the definition of merge-right.
Thus, any literal which appears in both any given «; and «a;_; ...} will be merged-right
into the literal sequence «;_; ... ag on its right, effectively removing it from o;, which we
denote by of. Note that o/ is a subsequence of «;.

Lemma 3. If
R=a ...aiq
and R’ flh-subsumes R, then
R = oz;’ Loajag

for 0 <5 < n.

Proof. Since R’ is a suffix of R, then R = C' R’ for some sequence of literals C', by
definition. Now,

R=a...a}. .. da.
Hence, for some j such that 0 < 57 < n,

N/ I
R =a;...0o



where o is a suffix of /. (so that C would be o’ ...a" where o/ = o'a’).
j j n j j i

Lemma 4. Every subsequence of an ETOS-ordered sequence is ETOS-ordered.

Proof. Although this is obvious, we give a short proof of the fact. Assume this is
false. Then there is some subsequence Cy,...,C,, of an ETOS-ordered sequence Ey ... F,
which is not ETOS-ordered. In particular, there is a subsequence C;, C;, C, © < j < k such
that ; and (' have a common suffix which is not a suffix of C;. However, C;, C;, and C}
correspond to some E;, K, and Fy, respectively such that i/ < 3’ < k’. Then Ey and Ej
have a common suffix which is not a suffix of £/;;. This contradicts the fact that Ey ... FE,

is ETOS-ordered.

Lemma 5. If, in an ETOS-ordered sequence of electrons,

r " ’ I
R = ai ..oy . .ahog
and
Co = Loap
01 = L1 o
Cr = Lioy
r " ’ ot
R = af...ap...000q

is a subsequence of this sequence, where 0 < < k < j, then

ol
ap = aa
P
Qy = Q050
! 7
Qp = Op...000,.

Proof. Note that af, = ag. We establish this by induction.

Base Case. Since (; lies between Cy and R’, both of which have the common suffix
o, and since the clauses are ETOS-ordered, then €y also has this suffix. Hence,

o
Cl == Ll o) = Ll oy Q.

Due to merging-right, we find that o} is primed, as it is in R'.

Now, as the induction hypothesis, we assume that, for each C; between C;_; and R/,

7. ro
Ci=L; o ...a}a.



Then, Ci;y is between C; and R'. Thus, it, too, has the suffix of...ajag, by the
ETOS-ordering of the clauses. Hence,

Ciny = Linqg oo ool
e+l — a4l Gy &y .. - B &g

Merging right of the literals in ;41 with the suffix o ... o} af results in that literal sequence
also being primed: o ;.

Note that, if in the statement of the lemma, & = j, then
R = oz;’ .oaag,

would flh-subsume € since it would then be a suffix of this clause. This is an important
fact that will feature in the completeness proof which follows in the next section. The
upshot of this is that, if R’ is this suffix, it cannot follow C; in the list of ETOS-ordered
electrons.

3 Proof of Ground Completeness

Theorem 1. If S is a finite unsatisfiable set of ordered ground clauses, then O € res-
flh(S,m) for some m.

Proof. Since S is finite, it follows that res-flh(S,m 4+ 1) = res-flh(.S; m) for some m.
Let S" = res-flh(.S, m). We show that O € 5.

The proof proceeds by contradiction. Assume that O ¢ 5.

Let P be the set of electrons in S’. Observe that, by the definition of res-flh, no clause
in S’ properly flh-subsumes another clause. This gives us the following fact:

FactO. For each electron E in P, no proper suffix of £ occurs in P.
That is, there is no clause £’ in P which is a proper suffix of F.

By Lemma 1, The set of electrons, P, can be arranged into an ETOS-ordered sequence

of clauses, Eo, Fy, ..., E,.

We now use the following modeling procedure to define an interpretation, Z, which
satisfies every electron in P. (Since O ¢ P, each of the E;’s is non-empty.) We use the
term FL-satisfy to denote the action of assigning the truth value T to the first (leftmost)



literal of an electron. When such assignment also satisfies a subsequent clause in which
that literal occurs (not necessarily first), we say that that clause is “knocked out”. We
proceed clause by clause down the ETOS-ordered sequence of clauses.

1. FL-satisfy Fy. (At this point Z contains only the first literal of Fj.)
The interpretation Z now satisfies Fy and perhaps other FE;’s.

2. Fl-satisfy the next clause F; which has not been already satisfied (knocked out) under
Z. (Le., add the first literal of this E; to Z.)

3. Repeat Step 2 until all members of P are satisfied by 7.

4. Assign F to all literals not in Z. (IL.e., leave 7 as it is.)

Since S’ is unsatisfiable and O ¢ 5, it follows that there is a nucleus N in S’ which is
falsified by Z. Let
N = (7% NLn_l Ce NLl NLQ,

where «,, is the (ordered) positive literals of N, if any, and ~L,_1... ~L; ~ Lo are the
negative literals of N.

Note that no literal in «, was assigned the value T by the modeling procedure above.
Also, every literal L,_1,..., L1, Ly in N was assigned T at some point during this proce-
dure. This means there is a subsequence of clauses, Cy, Cy,...,C,_1, in the ETOS-ordered
sequence, Fg, Fy, ..., I, which were F'L-satisfied by the assignment of T to some L;. Since
the negative literals are not ordered, it follows that the nucleus N is not changed in value
if we permute its negative literals. So, without loss of generality, we assume that L; corre-
sponds to the first literal of C;, for each 7. Then, we can represent the relative position of
the C;’s to each other as follows:

Co= Ly ap The first place in the ETOS-ordering

where Ly is assigned T .

{Other clauses}

C; = L; o The first place in the ETOS-ordering

where L; is assigned T .

{Other clauses}
Cpo1 =L, 1 an_y The first place in the ETOS-ordering

where L, is assigned T .
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Let R be the flh-resolvent produced by the nucleus N and the electrons, Cy, ..., C,_1.
Then

R = merge-right(a, ...a1a0)

/ o7
Q, . ..ap0

by Lemma 2.

As we have assumed that res-flh(S,m + 1) = res-flh(S, m) for some m, it follows that
R is either already in P or is (properly) flh-subsumed by some member R’ of P. In either
case, R is flh-subsumed by a member R’ of P. By Lemma 3, R’ can be represented by

R =af.. . a)a
where 0 < 7 < n.

We will show that R’ could not have been satisfied during the modeling procedure and
complete the proof by contradiction.

Since R’ is an electron, it is positioned somewhere in the ordered electron list, £, ... F,
(i.e., it is one of the F;’s), and some literal Lg in R’ is assigned T at some point in the
modeling procedure. This could have occurred in either of two different ways:

1. R’ was FL-satisfied by the procedure

2. R was knocked out by the FL-satisfaction of another clause occurring before R’ in
the procedure.

In either case, we let E, be the clause in which Lps is first assigned T . Thus, Lps is the
first literal of .

Now, Lg: occurs in «}, for some 0 < k < j in R'*. Note that Lg cannot occur in o,
because no literal in o/, is ever assigned T in the modeling procedure. This implies that R’
does not occur before C; in the sequence Fy ... FE, of electrons. If it did, then C} would
have been knocked out by the assignment of T to Lps (recall that E,, the clause in which
this assignment first occurs, either is R' or occurs before R'). By the same reasoning, F,
also does not occur before Cj. Furthermore, £, # Cj since Lr # Lj. If this were not
the case, then Lr/(= L) would be merged-right into its own suffix since Lp € o) C .
Therefore, E, necessarily occurs after C. Since R’ either is £, or follows it, it also occurs
alter C.

f k = j, then Lr occurs in o
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We now show that £, could not have been the clause in which Lp/ was first assigned T
(and, consequently, no clause could have been since we chose F, based on the assumption
that it was the clause in which this assignment first occurred). This, in turn, implies that
R’ was never satisfied in the modeling procedure, contrary to our construction of Z.

Now, FE, has the form
Eq = LR/ Y

If £, is R, then v = o ... ajap, where of is a suffix of o). Otherwise, we have the
following subsequence:

Co = Lo ag
01 = ‘Ll aq
Ck = Lk ag
E, = ‘LR’ v
R = oz;’...ozz...o/laéa

By Lemma 4, this subsequence is ETOS-ordered. By Lemma 5, then, a = o} ... o},
and hence
Cr= Ly o) ...a)a.
Since F, lies between C and R, it also has the suffix o} ...} af so that
E,= Lp ¥'aj ..o aq.

where v/ = v ~ (a),...dqap). But Lp € o). Therefore, it is merged into o}, in which
case, if 4" is non-empty, Lg/ is not the first literal of E, as assumed. If 4" is empty, then,
as above, F, has the form

E,= L af...d 0.
But Lo} is a suffix of aj,. Accordingly, £, flh-subsumes C}, contradicting our assumption
that no clause in P is flh-subsumed by another.

This demonstrates that R’ cannot be consistently satisfied under the modeling procedure
given, which contradicts the fact that all electrons are satisfied by the procedure. Since
the modeling procedure ensures that all electrons are satisfied, no nucleus can be falsified
under 7 and, so, I is actually a model for the set 5, which contradicts its unsatisfiability.
Therefore, first-literal hyper-resolution is complete in the ground case.
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4 Proof of General Completeness

In this section we define first-literal hyper-resolution for the predicate case, extend the
definitions of Section 3 to FOL, and prove the lifting lemma and ground completeness for

FLH.

Definition. A clause €' is said to be an flh-factor of a clause C' if there is a most general
unifier 4 such that C" = merge-right(C#8).

Definition. A clause (' is said to be an flh-instance of a clause C' if there is a substitution
o such that €’ = merge-right(Co).

Definition. A ground flh-instance is a flh-instance in which no variable occurs in any
term.

Definition. Let
N:N/ NLO NLlNL

nN
be a nucleus (or flh-factor of a nucleus) in S and Ex be the electron set (depending on N)
composed of the electrons (or flh-factors of electrons)

E, = L. E,
E. = L, E
Eny = L E .

If the set of literals { Lo, L{, ... L

nys Ly, } have a most general unifier o, then

R = flh-resolvent(N, Ex) = merge-right((N' [Eq, B, ..., E] ])o)

is a flh-resolvent of clauses Ky, ..., F,, and N. As in the ground case, the brackets “[ ]”

9 nnN
signify that the enclosed arguments may be permuted in any order.

Example. Let

be electrons and



be a nucleus. Since R(¢) P(g(c¢),¢) is a flh-factor of F;, we obtain

R = R(a)Q(b,a) P(g(c),c)
or = R(a) P(g(c),c) Q(bva)

as possible flh-resolvents.

Lemma 6. If (Y is a ground flh-instance of C, then there exists a flh-factor €/ of C'
such that |CY] = |CY].

Proof. Since (9 is a ground flh-instance of €, there exists a substitution o such that
C9 = Co. For each L in C9, o unifies a set of one or more literals £; in C' to L{. Let 7
be the most general unifier that unifies all of these L£;’s. By the definition of merge-right,
the literals in any flh-instance of C' (such as a ground flh-instance or flh-factor) cannot be
a rearrangement of the literals in €' because order is preserved. Then C7 is the desired
flh-factor and |C/| = |C¥|. Note that, due to the preservation of the order of literals, each
literal in (' is an instance of the corresponding literal in C/.

We now state and prove the lifting lemma as applied to flh clauses.

Lemma (Lifting Lemma). If R is a flh-resolvent of a nucleus

N9 = N9’ NL“}]VO NL“}]Vk .. NL“}]Vn
and electrons
Ej = Ly, EY
10 = Ly, B9,
so that
R = merge-right( N9 E§' ... E9')

where the order of the £¢”s in the merge-right argument is as shown, and where N9 and
the E7’s are ground flh-instances of N and FEjy,..., F,, respectively, then there exists a

flh-resolvent R of N and Fy,..., E, such that R? is a ground flh-instance of R.

Proof. We can rename the variables so that no two clauses among N, Ey, ..., FE, have
any variables in common. Let N9 be a ground flh-instance of N and Ef,..., E? be ground
flh-instances of Ey,..., E,. Since there are no variables in common among the clauses,
we can assume there is a most general unifier o such that N9 = No and, for 0 < 5 < n,

E}q = E]‘O'.
That is, we can assume that the ground flh-instances of the nucleus and electrons

14



CE 5 S T B

is derived from the set

by applying o.

Since NY is a ground flh-instance of NV, it follows from Lemma 6 that there is a flh-factor
N/ of N such that NY is a ground flh-instance of N/. Similarly, for each k, since £Y is a
ground flh-instance of Ej it follows from Lemma 6 that there is a flh-factor E,{ of E; such
that EY is a ground flh-instance of E,{ Therefore, since N and Fy ..., F, have no variables
in common, there exists a substitution 7 for which N/ = N7 and E,{ = FE,7 for each k.
For each k, let Lgk be the first literal of E,{, and let L{Vk be the corresponding literal of
N/. We see this as

N Ey, E ... F,

f f T
NOEL B B o
Ny ES EY ... Ef

Each member of the second line is a factor of the first, and has the same number of
literals as the corresponding member of the third. Since members of the third line are
ground flh-instances of the second, there exists a substitution p such that N9 = N/, and
EY = Elpu, for each k.

Let Lgk be the first literal of E,{, for each k. Then

N9 = N9~ ~LS .. ~L
E§ = Ly, BY

EY = LY B9

n

and for each k, Lgku =Ly = Ly, = L{Vk/,c. And therefore, Lgku = L{Vk/,c, which means
that there is a mgu 0 for which Lgke = L{Vkﬁ, for each k. Therefore,

R = merge—right((Nf/ E{;/ e Ef;/)@)
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is a flh-resolvents of factors of N, Fy,..., F,. And also R? is a ground flh-instance of R,
since 6 is at least as general as . This completes the proof.

Theorem 2. (Completeness of General First-Literal Hyper-resolution) If S is
an unsatisfiable set of ordered clauses, then there is a deduction of O from S by first-literal
hyper-resolution.

Proof. Let S be an unsatisfiable set of clauses where the positive literals are ordered in
each clause. By Herbrand’s theorem, there is a finite unsatisfiable set S’ of ground instances
of the clauses in S. By Theorem 1, there is a first-literal hyper-resolution deduction of O
from S’. Using the previous lifting lemma, we can obtain a general flh-hyper-resolution
deduction of O from S.

5 ETOS-FLH-Resolution

The proof method described in the preceding sections suggests a refinement to first-literal
hyper-resolution.

We repeat the definition of FTOS-ordering here for convenience:

Definition. Let S be a sequence, Cy, (1, ..., (', of ordered electrons. Then S is said to
be ETOS-ordered, if, for each i, 5, k, and C’, if 1 < j < k and C’ is a suffix of both C; and
Ch, then €' is also a suffix of C;.

The power of the method that we will now describe lies in the restriction on the number
of resolvents that may be generated during resolution. Under first-literal hyper-resolution,
all permutations of the electrons must be explored to ensure completeness. If there are n
electrons to be resolved against a given nucleus, this can mean up to n! flh-resolvents. If,
instead, the electrons are initially ETOS-ordered and that ordering is maintained during the
resolution process, only one flh-resolvent is generated. The primary advantage of first-literal
hyper-resolution is retained, that of confining the search to the first literals of electrons.
Moreover, ETOS-FLH-Resolution can be efficiently implemented as a tree structure as

described below.

The ground version of ETOS-FLH-Resolution is defined below, but the general version
is not. This work is currently being researched.

The proof of the ground completeness of FLH-Resolution presented in Section 3 is based
on ETOS-FLH-Resolution. Consequently, it assures us that ETOS-FLH-Resolution itself
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is complete. Thus, the essential elements of the proof, ETOS-ordering, suffix, and how
a resolvent is produced, are all motivated by the proof method described in this section.
The ETOS-ordering of electrons used by the proof gives rise to an important structure in
ETOS-FLH-Resolution called an electron tree. Because ETOS-FLH-Resolution is based on
positive hyper-resolution, the set of nuclei never changes. However, electrons are generated
and subsumed during the proof process. We capture this process and the essential concept
of suffix with the following definition:

Definition. An electron treeis a tree in which every path from a leaf to the root represents
a unique electron in a set P of ETOS-ordered electrons. The root is O, which is a suffix of
every electron. Fach leaf is the first literal of the electron and each node from the leaf to
the root is each subsequent literal in the electron.

Example. Let P contain the following electrons from an example in Section 2.

bgdea
fedea
hea
acfd
be fd
ge fd
eb fd
cabyg
fbag.

Then one electron tree for P is:
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Definition. We say that a sequence of literals L;... L, occurs in an electron tree T' if
there is a path from L; to L, and O is the parent node of L,. This simply means that
L;...L, is a suffix of some electron represented in 7.

We give a lemma here which is important to the Electron Tree Ordering Strategy
(ETOS) refinement of FLH-Resolution presented below.

Lemma 7.  Given any electron tree, we can always add a new electron to the tree
and maintain the ETOS-ordering of the electrons represented in the tree.

Proof. Let
E=1Ly...L,

be an electron we wish to add to an existing electron tree T'. We examine T' to find the
longest suffix L;... L, of £ occurring in T". There are three possibilities:

1. O is the only suffix of £ occurring in T, but T" # O (i.e., there is at least one
non-empty branch of T representing another electron).

Then, we simply add £ to 1" so that Lg is a leaf and O is the parent node of L, and
the path read from Ly to O denotes E.

2. L;...L, occurs in T and L; is a leaf.

Then, L;... L, is an electron represented in 1" which flh-subsumes FE. In this case,

we do not add F to T.

3. L;...L, occurs in T', but L; is not a leaf.

18



Then, L; ... L, is a suffix of some electron represented in T'. We add Lqy...L;yq to T
by attaching L;1; to the node labeled L;. E is now represented as a new electron in
T and the ETOS-order is maintained because we attached FE to the longest suffix of
it occurring in T'. Hence, if £ now occurs between two clauses with a common suffix,
then F has that suffix as well. Moreover, if L; is Lg, then £ subsumes all electrons
for which Lg... L, is a suffix. In this case, all branches for which Lg is the parent
node are removed from 7'. Ly then becomes a new leaf in T'.

Since item 1 is a special case of item 3 (O is a suffix of every clause), these are the only
possibilities which need to be addressed. The procedure is analogous to adding a new word
to a dictionary except that we use suffixes instead of prefixes to determine placement, and
we are not concerned about the relative order of the clauses, only that common suffixes
occur together.

Example. Suppose we wish to add the clauses b g € @ and e f d to the tree given in
the previous example. Since e f d occurs in the tree and e a is the longest suffix of b g e a
occurring in the tree, we add e f d and b g e a as below:

RN TN

€
h

d g c e b a f
/N
g c Z‘) a e c
L

Since e f d subsumes b e f d and g e f d, the leaves b and ¢ are removed so that e
becomes a new leaf; b g ¢ a is simply added because it neither subsumes nor is subsumed
by any electron in the tree.

With this ordering comes a refinement to flh-resolvent, that of etos-flh-resolvent:

Definition. We produce an etos-flh-resolvent in the following manner:
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Let

EO — LO E(/J
E1 — Ll E{
Ey, = Ly, Ey,

be electrons in S, read from left to right in the tree. Then the flh-resolvent resulting from
hyper-resolution with the nucleus

N=N ~Ly...~Ly,

is

R = merge-right(N' Ey ... Ej)

is called an etos-flh-resolvent of N and Fy, ..., En, . That is, we resolve from right to left in
the tree. This will result in R being added to the same subtree as Fy (if it is not subsumed
by an electron already there. If, instead, it subsumes one or more clauses, their literals up
to the node where the first literal of R begins are removed. This node then becomes a leaf,
by Lemma 7.

The Electron Tree Ordering Strategy (ETOS)

Given a set S of ground clauses

1. Construct an electron tree T' for the set P of electrons in S.

2. If there is an etos-flh-resolvent not subsumed by an electron already in T', then we
add it to T', as described in Lemma 7.

3. We continue in this manner until either the root of the tree is reached, or no new
etos-flh-resolvent can be produced.
We illustrate this process with a couple of examples.

Example. Let S be the full set on three literals. Then, an ETOS-FLH-deduction of

O from S would be as follows:
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1 bac

2 ab ~c

3 ca ~b

4 a ~b ~c

5 ¢b ~a

6 b ~a ~c

T ¢ ~a ~b

8 ~a ~b ~c

9 ac 3:1

10 bec 5:9

11 ¢ 7:10.9
12 ab 2:11
13 b 6:12,11
14 a 4:13,11
15 O 8:14,13,11

Letting P be {{b a c}}, containing the only electron in S, and numbering each subse-
quent tree with the corresponding deduction step, we have the following series of electron
trees:

9 10 11 12 13 14 15

O O O O O O O O
] 2 N NN

c c c c c b c b c b a
N |

a a a b a

b

Example. The following is an ETOS-FLH-deduction of O from the unsatisfiable set
S of clauses {{a b},{bc},{ca},{~a ~b},{~b ~c},{~c ~a}}:
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ab

bc

ca

~a ~b

~b ~c

~C ~a

cb 4:2,1
b 6:7,1
a 5:3,8
O 4:9,8

O O 0 =IO O = WD~

—_

Letting P denote the initial set of electrons in S and numbering each subsequent tree
with the deduction step it corresponds to, we have the following sequence of ETOS resolu-

tion trees:
P 7 8 9 10
O O O O O
b c a b c a b c a b c a
a b ca ¢ b c b c b

6 Concluding Remarks

First-literal hyper-resolution and a refinement, ETOS-FLH-resolution (as given here for the
ground case), suggest that the breadth of powerful resolution techniques have not yet been
exhausted. These two methods offer advantages by restricting the scope of search for eligible
clauses for resolution to the first literals of positive clauses, which can be matched against
a table of negative literals indexed by nuclei. Since only positive clauses are generated
as resolvents, this restriction is only enhanced during the proof process. It is also worth
noting that the methods lend themselves handily to computer implementation. Many of the
features of FL.H-resolution can be implemented directly in LISP (e.g., merge-right translates
easily into the LISP function remove-duplicates). Ground ETOS-FLH-resolution has the
further advantage of specifying a tree structure for electrons and requiring only one resolvent
be produced at each resolution step. The general case is still under investigation.
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An important consideration of the completeness of FLH-resolution, aside from the inter-
est of the proof in its own right because of its difficulty, is the implication of completeness
of an equivalent resolution version of the interactive natural deduction prover, IMPLY.
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