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1 IntroductionA fundamental challenge in parallel processing is to develop e�ective models for parallel computation,at suitable levels of abstraction. E�ective and widely-used models would provide standards that couldbe relied upon by application programmers, algorithm designers, software vendors, and hardwarevendors, making parallel machines cheaper to build and easier to use. E�ective models must balancesimplicity, accuracy, and broad applicability. In particular, a simple, \bridging" model, i.e., a modelthat spans the range from algorithm design to architecture to hardware, is an especially desirable one.A number of models for parallel computation have been proposed and studied in the last twenty years.Primary among them are the parallel random access machine (pram) model [27, 46, 41, 61], in whichprocessors execute in lock-step and communicate by reading and writing locations in a shared memory,and network-based models (hypercube, butter
y, arrays, etc. [49]), in which processors communicateby sending messages to their neighbors in the given network. The pram model, although simple andwell-suited for developing parallel algorithms, is considered by many to be too high level, failing toaccurately model parallel machines. Network-based models are considered by many to be too lowlevel, failing to be broadly applicable, and not re
ective of the current generation of parallel machines.Thus, a number of alternative, intermediate models have been proposed and studied in the last eightyears. These abstract models di�er in what aspects of parallel machines are exposed. Some focus ondealing with asynchrony in a shared-memory context (e.g. [8, 19, 20, 26, 30, 33, 47, 54, 57]). Othersfocus on accounting for the overheads in accessing the shared memory ([2, 3, 24, 30, 39, 42, 50, 53])or in sending messages ([5, 9, 10, 21, 22, 37, 51, 52, 65]). Several models are primarily concerned withthe memory hierarchy, especially disk I/O ([6, 58, 68]). Others focus on contention at the memorylocation ([26, 34]) or memory module ([7]). Finally, a few models incorporate powerful aggregatecommunication primitives ([14, 17]).Given this plethora of models, it is natural to seek to distinguish a few models with the mostpromise, and concentrate on these models. Advocates such as Vishkin [67], Kennedy [48], Smith [63],and Blelloch [15] have long presented arguments in support of the shared-memory abstraction. On theother hand, shared-memory models have been criticized for years for failing to model essential realitiesof parallel machines. In particular, the pram model has been faulted for completely failing to modelbandwidth limitations of parallel machines. Until recently, there were few attractive alternatives, soshared-memory models such as the pram remained the most widely used models for the design andanalysis of parallel algorithms (see, e.g. [41, 46, 61]). However, in the last few years, new alterna-tives such as the bsp [65] and logp [21] models have gained considerable popularity. These abstractnetwork models support point-to-point message-passing, can directly support a distributed-memoryabstraction, and account for bandwidth limitations using a `gap' parameter. Given these new, morerealistic models, there is a temptation to declare all shared-memory models too unrealistic, and notworthy of further study or consideration.In this paper we challenge this perception and consider the question of whether a shared-memorymodel can in fact serve as an e�ective bridging model for parallel computation. In particular, can ashared-memory model be as e�ective as, say, the bsp? As a candidate for a bridging model, we intro-duce the Queuing Shared Memory (qsm) model, which accounts for limited communication bandwidthwhile still providing a simple shared-memory abstraction. In a nutshell, the qsmmodel consists of pro-cessors with individual private memory as well as a global shared memory. Access to shared memory ismore expensive than access to local memory or a computation step, re
ecting bandwidth limitations.The choice of the qsm model is based on the observation that while overheads due to latency, syn-chronization, and memory granularity can be e�ectively diminished by using slackness and pipelining,1



the bandwidth overhead is inherent and hence should be accounted for directly. Thus, the qsm isenvisioned as a \minimal" shared-memory model that can be competitive with the bsp. Similarly, thememory contention rule of the qsm is the queuing contention rule, as in the qrqw pram [34]. Thisrule is strong enough to provide the qsm with an expressive power comparable to that of the bsp, butit is not too strong to prevent a fast and e�cient emulation of the qsm on the bsp with the techniqueswe use.As advocated in [65, 67] and elsewhere, one reasonable goal for a high-level, shared-memory modelis that it allow for e�cient emulation on lower-level, seemingly more realistic, models. If the overheadsin the emulation are small, then the high-level model becomes an attractive general-purpose bridgingmodel. We substantiate the ability of the qsm to serve as a bridging model by providing a simplework-preserving emulation of the qsm on both the bsp, and on a related model, the (d;x)-bsp [16], andarguing for the practicality of this emulation. Thus the qsm can be e�ectively realized on machinesthat can e�ectively realize the bsp, as well as on machines that are better modeled by the (d;x)-bsp. We also describe scenarios in which the high-level qsm is more suited for analyzing algorithmson certain machines than the more detailed bsp and logp models, due to the fact that the memorylayout is di�erent than the one perceived by the bsp and logp.We present several algorithmic results for the qsm. We note that any erew or qrqw pramalgorithm can be mapped onto the qsm with a factor of g increase in time and work. We also showthat for many linear-work qrqw pram algorithms, this increase in work in the qsm algorithm isunavoidable, and we present some other lower bounds for the qsm. We consider the mapping of thebsp onto the qsm when the bandwidth parameter, g, is the same for both models. We show thatmany, though not all, bsp algorithms map onto the qsm step-by-step, resulting in algorithms whosetime and work bounds match the bounds on a bsp whose latency parameter, L, is set to 1. We alsopresent a work-preserving randomized emulation of the bsp on the qsm with a logarithmic slowdown.This result implies that any n-processor bsp algorithm that takes time t(n) (when L is set to 1) can bemapped onto the qsm to run in time O(t(n) lgn) w.h.p. using n= lgn processors, and more generallyon a p-processor qsm to run in time O(t(n) � (n=p+ lg n)) w.h.p.Our main conclusion is that shared-memory models can potentially serve as viable alternativesto existing message-passing or distributed-memory bridging models. While this paper focuses on ashared-memory model that would be competitive with the bsp, a similar approach can be taken withregard to other message-passing bridging models mentioned above (or others), that may emphasizeother features than the ones emphasized by the bsp.The rest of the paper is organized as follows. Some advantages of shared-memory models asbridging models are discussed in Section 2. In Section 3, we describe the Queuing Shared Memorymodel, and qualitatively compare it with previous models, and in particular, with the bsp. In Section 4,we present work-preserving emulations of the qsm on the bsp and on the (d;x)-bsp, and discuss thepracticality of these emulations. In Section 5, we provide a few scenarios where the qsm is a moreaccurate model than the more detailed bsp and logp. Section 6 presents algorithmic results and issuesrelated to algorithm design on the qsm. Section 7 explores the merits of incorporating into the qsmmodel distinct bandwidth gaps at the processors and the memories.Finally, we refer the reader to the position paper [31], which provides a non-technical overview ofmuch of this work in arguing the importance of shared-memory models in general and the qsm modelin particular. 2



2 Advantages of shared-memory models as bridging modelsA bridging model should provide an abstraction that is on the one hand easy to use by algorithmdesigners and programmers, and on the other hand can be realized by hardware and system softwareat a variety of price vs. performance points. In this section, we describe several contexts under whichthe shared-memory abstraction is an attractive choice for a bridging model in this regard.We consider a (pure) shared memory model to be one in which the processors communicate byreading and writing locations in a shared memory that is equally accessible by all processors. Theshared memory is viewed as a collection of independent cells: the contention encountered in accessinga shared memory cell is a function only of the number of processors also accessing the same cell. Thereis no visible partitioning of the memory, and no sources of contention due to such partitioning. Thepram is a classic example of a shared memory model.The shared memory abstraction refers to the interprocessor communication. As part of its localprivate state, a processor may have additional memory such as registers, bu�ers, cache, and localmemory banks. A shared memory model may be asynchronous. It may also have explicit charges forcommunication, modeling various overheads in reading or writing a shared memory that is not localto, and may be physically quite remote from, the processor requesting the read or write. Thus it is amistake to view \shared memory model" as a synonym for pram.The shared-memory abstraction is arguably easier to use than a message-passing or distributed-memory abstraction, and in certain important contexts, can be realized by a wider range of machines.In what follows, we elaborate on three of the advantages of the shared-memory abstraction over themessage-passing and distributed-memory abstractions.Smooth transition from sequential to SMP to MPP. The shared-memory abstraction is similarto the view of memory in sequential programming (the familiar read/write semantics). It is also theabstraction of choice for the small symmetric multiprocessors (SMPs) found in current microprocessors.There are high-performance parallel machines such as the Cray C90, Cray J90, and Tera MTA that alsodirectly support a shared-memory abstraction. Thus as a bridging model, it provides for the smoothesttransition from sequential programming to programming small SMPs to programming larger parallelmachines (MPPs). Code can be debugged on a smaller, simpler and cheaper machine, before runningit on a larger, more expensive machine; this will often signi�cantly reduce the overall debugging time.In short, the shared-memory abstraction o�ers ease of use in designing algorithms and programs thatspan a variety of machine sizes, and it has also been realized by machines that span a variety ofmachine sizes. This contrasts with message-passing and explicit distributed-memory, which are notdirectly supported by any sequential machine or SMP.Portability across memory architectures. The shared-memory abstraction is also attractivefor developing algorithms that span a variety of memory architectures. Since the layout of memoryis hidden in the model, the target machine can support the model in a variety of ways beyond thatmade visible in message-passing or distributed-memory machines. For example, the target machinemay choose to dynamically map memory locations to processors as the computation proceeds, as ina cache-only memory architecture (coma) [64]. In general, the target machine is free to implementa variety of cache and memory consistency protocols (e.g. [29]), since the model does not presupposea particular memory layout. The shared-memory abstraction is more relevant to parallel machines,such as the Cray C90, Cray J90, SGI Power Challenge, and Tera MTA, that have many more memorybanks than processors in order to compensate for the slow cycle times of memories. This point is3



addressed further later in the paper in Section 5.Important platform for algorithmic ideas. Finally, it is evident that a simple model with ashared-memory abstraction provides a useful platform for studying fundamental algorithmic issues.Many algorithms for more complex models are adaptations of algorithms �rst developed for a simpleshared-memory model. There are numerous examples, covering a wide range of problem domains, in-cluding sorting [17, 28, 42, 35], connected components [36, 40], computational geometry [62], FFT [21],and string matching [23]. Designing an algorithm directly for the more complex model is typically amore daunting task than �rst developing the algorithmic insights on a simple shared-memory modeland only then adapting them to the more complex model. Note that for any algorithm designedfor a high-level bridging model (whether shared-memory, message-passing or distributed-memory), itmay be desirable to consider a more complex, lower-level model when making important performance-enhancing re�nements. The shared-memory abstraction is desirable when such re�nements are notnecessary (i.e., whenever the algorithm performance is acceptable) since it is easier to use, and, asdiscussed above, it is still useful even if such re�nements are necessary.3 The Queuing Shared Memory modelIn this section, we describe the Queuing Shared Memory model, and elaborate on some of its features.De�nition 3.1 The Queuing Shared Memory (qsm) model consists of a number of identical proces-sors, each with its own private memory, communicating by reading and writing locations in a sharedmemory. Processors execute a sequence of synchronized phases, each consisting of an arbitrary inter-leaving of the following operations:1. Shared-memory reads: Each processor i copies the contents of ri shared-memory locations into itsprivate memory. The value returned by a shared-memory read can only be used in a subsequentphase.2. Shared-memory writes: Each processor i writes to wi shared-memory locations.3. Local computation: Each processor i performs ci ram operations involving only its private stateand private memory.Concurrent reads or writes (but not both) to the same shared-memory location are permitted in a phase.In the case of multiple writers to a location x, an arbitrary write to x succeeds in writing the valuepresent in x at the end of the phase.The restrictions that (i) values returned by shared-memory reads cannot be used in the same phaseand that (ii) the same shared-memory location cannot be both read and written in the same phasere
ect the intended emulation of the qsm model on a mimd machine. In this emulation, the sharedmemory reads and writes at a processor are issued in a pipelined manner, to amortize against thedelay (latency) on such machines in accessing the shared memory, and are not guaranteed to completeuntil the end of the phase. On the other hand, each of the local compute operations are assumed totake unit time in the intended emulation, and hence the values they compute can be used within thesame phase. 4



Each shared-memory location can be read or written by any number of processors in a phase, as ina concurrent-read concurrent-write pram model; however, in the qsm model, there is a cost for suchcontention. In particular, the cost for a phase will depend on the maximum contention to a locationin the phase, de�ned as follows.De�nition 3.2 The maximum contention of a qsm phase is the maximum, over all locations x, ofthe number of processors reading x or the number of processors writing x. A phase with no reads orwrites is de�ned to have maximum contention one.One can view the shared memory of the qsm model as a collection of queues, one per shared-memory location; requests to read or write a location queue up and are serviced one at a time. Themaximum contention is the maximum delay encountered in a queue. The cost for a phase depends onthe maximum contention, the maximum number of local operations by a processor, and the maximumnumber of shared-memory reads or writes by a processor. To re
ect the limited communicationbandwidth on most parallel machines, the qsm model provides a parameter, g � 1, that re
ects thegap between the local instruction rate and the communication rate.De�nition 3.3 Consider a qsm phase with maximum contention �. Let mop = maxifcig for thephase, i.e. the maximum over all processors i of its number of local operations, and let mrw =maxf1;maxifri; wigg for the phase. Then the time cost for the phase is max fmop; g �mrw; �g.1 Thetime of a qsm algorithm is the sum of the time costs for its phases. The work of a qsm algorithm isits processor-time product.Note that although the model charges g per shared-memory request at a given processor (theg �mrw term in the cost metric), it only charges 1 per shared-memory request at a given location (the� term in the cost metric)2. Note also that our model considers contention only at individual memorylocations, not at memory modules. Even though both of these features give more power to the qsmthan would appear to be warranted by current technology, our emulation results in Section 4 show thatwe can obtain a work-preserving emulation of the qsm on the bsp with only a modest slowdown. Thus,these features do capture the computational power achievable by current technology. The discussionin Section 4 provides some intuition for this rather surprising result.The particular instance of the Queuing Shared Memory model in which the gap parameter, g,equals 1 is essentially the Queue-Read Queue-Write (qrqw) pram model de�ned by the authors [34].Previous work on the qrqw pram [34, 32, 16] has been focused primarily on contention issues, unlikethis paper, which is primarily concerned with bridging models and bandwidth issues.3.1 Model comparisonTable 1 compares the qsm model to a number of other models in the literature. The �rst columnof the table gives the name of the model. The second column indicates the synchrony assumption ofthe model: Lock-step indicates that the processors are fully synchronized at each step, with no cost1Alternatively, the time cost could be mop + g � mrw + �; this a�ects the bounds by at most a factor of 3, and theresults in [16] show that at least for certain machines, taking the maximum is more accurate than taking their sum.2This issue is explored further in Section 7. 5



Comparison of Models of Parallel Computationmodel synchrony communication parametersPRAM [27] lock-step shared memory pModule Parallel Computer (mpc) [56] lock-step distributed memory pLPRAM [3] lock-step shared memory p; `Phase LPRAM [30] bulk-synchrony shared memory p; `; sXPRAM [66] bulk-synchrony message-passing p; g; LBulk-Synchronous Parallel (bsp) [65] bulk-synchrony message-passing p; g; LPostal model [10] asynchronous message-passing p; `LogP model [21] asynchronous message-passing p; g; `; oQRQW Asynchronous PRAM [33] asynchronous shared memory pQRQW PRAM [34] bulk-synchrony shared memory pBlock Distributed Memory (bdm) [42] bulk-synchrony distributed memory p; g; L; BPRAM(m) model [53] lock-step shared memory p;mInterval model [52] bulk-synchrony message-passing p; IQueuing Shared Memory (qsm) bulk-synchrony shared memory p; gTable 1: A comparison of several models of parallel computation. The fourth column indicates theparameters of the model, where p is the number of processors, ` is the communication latency (i.e. thetime to deliver a message point-to-point or to access the shared memory), s is the cost for a barriersynchronization among all the processors, L is a single parameter that accounts for the sum of ` ands, g is the bandwidth gap (i.e. the rate at which processors can perform local operations divided bythe rate at which the processors can sustain interprocessor or processor-memory communication), ois the overhead at the processor to send or receive a message, B is the block size (i.e. the numberof consecutive cells sent on a write or retrieved on a read), m is the number of shared-memory cellsavailable for both reading and writing, and I is the maximum of `, g, and s.
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for the synchronization. Bulk-synchrony indicates that there is asynchronous execution between syn-chronization barriers. Typically the barriers involve all the processors, although this is not necessarilyrequired. Models that permit more general asynchrony are denoted as asynchronous .The third column indicates the type of interprocessor communication assumed by the model. Amodel is considered to be shared memory only if it meets the standards for a pure shared-memoryabstraction outlined in Section 2, i.e. that the memory is viewed as a collection of independent cellsthat are equally accessible by all processors. If the processors communicate by reading and writinglocations in a memory that is partitioned, the model is considered to be a distributed memory model.For example, the bdm model [42] is distributed memory since the contention encountered by a readrequest depends on the number of other requests to the same memory module. The message-passingmodels shown in this table deliver messages point-to-point: this abstraction hides the details of howthe message is routed through the interprocessor communication network, and hence is similar to thedistributed-memory abstraction.The fourth column indicates the parameters in the model. The description of these parameters isgiven in the table caption. Some models, such as the lprammodel, account separately for computationsteps and communication steps. This can be viewed as having a separate latency parameter, asindicated in the table.Unlike the previous models shown in Table 1, the qsm provides bulk-synchrony, a shared-memoryabstraction, and just two parameters. In all, the key features of the qsm that make it an attractivecandidate for a bridging model are:1. Shared-memory abstraction. The qsm provides the simplicity of a shared-memory abstrac-tion in which the shared memory is viewed as a collection of independent cells, non-local to theprocessors. The advantages of a shared-memory abstraction were discussed in Section 2.2. Bulk-synchrony. The qsm supports bulk-synchronous operation, in which processors operateasynchronously between barrier synchronizations. As in models such as the phase lpram [30],the algorithm dictates the points at which barriers occur. This allows a qsm algorithm tosynchronize less frequently than algorithms designed for a lock-step model, which makes for amore e�cient mapping of the algorithm to mimd machines. The model does not allow for generalasynchronous algorithms. Permitting general asynchrony can lead to algorithms that run fasteron mimd machines. However, any asynchronous model that reasonably re
ects real machines isconsiderably more di�cult to use.3. Few parameters. For simplicity, it is desirable for bridging models to have only a few param-eters. As evidenced by [21, 28, 45] and elsewhere, having additional parameters in a model canmake it quite di�cult to obtain a concise analysis of an algorithm. On the other hand, it isdesirable to have whatever parameters are essential for a desired level of accuracy in modelingmachines realizing the bridging model. The qsm has only two parameters: one re
ecting thenumber of processors and one re
ecting the limited communication bandwidth. In the intendedemulation of the model on mimd machines, the latency of communication is hidden by havingeach physical processor emulate a number of qsm processors. Formally, we consider the emula-tion of higher-level models on lower-level models (such as the bsp), in order to make claims aboutthe cost, or lack thereof, of ignoring certain parameters in the higher-level model. The results inthe next section provide evidence that a parameter re
ecting limited bandwidth should be in ahigh-level model, and that other communication parameters are not necessary. For this reason,7



we believe that g is a better choice for a second parameter than the `, s, L, or I parametersfound in other models.4. Queue contention metric. The \queue-read queue-write" (qrqw) contention rule of the qsmmodel more accurately re
ects the contention properties of parallel machines with simple, non-combining interconnection networks than either the well-studied exclusive-read exclusive-write(erew) or concurrent-read concurrent-write (crcw) rules. As argued in [34], the erew rule istoo strict, and the crcw rule ignores the large performance penalty of high contention steps.Indeed, for most existing machines, including the Cray T3E, Cray C90, Cray J90, IBM SP2,Intel Paragon, MasPar MP-2 (global router), Tera MTA, and Thinking Machines CM-5 (datanetwork), the contention properties of the machine are well-approximated by the queue-read,queue-write rule. The queue-read queue-write contention metric can lead to faster algorithms,since it does not ignore the aforementioned penalty for high contention steps and yet it allowsfor low-contention algorithms that are not permitted under the erew rule.5. Work-preserving emulation on bsp. The bsp is a distributed memory, message passingmodel that is gaining acceptance as a bridging model for parallel computation. Thus a work-preserving emulation of the qsm on the bsp is a strong validating point for this shared-memorymodel. This key feature will be discussed in Section 3.2.6. Work-preserving emulation of bsp. In addition to the work-preserving emulation of qsm onbsp we observe that there is a work-preserving mapping in the reverse direction as well. Manybsp algorithms map onto the qsm in a step-by-step manner with performance corresponding tothe case when the periodicity parameter on the bsp is set to 1. While it is possible for bspalgorithms not to have this property, we also present a work-preserving emulation of the bspon the qsm with only a small slow-down. This emulation holds for all bsp algorithms. This isdiscussed in more detail in Section 3.2 and in Section 6.The pram(m) model shares many of the same goals as the qsm model. As shown in the table,the pram(m) provides a shared-memory abstraction and just two parameters: one for the numberof processors and one that captures the limited communication bandwidth (g = p=m). However, thepram(m) model is suitable only for lower bounds. First, having only m < p shared-memory locationsis a large burden on the algorithm designer; no machines provide this restriction. Second, the modelassumes that input is in a read-only memory that can be accessed by all processors without anybandwidth limitations; this undercharges the cost of such accesses for existing machines. Third, themodel provides unlimited contention to the m shared-memory locations at no extra charge; this too isunrealistic for existing machines. Due to these features, the model does not seem to have an e�cientemulation on lower-level models such as the bsp. The model is intended for lower bounds, and indeedlower bounds proved for the pram(m) model imply lower bounds for a large number of other models.3.2 Comparison to bspIn this section we compare the qsm to the bsp in terms of their e�ectiveness as a bridging model forparallel computation. We choose to compare the qsm with the bsp rather than the logp model sincethe qsm is a bulk-synchronous model like the bsp (and unlike the logp) model.The Bulk-Synchronous Parallel (bsp) model [65, 66] consists of p processor/memory componentscommunicating by sending point-to-point messages. The interconnection network supporting this8



Emulations on BSPmodel emulated on model with slackness work-preserving?erew pram bsp(g; L) � max(lg p; L=g) ine�cient by a factor of gqrqw pram bsp(g; L) � max(lg p; L=g) ine�cient by a factor of gcrcw pram bsp(g; L) � max(p1+�; L=g) ine�cient by a factor of gqsm(g) bsp(g; L) � max(g lg p; L=g) yesTable 2: Some emulations of higher-level models on the bsp model. The result for qsm is new. Theemulations are randomized and the bounds are obtained with high probability in p.communication is characterized by a bandwidth parameter g and a latency parameter L. A bspcomputation consists of a sequence of \supersteps" separated by bulk synchronizations. In eachsuperstep the processors can perform local computations and send and receive a set of messages.Messages are sent in a pipelined fashion, and messages sent in one superstep will arrive prior to thestart of the next superstep. The time charged for a superstep is calculated as follows. Let wi be theamount of local work performed by processor i in a given superstep. Let si (ri) be the number ofmessages sent (received) by processor i. Let w = maxpi=1wi, and h = maxpi=1(max(si; ri)). Then thecost, T , of a superstep is de�ned to be T = max(w; g �h; L).3 Although the bsp is a message-passingmodel, it can also be viewed as a distributed-memory model where each memory component serves asa memory bank.To compare the cost metrics of the bsp and the qsm, we consider the distributed-memory view ofthe bsp and a superstep comprised of local work, read requests and write requests. We can equatethe two g parameters, and wi with ci (and hence w with mop). Let hs = maxpi=1 si, the maximumnumber of read/write requests by any one processor, and let hr = maxpi=1 ri, the maximum numberof read/write requests to any one memory bank . The bsp charges the maximum of w, g � hs, g � hr ,and L. The qsm, on the other hand, charges the maximum of w, g �hs, and �, where � 2 [1::hr] is themaximum number of read/write requests to any one memory location and is not multiplied by g.One important measure of a bridging model is its ability to be emulated by important lower-levelmodels. Table 2 presents some known emulation results of higher-level models on the bsp. The parallelslackness in an emulation is the number of processors in the higher-level model per processor in thebsp model. An emulation is work-preserving if both models perform the same amount of work, towithin constant factors. The �rst three rows show emulation results for the erew pram, the qrqwpram and the crcw pram on the bsp; note that none of these three models have a work-preservingemulation on the bsp if g is not a constant. In the case of the crcw pram, even for a bsp with gapparameter that is a constant, a work-preserving emulation on the bsp is known only with a parallelslackness that is very large, i.e., polynomial in p. In contrast, the qsm does have a work-preservingemulation on a bsp with the same gap parameter, for any g, using only modest slackness and smallconstants. This result will be shown in the next section.The emulation result implies that any algorithm designed on the qsm can be mapped onto the bspin a work-preserving manner with only a modest slowdown. Since the qsm has fewer parameters thanthe bsp, and does not deal with memory partitioning details, for most problems it should be easier3Alternatively, the time is w + g � h+ L; this a�ects the bounds by at most a factor of 3, and the results in [16] showthat at least for certain machines, taking the maximum of the three terms is more accurate than taking their sum.9



to design algorithms on the qsm than on the bsp. Moreover, the emulation result implies that anymachine that can realize the bsp model can also realize the qsm model, given the additional systemsoftware needed for the (simple) emulation algorithm.Many algorithms designed for the bsp have as their goal to minimize the number of supersteps(e.g., [35]). In contrast, the qsm does not account for the number of supersteps (e.g., there is no Lparameter in the qsm model). Ignoring the number of supersteps simpli�es the model, and it can besomewhat formally justi�ed by the emulation result, which shows that any two qsm algorithms withthe same qsm time bound will have the same bsp time bound when emulated on the bsp, regardlessof the number of supersteps in the respective algorithms.One can also consider the mapping of bsp algorithms onto the qsm. Many of the bsp algorithmsreported in the literature have a simple version on the qsm corresponding to the case when the latencyL = 1. As shown in Section 6 it is possible, in principle, to have bsp algorithms that do not map backto the qsm in a work- and time-preserving manner. Such algorithms would exploit the fact that a bspprocessor(i) could receive a piece of information that it did not speci�cally request, or(ii) could access, as a unit-time local computation, a value (not requested by it) that was writteninto its local memory bank by another processor in an earlier step.On the qsm a processor would need to initiate a read for any piece of information that it receives;further that access will be charged a cost of g at the time the processor reads it in addition to a costof g being applied at the time the value was written into the shared-memory location.While the features listed above could indicate that the bsp is in some ways more powerful thanthe qsm, it is not clear that we want a general-purpose bridging model to incorporate these features.In general, there will be features such as these arising due to contrasts between message-passing andshared memory, between coherent and non-coherent caches, between update and invalidation-basedcoherence protocols, etc. Any choice of these features may not be representative of a wide range ofparallel machines. Moreover, as discussed in Section 2, current designers of parallel processors oftenhide the memory partitioning information from the processors since this can be changed dynamicallyat runtime. As a result an algorithm that is designed, say, using this additional power of the bsp overthe qsm may not be that widely applicable.In Section 6, we show that a bsp that does not exploit features (i) and (ii) can be emulated ona qsm using a simple, deterministic, time- and work-preserving algorithm. We also show that anyn-component bsp, even one that exploits these features, has a work-preserving emulation on a qsmwith the same gap parameter, with a modest slowdown of O(lgn=(1+L=g)), with high probability inn; this emulation uses a fairly involved algorithm.Thus, overall, the qsm is e�ective in modeling the essential features of the bsp while remaining ata higher level of abstraction.4 Emulations of qsm on bsp modelsThe (d;x)-bsp [16] is a model similar to the (distributed-memory view of the) bsp, but it provides amore detailed modeling of memory bank contention and delay. In [16], it is argued that the (d;x)-bsp10



more accurately models shared-memory machines with a high-bandwidth communication network andmore memory banks than processors than the bsp does. Such machines include Cray C90, Cray J90and Tera MTA (experimental validation of this accuracy claim is provided for Cray C90 and Cray J90).The (d;x)-bsp is parameterized by �ve parameters, p; g; L; d and x, where p, g and L are as in theoriginal bsp model, the delay d is the `gap' parameter at the memory banks, and the expansion x is theratio of memory banks to processors (i.e., there are x � p memory banks). Consider a superstep wherew is the maximum local work performed by a processor, hs is the maximum number of read/writerequests by a processor and hr is the maximum number of read/write requests to a memory bank.Then the time, T , charged by the (d;x)-bsp for this superstep is T = max(w; g � hs; d � hr; L). Theoriginal bsp can be viewed as a (d;x)-bsp with d = g and x = 1.In this section we present two emulations of the qsm on the (d;x)-bsp. The �rst emulation is fora so-called balanced (d;x)-bsp, in which x � d=g, and is work optimal. Since the bsp is a balanced(d;x)-bsp, this optimal emulation applies also for the bsp. The second emulation is for an unbalanced(d;x)-bsp, in which x < d=g. This emulation su�ers from work ine�ciency which is proportional to the\imbalance-factor", d=(gx). We show by a lower bound argument that this overhead is unavoidable.The two emulations are in fact identical, and di�er only in the slackness parameter. We �rst presentthe algorithm, followed by the di�erent analysis for the two cases mentioned above, and concludingwith the lower bound.4.1 The emulation algorithmA work-preserving emulation of a model A on a model B provides a formal proof that model A canbe realized on model B with only a constant factor overhead in work. If model B is considered tobe re
ective of an interesting class of parallel machines, then such an emulation supports the use ofA as a bridging model, as long as the emulation can be considered \practical". For the qsm on the(d;x)-bsp (and hence on the bsp), we present a very simple emulation algorithm and then discuss itspracticality in some detail.The emulation algorithm of a v-processor qsm on a p-processor (d;x)-bsp, v � p, is quite simple,and it is similar to emulations that were previously proposed for the pram. Unlike previous emulations,our analysis needs to handle the gap parameter in the emulated machine.� The shared address space of the qsm is randomly hashed into the xp memory banks of the(d;x)-bsp (or to the p memory modules of the bsp).� In each phase, each processor of the (d;x)-bsp emulates v=p processors of the qsm.In the work-preserving emulation, each phase i of time ti on the qsm is emulated on the (d;x)-bsp (orsimply the bsp) in time O((v=p) � ti), regardless of the distribution of shared memory reads and writes.The needed parallel slackness, v=p, is modest, and does not depend on the maximum contention in aphase (which may be much larger than v=p).The mapping of the qsm shared memory among the machine's memory banks assumes the machinesupports a single address space. Many recent machines (e.g., Cray T3E) provide hardware supportfor a single address space; for other machines (e.g., IBM SP-2), it can be emulated in software withsome overhead. 11



Note that if a computer system already hashes the data using a pseudo-random hash function, thenthe emulation is nothing but the straightforward implementation of an algorithm whose parallelism islarger than the number of processors. Several parallel database systems already hash their data usingpseudo-random hash functions. The Tera MTA provides hardware support for hash functions to beused for pseudo-random mapping of memory locations to memory banks; the Fujitsu �-VP on theMeiko node already has optional hardware hashing. For other machines, computing a pseudo-randomhash in software is feasible. For example, it is shown in [16] that the overhead to compute a certainprovably-good (i.e., 2-universal) pseudo-random hash function on the Cray C90 averages 1.8 clockcycles. Also as noted in [16], for some algorithms it is possible to get the same e�ect without memoryhashing, by randomly permuting the input and some of the intermediate results. In others, the natureof the algorithm results in random mapping without any additional steps.It is well known that hashing destroys spatial locality, but not temporal locality. Spatial localityenables long messages to be sent between components, thereby minimizing overheads on many ma-chines. Some models, such as bdm [42], loggp [5], and bsp� [12, 11], account for advantages in longmessages; most others, e.g., qsm, bsp, (d;x)-bsp and logp, do not. Thus the qsm shares with thebsp, (d;x)-bsp and logp models a disregard for spatial locality. Spatial locality can also arise in initialdata placement. Here the input can be assumed to be distributed among the private memories of theqsm processors as among the local memories of the bsp, (d;x)-bsp or logp processors.The emulation of v=p virtual processors by each physical processor can be done by a varietyof techniques. The primary technique is multithreading, in which each virtual processor is its ownprocess, and the physical processor context switches between these processes. The Tera MTA provideshardware support for this multithreading, minimizing the context switching costs. Alternatively, suchmultithreading can be performed in software. Note that in the qsm, as in other bulk-synchronousmodels, each virtual processor issues a series of memory requests in a phase. Instead of contextswitching at each memory request, the multithreading can be performed by executing all the code forthe �rst virtual processor in this phase, then switching to the second virtual processor, and so forth, sothat only v=p context switches are needed for the entire phase (this description assumes that storingvalues returning in response to shared-memory read requests does not require a context switch).In order to minimize the overheads, it is very important to minimize the amount of parallel slacknessrequired. In the worst case, multithreading v=p processes per machine processor results in v=p timesthe storage demand at each level of the processor's memory hierarchy, possibly resulting in variousthrashing e�ects. The emulation of the qsm on the bsp requires only max(g lg p; L=g) slackness; onthe (d;x)-bsp, as little as max(d; L=g) slackness may be required. Note that the L=g term matchesthe limit on multithreading imposed by the logp model [21].Thus, overall, the constants hidden by the big-O notation in the emulation result are small, andhence the emulation can arguably be considered practical. (In fact, this emulation is a fundamentalcomponent in the design of the Tera MTA.)4.2 Work-preserving qsm emulation on (d;x)-bspThe following theorem presents an emulation of the qsm on a (d;x)-bsp for the case when x � d=g,where g is the gap parameter for both the qsm and the (d;x)-bsp. The emulation is work-preservingfor any g (i.e. the work performed on the (d;x)-bsp is within constant factors of the work performedon the qsm). 12



Theorem 4.1 (work-preserving QSM emulation) Consider a p-processor (d;x)-bsp with gap pa-rameter g and periodicity factor L, such that dg � x � p�c, for some constant �c > 0, wheredg = d=g � 1. Let � = 8><>: d lg p if dg � x � 2dgd lg p= lg(x=dg) if 2dg � x � pdgd if x � pdgThen for all p0 � max(�; L=g)�p, each step of an algorithm for the p0-processor qsm with gap parameterg with time cost t can be emulated on the p-processor (d;x)-bsp in O((p0=p) � t) time w.h.p.This result is not implied by previous simulation results for the qrqw pram [34, 16], since theseprevious results considered standard pram models with no gap parameter and bsp or (d;x)-bspmodels with a small constant gap parameter (that was hence ignored as part of the big-O notation).The question of how the work-e�ciency and/or slowdown of the emulation depended upon the gapparameters was not studied. Since we are considering the same gap parameter, g, for the qsm as forthe bsp, one might conjecture that considering the gap parameter does not substantially alter thebounds of the simulations without the gap parameter. However, note that the qsm model charges �for contention �, regardless of the gap or delay parameters, and indeed a qsm step with time t canhave t=g memory requests per processor and maximum contention t. In contrast, in such cases thebsp charges at least g � t and the (d;x)-bsp charges at least d � t. Viewing the mapping of memorylocations to memory banks as tossing weighted balls into bins (where the weight of a ball correspondsto the contention of the location), this implies a di�erent mix of balls than considered in previousemulations.Before we present the proof of this theorem, we note that in the original bsp, dg = x = 1, so fromthe above theorem we obtain the following corollary:Corollary 4.2 (work-preserving QSM emulation) A p0-processor qsm with gap parameter g can beemulated on a p-processor bsp with gap parameter g and periodicity parameter L in a work-preservingmanner w.h.p. provided p0 � max(g lg p; L=g) � p.Proof of Theorem 4.1 We now prove the theorem. The proof is similar to that in [16], extendedand adjusted to properly account for the gap parameter in the qsm and to improve upon the resultsfor large values of x, even for the case studied previously of g = 1.The shared memory of the qsm is randomly hashed onto the B = x � p memory banks of the(d;x)-bsp. In the emulation algorithm, each (d;x)-bsp processor executes the operations of p0=p qsmprocessors.We �rst assume that x � 2dg.Consider the ith step of the qsm algorithm, with time cost ti. Let c > 0 be some arbitrary constant,and let � = max fc+ �c+ 1; eg. We will show that this step can be emulated on the (d;x)-bsp in timeat most �(p0=p)ti with probability at least 1� p�c. Note that by the qsm cost metric, ti � g, and themaximum number of local operations at a processor in this step is ti. The local computation of theqsm processors can be performed on the (d;x)-bsp in time (p0=p)ti, since each (d;x)-bsp processoremulates p0=p qsm processors. 13



By the de�nition of the qsm cost metric, we have that �, the maximum number of requests to thesame location, is at most ti, and hs, the maximum number of requests by any one processor, is at mostti=g. For the sake of simplicity in the analysis, we add dummy memory requests to each processor asneeded so that it sends exactly ti=g memory requests this step. The dummy requests for a processorare to dummy memory locations, with processor ` sending all its dummy requests to dummy location`. In this way, the maximum number of requests to the same location, �, remains at most ti, and thetotal number of requests is Z = p0ti=g.Let i1; i2; : : : ; im be the di�erent memory locations accessed in this step (including dummy loca-tions), and let �j be the number of accesses to location ij , 1 � j � m. Note that Pmj=1 �j = Z.Consider a memory bank �. For j = 1; : : : ; m, let xj be an indicator binary random variablewhich is 1 if memory location ij is mapped onto the memory bank �, and is 0 otherwise. Thus,Prob (xj = 1) = 1=B. Let aj = �j=ti; aj is the normalized contention to location j. Since � � ti, wehave that aj 2 (0; 1]. Let 	� =Pmj=1 ajxj ; 	� , the normalized request load to bank �, is the weightedsum of Bernoulli trials. The expected value of 	� isE (	�) = mXj=1 ajB = 1xp mXj=1 �jti = 1xp � Zti = p0 tix p ti g = p0xpg :Let h�r be the total number of requests to locations mapped to bank �. To show that it is highlyunlikely that h�r greatly exceeds this expected value, we will use the following theorem by Raghavanand Spencer, which provides a tail inequality for the weighted sum of Bernoulli trials:Theorem 4.3 ([59]) Let a1; : : : ; am be reals in (0; 1]. Let x1; : : : ; xm be independent Bernoulli trialswith E (xj) = �j. Let 	� =Pmj=1 ajxj. If E (	�) > 0, then for any � > 0Prob (	� > (1 + �)E (	�)) < � e�(1 + �)(1+�)�E(	�) : (1)We apply Theorem 4.3 with �j = 1=B, and set� = � xdg � 1 ;implying (1 + �)E (	�) = � xdg � p0xpg = �p0dp : (2)Therefore, Prob�	� > �p0dp � (1),(2)< � e(1 + �)�(1+�)E(	�) (2)=  �xedg!��p0dp� � e�  xdg!��p0dp x > dg�  xdg!��d max(�;L=g)x > dg�  xdg!��d � � p�� � p�(c+�c+1)= p�(c+1)p�c x � p�c� p�(c+1)x :14



Note that h�r = mXj=1 xjkj = 	� � ti :Therefore, Prob�h�r > �p0 tid p � < p�(c+1)x :Let hr = max� h�r . ThenProb�hr > �p0 tid p � � B �Prob�h�r > �p0 tid p � < B � p�(c+1)x = p�c :The time of the (d;x)-bsp step to emulate qsm step i is Ti = max((p0=p)ti; g(p0=p)(ti=g); d � hr; L).Since ti � g, we have that (p0=p)ti � (p0=p)g � L and hence it follows from the above thatProb �Ti � � (p0=p) ti� � 1� p�c :We next consider the case where dg � x � 2dg, and therefore � = d lg p. In this case we take� = max fc+ �c+ 1; 2eg, and the proof proceeds as above except that we make use of the fact that �xedg!��p0dp � 2��p0dp � 2��d max(d lg p;L=g) � 2�� lgp = p�� :This completes the proof of Theorem 4.1.4.3 Emulating qsm on unbalanced (d;x)-bspWe next consider the case where the bandwidth at the memory banks is less than the bandwidth atthe processors and network, i.e. x < dg. We present an emulation whose work bound is within aconstant factor of the best possible.Theorem 4.4 (QSM on unbalanced (d,x)-BSP) Consider a p-processor (d;x)-bsp with gap pa-rameter g and periodicity factor L, such that 1 � x < min fdg; p�cg, for some constant �c > 0, wheredg = d=g. Then for all p0 � max(xg lg p; d; L=g) � p, each step of an algorithm for the p0-processor qsmwith parameter g with time cost t can be emulated on the p-processor (d;x)-bsp in O((dg=x) � (p0=p) � t)time w.h.p.Proof. As in the proof of Theorem 4.1, the shared memory of the qsm is randomly hashed ontothe B = x � p memory banks of the (d;x)-bsp. In the emulation algorithm, each (d;x)-bsp processorexecutes the operations of p0=p qsm processors.Consider the ith step of the qsm algorithm, with time cost ti. Let c > 0 be some arbitrary constant,and let � = max fc+ �c+ 1; 2eg. We will show that this step can be emulated on the (d;x)-bsp in timeat most maxf(p0=p)ti; �(dg=x)(p0=p)tig with probability at least 1� p�c.The proof proceeds exactly as in the proof of Theorem 4.1: we add dummy requests as needed,de�ne indicator binary random variables xj for each memory bank j, de�ne 	� , and show that15



E (	�) = p0=(xpg). We apply the Raghavan and Spencer theorem (Theorem 4.3), but with � = �� 1.This yields Prob�	� > �p0xp � < ��e�� �p0xpg � � 2e� 2� �xg max(xg lg p;d;L=g)� p�� � p�(c+�c+1) x < p�c< p�(c+1)x :It follows as in the previous proof thatProb�hr > �p0 tix pg � < p�c ;where hr is the maximum number of read/write requests to a memory bank. The time, Ti, of the(d;x)-bsp superstep to emulate qsm step i is max((p0=p)ti; g(p0=p)(ti=g); d � hr; L). Since ti � g andp0=p � L=g, we have thatProb�Ti � max�p0p � ti ; � � dx p0pg � ti�� � 1� p�c :The theorem follows.4.4 A lower boundThe following lower bound shows that the work bound in Theorem 4.4 is tight, as well as showingthe importance of having a gap parameter on the qsm. In particular, it implies that a pram has aninherent ine�ciency overhead of g, when emulated on a bsp or (d;x)-bsp with a gap parameter g.Likewise, it implies that g is the minimum gap parameter that should be assigned to the qsm in orderto allow for work-e�cient emulation on a bsp and (d;x)-bsp.Observation 4.5 Let p0 � p. Any emulation of one step of the p0-processor qsm with gap parameterg0 with time cost t on the p-processor (d;x)-bsp with gap parameter g and periodicity factor L requiresT = max(t � (g=g0) � dp0=pe; d � dtp0=(xpg0)e) time in the worst case.Proof. Consider a step in which each of the p0 qsm processors perform t=g0 memory requests, suchthat all p0t=g0 requests are to distinct locations in the shared memory. Since there are m = p0t=g0locations distributed among xp memory banks, then regardless of the mapping of locations to banks,there exists at least one bank j which is mapped to by at least dm=xpe locations. Also, each (d;x)-bspprocessor sends dp0=pe � (t=g0) shared memory requests. Therefore, the time on the (d;x)-bsp is atleast T .5 Improved accuracy through the qsm abstractionIn this section, we draw attention to cases where the extra abstraction provided by the qsm mayactually result with more accurate modeling. Blelloch et al. [16] demonstrated pitfalls in applying16



existing message-passing or distributed-memory models to machines such as the Cray C90, Cray J90,SGI Power Challenge and Tera MTA. In particular, standard message-passing or distributed-memorymodels such as the bsp and logp have the property that the number of memory components is equalto the number of processors. On the other hand, several parallel machines, such as those listed above,have many more memory components than processors, creating a mismatch between such standardmodels and machines. The abstraction of memory components to shared memory, as assumed in theqsm, make it more robust to changes in the number of memory components.We elaborate below on how the work-preserving emulation of Section 4, together with the experi-mental results of [16], indicate general cases for Cray-like machines where the qsm is a more accuratemodel than the bsp and logp. We then illustrate this observation by a concrete simple instance.5.1 Suitability of qsm to Cray-like machinesProcessor speeds have been increasing at over 50% a year while memory speeds have been increasingat less than 10% a year [38]. This divergence has motivated several computer manufacturers to designparallel machines with many more memory banks than processors. For example, the 16-processor CrayC90 has 1024 memory banks, the 16-processor Cray J90 has 512 memory banks, the 18-processor SGIPower Challenge has 64 memory banks, and the 256-processor Tera MTA will have 32K memorybanks. In order to more accurately model such machines, Blelloch et al. [16] introduced the (d;x)-bspmodel and showed experimentally that it models the Cray C90 and Cray J90 quite accurately, eventhough the model ignores many details about these machines.The (d;x)-bsp considers a distributed-memory version of the bsp, in which processors read andwrite from a collection of memory banks. As discussed in Section 4, the (d;x)-bsp extends the bspwith two additional parameters, accounting for both (i) the bank delay , d, which is the bandwidth`gap' parameter at a memory bank, and (ii) the bank expansion, x, which is the ratio of memory banksto processors.As discussed in [16], the Cray C90 and Cray J90 machines are well suited to the bulk-synchronizationprovided by bsp-like models, since each of the processors can pipeline hundreds of shared-memory re-quests, thereby amortizing against the latency, the bank delay (in the absence of high contention),and the cost of synchronizing the processors. It is shown in [16] that accounting for the memory bankdelay is critical in predicting running times of algorithms with high memory contention. Therefore, insome situations the bsp and logp models may provide poor prediction for an algorithm performance,while the (d;x)-bsp may provide a good one. An example is shown in Figure 1 for the Cray J90.In this �gure, predicted and measured performance are shown on a set of memory access patternsextracted from a trace of Greiner's algorithm for �nding the connected components of a graph [36].Measured times on an 8 processor Cray J90 for several patterns are shown with squares. Predictedtimes are given for the (d;x)-bsp, which models the Cray J90 quite accurately, and the bsp and thelogp, which do not. The contention is given on a logarithmic scale indicating the ratio between themaximum contention, k, and the total number of requests, p � S (p is the number of processors and Sis the number of requests sent by each processor).The qsm is a more high-level model than the bsp or logp, which in turn are more high-levelmodels than the (d;x)-bsp. Nevertheless, the qsm is a better model for machines such as the CrayC90 and Cray J90 than the bsp or the logp, since its shared-memory abstraction does not assume aparticular memory layout. In particular our emulation result of the previous section shows that any17
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BSP,LOGPFigure 1: Inaccuracies in the bsp and the logp predictions, due to assuming the wrong memorylayout and underestimating the cost of memory bank contention. This �gure is from [16].algorithm designed for the qsm will map in a work-preserving manner onto the (d;x)-bsp given areasonable amount of parallel slackness, and thus onto these machines. This is because the qsm costmetric accounts for contention to locations, and hence can be translated to a memory layout of anygranularity. In contrast, message-passing or distributed-memory models such as the bsp and logpaccount only for the aggregated contention per processor, and hence reveal insu�cient information toenable a work-preserving emulation unless the slackness is � x. (When the slackness is � x, then thep-processor distributed-memory model is emulated on a (d;x)-bsp with at most p memory banks.)We demonstrate below a simple example where the bsp prediction is entirely inconsistent with theperformance on (d;x)-bsp.5.2 Illustrative exampleWe describe here memory access patterns, A and B, that are indistinguishable on the bsp but have alarge di�erence on both the qsm and (d;x)-bsp.Suppose k processors send one message each to a bsp component C, for arbitrary k. In accesspattern A, all requests are directed to the same memory location. In access pattern B, each requestis directed to a di�erent memory location within C. In both cases, the cost of the access patterns onthe bsp is g � k. On the qsm, the cost of access pattern A is max(g; k), whereas the cost of accesspattern B is g. Consider a (d;x)-bsp with x � k, and suppose that each of the requests in accesspattern B is to a di�erent memory bank. Then the cost of access patterns A and B on the (d;x)-bspis max(g; d � k) and max(g; d), respectively.The above example demonstrates a situation where the metric of the bsp is not at all consistentwith that of the (d;x)-bsp, whereas the qsm maintains close consistency.18



6 Algorithmic issuesAs a shared-memory model, the qsm o�ers a simple high-level medium for the design of parallelalgorithms that can take into consideration e�ective use of limited bandwidth. In this section wepresent some algorithmic results and techniques for the qsm as well as general strategies to mapalgorithms developed on some other models onto the qsm.In general the qsm is to be used for direct algorithm design that makes e�ective use of limitedbandwidth. However, since we would like to leverage on the extensive literature on pram algorithms,in Section 6.1 we discuss the mapping of qrqw pram and erew pram algorithms onto the qsm. InSection 6.2 we present some lower bounds, and in Section 6.3 we present some direct qsm algorithmsthat are faster than the ones obtained by the generic pram mapping.It is also important to consider the mapping of bsp algorithms onto the qsm, for two reasons:First, a good mapping result of this type will allow us to leverage on the results and techniques thatwere developed for the bsp model. Second, it will demonstrate that the expressive power of qsm isno less than that of the bsp. We study this issue in Section 6.4 and Section 6.5. In view of a simplelower bound of 
(n � g) that we prove in Section 6.2 on the time needed to read n items from globalmemory into the qsm processors, for these algorithms we assume that the input is distributed amongthe local memories of the processors in a suitable way. In Section 6.4 we show that any bsp algorithmthat is `well-behaved' (as de�ned in that section) can be adapted in a simple way to the qsm withno loss in performance. In that section we also argue that bsp algorithms that are not `well-behaved'use certain features of the bsp that are not quite representative of a large class of parallel machines.For completeness on the issue of expressive power, in Section 6.5 we show a general randomized work-preserving emulation of bsp on qsm. Unlike the simple adaptation for `well-behaved' algorithms, thisemulation consists of a fairly involved algorithm and results in logarithmic slow-down. Overall theseresults demonstrate that any algorithm designed for bsp could be also designed on the qsm, withoutsubstantial loss of e�ciency.Finally, in Section 6.6 we discuss the importance of the queuing metric for memory accesses in theqsm model, and note that it is central to its e�ectiveness as a shared-memory bridging model.First, we consider the property of self-simulation for the qsm, i.e., the problem of simulating ap-processor qsm on a p0-processor qsm, where p0 < p. The availability of an e�cient self-simulationis an important feature for parallel models of computation, since it implies that an algorithm writtenfor a large number of processors is readily portable into a smaller number of processors, without lossof e�ciency.Observation 6.1 Given a qsm algorithm that runs in time t using p processors, the same algorithmcan be made to run on a p0-processor qsm, where p0 < p, in time O(t � p=p0), i.e., while performing thesame amount of work.The e�cient self-simulation is achieved by the standard strategy of mapping the p processors in theoriginal algorithm uniformly among the p0 available processors. In the following, we will state theperformance of a qsm algorithm in terms of the fastest time t(n) achievable within a given workbound w(n). When we make such a statement we imply, due to Observation 6.1, that for any p wehave an explicit qsm algorithm that runs in O(t(n) + w(n)=p) time using p processors.19



In the following we assume that the value of the gap parameter g is less than n, the size of theinput; in practice we expect g to be much smaller than n.6.1 Mapping pram algorithms onto the qsmA naive emulation of a qrqw pram algorithm (or an erew pram algorithm, which is a special case)on a qsm with the same number of processors results in an algorithm that is slower by a factor of g.This is stated in the following observation.Observation 6.2 Consider a qsm with gap parameter g.1. A qrqw pram algorithm that runs in time t with p processors is a qsm algorithm that runs intime at most t � g with p processors.2. A qrqw pram algorithm in the work-time framework that runs in time t while performing workw immediately implies a qsm algorithm that runs in time at most t � g with w=t processors.Thus the linear-work qrqw pram algorithms given in [34, 32] for leader election, linear compaction,multiple compaction, load balancing, and hashing, as well as the extensive collection of linear-worklogarithmic-time erew pram algorithms reported in the literature, all translate into qsm algorithmswith work O(n � g) on inputs of length n with a slowdown by a factor of at most g. We show inSection 6.2 that this increase in work by a factor of g on the qsm may be unavoidable if the inputitems are not a priori distributed across the qsm processors.There are two other avenues through which we can hope to obtain useful results for the qsm overthose obtained through the mapping of qrqw pram algorithms. First, we can consider tailoring qsmalgorithms to its cost metric for the gap parameter, thereby obtaining an improved running time forthe algorithm. Second, we can relax the requirement that the input be placed in global memory, andallow the input to be distributed across the local memories of the processors in a suitable way. Thiswould conform to the initial state for bsp algorithms, and in fact most bsp algorithms map back tothe qsm in a natural way in this case.We address each of these in turn in Section 6.3 and Section 6.4, respectively. But �rst, in the nextsection we mention some lower bounds for the qsm model.6.2 Lower boundsIf n distinct items need to be read from or written into shared memory on a p-processor qsm thenthe work performed by the qsm is 
(n � g) regardless of the number of processors used. To see thiswe note that the result is immediate if p � n since the qsm has to execute at least one step. If p < nthen some processor needs to read or write dn=pe distinct items, and hence that processor spends time
((n=p) � g). Since p processors are used, the work, which is de�ned as the processor-time product, is
(ng). A similar observation holds for the case when n distinct memory locations are accessed. Westate this in the following.Observation 6.3 Consider a qsm with gap parameter g.20



1. Any algorithm in which n distinct items need to be read from or written into global memory mustperform work 
(n � g).2. Any algorithm that needs to perform a read or write on n distinct global memory locations mustperform work 
(n � g).By Observation 6.2 and Observation 6.3, the linear-work qrqw pram algorithms for problems inwhich the input of length n resides in global memory translate into algorithms with asymptoticallyoptimal work on the qsm that run with a slowdown of g with respect to the corresponding qrqwpram algorithm.The following lower bounds for the qsm are given in [1]. The crcw pram lower bound resultof Beame and Hastad [13] gives a lower bound for the n-element parity, summation, list ranking andsorting problems of 
(g �lgn= lg lg n) time on the qsm for either deterministic or randomized algorithmswhen the number of processors is polynomial in n, the size of the input. Also given in that paperis a simple lower bound with a matching upper bound of �(ng) for the one-to-all problem in whichone processor has n distinct values in its local memory of which the ith value needs to be read byprocessor i, 1 � i � n.A lower bound of 
(g lg n= lg g) for broadcasting to n processors is given in [1]; in contrast to anearlier lower bound for this problem on the bsp given in [43] this lower bound holds even if processorscan acquire knowledge through non-receipt of messages (i.e., by reading memory locations that werenot updated by a recent write operation). We note that the same lower bound on time holds forthe problem of broadcasting to n memory locations since any algorithm that broadcasts to n memorylocations can broadcast to n processors in additional g units of time. Further, by Observation 6.3
(ng) work is necessary since writes to n distinct global memory locations are required.6.3 Some faster algorithms for the qsmBy pipelining reads and writes to memory from di�erent processors to amortize against the delay dueto the gap parameter g at processors, it is possible to obtain an algorithm for the qsm that runsfaster than g times the running time for the fastest qrqw pram algorithm. As an example of analgorithm that is optimized for the qsm, consider the leader election problem in which the input isa Boolean n-array, and the output is the �rst location in the array with value 1, if such a locationexists, and is zero otherwise. The fastest qrqw pram algorithm for this problem is just the `binarytree' erew pram method that halves the number of candidates in each of lg n rounds with O(n) work(there is a faster algorithm on the crqw pram, but that algorithm is not known to map onto the qsmwith a slowdown of only g). This qrqw pram algorithm will map on to the qsm as a O(g lgn) timealgorithm with O(gn) work. However, we can optimize further for the qsm by replacing the normal`binary tree' method by a `g-ary tree'. This takes advantage of the fact that requests at the memoryare processed every time step, while at the processors a request can be sent only every g steps. Thetime taken by this algorithm to solve the leader election problem on the qsm is O(g lg n= lg g) whilestill performing O(gn) work. If the input is distributed evenly among n=(g lg n= lg g) processors, thenthe time is O(g lg n= lg g) and the work is O(n).A similar strategy applies to the broadcasting problem in which the value at one location in memoryneeds to be transmitted to n processors. Again, the qrqw pram algorithm of choice for this problemis a `binary tree' broadcasting method that takes O(lgn) time with O(n lg n) work. This algorithm21



will map on to the qsm as a O(g lgn) time algorithm with O(gn lgn) work. By optimizing along thelines of the algorithm for leader election, we can derive an algorithm to broadcast to n processorson the qsm that runs in O(g lg n= lg g) while performing O((gn lgn)= lg g) work. By the lower boundcited in Section 6.2, this result is optimal.We can solve the related problem of broadcasting to n memory locations in the above time boundof O(g lg n= lg g) but with O(ng) work. For this, we use p = n lg g= lgn processors and broadcast tothe p processors in time O(g lg n= lg g). We then spend an additional O(g lgn= lg g) time to have eachprocessor write into lg n= lg g locations. As noted in Section 6.2 we have a matching lower bound onboth the running time and the work.We now consider the problem of sorting on the qsm. The problem of designing highly parallelalgorithms for sorting n keys from a totally ordered set is a well-studied one. On the erew pram, thereare two known O(lgn) time, O(n lgn) work algorithms for general sorting [4, 18]; these deterministicalgorithms match the asymptotic lower bounds for general sorting on the erew and crew prammodels. Both of these algorithms map onto the qsm to run in O(g lgn) time and O(gn lgn) workusing Observation 6.2. Unfortunately, these two algorithms are not as simple and practical as onewould like. Goodrich [35] gives an algorithm for the bsp based on [18] that performs work O((L +gn) lgn= lg(n=p) + n lg n) with p processors. Since this algorithm is an adaptation of [18] it is again afairly complicated algorithm.Among sorting algorithms that are fairly simple, the fastest O(n lgn) work algorithm on the erewpram is an O(lg2 n) time randomized quicksort algorithm (see, e.g. [41]), and on the qrqw pram,a randomized pn-sample sort algorithm that runs in O(lg2 n= lg lg n) time, O(n lgn) work, and O(n)space [32].On the qsm, the randomized sample sort algorithm can be mapped onto the qsm to performO(n lgn) work provided the computation is very coarse-grained, i.e., the number of processors p ispolynomially small in n and g = o(lgn); this qsm algorithm is essentially the same as the bsp algorithmbased on sample sort [28]. If we look for a highly parallel sorting algorithm that is fairly simple, anadaptation of the qrqw pram sample sort algorithm appears to be the fastest. A straightforwardanalysis of this algorithm on the qsm using Observation 6.2 results in an algorithm that runs inO(g � lg2 n= lg lg n) time while performing O(g � n lgn) work. However, an analysis of the algorithmdirectly for the qsm shows that it runs in O(lg2 n= lg lg n + g lgn) time while performing O(gn lgn)work. Thus, if g is moderately large, speci�cally, 
(lgn= lg lg n), the sample sort algorithm will runwithin the same time and work bounds (randomized) as the more involved algorithms obtained bymapping the asymptotically optimal erew pram algorithms onto the qsm. The improvement inrunning time for the qsm sample sort algorithm in comparison to the qrqw pram sample sort comesfrom the fact that the �(lg2 n= lg lg n) term in the time bound is only due to the bound on thecontention at memory locations in a dart-throwing step. Since the qsm model charges only � time forcontention �, this term is not multiplied by g in the time bound.6.4 Mapping bsp algorithms onto the qsmWe now turn to the issue of mapping bsp algorithms onto the qsm. For this we assume that the inputis distributed across the qsm processors to conform to the input distribution for the bsp algorithm;alternatively one can add the term ng=p to the time bound for the qsm algorithm to take into accountthe time needed to distribute the input located in global memory across the private memories of the22



qsm processors.Many of the bsp algorithms reported in the literature can be mapped back on the qsm using theversion of the algorithm that results when L = 1. For instance for the n-element summation, parityand pre�x sums problems, the bsp algorithm that takes time (gd + L) lgd n, minimized by choosingd � 2 appropriately (d = dL=ge if L > g and d = 2 if L � g) maps on to the qsm as a simple O(g lgn)time algorithm that performs O(ng) work. Similarly the bsp sorting algorithm of [28] and the matrixmultiplication algorithms of [65, 55] map onto the qsm step by step with a performance correspondingto the case when L = 1 in the bsp algorithms.The qsm algorithms in the above paragraph are obtained by the following simple strategy to mapeach step of the bsp algorithm on to the qsm to run in the time the step would take on the bsp ifL = 1. A message sent by processor i to a memory location m of processor j on the bsp is writteninto shared memory location (j;m) by processor i in the qsm and then read by processor j. We willrefer to a bsp algorithm as well-behaved if it can be mapped onto the qsm in the above manner.The mapping onto the qsm needed for a well-behaved bsp algorithm may not be possible if, in thebsp algorithm, a bsp processor(i) could receive a piece of information that it did not speci�cally request, and its future behaviordepends on whether or not it receives this piece of information; or(ii) could access, as a unit-time local computation, a value (not requested by it) that was writteninto its local memory bank by another processor in an earlier step.On the qsm a processor would need to initiate a read for any piece of information that it receives;further that access will be charged a cost of g at the time the processor reads it in addition to a costof g being applied at the time the value was written into the shared memory location.We now give an example of a bsp computation that is not well-behaved. The elements of an arrayA[1::n] are distributed uniformly over p bsp processors. Each processor applies a certain function toits local inputs, and thereby generates some pairs (i; v), where v is the new value for A[i]. The newvalues generated have the property that each processor generates no more than c such values, andthere are no more than c new updates generated for each block of inputs assigned to a processor,where c = o(n=p); other than these two restrictions, the indices i of the locations in the array A whosevalues are changed are arbitrary. These new values are updated on the bsp by sending a c-relationin cg time units. Then in additional n=p time each bsp processor determines the new values of all ofits local inputs by reading the corresponding local memory locations. This computation takes timeO(cg + n=p) on the bsp. If we implement this algorithm step-by-step on a qsm, the updated valueswill be written into a copy of the array A[1::n] in shared memory, and each qsm processor then needsto read these updated values. Since it is not known ahead of time which values were updated, eachqsm processor would need to read from global memory, the current value of each of the n=p elementsof A[i] that it has in local memory. This will take �(gn=p) time, which is larger than the runningtime on the bsp since c = o(n=p).While the above example indicates that the bsp is in some ways more powerful than the qsm, itis not clear that we want a general-purpose bridging model to incorporate these features of the bsp,as argued in Section 3.2.Fortunately, many of the bsp algorithms reported in the literature have simple communicationpatterns that map onto the qsm by the simple strategy described above. Also, as shown in the23



next subsection, there is a randomized strategy that can map any bsp algorithm onto the qsm in awork-preserving manner, provided a logarithmic slowdown is acceptable.6.5 A work-preserving emulation of bsp on qsmIn this section we describe a randomized work-preserving emulation of an n-component bsp on a qsmwith parallel slackness O(lgn) that works with high probability in n (i.e., the probability of failureis 1=n�, for some � > 0). For this emulation we assume that the input is distributed across the localmemories of the qsm processors in the same manner as in the bsp algorithm.In the emulation we use the shared memory of the qsm only for the purpose of realizing the h-relation performed by the bsp in each step, and each qsm processor copies into its private memoryany message that was sent to the local memory of the corresponding bsp processor in that step. Thealgorithm is reminiscent of a randomized crqw pram algorithm for integer sorting given in [32]. Itproceeds by using the shared memory to sort the messages being sent in the current step accordingto their destination. Each processor then reads the messages being sent to it from an appropriatesubarray in the shared memory and writes it into the corresponding location in its local memory. Thedetails of the emulation algorithm are given below.1. Compute the total number of messages, M , to be sent by all processors as follows: Constructan array A[1::n] in shared memory, with A[i] containing the number of messages being sent byprocessor i, and compute M as the sum of the elements in this array. This step can be performeddeterministically in O(g lg n) time and O(M + g � n) work (note that M � n � h, where h is themaximum number of messages sent or received by any processor in this bsp step).If M � n= lg n then execute steps 2 through 9 below.2. Construct a sample S of the messages to be sent by choosing each message independently withprobability 1= lg3M . The size of the sample will be O(M= lg3M) w.h.p.3. Sort the sample deterministically according to destination using a standard sorting algorithm,e.g., Cole's merge-sort; this takes O(g lgM) time and O(g �M= lg2M) work.4. Group the destinations into groups of size lg3M and determine the number of messages destinedfor each group. This can be computed by a pre�x sums computation that takes O(g lgM) timeand O(gM) work.5. Let ki be the number of elements in the sample destined for the ith group. Obtain a highprobability bound on the total number of messages to each group as ri = O(max(ki; 1) � lg3M).Make lg3M copies of each ri, and place the duplicate values of the ri in an array R[1::n] suchthat R[i] contains the bound for the group that contains destination i; 1 � i � n. This step canbe performed in O(g(1+ lg lgM= lg g)) time and O(ng) work using a broadcasting algorithm foreach ri.6. In parallel, for each i, all processors with a message to a destination i read the value of thisbound from R[i]; this takes time � gh and O(g �M) work.7. Use an algorithm for multiple compaction to get the messages in each group into a linear-sizedarray for that group; this takes O(g lgM) time and O(g �M) work by the adaptation of the24



randomized qrqw pram algorithm for multiple compaction given in [32] to the qsm usingObservation 6.2.8. Perform a stable sort within each group according to the individual destination; this can beperformed in O(g lgM) time and O(gM) work deterministically using an erew pram radix-sortalgorithm within each group.9. Move the messages into an output array R of size M sorted according to destination in O(gh)time and O(M) work. Create an array B of size n that contains the number of messages to eachdestination, and the starting point in the output array for messages to that destination; this canbe done by computing pre�x sums on an appropriate M -array and takes O(g lgM) time andO(g �M) work. Processor i reads this value from B[i] and then reads the messages destined forit from the output array in time O(gh) and work O(g �M).If M < n= lgn then we sort the messages deterministically according to their destination; thistakes time O(g lg n) and O(gn) work. We then perform step 9 above.Since M � n � h, the above qsm algorithm runs in O(g(h+ lgn)) time while performing O(ghn)work. High-probability bounds for the randomized steps in the above algorithm are shown in [32].Since a bsp routes an h-relation in O(gh + L) time while performing O(n(gh + L)) work, this is awork-preserving emulation of a bsp h-relation, with a slowdown of O(1 + lg n=(h+ L=g)).In summary we have the following result.Lemma 6.4 Consider a step of an n-component bsp with gap g and latency L that involves routingan h-relation. On a qsm with gap parameter g this step can be emulated with high probability in n ina work-preserving manner with a slowdown of O(1 + lg n=(h+ L=g)).The probability that the emulation will fail to perform according to the stated bounds is less than1=n�, for some � > 0, whose value depends on parameters of the algorithm such as the constants inthe sizes of arrays used in steps 5 and 7. Thus, if a bsp algorithm takes no more than n� steps, forany �; 0 < � < �, then the probability that the emulation of any one of its steps on a qsm fails ispolynomially small in n. This leads to the following theorem.Theorem 6.5 An algorithm that runs in time t(n) on an n-component bsp with gap parameter gand periodicity factor L, where t(n) � c � n
 , for some constants c; 
 > 0, can be emulated with highprobability on a qsm with the same gap parameter g to run in time O(t(n)�dg lgn=Le) with n=dg lg n=Leprocessors when L � g, and otherwise in time O(t(n) � lgn) with n= lgn processors.6.6 On the queuing memory contention rule for the qsmWe note that a work-preserving emulation of a bsp with g = 1 is not known on the erew pram ifthe slowdown is to be bounded by polylog(n). If such an emulation is discovered, it will give riseto randomized linear work polylog time algorithms on the erew pram for certain problems, such ascomputing a random permutation, for which such an algorithm is not known currently. Therefore,even though the erew pram is often referred as stronger model than the bsp, its expressive powermay actually be inferior, in some cases. 25



On the other hand, for the more powerful crcw pram there appears to be a mismatch in thereverse direction since no work-preserving emulation of a crcw pram on a bsp with g = 1 is knownif the slowdown is to be bounded by polylog(n). Thus, if either the erew pram or the crcwpram is augmented with the gap parameter, the resulting model is not known to have as stronga correspondence to the bsp as we have shown for the qsm. In other words, the queuing memorycontention rule for the qsm, in contrast to the exclusive or concurrent rules, is crucial in order for itto serve as a bridging shared-memory model.7 Gap parameter at memoryThe qsm has a gap parameter g at the processors, but no gap parameter at the memory { each requestat memory is serviced in unit time once it reaches the head of its queue. One could argue that anothergap parameter d for processing memory accesses would be a desirable feature in a general-purposemodel, since many currently available parallel machines have di�erent gap parameters at processorsand at memory banks. We refer to this model as qsm(g; d). The following result is shown in [60].Observation 7.1 [60] There is a deterministic work-preserving emulation of qsm(g; d0) on qsm(g; d)with slowdown O(d dd0 e).The above observation shows that very little generality is lost in assuming that the gap parameterat memory is 1 rather than some other value d. The only potential drawback is that an algorithmdesigned for the qsm(g; 1) (which is the standard qsm model) may not achieve the full level of speed-up attainable on qsm(g; d), due to the slowdown in the emulation mentioned in the observation. Theadvantage in not having a gap parameter d at memory is that we have a simpler model with lessparameters. We believe that the simplicity achieved in not having a gap parameter d at memory faroutweighs the drawback of not achieving the best possible speed-up for a speci�c value of d.We de�ne the s-qsm (the symmetric qsm) to be the model qsm(g; g). This is the special caseof qsm(g; d) with the same gap parameter g at both processors and memory. This model has thesame number of parameters as the qsm, and could serve as an alternative to the qsm. On the s-qsmbroadcasting a bit to n memory locations has the tight time bound of �(g lg n) in contrast to the tightbound of �(g lg n= lg g) for the qsm. In view of the observation stated above, the qsm and the s-qsmare essentially interchangeable models.8 ConclusionDeveloping e�ective models for parallel computation, at suitable levels of abstraction, remains a fun-damental challenge in parallel processing. This paper has provided evidence that a shared-memorymodel, with its high level of abstraction, can nevertheless serve as a bridging model for parallel com-putation. Models at lower levels of abstraction are important in providing increased accuracy at thecost of increased complexity in the model.We have described a new model, the Queuing Shared Memory (qsm) model, and discussed itspossible advantages over previous shared-memory models, and over current bridging message-passing26



models. The model has a simple queuing metric for shared-memory access, and only two parameters{ p,the number of processors and g, the bandwidth gap{ yet it can be e�ciently emulated on both the bspand (d;x)-bspmodels, using an arguably practical emulation. Thus the qsm can be e�ectively realizedon machines that can e�ectively realize the bsp, as well as on machines that are better modeled by the(d;x)-bsp. We have presented evidence that both the queuing metric and the bandwidth parameterare essential to the qsm's e�ectiveness as a bridging model.In addition, we have described several algorithms for the qsm, as well as general strategies formapping erew pram, qrqw pram and bsp algorithms onto the qsm. We have pointed out scenariosin which a simple shared-memory model, the qsm, may be a more accurate model than existingmessage-passing or distributed-memory models such as the bsp and logp.We conclude that a model such as the qsm can serve the role of a bridging model for parallelcomputation while preserving the high-level abstraction of a shared-memory model.Future research should consider further algorithmic techniques that may be useful for this model,as well as experimental validation of the model. Such validation may reveal the primary importanceof features not present in either the qsm, bsp or logp. For example, each of these models de�nesa single bandwidth parameter that re
ects a per-processor bandwidth limitation; other recent workhas considered variants of these models with an aggregate bandwidth limitation [1] or a hierarchicalbandwidth limitation that accounts for network proximity [50, 24, 25, 44, 69]. Per-processor bandwidthlimitations better model machines in which each processor has access to its \share" of the networkbandwidth and no more, as well as machines for which the primary network bottleneck, in the absenceof hot-spots, is in the processor-network interface. As a second example, each of these models ignoresthe memory hierarchy at a processor, assuming a unit-time charge for local operations regardless ofthe local working set size. A possible feature to consider is to limit the size of the private memorieson the qsm, or to have two levels of memory hierarchy on the bsp or logp. Third, as discussed inSection 4, each of these models disregards spatial locality. Variants of the bsp and logp that accountfor spatial locality include [42, 5, 44, 11]. In machines supporting a single address space, the unit ofdata transfer between components is typically either a cache line or a page, and hence opportunities toexploit spatial locality are restricted to that level of granularity. A possible enhancement for the qsmwould be to have the shared-memory partitioned into small, �xed-sized blocks of locations that couldbe accessed e�ciently; the realization of such a qsm on a distributed-memory machine would mapthese blocks pseudo-randomly onto the memory banks. Finally, each of these models ignores the e�ectsof the cache coherence protocol used in most shared-memory multiprocessors to maintain consistencyamong the various cached copies of shared-memory data. It would be interesting to study a qsmmodelthat incorporates and accounts for a standard invalidation-based cache coherence protocol [38].Should it become necessary to include additional features as part of a bridging model, the qsmmay be more suited for augmentation than the bsp or logp, since it is simpler, with fewer parameters.References[1] M. Adler, P. B. Gibbons, Y. Matias, and V. Ramachandran. Modeling parallel bandwidth: Localvs. global restrictions. In Proc. 9th ACM Symp. on Parallel Algorithms and Architectures, pages94{105, June 1997. 27
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