
On the Completeness of FLH-ResolutionMarshall R. Mayberry, IIIDepartment of Computer ScienceUniversity of Texas at AustinAbstractFirst-literal hyper-resolution (FLH) is a re�nement of ordinary hyper-resolutionin that positive clauses are only resolved upon their �rst literals. In this respect,positive literals are ordered in every clause, but negative literals are not. Due to theordering of literals in this resolution method, standard techniques for demonstratingground completeness have proven ine�ective. In this paper we prove both the groundcompleteness and the general completeness of �rst-literal hyper-resolution for �rst-order logic (FOL) using a clause-ordering and modeling procedure. This techniquealso suggests a new proof procedure, ETOS-FLH-resolution, a re�nement of FLH-resolution, which is more restrictive in that clauses are ordered in a tree with theconsequent advantage that only one resolvent is generated at each resolution step.This proof also has an important implication in the completeness of a version of theinteractive prover IMPLY.1 IntroductionFirst-literal hyper-resolution (FLH) is a re�nement on hyper-resolution [7], requiring thatall positive literals be ordered in every clause in which they occur. There is no pre-de�nedorder; consequently, an arbitrary order might be dictated by implementation issues. Ac-cordingly, literals in one input clause might be ordered di�erently than literals in another.The technique derives its name from the requirement that resolution only proceed on the�rst (i.e. leftmost in an ordered clause) literals of positive clauses. An obvious advantageof this is that search is thereby restricted to these literals because only positive clauses aregenerated as resolvents; the initial set of negative clauses is never changed. To maintainthe ordering through the resolution process, the further device of merging literals right

is employed. It is this ordering and merging right of literals which has made the com-pleteness of this method di�cult to prove by traditional techniques, such as those givenin [1, 6]. The method of proof used in this paper employs a clause-ordering and modelingprocedure, which not only provides a technique for showing the completeness of �rst-literalhyper-resolution, but also suggests a re�nement of this resolution method. This techniquemay prove to be even more powerful by its device of ordering positive clauses in a treeand thereby specifying a particular resolvent at each resolution step, while retaining theadvantage of con�ning the search space during the proof process.First-Literal hyper-resolution is closely related to the interactive prover, IMPLY, ofBledsoe, et al [2]. IMPLY can also act as a stand-alone prover. The question of whetherthe stand-alone mode of IMPLY is complete for FOL was �rst raised by Bledsoe severalyears ago. He determined that IMPLY itself is equivalent to FLH, if the theorem beingproved is �rst \clausi�ed" (put into disjunctive-normal form after it is skolemized), and ifiterative deepening, variable renaming, and factoring are employed. So this provides anadded motivation for showing that FLH is complete for FOL, because it will then followthat the above version of IMPLY is also complete. The ground completeness of �rst-literalhyper-resolution has been an open question for about ten years.This technique also bears some similarities to Locking [3] and Indexing [5] in that onecan impose an arbitrary order on the literals of a clause by means of indices. However, itdi�ers from these in two important respects: (1) no literal ever appears more than oncein a clause, and (2) the order of the positive literals in any nucleus are preserved uponresolution.A primary objective of this paper is the proof of the following theorem, from which weare then able to show, with the appropriate lifting lemma, the general completeness of FLHfor �rst-order logic.Theorem 1. (Ground Completeness of FLH-resolution). If S is a �nite unsat-is�able set of ordered ground clauses, then 2 2 res-h(S;m) for some m.The proof of this theorem is given in Section 3. We outline the proof as follows:1. Since S is a �nite set of ground clauses, it follows that res-h(S;m+1) = res-h(S;m)for some m. Let S0 = res-h(S;m). Thus, if FLH is complete, then 2 2 S 0.2. If 2 =2 S0, then there is a h-resolvent R0 of S 0 which is not in S0 and is not subsumedby any member of S0 (i.e., res-h(S;m+ 1) 6= res-h(S;m)). Contradiction.3. Such an R is generated as follows: 2

(a) Since S0 is unsatis�able and 2 =2 S 0, we are able to describe an interpretationI of S0 which satis�es all the electrons in S0 and falsi�es one of the nuclei N(non-negative clause) in S 0.(b) In order to de�ne the interpretation I, we �rst ETOS-order the electrons of S0.This procedure is described in full in Section 2.(c) We can then use this interpretation I to show that N can be h-resolved againsta speci�c set of electrons to obtain an R0 that is not subsumed by any electronin S0, but which cannot be placed in S0 consistently according to I.In Section 2 we give de�nitions and lemmas which will be used in Section 3 to proveTheorem 1. In Section 4 we give some de�nitions for the predicate case from Section 2and �nish the completeness proof of general h-resolution by proving and using the appro-priate lifting lemma. In Sections 5 we de�ne ETOS-FLH-Resolution for the propositionalcase. Section 6 describes future research toward generalizing ETOS-FLH-Resolution to thepredicate level. In Section 7 we make concluding remarks.2 De�nitions and LemmasIn this paper, we employ the convention of juxtaposition to indicate the order of literals ina clause. When this is not clear, or if emphasis is desired, we will use the concatenationoperator `j' to indicate the ordering. Thus, to show that the literal a is followed by asequence of literals �, which is in turn followed by literal c in a clause, we can write aj�jc,or, simply, a � c. It should be understood that each literal is connected by the disjunction`_,' as in ordinary resolution. Moreover, small Roman letters are used to indicate speci�cliterals while small Greek letters are used to represent unspeci�ed literal sequences. Thesubscripted capital letter L represents a single unspeci�ed literal.De�nition. Let C = C 0 C 00 be a sequence of literals Ln Ln�1 : : : L2 L1. Then C 00 is asu�x of C. That is, C 00 = Li : : : L1 for some 0 � i � n1.De�nition. An electron is a positive ground clause. This is a ground clause in whichevery literal is positive.De�nition. A nucleus is a non-positive ground clause. This is a ground clause in whichat least one literal is negative.1If C = C0, then C 00 = � = 2 is the empty clause, which is a su�x of every clause. Also, every clauseis a su�x of itself. 3

We require that no literal appear more than once in any given clause. This leads us tothe following de�nitions:De�nition. The sequence di�erence of two sequences of literals C1 and C2, denoted byC1; C2, is analogous to the notion of set di�erence, with the added stipulation that orderis preserved.Example. Let C1 = c e f e b and C2 = g b a e d. ThenC1 ; C2 = (c e f e b); (g b a e d) = c f:De�nition. If C is a sequence of literals, L1 L2 : : : Ln, thenmerge-right(L1 L2 : : :Ln)is de�ned recursively asmerge-right(L) = Lmerge-right(L1 L2 : : :Ln) = [merge-right(L1 L2 : : : Ln�1); Ln] j LnExample. merge-right(c e f e b g b a e d) = c f g b a e d.De�nition. Let N = N 0 �L0 �L1 : : : �LnNbe a nucleus in S and EN be the electron set (depending on N) composed of the electrons2E0 = L0 E00E1 = L1 E01...EnN = LnN E0nN :Then R = h-resolvent(N; EN) = merge-right(N 0 [E00; E01; : : : ; E0nN])2We use Ei and E0i to stand for literal sequences while Li is the �rst literal of each Ei.4

is a h-resolvent of clauses E0; : : : ; EnN and N . Note the brackets \[]" signify that theenclosed arguments may be permuted in any order. Thus, for any n electrons, there may beat most n! h-resolvents. That there is more than one possible h-resolvent, unlike ordinaryresolution, is a consequence of the ordering of literals within a clause. This permutation isrequired for completeness.3 (However, if ETOS-ordering is used (described below), it willbe shown that a single h-resolvent can be speci�ed and completeness preserved. This isthe basis for ETOS-FLH-resolution, which is described in Section 5.)Example. Let E0 = d b fE1 = a gE2 = h b gbe electrons and N = g c �a �d �hbe a nucleus. Then the following are possible h-resolvents of E0; E1; E2; and N :R = c f b gor R = c g b for R = c b f gNote that it is possible for two or more permutations to yield the same h-resolvent.Initially, all clauses are merged-right (i.e., the positive literals are strictly ordered andno positive literal appears more than once in the clause).De�nition. h-resolvents(S) = fR : R = h-resolvent(N; EN) for some nucleus N andelectron set EN = fE0; E1; : : : ; EnNg in Sg.De�nition. If C1 and C2 are two ordered ground clauses, then C1 h-subsumes C2 ifC2 = C C1 for some literal sequence C (i.e. if C1 is a su�x of C2).De�nition. res-h(S;m) is de�ned recursively as follows:1. res-h(S; 0) = S.3Consider the set of clauses ffa bg; fb cg; fc ag; f�a �bg; f�b �cg; f�c �agg5

2. res-h0(S; i+ 1) = res-h(S; i) [h-resolvents(res-h(S; i))3. res-h(S; i+ 1) = res-h0(S; i+ 1) with all h-subsumed clauses removedfor 0 � i � m.De�nition. Let S be a list, C0; C1; : : : ; Cn; of ordered electrons. Then S is said to beETOS-ordered, if, for each i; j; k, and C 0, if i � j � k and C 0 is a su�x of both Ci and Ck,then C 0 is also a su�x of Cj .Thus, if two members of S have a common su�x, then any clauses between them hasthat same su�x.Example. One possible ETOS-ordering of the setb g d e aa c f df b gb e f df c d e ac a b gg e f dh e ae b f dcould be b g d e af c d e ah e aa c f db e f dg e f de b f dc a b gf b g:Note that this is one of many possible ETOS-orderings. Also observe that, althoughb e f d and e b f d have the same literals, neither h-subsumes the other since neither is asu�x of the other. 6

Lemma 1. Any �nite set of ground clauses P can be arranged into an ETOS-orderedlist.Proof. One way to do this would be to perform a reverse lexicographical sort of theclauses. That is, sort the clauses according to the last literal, then according to the penul-timate literal, and so on. Any arbitrary ordering of the atoms may be taken beforehand.Lemma 2. Let R = merge-right(�n : : : �1�0):Then R can be represented by R = �0n : : : �01�00where �00 = �0�01 = �1 ; �0�02 = �2 ; (�1�0)...�0n = �n ; (�n�1 : : : �1�0):Proof. The primed literal sequences �0i follow from the de�nition of merge-right.Thus, any literal which appears in both any given �i and �i�1 : : : �00 will be merged-rightinto the literal sequence �i�1 : : : �00 on its right, e�ectively removing it from �i, which wedenote by �0i. Note that �0i is a subsequence of �i.Lemma 3. If R = �0n : : : �01�00and R0 h-subsumes R, then R0 = �00j : : : �01�00for 0 � j � n.Proof. Since R0 is a su�x of R, then R = C R0 for some sequence of literals C, byde�nition. Now, R = �0n : : : �0j : : : �01�00:Hence, for some j such that 0 � j � n,R0 = �00j : : : �01�007

where �00j is a su�x of �0j (so that C would be �0n : : : �000j where �0j = �000j �00j).Lemma 4. Every subsequence of an ETOS-ordered sequence is ETOS-ordered.Proof. Although this is obvious, we give a short proof of the fact. Assume this isfalse. Then there is some subsequence C0; : : : ; Cm of an ETOS-ordered sequence E0 : : :Enwhich is not ETOS-ordered. In particular, there is a subsequence Ci; Cj; Ck, i < j < k suchthat Ci and Ck have a common su�x which is not a su�x of Cj . However, Ci, Cj, and Ckcorrespond to some Ei0, Ej0, and Ek0 , respectively such that i0 < j0 < k0. Then Ei0 and Ek0have a common su�x which is not a su�x of Ej0 . This contradicts the fact that E0 : : :Enis ETOS-ordered.Lemma 5. If, in an ETOS-ordered sequence of electrons,R0 = �00j : : : �0k : : : �01�00and C0 = L0 �0C1 = L1 �1...Ck = Lk �kR0 = �00j : : : �0k : : : �01�00is a subsequence of this sequence, where 0 � i � k < j, then�1 = �01�00�2 = �02�01�00...�k = �0k : : : �01�00:Proof. Note that �00 = �0. We establish this by induction.Base Case. Since C1 lies between C0 and R0, both of which have the common su�x�0, and since the clauses are ETOS-ordered, then C1 also has this su�x. Hence,C1 = L1 �1 = L1 �01�00:Due to merging-right, we �nd that �01 is primed, as it is in R0.Now, as the induction hypothesis, we assume that, for each Ci between Ci�1 and R0,Ci = Li �0i : : : �01�00:8

Then, Ci+1 is between Ci and R0. Thus, it, too, has the su�x �0i : : : �01�00, by theETOS-ordering of the clauses. Hence,Ci+1 = Li+1 �0i+1�0i : : : �01�00:Merging right of the literals in �i+1 with the su�x �0i : : : �01�00 results in that literal sequencealso being primed: �0i+1.Note that, if in the statement of the lemma, k = j, thenR0 = �00j : : : �01�00;would h-subsume Cj since it would then be a su�x of this clause. This is an importantfact that will feature in the completeness proof which follows in the next section. Theupshot of this is that, if R0 is this su�x, it cannot follow Cj in the list of ETOS-orderedelectrons.3 Proof of Ground CompletenessTheorem 1. If S is a �nite unsatis�able set of ordered ground clauses, then 2 2 res-h(S;m) for some m.Proof. Since S is �nite, it follows that res-h(S;m + 1) = res-h(S;m) for some m.Let S0 = res-h(S;m). We show that 2 2 S0.The proof proceeds by contradiction. Assume that 2 =2 S0.Let P be the set of electrons in S0. Observe that, by the de�nition of res-h, no clausein S0 properly h-subsumes another clause. This gives us the following fact:Fact0. For each electron E in P , no proper su�x of E occurs in P .That is, there is no clause E0 in P which is a proper su�x of E.By Lemma 1, The set of electrons, P , can be arranged into an ETOS-ordered sequenceof clauses, E0; E1; : : : ; Ep.We now use the following modeling procedure to de�ne an interpretation, I, whichsatis�es every electron in P . (Since 2 =2 P , each of the Ei's is non-empty.) We use theterm FL-satisfy to denote the action of assigning the truth value T to the �rst (leftmost)9

literal of an electron. When such assignment also satis�es a subsequent clause in whichthat literal occurs (not necessarily �rst), we say that that clause is \knocked out". Weproceed clause by clause down the ETOS-ordered sequence of clauses.1. FL-satisfy E0. (At this point I contains only the �rst literal of E0.)The interpretation I now satis�es E0 and perhaps other Ei's.2. FL-satisfy the next clause Ei which has not been already satis�ed (knocked out) underI. (I.e., add the �rst literal of this Ei to I.)3. Repeat Step 2 until all members of P are satis�ed by I.4. Assign F to all literals not in I. (I.e., leave I as it is.)Since S0 is unsatis�able and 2 =2 S 0, it follows that there is a nucleus N in S 0 which isfalsi�ed by I. Let N = �n �Ln�1 : : : �L1 �L0;where �n is the (ordered) positive literals of N , if any, and �Ln�1 : : : �L1 �L0 are thenegative literals of N .Note that no literal in �n was assigned the value T by the modeling procedure above.Also, every literal Ln�1; : : : ; L1; L0 in N was assigned T at some point during this proce-dure. This means there is a subsequence of clauses, C0; C1; : : : ; Cn�1, in the ETOS-orderedsequence, E0; E1; : : : ; Ep which were FL-satis�ed by the assignment of T to some Li. Sincethe negative literals are not ordered, it follows that the nucleus N is not changed in valueif we permute its negative literals. So, without loss of generality, we assume that Li corre-sponds to the �rst literal of Ci, for each i. Then, we can represent the relative position ofthe Ci's to each other as follows:C0 = L0 �0 The �rst place in the ETOS-orderingwhere L0 is assigned T .fOther clausesg...Ci = Li �i The �rst place in the ETOS-orderingwhere Li is assigned TfOther clausesgCn�1 = Ln�1 �n�1 The �rst place in the ETOS-orderingwhere Ln�1 is assigned T .10

Let R be the h-resolvent produced by the nucleus N and the electrons, C0; : : : ; Cn�1.Then R = merge-right(�n : : : �1�0)= �0n : : : �01�00by Lemma 2.As we have assumed that res-h(S;m + 1) = res-h(S;m) for some m, it follows thatR is either already in P or is (properly) h-subsumed by some member R0 of P . In eithercase, R is h-subsumed by a member R0 of P . By Lemma 3, R0 can be represented byR0 = �00j : : : �01�00where 0 � j � n.We will show that R0 could not have been satis�ed during the modeling procedure andcomplete the proof by contradiction.Since R0 is an electron, it is positioned somewhere in the ordered electron list, E1 : : : Ep(i.e., it is one of the Ei's), and some literal LR0 in R0 is assigned T at some point in themodeling procedure. This could have occurred in either of two di�erent ways:1. R0 was FL-satis�ed by the procedure2. R0 was knocked out by the FL-satisfaction of another clause occurring before R0 inthe procedure.In either case, we let Eq be the clause in which LR0 is �rst assigned T . Thus, LR0 is the�rst literal of Eq.Now, LR0 occurs in �0k for some 0 � k � j in R04. Note that LR0 cannot occur in �0nbecause no literal in �0n is ever assigned T in the modeling procedure. This implies that R0does not occur before Ck in the sequence E0 : : :Ep of electrons. If it did, then Ck wouldhave been knocked out by the assignment of T to LR0 (recall that Eq, the clause in whichthis assignment �rst occurs, either is R0 or occurs before R0). By the same reasoning, Eqalso does not occur before Ck. Furthermore, Eq 6= Ck since LR0 6= Lk. If this were notthe case, then LR0(= Lk) would be merged-right into its own su�x since LR0 2 �0k � �k.Therefore, Eq necessarily occurs after Ck. Since R0 either is Eq or follows it, it also occursafter Ck.4If k = j, then LR0 occurs in �00j . 11

We now show that Eq could not have been the clause in which LR0 was �rst assigned T(and, consequently, no clause could have been since we chose Eq based on the assumptionthat it was the clause in which this assignment �rst occurred). This, in turn, implies thatR0 was never satis�ed in the modeling procedure, contrary to our construction of I.Now, Eq has the form Eq = LR0 :If Eq is R0, then = �00j : : : �01�00, where �00j is a su�x of �0j . Otherwise, we have thefollowing subsequence: C0 = L0 �0...C1 = L1 �1...Ck = Lk �k...Eq = LR0 ...R0 = �00j : : : �0k : : : �01�00;By Lemma 4, this subsequence is ETOS-ordered. By Lemma 5, then, �k = �0k : : : �01�00,and hence Ck = Lk �0k : : : �01�00:Since Eq lies between Ck and R0, it also has the su�x �0k : : : �01�00 so thatEq = LR0 0�0k : : : �01�00:where 0 = ; (�0k : : : �01�00). But LR0 2 �0k. Therefore, it is merged into �0k, in whichcase, if 0 is non-empty, LR0 is not the �rst literal of Eq as assumed. If 0 is empty, then,as above, Eq has the form Eq = LR0 �00k : : : �01�00:But LR0�00k is a su�x of �0k. Accordingly, Eq h-subsumes Ck, contradicting our assumptionthat no clause in P is h-subsumed by another.This demonstrates thatR0 cannot be consistently satis�ed under the modeling proceduregiven, which contradicts the fact that all electrons are satis�ed by the procedure. Sincethe modeling procedure ensures that all electrons are satis�ed, no nucleus can be falsi�edunder I and, so, I is actually a model for the set S, which contradicts its unsatis�ability.Therefore, �rst-literal hyper-resolution is complete in the ground case.12

4 Proof of General CompletenessIn this section we de�ne �rst-literal hyper-resolution for the predicate case, extend thede�nitions of Section 3 to FOL, and prove the lifting lemma and ground completeness forFLH.De�nition. A clause C 0 is said to be an h-factor of a clause C if there is a most generaluni�er � such that C 0 = merge-right(C�).De�nition. A clause C 0 is said to be an h-instance of a clause C if there is a substitution� such that C 0 = merge-right(C�).De�nition. A ground h-instance is a h-instance in which no variable occurs in anyterm.De�nition. Let N = N 0 �L0 �L1 : : : �LnNbe a nucleus (or h-factor of a nucleus) in S and EN be the electron set (depending on N)composed of the electrons (or h-factors of electrons)E0 = L00 E00E1 = L01 E01...EnN = L0nN E0nN :If the set of literals fL0; L00; : : : LnN ; L0nNg have a most general uni�er �, thenR = h-resolvent(N;EN) = merge-right((N 0 [E00; E01; : : : ; E0nN])�)is a h-resolvent of clauses E0; : : : ; EnN and N . As in the ground case, the brackets \[]"signify that the enclosed arguments may be permuted in any order.Example. Let E0 = P (f(y); x) Q(x; a)E1 = P (g(z); z) R(z) P (g(c); v)E2 = Q(b; f(c))be electrons and N = R(a) �P (f(a); b) �R(w) �Q(u; f(w))13

be a nucleus. Since R(c) P (g(c); c) is a h-factor of E1, we obtainR = R(a) Q(b; a) P (g(c); c)or = R(a) P (g(c); c) Q(b; a)as possible h-resolvents.Lemma 6. If Cg is a ground h-instance of C, then there exists a h-factor Cf of Csuch that jCf j = jCgj.Proof. Since Cg is a ground h-instance of C, there exists a substitution � such thatCg = C�. For each Lgi in Cg, � uni�es a set of one or more literals Li in C to Lgi . Let �be the most general uni�er that uni�es all of these Li's. By the de�nition of merge-right,the literals in any h-instance of C (such as a ground h-instance or h-factor) cannot bea rearrangement of the literals in C because order is preserved. Then Cf is the desiredh-factor and jCf j = jCgj. Note that, due to the preservation of the order of literals, eachliteral in Cg is an instance of the corresponding literal in Cf .We now state and prove the lifting lemma as applied to h clauses.Lemma (Lifting Lemma). If Rg is a h-resolvent of a nucleusNg = Ng 0 �LgN0 �LgNk : : : �LgNnand electronsEg0 = LgE0 Eg00...Egn = LgEn Egn0;so thatRg = merge-right(Ng0 Eg00 : : : Egn0)where the order of the Egi 0's in the merge-right argument is as shown, and where Ng andthe Egi 's are ground h-instances of N and E0; : : : ; En, respectively, then there exists ah-resolvent R of N and E0; : : : ; En such that Rg is a ground h-instance of R.Proof. We can rename the variables so that no two clauses among N , E0; : : : ; En haveany variables in common. Let Ng be a ground h-instance of N and Eg0 ; : : : ; Egn be groundh-instances of E0; : : : ; En. Since there are no variables in common among the clauses,we can assume there is a most general uni�er � such that Ng = N� and, for 0 � j � n,Egj = Ej�.That is, we can assume that the ground h-instances of the nucleus and electrons14

Ng Eg0 Eg1 . . . Egnis derived from the set N E0 E1 . . . Enby applying �.Since Ng is a ground h-instance of N , it follows from Lemma 6 that there is a h-factorNf of N such that Ng is a ground h-instance of Nf . Similarly, for each k, since Egk is aground h-instance of Ek it follows from Lemma 6 that there is a h-factor Efk of Ek suchthat Egk is a ground h-instance of Efk . Therefore, since N and E0 : : : ; En have no variablesin common, there exists a substitution � for which Nf = N� and Efk = Ek� for each k.For each k, let LfEk be the �rst literal of Efk , and let LfNk be the corresponding literal ofNf . We see this as N E0 E1 . . . EnNf Ef0 Ef1 . . . Efn 9=; � 9>>=>>;�Ng Eg0 Eg1 . . . EgnEach member of the second line is a factor of the �rst, and has the same number ofliterals as the corresponding member of the third. Since members of the third line areground h-instances of the second, there exists a substitution � such that Ng = Nf�, andEgk = Efk�, for each k.Let LfEk be the �rst literal of Efk , for each k. ThenNg = Ng0 �LgN0 �LgNk : : : �LgNnEg0 = LgE0 Eg00...Egn = LgEn Egn 0;and for each k, LfEk� = LgEk = LgNk = LfNk�. And therefore, LfEk� = LfNk�, which meansthat there is a mgu � for which LfEk� = LfNk�, for each k. Therefore,R = merge-right((Nf 0 Ef0 0 : : :Efn0)�)15

is a h-resolvents of factors of N , E0; : : : ; En. And also Rg is a ground h-instance of R,since � is at least as general as �. This completes the proof.Theorem 2. (Completeness of General First-Literal Hyper-resolution) If S isan unsatis�able set of ordered clauses, then there is a deduction of 2 from S by �rst-literalhyper-resolution.Proof. Let S be an unsatis�able set of clauses where the positive literals are ordered ineach clause. By Herbrand's theorem, there is a �nite unsatis�able set S 0 of ground instancesof the clauses in S. By Theorem 1, there is a �rst-literal hyper-resolution deduction of 2from S0. Using the previous lifting lemma, we can obtain a general h-hyper-resolutiondeduction of 2 from S.5 ETOS-FLH-ResolutionThe proof method described in the preceding sections suggests a re�nement to �rst-literalhyper-resolution.We repeat the de�nition of ETOS-ordering here for convenience:De�nition. Let S be a sequence, C0; C1; : : : ; Cn; of ordered electrons. Then S is said tobe ETOS-ordered, if, for each i; j; k, and C 0, if i � j � k and C 0 is a su�x of both Ci andCk, then C 0 is also a su�x of Cj.The power of the method that we will now describe lies in the restriction on the numberof resolvents that may be generated during resolution. Under �rst-literal hyper-resolution,all permutations of the electrons must be explored to ensure completeness. If there are nelectrons to be resolved against a given nucleus, this can mean up to n! h-resolvents. If,instead, the electrons are initially ETOS-ordered and that ordering is maintained during theresolution process, only one h-resolvent is generated. The primary advantage of �rst-literalhyper-resolution is retained, that of con�ning the search to the �rst literals of electrons.Moreover, ETOS-FLH-Resolution can be e�ciently implemented as a tree structure asdescribed below.The ground version of ETOS-FLH-Resolution is de�ned below, but the general versionis not. This work is currently being researched.The proof of the ground completeness of FLH-Resolution presented in Section 3 is basedon ETOS-FLH-Resolution. Consequently, it assures us that ETOS-FLH-Resolution itself16

is complete. Thus, the essential elements of the proof, ETOS-ordering, su�x, and howa resolvent is produced, are all motivated by the proof method described in this section.The ETOS-ordering of electrons used by the proof gives rise to an important structure inETOS-FLH-Resolution called an electron tree. Because ETOS-FLH-Resolution is based onpositive hyper-resolution, the set of nuclei never changes. However, electrons are generatedand subsumed during the proof process. We capture this process and the essential conceptof su�x with the following de�nition:De�nition. An electron tree is a tree in which every path from a leaf to the root representsa unique electron in a set P of ETOS-ordered electrons. The root is 2, which is a su�x ofevery electron. Each leaf is the �rst literal of the electron and each node from the leaf tothe root is each subsequent literal in the electron.Example. Let P contain the following electrons from an example in Section 2.b g d e af c d e ah e aa c f db e f dg e f de b f dc a b gf b g:Then one electron tree for P is:
17

2 ae""""d���gb @@@cf bbbbh
df""""c���a e���b LLLgbbbbbAAAe
``````````̀ gb""""ac bbbbfDe�nition. We say that a sequence of literals Lj : : : Ln occurs in an electron tree T ifthere is a path from Lj to Ln and 2 is the parent node of Ln. This simply means thatLj : : :Ln is a su�x of some electron represented in T .We give a lemma here which is important to the Electron Tree Ordering Strategy(ETOS) re�nement of FLH-Resolution presented below.Lemma 7. Given any electron tree, we can always add a new electron to the treeand maintain the ETOS-ordering of the electrons represented in the tree.Proof. Let E = L0 : : : Lnbe an electron we wish to add to an existing electron tree T . We examine T to �nd thelongest su�x Li : : : Ln of E occurring in T . There are three possibilities:1. 2 is the only su�x of E occurring in T , but T 6= 2 (i.e., there is at least onenon-empty branch of T representing another electron).Then, we simply add E to T so that L0 is a leaf and 2 is the parent node of Ln andthe path read from L0 to 2 denotes E.2. Li : : : Ln occurs in T and Li is a leaf.Then, Li : : : Ln is an electron represented in T which h-subsumes E. In this case,we do not add E to T .3. Li : : : Ln occurs in T , but Li is not a leaf.18



Then, Li : : :Ln is a su�x of some electron represented in T . We add L0 : : :Li+1 to Tby attaching Li+1 to the node labeled Li. E is now represented as a new electron inT and the ETOS-order is maintained because we attached E to the longest su�x ofit occurring in T . Hence, if E now occurs between two clauses with a common su�x,then E has that su�x as well. Moreover, if Li is L0, then E subsumes all electronsfor which L0 : : :Ln is a su�x. In this case, all branches for which L0 is the parentnode are removed from T . L0 then becomes a new leaf in T .Since item 1 is a special case of item 3 (2 is a su�x of every clause), these are the onlypossibilities which need to be addressed. The procedure is analogous to adding a new wordto a dictionary except that we use su�xes instead of pre�xes to determine placement, andwe are not concerned about the relative order of the clauses, only that common su�xesoccur together.Example. Suppose we wish to add the clauses b g e a and e f d to the tree given inthe previous example. Since e f d occurs in the tree and e a is the longest su�x of b g e aoccurring in the tree, we add e f d and b g e a as below:2           ae""""d���gb @@@cf hbbbbgb df""""ca ebbbbbe
``````````̀ gb""""ac bbbbfSince e f d subsumes b e f d and g e f d, the leaves b and g are removed so that ebecomes a new leaf; b g e a is simply added because it neither subsumes nor is subsumedby any electron in the tree.With this ordering comes a re�nement to h-resolvent, that of etos-h-resolvent:De�nition. We produce an etos-h-resolvent in the following manner:19


Let E0 = L0 E 00E1 = L1 E 01...ENn = LNn E 0Nnbe electrons in S, read from left to right in the tree. Then the h-resolvent resulting fromhyper-resolution with the nucleusN = N 0 �L0 : : : �LNnis R = merge-right(N 0 E 0Nn : : :E 00)is called an etos-h-resolvent of N and E0; : : : ; ENn. That is, we resolve from right to left inthe tree. This will result in R being added to the same subtree as E0 (if it is not subsumedby an electron already there. If, instead, it subsumes one or more clauses, their literals upto the node where the �rst literal of R begins are removed. This node then becomes a leaf,by Lemma 7.The Electron Tree Ordering Strategy (ETOS)Given a set S of ground clauses1. Construct an electron tree T for the set P of electrons in S.2. If there is an etos-h-resolvent not subsumed by an electron already in T , then weadd it to T , as described in Lemma 7.3. We continue in this manner until either the root of the tree is reached, or no newetos-h-resolvent can be produced.We illustrate this process with a couple of examples.Example. Let S be the full set on three literals. Then, an ETOS-FLH-deduction of2 from S would be as follows: 20

1 b a c2 a b �c3 c a �b4 a �b �c5 c b �a6 b �a �c7 c �a �b8 �a �b �c9 a c 3:110 b c 5:911 c 7:10,912 a b 2:1113 b 6:12,1114 a 4:13,1115 2 8:14,13,11Letting P be ffb a cgg, containing the only electron in S, and numbering each subse-quent tree with the corresponding deduction step, we have the following series of electrontrees:P2cab 92ca 102c��a @@b 112c 122��c @@ba 132��c @@b 142��c b@@a 152
Example. The following is an ETOS-FLH-deduction of 2 from the unsatis�able setS of clauses ffa bg; fb cg; fc ag; f�a �bg; f�b �cg; f�c �agg:

21

1 a b2 b c3 c a4 �a �b5 �b �c6 �c �a7 c b 4:2,18 b 6:7,19 a 5:3,810 2 4:9,8Letting P denote the initial set of electrons in S and numbering each subsequent treewith the deduction step it corresponds to, we have the following sequence of ETOS resolu-tion trees: P2����� QQQQQb c aa b c 72����� QQQQQb c aAAAAa c b c 82����� QQQQQb c ab c 92����� QQQQQb c ab 102
6 Concluding RemarksFirst-literal hyper-resolution and a re�nement, ETOS-FLH-resolution (as given here for theground case), suggest that the breadth of powerful resolution techniques have not yet beenexhausted. These two methods o�er advantages by restricting the scope of search for eligibleclauses for resolution to the �rst literals of positive clauses, which can be matched againsta table of negative literals indexed by nuclei. Since only positive clauses are generatedas resolvents, this restriction is only enhanced during the proof process. It is also worthnoting that the methods lend themselves handily to computer implementation. Many of thefeatures of FLH-resolution can be implemented directly in LISP (e.g., merge-right translateseasily into the LISP function remove-duplicates). Ground ETOS-FLH-resolution has thefurther advantage of specifying a tree structure for electrons and requiring only one resolventbe produced at each resolution step. The general case is still under investigation.22

An important consideration of the completeness of FLH-resolution, aside from the inter-est of the proof in its own right because of its di�culty, is the implication of completenessof an equivalent resolution version of the interactive natural deduction prover, IMPLY.6.1 AcknowledgementsSeveral people have lent their expertise to this paper in one way or another. Foremost,I would like to thank Dr. Bledsoe for his patient treatment of my many proof attempts,and for the problem itself. Ruben Gamboa helped me formalize my ideas on the methodpresented in the paper when the proof itself was still in embryonic form. Dr. Loveland pro-vided valuable suggestions on the presentation and matters which needed to be addressedin comparison with existing resolution techniques. Both Drs. Larry Hines and Don Simonhave o�ered many other useful suggestions on the structure of the proof as well.References[1] Anderson, R. and Bledsoe, W.W. A linear format for resolution with merging anda new technique for establishing completeness. J. ACM 17 (July 1970), 525-534.[2] Bledsoe, W.W. and P. Bruell. A Man-machine Theorem Proving System, Proc3rd IJCAI (1973), Stanford U.; also in AI Jour 5 (1974) 51-72. Bledsoe, W.W.and Mabry Tyson. The UT Interactive Prover. Memos ATP17A & ATP17B,Math Dep, Univ Texas, 1975, 1983. Bledsoe, W.W., Non-Resolution TheoremProving, Arti�cial Intelligence 9 (1977) 55-77. In Reading in Arti�cial Intelligence(Webber, Nilsson, Eds), Tioga, Palo Alto, 1981, pp 91-108.[3] Boyer, Robert S. Locking: a Restriction of Resolution. Ph. D. Thesis, Universityof Texas at Austin, Texas, 1971, 74 pp.[4] Chang, C., and Lee, R. Symbolic Logic and Mechanical Theorem Proving, Aca-demic Press, Inc., 1973, 331 pp.[5] Loveland, D.W. Automated Theorem Proving: A Logical Basis, North-Holland,Amsterdam, 1978, xiii + 405 pp.[6] Robinson, J.A. A machine oriented logic based on the resolution principle. J.ACM 12 (January 1965), 23-41.[7] Robinson, J.A., Automatic deduction with hyper-resolution. Internat. Jour. ofComputer Math. 1 (1965), 227-234.23

