
Cello: A Disk Scheduling Framework for
Next Generation Operating Systems �

Prashant J. Shenoy and Harrick M. Vin

Distributed Multimedia Computing Laboratory
Department of Computer Sciences, University of Texas at Austin

Taylor Hall 2.124, Austin, Texas 78712-1188
E-mail: fshenoy,ving@cs.utexas.edu, Telephone: (512) 471-9732, Fax: (512) 471-8885

URL: http://www.cs.utexas.edu/users/dmclAbstract
In this paper, we present the Cello disk scheduling framework for
meeting the diverse service requirements of applications.Cello em-
ploys a two-level disk scheduling architecture, consisting of a class-
independent scheduler and a set of class-specific schedulers. The
two levels of the framework allocate disk bandwidth at two time-
scales: the class-independent scheduler governs the coarse-grain al-
location of bandwidth to application classes, while the class-specific
schedulers control the fine-grain interleaving of requests. The two
levels of the architecture separate application-independent mech-
anisms from application-specific scheduling policies, andthereby
facilitate the co-existence of multiple class-specific schedulers. We
demonstrate that Cello is suitable for next generation operating sys-
tems since: (i) it aligns the service provided with the application
requirements, (ii) it protects application classes from one another,
(iii) it is work-conserving and can adapt to changes in work-load,
(iv) it minimizes the seek time and rotational latency overhead in-
curred during access, and (v) it is computationally efficient.1 Introduction
Since the invention of movable head disks, several algorithms have
been developed to improve I/O performance through intelligent
scheduling of disk accesses. These algorithms can be broadly di-
vided into two classes:

1. Disk scheduling algorithms optimized to service best-effort
requests: The simplest of these algorithms is First Come First
Served (FCFS), that schedules requests in the order of their
arrival. Since the access schedule thus derived is independent
of the relative positions of the requested data on disk, FCFS
scheduling can incur significant seek time and rotational la-
tency overhead. This limitation has been addressed by several
disk scheduling algorithms, such as Shortest Seek Time First
(SSTF), SCAN, LOOK, V(R), etc., that schedule requests to
minimize seek time [6, 7, 8, 9, 10, 18, 19, 20]; and Shortest�This research was supported in part by an AT&T FoundationAward, IBM Faculty Development Award, Intel, the National ScienceFoundation (Research Initiation Award CCR-9409666 and CAREERaward CCR-9624757), Lucent Bell Laboratories, NASA, MitsubishiElectric Research Laboratories (MERL), and Sun Microsystems Inc.

Total/Access Time First (STF/SATF), Aged Shortest Access
Time First (ASATF), etc., that schedule requests to minimize
the total seek time and rotational latency overhead [11, 17].

2. Disk scheduling algorithms optimized to service requests
with real-time deadlines: The simplest of these algorithms
is Earliest Deadline First (EDF) [14]. EDF schedules re-
quests in the order of their deadlines but ignores the relative
positions of requested data on disk in deriving the access
schedule. Hence, it can incur significant seek time and rota-
tional latency overhead. This limitation has been addressed
by several disk scheduling algorithms, including Priority
SCAN (PSCAN), Earliest Deadline SCAN, Feasible Dead-
line SCAN (FD-SCAN), SCAN-EDF, Shortest Seek Earliest
Deadline by Order/Value (SSEDO, SSEDV) [1, 4, 5, 16], etc.
These algorithms start from an EDF schedule and reorder re-
quests so as to reduce the seek and rotational latency overhead
without violating request deadlines.

Unlike the systems for which these scheduling algorithms were
designed, today’s general purpose file and operating systems simul-
taneously support applications with diverse performance require-
ments [3, 15]. For instance, a typical file server today services
requests from interactive best-effort applications (e.g., word pro-
cessors); real-time applications (e.g., video and audio players); and
file transfer applications (e.g., http servers). Interactive applica-
tions require the file server to minimize the average response time
of requests. Real-time video playback applications require the file
server to retrieve successive video frames prior to their playback
instants (i.e., deadlines). However, due to the periodic nature of
video playback, these applications do not benefit if the frames are
retrieved much prior to their deadlines. Finally, file transfer appli-
cations require the server to provide high throughput across several
requests, but are less concerned about the response times ofindi-
vidual requests.

With the many-fold increase in CPU processing power, network
bandwidth, and disk capacity, it is inevitable that generalpurpose
computing environments of the future will support applications of
even greater complexity and diversity. We can anticipate that next
generation file systems will support applications that process mas-
sive amounts of data for visualization and support real-time inter-
activity. For instance, a repository of satellite imagery might be
accessed and processed by programs for feature extraction and real-
time visualization; an application for interactive navigation through
virtual environments will issue requests for the storage and retrieval
of heterogeneous information objects (e.g., imagery, 3-D models,
video, etc.) from distributed file servers under real-time constraints.
Since most conventional disk scheduling algorithms are optimized
for a single performance criterion, they are ineffective atsimulta-
neously supporting applications with such diverse requirements.



Most of the techniques developed to-date for addressing this
problem employ simple adaptations of conventional disk schedul-
ing algorithms. To illustrate, consider a mix of real-time and best-
effort applications. A real-time disk scheduling algorithm can be
adapted to service these applications by modeling the requests gen-
erated by best-effort applications as a periodic task with deadlines
[13]. This modeling, however, is non-trivial and introduces artifi-
cial constraints that reduce the effectiveness of the system. Another
common approach for servicing the mix of real-time and best-effort
applications is to employ a scheduler that assigns priorities to ap-
plication classes and services disk requests in the priority order.
Unfortunately, such schedulers may violate service requirements
of requests and induce starvation [2]. Finally, simply enhancing a
conventional scheduler by allocating time-slices to service requests
from different application classes may incur substantial seek and
rotational latency overhead (for short time-slices) or yield unac-
ceptable response times (for long time-slices) (see Figure1).

In this paper, we present theCello disk scheduling framework
for simultaneously supporting applications with diverse require-
ments. Cello employs atwo-level disk scheduling architecture,
consisting of aclass-independentscheduler and a set ofclass-
specific schedulers. The two levels of the framework allocate
disk bandwidth at two time-scales: the class-independent sched-
uler governs thecoarse-grain bandwidth allocationto application
classes, while the class-specific schedulers control thefine-grain
interleavingof requests from the application classes to align the
service provided with the application requirements. The two levels
of the architecture separate application-independent mechanisms
from application-specific scheduling policies, and thereby facilitate
the co-existence of multiple class-specific schedulers.

We demonstrate that Cello is suitable for next generation operat-
ing systems since: (i) it aligns the service provided with the applica-
tion needs, (ii) it protects application classes from one another, (iii)
it is work-conserving and can adapt to changes in work-load,(iv)
it minimizes the seek time and rotational latency overhead incurred
during access, and (v) it is computationally efficient.

The rest of the paper is organized as follows: The requirements
for a disk scheduling algorithm for next generation operating sys-
tems are derived in Section 2. Section 3 describes and analyzes the
Cello disk scheduling framework. Section 4 presents the results of
our experiments. Finally, Section 5 summarizes our results.2 Requirements for a Disk Scheduling Algorithm
To determine a suitable disk scheduling algorithm, consider the
requirements imposed by applications likely to be simultaneously
supported by general purpose file and operating systems of the
future:� Real-time applications:These applications require the oper-

ating system to provide performance guarantees. Depending
on the strictness of the requirements, these applications can
be classified as eitherhard real-timeor soft real-timeapplica-
tions. Whereas hard real-time applications require determin-
istic guarantees for the response time of each disk request,
soft real-time applications require statistical guarantees. Re-
quest generation in these applications can either beperiodic
or aperiodic, and the applications may consume data imme-
diately following its availability or at predefined instants. For
example, video playback is a periodic, soft real-time appli-
cation, in which the accessed video frames are consumed at
predefined instants (determined by the video playback rate
and the consumption instants of previous frames). In con-
trast, applications that support interactive navigation through
virtual environments yield real-time requests with low aver-
age response time requirements.

EDF and fixed priority schedulers are suitable for hard real-
time applications [14], while scheduling algorithms such
as FD-SCAN and SSEDV/SSEDO are are suitable for soft
real-time applications [1, 5]. Just-in-time schedulers (which
schedule requests just prior to their deadlines) are desirable
for real-time applications that initiate data consumptionat
deadlines (e.g., video playback). Finally, algorithms that
schedule requests at the earliest possible instants prior to
their deadlines, and thereby minimize the response time while
meeting the real-time requirements, are suitable for interac-
tive real-time applications.� Best-effort applications: These applications do not need per-
formance guarantees. They can be further classified as either
interactiveor throughput-intensive. Interactive applications
require low average response times. Throughput-intensive
applications require the file system to sustain high through-
put across multiple requests, but are less concerned about the
response times of individual requests. For instance, word
processors are interactive best-effort applications, while file
transfer is a throughput-intensive best-effort application.

Conventional disk scheduling algorithms such as SCAN,
SSTF, SATF, etc. are suitable for these applications.

From this, we conclude that different policies are suitablefor
scheduling disk requests from different application classes. Hence,
to align the service provided with the application needs, a disk
scheduling framework should employ different policies fordifferent
application classes. Furthermore, such a framework shouldprotect
application classes from one another. For example, bursty arrival
of best-effort requests should not cause deadline violations for real-
time requests; and the arrival of a burst of real-time requests should
not starve best-effort requests.

These requirements can be met by partitioning disk bandwidth
among the application classes, and then employing an application-
specific policy to schedule requests within each partition.However,
the granularity of partitioning should be chosen such that (1) the
seek time and rotational latency overhead incurred while servicing
requests is minimized, and (2) the service provided is aligned to
the application requirements. Finally, to efficiently utilize disk
bandwidth, the framework must bework-conserving(i.e., it should
utilize the idle disk bandwidth available to one application class to
schedule pending requests from another class); and should adapt to
changes in the work-load.

In summary, a disk scheduling algorithm suitable for next gen-
eration operating systems: (i) should align the service it provides
with the application needs, (ii) should protect application classes
from one another, (iii) should be work-conserving and should adapt
to changes in work-load, (iv) should minimize the seek time and
rotational latency overhead incurred during access, and finally (v)
should be computationally efficient. In what follows, we present a
disk scheduling framework that meets these requirements.3 The Cello Disk Scheduling Framework3.1 Architectural Principles
Cello achieves the above objectives by allocating disk bandwidth
to application classes at two time-scales. At the coarse time-scale,
it determines the number of requests from each application class to
be serviced, and at the fine time-scale, it determines the order for
servicing the set of requests from the application classes.Whereas
the former enables Cello to protect application classes from one
another as well as adapt disk bandwidth allocation with changing
work-load, the latter enables it to align the service provided to
the application requirements while minimizing the seek time and
rotational latency overhead.


