
CopyrightbyMark Stuart Johnstone1997



Non-Compacting Memory Allocation andReal-Time Garbage CollectionbyMark Stuart Johnstone, B.S., M.S.
DissertationPresented to the Faculty of the Graduate School ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDoctor of Philosophy

The University of Texas at AustinDecember 1997



Non-Compacting Memory Allocation andReal-Time Garbage Collection

Approved byDissertation Committee:



To Maow



Acknowledgments
This dissertation could not have been completed if not for the help and supportof many people. First and foremost I would like to acknowledge my advisor PaulWilson. It was his extraordinarily deep understanding of the issues studied for thisdissertation that kept me looking at the right problems. I would also like to thankthe past and present members of the OOPS research group at the University ofTexas at Austin who worked on parts of this research: David Boles, Sheetal Kakkad,Donavan Kolbly, Mike Neely, and Jun Sawada. I would like to thank the MotorolaCorporation for its �nancial support during the last year and a half of this research,and my coworkers and supervisors at the Somerset Design Center in Austin, Texas,who were more than understanding when the demands of completing a Ph.D. wereat odds with my regular job duties. Finally, I would like to thank Patricia Bursonfor her time spent proofreading this dissertation, and her incredible patience andsupport throughout the process.

Mark Stuart JohnstoneThe University of Texas at AustinDecember 1997 v



Preface
Dynamic memory management is a very important feature of modern programminglanguages, and one that is often taken for granted. Programmers frequently placegreat demands on the memory management facilities of their language, and expectthe language to e�ciently handle these requests. Unfortunately, memory manage-ment systems are not always up to the task. The article which appears belowstrikingly illustrates how problems with a program's dynamic memory managementcan cause disastrous results, sometimes years after the program is written. Memoryerrors like this one are very di�cult to prevent, and it is a certainty that they willoccur again and again.It is our hope that the results presented in this research will lead to a betterunderstanding of the nature of memory management problems, and to improved im-plementations of memory management systems. We believe that improved memorymanagement systems will ultimately lead to more robust software, and problemslike the one presented in the following article will become a rare exception ratherthan the rule.
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Why Bre-X Crashed the TSEBy Geo�rey RowanToronto Globe and Mail, 12 April 1997A software aw that lay sleeping for 20 years inside the Toronto Stock Ex-change's computers woke up mean last week, shutting down the automated tradingsystem repeatedly before technicians could identify it.The aw might have passed harmlessly out of existence, since the TSE isreplacing its system in a few months, but for the controversy that erupted aroundBre-X Minerals Ltd.The exchange's problems with its dog-eared computer system o�er a lessonto other organizations that are patching together mature technology to keep theircritical business systems running: It's hard to know exactly what's inside suchsystems or to know when some hidden glitch might wreak havoc.The events: The TSE's problems started on March 27, after Calgary-basedgold mining company Bre-X reported that there might not be as much gold in itshighly touted Busang �eld as investors had been led to believe.That triggered a frenzy of trading in Bre-X, which by itself shouldn't havebeen a problem. The TSE is Canada's largest stock exchange{it can handle a lot oftrading and even big increases in volume.In 1996, the TSE saw a huge increase in share volumes, to 23.2 billion sharestraded from 15.8 billion a year earlier. But it had never seen the kind of volume ina single stock that occurred with Bre-X.The exchange refers to the number of active buy-and-sell orders for a par-ticular stock at any point as the \book." The average book size is about 200 to300 orders. The Bre-X book size last Thursday{when the exchange �rst ran intotrouble{was 2,500, and it would swell at times to 4,500. Prior to that, the largestvii



book size ever was about 1,600 orders, which happened once in the late eighties.With all those Bre-X trades waiting to be executed, the TSE's ComputerizedAutomated Trading System simply ground to a halt. When brokers entered theirorders, nothing happened. It was frozen.Not knowing what the problem was, TSE technicians restarted the system atabout 3:40 p.m., but within about eight minutes it crashed again. Just 12 minutesaway from the end of the trading day, TSE o�cials decided not to try to bring itback up again.Friday was a holiday, giving the technicians three solid days to search throughthe system, which is essentially three million lines of computer code running onpowerful fault-tolerant computers made by Tandem Computers Inc. of Cupertino,Calif.1 Working 24 hours a day, they poured over the old code, which was poorlydocumented because it had been written so long ago. It's had many re�nementsmade to it over the years, and documentation methodology wasn't as stringent twodecades ago as it is today.The technicians concluded that what they had was a memory problem.When an order is to be executed, the computer's code moves the entire orderbook for a stock into its active memory. Once that order has been executed, thatpiece of memory is released, to be reused by the next order book coming in.With sequential orders for execution on the same book, the entire Bre-X bookwas being loaded into memory for every order, requiring continuous availability ofenough memory to hold the larger-than-usual Bre-X order book.This past weekend, the TSE technicians expanded the system's memory and1** CORRECTION ** The Toronto Stock Exchange's Computerized Automatic Trading Sys-tem, which has su�ered software problems in recent days, runs on an IBM mainframe, not a Tandemcomputer. The TSE system is being upgraded and will be moved from IBM hardware to Tandemhardware later this year or early next year. Incorrect information, supplied by the TSE, appeared[on] April 4. viii



on Monday, the exchange was opened for business, but Bre-X trading was halteduntil Tuesday.That day, the system stayed up for about 23 minutes, and in that time, itexecuted a greater number of Bre-X orders than the other Canadian exchanges didall day, combined. The problem wasn't memory, but it was obviously related to theBre-X trading volume.After the Tuesday morning crash, TSE o�cials decided to reopen the marketwithout reopening trading in Bre-X, and the system was working, though severalattempts to restart Bre-X trading have had to be carefully monitored.Whenever Bre-X volume starts to threaten the system, Bre-X trading is shutdown{as happened again yesterday.The challenge ahead: What technicians are focused on now is a chunk of theTSE's digital code associated with cancelled orders. When an order is executed,the memory that holds the book is released, but when an order is cancelled, thememory is not released. \That piece of code was not written the way it should havebeen," TSE president Rowland Fleming said. \The problem was buried for 20 years.It has been a sleeping problem." It never surfaced before because the order bookswere never big enough, and trading in a single issue was never volatile enough thatcancelled orders would sink the system.Mr. Fleming said TSE technicians won't try for an overnight �x.They'll work on the problem through the weekend and if they can't writea �x in that time, they'll try to �gure out a way to work around the cancellationfunction or to restrict its use.\At this stage, we think that is the cause of our problem and we'll get the�x," Mr. Fleming said.Then the exchange just has to hang on until the end of the year or early nextyear, when its new computer system is scheduled to go on-line.ix



Non-Compacting Memory Allocation andReal-Time Garbage CollectionPublication No.Mark Stuart Johnstone, Ph.D.The University of Texas at Austin, 1997Supervisor: Paul R. Wilson
Dynamic memory use has been widely recognized to have profound e�ects onprogram performance, and has been the topic of many research studies over the lastforty years. In spite of years of research, there is considerable confusion about thee�ects of dynamic memory allocation. Worse, this confusion is often unrecognized,and memory allocators are widely thought to be fairly well understood.In this research, we attempt to clarify many issues for both manual andautomatic non-moving memory management. We show that the traditional ap-proaches to studying dynamic memory allocation are unsound, and develop a soundmethodology for studying this problem. We present experimental evidence that frag-mentation costs are much lower than previously recognized for most programs, anddevelop a framework for understanding these results and enabling further researchin this area. For a large class of programs using well-known allocation policies, weshow that fragmentation costs are near zero. We also study the locality e�ects ofmemory allocation on programs, a research area that has been almost completelyignored. We show that these e�ects can be quite dramatic, and that the best alloca-x



tion policies in terms of fragmentation are also among the best in terms of localityat both the cache and virtual memory levels of the memory hierarchy.We extend these fragmentation and locality results to real-time garbage col-lection. We have developed a hard real-time, non-copying generational garbagecollector which uses a write-barrier to coordinate collection work only withmodi�ca-tions of pointers, therefore making coordination costs cheaper and more predictablethan previous approaches. We combine this write-barrier approach with implicitnon-copying reclamation, which has most of the advantages of copying collection(notably avoiding both the sweep phase required by mark-sweep collectors, and thereferencing of garbage objects when reclaiming their space), without the disadvan-tage of having to actually copy the objects. In addition, we present a model fornon-copying implicit-reclamation garbage collection. We use this model to compareand contrast our work with that of others, and to discuss the tradeo�s that mustbe made when developing such a garbage collector.
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Chapter 1
Introduction

Memory management is poorly understood. This research attempts to clarify theissues pertaining to memory management in general, including the e�ects of frag-mentation and locality, for both manual and automatic (i.e., garbage collected)memory management. In doing this, we explore and clarify the basic design issuesof allocators, revealing important new insights that have gone overlooked for almostthirty years. We also explore the e�ect of dynamic memory allocation on locality ofreference at both the cache and virtual memory level. In addition, we explore thebasic design issues in incremental and real-time garbage collectors, putting them ona sounder footing. Finally, we clarify the performance issues of both copying andnon-copying real-time garbage collection.1.1 Scope of this DissertationThe overall goals of this dissertation are:1. to carefully explore the basic design issues in memory allocators and incre-mental garbage collectors, putting these issues on a sounder footing;1



2. to demonstrate that for most programs, fragmentation costs are very close tozero;3. to explore in detail the e�ects of memory allocator policy on locality at boththe cache and virtual memory levels;4. to provide a design and implementation for a garbage collector that ful�lls allof the requirements for use with a real-time system; and5. to provide a model for identifying the performance issues in both copying andnon-copying real-time garbage collection.In the remainder of this chapter, we present an overview of our work, andpresent much of the background material for this area of research, including de�ningour important terms. A reader already familiar with this research area may wish toskip ahead to the next chapter.1.2 Memory AllocationAll modern programming languages allow the programmer to use dynamic mem-ory allocation. Dynamic memory allocation is the ability to allocate and deallocatememory at run time (dynamically), and comes in two avors: manual and auto-matic (garbage collected). Both forms allow the programmer to specify the memoryneeds of the program at run time by explicitly requesting memory blocks from theprogramming language. Manual memory management, used in C, C++, Pascal,Ada, and Modula II, requires the programmer to explicitly return memory to thelanguage when it is no longer needed. Automatic memory management, used inLISP, Scheme, Ei�el, Modula III, and Java, frees the programmer from this burden;memory is automatically reclaimed when the run-time system can determine thatit can no longer be referenced. 2



Manual and automatic memory allocation routines have more in commonthan is generally appreciated. Both kinds of memory management are essentiallyon-line algorithms, and must choose where to allocate objects in memory based onlyon information available to the point of allocation. Once these objects are placed,a manual memory management system typically cannot later move these objects ifa placement choice turns out to be a bad one. Garbage collected systems, on theother hand, often do have the freedom to later move blocks of memory if necessary.However, as we will discuss in Chapter 4, a garbage collector that does not movememory has many advantages for real-time use over its moving counterpart.Problems in memory management are due to three factors: programmers'lack of understanding of the cost of dynamic memory management, language imple-mentors' lack of understanding of the issues involved with the design and implemen-tation of memory management systems, and fundamental algorithmic properties ofapplications that are extraordinarily di�cult to correctly implement with manualmemory management. In this research, we address the �rst two problems by clarify-ing many of the important issues in memory management, and demonstrating thatgood algorithms can keep memory management costs quite low, thus making the�rst problem less of a concern. We address the third problem by clarifying manyof the issues in automatic memory management (garbage collection). We show howour results for manual memory management algorithms are directly applicable togarbage collected systems, and implement a real-time garbage collector to test theseideas.1.2.1 FragmentationManual memory management systems and non-moving garbage collected systemsuse the same choices in the same conditions when deciding on where to allocaterequested objects. Because these allocators cannot later move memory, an important3



issue is fragmentation. Fragmentation is said to be present when su�cient freememory is available, but is unusable because it exists as many small fragments ofmemory rather than as one large block. Traditionally, fragmentation is classi�ed asexternal or internal [RK68], and is combatted by splitting and coalescing free blocks.External fragmentation arises when free blocks of memory are available forallocation, but cannot be used to hold objects of the sizes actually requested by aprogram. In sophisticated allocators, this is usually because the free blocks are toosmall, and the program requests larger objects. In some simple allocators, externalfragmentation can occur because the allocator is unwilling or unable to split largeblocks into smaller ones.Internal fragmentation arises when a su�ciently large free block is allocatedto hold an object, but there is a poor �t because the block is larger than needed.In some allocators, the remainder is simply wasted, causing internal fragmentation.(It is called internal because the wasted memory is inside an allocated block, ratherthan being recorded as a free block in its own right.)To combat internal fragmentation, most allocators will split blocks into mul-tiple parts, allocating part of a block, and then regarding the remainder as a smallerfree block in its own right. Many allocators will also coalesce adjacent free blocks(i.e., neighboring free blocks in address order), combining them into larger blocksthat can be used to satisfy requests for larger objects.In some allocators, internal fragmentation arises due to implementation con-straints within the allocator | for speed or simplicity reasons, the allocator designrestricts the ways memory may be subdivided. In other allocators, internal frag-mentation may be accepted as part of a strategy to prevent external fragmentation| the allocator may be unwilling to fragment a block, because if it does, it may notbe able to coalesce it again later and use it to hold another large object.
4



1.2.2 Strategy, Policy, and MechanismIt is important to separate allocator design into three parts: strategy, policy, andmechanism. The basic approach to designing a memory allocator is the strategy.A strategy may be: \minimize waste for each allocation," or \sacri�ce one areaof memory to preserve other areas of memory." These strategies can be realizedby many di�erent policies for placing dynamically allocated objects. Some familiarpolicies are: \choose the smallest block that is large enough, breaking ties in Last InFirst Out (LIFO) order of object deallocation" (known as LIFO best �t), or \choosethe �rst free block that large enough, looking from low heap address to high heapaddress" (known as �rst �t address ordered). These policies are then implementedby a set of mechanisms. An example of a mechanism is: \use a linked list, andsearch from the head of the list; freed blocks are inserted at the front of the list."The distinction between policy and mechanism is an important one becausedi�erent policies can be implemented by a variety of mechanisms. So, if a particularpolicy performs well, but the implementation of that policy has undesirable proper-ties, one can design a di�erent implementation of the same policy. For example, theobvious implementation of �rst �t address ordered is to maintain a sorted list of freeblocks. However, this mechanism is prohibitively expensive. A di�erent mechanismfor implementing the same policy is to use a bit map indicating the free blocks, andscan the bit map for a suitable block at allocation time.The distinction between strategy and policy is also an important one becausedi�erent policies can have secondary e�ects, such as a�ecting the locality of referenceof the program. If a particular policy produces low fragmentation, but also has poorlocality of reference, then a di�erent policy can be chosen that obeys the same basicstrategy, but produces better locality. For example, the strategy \sacri�ce onememory area to preserve other memory areas" can be realized by both the best-�tLIFO and the �rst-�t address-ordered policies.5



1.2.3 Experimental MethodologyIn surveying the allocation literature we discovered that virtually all past work inthis �eld su�ered from one common aw: almost no one measured how well di�erentallocation policies performed for actual programs.1 In this research, we presentresults gathered by studying eight large C and C++ programs. Our results showthat for these eight programs, fragmentation can be kept very near zero. We arguethat the strategy behind the allocation policies that work best is fundamentallystrong, and will work well for most real programs.We devote a large portion of this research to studying issues pertaining tomemory fragmentation for non-moving memory allocators. In particular, we studythe conditions under which allocators interact with programs to produce fragmen-tation, and the conditions under which they do not. We also address experimentalmethodology for studying memory allocation design and point out aws in tradi-tional methodologies that have been used for at least 30 years.1.3 LocalityLocality of reference is the property that programs tend to reuse data and instruc-tions they have used recently. A widely held rule of thumb is that a program spends90% of its execution time in only 10% of the code. An implication of locality is thatwe can predict with reasonable accuracy which instructions and data a program willuse in the near future based on its accesses in the recent past [PH96].There are two fundamental kinds of locality: spatial locality and temporallocality. Spatial locality is the property that data and instructions whose addressesare near one another tend to be referenced close together in time. Temporal locality1The studies by Zorn [DDZ93, ZG92] and by Vo [Vo95] were the only work we found that usedactual programs in their studies. They have made these programs, many of which we used, availableby anonymous ftp. We will do the same with the additional programs we used.6



is the property that programs tend to access data and instructions that have beenaccessed in the recent past.Most modern computer systems are built using a memory hierarchy, thatis a primary cache, secondary cache, main memory, and disk based paging area,with each level being larger, slower, and cheaper than the previous. If a memoryreference at one level fails, then that reference is attempted at the next level. Forsuch computers, locality of reference is very important. The current trend in micro-processor design is for processors to increase in speed much more quickly than thememory systems that support them. Thus, good locality of reference will becomeincreasingly important in order to take full advantage of available computer hard-ware. Surprisingly, researchers have virtually ignored one of the most importante�ects on a program's locality of reference: that of the dynamic memory allocator'splacement choices.2Grunwald, Zorn, and Henderson [GZH93] show that di�erent allocators canhave an important e�ect on the locality of the programs that use them. However,they failed to separate the locality e�ects of the allocation policy from those ofthe particular mechanism. Thus, for the memory allocation policies that faredworst, they could not be sure if it was because the policy itself has inherentlypoor locality, or because their implementation of the policy has poor locality. Weremedy this problem by carefully �ltering out all the locality e�ects of the memoryallocator implementation, and varying the policy decisions so that we can measurethe individual e�ects of these policy decisions on the locality of reference of theapplication. We show that the best allocation policies in terms of fragmentation arealso among the best in terms of locality.2While there has been some work on the locality of reference of memory allocators that canmove memory (such as garbage collectors) [WLM90, WLM92, Zor91, PS89, JLS92, Nut87, Ber88],[GZH93] was the only paper on the topic of locality and non-moving memory allocation that wewere able to locate. The authors of this paper also found it surprising that no one had done workin this area before. 7



1.4 Garbage CollectionGarbage collection automatically reclaims the space occupied by data objects thatthe running program can never access again. Such data objects are referred to asgarbage. The basic functioning of a garbage collector consists, abstractly speaking,of two parts:1. Distinguishing the live objects from the garbage in some way (garbage detec-tion).2. Reclaiming the garbage objects' storage so that the running program can useit again (garbage reclamation).In practice, these two phases may be functionally or temporally interleaved.In general, garbage collectors use a liveness criterion that is somewhat moreconservative than the liveness criterion used by other systems. In an optimizingcompiler, for example, a value may be considered dead at the point that it cannever be used again by the running program, as determined by control or dataow analysis. A garbage collector, on the other hand, typically uses a simpler, lessdynamic criterion of liveness, de�ned in terms of a root set and reachability from theroots. At the moment the garbage collector is invoked, the active variables are con-sidered live. Typically, this includes statically-allocated global or module variables,as well as local variables in activation records on the activation stack(s), and anyvariables currently in registers. These variables form the root set for the traversal.Heap objects directly reachable from any of these variables can be accessed by therunning program, so they must be preserved. In addition, since the program mighttraverse pointers from those objects to reach other objects, any object reachablefrom a live object is also live. Thus the set of live objects is simply the transitiveclosure of all variables reachable from the root set.8



Any object that is not reachable from the root set is garbage, i.e., useless, be-cause there is no legal sequence of instructions that allow the program to reach thatobject. Garbage objects therefore cannot a�ect the future course of computation,and their space may be safely reclaimed.There are two basic ways to reclaim garbage objects:1. Find and reclaim all objects known to be garbage (explicit garbage reclama-tion).2. Find and preserve all objects known to be live. All objects left over are garbageand can be reclaimed in one action (implicit garbage reclamation).An example of explicit reclamation is mark-sweep collection [McC60]. In amark-sweep collector, once the live objects have been distinguished from the garbageobjects, memory is exhaustively examined (swept) to �nd all of the garbage objectsand reclaim their space.An example of implicit reclamation is copying collection [FY69, Che70]. Ina copying collector, the live objects are copied out of one area of memory and intoanother. Once all live objects have been copied out of the original memory area,that entire area is considered to be garbage and can be reclaimed in one operation.The garbage objects are never examined, and their space is implicitly reclaimed.While at �rst these two methods of reclaiming garbage memory may seemfundamentally di�erent, there is a way to combine them to receive many of theadvantages of both [Wan89, Bak91]. This \fake copying" approach is fundamentalto our real-time garbage collector implementation.1.4.1 Real-Time Garbage CollectionReal-time programs are usually characterized as being either hard real-time or softreal-time. Hard real-time programs are programs with very strict bounds on the9



running times of program operations. Examples of hard real-time programs areairplane y-by-wire control, missile guidance, and medical equipment control. Thede�ning characteristic of hard real-time programs is that the consequences of missinga deadline are very great: the airplane crashes, the missile misses its target, thepatient dies.There are a number of programs which can bene�t from a real-time collector,but do not have hard real-time requirements. We call these programs \soft real-time." Soft real-time programs are programs that should meet a majority of theirdeadlines, but it is acceptable if an occasional deadline is missed, as long as thedeadlines are not missed too frequently at a time-scale relevant to the program.Examples of soft real-time programs are multimedia applications, graphical userinterfaces, and non-critical control software. For these applications, it does not reallymatter if the occasional frame of video is missed or the mouse cursor occasionallyskips a little, as long as this does not happen too often.Hard Real-Time Garbage Collection RequirementsHard real-time garbage collection has three requirements:1. it must be incremental,2. it must allow the application to make progress, and3. it must use bounded memory.Incremental Real-time garbage collection must be incremental; that is, it mustbe possible to perform small units of garbage collection work while an applicationis executing, rather than halting the application to perform large amounts of workwithout interruption. Strict bounds on individual garbage collection pauses are oftenused as the criterion for real-time garbage collection, but for practical applications,the requirements are often even stricter.10



Progress A second requirement for real-time applications that has been almostuniversally overlooked in the real-time garbage collection literature is that the ap-plication must be able to make signi�cant progress. That is, for a garbage collectorto be usefully real-time, not only must the pauses be short and bounded, they mustalso not occur too often. In other words, the garbage collector must be able toguarantee not only that every garbage collection pause is bounded, but that for anygiven increment of computation, a minimum amount of the CPU is always availablefor the running application.The di�culty with incremental garbage collection is that while the collectoris tracing out the graph of reachable data structures, the graph may change |the running program may mutate the graph between invocations of the collector.For this reason, discussions of incremental collectors typically refer to the runningprogram as the mutator [DLM+78]. An incremental scheme must have some way ofkeeping track of the changes to the graph of reachable objects, perhaps re-computingparts of its traversal in the face of those changes.An important characteristic of incremental techniques is their degree of con-servatism with respect to changes made by the mutator during garbage collection.If the mutator changes the graph of reachable objects, freed objects may or may notbe reclaimed by the garbage collector. Some oating garbage may go unreclaimedbecause the collector has already categorized the object as live before the mutatorfrees it. This garbage is guaranteed to be eventually collected, however, just notduring the same garbage collection cycle in which it became garbage.Bounded Memory Finally, because of the critical nature of most real-time ap-plications, it is important to guarantee space bounds. This issue is particularlycomplicated for garbage collected systems because the programmer no longer hasdirect control of when a block of memory becomes available for reuse. We presenta model for real-time garbage collection that allows the programmer to select a11



garbage collection design and reason about the worst case memory usage of hissystem.Soft Real-Time Garbage CollectionHard real-time applications (critical applications with strict deadlines) are very im-portant and largely unaddressed by the garbage collection literature. At the sametime, soft real-time applications (less critical real-time applications such as multi-media) make up an even larger set of problems that could bene�t greatly from areal-time garbage collector. The issues in hard real-time garbage collection are verydi�erent from those in soft real-time. Hard real-time applications need guaranteeson the worst-case time and space cost of any operation. Soft real-time applications,on the other hand, are often more interested in average case performance, even if itis at the risk of missing an occasional deadline, as long as these deadlines are notmissed too often.In this work, we develop a model for both hard and soft real-time garbagecollection, that allows the garbage collector implementor to reason about the per-formance and memory usage of his collector. We also provide an implementation ofa garbage collector that is fully con�gurable for both types of applications.1.4.2 A Model for Real-Time Garbage CollectionA major contribution of this work is to provide a model for garbage collection broadenough in its scope to encompass:� hard and soft real-time requirements,� read-barrier and write-barrier strategies, and� copying and non-copying implementations.12



This model is based on tricolor marking [DLM+78] and is augmented with thekey idea that garbage collection is really the process of marking objects and movingthem from one set to another [Bak91]. In addition, this model uses two importantinvariants that allow us to address the issues of consistency and conservatism inincremental collection. Furthermore, this model allows us to make clear decisionsabout the kind of compiler support that will or will not be useful for the particulargarbage collector design that is chosen. Finally, this model allows us to reason aboutthe space, time, and predictability tradeo�s between di�erent read- and write-barrierstrategies.While a detailed comparison of the locality properties of non-copying vs.copying memory allocation algorithms are beyond the scope of this dissertation,we address some important locality issues with our model. In particular, we sug-gest that non-copying algorithms may have signi�cant locality advantages over theircopying counterparts. However, non-copying algorithms are potentially vulnerableto severe memory fragmentation which can cause their memory requirements to ex-plode beyond any reasonable bound. We show that, with some amount of compilersupport and/or programmer e�ort, these costs can be kept small for a majority ofprograms. In addition, we attempt to characterize the cases where fragmentationwill be unacceptably high, and a copying implementation would be more appropri-ate.1.4.3 Generational Garbage Collection TechniquesGiven a realistic amount of memory, e�ciency of simple garbage collection is limitedby the fact that the system must traverse all live data during a collection cycle. Inmost programs in a variety of languages, most objects live a very short time, whilea small percentage live much longer [LH83, Ung84, Sha88, Zor90, DeT90b, Hay91].While �gures vary from language to language and from program to program, usually13



between 80 and 98 percent of all newly-allocated heap objects die within a few millioninstructions, or before another megabyte has been allocated; the majority of objectsdie even more quickly, within tens of kilobytes of allocation.Even if garbage collection cycles are fairly close together, separated by only afew kilobytes of allocation, most objects die before a collection and never need to beprocessed. Of the ones that do survive to be processed once, however, a large fractionsurvive through many collections. These objects are processed at every collection,over and over, and the garbage collector spends most of its time processing the sameold objects repeatedly. This is the major source of ine�ciency in simple garbagecollectors.Generational collection [LH83] avoids much of this repeated processing bysegregating objects into multiple areas by age, and collecting areas containing olderobjects less often than the younger ones. Once objects have survived a small numberof collections, they are \moved" to a less frequently collected area. Areas contain-ing younger objects are collected quite frequently, because most objects there willgenerally die quickly, freeing up space; processing the few that survive does not costmuch. These survivors are advanced to older status after a few collections, to keepprocessing costs down. [LH83, Moo84, Ung84, Wil92].For stop-and-collect garbage collection, generational garbage collection hasthe additional bene�t that most collections take only a short time (collecting just theyoungest generation is much faster than a full garbage collection). This reduces thefrequency of disruptive pauses, and for many programs without real-time deadlines,this is su�cient for acceptable interactive use. The majority of pauses are so brief(a fraction of a second) that they are unlikely to be noticed by users [Ung84];the longer pauses for multi-generation collections can often be postponed until thesystem is not in use, or hidden within non-interactive compute-bound phases ofprogram operation [WM89]. Generational techniques are often used as an acceptable14



substitute for more expensive incremental techniques, as well as to improve overalle�ciency.Because generational techniques rely on a heuristic|the guess that mostobjects will die young, and that older objects will not die soon|they are not strictlyreliable, and may degrade collector performance in the worst case. Thus, for somepurely hard real-time systems, they are not attractive. For other hard real-timeapplications with well understood object lifetimes and periodic scheduling of tasks,or for general-purpose systems with mixed hard and soft deadlines, the normal-casee�ciency gain is likely to be highly worthwhile and the worst case is likely to bemanageable.In this dissertation we will explore some novel generational garbage collectionalgorithms in an attempt to provide the bene�t of generational techniques for manysoft real-time applications. We propose and implement a design for generationalgarbage collection that is more amenable to real-time applications than any otherdesign that we know of. The key point of our design is to largely decouple thecollection of each generation from that of the others. This allows collection ofdi�erent generations to run at di�erent speeds, and to be scheduled with minimalcoordination.1.4.4 Performance Issues: Copying and Non-Copying Real-TimeGarbage CollectionIn this work, we attempt to clarify the di�erent performance issues in both copyingand non-copying real-time garbage collection.3 It is impossible to pick a winningstrategy for all real-time applications because di�erent strategies lead to di�erentperformance tradeo�s, which are heavily dependent on the characteristics of the3Note that non-copying collection need not incur the cost of the sweep phase of a mark-sweepcollector as is commonly assumed. In Section 4.8.1 we explain a technique known as \fake copying"[Wan89] (also known as \implicit reclamation" [Bak91]) which avoids the cost of a sweep phase.15



application. However, we attempt to provide guidelines that can be used based onthe particular problem at hand.1.5 Outline of this DissertationIn the �rst third of this dissertation, we compare the fragmentation resulting from anumber of di�erent traditional memory allocation algorithms. In these experiments,we used actual traces of eight varied programs' allocation and deallocation requests.This is contrary to the standard methodology for studying fragmentation, whererandom memory requests are generated and used to simulate real traces. We showthat using random traces to simulate real workloads is unsound because programstend to have strong phase behavior, and tend to allocate many objects of only afew sizes rather than a number of objects of many similar sizes (as the randommethodology seems to assume).In the second third of this dissertation, we study the locality e�ects of theplacement choices of non-moving memory allocation algorithms at both the cacheand virtual memory level. We show that placement choices can have a large e�ecton locality, and that the best policies in terms of fragmentation also have the bestlocality characteristics. Because a memory allocator has complete control of theprogram's layout of dynamic memory, it seems obvious that the choice of memoryallocation policy will have a major e�ect on the locality of reference of that program.Surprisingly, we were only able to �nd a single paper [GZH93] discussing the e�ectsof non-moving memory allocation algorithms on locality of reference.Having clari�ed these issues, we devote the �nal third of this dissertation toour work on real-time garbage collection. We pay particular attention to developinga model for real-time garbage collection that allows us to compare and contrast ourwork with that of others. We also discuss our implementation and provide somemeasurements of the performance of our collector.16



Throughout this work, we attempt to provide a sound methodology withwhich memory management algorithms can be studied and compared. In particular,we are interested in measuring actual costs for actual programs, and characterizingthe situations under which di�erent algorithms would be attractive. We also care-fully separate policy costs from implementation costs, so that we can focus on theinherent costs associated with a policy and not the noise caused by our particularimplementation.
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Chapter 2
Memory Allocation Studies

An important part of our research involved studying the \fragmentation problem."In this chapter, we present our results. We show that the problem of programsusing excessive amounts of memory due to fragmentation is actually a problem ofnot recognizing that good allocation policies already exist, and have inexpensiveimplementations. We show that for most programs fragmentation costs can befar lower than was previously believed, and that for a large class of programs thiscost is very near zero. In addition, we invalidate the traditional methodology forstudying fragmentation and present a more sound approach, which uses trace-drivensimulation of real programs.This work has been motivated, in part, by our perception that there is con-siderable confusion about the nature of memory allocators, and about the problemof memory allocation in general. Worse, this confusion is often unrecognized, andallocators are widely thought to be fairly well understood. In fact, we know littlemore about allocators than was known twenty years ago, which is not as much asmight be expected. The literature on the subject is rather inconsistent and scat-tered, and considerable work appears to be done using approaches that are quitelimited. 18



This problem with the allocator literature has considerable practical impor-tance: aside from the human e�ort involved in allocator studies per se, there aree�ects in the real world, both on computer system costs, and on the e�ort requiredto create real software.We think it is likely that the widespread use of poor allocators incurs aloss of main and cache memory (and CPU cycles) of over a billion and a half U.S.dollars worldwide per year; a signi�cant fraction of the world's memory and processoroutput may be squandered, at huge cost.1Perhaps an even worse problem is the e�ect on programming style due to thewidespread use of poorly designed allocators|either because better allocators arenot widely known or understood, or because allocation research has failed to addressthe proper issues. Programmers avoid heap allocation in many situations becauseof perceived space or time costs, while other programmers implement special-casememory allocators for their programs in an attempt to improve upon the defaultimplementation. This practice invariably results in wasted space, subtle bugs, andportability problems.2The overwhelming majority of memory allocation studies to date have beenbased on a methodology developed in the 1960's [Col61], which uses synthetic tracesintended to model \typical" program behavior. This methodology has the advan-tages that it is easy to implement and allows experiments to avoid quirky behaviorspeci�c to a few programs. Often the researchers conducting these studies went togreat lengths to ensure that their traces had statistical properties similar to real1According to the World Semiconductor Trade Statistics (WSTS) world-wide DRAM sales for1996 were $39.8 billion. By 1999, this number is expected to increase to $56.3 billion [Tec97]. Ifjust 20% of this memory is used for heap allocated data, and 20% of that memory is unnecessarilywasted, then over $1.5 billion of the memory sold in 1996 was wasted. This is expected to grow to$2.25 billion by 1999.2It is our impression that UNIX programmers' usage of heap allocation went up signi�cantlywhen Chris Kingsley's allocator was distributed with BSD 4.2 UNIX|simply because it was muchfaster than the allocators they'd been accustomed to.19



programs. However, none of these studies showed the validity of using a randomlygenerated trace to predict performance on real programs, no matter how well therandomly generated trace statistically models the original program trace. As weshow in Section 2.15, what all of this previous work ignores is that a randomly gen-erated trace is not valid for predicting how well a particular allocator will performon a real program.We therefore decided to perform simulation studies on various implementa-tions of malloc() using memory allocation traces from real programs. Using a largeset of tools that we built, we measured how well synthetic traces approximate realprogram traces, as well as how well these malloc algorithms performed on the realtraces. Much to our surprise, some well-known policies actually perform surprisinglywell. So well, in fact, that fragmentation appears to already be a solved problem.Another factor often overlooked in memory allocation research is that seem-ingly minor variations in policy can have dramatic e�ects on fragmentation. Wehave carefully to separated the costs of di�erent policies, and present detailed de-scriptions of the policies that we study.We will begin this chapter with a discussion on the basic issues in memoryallocation research. Next, we will discuss the basic issues in memory allocator design.Following that, we will describe the allocation policies that we studied. We will dothis in two sections, the �rst being an overview of memory allocation policies, andthe second being a detailed description of the actual policies that we studied. Inthe subsequent sections we will describe our test programs and our experimentalmethodology. We will conclude this chapter with a presentation of our results.2.1 Basic Issues in Memory Allocation ResearchAllocators are sometimes evaluated using probabilistic analyses. By reasoning aboutthe likelihood of certain events, and the consequences of those events for future20



events, it may be possible to predict what will happen on average. For the generalproblem of dynamic storage allocation, however, the mathematics are too di�cult.Unfortunately, to make probabilistic techniques feasible, important characteristics ofthe workload, such as the probabilities of relevant input events, must be known. Therelevant characteristics are not understood, so the probabilities are simply unknown.This is one of the major points of this work: the paradigm of statisticalmechanics has been used in theories of memory allocation, but we believe thatit is the wrong paradigm, at least as it is usually applied. Typically, researchersmake strong assumptions that frequencies of individual events (e.g., allocations anddeallocations) are the base statistics from which probabilistic models should bedeveloped, and we believe that this is false.The great success of statistical mechanics in other areas is due to the factthat such assumptions make sense in those areas. Gas laws, for example, are prettygood idealizations because aggregate e�ects of a very large number of individualevents (e.g., collisions between molecules) do concisely express the most importantregularities.This paradigm is inappropriate for memory allocation, for two reasons. The�rst is simply that the number of objects involved is usually too small for asymptoticanalyses to be relevant. However, this is not the most important reason. The mainweakness of the statistical mechanics approach is that there are important systematicinteractions that occur in memory allocation, due to phase behavior of programs.No matter how large the system is, basing probabilistic analyses on individual eventsis likely to yield the wrong answers if there are systematic e�ects involved whichare not captured by the theory. Assuming that the analyses are appropriate for\su�ciently large" systems does not help here|the systematic errors will simplyattain greater statistical signi�cance.The traditional methodology of using random program behavior implicitly21



assumes that there is no ordering information in the request stream that could beexploited by the allocator|i.e., there is nothing in the sequencing of requests whichthe allocator can use as a hint to suggest which objects should be allocated adjacentto which other objects. Given a random request stream, the allocator has littlecontrol: no matter where objects are placed by the allocator, they die at random,and randomly create holes among the live objects. If some allocators do in factexploit some real regularities in the request stream, the randomization of the order ofobject creation (in simulations) ensures that this information is discarded before theallocator can use it. Likewise, if an algorithm tends to systematically make mistakeswhen faced with real patterns of allocations and deallocations, randomization mayhide that fact.2.1.1 Random SimulationsThe traditional technique for evaluating allocators is to construct several traces(recorded sequences of allocation and deallocation requests) thought to resemble\typical" workloads, and use those traces to simulate the performance of a varietyof actual allocators. Since an allocator's performance is dependent only on thesequence of allocation and deallocation requests, this method can produce veryaccurate results provided that the request sequence accurately models the behavior ofreal programs.Typically, however, the request sequences are not traces of the behavior ofactual programs. They are \synthetic" traces that are generated automatically by asmall subprogram; the subprogram is designed to resemble real programs in certainstatistical ways. In particular, object size distributions are thought to be important,because they a�ect the fragmentation of memory into blocks of varying sizes. Objectlifetime distributions are often, but not always, thought to be important becausethey a�ect when areas of memory are occupied and when they are free.22



Given a set of object size and lifetime distributions, the small driver subpro-gram is used to generate a sequence of requests that obeys those distributions. Thisdriver is typically a simple loop that repeatedly generates requests, using a pseudo-random number generator; at any point in the simulation, the next data object ischosen by randomly picking a size and lifetime, with a bias that probabilisticallypreserves the desired distributions. The driver also maintains a table of objects thathave been allocated but not yet freed, ordered by their scheduled deallocation time.At each step of the simulation, the driver deallocates any objects whose deallocationtimes indicate that they have expired. One convenient measure of simulated \time"is the volume of objects allocated so far|i.e., the sum of the sizes of objects thathave been allocated up to that step of the simulation.An important feature of these simulations is that they tend to reach a steadystate. After running for a certain amount of time, the volume of allocated objectsreaches a level that is determined by the size and lifetime distributions. Afterthat point, objects are allocated and deallocated in approximately equal numbers,and the memory usage tends not to vary much. Measurements are typically madeby sampling memory usage at points after the steady state has presumably beenreached.There are three common variations of this simulation technique. The �rst isto use a simple mathematical function, such as a uniform or negative exponentialdistribution, to determine the sizes and lifetimes of objects. Exponential size distri-butions are often used because it has been observed that programs typically allocatemore small objects than large ones. Historically, uniform size distributions were themost common in early experiments; exponential distributions then became increas-ingly common, as new data became available showing that real systems generallyused many more small objects than large ones. Other distributions, notably Poissonand hyper-exponential, have also been used. Surprisingly, relatively recent papers23



have used uniform size distributions, sometimes as the only distribution. Exponen-tial lifetime distributions are also often used because programs are more likely toallocate short-lived objects than long-lived ones. As with size distributions, therehas been a shift over time away from uniform lifetime distributions, often towardsexponential distributions.The second variation is to pick distributions in ways thought to resemble realprogram behavior. This variation is based on the observation that many programsallocate the majority of their objects from just a few di�erent sizes. In general, thishas not been a very precise model of real programs. Sometimes the sizes are chosenat random and allocated in uniform proportions, rather than in skewed proportionsreecting the fact that on average, programs allocate many more small objects thanlarge ones.The third variation is to use statistics gathered from real programs, to makethe distributions more realistic. In almost all cases, size and lifetime distributionsare assumed to be independent|the fact that di�erent sizes of objects may havedi�erent lifetime distributions is generally assumed to be unimportant.In general, there has been something of a trend toward the use of more real-istic distributions, but this trend is not dominant. Even now, researchers often usesimple and smooth mathematical functions to generate traces for allocator evalua-tion.3 The use of smooth distributions is questionable, because it bears directly onissues of fragmentation. If in real programs objects of only a few sizes are allocated,then the free (and uncoalesceable) blocks are likely to be of those sizes, making itpossible to �nd a perfect �t.4 On the other hand, if the object sizes are smoothlydistributed, then the requested sizes will almost always be slightly di�erent, thusincreasing the chances of fragmentation.3We are unclear on why this should be, except that a particular theoretical and experimen-tal paradigm [Kuh70] had simply become thoroughly entrenched by the early 1970's. (It is alsosomewhat easier than dealing with real data.)4We show in Section 2.12 that this is in fact the case for the programs we studied.24



2.1.2 Probabilistic AnalysesSince Knuth's derivation of the \�fty percent rule" [Knu73], there have been manyattempts to reason probabilistically about the interactions between program behav-ior and allocator policy, and to assess the overall cost in terms of fragmentationand/or CPU time.These analyses have generally made the same assumptions as random-tracesimulation experiments (e.g., random object allocation order, independence of sizeand lifetime, and steady-state behavior). These simplifying assumptions were gen-erally used in order to make the mathematics tractable. In particular, assumptionsof randomness and independence make it possible to apply well-developed theoriesof stochastic processes (Markov models, etc.) to derive analytical results aboutexpected behavior. Assumptions of randomness and independence make the prob-lem very smooth (hence mathematically tractable) in a probabilistic sense. Thissmoothness has the advantage that it makes it possible to derive analytical results,but it has the disadvantage that it turns a real and deep scienti�c problem into amathematical puzzle that is much less signi�cant. Because these assumptions tendto be false for most real programs, these results are of limited usefulness.2.1.3 What Fragmentation Really Is, and Why the TraditionalApproach Is UnsoundFragmentation is the inability to reuse memory that is free, when that memory isneeded. This can be because of policy choices by the allocator, which may choosenot to reuse memory that in principle could be reused. More importantly, this maybe because the allocator does not have a choice at the moment an allocation requestmust be serviced: the free areas may not be large enough to service the request.55Beck [Bec82] makes the only clear statement of this principle which we have found in ourexhausting review of the literature. His paper is seldom cited, and its important ideas have generallygone unnoticed. 25



Note that for this latter (and more fundamental) kind of fragmentation, theproblem is a function both of the program's request stream and the allocator'schoices of where to allocate the requested objects. In satisfying a request, theallocator usually has considerable leeway; it may place the requested object in anysu�ciently large free area. On the other hand, the allocator has no control over theordering of requests for di�erent-sized pieces of memory, or over when those objectsare freed.In order to develop a sound methodology for studying fragmentation, it isnecessary to understand what really causes fragmentation.Fragmentation is caused by isolated deaths.A crucial issue is the creation of free areas whose neighboring areas are not free.This is a function of two things: which objects are placed in adjacent areas, and whenthose objects die. Notice that if the allocator places objects together in memory, andthey die at the same time (with no intervening allocations), no fragmentation results:the objects are live at the same time, using contiguous memory, and when they diethey free contiguous memory. An allocator that can predict which objects will die atapproximately the same time can exploit that information to reduce fragmentationby placing those objects in contiguous memory.Fragmentation is caused by time-varying behavior.Fragmentation arises from changes in the way a program uses memory|for example,freeing small blocks and requesting large ones. This much is obvious, but it isimportant to consider patterns in the changing behavior of a program, such as thefreeing of large numbers of objects of one size and the subsequent allocation of largenumbers of objects of a di�erent size. Many programs allocate and free di�erentkinds of objects in di�erent stereotyped ways. Some kinds of objects accumulate26



over time, but other kinds may be used in bursts. The allocator's job is to exploitthese patterns, if possible, or at least not to let the patterns undermine its strategy.Real programs do not generally behave randomly|they are designed to solveactual problems, and the methods chosen to solve those problems have a strong e�ecton the programs' patterns of memory usage. To begin to understand the allocator'stask, it is necessary to have a general understanding of program behavior. Thisunderstanding is almost entirely absent in the literature on memory allocators, ap-parently because many researchers consider the in�nite variation of possible programbehaviors to be too daunting.2.2 Basic Issues in Allocator DesignThe main technique used by allocators to keep fragmentation under control is place-ment choice.Placement choice is simply the choosing of where in free memory to allocate arequested block. The allocator has huge freedom of action|it can place a requestedblock anywhere it can �nd a su�ciently large range of free memory, and anywherewithin that range. (It may also be able to simply request more memory from theoperating system.) An allocator algorithm therefore should be regarded as themechanism that implements a placement policy, which is motivated by a strategyfor minimizing fragmentation. We believe that this is an important distinctionto make, and that by carefully separating these issues, it will be easy to designmemory allocators that have a number of desirable properties, such as high speed,low fragmentation, and good locality of reference.2.2.1 Strategy, Policy, and MechanismStrategy takes into account regularities in program behavior, and determines a rangeof acceptable policies for placing requested blocks. The chosen policy is implemented27



by a mechanism, which is a set of algorithms and data structures. This three-leveldistinction is quite important. In the context of general memory allocation,� a strategy attempts to exploit regularities in the request stream,� a policy is an implementable decision procedure for placing blocks in memory,and� a mechanism is a set of algorithms and data structures that implement thepolicy, often called \the implementation."An ideal strategy is \put blocks where they will not cause fragmentationlater"; unfortunately this is impossible to guarantee, so real strategies attempt toheuristically approximate that ideal, based on assumed regularities of applicationprograms' behavior. For example, one strategy is: \if a block must be split, po-tentially wasting what's left over, minimize the size of the wasted part." This iscommonly believed to be the strategy for the best-�t family of allocators. However,as we will show in Section 2.10, this is not the strategy that makes best �t work well.The best-�t strategy is actually: \preferentially use one area of memory for alloca-tion requests so that other areas will have more time for the neighboring objects todie and be coalesced."The corresponding best-�t policy is more concrete|it says \always use thesmallest block that is at least large enough to satisfy the request." This is nota complete policy, however, because there may be several equally good �ts; thecomplete policy must specify which of those should be chosen.The chosen policy is implemented by a speci�c mechanism, which should bee�cient in terms of time and space overheads. For best �t, for example, either alinear list or an ordered tree structure might be used to record the addresses andsizes of free blocks, and a list or tree search could be used to �nd the next block tobe allocated, as dictated by the policy. 28



These levels of the allocator design process interact. A strategy may notyield an obvious complete policy, and the seemingly slight di�erences between sim-ilar policies may actually implement interestingly di�erent strategies. The chosenpolicy may not be obviously implementable at reasonable cost in space, time, orprogrammer e�ort; in that case some approximation may be used instead.2.2.2 Splitting and coalescingTwo general techniques for supporting a range of (implementations of) placementpolicies are splitting and coalescing of free blocks. The allocator may split largeblocks into smaller blocks arbitrarily, and use any su�ciently-large sub-block tosatisfy the request. The remainders from this splitting can be recorded as smallerfree blocks in their own right and used to satisfy future requests.The allocator may also coalesce adjacent free blocks to yield larger free blocks.After a block is freed, the allocator may check to see whether the neighboring blocksare free as well, and merge them into a single, larger block. This is often desirable,because one large block is more likely to be useful than two smaller ones.The cost of splitting and coalescing may not be negligible, however, especiallyif splitting and coalescing work too well|in that case, freed blocks will usually becoalesced with neighbors to form large blocks of free memory, and later allocationswill have to split smaller chunks o� those blocks to obtain the desired sizes. It oftenturns out that most of this e�ort is wasted, because the sizes requested later arelargely the same as the sizes freed earlier, and the old small blocks could have beenreused without coalescing and splitting (see Section 2.12). Because of this, manymodern allocators use the policy of deferred coalescing|they avoid coalescing andsplitting most of the time, but use it intermittently, to combat fragmentation.
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2.2.3 Space vs. TimeIt is well known that it is easy to write a memory allocator that is very fast, as longas space issues are not important. Kingsley's BSD 4.2 UNIX memory allocator isan example of such an allocator [Kin]. It is a simple segregated storage allocator(Section 2.4.1) that rounds all object request sizes up to powers of two minus aconstant. Allocation and deallocation consists of just popping o� from and pushingon to an array of linked lists, which can be implemented in just a couple of machineinstructions. However, as we will show in Section 2.9, this allocation policy is amongthe worst that we studied in terms of fragmentation.What is not well known is that it is easy to write a very fast memory allo-cator even when space issues are important. As we will show in Section 2.9, best�t and �rst �t address ordered are among the best allocation policies in terms offragmentation. Stephenson described how to e�ciently implement �rst �t addressordered using a cartesian tree6 [Ste83]. Standish and Tadman showed how to ef-�ciently implement best �t using two sets of free lists: an array of free lists ofsame-sized objects for small blocks, and a binary tree of free lists for larger blocks[Sta80, Tad78]. Unfortunately, this work seems to have gone unnoticed.These allocation policies can be implemented even more e�ciently if deferredcoalescing (Section 2.4.4) is used in addition to the techniques described above. Todate, it has been unclear whether deferred coalescing would a�ect fragmentation.However, because deferred coalescing changes the order of object reuse, there isevery reason to believe that it could have a non-negligible e�ect. On the otherhand, our results (Section 2.9.2) show that deferred coalescing does not appreciablyincrease fragmentation for the better allocation policies in our study.For deferred coalescing to be e�ective, programs must repeatedly request thesame sized objects, and these objects must have been recently freed. Our results6Cartesian trees were �rst described in [Vui80].30



(Sections 2.12 and 2.6.2) show in fact that most programs do allocate only a fewdi�erent sizes of objects, and that these objects are only live for a short time. Thus,it is quite likely that deferred coalescing can be used, as we will describe in Section2.4.4, to make the usual case allocation and deallocation times for good allocationpolicies as fast as simple segregated storage, at the cost of only a couple of percentin fragmentation.In summary, by using good, scalable data structures such as those describedin [Ste83] or [Sta80, Tad78], memory allocators with very low fragmentation need notbe slow. In addition, by using deferred coalescing, the usual case can be optimizedto be very fast with very little increase in fragmentation.2.3 A Sound Methodology for Studying FragmentationThe traditional view has been that the program behavior responsible for fragmen-tation is determined only by the distributions of object sizes and lifetimes. Recentexperimental results show that this is false [ZG94, WJNB95], because the orderingof requests has a large e�ect on fragmentation. Until a much deeper understand-ing of program behavior is reached, and until allocator strategies and policies areas well understood as allocator mechanisms, the only reliable method for allocatorsimulation is to use real traces|i.e., the actual record of allocation and deallocationrequests from real programs|as we describe in Section 2.8.A sound methodology must also separate policy costs from implementationcosts. When simulating real traces, it is important to measure the true costs ofthe policy being studied and not the overheads of the particular implementation ofthat policy. Finally, many policies are a composition of several simpler policies. Forexample, the policy best-�t with a LIFO free list, deferred coalescing, and a FIFOquick list is actually the combination of four policies: the best-�t policy with theLIFO-ordered free-list policy, the deferred coalescing policy, and the FIFO quick list31



policy. It is important to try to separate as many of these costs from each other aspossible in order to understand the e�ect of each policy choice.Finally, a sound methodology must be clear about what it is attemptingto study. As we will see in Section 2.9, small variations in policy can producelarge variations in fragmentation. It is therefore important for allocation studies tocarefully describe the exact policies under consideration. In the next two sections,we will describe the allocation policies that we study in this work. The �rst sectionis an overview of memory allocation policies in general, and the second section is adescription of the particular policies that we studied for this work.2.4 Overview of Memory Allocation PoliciesIn this section, we give an overview of allocator terminology.7 The basic kinds ofallocation policies we discuss are:� Segregated Free Lists, including simple segregated storage and segregated �t.� Sequential Fits, including �rst �t, next �t, and best �t.� Buddy Systems, including conventional binary and double buddies.In addition, we discuss the many policy decisions which must be made whenimplementing one of these allocators: order of object reuse, deferred coalescing,splitting thresholds, and preallocation. As stated earlier, an important point of thisresearch is the separation of policy from mechanism. We believe that research onmemory allocation should �rst focus on �nding good policies. Once these policiesare identi�ed, it is relatively easy to develop good implementations. All of the mea-surements presented in this dissertation are for the memory allocation policy under7For a much more extensive discussion on these issues, see [WJNB95]32



consideration, independent of any particular implementation of that policy. Unfor-tunately, many good policies are discounted because the obvious implementation isine�cient. We will therefore devote some of this section to describing alternativeimplementations that are quite e�cient for many of these policies.2.4.1 Segregated Free ListsOne of the simplest allocation policies uses a set of free lists, where each list holdsfree blocks of a particular size. When a block of memory is freed, it is simplypushed onto the free list for that size. When a request is serviced, the free listfor the appropriate size is used to satisfy the request. There are several importantvariations on this segregated free lists policy.One common variation is to use size classes to group similar object sizestogether in a single free list. Free blocks from a list are used to satisfy any requestfor an object whose size falls within that list's size class. A common size-class schemeis to use size classes that are a power of two apart (e.g., 4 words, 8 words, 16 words,and so on) and round the requested size up to the nearest size class.Simple Segregated StorageIn this variant, no splitting of larger free blocks is done to satisfy requests for smallersizes, and no coalescing of smaller free blocks is done to satisfy requests for largersizes. When a request for a given size is serviced, and the free list for the appropriatesize class is empty, more storage is requested from the underlying operating system(e.g., using UNIX sbrk() to extend the heap segment). Typically, one or two virtualmemory pages are requested at a time, and split into same-sized blocks which arethen strung together and put on the free list. Since the result is that pages (or someother relatively large unit) contain blocks of only one size class, we call this simplesegregated storage. 33



An advantage of this simple policy is that it naturally leads to an implemen-tation where no headers are required on allocated objects: the size information canbe recorded for a page of objects, rather than for each object individually. This maybe important if the average object size is very small.Simple segregated storage can also be made quite fast in the usual case,especially when objects of a given size are repeatedly freed and reallocated overshort periods of time. Because this policy does not split or coalesce free blocks,almost no work is done when an object is freed, and subsequent allocations of thesame size can be quickly satis�ed by removing that block from its free list.The disadvantage of this scheme is that it is subject to potentially severeexternal fragmentation, as no attempt is made to split or coalesce blocks to satisfyrequests for other sizes. The worst case is a program that allocates many objectsof one size class and frees them, then does the same for many other size classes.In that case, separate storage is required for the maximum volume of objects of allsizes, and none can be reused for the others.There is some tradeo� between expected internal fragmentation and externalfragmentation with this scheme. If the spacing between size classes is large, moredi�erent sizes will fall into each size class, allowing space for some sizes to be reusedfor others. (In practice, very coarse size classes generally lose more memory tointernal fragmentation than they save in external fragmentation. We will discussthis further in Section 2.9.2.)A crude but possibly e�ective form of coalescing for simple segregated storageis to maintain a count of live objects for each page, and notice when a page is entirelyfree. If a page is free, it can be made available for allocating objects in a di�erentsize class, preserving the invariant that all objects in a page are of a single size class.
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Multiple Sizes Per PageAt the expense of having per-object rather than per-page overheads, the simplesegregated storage policy can be changed to allow objects from a larger size classto be split into smaller sizes, and objects from smaller size classes to be mergedinto larger sizes. In keeping with the simple segregated storage policy, this splittingand coalescing is constrained such that the resulting blocks are the exact size foranother size class. For example, with powers-of-two size classes, a 64-byte objectcan be split into two 32-byte objects, or into one 16-byte object and into one 48-byteobject, but not into one 50-byte object and one 14-byte object. This is similar to,but less constrained than, the buddy system which we describe in Section 2.4.3.Segregated FitAnother variation on the segregated free lists policy relaxes the constraint that allobjects in a size class be exactly the same size. We call this segregated �t. Thisvariant uses a set of free lists, each list holding free blocks of any size between thecurrent size class and the next larger size class. When servicing a request for aparticular size, the free list for the corresponding size class is searched for a blockat least large enough to hold it. The search is typically a sequential-�t search, andmany signi�cant variations are possible (we describe a number of these variations inSection 2.4.2). Typically a �rst-�t or next-�t policy is used. It is often pointed outthat the use of multiple free lists makes the implementation faster than searching asingle free list. What is often not appreciated is that this also a�ects the policy ina very important way: the use of segregated lists excludes blocks of very di�erentsizes, meaning good �ts are usually found. The policy is therefore a good-�t oreven a best-�t policy, despite the fact that it is usually described as a variation on�rst �t, and underscores the importance of separating policy considerations fromimplementation details. 35



2.4.2 Sequential FitsSeveral classic allocator algorithm implementations are based on having a doubly-linked linear (or circularly-linked) list of all free blocks of memory. Typically,sequential-�t algorithms use Knuth's boundary tag technique to support coalesc-ing of all adjacent free areas [Knu73]. The list of free blocks is usually maintainedin either FIFO, LIFO, or address order (AO). Free blocks are allocated from thislist in one of three ways: the list is searched from the beginning, returning the �rstblock large enough to satisfy the request (�rst �t); the list is searched from the placewhere the last search left o�, returning the next block large enough to satisfy therequest (next �t); or the list is searched exhaustively, returning the smallest blocklarge enough to satisfy the request (best �t).These implementations are actually instances of allocation policies. The �rst-�t policy is to search some ordered collection of blocks, returning the �rst block thatcan satisfy the request. The next-�t policy is to search some ordered collection ofblocks starting where the last search ended, returning the next block that can satisfythe request. Finally, the best-�t policy is to exhaustively search some collection ofblocks, returning the best �t among the possible choices, and breaking ties usingsome ordering criteria. The choice of ordering of free blocks is also a policy decision.The three that we mentioned above as implementation choices (FIFO, LIFO, andaddress ordered) are also policy choices.What is important is that each of these policies has several di�erent possibleimplementations. For example, best �t can be implemented using a tree of lists ofsame sized objects [Sta80], and �rst �t address ordered can be implemented using aCartesian tree [Ste83]. For concreteness and simplicity, we describe the well-knownimplementations of sequential-�t algorithms, but we stress that the same policiescan be implemented more e�ciently.
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First �tA �rst-�t policy simply searches the list of free blocks from the beginning, anduses the �rst block large enough to satisfy the request. If the block is larger thannecessary, it is split and the remainder is put on the free list. A problem with thisimplementation of the �rst �t policy is that the larger blocks near the beginning ofthe list tend to be split �rst, and the remaining fragments result in having a lot ofsmall blocks near the beginning of the list. This can increase search times becausemany small free blocks accumulate, and the search must go past them each timea larger block is requested. In terms of policy, this implementation of �rst �t maytend toward behaving like best �t over time, because the smallest blocks end upnear the front of the list, so that blocks are e�ectively searched in size order, andthe smallest chosen �rst.8Next �tA common \optimization" of �rst �t is to use a roving pointer for allocation [Knu73].The pointer records the position where the last search was satis�ed, and the nextsearch begins from there. Successive searches cycle through the free list, so thatsearches do not always begin in the same place and result in an accumulation ofsmall unusable blocks in one part of the list. The usual rationale for next �t isto decrease average search times, but this implementation consideration has othere�ects on the policy for memory reuse. Since the roving pointer cycles throughmemory regularly, objects from di�erent phases of program execution may becomeinterspersed in memory. This may a�ect fragmentation if objects from di�erentphases have di�erent expected lifetimes. (It may also seriously a�ect locality. Theroving pointer itself may have bad locality characteristics since it examines everyfree block before touching any block again. Worse, it may a�ect the locality of the8This has also been observed by Ivor Page (personal communication, February 1994).37



program for which it is allocating memory by scattering objects used by certainphases and intermingling them with objects used by other phases.)Best �tA best-�t sequential-�t allocator searches the free list to �nd the smallest free blocklarge enough to satisfy a request. In the general case, a best-�t search is exhaustive,although it may stop when a perfect �t is found. This exhaustive search means thata sequential best-�t search does not scale well to large heaps with many free blocks.Because of the time costs of an exhaustive search, the best-�t policy is oftenunnecessarily dismissed as being impossible to implement e�ciently. This is unfor-tunate, because, as we will show in Section 2.9, best �t is one of the best policiesin terms of fragmentation. By taking advantage of the observation that most pro-grams use a large number of objects of just a few sizes, a best-�t policy can be quitee�ciently implemented as a binary tree of lists of same-sized objects. In addition,segregated-�t algorithms (Section 2.4.1) can be a very good approximation to best�t and are easy to implement e�ciently.Boundary Tags and Per-Object OverheadsSequential-�t techniques are usually implemented using boundary tags to supportthe coalescing of free areas [Knu73]. Each block of memory has a header and a footer�eld, both of which record the size of the block and whether it is in use. When ablock is freed, the footer of the preceding block of memory is examined to see if itis free; likewise, the header of the following block is examined. Adjacent free areasare merged into larger free blocks. (This is where doubly-linked lists are useful|ablock can be unlinked from anywhere in a doubly-linked list in constant time.)There is a simple optimization which allows us to remove the footer boundarytag from an object while it is allocated. As we said above, the footer holds two38



di�erent pieces of information: the size of the block, and whether it is free orallocated. We make the observation that we need the size information only whenthe block is free because when the block is allocated, we cannot coalesce with thenext block. Thus, we are left with the case that when the object is live, we onlyneed one bit in the footer telling us that the object is live. Since memory is usuallyonly allocated on word or double word boundaries, the size of all objects is somemultiple of four or eight bytes. Thus the bottom 2 or 3 bits of the size are alwayszero. We can therefore store the allocated/free bit in the header of the followingobject, together with the allocated/free bit for that object. When an object is freed,we do not need the memory that occupied the last four bytes of that object, andcan copy the object size from the header into the footer. This still leaves us withthe case of a two word minimum object size, but when an object is allocated, theoverhead is just one word.Order of Object ReuseOne important detail for sequential-�t algorithms is the ordering of the objects onthe free list. There are three common variations: FIFO, LIFO, and address ordered.For FIFO free lists, objects returned to the free list are located in such aplace that they will be the last object considered for the next allocation. In the caseof �rst �t or best �t, this usually means the end of the free list. In the case of next�t, this means the location just before the roving pointer (such that the pointer willhave to rove all the way around the list before coming to this block).For LIFO free lists, objects returned to the free list are located in such aplace that they will be the next object considered for allocation. In the case of �rst�t or best �t, this usually means the front of the free list. In the case of next �t,this means the location just after the roving pointer (such that this block will bethe next block reached by the pointer). 39



For address ordered free lists, free objects are placed in the list in sortedorder corresponding to the address of the start of the object. It may seem that therun-time costs of sorting the free list with every deallocation would be prohibitivelyexpensive. However, another implementation of this policy is possible: if a bitmap ismaintained, with one bit for every word or every two words, then freeing an objectand placing it into sorted order is as simple as setting the corresponding bits in thebit map. This approach has the added bene�t that no boundary tags are neededfor coalescing|it happens automatically when the bits are set. Finally, free regionsof memory can be searched quickly by looking at several bits at a time and using atable to determine if that bit pattern could possibly hold an object of the desiredsize.2.4.3 Buddy SystemsBuddy systems [Kno65, PN77] are a variant of segregated lists, supporting a limitedbut e�cient kind of splitting and coalescing. In the simple buddy schemes, theentire heap area is conceptually split into two large areas which are called buddies.These areas are repeatedly split into two smaller buddies, until a su�ciently smallchunk is achieved. This hierarchical division of memory is used to constrain whereobjects are allocated, and how they may be coalesced into larger free areas. A freearea may only be merged with its buddy, the corresponding block at the same levelin the hierarchical division. The resulting free block is therefore always one of thefree areas at the next higher level in the memory-division hierarchy. At any level,the �rst block of a buddy pair may only be merged with the following block of thesame size; similarly, the second block of a buddy pair may only be merged with the�rst, which precedes it in memory. This constraint on coalescing ensures that theresulting merged free area will always be aligned on one of the boundaries of thehierarchical division of memory. 40



The purpose of the buddy allocation constraint is to ensure that when a blockis freed, its (unique) buddy can always be found by a simple address computation,and its buddy will always be either a whole, entirely free chunk of memory, or anunavailable chunk. (An unavailable chunk may be entirely allocated, or may havebeen split and have some or all of its sub-parts allocated.) Either way, the addresscomputation will always be able to locate the buddy's header|it will never �nd themiddle of an allocated object.Buddy coalescing is relatively fast, but perhaps the biggest advantage insome contexts is that it requires little space overhead per object|only one bit isrequired per buddy, to indicate whether the buddy is a contiguous free area. Thiscan be implemented with a single-bit header per object or free block. Unfortu-nately, for this to work, the size of the block being freed must be known|the buddymechanism itself does not record the sizes of the blocks. This is workable in somestatically-typed languages, where object sizes are known statically and the compilercan supply the size argument to the freeing routine. In most current languages andimplementations, however, this is not the case due to the presence of variable-sizedobjects and/or because of the way libraries are typically linked.Several signi�cant variations on buddy systems have been devised. Of these,we studied binary buddies and double buddies.Binary BuddyBinary buddy is the simplest and best-known of the buddy systems [Kno65]. In thisscheme, all buddy sizes are a power of two, and each size is divided into two equalparts. This makes address computations simple, because all buddies are aligned ona power-of-two boundary o�set from the beginning of the heap area, and each bit inthe o�set of a block represents one level in the buddy system's hierarchical splittingof memory|if the bit is 0, it is the �rst of a pair of buddies, and if the bit is 1, it41



is the second. These operations can be implemented e�ciently with bitwise logicaloperations.A major problem with binary buddies is that internal fragmentation is usuallyrelatively high|the expected case is about 25%, because any object size must berounded up to the nearest power of two (minus a word for the header, if a bit cannotbe stolen from the block given to the language implementation).Double BuddyDouble buddy [Wis78, PH86] uses a di�erent technique to allow a closer spacing ofsize classes. It uses two di�erent buddy systems, with staggered sizes. For example,one buddy system may use powers-of-two sizes (2, 4, 8, 16, ...) while the other usesa powers-of-two spacing starting at a di�erent size, such as 3, (the resulting sizesare 3, 6, 12, 24, ...). Request sizes are rounded up to the nearest size class in eitherseries. This reduces the internal fragmentation by about half, but means that ablock of a given size can only be coalesced with blocks in the same size series. 92.4.4 Deferred CoalescingAs we will show in Section 2.12, most programs tend to allocate lots of objects of justa few sizes, repeatedly. We can take advantage of this behavior by waiting a whilebefore coalescing free objects, and hoping that another request for an identically-sized object will occur soon. If such a request for an identically-sized object doesoccur soon, then we have saved the cost of �rst coalescing and then immediatelysplitting a chunk of memory. If at some point a request comes in for a block thatcannot be satis�ed by any existing free chunk of memory, all free objects are thencoalesced and another attempt is made to satisfy the request. Note that if we keep9To our knowledge, the implementation we built for the present study may actually be theonly double buddy system in existence, though Page wrote a simulator that is almost an entireimplementation of a double buddy allocator [PH86].42



the uncoalesced objects in a separate area, we only need to coalesce these objectswhen we need more memory, and coalescing costs are no higher than if we had donethe work immediately after the blocks were freed.Quick ListsOne way to separate free objects that have not been coalesced from those that haveis to create a special list for these objects, and then search this list before lookingfor a chunk in the coalesced list. However, a list search can be quite expensive. Anoptimization is to pick some small size (say 32 words) above which the allocator willalways immediately coalesce, and create a list for every object size below this limit.These lists can be accessed from an array with one entry for every size, making thesearch extremely fast in the average case. Only if this search fails do we need to usethe more general purpose mechanism.Even if we have one list for every possible chunk size, such that no list searchis ever necessary, it is still important to specify the order in which free objects arestored in these quick lists. As we will see in Section 2.9, the order of the quick listscan have a measurable e�ect on locality.2.4.5 Splitting ThresholdsOnce a block is chosen, the next decision to make is whether to use the entire block,or to split the chunk into two pieces and save the remainder for a later request. Ifthe policy dictates that the chunk should be split, it is necessary to determine howmuch of the unneeded memory to keep with the object, and how much to keep withthe free chunk. This is essentially the choice of increasing internal fragmentation todecrease external fragmentation. There are several ways to make this decision:� always keep blocks at a predetermined size (such as powers of two, or a Fi-bonacci number), 43



� try to split the block into two equal sizes, or� split the block with a given percentage of the request size as internal fragmen-tation.It has long been believed that increasing internal fragmentation to reduceexternal fragmentation is a good tradeo�. In fact, buddy systems and simple seg-regated storage systems depend on this trade-o� as a part of their basic policy.However, one of the results of our research is that this appears to never be a goodchoice. We discuss this result in more detail in Section 2.9.2.4.6 PreallocationOne possible way to speed up the implementation of a memory allocator is to pre-allocate a number of blocks of a size that is expected to be heavily used. Thisheuristic is often compared to getting water from a well: when one needs to geta cup of water from a well, one does not just get one cup, one gets a bucket full.In memory allocator terms, if a request comes in for a particular object size, theallocator �nds a suitably large block, splits it into several blocks of this size, andputs them into a quick list.What is often not understood about this heuristic is that it also has importantpolicy implications. Notice that for this heuristic to work, deferred coalescing mustalso be implemented. Also, the blocks that are pre-split are no longer available if arequest for a di�erent size needs to be ful�lled. This can eventually lead to a verydi�erent set of blocks being used than if this heuristic had not been implemented.Half �t & Multi-�tsAnother variation on sequential �ts, which is also a variation on preallocation iscalled a multiple-�t. In this variation, the list of free memory chunks is searched44



for a block that is exactly some multiple of the request size. If such a block isfound, then it is split into several free blocks each being exactly the request size.This variation also relies on the heuristic that if there is a request for a particularsize, then there is likely to be another request for that same size soon. However,it is di�erent from normal preallocation in that it attempts to minimize remainderchunks that are not of a size that can be easily used.The simplest version of this policy, which we call half �t, is to always lookfor a block that is exactly twice the request size and split it into two blocks of thesame size. This version attempts to gain the bene�t of preallocating some memory,without over-committing to block sizes in case the heuristic is wrong.2.4.7 Wilderness PreservationThe treatment of the last block in the heap|the memory that the allocator mostrecently obtained from the operating system|can be quite important. This blockis usually rather large, and a mistake in managing it can be expensive. Since suchblocks are allocated whenever heap memory grows, consistent mistakes could bedisastrous [KV85]. Thus, there is the very important question of how to treat avirgin block of signi�cant size, to minimize fragmentation. (This block is sometimescalled the \wilderness" [Ste83] to signify that it is as yet unspoiled.)Consider what happens if a �rst-�t or next-�t policy is being used, and thewilderness block is placed at the beginning of the free list. The allocator will mostlikely carve many small objects out of the wilderness immediately, greatly increasingthe chances of being unable to recover the contiguous free memory of the block. Onthe other hand, putting it on the opposite end of the list will tend to leave it unusedfor at least a while, perhaps until it gets used for a larger block or blocks. Analternative strategy is to keep the wilderness block out of the main ordering datastructure entirely, and only carve blocks out of it when no other usable memory can45



be found.Korn and Vo call this a \wilderness preservation heuristic," and report thatit is helpful for some allocators [KV85] (however, no quantitative results are given).Our results show that for the best allocation policies (best �t and �rst �t addressordered), special treatment of the wilderness block is unnecessary. We will describethis in more detail in Section 2.9.2.5 Allocator DescriptionsWe obtained and/or constructed a variety of allocators, representative of the classesof allocation policies we described earlier: segregated free lists (simple segregatedstorage and segregated �t), sequential �t, and buddy systems, which we describehere in detail.The reader may �nd this section tedious, and it would be acceptable to skimit on the �rst reading. However, we have found that seemingly inconsequentialdi�erences in policy can lead to dramatically di�erent fragmentation results (seeSection 2.13) and have taken great pains to adequately describe our allocators. Oneof the great disappointments we had while reading the related work was that veryfew of the allocators studied were described in enough detail for us to recreate theirresults. Thus, we encourage the reader to eventually return to this section, and topay careful attention to the details outlined here. We particularly encourage futureresearchers to follow our example and explain their allocation policies in su�cientdetail that their experimental results can be repeated.In the descriptions which follow, unless otherwise noted, all object sizes arerounded up to the nearest double word (8 bytes or 32 bits),10 and the minimumobject size is four words (16 bytes). Memory is requested from the operating systemin units of 4KB, except for double buddy, which requests an average of 5KB at a10As required by the alignment of double oats on the Sparc architecture.46



time.112.5.1 Segregated Free ListsIn this section, we present descriptions of our segregated free list allocators: simplesegregated storage (2N and 2N & 3 � 2N ) and segregated �t (Doug Lea's 2.5.1 and2.6.1) allocators.Simple Segregated StorageThis is a very simple segregated storage algorithm that does no coalescing. Itmaintains an array of free lists for size classes. The implementations of this allocatorused in our fragmentation studies have no header or footer overhead because nocoalescing is done, and because all objects in a page are of the same size.12 Theversions of this allocator used in our locality studies (Chapter 3) do have a header,but still have no footer. Objects are placed on and removed from their free lists inLIFO order. The minimum object size is 16 bytes. We have two implementationsof this algorithm:� Simple Seg 2N allocates objects in size classes that are powers of two (e.g., 16,32, 64, etc., bytes). This allocator was originally written by Sheetal Kakkadfor use in the Texas Persistent Store [SKW92], but is very similar to thewidely used and venerable BSD UNIX allocator written by Chris Kingsleyand studied by Zorn and Grunwald [ZG94]. (However, Zorn and Grunwaldincorrectly describe this allocator as a \buddy-based algorithm.")11Recall that double buddy actually uses two heap areas. In one heap area memory is requestedfrom the operating system in units of 4KB, and in the other, memory is requested in units of 6KB.12Only one word of overhead is required per page (about a tenth of a percent of the heap size).This word is used for encoding the sizes of objects in a page so that when objects are freed, theycan be placed on the appropriate free list. We ignored this cost because it is negligible given theslight imprecision in our measurements (see Section 2.8.3).47



� Simple Seg 2N & 3 � 2N is very similar to Simple Seg 2N , but the size classesare closer together, to decrease internal fragmentation at a possible expense inexternal fragmentation. Size classes are powers of two, plus intermediate sizeclasses that are three times powers of two (e.g., 16, 24, 32, 48, 64, etc., bytes).The minimum object size is 16 bytes. A simple table lookup technique is usedto make size class determination fast for small objects. In places in this textwhere we are constrained for space, we will often abbreviate this allocator asSimple Seg 3�2N . This should not be mistaken for an allocator that omits the2N size classes. This is another version of the Texas allocator, implementedby Sheetal Kakkad and Michael Neely.Segregated FitThese memory allocators are from Douglas Lea, and are widely distributed and usedwith g++ (the GNU C++ compiler). We used three versions: 2.5.1, 2.5.1 with thefooter overhead optimized away, and 2.6.1 (which has no footer overhead). At thetime of this writing, the most recent version is 2.6.4, which we did not study.� Lea 2.5.1: a \segregated storage" algorithm in the (rather misleading) sense ofPurdom, Stigler, and Cheam [PSC71]. Actual storage is not segregated, andone-word header and footer �elds support boundary-tag coalescing. A set offree lists is maintained, \segregating" (indexing) free objects by approximatesize to speed up searches. Size classes are powers of two divided linearly in 4(powers of two give a logarithmic set of size classes, and those sets are sub-divided into 4 smaller ranges by simple linear division, i.e.: 4, 5, 6, 7; 8, 10,12, 14; 16, 20, 24, 28; . . . words). Each of the resulting size classes has a con-ventional doubly-linked free list searched using �rst �t. Several optimizationssupport a limited form of deferred coalescing and deferred reuse. Note thatdespite using a �rst-�t mechanism, the use of fairly precise size classes ensures48



that it implements a policy that is very close to best �t.13 (This has generallybeen overlooked.) Minimum object size is 16 bytes.� Lea 2.5.1 no footer: the same allocator as Lea 2.5.1 but with the one-wordfooter overhead optimized away as described in Section 2.4.2.� Lea 2.6.1: a revision of previous versions of this allocator. Free blocks areseparated into 128 bins, with one bin for each block size less than 512 bytes.Objects are sorted by size within bins, with ties broken by an oldest-�rst rule(FIFO). Free blocks are immediately coalesced using boundary tags, and thesmallest chunk size is 16 bytes. There are no footers on allocated objects,making the per-object overhead just 4 bytes. This algorithm more closelyresembles best �t than previous versions with one important modi�cation:when a block of the exact desired size is not found, the most recently splitobject is used (and re-split), if it is big enough; otherwise best �t is used.For very large objects (greater than 1 megabyte), if the requested space isnot already available the memory is obtained via mmap rather than sbrk, andtreated separately.2.5.2 Sequential FitsThese allocators use a single free list and Knuth's boundary tag technique witha one word header to support coalescing. The versions with \no footer" in theirnames have no footer overhead on allocated blocks, whereas the other versions havea one word footer. The minimum object size is 16 bytes. Block are only split if theremainder is at least 16 bytes, and the remainder is put back on the free list. Noother splitting threshold is used to trade internal fragmentation for reduced external13The \�rst-�t" search within a size class looks for a very good �t (within less than the minimumobject size) and forces coalescing if one is not found. Because blocks of very di�erent sizes are notconsidered unless no other free blocks are available, most of the time a good �t will be selected.49



fragmentation. When memory is requested from the operating system, it is alwaysin 4K increments. The code for these allocators is based on code from Douglas Lea'sg++ allocator, version 2.5.1, extracted and modi�ed by Michael Neely.There are three basic policies for searching the free list for a suitable block:� First �t: a classic �rst-�t algorithm from Knuth, where the free list is alwayssearched from the beginning, and the searching always stops as soon as the�rst block that is large enough is found.� Next �t: a modi�ed �rst-�t algorithm, using a roving pointer to avoid searchingthe list from the beginning each time, in an attempt to prevent the accumu-lation of small fragments at the beginning of the list. Thus, the search fora suitable free block begins where the search for the last block left o�. Thesearch always stops as soon as the �rst block that is large enough is found.� Best �t: another modi�ed �rst-�t algorithm. The free list is searched exhaus-tively or until an exact �t is found. If no exact �t is found, then the smallestblock larger than the requested size is used.14In these policies, newly freed objects, remainders from splitting, and new memoryfrom the operating system are placed on the free list in one of three ways:� LIFO: they are the �rst blocks to be considered for allocation,� FIFO: they are the last blocks to be considered for allocation, or� Address Ordered (AO): they are placed on the free list in increasing orderof address, and are only considered for allocation when the normal searchmechanism (�rst �t, next �t, or best �t) reaches them in the free list.14This is not intended to be a realistic mechanism; it is simply a test of the best-�t policy.50



Coalescing of both split remainders and/or freed objects is either immediate ordeferred. In the case of deferred coalescing, separate free lists (called quick lists)are maintained for every size up to 32 words, and objects of 32 words or less areonly coalesced if no suitable block is found for a request. Objects of greater than32 words are always immediately coalesced. The quick lists can be maintained inLIFO, FIFO, or address order, independently of whether the main free list is inLIFO, FIFO, or address order.The following is a description of each of our sequential �ts allocators:� Best �t AO. Uses the best-�t policy, and free memory is maintained in addressorder.� Best �t AO 8K. Uses the best-�t policy, free memory is maintained in ad-dress order, and new memory is requested from the operating system in 8Kincrements.� Best �t AO deferred AO. Uses the best-�t policy, free memory is maintainedin address order, uses deferred coalescing, and the quick lists are maintainedin address order.� Best �t AO deferred FIFO. Uses the best-�t policy, free memory is maintainedin address order, uses deferred coalescing, and the quick lists are maintainedin FIFO order.� Best �t AO deferred LIFO. Uses the best-�t policy, free memory is maintainedin address order, uses deferred coalescing, and the quick lists are maintainedin LIFO order.� Best �t AO no footer. Uses the best-�t policy, free memory is maintained inaddress order, and there is no footer on allocated blocks.51



� Best �t FIFO. Uses the best-�t policy, and free memory is maintained in FIFOorder.� Best �t FIFO no footer. Uses the best-�t policy, free memory is maintainedin FIFO order, and there is no footer on allocated blocks.� Best �t LIFO. Uses the best-�t policy, and free memory is maintained in LIFOorder.� Best �t LIFO deferred AO. Uses the best-�t policy, free memory is maintainedin LIFO order, uses deferred coalescing, and the quick lists are maintained inaddress order.� Best �t LIFO deferred FIFO. Uses the best-�t policy, free memory is main-tained in LIFO order, uses deferred coalescing, and the quick lists are main-tained in FIFO order.� Best �t LIFO deferred LIFO. Uses the best-�t policy, free memory is main-tained in LIFO order, uses deferred coalescing, and the quick lists are main-tained in LIFO order.� Best �t LIFO no footer. Uses the best-�t policy, free memory is maintainedin LIFO order, and there is no footer on allocated blocks.� Best �t LIFO split-14. Uses the best-�t policy, free memory is maintained inLIFO order, and blocks are only split if the remainder is at least 14% of therequest size.� Best �t LIFO split-7. Uses the best-�t policy, free memory is maintained inLIFO order, and blocks are only split if the remainder is at least 7% of therequest size. 52



� First �t AO. Uses the �rst-�t policy, and free memory is maintained in addressorder.� First �t AO 8K. Uses the �rst-�t policy, free memory is maintained in addressorder, and memory is requested from the operating system in 8K increments.� First �t AO deferred AO. Uses the �rst-�t policy, free memory is maintainedin address order, uses deferred coalescing, and the quick lists are maintainedin address order.� First �t AO deferred FIFO. Uses the �rst-�t policy, free memory is maintainedin address order, uses deferred coalescing, and the quick lists are maintainedin FIFO order.� First �t AO deferred LIFO. Uses the �rst-�t policy, free memory is maintainedin address order, uses deferred coalescing, and the quick lists are maintainedin LIFO order.� First �t AO no footer. Uses the �rst-�t policy, free memory is maintained inaddress order, and there is no footer on allocated blocks.� First �t FIFO. Uses the �rst-�t policy, and memory is maintained in FIFOorder.� First �t FIFO no footer. Uses the �rst-�t policy, memory is maintained inFIFO order, and there is no footer on allocated blocks.� First �t LIFO. Uses the �rst-�t policy, and memory is maintained in LIFOorder.� First �t LIFO deferred LIFO. Uses the �rst-�t policy, free memory is main-tained in LIFO order, uses deferred coalescing, and the quick lists are main-tained in LIFO order. 53



� First �t LIFO no footer. Uses the �rst-�t policy, memory is maintained inLIFO order, and there is no footer on allocated blocks.� First �t LIFO split-14. Uses the �rst-�t policy, free memory is maintained inLIFO order, and blocks are only split if the remainder is at least 14% of therequest size.� First �t LIFO split-7. Uses the �rst-�t policy, free memory is maintained inLIFO order, and blocks are only split if the remainder is at least 7% of therequest size.� Half �t. This is a best-�t policy with the addition that blocks that are exactlytwice as large as the request size are preferentially selected.� Multi-�t Max. This is a best-�t policy with the addition that the largest blockthat is an exact multiple of the request size is preferentially selected.� Multi-�t Min. This is a best-�t policy with the addition that the smallestblock that is an exact multiple, and at least twice as big as, the request sizeis preferentially selected.� Next �t AO. Uses the next-�t policy, and free memory is maintained in addressorder.� Next �t AO 8K. Uses the next-�t policy, free memory is maintained in addressorder, and memory is requested from the operating system in 8K increments.� Next �t AO deferred AO. Uses the next-�t policy, free memory is maintainedin address order, uses deferred coalescing, and the quick lists are maintainedin address order.� Next �t AO deferred FIFO. Uses the next-�t policy, free memory is maintainedin address order, uses deferred coalescing, and the quick lists are maintained54



in FIFO order.� Next �t AO deferred LIFO. Uses the next-�t policy, free memory is maintainedin address order, uses deferred coalescing, and the quick lists are maintainedin LIFO order.� Next �t AO no footer. Uses the next-�t policy, free memory is maintained inaddress order, and there is no footer on allocated blocks.� Next �t FIFO. Uses the next-�t policy, and free memory is maintained in FIFOorder.� Next �t FIFO no footer. Uses the next-�t policy, memory is maintained inFIFO order, and there is no footer on allocated blocks.� Next �t LIFO. Uses the next-�t policy, and free memory is maintained in LIFOorder.� Next �t LIFO deferred LIFO. Uses the next-�t policy, free memory is main-tained in LIFO order, uses deferred coalescing, and the quick lists are main-tained in LIFO order.� Next �t LIFO no footer. Uses the next-�t policy, memory is maintained inLIFO order, and there is no footer on allocated blocks.� Next �t LIFO split-14. Uses the next-�t policy, free memory is maintained inLIFO order, and blocks are only split if the remainder is at least 14% of therequest size.� Next �t LIFO split-7. Uses the next-�t policy, free memory is maintained inLIFO order, and blocks are only split if the remainder is at least 7% of therequest size. 55



� Next �t LIFO WPH. Uses the next-�t policy, free memory is maintained inLIFO order, and uses the wilderness preservation heurstic.2.5.3 Buddy SystemsWe have implemented three buddy system allocators. All have a one word headerand no footer overhead. The minimum object size for all three allocators is 16 bytes.� Binary Buddy: a classic binary buddy system. Memory is allocated in sizeclasses that are powers of two, (i.e., 4, 8, 16, 32, . . . words). Memory is re-quested from the operating system in 4K increments. This memory alloca-tor was originally implemented for the COSMOS circuit simulator [BBB+88,Bea97].� Double Buddy 5K: a double buddy system, using a pair of buddy systems tomanage memory for two di�erent (staggered) sets of power-of-two size classes.One buddy system manages memory for size classes that are powers of two,(i.e., 4, 8, 16, 32, . . . words) the other for three times powers of two (i.e., 6, 12,24, 48, . . . words). In this implementation, memory reclaimed in one buddysystem is not available for use in the other, sometimes limiting the e�ectivenessof coalescing. Memory is requested from the operating system in 4K and 6Kincrements (averaging to 5K increments).� Double Buddy 10K: the same allocator as double buddy 5K, except that mem-ory is requested from the operating system in 8K and 12K increments (aver-aging to 10K increments).2.5.4 The Selected AllocatorsThe following ten allocation policies are a representative sampling of the majorallocation policies we studied for this dissertation:56



� Binary buddy� Double buddy 5K� Best �t LIFO no footer (nf)� First �t AO no footer (nf)� First �t LIFO no footer (nf)� Half �t� Lea 2.6.1� Next �t LIFO no footer� Simple segregated storage 2N� Simple segregated storage 2N & 3 � 2NWe will present numbers for this subset of our allocation policies in the mainbody of this dissertation, in order to keep the discussion manageable. We presentthe full results in Appendices A and B. However, when small policy changes do makea large di�erence, and these di�erences are not reected in our selected allocators,we will point them out in the body of this dissertation.2.6 The Test ProgramsFor our test programs, we used eight varied C and C++ programs that run underUNIX (SunOS 5.5). These programs allocate between about 1.3 and 104 megabytesof memory during a run, and have a maximum of between 69 KB and 2.3 MB of livedata at some point during execution. On average they allocate 27 MB total data,and on average have a maximum of about 966K live data at some point during theirrun. Three of our eight programs were used by Zorn and Grunwald, et al., in earlier57



studies. We use these three to attempt to provide some points of comparison whilealso using new and di�erent memory-intensive programs.2.6.1 Test Program Selection CriteriaWe chose allocation-intensive programs because they are the programs for whichallocator di�erences matter most. Similarly, we chose programs that have a largeamount of live data because those are the ones for which space costs matter most.Another practical consideration is that some of our measurements of memory usagemay introduce errors of up to 4 or 5 KB in bad cases; we wanted to ensure that theerrors were generally small relative to the actual memory usage and fragmentation.More importantly, some of our allocators are likely to incur extra overhead forsmall heap sizes, because they allocate in more than one area; they may have severalpartly-used pages, and unused portions of those pages may have a pronounced e�ectwhen heap sizes are very small. We think that such relatively �xed costs are lesssigni�cant than the allocators' scalability to medium- and large-sized heaps.15We obtained a wide variety of traces, including several that are widely usedas well as CPU- and memory-intensive. In selecting the programs from manythat we had obtained, we ruled out several for various reasons. We attemptedto avoid over-representation of particular program types, i.e., too many programsthat did the same thing. In particular, we avoided having several scripting languageinterpreters|even though such programs are generally portable, widely available,and widely used, they typically are not performance-critical; their memory use typ-ically does not have a very large impact on overall system resource usage.We ruled out some programs that appeared to \leak" memory, i.e., failed to15Two programs used by Zorn and Grunwald [ZG92] and by Detlefs, Dosser, and Zorn [DDZ93],which we did not use, have heaps that are quite small: Cfrac only uses 21.4 KB and Gawk onlyuses 41 KB, which are only a few pages on most modern machines. Measurements of CPU costs forthese programs are interesting, because they are allocation-intensive, but measurements of memoryusage are less useful, and have the potential to obscure scalability issues with boundary e�ects.58



discard objects at the proper point, and led to a monotonic accumulation of garbagein the heap. One of the programs we chose, P2C, is known to leak under somecircumstances, and we left it in after determining that it could not be leaking muchduring the run we traced. Its basic memory usage statistics are not out of line withour other programs: it deallocates over 90% of all allocated bytes, and its averageobject lifetime is lower than most. Our justi�cation for including this program is thatmany programs do in fact leak, so having one in our sample is not unreasonable. Itis a fact of life that deallocation decisions are often extremely di�cult for complexprograms, and programmers often knowingly choose to let programs leak on theassumption that over the course of a run the extra memory usage is acceptable.16They choose to have poorer resource usage because attempts at plugging the leaksoften result in worse bugs|dereferencing dangling pointers and corrupting datastructures.We should note here that in choosing our set of traces, among the traceswe excluded were three that did very little freeing, i.e., all or nearly all allocatedobjects live until the end of execution. (Two of these were the PTC and YACRprograms from Zorn et al.'s experiments.)17 We believe that such traces are lessinteresting because any good allocator will do well for them. This biases our sampleslightly toward potentially more problematic traces, which have more potential forfragmentation. Our suite does include one almost non-freeing program, LRUsim,which is the only non-freeing program we had that we were sure did not leak.16One very memory-intensive program which we considered, we did not use because it had seriousleaks. These leaks survived three months of highly-skilled programmers' attempts at �xing them.Rather than restructuring their entire program and losing much of its modularity solely to allowobjects to be correctly allocated, they eventually chose to use the Boehm-Weiser conservativegarbage collector.17Other programs were excluded because they had too little live data (e.g., LaTeX), or becausewe could not easily �gure out whether their memory use was hand-optimized, or because we judgedthem too similar to other programs we chose.
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Kbytes run max num max avgprogram alloc'd time objects objects Kbytes lifetimeEspresso 104,388 146 4,390 1,672,889 263 15,478GCC 17,972 167 86,872 721,353 2,320 926,794Ghostscript 48,993 53 15,376 566,542 1,110 786,699Grobner 3,986 8 11,366 163,310 145 173,170Hyper 7,378 131 297 108,720 2,049 10,531LRUsim 1,397 29,940 39,039 39,103 1,380 701,598P2C 4,641 30 12,652 194,997 393 187,015Perl 33,041 114 1,971 1,600,560 69 39,811Average 27,725 3,823 21,495 633,434 966 355,137Table 2.1: Basic statistics for the eight test programs2.6.2 The Selected Test ProgramsWe used eight programs because this was su�cient to obtain statistical signi�cancefor our major conclusions. (Naturally it would be better to have even more, butfor practicality we limited the scope of these experiments to eight programs and acomparable number of basic allocation policies to keep the number of combinationsreasonable.) Whether the programs we chose are \representative" is a di�cultsubjective judgment: we believe they are reasonably representative of applicationsin conventional, widely-used languages (C and C++), however we encourage othersto try our experiments with new programs to see if our results continue to hold true.Table 2.1 gives some basic statistics for each of our eight test programs:� the Kbytes alloc'd column gives the total allocation in Kilobytes over a wholerun;� the run time column gives the running time in seconds on a Sun SPARC ELC,an 18.2 SPECint92 processor, when linked with the standard SunOS allocator(a Cartesian-tree based \better-�t" (indexed-�ts) allocator);� the max objects column gives the maximum number of live objects at any time60



during the run of the program;� the num objects column gives the total number of objects allocated over thelife of the program;� the max Kbytes column gives the maximum number of kilobytes of memoryused by live objects at any time during the run of the program18 (note thatif the average size of objects varies over time, the maximum live objects andmaximum live bytes might not occur at the same point in a trace); and� the avg lifetime column gives the average object lifetime in bytes, which is thenumber of bytes allocated between the birth and death of an object, weightedby the size of the object (that is, it is really the average lifetime of an allocatedbyte of memory).Descriptions of the programs follow, to allow others to assess how represen-tative our sample is for their own workloads.� Espresso is a widely used optimizer for programmable logic arrays. The �lelargest.espresso, provided by Ben Zorn, was used as the input.� GCC is the main process (cc1) of the GNU C compiler (version 2.5.1). Weconstructed a custom tracer that records obstack19 allocations to obtain thistrace, and built a postprocessor to translate the use of obstack memory intoequivalent malloc() and free() calls.20 The input data for the compilationwas the the largest source �le of the compiler itself (combine.c).2118This is the maximum of the number of kilobytes in use by the program for actual object data,not the number of bytes used by any particular allocator to service those requests.19Obstacks are an extension to the C language, used to optimize the allocation and deallocationobjects in stack-like ways. A similar scheme is described in [Han90].20It is our belief that we should study the behavior of the program without hand-optimizedmemory allocation, because a well-designed allocator should usually be able to do as well as or betterthan most programmers' hand optimizations. Some support for this idea comes from [Zor93], whichshowed that hand optimizations usually do little good compared to choosing the right allocator.61



� Ghost is Ghostscript, a widely-used portable interpreter for the Postscript(page rendering) language, written by Peter Deutsch and modi�ed by Zorn,et al., to remove hand-optimized memory allocation [Zor93]. The input wasmanual.ps, the largest of the standard inputs available from Zorn's ftp site.This document is the 127-page manual for the Self system, consisting of a mixof text and �gures.22� Grobner is (to the best of our very limited understanding) a program thatrewrites a mathematical function as a linear combination of a �xed set ofGrobner basis functions.23� Hyper is a hypercube network communication simulator written by Don Lind-say. It builds a representation of a hypercube network, then simulates randommessaging, accumulating statistics about messaging performance. The hyper-cube itself is represented as a large array, which essentially lives for the entirerun; each message is represented by a small heap-allocated object, which livesvery briey|only long enough for the message to get where it is going, whichis a tiny fraction of the length of the run.� LRUsim is an e�cient locality analyzer written by Douglas Van Wieren. Itconsumes a memory reference trace and generates a grey-scale Postscript plotof the evolving locality characteristics of the traced program. Memory usageis dominated by a large AVL tree24 which grows monotonically. A new entry21Because of the way the GNU C compiler is distributed, this is a very common workload|people frequently down-load a new version of the compiler, compile it with an old version, thenrecompile it with itself twice as a cross-check to ensure that the generated code does not changebetween self-compiles (i.e., it reaches a �xed point).22Note that this is not the same input set as used by Zorn, et al., in their experiments: they usedan unspeci�ed combination of several programs. We chose to use a single, well-speci�ed input �leto promote replication of our experiments.23Abstractly, this is roughly similar to a Fourier analysis, decomposing a function into a com-bination of other, simpler functions. Unlike a Fourier analysis, however, the process is basicallyone of rewriting symbolic expressions many times, something like rewrite-based theorem proving,rather than an intense numerical computation over a �xed set of array elements.62



is added whenever the �rst reference to a block of memory occurs in the trace.Input was a reference trace of the P2C program.25� P2C is a Pascal-to-C translator, written by Dave Gillespie at Caltech. Thetest input was mf.p (part of the Tex release). Note: although this translator isfrom Zorn's program suite, this is not the same Pascal-to-C translator (PTC)Zorn et al. used in their studies. This one allocates and deallocates morememory, at least for this input.� Perl is the Perl scripting language interpreter (version 4.0) interpreting a Perlprogram that manipulates a �le of strings. The input, adj.perl, formattedthe contents of a dictionary into �lled paragraphs. Hand-optimized memoryallocation was removed by Zorn [Zor93].2.7 Trace-Driven Memory SimulationTrace-driven memory simulation [UM97] is the process of capturing a trace of theevents of interest (instructions, loads, and stores, or allocation and deallocationrequests) of actual programs running on actual hardware, and then using thesetraces to simulate and study di�erent computer designs. The idea of trace-drivenmemory simulation is not new. In his survey of cache memories, A. J. Smith [Smi82]24The AVL tree is used to implement a least-recently-used ordering queue. The AVL tree im-plementation was enhanced to maintain a count at each node of the descendents to the left of thenode, used to compute the LRU queue position of a node in logarithmic time, as well as supportinglogarithmic time deletion and insertion to move a node to the beginning of the queue when theblock it represents is referenced.25The memory usage of LRUsim is not sensitive to the input, except in that each new blockof memory touched by the traced program increases the size of the AVL tree by one node. Theresulting memory usage is always non-decreasing, and no dynamically allocated objects are everfreed except at the end of a run. We therefore consider it reasonable to use one of our othertest programs to generate a reference trace, without fearing that this would introduce correlatedbehavior. (The resulting fragmentation at peak memory usage is insensitive to the input trace,despite the fact that total memory usage depends on the number of memory blocks referenced inthe trace.) 63



gives examples of trace-driven memory system studies that date back to 1966. Trace-driven memory simulation typically consists of three stages:1. Trace collection is the process of recording the exact sequence of memory ref-erences (instruction and data) of a program. A modern computer can generateseveral hundred million trace elements per second.2. Trace reduction is the process of reducing these trace elements to a moremanageable number, and/or selecting the events of interest in the simulation(e.g., the data loads and stores for the simulation of a data cache).3. Trace processing is the process of using the reduced trace to simulate the partof the computer system under study.We used trace-driven memory simulation in this research for both our frag-mentation studies and our locality studies (Chapter 3). For our fragmentation stud-ies, we collected and processed traces of the malloc, realloc, and free calls of ourtest programs by using a specially modi�ed memory allocator that recorded theseevents to disk as the test programs ran. For our locality studies, we collected andprocessed the data loads and stores of our test programs by using the Shade tracegathering tool [CK93]. These traces were processed on-line by piping directly fromShade to the processing tools (see Section 3.5).2.8 Experimental DesignA goal of this research is to measure the true fragmentation costs of particularmemory allocation policies independently of their implementations. In this sectionwe will describe how we achieved this goal.The �rst step was to write substitutes for malloc, realloc, and free thatperform the basic malloc functions and, as a side-e�ect, create a trace of the memory64



allocation activity of the program. This trace is made up of a series of records, eachcontaining:� the type of operation performed (malloc, realloc, free),� the memory location a�ected (for malloc, this was the memory location re-turned by malloc; for realloc and free, this was the memory location passedby the application), and� the number of bytes requested (for free, this was 0).The second step was to build a trace processor that reads a trace and pro-duces basic statistics about the trace:� the number of objects allocated,� the number of bytes allocated,� the average object size,� the maximum number of bytes live at any one time for the entire trace, and� the maximum number of objects live at any one time for the entire trace.The third step was to build a trace processor that reads a trace and callsmalloc, realloc, and free of an implementation of the allocation policy understudy. We modi�ed each of these allocators to keep track of the total number ofbytes requested from the operating system. With this information, and the maxi-mum number of live bytes for the trace, we can determine the fragmentation for aparticular program using a particular implementation of a memory allocation policy.However, as we will discuss in the next few subsections, this is not a goodmeasure of the actual fragmentation caused by the policy, but instead reects manyartifacts of the implementation. We will present the results for this most simple65



approach, and then we will remove each of the artifacts, showing how each a�ectedour experimental results, until we �nally arrive at numbers that measure just policyconsiderations. We will present numbers averaged across all eight of our test pro-grams. The interested reader can see Appendix A for the results of the individualtest programs.Note that we express fragmentation in terms of percentages over and abovethe amount of live data, i.e., increase in memory usage, not the percentage of actualmemory usage that is due to fragmentation. (The baseline is therefore what mightresult from a perfect allocator that could somehow achieve zero fragmentation.)2.8.1 Our Measure of TimeThroughout this chapter when we talk about time (unless otherwise speci�ed), wemeasure time normalized to the rate of allocation. Thus, if we say that somethingtakes one megabyte to happen, we mean that one megabyte of memory has beenallocated between the beginning and the end of the event. We believe that this is amore interesting measure of time than standard wall-clock time because it normalizestime to something in which we are interested: namely the rate of allocation. In otherwords, when we are talking about memory fragmentation, a program that allocatesa lot of memory in short bursts with long time periods (in wall-clock) of no memoryallocation in between is just as interesting than a program that allocates the sameamount of memory slowly and steadily.
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2.8.2 Our Measure of Fragmentation
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Figure 2.1: Measurements of fragmentation for GCC using simple segregated 2N(top line: memory used by allocator; bottom line: memory requested by allocator)There are a number of legitimate way to measure fragmentation. We use Figure2.1 to illustrate four of these, and to explain the method we chose to use. Figure2.1 is a trace of the memory usage of the GCC compiler, compiling the combine.cprogram, using the simple segregated 2N allocator. The lower line is the amountof memory requested by GCC (in kilobytes) which is currently live. The upper lineis the amount of memory actually used by the allocator to satisfy GCC's memoryrequests.The four ways to measure fragmentation for a program which we consideredare:1. The amount of memory used by the allocator relative to the amount of memoryrequested by the program, averaged across all points in time: In Figure 2.1,67



this is equivalent to averaging the fragmentation for each corresponding pointon the upper and lower lines for the entire run of the program. For theGCC program using the simple seg 2N allocator, this measure yields 258%fragmentation. The problem with this measure of fragmentation is that ittends to hide the spikes in memory usage, and it is at these spikes wherefragmentation is most likely to be a problem.2. The amount of memory used by the allocator relative to the maximum amountof memory requested by the program at the point of maximum live memory:In Figure 2.1 this corresponds to the amount of memory at point 1 relative tothe amount of memory at point 2. For the GCC program using the simple seg2N allocator, this measure yields 39.8% fragmentation. The problem with thismeasure of fragmentation is that the point of maximum live memory is usuallynot the most important point in the run of a program. The most importantpoint is likely to be a point where the allocator must request more memoryfrom the operating system.3. The maximum amount of memory used by the allocator relative to the amountof memory requested by the program at the point of maximal memory usage:In Figure 2.1 this corresponds to the amount of memory at point 3 relative tothe amount of memory at point 4. For the GCC program using the simple seg2N allocator, this measure yields 462% fragmentation. The problem with thismeasure of fragmentation is that it will tend to report high fragmentation forprograms that use only slightly more memory than they request if the extramemory is used at a point where only a minimal amount of memory is live.4. The maximum amount of memory used by the allocator relative to the maxi-mum amount of live memory: These two points do not necessarily occur at thesame point in the run of the program. In Figure 2.1 this corresponds to the68



amount of memory at point 3 relative to the amount of memory at point 2.For the GCC program using the simple seg 2N allocator, this measure yields100% fragmentation. The problem with this measure of fragmentation is thatit can yield a number that is too low if the point of maximal memory usage isa point with a small amount of live memory and is also the point where theamount of memory used becomes problematic.We chose the last of these de�nitions: the maximum amount of memory usedby the allocator relative to the maximum amount of memory requested by the pro-gram (points 3 and 2). This measure of fragmentation indicates how much memoryis required to run a given program. However, the other measures of fragmentationare also interesting, and deserve future study. Unfortunately, there is no right pointat which to measure fragmentation. If fragmentation appears to be a problem for aprogram, it is important to identify the conditions under which it is a problem andmeasure the fragmentation for those conditions. For many programs, although frag-mentation will not be a problem at all, allocation policy is still important becauseallocator placement choices can have a dramatic e�ect on locality (as we show inChapter 3).2.8.3 Experimental ErrorIn this research, we worked very hard to remove as much measurement error aspossible. In this section, we will describe the error which remains.The most important experimental error comes from the way our allocatorsrequest memory from the operating system (using the sbrkUNIX system call). Mostof our allocators request their memory in 4K byte blocks. Thus, any measurementof the heap size of a program using a particular allocator can be an over-estimateby as much as 4K bytes. This error is even larger for four of our allocators (doublebuddy 5K, double buddy 10K, simple segregated 2N , and simple segregated 2N &69



3 � 2N ). However, for our �nal numbers, after factoring out all overheads (Section2.8.7), this error is just 256 bytes.The double-buddy allocators (double buddy 5K and double buddy 10K) eachrequest memory from the operating system in two di�erent sizes. The double-buddy5K allocator requests memory from the operating system in 4K and 6K sizes, yieldingan average size of 5K. The double-buddy 10K allocator requests memory from theoperating system in 8K and 12K sizes, yielding an average size of 10K. Thus, theseallocators can yield an over-estimate of the memory used of up to 5K and 10Krespectively (320 bytes and 640 bytes for our �nal numbers).The simple segregated storage allocators (simple seg 2N and simple seg 2N& 3 � 2N ) both perform no coalescing. Each size class can contribute to an over-estimate by as much as 4K bytes. Thus, for the simple seg 2N , and the simpleseg 2N & 3 � 2N allocators, the measure of the amount of memory used can be anover-estimate by as much as 4K times the number of size classes, which is roughly4K � ln(largest size� smallest size), and 4K � 2 � ln(largest size� smallest size)(one sixteenth of this value for our �nal numbers).2.8.4 Our Use of AveragesIn this dissertation, we follow [FW86, PH96] when we present averages. If thenumbers being averaged are simple numbers, such as the fragmentation of a programgiven a particular allocator, we use the arithmetic mean. If the numbers beingaveraged are normalized to some consistent reference, such as the fragmentationof a given allocator normalized to the fragmentation of best �t, then we use thegeometric mean. Finally, if the numbers being averaged are rates, such as a cachemiss rate, then we use the harmonic mean. In all cases, the averages are unweighted.
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Allocator name % Waste Allocator name % Waste�rst �t AO 8K 34.65% multi-�t min 34.37%best �t AO 8K 34.47% next �t AO 38.32%best �t FIFO 33.41% next �t AO no footer 26.86%best �t FIFO no footer 22.44% next �t AO def AO 38.82%best �t AO 33.41% next �t FIFO 42.60%best �t AO no footer 22.49% next �t FIFO no footer 31.52%Lea 2.6.1 23.58% Lea 2.5.1 41.83%best �t LIFO 33.54% Lea 2.5.1 no footer 30.94%best �t LIFO no footer 22.44% next �t AO def LIFO 40.34%�rst �t AO 33.17% next �t AO def FIFO 43.41%�rst �t AO no footer 22.14% next �t LIFO def LIFO 56.28%best �t LIFO split-7 33.66% �rst �t LIFO def LIFO 57.40%best �t LIFO split-14 34.02% double buddy 5K 46.22%�rst �t AO def AO 32.46% double buddy 10K 46.18%�rst �t AO def LIFO 33.58% next �t LIFO WPH 66.37%�rst �t FIFO 33.86% �rst �t LIFO 66.25%�rst �t FIFO no footer 22.83% �rst �t LIFO no footer 56.40%best �t AO def AO 32.46% �rst �t LIFO split-7 67.07%�rst �t AO def FIFO 34.61% �rst �t LIFO split-14 67.35%best �t LIFO def AO 32.46% next �t LIFO 71.78%best �t LIFO def LIFO 33.90% next �t LIFO no footer 58.86%best �t LIFO def FIFO 34.61% next �t LIFO split-7 70.07%best �t AO def LIFO 33.90% next �t LIFO split-14 70.53%best �t AO def FIFO 34.61% binary buddy 74.11%multi-�t max 35.32% simple seg 2N & 3 � 2N 72.54%next �t AO 8K 39.28% simple seg 2N 84.81%half �t 33.88%Average: 42.50%Table 2.2: Percentage waste for all allocators averaged across all programs
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2.8.5 Total Memory UsageIn Table 2.2 we present the amount of memory wasted by each of our allocators, asa percentage of the amount of live data at peak memory usage (the allocators aresorted from lowest fragmentation to highest fragmentation for our �nal experiments(Table 2.4)). The column labeled \Waste" shows the amount of fragmentation forour implementation of each allocation policy. Here, we can see that the best �t(LIFO, FIFO, and AO) no footer, �rst �t (FIFO and AO) no footer, next �t AO nofooter, and Lea's 2.6.1 allocators all perform relatively well (less than 30% averagefragmentation), particularly compared to the average of 42.50% waste.However, what we want to measure is the fragmentation of the policy, andnot the implementation. In particular, some of these implementations use footerson the objects, and some do not. Additionally, some of these policies can be easilyimplemented without any headers or footers at all. So, the next step is to accountfor header and footer overhead to avoid introducing implementation artifacts intoour measurements.2.8.6 Accounting for Headers and FootersTo account for the cost of headers and footers in the implementation of our allocatorpolicies, we modi�ed each memory allocator to tell our simulator how many bytes ithad dedicated to header and footer information. We were then able to use the factthat the minimum object size for all of our allocators was 16 bytes (no allocator usedmore than 16 bytes for its internal data structures) to account for this overhead inthe following way: for each malloc or realloc request that our simulator processed, itasked the allocator for the number of bytes in the trace minus the number of bytesin the header and footer for the allocator being simulated. We are able to do thisbecause we are only simulating the program (from an actual trace), and the memoryallocated is unused. 72



Allocator name % Frag Allocator name % Frag�rst �t AO 8K 16.91% multi-�t min 17.62%best �t AO 8K 16.24% next �t AO 18.55%best �t FIFO 14.36% next �t AO no footer 18.55%best �t FIFO no footer 14.36% next �t AO def AO 21.50%best �t AO 14.36% next �t FIFO 24.97%best �t AO no footer 14.36% next �t FIFO no footer 24.97%Lea 2.6.1 14.45% Lea 2.5.1 25.48%best �t LIFO 14.45% Lea 2.5.1 no footer 25.48%best �t LIFO no footer 14.45% next �t AO def LIFO 24.64%�rst �t AO 14.41% next �t AO def FIFO 24.28%�rst �t AO no footer 14.43% next �t LIFO def LIFO 41.07%best �t LIFO split-7 14.71% �rst �t LIFO def LIFO 43.58%best �t LIFO split-14 15.99% double buddy 5K 42.15%�rst �t AO def AO 15.23% double buddy 10K 41.49%�rst �t AO def LIFO 13.72% next �t LIFO WPH 47.31%�rst �t FIFO 14.70% �rst �t LIFO 49.49%�rst �t FIFO no footer 17.52% �rst �t LIFO no footer 47.40%best �t AO def AO 14.51% �rst �t LIFO split-7 48.57%�rst �t AO def FIFO 15.85% �rst �t LIFO split-14 49.41%best �t LIFO def AO 14.42% next �t LIFO 51.81%best �t LIFO def LIFO 14.39% next �t LIFO no footer 51.81%best �t LIFO def FIFO 15.85% next �t LIFO split-7 51.58%best �t AO def LIFO 14.58% next �t LIFO split-14 52.54%best-�t AO def FIFO 17.08% binary buddy 62.35%multi-�t max 16.21% simple seg 2N & 3 � 2N 72.54%next �t AO 8K 20.44% simple seg 2N 84.81%half �t 14.39%Average: 27.85%Table 2.3: Percentage fragmentation (accounting for headers and footers) for allallocators averaged across all programs
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In Table 2.3, we present the fragmentation for each of our allocators withheader and footer costs removed. Note that now the best allocators all have aroundone half of the fragmentation of the average allocator, and that the best allocatorsall have around 15% fragmentation.These numbers seem pretty good. Many people would be happy if theirmemory allocator only wasted an average of 15% of the heap memory due to frag-mentation. However, for some applications, even 15% is too much memory to waste.So, this leads to the question: \can we develop a policy that can do even better?" Aswe will see after we account for the last overhead, for the measure of fragmentationthat we chose the answer is no.2.8.7 Accounting for Minimum Alignment and Object SizeAll modern hardware requires that objects follow some form of alignment con-straints. Some hardware, such as the Sparc architecture, requires that double oat-ing point values be aligned on 8-byte boundaries (e.g., memory location 0, 8, 16,etc., but not memory locations 4, 12, 20, etc.). Since our allocation policies wereimplemented and tested on Sparc machines, they all obey this 8-byte alignmentconstraint. In fact, no allocator can avoid this cost on this machine.An additional overhead of our implementations is that the minimum objectsize is 16 bytes. So, even if the program asked for a mere 1 byte of memory, in allcases it got 16 bytes. This overhead is strictly an implementation cost, and not apolicy cost.To account for these overheads, we multiplied every malloc/realloc request by16, and then divided the �nal amount of heap memory used by 16, to account for thefactor of 16 in the request sizes. Because all allocation requests are now multiplesof 16, and the smallest request is 16 bytes, the allocator need do no rounding ofmemory requests. This leads us to the results in Table 2.4.74



2.9 Actual Fragmentation ResultsIn Table 2.4, we see that the two best allocation policies, �rst �t addressed-orderedfree list with 8K allocation, and best �t addressed-ordered free list with 8K allo-cation, both su�er from less than 1% actual fragmentation. This is more than 17times better than the average allocator, and more than 88 times better than theworst allocator. In addition, 25 of our allocators had less than 5% actual fragmen-tation. The worst of our allocators, those having over 50% fragmentation, triedto trade increased internal fragmentation for reduced external fragmentation, anddid not coalesce all possible blocks, giving further evidence that this is not a goodpolicy decision. If these results hold up to further study with additional programswe arrive at a startling conclusion: fragmentation is a solved problem, and it hasbeen solved for over 30 years.In terms of rank order of allocator policies, these results contrast with tra-ditional simulation results, where best �t usually performs well but is sometimesoutperformed by next �t (e.g., in Knuth's small but inuential study [Knu73]). Interms of practical application, we believe this is one of our most signi�cant �ndings.Since segregated �t (as exempli�ed by Lea's 2.6.1 allocator) implements an approx-imation of best �t fairly e�ciently, it shows that a reasonable approximation of abest-�t policy is both desirable and achievable.2.9.1 Fragmentation for Selected Allocators for Each TraceTable 2.5 shows the percentage actual fragmentation for each of the selected allo-cators, for each trace. The complete table of percentage actual fragmentation forall allocators, for each trace, can be seen in Appendix A. It is particularly interest-ing to note how high the standard deviation is for �rst �t LIFO and next �t LIFO.These allocators actually perform quite well on two of our test programs: Hyper andLRUsim. However, they perform disastrously on one program: Ghostscript. At the75



Allocator name % Frag Allocator name % Frag�rst �t AO 8K 0.77% multi-�t min 6.38%best �t AO 8K 0.83% next �t AO 8.04%best �t FIFO 2.23% next �t AO no footer 8.04%best �t FIFO no footer 2.23% next �t AO def AO 16.60%best �t AO 2.27% next �t FIFO 18.37%best �t AO no footer 2.27% next �t FIFO no footer 18.37%Lea 2.6.1 2.27% Lea 2.5.1 19.38%best �t LIFO 2.30% Lea 2.5.1 no footer 19.38%best �t LIFO no footer 2.30% next �t AO def LIFO 19.52%�rst �t AO 2.30% next �t AO def FIFO 21.03%�rst �t AO no footer 2.30% next �t LIFO def LIFO 29.82%best �t LIFO split-7 2.41% �rst �t LIFO def LIFO 32.54%best �t LIFO split-14 3.03% double buddy 5K 34.25%�rst �t AO def AO 3.10% double buddy 10K 34.27%�rst �t AO def LIFO 3.10% next �t LIFO WPH 34.64%�rst �t FIFO 3.14% �rst �t LIFO 36.24%�rst �t FIFO no footer 3.14% �rst �t LIFO no footer 36.24%best �t AO def AO 3.79% �rst �t LIFO split-7 36.59%�rst �t AO def FIFO 3.91% �rst �t LIFO split-14 38.11%best �t LIFO def AO 3.98% next �t LIFO 38.45%best �t LIFO def LIFO 4.53% next �t LIFO no footer 38.45%best �t LIFO def FIFO 4.70% next �t LIFO split-7 39.05%best �t AO def LIFO 4.72% next �t LIFO split-14 39.38%best �t AO def FIFO 4.94% binary buddy 53.35%multi-�t max 5.40% simple seg 2N & 3 � 2N 61.50%next �t AO 8K 5.55% simple seg 2N 73.61%half �t 6.01%Average: 16.96%Table 2.4: Percentage fragmentation (accounting for headers, footers, minimumobject size, and minimum alignment) for all allocators averaged across all programs
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same time, the best �t LIFO no footer, �rst �t address ordered no footer, and Lea's2.6.1 allocators all perform quite well on all of the test programs. Perl is the onlyprogram for which they have any real fragmentation (10%), and that program onlyhas 70K bytes maximum live data. Because all of the allocators allocate memoryin 4K chunks, we have a potential error of 4K in our measurements. Thus, most ofthe 10% fragmentation could be measurement error.The next important question is: \are the di�erences in Table 2.5 statisticallysigni�cant?" Table 2.6 shows the t-test results for the values in Table 2.5. To �ndthe probability that one allocator really performs better than another, �nd the rowfor one of the allocators and the column for the other. The value at the intersectionpoint is the probability that the allocator with the lower fragmentation really haslower fragmentation than the other allocator.26From Table 2.6, we can conclude with 90% con�dence that the best �t LIFO,�rst �t address ordered, and Lea's 2.6.1 allocators all perform better than binarybuddy, double buddy 5K, �rst �t LIFO, next �t LIFO, half �t, simple segregatedstorage 2N , and simple segregated storage 2N & 3 � 2N . We can not, however,conclude at the 90% con�dence level that there is any di�erence between the per-formance of the best �t LIFO, �rst �t address ordered, and Lea's 2.6.1 allocators.2.9.2 Policy VariationsWe will now discuss how the di�erent policy variations a�ected the actual fragmen-tation results as reported in Table 2.4. One interesting result is that no version ofbest �t had more than 5% actual fragmentation. This is also true for all versions of�rst �t that used an address-ordered free list, and the two versions of �rst �t thatused a FIFO free list. This strongly suggests that the basic best-�t algorithm andthe �rst-�t algorithm with an address-ordered free list are very robust algorithms.26This interpretation of the t-test comes from [Fre84]. The values in Table 2.6 were computedusing Microsoft Excel version 7.0's ttest function with paired samples and a single tail distribution.78
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In addition, it suggests that for these two basic policies the other variations in policy(for best �t, order of free list; for �rst �t address ordered, immediate or deferredcoalescing) do not matter, and should only be considered if they make the imple-mentation more e�cient. Because we only have one variation on �rst �t FIFO (thesecond �rst �t FIFO allocator only removed footer costs, which have been removedin the actual fragmentation tests anyway) we cannot make any claims about therobustness of this policy. However, its performance indicates that this policy shouldbe studied in more detail.A second interesting result is that only three versions of next �t had less than10% actual fragmentation, and all of those versions used an address ordered free list.This, combined with the observations for �rst �t, strongly suggests that an address-ordered free list is a very good policy for reducing fragmentation.27 In addition,these results show that next �t is a poor policy, and should be avoided. Finally, wecan see from Table 2.4 that buddy systems and segregated storage systems su�erfrom considerable fragmentation.A third interesting result is that for good allocation policies, deferred coa-lescing appears not to increase fragmentation much. For best �t with a LIFO freelist, the highest average fragmentation when using deferred coalescing was 4.70%(for a FIFO ordered quick list). While this is more than twice the fragmentationof the immediate coalescing version of this allocator, it is still very acceptable formost applications. For �rst �t with an address-ordered free list, the highest averagefragmentation when using deferred coalescing, which occurred with a FIFO orderedquick-list, was 3.91%. This compares to 2.3% fragmentation when using immediatecoalescing. Finally, for next-�t with an address-ordered free list, the highest frag-27Recall that an address-ordered free list can be cheap to implement if a bit-map is used toindicate which memory locations are allocated. Just because a good policy appears expensive toimplement, it should not be discarded because of this concern alone. Often further thought canreveal an e�cient implementation of the desirable policy. This is why it is so important to separatepolicy from mechanism. 80



mentation when using deferred coalescing, which also occurred with a FIFO orderedquick-list, was 21.03%. This compares to 8.04% fragmentation with the immediatecoalescing version of this allocator, and is a further indication of the instability ofthe next-�t policy. However, because of the small number of programs studied, noneof these three di�erences is statistically signi�cant at the 85% con�dence level.Because programs tend to allocate many objects of exactly the same size (seeSection 2.12), this is an important result suggesting that coalescing costs need notbe much of a concern, and that deferred coalescing can provide a substantial bene�twith little cost in terms of fragmentation. However, the low statistical signi�cance ofthese di�erences is an indication that more programs must be studied to determinethe true cost of deferred coalescing.A fourth interesting result is that simple segregated storage 2N & 3 � 2N sig-ni�cantly outperforms simple segregated storage 2N , even though simple segregatedstorage 2N & 3�2N has twice as many size classes as simple segregated storage 2N .28Also notice that the binary-buddy allocator su�ers from much more fragmentationthan the double-buddy allocators. Again, the double-buddy allocators have sizeclasses which are twice as precise as the binary-buddy allocators. We believe thatthis is evidence that very coarse size classes generally lose more memory to internalfragmentation than they save in external fragmentation.2.10 A Strategy That WorksUp until this point, we have been talking about the importance of separating policyfrom mechanism. There is yet a third consideration that is important to separate:strategy. In Section 2.9.2, we saw that there are several policies that result in low28Recall that in Section 2.8.3 we said that neither of the simple segregated storage allocatorscoalesce memory, and that the simple segregated storage 2N & 3 � 2N allocator has twice as manysize classes as the simple segregated storage 2N allocator. Thus, the simple segregated storage 2N& 3 � 2N allocator will over-estimate the total amount of memory used by about twice as much asthe simple segregated storage 2N allocator. 81



fragmentation. The question is: \are these policies in some way related?" In otherwords, is there some underlying strategy to allocating memory that will lead topolicies that usually provide low fragmentation? We believe that there is such astrategy, and that when this strategy is understood, it will lead to new policies thatexpose even more e�cient implementations.All of the policies that performed well in our studies share two commontraits: they all immediately coalesce memory, and they all preferentially reallocateobjects that have died recently over those that died further in the past.29 In otherwords, they all give some objects more time to coalesce with their neighbors, yieldinglarger and larger contiguous free blocks of memory. These in turn can be used inmany ways to satisfy future requests for memory that might otherwise result in highfragmentation. In the following paragraphs, we will analyze each memory allocationpolicy that performs well to show how it �ts into this strategy.The best-�t policy tries to preferentially use small free blocks over large freeblocks. This characteristic gives the neighbors of the large free blocks more time todie and be merged into yet larger free blocks, which, in turn, makes them even lesslikely that best �t will allocate something out of these larger free blocks. The cyclecontinues until there are only a few very large areas of contiguous free memory outof which to allocate free blocks. When one of these free blocks is used for memoryallocation, a small piece is split out of it, making it somewhat smaller, which willmake it more likely that that same free block will be used for subsequent memoryrequests, saving the other larger free areas for later needs.Using address-ordered free lists, which worked so well for �rst �t and next�t, can be viewed as a variation on this same theme. Blocks at one end of memory29An important exception is the �rst-�t FIFO free list allocator. This allocator performed re-markably well, and does not preferentially reallocate objects that have died recently over those thatdied further in the past. We do not know if this indicates that there is a di�erent e�ective strategyat work, or if this is evidence that our suggestion of a good strategy is not correct. Clearly, morestudy is needed on this allocator. 82



Program name 90% 99% 99.9% Total allocation timeGCC 1K 2,409K 17,807 18,404KEspresso 1K 8K 57K 106,893KGhostscript 1K 40,091K 48,593K 50,170KGrobner 2K 3,311K 3,939K 4,082KHyper 2K 12K 18K 7,556KP2C 11K 3,823K 4,494K 4,753KPerl 1K 11K 184K 33,834KLRUsim 1K 1K 1K 1,431KAverage 2.5K 6,208K 9,387K 28,390KTable 2.7: Time before given % of free objects have both temporal neighbors freeare used preferentially over blocks at the other end. This gives objects at the end ofmemory from which new blocks are not being allocated more time to die and mergewith their neighbors. Note, however, that this theme is much stronger with �rst �taddress ordered than with next �t address ordered. We believe this is why �rst �taddress ordered performs much better than next �t address ordered.In both best �t and �rst �t address ordered, objects allocated at about thesame time tend to be allocated from contiguous memory. In the case of best �t, thisis because once a block is split, its remainder is smaller, making it a better �t forthe next request. In the case of �rst �t address ordered, this is because blocks tendto be allocated out of memory at one end of the heap.2.11 Objects Allocated at the Same Time Tend to Dieat the Same TimeThe tendency of best �t and �rst �t address ordered to place blocks allocated atabout the same time in contiguous memory may interact favorably with anotherobservation about our test programs: objects allocated at about the same time tendto die at about the same time.Table 2.7 shows the amount of time (in terms of bytes allocated: see Section83



Program name 90% 99% 99.9% Total allocation timeGCC 223K 2,355K 17,805K 18,404KEspresso 1K 62K 9,552K 106,893KGhostscript 14K 44,876K 48,752K 50,170KGrobner 2K 2,464K 3,836K 4,082KHyper 1K 11K 16K 7,556KP2C 16K 4,142K 4,614K 4,753KPerl 1K 13K 7,153K 33,834KLRUsim 1K 1K 8K 1,431KAverage 32K 6,740K 11,467K 28,390KTable 2.8: Time before given % of free bytes have both temporal neighbors free2.8.1) before 90%, 99%, and 99.9% of all objects have both of their temporal neigh-bors free (those objects allocated just before and just after the given object). Onaverage, after just 2.5K of allocation 90% of all objects have both of their temporalneighbors free. Thus, if we allocate blocks from contiguous memory regions, waitingjust a short time after an object becomes free before allocating the memory again,then most of the time its neighbors will also be free and can be coalesced into alarger free block.Table 2.8 shows the same information as Table 2.7, except weighted by thesize of the objects becoming free. Thus, the table shows how long (in allocationtime) before 90%, 99%, and 99.9% of the bytes allocated can be coalesced withneighboring memory. Here, we see that if we wait for just 32K of allocation, 90% ofall memory allocated can be coalesced with its neighboring memory.Thus, whether we measure in bytes or objects, the vast majority of all objectsallocated at around the same time also die at around the same time.2.12 Programs Tend to Allocate Only a Few SizesFor most programs, the vast majority of objects allocated are of only a few sizes.Table 2.9 shows the number of object sizes represented by 90%, 99%, 99.9%, and84



Program 90% 99% 99.9% 100% Total ObjectsGCC 5 12 254 641 721,353Espresso 9 95 308 758 1,672,889Ghostscript 7 85 344 589 566,542Grobner 12 55 100 139 163,310Hyper 1 2 2 6 108,720LRUsim 1 1 5 21 39,103P2C 4 26 58 92 194,997Perl 10 27 60 99 1,600,560Average 6 38 141 293 628,551Table 2.9: Number of object sizes representing given percent of all object sizes100% of all objects allocated. The last column is the total number of objects al-located by that program. On average, 90% of all objects allocated are of just 6.12di�erent sizes, 99% of all objects are of 37.9 sizes, and 99.9% of all objects are of141 sizes.The reason that most objects allocated are of so few object sizes is that,for most programs, the majority of dynamic objects are of just a few types. Thesetypes often make up the nodes of large or common data structures upon which theprogram operates. The remaining object sizes are accounted for by strings, bu�ers,and single-use objects.A good allocator should try to take advantage of the fact that, for mostprograms, the majority of all objects allocated are of only a few sizes. We believethat this is part of the reason that the buddy systems and simple segregated storagepolicies have so much fragmentation. These policies increase internal fragmentationto try to reduce external fragmentation. As we can see from Table 2.9, this isunnecessary. The vast majority of dynamic memory requests are for objects ofexactly the same size as recently freed objects, and there is no need to worry aboutthe next memory request being for a block that is just a little larger than any freeregion. 85



2.13 Small Policy Variations Can Lead to Large Frag-mentation VariationsA result of particular importance to anyone presenting research in memory allocationalgorithms is that seemingly small variations in policy can lead to large variationsin fragmentation. In Table 2.4 we saw that the di�erence in fragmentation betweennext �t address ordered and next �t LIFO is 478%. The di�erence between �rst �taddress ordered with memory requested from the operating system in 8K chunksand �rst �t LIFO is a staggering 4,706%. It is therefore very important, whenpresenting memory allocation research results, to carefully describe the algorithmbeing studied.2.14 A View of the HeapTo further validate the idea that best �t and �rst �t address ordered work wellbecause they allow large contiguous areas in the heap to become free, we wrote aprogram that generates an image of the heap over time. In the pictures that follow,the X-axis is allocation time, and the Y-axis is the heap (going from low heapaddresses to high heap addresses). For any given pixel on the graph, the darknessrepresents the percentage of that portion of the heap at that interval in time whichis allocated. So, a black pixel is 100% allocated, and a white pixel is 100% free. Agray pixel is somewhere in between, depending on its darkness.In what follows, we will show and discuss allocation graphs for a subset ofthe eight test programs, and nine selected allocators (binary buddy, best �t LIFO,�rst �t address ordered, �rst �t LIFO, half �t, Lea's 2.6.1, next �t LIFO, simplesegregated storage 2N , and simple segregated storage 2N & 3 � 2N | we do notpresent allocation graphs for double buddy 5K because our implementation of thisallocator made interpreting these graphs di�cult). In addition, we present graphs86



of the memory usage of a special allocator that we call a \linear allocator." This al-locator allocates all of its memory sequentially, and never reuses freed memory. Theallocation graphs of this allocator give us an indication of the natural fragmentationinherent in the trace. By comparing graphs for this allocator to those of the otherallocators, we can get a better idea of how the di�erent allocation policies interactwith each trace.These pictures correspond to the actual fragmentation numbers from Ta-ble 2.4. In other words, all header, footer, minimum object size, and alignmentcosts have been removed. Thus, these are graphs of memory use of the policies, andnot the allocator implementations. The complete set of allocation graphs for theeight programs and nine selected allocators can be found in Appendix C.2.14.1 GCC Allocation GraphsThe �rst ten pictures (Figures 2.2 to 2.11) are of the gnu C compiler, compilingthe �le combine.c (part of the GCC distribution). As can be seen in the plots,this program exhibits very strong phase behavior, with two particularly large datastructures freed at allocation time 4 and 7 megabytes. The horizontal lines runningacross the plot are objects that remain live after the data structures are freed (pre-sumably, the results of some computation involving the data structure). Figure 2.2is the plot of the linear allocator. In this plot, the strong phase behavior of the GCCcompiler is shown as triangular features.As can clearly be seen in Figures 2.5, 2.7, 2.9, 2.10, and 2.11, the reuse ofmemory after the �rst data structure becomes free (at around allocation time 4megabytes) critically inuences later fragmentation. In Figures 2.4, 2.5, and 2.8memory in the lower address range is aggressively reused, allowing for very largefree areas in the upper address range. Thus, at later times (particularly for the largedata structure allocated between times 5.5 and 7 megabytes), this memory can be87


