Cello: A Disk Scheduling Framework for
Next Generation Operating Systems -

Prashant J. Shenoy and Harrick M. Vin

Distributed Multimedia Computing Laboratory
Department of Computer Sciences, University of Texas atiAus
Taylor Hall 2.124, Austin, Texas 78712-1188
E-mail: {shenoy,vin}@cs.utexas.edu, Telephone: (512) 471-9732, Fax: (512) 471-8885
URL: http://www.cs.utexas.edu/users/dmcl

Abstract Total/Access Time First (STF/SATF), Aged Shortest Access
Time First (ASATF), etc., that schedule requests to minémiz
In this paper, we present the Cello disk scheduling framkviar the total seek time and rotational latency overhead [11, 17]

meeting the diverse service requirements of applicatiGetio em- _ .) o)
2. Disk scheduling algorithms optimized to service regalest

ploys a two-level disk scheduling architecture, consgstifia class-
independent scheduler and a set of class-specific schedilee
two levels of the framework allocate disk bandwidth at twoett
scales: the class-independent scheduler governs theegais al-
location of bandwidth to application classes, while theslapecific
schedulers control the fine-grain interleaving of requeste two
levels of the architecture separate application-independech-
anisms from application-specific scheduling policies, trateby
facilitate the co-existence of multiple class-specificesbifiers. We
demonstrate that Cello is suitable for next generationatpey sys-
tems since: (i) it aligns the service provided with the agadion
requirements, (ii) it protects application classes frore another,

with real-time deadlines: The simplest of these algorithms
is Earliest Deadline First (EDF) [14]. EDF schedules re-
quests in the order of their deadlines but ignores the velati
positions of requested data on disk in deriving the access
schedule. Hence, it can incur significant seek time and rota-
tional latency overhead. This limitation has been addrksse
by several disk scheduling algorithms, including Priority
SCAN (PSCAN), Earliest Deadline SCAN, Feasible Dead-
line SCAN (FD-SCAN), SCAN-EDF, Shortest Seek Earliest
Deadline by Order/Value (SSEDO, SSEDV) [1, 4, 5, 16], etc.
These algorithms start from an EDF schedule and reorder re-

guests so as to reduce the seek and rotational latency egerhe

(iii) it is work-conserving and can adapt to changes in wioikd, -) s 1 :
without violating request deadlines.

(iv) it minimizes the seek time and rotational latency oeexth in-

curred during access, and (v) itis computationally effitien Unlike the systems for which these scheduling algorithmewe

designed, today’s general purpose file and operating sgstenul-
taneously support applications with diverse performamcpiire-
ments [3, 15]. For instance, a typical file server today sewi
requests from interactive best-effort applications (eagprd pro-
cessors); real-time applications (e.g., video and audigepk); and
file transfer applications (e.g., http servers). Intexactipplica-
tions require the file server to minimize the average resptinse
])) o) of requests. Real-time video playback applications regthie file
1. Disk scheduling algorithms optimized to service befitfef server to retrieve successive video frames prior to theiyhmck
requests: The simplest of these algorithms is First Cons Fir jnstants (i.e., deadlines). However, due to the periodtareaof
Served (FCFS), that schedules requests in the order of theiryideo playback, these applications do not benefit if the émware
arrival. Since the access schedule thus derived isindepend retrieved much prior to their deadlines. Finally, file trimsappli-
of the relative positions of the requested data on disk, FCFS cations require the server to provide high throughput acseseral
scheduling can incur significant seek time and rotational la requests, but are less concerned about the response tirimeh-of
tency overhead. This limitation has been addressed byadever yjdual requests.
disk scheduling algorithms, such as Shortest Seek Time Firs With the many-fold increase in CPU processing power, nekwor
(SSTF), SCAN, LOOK, V(R), etc., that schedule requests to pandwidth, and disk capacity, it is inevitable that gengrapose
minimize seek time [6, 7, 8, 9, 10, 18, 19, 20]; and Shortest computing environments of the future will support appiicas of
even greater complexity and diversity. We can anticipaa tiext

1 Introduction

Since the invention of movable head disks, several algosthave
been developed to improve /O performance through intstiig
scheduling of disk accesses. These algorithms can be grdadl
vided into two classes:

*This research was supported in part by an AT&T Foundation

Award, IBM Faculty Development Award, Intel, the National Science
Foundation (Research Initiation Award CCR-9409666 and CAREER
award CCR-9624757), Lucent Bell Laboratories, NASA, Mitsubishi
Electric Research Laboratories (MERL), and Sun Microsystems Inc.

generation file systems will support applications that psscmas-
sive amounts of data for visualization and support reaktinter-

activity. For instance, a repository of satellite imagerigin be

accessed and processed by programs for feature extrantioea-

time visualization; an application for interactive natiga through

virtual environments will issue requests for the storageratrieval

of heterogeneous information objects (e.g., imagery, 3ddlels,

video, etc.) from distributed file servers under real-timestraints.
Since most conventional disk scheduling algorithms aravopéd

for a single performance criterion, they are ineffectivesiatulta-

neously supporting applications with such diverse requoénets.

Most of the techniques developed to-date for addressirgy thi
problem employ simple adaptations of conventional disledah
ing algorithms. To illustrate, consider a mix of real-timelebest-
effort applications. A real-time disk scheduling algonitttan be
adapted to service these applications by modeling the stgjgen-
erated by best-effort applications as a periodic task wétddtines
[13]. This modeling, however, is non-trivial and introdscartifi-
cial constraints that reduce the effectiveness of the syséaother
common approach for servicing the mix of real-time and ledfstt
applications is to employ a scheduler that assigns prariid ap-
plication classes and services disk requests in the prioriter.
Unfortunately, such schedulers may violate service requémts
of requests and induce starvation [2]. Finally, simply ertiag a
conventional scheduler by allocating time-slices to servequests
from different application classes may incur substantksand
rotational latency overhead (for short time-slices) ord/ienac-
ceptable response times (for long time-slices) (see Figjure

In this paper, we present tt@&ello disk scheduling framework
for simultaneously supporting applications with diversguire-
ments. Cello employs &wo-level disk scheduling architectyre
consisting of aclass-independenscheduler and a set aflass-
specific schedulers. The two levels of the framework allocate
disk bandwidth at two time-scales: the class-independemds
uler governs theoarse-grain bandwidth allocatioto application
classes, while the class-specific schedulers controfitleegrain
interleaving of requests from the application classes to align the
service provided with the application requirements. The lavels
of the architecture separate application-independentharesms
from application-specific scheduling policies, and thgrialeilitate
the co-existence of multiple class-specific schedulers.

We demonstrate that Cello is suitable for next generatienaip
ing systems since: (i) it aligns the service provided withdpplica-
tion needs, (ii) it protects application classes from oratlaer, (iii)
it is work-conserving and can adapt to changes in work-I¢ajl,
it minimizes the seek time and rotational latency overheadrred
during access, and (v) it is computationally efficient.

The rest of the paper is organized as follows: The requirésnen
for a disk scheduling algorithm for next generation opegsys-
tems are derived in Section 2. Section 3 describes and azalye
Cello disk scheduling framework. Section 4 presents thaltesf
our experiments. Finally, Section 5 summarizes our results

2 Requirements for a Disk Scheduling Algorithm

To determine a suitable disk scheduling algorithm, comsitle
requirements imposed by applications likely to be simdtarsly
supported by general purpose file and operating systemseof th
future:

e Real-time applicationsThese applications require the oper-
ating system to provide performance guarantees. Depending
on the strictness of the requirements, these applicatians ¢
be classified as eithéard real-timeor soft real-timeapplica-
tions. Whereas hard real-time applications require determ
istic guarantees for the response time of each disk request,
soft real-time applications require statistical guarasteRe-
guest generation in these applications can eithgrebmdic
or aperiodig and the applications may consume data imme-
diately following its availability or at predefined instant-or
example, video playback is a periodic, soft real-time appli

cation, in which the accessed video frames are consumed at

predefined instants (determined by the video playback rate
and the consumption instants of previous frames). In con-
trast, applications that support interactive navigatfooagh
virtual environments yield real-time requests with low ave
age response time requirements.

EDF and fixed priority schedulers are suitable for hard real-
time applications [14], while scheduling algorithms such
as FD-SCAN and SSEDV/SSEDO are are suitable for soft
real-time applications [1, 5]. Just-in-time scheduleri¢
schedule requests just prior to their deadlines) are ddsira
for real-time applications that initiate data consumptain
deadlines (e.g., video playback). Finally, algorithmsttha
schedule requests at the earliest possible instants mrior t
their deadlines, and thereby minimize the response timeewhi
meeting the real-time requirements, are suitable for aater
tive real-time applications.

Best-effort applicationsThese applications do not need per-
formance guarantees. They can be further classified as eithe
interactiveor throughput-intensive Interactive applications
require low average response times. Throughput-intensive
applications require the file system to sustain high threugh
put across multiple requests, but are less concerned diut t
response times of individual requests. For instance, word
processors are interactive best-effort applications|enfiie
transfer is a throughput-intensive best-effort applaati

Conventional disk scheduling algorithms such as SCAN,
SSTF, SATF, etc. are suitable for these applications.

From this, we conclude that different policies are suitdble
scheduling disk requests from different application @asdience,
to align the service provided with the application needs,sk d
scheduling framework should employ different policiesdifferent
application classes. Furthermore, such a framework stmokect
application classes from one another. For example, burstah
of best-effort requests should not cause deadline viaiatior real-
time requests; and the arrival of a burst of real-time regugsould
not starve best-effort requests.

These requirements can be met by partitioning disk bantwidt
among the application classes, and then employing an aiplc
specific policy to schedule requests within each partittdowever,
the granularity of partitioning should be chosen such thatlie
seek time and rotational latency overhead incurred whiteéiciag
requests is minimized, and (2) the service provided is aligto
the application requirements. Finally, to efficiently iz&@ disk
bandwidth, the framework must lmeork-conservindi.e., it should
utilize the idle disk bandwidth available to one applicat@ass to
schedule pending requests from another class); and shdajd &
changes in the work-load.

In summary, a disk scheduling algorithm suitable for next-ge
eration operating systems: (i) should align the serviceadvides
with the application needs, (ii) should protect applicat@asses
from one another, (iii) should be work-conserving and sti@adapt
to changes in work-load, (iv) should minimize the seek timd a
rotational latency overhead incurred during access, amdlyfiv)
should be computationally efficient. In what follows, we gget a
disk scheduling framework that meets these requirements.

3 The Cello Disk Scheduling Framework

3.1 Architectural Principles

Cello achieves the above objectives by allocating disk iattth

to application classes at two time-scales. At the coarse-tioale,
it determines the number of requests from each applicatass ¢o
be serviced, and at the fine time-scale, it determines ther dod
servicing the set of requests from the application clasé#wereas
the former enables Cello to protect application classes fome
another as well as adapt disk bandwidth allocation with ghn
work-load, the latter enables it to align the service predido
the application requirements while minimizing the seeketiamd
rotational latency overhead.

