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Preface

Dynamic memory management is a very important feature of modern programming
languages, and one that is often taken for granted. Programmers frequently place
great demands on the memory management facilities of their language, and expect
the language to efficiently handle these requests. Unfortunately, memory manage-
ment systems are not always up to the task. The article which appears below
strikingly illustrates how problems with a program’s dynamic memory management
can cause disastrous results, sometimes years after the program is written. Memory
errors like this one are very difficult to prevent, and it is a certainty that they will
occur again and again.

It is our hope that the results presented in this research will lead to a better
understanding of the nature of memory management problems, and to improved im-
plementations of memory management systems. We believe that improved memory
management systems will ultimately lead to more robust software, and problems
like the one presented in the following article will become a rare exception rather

than the rule.
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Why Bre-X Crashed the TSE

By Geoffrey Rowan
Toronto Globe and Mail, 12 April 1997

A software flaw that lay sleeping for 20 years inside the Toronto Stock Ex-
change’s computers woke up mean last week, shutting down the automated trading
system repeatedly before technicians could identify it.

The flaw might have passed harmlessly out of existence, since the TSE is
replacing its system in a few months, but for the controversy that erupted around
Bre-X Minerals Ltd.

The exchange’s problems with its dog-eared computer system offer a lesson
to other organizations that are patching together mature technology to keep their
critical business systems running: It’s hard to know exactly what’s inside such
systems or to know when some hidden glitch might wreak havoc.

The events: The TSE’s problems started on March 27, after Calgary-based
gold mining company Bre-X reported that there might not be as much gold in its
highly touted Busang field as investors had been led to believe.

That triggered a frenzy of trading in Bre-X, which by itself shouldn’t have
been a problem. The TSE is Canada’s largest stock exchange-it can handle a lot of
trading and even big increases in volume.

In 1996, the TSE saw a huge increase in share volumes, to 23.2 billion shares
traded from 15.8 billion a year earlier. But it had never seen the kind of volume in
a single stock that occurred with Bre-X.

The exchange refers to the number of active buy-and-sell orders for a par-
ticular stock at any point as the “book.” The average book size is about 200 to
300 orders. The Bre-X book size last Thursday—when the exchange first ran into
trouble-was 2,500, and it would swell at times to 4,500. Prior to that, the largest
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book size ever was about 1,600 orders, which happened once in the late eighties.

With all those Bre-X trades waiting to be executed, the TSE’s Computerized
Automated Trading System simply ground to a halt. When brokers entered their
orders, nothing happened. It was frozen.

Not knowing what the problem was, T'SE technicians restarted the system at
about 3:40 p.m., but within about eight minutes it crashed again. Just 12 minutes
away from the end of the trading day, TSE officials decided not to try to bring it
back up again.

Friday was a holiday, giving the technicians three solid days to search through
the system, which is essentially three million lines of computer code running on
powerful fault-tolerant computers made by Tandem Computers Inc. of Cupertino,
Calif.!

Working 24 hours a day, they poured over the old code, which was poorly
documented because it had been written so long ago. It’s had many refinements
made to it over the years, and documentation methodology wasn’t as stringent two
decades ago as it is today.

The technicians concluded that what they had was a memory problem.

When an order is to be executed, the computer’s code moves the entire order
book for a stock into its active memory. Once that order has been executed, that
piece of memory is released, to be reused by the next order book coming in.

With sequential orders for execution on the same book, the entire Bre-X book
was being loaded into memory for every order, requiring continuous availability of
enough memory to hold the larger-than-usual Bre-X order book.

This past weekend, the T'SE technicians expanded the system’s memory and

L#x CORRECTION ** The Toronto Stock Exchange’s Computerized Automatic Trading Sys-
tem, which has suffered software problems in recent days, runs on an IBM mainframe, not a Tandem
computer. The TSE system is being upgraded and will be moved from IBM hardware to Tandem
hardware later this year or early next year. Incorrect information, supplied by the TSE, appeared
[on] April 4.
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on Monday, the exchange was opened for business, but Bre-X trading was halted
until Tuesday.

That day, the system stayed up for about 23 minutes, and in that time, it
executed a greater number of Bre-X orders than the other Canadian exchanges did
all day, combined. The problem wasn’t memory, but it was obviously related to the
Bre-X trading volume.

After the Tuesday morning crash, TSE officials decided to reopen the market
without reopening trading in Bre-X, and the system was working, though several
attempts to restart Bre-X trading have had to be carefully monitored.

Whenever Bre-X volume starts to threaten the system, Bre-X trading is shut
down-as happened again yesterday.

The challenge ahead: What technicians are focused on now is a chunk of the
TSE’s digital code associated with cancelled orders. When an order is executed,
the memory that holds the book is released, but when an order is cancelled, the
memory is not released. “That piece of code was not written the way it should have
been,” TSE president Rowland Fleming said. “The problem was buried for 20 years.
It has been a sleeping problem.” It never surfaced before because the order books
were never big enough, and trading in a single issue was never volatile enough that
cancelled orders would sink the system.

Mr. Fleming said TSE technicians won’t try for an overnight fix.

They’ll work on the problem through the weekend and if they can’t write
a fix in that time, they’ll try to figure out a way to work around the cancellation
function or to restrict its use.

“At this stage, we think that is the cause of our problem and we’ll get the
fix,” Mr. Fleming said.

Then the exchange just has to hang on until the end of the year or early next

year, when its new computer system is scheduled to go on-line.
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Dynamic memory use has been widely recognized to have profound effects on
program performance, and has been the topic of many research studies over the last
forty years. In spite of years of research, there is considerable confusion about the
effects of dynamic memory allocation. Worse, this confusion is often unrecognized,
and memory allocators are widely thought to be fairly well understood.

In this research, we attempt to clarify many issues for both manual and
automatic non-moving memory management. We show that the traditional ap-
proaches to studying dynamic memory allocation are unsound, and develop a sound
methodology for studying this problem. We present experimental evidence that frag-
mentation costs are much lower than previously recognized for most programs, and
develop a framework for understanding these results and enabling further research
in this area. For a large class of programs using well-known allocation policies, we
show that fragmentation costs are near zero. We also study the locality effects of
memory allocation on programs, a research area that has been almost completely

ignored. We show that these effects can be quite dramatic, and that the best alloca-



tion policies in terms of fragmentation are also among the best in terms of locality
at both the cache and virtual memory levels of the memory hierarchy.

We extend these fragmentation and locality results to real-time garbage col-
lection. We have developed a hard real-time, non-copying generational garbage
collector which uses a write-barrier to coordinate collection work only with modifica-
tions of pointers, therefore making coordination costs cheaper and more predictable
than previous approaches. We combine this write-barrier approach with implicit
non-copying reclamation, which has most of the advantages of copying collection
(notably avoiding both the sweep phase required by mark-sweep collectors, and the
referencing of garbage objects when reclaiming their space), without the disadvan-
tage of having to actually copy the objects. In addition, we present a model for
non-copying implicit-reclamation garbage collection. We use this model to compare
and contrast our work with that of others, and to discuss the tradeoffs that must

be made when developing such a garbage collector.
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Chapter 1

Introduction

Memory management is poorly understood. This research attempts to clarify the
issues pertaining to memory management in general, including the effects of frag-
mentation and locality, for both manual and automatic (i.e., garbage collected)
memory management. In doing this, we explore and clarify the basic design issues
of allocators, revealing important new insights that have gone overlooked for almost
thirty years. We also explore the effect of dynamic memory allocation on locality of
reference at both the cache and virtual memory level. In addition, we explore the
basic design issues in incremental and real-time garbage collectors, putting them on
a sounder footing. Finally, we clarify the performance issues of both copying and

non-copying real-time garbage collection.

1.1 Scope of this Dissertation
The overall goals of this dissertation are:

1. to carefully explore the basic design issues in memory allocators and incre-

mental garbage collectors, putting these issues on a sounder footing;



2. to demonstrate that for most programs, fragmentation costs are very close to

Zero;

3. to explore in detail the effects of memory allocator policy on locality at both

the cache and virtual memory levels;

4. to provide a design and implementation for a garbage collector that fulfills all

of the requirements for use with a real-time system; and

5. to provide a model for identifying the performance issues in both copying and

non-copying real-time garbage collection.

In the remainder of this chapter, we present an overview of our work, and
present much of the background material for this area of research, including defining
our important terms. A reader already familiar with this research area may wish to

skip ahead to the next chapter.

1.2 Memory Allocation

All modern programming languages allow the programmer to use dynamic mem-
ory allocation. Dynamic memory allocation is the ability to allocate and deallocate
memory at run time (dynamically), and comes in two flavors: manual and auto-
matic (garbage collected). Both forms allow the programmer to specify the memory
needs of the program at run time by explicitly requesting memory blocks from the
programming language. Manual memory management, used in C, C++, Pascal,
Ada, and Modula II, requires the programmer to explicitly return memory to the
language when it is no longer needed. Automatic memory management, used in
LISP, Scheme, Eiffel, Modula III, and Java, frees the programmer from this burden;
memory is automatically reclaimed when the run-time system can determine that

it can no longer be referenced.



Manual and automatic memory allocation routines have more in common
than is generally appreciated. Both kinds of memory management are essentially
on-line algorithms, and must choose where to allocate objects in memory based only
on information available to the point of allocation. Once these objects are placed,
a manual memory management system typically cannot later move these objects if
a placement choice turns out to be a bad one. Garbage collected systems, on the
other hand, often do have the freedom to later move blocks of memory if necessary.
However, as we will discuss in Chapter 4, a garbage collector that does not move
memory has many advantages for real-time use over its moving counterpart.

Problems in memory management are due to three factors: programmers’
lack of understanding of the cost of dynamic memory management, language imple-
mentors’ lack of understanding of the issues involved with the design and implemen-
tation of memory management systems, and fundamental algorithmic properties of
applications that are extraordinarily difficult to correctly implement with manual
memory management. In this research, we address the first two problems by clarify-
ing many of the important issues in memory management, and demonstrating that
good algorithms can keep memory management costs quite low, thus making the
first problem less of a concern. We address the third problem by clarifying many
of the issues in automatic memory management (garbage collection). We show how
our results for manual memory management algorithms are directly applicable to
garbage collected systems, and implement a real-time garbage collector to test these

ideas.

1.2.1 Fragmentation

Manual memory management systems and non-moving garbage collected systems
use the same choices in the same conditions when deciding on where to allocate

requested objects. Because these allocators cannot later move memory, an important



issue is fragmentation. Fragmentation is said to be present when sufficient free
memory is available, but is unusable because it exists as many small fragments of
memory rather than as one large block. Traditionally, fragmentation is classified as
external or internal [RK68], and is combatted by splitting and coalescing free blocks.

External fragmentation arises when free blocks of memory are available for
allocation, but cannot be used to hold objects of the sizes actually requested by a
program. In sophisticated allocators, this is usually because the free blocks are too
small, and the program requests larger objects. In some simple allocators, external
fragmentation can occur because the allocator is unwilling or unable to split large
blocks into smaller ones.

Internal fragmentation arises when a sufficiently large free block is allocated
to hold an object, but there is a poor fit because the block is larger than needed.
In some allocators, the remainder is simply wasted, causing internal fragmentation.
(It is called internal because the wasted memory is inside an allocated block, rather
than being recorded as a free block in its own right.)

To combat internal fragmentation, most allocators will split blocks into mul-
tiple parts, allocating part of a block, and then regarding the remainder as a smaller
free block in its own right. Many allocators will also coalesce adjacent free blocks
(i.e., neighboring free blocks in address order), combining them into larger blocks
that can be used to satisfy requests for larger objects.

In some allocators, internal fragmentation arises due to implementation con-
straints within the allocator — for speed or simplicity reasons, the allocator design
restricts the ways memory may be subdivided. In other allocators, internal frag-
mentation may be accepted as part of a strategy to prevent external fragmentation
— the allocator may be unwilling to fragment a block, because if it does, it may not

be able to coalesce it again later and use it to hold another large object.



1.2.2 Strategy, Policy, and Mechanism

It is important to separate allocator design into three parts: strategy, policy, and
mechanism. The basic approach to designing a memory allocator is the strategy.
A strategy may be: “minimize waste for each allocation,” or “sacrifice one area
of memory to preserve other areas of memory.” These strategies can be realized
by many different policies for placing dynamically allocated objects. Some familiar
policies are: “choose the smallest block that is large enough, breaking ties in Last In
First Out (LIFO) order of object deallocation” (known as LIFO best fit), or “choose
the first free block that large enough, looking from low heap address to high heap
address” (known as first fit address ordered). These policies are then implemented
by a set of mechanisms. An example of a mechanism is: “use a linked list, and
search from the head of the list; freed blocks are inserted at the front of the list.”

The distinction between policy and mechanism is an important one because
different policies can be implemented by a variety of mechanisms. So, if a particular
policy performs well, but the implementation of that policy has undesirable proper-
ties, one can design a different implementation of the same policy. For example, the
obvious implementation of first fit address ordered is to maintain a sorted list of free
blocks. However, this mechanism is prohibitively expensive. A different mechanism
for implementing the same policy is to use a bit map indicating the free blocks, and
scan the bit map for a suitable block at allocation time.

The distinction between strategy and policy is also an important one because
different policies can have secondary effects, such as affecting the locality of reference
of the program. If a particular policy produces low fragmentation, but also has poor
locality of reference, then a different policy can be chosen that obeys the same basic
strategy, but produces better locality. For example, the strategy “sacrifice one
memory area to preserve other memory areas” can be realized by both the best-fit

LIFO and the first-fit address-ordered policies.



1.2.3 Experimental Methodology

In surveying the allocation literature we discovered that virtually all past work in
this field suffered from one common flaw: almost no one measured how well different

L' In this research, we present

allocation policies performed for actual programs.
results gathered by studying eight large C and C++ programs. Our results show
that for these eight programs, fragmentation can be kept very near zero. We argue
that the strategy behind the allocation policies that work best is fundamentally
strong, and will work well for most real programs.

We devote a large portion of this research to studying issues pertaining to
memory fragmentation for non-moving memory allocators. In particular, we study
the conditions under which allocators interact with programs to produce fragmen-
tation, and the conditions under which they do not. We also address experimental

methodology for studying memory allocation design and point out flaws in tradi-

tional methodologies that have been used for at least 30 years.

1.3 Locality

Locality of reference is the property that programs tend to reuse data and instruc-
tions they have used recently. A widely held rule of thumb is that a program spends
90% of its execution time in only 10% of the code. An implication of locality is that
we can predict with reasonable accuracy which instructions and data a program will
use in the near future based on its accesses in the recent past [PH96].

There are two fundamental kinds of locality: spatial locality and temporal
locality. Spatial locality is the property that data and instructions whose addresses

are near one another tend to be referenced close together in time. Temporal locality

!The studies by Zorn [DDZ93, ZG92] and by Vo [Vo95] were the only work we found that used
actual programs in their studies. They have made these programs, many of which we used, available
by anonymous ftp. We will do the same with the additional programs we used.



is the property that programs tend to access data and instructions that have been
accessed in the recent past.

Most modern computer systems are built using a memory hierarchy, that
is a primary cache, secondary cache, main memory, and disk based paging area,
with each level being larger, slower, and cheaper than the previous. If a memory
reference at one level fails, then that reference is attempted at the next level. For
such computers, locality of reference is very important. The current trend in micro-
processor design is for processors to increase in speed much more quickly than the
memory systems that support them. Thus, good locality of reference will become
increasingly important in order to take full advantage of available computer hard-
ware. Surprisingly, researchers have virtually ignored one of the most important
effects on a program’s locality of reference: that of the dynamic memory allocator’s
placement choices.?

Grunwald, Zorn, and Henderson [GZH93] show that different allocators can
have an important effect on the locality of the programs that use them. However,
they failed to separate the locality effects of the allocation policy from those of
the particular mechanism. Thus, for the memory allocation policies that fared
worst, they could not be sure if it was because the policy itself has inherently
poor locality, or because their implementation of the policy has poor locality. We
remedy this problem by carefully filtering out all the locality effects of the memory
allocator implementation, and varying the policy decisions so that we can measure
the individual effects of these policy decisions on the locality of reference of the
application. We show that the best allocation policies in terms of fragmentation are

also among the best in terms of locality.

*While there has been some work on the locality of reference of memory allocators that can
move memory (such as garbage collectors) [WLM90, WLM92, Zor91, PS89, JLS92, Nut87, Ber88],
[GZH93] was the only paper on the topic of locality and non-moving memory allocation that we
were able to locate. The authors of this paper also found it surprising that no one had done work
in this area before.



1.4 Garbage Collection

Garbage collection automatically reclaims the space occupied by data objects that
the running program can never access again. Such data objects are referred to as
garbage. The basic functioning of a garbage collector consists, abstractly speaking,

of two parts:

1. Distinguishing the live objects from the garbage in some way (garbage detec-

tion).

2. Reclaiming the garbage objects’ storage so that the running program can use

it again (garbage reclamation).

In practice, these two phases may be functionally or temporally interleaved.

In general, garbage collectors use a liveness criterion that is somewhat more
conservative than the liveness criterion used by other systems. In an optimizing
compiler, for example, a value may be considered dead at the point that it can
never be used again by the running program, as determined by control or data
flow analysis. A garbage collector, on the other hand, typically uses a simpler, less
dynamic criterion of liveness, defined in terms of a root set and reachability from the
roots.

At the moment the garbage collector is invoked, the active variables are con-
sidered live. Typically, this includes statically-allocated global or module variables,
as well as local variables in activation records on the activation stack(s), and any
variables currently in registers. These variables form the root set for the traversal.
Heap objects directly reachable from any of these variables can be accessed by the
running program, so they must be preserved. In addition, since the program might
traverse pointers from those objects to reach other objects, any object reachable
from a live object is also live. Thus the set of live objects is simply the transitive

closure of all variables reachable from the root set.



Any object that is not reachable from the root set is garbage, i.e., useless, be-
cause there is no legal sequence of instructions that allow the program to reach that
object. Garbage objects therefore cannot affect the future course of computation,
and their space may be safely reclaimed.

There are two basic ways to reclaim garbage objects:

1. Find and reclaim all objects known to be garbage (ezplicit garbage reclama-

tion).

2. Find and preserve all objects known to be live. All objects left over are garbage

and can be reclaimed in one action (implicit garbage reclamation).

An example of explicit reclamation is mark-sweep collection [McC60]. In a
mark-sweep collector, once the live objects have been distinguished from the garbage
objects, memory is exhaustively examined (swept) to find all of the garbage objects
and reclaim their space.

An example of implicit reclamation is copying collection [FY69, Che70]. In
a copying collector, the live objects are copied out of one area of memory and into
another. Once all live objects have been copied out of the original memory area,
that entire area is considered to be garbage and can be reclaimed in one operation.
The garbage objects are never examined, and their space is implicitly reclaimed.

While at first these two methods of reclaiming garbage memory may seem
fundamentally different, there is a way to combine them to receive many of the
advantages of both [Wan89, Bak91]. This “fake copying” approach is fundamental

to our real-time garbage collector implementation.

1.4.1 Real-Time Garbage Collection

Real-time programs are usually characterized as being either hard real-time or soft

real-time. Hard real-time programs are programs with very strict bounds on the



running times of program operations. Examples of hard real-time programs are
airplane fly-by-wire control, missile guidance, and medical equipment control. The
defining characteristic of hard real-time programs is that the consequences of missing
a deadline are very great: the airplane crashes, the missile misses its target, the
patient dies.

There are a number of programs which can benefit from a real-time collector,
but do not have hard real-time requirements. We call these programs “soft real-

time.”

Soft real-time programs are programs that should meet a majority of their
deadlines, but it is acceptable if an occasional deadline is missed, as long as the
deadlines are not missed too frequently at a time-scale relevant to the program.
Examples of soft real-time programs are multimedia applications, graphical user
interfaces, and non-critical control software. For these applications, it does not really

matter if the occasional frame of video is missed or the mouse cursor occasionally

skips a little, as long as this does not happen too often.
Hard Real-Time Garbage Collection Requirements
Hard real-time garbage collection has three requirements:

1. it must be incremental,

2. it must allow the application to make progress, and

3. it must use bounded memory.
Incremental Real-time garbage collection must be incremental; that is, it must
be possible to perform small units of garbage collection work while an application
is executing, rather than halting the application to perform large amounts of work
without interruption. Strict bounds on individual garbage collection pauses are often

used as the criterion for real-time garbage collection, but for practical applications,

the requirements are often even stricter.
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Progress A second requirement for real-time applications that has been almost
universally overlooked in the real-time garbage collection literature is that the ap-
plication must be able to make significant progress. That is, for a garbage collector
to be usefully real-time, not only must the pauses be short and bounded, they must
also not occur too often. In other words, the garbage collector must be able to
guarantee not only that every garbage collection pause is bounded, but that for any
given increment of computation, a minimum amount of the CPU is always available
for the running application.

The difficulty with incremental garbage collection is that while the collector
is tracing out the graph of reachable data structures, the graph may change —
the running program may mutate the graph between invocations of the collector.
For this reason, discussions of incremental collectors typically refer to the running
program as the mutator [DLM*78]. An incremental scheme must have some way of
keeping track of the changes to the graph of reachable objects, perhaps re-computing
parts of its traversal in the face of those changes.

An important characteristic of incremental techniques is their degree of con-
servatism with respect to changes made by the mutator during garbage collection.
If the mutator changes the graph of reachable objects, freed objects may or may not
be reclaimed by the garbage collector. Some floating garbage may go unreclaimed
because the collector has already categorized the object as live before the mutator
frees it. This garbage s guaranteed to be eventually collected, however, just not

during the same garbage collection cycle in which it became garbage.

Bounded Memory Finally, because of the critical nature of most real-time ap-
plications, it is important to guarantee space bounds. This issue is particularly
complicated for garbage collected systems because the programmer no longer has
direct control of when a block of memory becomes available for reuse. We present

a model for real-time garbage collection that allows the programmer to select a
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garbage collection design and reason about the worst case memory usage of his

system.

Soft Real-Time Garbage Collection

Hard real-time applications (critical applications with strict deadlines) are very im-
portant and largely unaddressed by the garbage collection literature. At the same
time, soft real-time applications (less critical real-time applications such as multi-
media) make up an even larger set of problems that could benefit greatly from a
real-time garbage collector. The issues in hard real-time garbage collection are very
different from those in soft real-time. Hard real-time applications need guarantees
on the worst-case time and space cost of any operation. Soft real-time applications,
on the other hand, are often more interested in average case performance, even if it
is at the risk of missing an occasional deadline, as long as these deadlines are not
missed too often.

In this work, we develop a model for both hard and soft real-time garbage
collection, that allows the garbage collector implementor to reason about the per-
formance and memory usage of his collector. We also provide an implementation of

a garbage collector that is fully configurable for both types of applications.

1.4.2 A Model for Real-Time Garbage Collection

A major contribution of this work is to provide a model for garbage collection broad

enough in its scope to encompass:

e hard and soft real-time requirements,
e read-barrier and write-barrier strategies, and

e copying and non-copying implementations.
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This model is based on tricolor marking [DLM* 78] and is augmented with the
key idea that garbage collection is really the process of marking objects and moving
them from one set to another [Bak91]. In addition, this model uses two important
invariants that allow us to address the issues of consistency and conservatism in
incremental collection. Furthermore, this model allows us to make clear decisions
about the kind of compiler support that will or will not be useful for the particular
garbage collector design that is chosen. Finally, this model allows us to reason about
the space, time, and predictability tradeoffs between different read- and write-barrier
strategies.

While a detailed comparison of the locality properties of non-copying vs.
copying memory allocation algorithms are beyond the scope of this dissertation,
we address some important locality issues with our model. In particular, we sug-
gest that non-copying algorithms may have significant locality advantages over their
copying counterparts. However, non-copying algorithms are potentially vulnerable
to severe memory fragmentation which can cause their memory requirements to ex-
plode beyond any reasonable bound. We show that, with some amount of compiler
support and/or programmer effort, these costs can be kept small for a majority of
programs. In addition, we attempt to characterize the cases where fragmentation
will be unacceptably high, and a copying implementation would be more appropri-

ate.

1.4.3 Generational Garbage Collection Techniques

Given a realistic amount of memory, efficiency of simple garbage collection is limited
by the fact that the system must traverse all live data during a collection cycle. In
most programs in a variety of languages, most objects live a very short time, while
a small percentage live much longer [LH83, Ung84, Sha88, Zor90, DeT90b, Hay91].

While figures vary from language to language and from program to program, usually

13



between 80 and 98 percent of all newly-allocated heap objects die within a few million
instructions, or before another megabyte has been allocated; the majority of objects
die even more quickly, within tens of kilobytes of allocation.

Even if garbage collection cycles are fairly close together, separated by only a
few kilobytes of allocation, most objects die before a collection and never need to be
processed. Of the ones that do survive to be processed once, however, a large fraction
survive through many collections. These objects are processed at every collection,
over and over, and the garbage collector spends most of its time processing the same
old objects repeatedly. This is the major source of inefficiency in simple garbage
collectors.

Generational collection [LH83] avoids much of this repeated processing by
segregating objects into multiple areas by age, and collecting areas containing older
objects less often than the younger ones. Once objects have survived a small number
of collections, they are “moved” to a less frequently collected area. Areas contain-
ing younger objects are collected quite frequently, because most objects there will
generally die quickly, freeing up space; processing the few that survive does not cost
much. These survivors are advanced to older status after a few collections, to keep
processing costs down. [LH83, Moo84, Ung84, Wil92].

For stop-and-collect garbage collection, generational garbage collection has
the additional benefit that most collections take only a short time (collecting just the
youngest generation is much faster than a full garbage collection). This reduces the
frequency of disruptive pauses, and for many programs without real-time deadlines,
this is sufficient for acceptable interactive use. The majority of pauses are so brief
(a fraction of a second) that they are unlikely to be noticed by users [Ung84];
the longer pauses for multi-generation collections can often be postponed until the
system is not in use, or hidden within non-interactive compute-bound phases of

program operation [WM89]. Generational techniques are often used as an acceptable
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substitute for more expensive incremental techniques, as well as to improve overall
efficiency.

Because generational techniques rely on a heuristic—the guess that most
objects will die young, and that older objects will not die soon—they are not strictly
reliable, and may degrade collector performance in the worst case. Thus, for some
purely hard real-time systems, they are not attractive. For other hard real-time
applications with well understood object lifetimes and periodic scheduling of tasks,
or for general-purpose systems with mixed hard and soft deadlines, the normal-case
efficiency gain is likely to be highly worthwhile and the worst case is likely to be
manageable.

In this dissertation we will explore some novel generational garbage collection
algorithms in an attempt to provide the benefit of generational techniques for many
soft real-time applications. We propose and implement a design for generational
garbage collection that is more amenable to real-time applications than any other
design that we know of. The key point of our design is to largely decouple the
collection of each generation from that of the others. This allows collection of
different generations to run at different speeds, and to be scheduled with minimal

coordination.

1.4.4 Performance Issues: Copying and Non-Copying Real-Time
Garbage Collection

In this work, we attempt to clarify the different performance issues in both copying
and non-copying real-time garbage collection.® It is impossible to pick a winning
strategy for all real-time applications because different strategies lead to different

performance tradeoffs, which are heavily dependent on the characteristics of the

®Note that non-copying collection need not incur the cost of the sweep phase of a mark-sweep
collector as is commonly assumed. In Section 4.8.1 we explain a technique known as “fake copying”
[Wan89] (also known as “implicit reclamation” [Bak91]) which avoids the cost of a sweep phase.
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application. However, we attempt to provide guidelines that can be used based on

the particular problem at hand.

1.5 Outline of this Dissertation

In the first third of this dissertation, we compare the fragmentation resulting from a
number of different traditional memory allocation algorithms. In these experiments,
we used actual traces of eight varied programs’ allocation and deallocation requests.
This is contrary to the standard methodology for studying fragmentation, where
random memory requests are generated and used to simulate real traces. We show
that using random traces to simulate real workloads is unsound because programs
tend to have strong phase behavior, and tend to allocate many objects of only a
few sizes rather than a number of objects of many similar sizes (as the random
methodology seems to assume).

In the second third of this dissertation, we study the locality effects of the
placement choices of non-moving memory allocation algorithms at both the cache
and virtual memory level. We show that placement choices can have a large effect
on locality, and that the best policies in terms of fragmentation also have the best
locality characteristics. Because a memory allocator has complete control of the
program’s layout of dynamic memory, it seems obvious that the choice of memory
allocation policy will have a major effect on the locality of reference of that program.
Surprisingly, we were only able to find a single paper [GZH93] discussing the effects
of non-moving memory allocation algorithms on locality of reference.

Having clarified these issues, we devote the final third of this dissertation to
our work on real-time garbage collection. We pay particular attention to developing
a model for real-time garbage collection that allows us to compare and contrast our
work with that of others. We also discuss our implementation and provide some

measurements of the performance of our collector.

16



Throughout this work, we attempt to provide a sound methodology with
which memory management algorithms can be studied and compared. In particular,
we are interested in measuring actual costs for actual programs, and characterizing
the situations under which different algorithms would be attractive. We also care-
fully separate policy costs from implementation costs, so that we can focus on the
inherent costs associated with a policy and not the noise caused by our particular

implementation.
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Chapter 2

Memory Allocation Studies

An important part of our research involved studying the “fragmentation problem.”
In this chapter, we present our results. We show that the problem of programs
using excessive amounts of memory due to fragmentation is actually a problem of
not recognizing that good allocation policies already exist, and have inexpensive
implementations. We show that for most programs fragmentation costs can be
far lower than was previously believed, and that for a large class of programs this
cost is very near zero. In addition, we invalidate the traditional methodology for
studying fragmentation and present a more sound approach, which uses trace-driven
simulation of real programs.

This work has been motivated, in part, by our perception that there is con-
siderable confusion about the nature of memory allocators, and about the problem
of memory allocation in general. Worse, this confusion is often unrecognized, and
allocators are widely thought to be fairly well understood. In fact, we know little
more about allocators than was known twenty years ago, which is not as much as
might be expected. The literature on the subject is rather inconsistent and scat-
tered, and considerable work appears to be done using approaches that are quite

limited.
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This problem with the allocator literature has considerable practical impor-
tance: aside from the human effort involved in allocator studies per se, there are
effects in the real world, both on computer system costs, and on the effort required
to create real software.

We think it is likely that the widespread use of poor allocators incurs a
loss of main and cache memory (and CPU cycles) of over a billion and a half U.S.
dollars worldwide per year; a significant fraction of the world’s memory and processor
output may be squandered, at huge cost.!

Perhaps an even worse problem is the effect on programming style due to the
widespread use of poorly designed allocators—either because better allocators are
not widely known or understood, or because allocation research has failed to address
the proper issues. Programmers avoid heap allocation in many situations because
of perceived space or time costs, while other programmers implement special-case
memory allocators for their programs in an attempt to improve upon the default
implementation. This practice invariably results in wasted space, subtle bugs, and
portability problems.?

The overwhelming majority of memory allocation studies to date have been
based on a methodology developed in the 1960’s [Col61], which uses synthetic traces
intended to model “typical” program behavior. This methodology has the advan-
tages that it is easy to implement and allows experiments to avoid quirky behavior
specific to a few programs. Often the researchers conducting these studies went to

great lengths to ensure that their traces had statistical properties similar to real

! According to the World Semiconductor Trade Statistics (WSTS) world-wide DRAM sales for
1996 were $39.8 billion. By 1999, this number is expected to increase to $56.3 billion [Tec97]. If
just 20% of this memory is used for heap allocated data, and 20% of that memory is unnecessarily
wasted, then over $1.5 billion of the memory sold in 1996 was wasted. This is expected to grow to
$2.25 billion by 1999.

It is our impression that UNIX programmers’ usage of heap allocation went up significantly
when Chris Kingsley’s allocator was distributed with BSD 4.2 UNIX—simply because it was much
faster than the allocators they’d been accustomed to.
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programs. However, none of these studies showed the validity of using a randomly
generated trace to predict performance on real programs, no matter how well the
randomly generated trace statistically models the original program trace. As we
show in Section 2.15, what all of this previous work ignores is that a randomly gen-
erated trace is not valid for predicting how well a particular allocator will perform
on a real program.

We therefore decided to perform simulation studies on various implementa-
tions of malloc () using memory allocation traces from real programs. Using a large
set of tools that we built, we measured how well synthetic traces approximate real
program traces, as well as how well these malloc algorithms performed on the real
traces. Much to our surprise, some well-known policies actually perform surprisingly
well. So well, in fact, that fragmentation appears to already be a solved problem.

Another factor often overlooked in memory allocation research is that seem-
ingly minor variations in policy can have dramatic effects on fragmentation. We
have carefully to separated the costs of different policies, and present detailed de-
scriptions of the policies that we study.

We will begin this chapter with a discussion on the basic issues in memory
allocation research. Next, we will discuss the basic issues in memory allocator design.
Following that, we will describe the allocation policies that we studied. We will do
this in two sections, the first being an overview of memory allocation policies, and
the second being a detailed description of the actual policies that we studied. In
the subsequent sections we will describe our test programs and our experimental

methodology. We will conclude this chapter with a presentation of our results.

2.1 Basic Issues in Memory Allocation Research

Allocators are sometimes evaluated using probabilistic analyses. By reasoning about

the likelihood of certain events, and the consequences of those events for future
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events, it may be possible to predict what will happen on average. For the general
problem of dynamic storage allocation, however, the mathematics are too difficult.
Unfortunately, to make probabilistic techniques feasible, important characteristics of
the workload, such as the probabilities of relevant input events, must be known. The
relevant characteristics are not understood, so the probabilities are simply unknown.

This is one of the major points of this work: the paradigm of statistical
mechanics has been used in theories of memory allocation, but we believe that
it is the wrong paradigm, at least as it is usually applied. Typically, researchers
make strong assumptions that frequencies of individual events (e.g., allocations and
deallocations) are the base statistics from which probabilistic models should be
developed, and we believe that this is false.

The great success of statistical mechanics in other areas is due to the fact
that such assumptions make sense in those areas. Gas laws, for example, are pretty
good idealizations because aggregate effects of a very large number of individual
events (e.g., collisions between molecules) do concisely express the most important
regularities.

This paradigm is inappropriate for memory allocation, for two reasons. The
first is simply that the number of objects involved is usually too small for asymptotic
analyses to be relevant. However, this is not the most important reason. The main
weakness of the statistical mechanics approach is that there are important systematic
interactions that occur in memory allocation, due to phase behavior of programs.
No matter how large the system is, basing probabilistic analyses on individual events
is likely to yield the wrong answers if there are systematic effects involved which
are not captured by the theory. Assuming that the analyses are appropriate for
“sufficiently large” systems does not help here—the systematic errors will simply
attain greater statistical significance.

The traditional methodology of using random program behavior implicitly
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assumes that there is no ordering information in the request stream that could be
exploited by the allocator—i.e., there is nothing in the sequencing of requests which
the allocator can use as a hint to suggest which objects should be allocated adjacent
to which other objects. Given a random request stream, the allocator has little
control: no matter where objects are placed by the allocator, they die at random,
and randomly create holes among the live objects. If some allocators do in fact
exploit some real regularities in the request stream, the randomization of the order of
object creation (in simulations) ensures that this information is discarded before the
allocator can use it. Likewise, if an algorithm tends to systematically make mistakes
when faced with real patterns of allocations and deallocations, randomization may

hide that fact.

2.1.1 Random Simulations

The traditional technique for evaluating allocators is to construct several traces
(recorded sequences of allocation and deallocation requests) thought to resemble
“typical” workloads, and use those traces to simulate the performance of a variety
of actual allocators. Since an allocator’s performance is dependent only on the
sequence of allocation and deallocation requests, this method can produce very
accurate results provided that the request sequence accurately models the behavior of
real programs.

Typically, however, the request sequences are not traces of the behavior of
actual programs. They are “synthetic” traces that are generated automatically by a
small subprogram; the subprogram is designed to resemble real programs in certain
statistical ways. In particular, object size distributions are thought to be important,
because they affect the fragmentation of memory into blocks of varying sizes. Object
lifetime distributions are often, but not always, thought to be important because

they affect when areas of memory are occupied and when they are free.
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Given a set of object size and lifetime distributions, the small driver subpro-
gram is used to generate a sequence of requests that obeys those distributions. This
driver is typically a simple loop that repeatedly generates requests, using a pseudo-
random number generator; at any point in the simulation, the next data object is
chosen by randomly picking a size and lifetime, with a bias that probabilistically
preserves the desired distributions. The driver also maintains a table of objects that
have been allocated but not yet freed, ordered by their scheduled deallocation time.
At each step of the simulation, the driver deallocates any objects whose deallocation
times indicate that they have expired. One convenient measure of simulated “time”
is the volume of objects allocated so far—i.e., the sum of the sizes of objects that
have been allocated up to that step of the simulation.

An important feature of these simulations is that they tend to reach a steady
state. After running for a certain amount of time, the volume of allocated objects
reaches a level that is determined by the size and lifetime distributions. After
that point, objects are allocated and deallocated in approximately equal numbers,
and the memory usage tends not to vary much. Measurements are typically made
by sampling memory usage at points after the steady state has presumably been
reached.

There are three common variations of this simulation technique. The first is
to use a simple mathematical function, such as a uniform or negative exponential
distribution, to determine the sizes and lifetimes of objects. Exponential size distri-
butions are often used because it has been observed that programs typically allocate
more small objects than large ones. Historically, uniform size distributions were the
most common in early experiments; exponential distributions then became increas-
ingly common, as new data became available showing that real systems generally
used many more small objects than large ones. Other distributions, notably Poisson

and hyper-exponential, have also been used. Surprisingly, relatively recent papers
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have used uniform size distributions, sometimes as the only distribution. Exponen-
tial lifetime distributions are also often used because programs are more likely to
allocate short-lived objects than long-lived ones. As with size distributions, there
has been a shift over time away from uniform lifetime distributions, often towards
exponential distributions.

The second variation is to pick distributions in ways thought to resemble real
program behavior. This variation is based on the observation that many programs
allocate the majority of their objects from just a few different sizes. In general, this
has not been a very precise model of real programs. Sometimes the sizes are chosen
at random and allocated in uniform proportions, rather than in skewed proportions
reflecting the fact that on average, programs allocate many more small objects than
large ones.

The third variation is to use statistics gathered from real programs, to make
the distributions more realistic. In almost all cases, size and lifetime distributions
are assumed to be independent—the fact that different sizes of objects may have
different lifetime distributions is generally assumed to be unimportant.

In general, there has been something of a trend toward the use of more real-
istic distributions, but this trend is not dominant. Even now, researchers often use
simple and smooth mathematical functions to generate traces for allocator evalua-
tion.> The use of smooth distributions is questionable, because it bears directly on
issues of fragmentation. If in real programs objects of only a few sizes are allocated,
then the free (and uncoalesceable) blocks are likely to be of those sizes, making it
possible to find a perfect fit.* On the other hand, if the object sizes are smoothly
distributed, then the requested sizes will almost always be slightly different, thus

increasing the chances of fragmentation.

3We are unclear on why this should be, except that a particular theoretical and experimen-
tal paradigm [Kuh70] had simply become thoroughly entrenched by the early 1970’s. (It is also
somewhat easier than dealing with real data.)

“We show in Section 2.12 that this is in fact the case for the programs we studied.
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2.1.2 Probabilistic Analyses

Since Knuth’s derivation of the “fifty percent rule” [Knu73], there have been many
attempts to reason probabilistically about the interactions between program behav-
ior and allocator policy, and to assess the overall cost in terms of fragmentation
and/or CPU time.

These analyses have generally made the same assumptions as random-trace
simulation experiments (e.g., random object allocation order, independence of size
and lifetime, and steady-state behavior). These simplifying assumptions were gen-
erally used in order to make the mathematics tractable. In particular, assumptions
of randomness and independence make it possible to apply well-developed theories
of stochastic processes (Markov models, etc.) to derive analytical results about
expected behavior. Assumptions of randomness and independence make the prob-
lem very smooth (hence mathematically tractable) in a probabilistic sense. This
smoothness has the advantage that it makes it possible to derive analytical results,
but it has the disadvantage that it turns a real and deep scientific problem into a
mathematical puzzle that is much less significant. Because these assumptions tend

to be false for most real programs, these results are of limited usefulness.

2.1.3 What Fragmentation Really Is, and Why the Traditional
Approach Is Unsound

Fragmentation is the inability to reuse memory that is free, when that memory is
needed. This can be because of policy choices by the allocator, which may choose
not to reuse memory that in principle could be reused. More importantly, this may
be because the allocator does not have a choice at the moment an allocation request

must be serviced: the free areas may not be large enough to service the request.’

®Beck [Bec82] makes the only clear statement of this principle which we have found in our
exhausting review of the literature. His paper is seldom cited, and its important ideas have generally
gone unnoticed.
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Note that for this latter (and more fundamental) kind of fragmentation, the
problem is a function both of the program’s request stream and the allocator’s
choices of where to allocate the requested objects. In satisfying a request, the
allocator usually has considerable leeway; it may place the requested object in any
sufficiently large free area. On the other hand, the allocator has no control over the
ordering of requests for different-sized pieces of memory, or over when those objects
are freed.

In order to develop a sound methodology for studying fragmentation, it is

necessary to understand what really causes fragmentation.

Fragmentation is caused by isolated deaths.

A crucial issue is the creation of free areas whose neighboring areas are not free.
This is a function of two things: which objects are placed in adjacent areas, and when
those objects die. Notice that if the allocator places objects together in memory, and
they die at the same time (with no intervening allocations), no fragmentation results:
the objects are live at the same time, using contiguous memory, and when they die
they free contiguous memory. An allocator that can predict which objects will die at
approximately the same time can exploit that information to reduce fragmentation

by placing those objects in contiguous memory.

Fragmentation is caused by time-varying behavior.

Fragmentation arises from changes in the way a program uses memory—for example,
freeing small blocks and requesting large ones. This much is obvious, but it is
important to consider patterns in the changing behavior of a program, such as the
freeing of large numbers of objects of one size and the subsequent allocation of large
numbers of objects of a different size. Many programs allocate and free different

kinds of objects in different stereotyped ways. Some kinds of objects accumulate
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over time, but other kinds may be used in bursts. The allocator’s job is to exploit
these patterns, if possible, or at least not to let the patterns undermine its strategy.

Real programs do not generally behave randomly—they are designed to solve
actual problems, and the methods chosen to solve those problems have a strong effect
on the programs’ patterns of memory usage. To begin to understand the allocator’s
task, it is necessary to have a general understanding of program behavior. This
understanding is almost entirely absent in the literature on memory allocators, ap-
parently because many researchers consider the infinite variation of possible program

behaviors to be too daunting.

2.2 Basic Issues in Allocator Design

The main technique used by allocators to keep fragmentation under control is place-
ment choice.

Placement choice is simply the choosing of where in free memory to allocate a
requested block. The allocator has huge freedom of action—it can place a requested
block anywhere it can find a sufficiently large range of free memory, and anywhere
within that range. (It may also be able to simply request more memory from the
operating system.) An allocator algorithm therefore should be regarded as the
mechanism that implements a placement policy, which is motivated by a strategy
for minimizing fragmentation. We believe that this is an important distinction
to make, and that by carefully separating these issues, it will be easy to design
memory allocators that have a number of desirable properties, such as high speed,

low fragmentation, and good locality of reference.

2.2.1 Strategy, Policy, and Mechanism

Strategy takes into account regularities in program behavior, and determines a range

of acceptable policies for placing requested blocks. The chosen policy is implemented
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by a mechanism, which is a set of algorithms and data structures. This three-level

distinction is quite important. In the context of general memory allocation,

e a strategy attempts to exploit regularities in the request stream,

e a policy is an implementable decision procedure for placing blocks in memory,

and

e a mechanism is a set of algorithms and data structures that implement the

policy, often called “the implementation.”

An ideal strategy is “put blocks where they will not cause fragmentation
later”; unfortunately this is impossible to guarantee, so real strategies attempt to
heuristically approximate that ideal, based on assumed regularities of application
programs’ behavior. For example, one strategy is: “if a block must be split, po-
tentially wasting what’s left over, minimize the size of the wasted part.” This is
commonly believed to be the strategy for the best-fit family of allocators. However,
as we will show in Section 2.10, this is not the strategy that makes best fit work well.
The best-fit strategy is actually: “preferentially use one area of memory for alloca-
tion requests so that other areas will have more time for the neighboring objects to
die and be coalesced.”

The corresponding best-fit policy is more concrete—it says “always use the
smallest block that is at least large enough to satisfy the request.” This is not
a complete policy, however, because there may be several equally good fits; the
complete policy must specify which of those should be chosen.

The chosen policy is implemented by a specific mechanism, which should be
efficient in terms of time and space overheads. For best fit, for example, either a
linear list or an ordered tree structure might be used to record the addresses and
sizes of free blocks, and a list or tree search could be used to find the next block to

be allocated, as dictated by the policy.
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These levels of the allocator design process interact. A strategy may not
yield an obvious complete policy, and the seemingly slight differences between sim-
ilar policies may actually implement interestingly different strategies. The chosen
policy may not be obviously implementable at reasonable cost in space, time, or

programmer effort; in that case some approximation may be used instead.

2.2.2 Splitting and coalescing

Two general techniques for supporting a range of (implementations of) placement
policies are splitting and coalescing of free blocks. The allocator may split large
blocks into smaller blocks arbitrarily, and use any sufficiently-large sub-block to
satisfy the request. The remainders from this splitting can be recorded as smaller
free blocks in their own right and used to satisfy future requests.

The allocator may also coalesce adjacent free blocks to yield larger free blocks.
After a block is freed, the allocator may check to see whether the neighboring blocks
are free as well, and merge them into a single, larger block. This is often desirable,
because one large block is more likely to be useful than two smaller ones.

The cost of splitting and coalescing may not be negligible, however, especially
if splitting and coalescing work too well—in that case, freed blocks will usually be
coalesced with neighbors to form large blocks of free memory, and later allocations
will have to split smaller chunks off those blocks to obtain the desired sizes. It often
turns out that most of this effort is wasted, because the sizes requested later are
largely the same as the sizes freed earlier, and the old small blocks could have been
reused without coalescing and splitting (see Section 2.12). Because of this, many
modern allocators use the policy of deferred coalescing—they avoid coalescing and

splitting most of the time, but use it intermittently, to combat fragmentation.
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2.2.3 Space vs. Time

It is well known that it is easy to write a memory allocator that is very fast, as long
as space issues are not important. Kingsley’s BSD 4.2 UNIX memory allocator is
an example of such an allocator [Kin]. It is a simple segregated storage allocator
(Section 2.4.1) that rounds all object request sizes up to powers of two minus a
constant. Allocation and deallocation consists of just popping off from and pushing
on to an array of linked lists, which can be implemented in just a couple of machine
instructions. However, as we will show in Section 2.9, this allocation policy is among
the worst that we studied in terms of fragmentation.

What is not well known is that it is easy to write a very fast memory allo-
cator even when space issues are important. As we will show in Section 2.9, best
fit and first fit address ordered are among the best allocation policies in terms of
fragmentation. Stephenson described how to efficiently implement first fit address
ordered using a cartesian tree® [Ste83]. Standish and Tadman showed how to ef-
ficiently implement best fit using two sets of free lists: an array of free lists of
same-sized objects for small blocks, and a binary tree of free lists for larger blocks
[Sta80, Tad78]. Unfortunately, this work seems to have gone unnoticed.

These allocation policies can be implemented even more efficiently if deferred
coalescing (Section 2.4.4) is used in addition to the techniques described above. To
date, it has been unclear whether deferred coalescing would affect fragmentation.
However, because deferred coalescing changes the order of object reuse, there is
every reason to believe that it could have a non-negligible effect. On the other
hand, our results (Section 2.9.2) show that deferred coalescing does not appreciably
increase fragmentation for the better allocation policies in our study.

For deferred coalescing to be effective, programs must repeatedly request the

same sized objects, and these objects must have been recently freed. Our results

®Cartesian trees were first described in [Vui80].
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(Sections 2.12 and 2.6.2) show in fact that most programs do allocate only a few
different sizes of objects, and that these objects are only live for a short time. Thus,
it is quite likely that deferred coalescing can be used, as we will describe in Section
2.4.4, to make the usual case allocation and deallocation times for good allocation
policies as fast as simple segregated storage, at the cost of only a couple of percent
in fragmentation.

In summary, by using good, scalable data structures such as those described
in [Ste83] or [Sta80, Tad78], memory allocators with very low fragmentation need not
be slow. In addition, by using deferred coalescing, the usual case can be optimized

to be very fast with very little increase in fragmentation.

2.3 A Sound Methodology for Studying Fragmentation

The traditional view has been that the program behavior responsible for fragmen-
tation is determined only by the distributions of object sizes and lifetimes. Recent
experimental results show that this is false [ZG94, WJNB95], because the ordering
of requests has a large effect on fragmentation. Until a much deeper understand-
ing of program behavior is reached, and until allocator strategies and policies are
as well understood as allocator mechanisms, the only reliable method for allocator
simulation is to use real traces—i.e., the actual record of allocation and deallocation
requests from real programs—as we describe in Section 2.8.

A sound methodology must also separate policy costs from implementation
costs. When simulating real traces, it is important to measure the true costs of
the policy being studied and not the overheads of the particular implementation of
that policy. Finally, many policies are a composition of several simpler policies. For
example, the policy best-fit with a LIFO free list, deferred coalescing, and a FIFO
quick list is actually the combination of four policies: the best-fit policy with the
LIFO-ordered free-list policy, the deferred coalescing policy, and the FIFO quick list
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policy. It is important to try to separate as many of these costs from each other as
possible in order to understand the effect of each policy choice.

Finally, a sound methodology must be clear about what it is attempting
to study. As we will see in Section 2.9, small variations in policy can produce
large variations in fragmentation. It is therefore important for allocation studies to
carefully describe the exact policies under consideration. In the next two sections,
we will describe the allocation policies that we study in this work. The first section
is an overview of memory allocation policies in general, and the second section is a

description of the particular policies that we studied for this work.

2.4 Overview of Memory Allocation Policies

In this section, we give an overview of allocator terminology.” The basic kinds of

allocation policies we discuss are:

o Segregated Free Lusts, including simple segregated storage and segregated fit.
e Sequential Fits, including first fit, next fit, and best fit.

e Buddy Systems, including conventional binary and double buddies.

In addition, we discuss the many policy decisions which must be made when
implementing one of these allocators: order of object reuse, deferred coalescing,
splitting thresholds, and preallocation. As stated earlier, an important point of this
research is the separation of policy from mechanism. We believe that research on
memory allocation should first focus on finding good policies. Once these policies
are identified, it is relatively easy to develop good implementations. All of the mea-

surements presented in this dissertation are for the memory allocation policy under

"For a much more extensive discussion on these issues, see [WINB95]
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consideration, independent of any particular smplementation of that policy. Unfor-
tunately, many good policies are discounted because the obvious implementation is
inefficient. We will therefore devote some of this section to describing alternative

implementations that are quite efficient for many of these policies.

2.4.1 Segregated Free Lists

One of the simplest allocation policies uses a set of free lists, where each list holds
free blocks of a particular size. When a block of memory is freed, it is simply
pushed onto the free list for that size. When a request is serviced, the free list
for the appropriate size is used to satisfy the request. There are several important
variations on this segregated free lists policy.

One common variation is to use size classes to group similar object sizes
together in a single free list. Free blocks from a list are used to satisfy any request
for an object whose size falls within that list’s size class. A common size-class scheme
is to use size classes that are a power of two apart (e.g., 4 words, 8 words, 16 words,

and so on) and round the requested size up to the nearest size class.

Simple Segregated Storage

In this variant, no splitting of larger free blocks is done to satisfy requests for smaller
sizes, and no coalescing of smaller free blocks is done to satisfy requests for larger
sizes. When a request for a given size is serviced, and the free list for the appropriate
size class is empty, more storage is requested from the underlying operating system
(e.g., using UNIX sbrk() to extend the heap segment). Typically, one or two virtual
memory pages are requested at a time, and split into same-sized blocks which are
then strung together and put on the free list. Since the result is that pages (or some
other relatively large unit) contain blocks of only one size class, we call this simple

segregated storage.
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An advantage of this simple policy is that it naturally leads to an implemen-
tation where no headers are required on allocated objects: the size information can
be recorded for a page of objects, rather than for each object individually. This may
be important if the average object size is very small.

Simple segregated storage can also be made quite fast in the usual case,
especially when objects of a given size are repeatedly freed and reallocated over
short periods of time. Because this policy does not split or coalesce free blocks,
almost no work is done when an object is freed, and subsequent allocations of the
same size can be quickly satisfied by removing that block from its free list.

The disadvantage of this scheme is that it is subject to potentially severe
external fragmentation, as no attempt is made to split or coalesce blocks to satisfy
requests for other sizes. The worst case is a program that allocates many objects
of one size class and frees them, then does the same for many other size classes.
In that case, separate storage is required for the maximum volume of objects of all
sizes, and none can be reused for the others.

There is some tradeoff between expected internal fragmentation and external
fragmentation with this scheme. If the spacing between size classes is large, more
different sizes will fall into each size class, allowing space for some sizes to be reused
for others. (In practice, very coarse size classes generally lose more memory to
internal fragmentation than they save in external fragmentation. We will discuss
this further in Section 2.9.2.)

A crude but possibly effective form of coalescing for simple segregated storage
is to maintain a count of live objects for each page, and notice when a page is entirely
free. If a page is free, it can be made available for allocating objects in a different

size class, preserving the invariant that all objects in a page are of a single size class.
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Multiple Sizes Per Page

At the expense of having per-object rather than per-page overheads, the simple
segregated storage policy can be changed to allow objects from a larger size class
to be split into smaller sizes, and objects from smaller size classes to be merged
into larger sizes. In keeping with the simple segregated storage policy, this splitting
and coalescing is constrained such that the resulting blocks are the exact size for
another size class. For example, with powers-of-two size classes, a 64-byte object
can be split into two 32-byte objects, or into one 16-byte object and into one 48-byte
object, but not into one 50-byte object and one 14-byte object. This is similar to,

but less constrained than, the buddy system which we describe in Section 2.4.3.

Segregated Fit

Another variation on the segregated free lists policy relaxes the constraint that all
objects in a size class be exactly the same size. We call this segregated fit. This
variant uses a set of free lists, each list holding free blocks of any size between the
current size class and the next larger size class. When servicing a request for a
particular size, the free list for the corresponding size class is searched for a block
at least large enough to hold it. The search is typically a sequential-fit search, and
many significant variations are possible (we describe a number of these variations in
Section 2.4.2). Typically a first-fit or next-fit policy is used. It is often pointed out
that the use of multiple free lists makes the implementation faster than searching a
single free list. What is often not appreciated is that this also affects the policy in
a very important way: the use of segregated lists excludes blocks of very different
sizes, meaning good fits are usually found. The policy is therefore a good-fit or
even a best-fit policy, despite the fact that it is usually described as a variation on
first fit, and underscores the importance of separating policy considerations from

implementation details.
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2.4.2 Sequential Fits

Several classic allocator algorithm implementations are based on having a doubly-
linked linear (or circularly-linked) list of all free blocks of memory. Typically,
sequential-fit algorithms use Knuth’s boundary tag technique to support coalesc-
ing of all adjacent free areas [Knu73]. The list of free blocks is usually maintained
in either FIFO, LIFO, or address order (AO). Free blocks are allocated from this
list in one of three ways: the list is searched from the beginning, returning the first
block large enough to satisfy the request (first fit); the list is searched from the place
where the last search left off, returning the next block large enough to satisfy the
request (next fit); or the list is searched exhaustively, returning the smallest block
large enough to satisfy the request (best fit).

These tmplementations are actually instances of allocation policies. The first-
fit policy is to search some ordered collection of blocks, returning the first block that
can satisfy the request. The next-fit policy is to search some ordered collection of
blocks starting where the last search ended, returning the next block that can satisfy
the request. Finally, the best-fit policy is to exhaustively search some collection of
blocks, returning the best fit among the possible choices, and breaking ties using
some ordering criteria. The choice of ordering of free blocks is also a policy decision.
The three that we mentioned above as implementation choices (FIFO, LIFO, and
address ordered) are also policy choices.

What is important is that each of these policies has several different possible
implementations. For example, best fit can be implemented using a tree of lists of
same sized objects [Sta80], and first fit address ordered can be implemented using a
Cartesian tree [Ste83]. For concreteness and simplicity, we describe the well-known
implementations of sequential-fit algorithms, but we stress that the same policies

can be implemented more efficiently.
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First fit

A first-fit policy simply searches the list of free blocks from the beginning, and
uses the first block large enough to satisfy the request. If the block is larger than
necessary, it is split and the remainder is put on the free list. A problem with this
tmplementation of the first fit policy is that the larger blocks near the beginning of
the list tend to be split first, and the remaining fragments result in having a lot of
small blocks near the beginning of the list. This can increase search times because
many small free blocks accumulate, and the search must go past them each time
a larger block is requested. In terms of policy, this implementation of first fit may
tend toward behaving like best fit over time, because the smallest blocks end up
near the front of the list, so that blocks are effectively searched in size order, and

the smallest chosen first.?

Next fit

A common “optimization” of first fit is to use a roving pointer for allocation [Knu73].
The pointer records the position where the last search was satisfied, and the next
search begins from there. Successive searches cycle through the free list, so that
searches do not always begin in the same place and result in an accumulation of
small unusable blocks in one part of the list. The usual rationale for next fit is
to decrease average search times, but this implementation consideration has other
effects on the policy for memory reuse. Since the roving pointer cycles through
memory regularly, objects from different phases of program execution may become
interspersed in memory. This may affect fragmentation if objects from different
phases have different expected lifetimes. (It may also seriously affect locality. The
roving pointer itself may have bad locality characteristics since it examines every

free block before touching any block again. Worse, it may affect the locality of the

8This has also been observed by Ivor Page (personal communication, February 1994).
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program for which it is allocating memory by scattering objects used by certain

phases and intermingling them with objects used by other phases.)

Best fit

A best-fit sequential-fit allocator searches the free list to find the smallest free block
large enough to satisfy a request. In the general case, a best-fit search is exhaustive,
although it may stop when a perfect fit is found. This exhaustive search means that
a sequential best-fit search does not scale well to large heaps with many free blocks.

Because of the time costs of an exhaustive search, the best-fit policy is often
unnecessarily dismissed as being impossible to implement efficiently. This is unfor-
tunate, because, as we will show in Section 2.9, best fit is one of the best policies
in terms of fragmentation. By taking advantage of the observation that most pro-
grams use a large number of objects of just a few sizes, a best-fit policy can be quite
efficiently implemented as a binary tree of lists of same-sized objects. In addition,
segregated-fit algorithms (Section 2.4.1) can be a very good approximation to best

fit and are easy to implement efficiently.

Boundary Tags and Per-Object Overheads

Sequential-fit techniques are usually implemented using boundary tags to support
the coalescing of free areas [Knu73]. Each block of memory has a header and a footer
field, both of which record the size of the block and whether it is in use. When a
block is freed, the footer of the preceding block of memory is examined to see if it
is free; likewise, the header of the following block is examined. Adjacent free areas
are merged into larger free blocks. (This is where doubly-linked lists are useful—a
block can be unlinked from anywhere in a doubly-linked list in constant time.)
There is a simple optimization which allows us to remove the footer boundary

tag from an object while it is allocated. As we said above, the footer holds two
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different pieces of information: the size of the block, and whether it is free or
allocated. We make the observation that we need the size information only when
the block is free because when the block is allocated, we cannot coalesce with the
next block. Thus, we are left with the case that when the object is live, we only
need one bit in the footer telling us that the object is live. Since memory is usually
only allocated on word or double word boundaries, the size of all objects is some
multiple of four or eight bytes. Thus the bottom 2 or 3 bits of the size are always
zero. We can therefore store the allocated/free bit in the header of the following
object, together with the allocated/free bit for that object. When an object is freed,
we do not need the memory that occupied the last four bytes of that object, and
can copy the object size from the header into the footer. This still leaves us with
the case of a two word minimum object size, but when an object is allocated, the

overhead is just one word.

Order of Object Reuse

One important detail for sequential-fit algorithms is the ordering of the objects on
the free list. There are three common variations: FIFO, LIFO, and address ordered.

For FIFO free lists, objects returned to the free list are located in such a
place that they will be the last object considered for the next allocation. In the case
of first fit or best fit, this usually means the end of the free list. In the case of next
fit, this means the location just before the roving pointer (such that the pointer will
have to rove all the way around the list before coming to this block).

For LIFO free lists, objects returned to the free list are located in such a
place that they will be the next object considered for allocation. In the case of first
fit or best fit, this usually means the front of the free list. In the case of next fit,
this means the location just after the roving pointer (such that this block will be

the next block reached by the pointer).
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For address ordered free lists, free objects are placed in the list in sorted
order corresponding to the address of the start of the object. It may seem that the
run-time costs of sorting the free list with every deallocation would be prohibitively
expensive. However, another implementation of this policy is possible: if a bitmap is
maintained, with one bit for every word or every two words, then freeing an object
and placing it into sorted order is as simple as setting the corresponding bits in the
bit map. This approach has the added benefit that no boundary tags are needed
for coalescing—it happens automatically when the bits are set. Finally, free regions
of memory can be searched quickly by looking at several bits at a time and using a
table to determine if that bit pattern could possibly hold an object of the desired

size.

2.4.3 Buddy Systems

Buddy systems [Kno65, PN77] are a variant of segregated lists, supporting a limited
but efficient kind of splitting and coalescing. In the simple buddy schemes, the
entire heap area is conceptually split into two large areas which are called buddies.
These areas are repeatedly split into two smaller buddies, until a sufficiently small
chunk is achieved. This hierarchical division of memory is used to constrain where
objects are allocated, and how they may be coalesced into larger free areas. A free
area may only be merged with its buddy, the corresponding block at the same level
in the hierarchical division. The resulting free block is therefore always one of the
free areas at the next higher level in the memory-division hierarchy. At any level,
the first block of a buddy pair may only be merged with the following block of the
same size; similarly, the second block of a buddy pair may only be merged with the
first, which precedes it in memory. This constraint on coalescing ensures that the
resulting merged free area will always be aligned on one of the boundaries of the

hierarchical division of memory.
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The purpose of the buddy allocation constraint is to ensure that when a block
is freed, its (unique) buddy can always be found by a simple address computation,
and its buddy will always be either a whole, entirely free chunk of memory, or an
unavailable chunk. (An unavailable chunk may be entirely allocated, or may have
been split and have some or all of its sub-parts allocated.) Either way, the address
computation will always be able to locate the buddy’s header—it will never find the
middle of an allocated object.

Buddy coalescing is relatively fast, but perhaps the biggest advantage in
some contexts is that it requires little space overhead per object—only one bit is
required per buddy, to indicate whether the buddy is a contiguous free area. This
can be implemented with a single-bit header per object or free block. Unfortu-
nately, for this to work, the size of the block being freed must be known—the buddy
mechanism itself does not record the sizes of the blocks. This is workable in some
statically-typed languages, where object sizes are known statically and the compiler
can supply the size argument to the freeing routine. In most current languages and
implementations, however, this is not the case due to the presence of variable-sized
objects and/or because of the way libraries are typically linked.

Several significant variations on buddy systems have been devised. Of these,

we studied binary buddies and double buddies.

Binary Buddy

Binary buddy is the simplest and best-known of the buddy systems [Kno65]. In this
scheme, all buddy sizes are a power of two, and each size is divided into two equal
parts. This makes address computations simple, because all buddies are aligned on
a power-of-two boundary offset from the beginning of the heap area, and each bit in
the offset of a block represents one level in the buddy system’s hierarchical splitting

of memory—if the bit is 0, it is the first of a pair of buddies, and if the bit is 1, it
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is the second. These operations can be implemented efficiently with bitwise logical
operations.

A major problem with binary buddies is that internal fragmentation is usually
relatively high—the expected case is about 25%, because any object size must be
rounded up to the nearest power of two (minus a word for the header, if a bit cannot

be stolen from the block given to the language implementation).

Double Buddy

Double buddy [Wis78, PH86| uses a different technique to allow a closer spacing of
size classes. It uses two different buddy systems, with staggered sizes. For example,
one buddy system may use powers-of-two sizes (2, 4, 8, 16, ...) while the other uses
a powers-of-two spacing starting at a different size, such as 3, (the resulting sizes
are 3, 6, 12, 24, ...). Request sizes are rounded up to the nearest size class in either
series. This reduces the internal fragmentation by about half, but means that a

block of a given size can only be coalesced with blocks in the same size series. °

2.4.4 Deferred Coalescing

As we will show in Section 2.12, most programs tend to allocate lots of objects of just
a few sizes, repeatedly. We can take advantage of this behavior by waiting a while
before coalescing free objects, and hoping that another request for an identically-
sized object will occur soon. If such a request for an identically-sized object does
occur soon, then we have saved the cost of first coalescing and then immediately
splitting a chunk of memory. If at some point a request comes in for a block that
cannot be satisfied by any existing free chunk of memory, all free objects are then

coalesced and another attempt is made to satisfy the request. Note that if we keep

°To our knowledge, the implementation we built for the present study may actually be the
only double buddy system in existence, though Page wrote a simulator that is almost an entire
implementation of a double buddy allocator [PHS86].
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the uncoalesced objects in a separate area, we only need to coalesce these objects
when we need more memory, and coalescing costs are no higher than if we had done

the work immediately after the blocks were freed.

Quick Lists

One way to separate free objects that have not been coalesced from those that have
is to create a special list for these objects, and then search this list before looking
for a chunk in the coalesced list. However, a list search can be quite expensive. An
optimization is to pick some small size (say 32 words) above which the allocator will
always immediately coalesce, and create a list for every object size below this limit.
These lists can be accessed from an array with one entry for every size, making the
search extremely fast in the average case. Ounly if this search fails do we need to use
the more general purpose mechanism.

Even if we have one list for every possible chunk size, such that no list search
is ever necessary, it is still important to specify the order in which free objects are
stored in these quick lists. As we will see in Section 2.9, the order of the quick lists

can have a measurable effect on locality.

2.4.5 Splitting Thresholds

Once a block is chosen, the next decision to make is whether to use the entire block,
or to split the chunk into two pieces and save the remainder for a later request. If
the policy dictates that the chunk should be split, it is necessary to determine how
much of the unneeded memory to keep with the object, and how much to keep with
the free chunk. This is essentially the choice of increasing internal fragmentation to

decrease external fragmentation. There are several ways to make this decision:

e always keep blocks at a predetermined size (such as powers of two, or a Fi-

bonacci number),
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e try to split the block into two equal sizes, or

e split the block with a given percentage of the request size as internal fragmen-

tation.

It has long been believed that increasing internal fragmentation to reduce
external fragmentation is a good tradeoff. In fact, buddy systems and simple seg-
regated storage systems depend on this trade-off as a part of their basic policy.
However, one of the results of our research is that this appears to never be a good

choice. We discuss this result in more detail in Section 2.9.

2.4.6 Preallocation

One possible way to speed up the implementation of a memory allocator is to pre-
allocate a number of blocks of a size that is expected to be heavily used. This
heuristic is often compared to getting water from a well: when one needs to get
a cup of water from a well, one does not just get one cup, one gets a bucket full.
In memory allocator terms, if a request comes in for a particular object size, the
allocator finds a suitably large block, splits it into several blocks of this size, and
puts them into a quick list.

What is often not understood about this heuristic is that it also has important
policy implications. Notice that for this heuristic to work, deferred coalescing must
also be implemented. Also, the blocks that are pre-split are no longer available if a
request for a different size needs to be fulfilled. This can eventually lead to a very

different set of blocks being used than if this heuristic had not been implemented.

Half fit & Multi-fits

Another variation on sequential fits, which is also a variation on preallocation is

called a multiple-fit. In this variation, the list of free memory chunks is searched
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for a block that is exactly some multiple of the request size. If such a block is
found, then it is split into several free blocks each being exactly the request size.
This variation also relies on the heuristic that if there is a request for a particular
size, then there is likely to be another request for that same size soon. However,
it is different from normal preallocation in that it attempts to minimize remainder
chunks that are not of a size that can be easily used.

The simplest version of this policy, which we call half fit, is to always look
for a block that is exactly twice the request size and split it into two blocks of the
same size. This version attempts to gain the benefit of preallocating some memory,

without over-committing to block sizes in case the heuristic is wrong.

2.4.7 Wilderness Preservation

The treatment of the last block in the heap—the memory that the allocator most
recently obtained from the operating system—can be quite important. This block
is usually rather large, and a mistake in managing it can be expensive. Since such
blocks are allocated whenever heap memory grows, consistent mistakes could be
disastrous [KV85]. Thus, there is the very important question of how to treat a
virgin block of significant size, to minimize fragmentation. (This block is sometimes
called the “wilderness” [Ste83] to signify that it is as yet unspoiled.)

Consider what happens if a first-fit or next-fit policy is being used, and the
wilderness block is placed at the beginning of the free list. The allocator will most
likely carve many small objects out of the wilderness immediately, greatly increasing
the chances of being unable to recover the contiguous free memory of the block. On
the other hand, putting it on the opposite end of the list will tend to leave it unused
for at least a while, perhaps until it gets used for a larger block or blocks. An
alternative strategy is to keep the wilderness block out of the main ordering data

structure entirely, and only carve blocks out of it when no other usable memory can
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be found.

Korn and Vo call this a “wilderness preservation heuristic,” and report that
it is helpful for some allocators [KV85] (however, no quantitative results are given).
Our results show that for the best allocation policies (best fit and first fit address
ordered), special treatment of the wilderness block is unnecessary. We will describe

this in more detail in Section 2.9.

2.5 Allocator Descriptions

We obtained and/or constructed a variety of allocators, representative of the classes
of allocation policies we described earlier: segregated free lists (simple segregated
storage and segregated fit), sequential fit, and buddy systems, which we describe
here in detail.

The reader may find this section tedious, and it would be acceptable to skim
it on the first reading. However, we have found that seemingly inconsequential
differences in policy can lead to dramatically different fragmentation results (see
Section 2.13) and have taken great pains to adequately describe our allocators. One
of the great disappointments we had while reading the related work was that very
few of the allocators studied were described in enough detail for us to recreate their
results. Thus, we encourage the reader to eventually return to this section, and to
pay careful attention to the details outlined here. We particularly encourage future
researchers to follow our example and explain their allocation policies in sufficient
detail that their experimental results can be repeated.

In the descriptions which follow, unless otherwise noted, all object sizes are
rounded up to the nearest double word (8 bytes or 32 bits),'® and the minimum
object size is four words (16 bytes). Memory is requested from the operating system

in units of 4KB, except for double buddy, which requests an average of bKB at a

10As required by the alignment of double floats on the Sparc architecture.
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time. 1!

2.5.1 Segregated Free Lists

In this section, we present descriptions of our segregated free list allocators: simple
segregated storage (2V and 2V & 3 % 2"V) and segregated fit (Doug Lea’s 2.5.1 and
2.6.1) allocators.

Simple Segregated Storage

This is a very simple segregated storage algorithm that does no coalescing. It
maintains an array of free lists for size classes. The implementations of this allocator
used in our fragmentation studies have no header or footer overhead because no
coalescing is done, and because all objects in a page are of the same size.!? The
versions of this allocator used in our locality studies (Chapter 3) do have a header,
but still have no footer. Objects are placed on and removed from their free lists in
LIFO order. The minimum object size is 16 bytes. We have two implementations

of this algorithm:

o Simple Seg 2V allocates objects in size classes that are powers of two (e.g., 16,
32, 64, etc., bytes). This allocator was originally written by Sheetal Kakkad
for use in the Texas Persistent Store [SKW92], but is very similar to the
widely used and venerable BSD UNIX allocator written by Chris Kingsley
and studied by Zorn and Grunwald [ZG94]. (However, Zorn and Grunwald

incorrectly describe this allocator as a “buddy-based algorithm.”)

"Recall that double buddy actually uses two heap areas. In one heap area memory is requested
from the operating system in units of 4KB, and in the other, memory is requested in units of 6KB.

20nly one word of overhead is required per page (about a tenth of a percent of the heap size).
This word is used for encoding the sizes of objects in a page so that when objects are freed, they
can be placed on the appropriate free list. We ignored this cost because it is negligible given the
slight imprecision in our measurements (see Section 2.8.3).
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o Simple Seg 2V € 3 % 2V is very similar to Simple Seg 2V, but the size classes
are closer together, to decrease internal fragmentation at a possible expense in
external fragmentation. Size classes are powers of two, plus intermediate size
classes that are three times powers of two (e.g., 16, 24, 32, 48, 64, etc., bytes).
The minimum object size is 16 bytes. A simple table lookup technique is used
to make size class determination fast for small objects. In places in this text
where we are constrained for space, we will often abbreviate this allocator as
Simple Seg 3%2%~. This should not be mistaken for an allocator that omits the
2NV size classes. This is another version of the Texas allocator, implemented

by Sheetal Kakkad and Michael Neely.

Segregated Fit

These memory allocators are from Douglas Lea, and are widely distributed and used
with g++ (the GNU C++ compiler). We used three versions: 2.5.1, 2.5.1 with the
footer overhead optimized away, and 2.6.1 (which has no footer overhead). At the

time of this writing, the most recent version is 2.6.4, which we did not study.

e Lea 2.5.1: a “segregated storage” algorithm in the (rather misleading) sense of
Purdom, Stigler, and Cheam [PSC71]. Actual storage is not segregated, and
one-word header and footer fields support boundary-tag coalescing. A set of
free lists is maintained, “segregating” (indexing) free objects by approximate
size to speed up searches. Size classes are powers of two divided linearly in 4
(powers of two give a logarithmic set of size classes, and those sets are sub-
divided into 4 smaller ranges by simple linear division, i.e.: 4, 5, 6, 7; 8, 10,
12, 14; 16, 20, 24, 28; ...words). Each of the resulting size classes has a con-
ventional doubly-linked free list searched using first fit. Several optimizations
support a limited form of deferred coalescing and deferred reuse. Note that

despite using a first-fit mechanism, the use of fairly precise size classes ensures
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that it implements a policy that is very close to best fit.!3 (This has generally

been overlooked.) Minimum object size is 16 bytes.

Lea 2.5.1 no footer: the same allocator as Lea 2.5.1 but with the one-word

footer overhead optimized away as described in Section 2.4.2.

Lea 2.6.1: a revision of previous versions of this allocator. Free blocks are
separated into 128 bins, with one bin for each block size less than 512 bytes.
Objects are sorted by size within bins, with ties broken by an oldest-first rule
(FIFO). Free blocks are immediately coalesced using boundary tags, and the
smallest chunk size is 16 bytes. There are no footers on allocated objects,
making the per-object overhead just 4 bytes. This algorithm more closely
resembles best fit than previous versions with one important modification:
when a block of the exact desired size is not found, the most recently split
object is used (and re-split), if it is big enough; otherwise best fit is used.
For very large objects (greater than 1 megabyte), if the requested space is
not already available the memory is obtained via mmap rather than sbrk, and

treated separately.

2.5.2 Sequential Fits

These allocators use a single free list and Knuth’s boundary tag technique with

a one word header to support coalescing. The versions with “no footer” in their

names have no footer overhead on allocated blocks, whereas the other versions have

a one word footer. The minimum object size is 16 bytes. Block are only split if the

remainder is at least 16 bytes, and the remainder is put back on the free list. No

other splitting threshold is used to trade internal fragmentation for reduced external

13The “first-fit” search within a size class looks for a very good fit (within less than the minimum
object size) and forces coalescing if one is not found. Because blocks of very different sizes are not
considered unless no other free blocks are available, most of the time a good fit will be selected.
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fragmentation. When memory is requested from the operating system, it is always
in 4K increments. The code for these allocators is based on code from Douglas Lea’s
g++ allocator, version 2.5.1, extracted and modified by Michael Neely.

There are three basic policies for searching the free list for a suitable block:

e First fit: a classic first-fit algorithm from Knuth, where the free list is always
searched from the beginning, and the searching always stops as soon as the

first block that is large enough is found.

e Neut fit: a modified first-fit algorithm, using a roving pointer to avoid searching
the list from the beginning each time, in an attempt to prevent the accumu-
lation of small fragments at the beginning of the list. Thus, the search for
a suitable free block begins where the search for the last block left off. The

search always stops as soon as the first block that is large enough is found.

e Best fit: another modified first-fit algorithm. The free list is searched exhaus-
tively or until an exact fit is found. If no exact fit is found, then the smallest

block larger than the requested size is used.

In these policies, newly freed objects, remainders from splitting, and new memory

from the operating system are placed on the free list in one of three ways:

e LIFO: they are the first blocks to be considered for allocation,
e FIFO: they are the last blocks to be considered for allocation, or

o Address Ordered (AO): they are placed on the free list in increasing order
of address, and are only considered for allocation when the normal search

mechanism (first fit, next fit, or best fit) reaches them in the free list.

14This is not intended to be a realistic mechanism; it is simply a test of the best-fit policy.
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Coalescing of both split remainders and/or freed objects is either immediate or

deferred. In the case of deferred coalescing, separate free lists (called quick lists)

are maintained for every size up to 32 words, and objects of 32 words or less are

only coalesced if no suitable block is found for a request. Objects of greater than

32 words are always immediately coalesced. The quick lists can be maintained in

LIFO, FIFO, or address order, independently of whether the main free list is in
LIFO, FIFO, or address order.

The following is a description of each of our sequential fits allocators:

Best fit AO. Uses the best-fit policy, and free memory is maintained in address

order.

Best fit AO 8K. Uses the best-fit policy, free memory is maintained in ad-
dress order, and new memory is requested from the operating system in 8K

Increments.

Best fit AO deferred AO. Uses the best-fit policy, free memory is maintained
in address order, uses deferred coalescing, and the quick lists are maintained

in address order.

Best fit AO deferred FIFQ. Uses the best-fit policy, free memory is maintained
in address order, uses deferred coalescing, and the quick lists are maintained

in FIFO order.

Best fit AO deferred LIFO. Uses the best-fit policy, free memory is maintained
in address order, uses deferred coalescing, and the quick lists are maintained

in LIFO order.

Best fit AO no footer. Uses the best-fit policy, free memory is maintained in

address order, and there is no footer on allocated blocks.
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Best fit FIFQ. Uses the best-fit policy, and free memory is maintained in FIFO

order.

Best fit FIFO no footer. Uses the best-fit policy, free memory is maintained

in FIFO order, and there is no footer on allocated blocks.

Best fit LIFO. Uses the best-fit policy, and free memory is maintained in LIFO

order.

Best fit LIFO deferred AO. Uses the best-fit policy, free memory is maintained
in LIFO order, uses deferred coalescing, and the quick lists are maintained in

address order.

Best fit LIFO deferred FIFO. Uses the best-fit policy, free memory is main-
tained in LIFO order, uses deferred coalescing, and the quick lists are main-

tained in FIFO order.

Best fit LIFO deferred LIFO. Uses the best-fit policy, free memory is main-
tained in LIFO order, uses deferred coalescing, and the quick lists are main-

tained in LIFO order.

Best fit LIFO no footer. Uses the best-fit policy, free memory is maintained

in LIFO order, and there is no footer on allocated blocks.

Best fit LIFO split-14. Uses the best-fit policy, free memory is maintained in
LIFO order, and blocks are only split if the remainder is at least 14% of the

request size.

Best fit LIFO split-7. Uses the best-fit policy, free memory is maintained in
LIFO order, and blocks are only split if the remainder is at least 7% of the

request size.
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First fit AQO. Uses the first-fit policy, and free memory is maintained in address

order.

First fit AO 8K. Uses the first-fit policy, free memory is maintained in address

order, and memory is requested from the operating system in 8K increments.

First fit AO deferred AO. Uses the first-fit policy, free memory is maintained
in address order, uses deferred coalescing, and the quick lists are maintained

in address order.

First fit AO deferred FIFO. Uses the first-fit policy, free memory is maintained
in address order, uses deferred coalescing, and the quick lists are maintained

in FIFO order.

First fit AO deferred LIFO. Uses the first-fit policy, free memory is maintained
in address order, uses deferred coalescing, and the quick lists are maintained

in LIFO order.

First fit AO no footer. Uses the first-fit policy, free memory is maintained in

address order, and there is no footer on allocated blocks.

First fit FIFO. Uses the first-fit policy, and memory is maintained in FIFO

order.

First fit FIFO no footer. Uses the first-fit policy, memory is maintained in

FIFO order, and there is no footer on allocated blocks.

First fit LIFO. Uses the first-fit policy, and memory is maintained in LIFO

order.

First fit LIFO deferred LIFO. Uses the first-fit policy, free memory is main-
tained in LIFO order, uses deferred coalescing, and the quick lists are main-

tained in LIFO order.
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First fit LIFO no footer. Uses the first-fit policy, memory is maintained in

LIFO order, and there is no footer on allocated blocks.

First fit LIFO split-14. Uses the first-fit policy, free memory is maintained in
LIFO order, and blocks are only split if the remainder is at least 14% of the

request size.

First fit LIFO split-7. Uses the first-fit policy, free memory is maintained in
LIFO order, and blocks are only split if the remainder is at least 7% of the

request size.

Half fit. This is a best-fit policy with the addition that blocks that are exactly

twice as large as the request size are preferentially selected.

Multi-fit Maz. This is a best-fit policy with the addition that the largest block

that is an exact multiple of the request size is preferentially selected.

Multi-fit Min. This is a best-fit policy with the addition that the smallest
block that is an exact multiple, and at least twice as big as, the request size

is preferentially selected.

Next fit AO. Uses the next-fit policy, and free memory is maintained in address

order.

Next fit AO 8K. Uses the next-fit policy, free memory is maintained in address

order, and memory is requested from the operating system in 8K increments.

Next fit AO deferred AQ. Uses the next-fit policy, free memory is maintained
in address order, uses deferred coalescing, and the quick lists are maintained

in address order.

Nezxt fit AO deferred FIFO. Uses the next-fit policy, free memory is maintained

in address order, uses deferred coalescing, and the quick lists are maintained

54



in FIFO order.

Nezxt fit AO deferred LIFO. Uses the next-fit policy, free memory is maintained
in address order, uses deferred coalescing, and the quick lists are maintained

in LIFO order.

Next fit AO no footer. Uses the next-fit policy, free memory is maintained in

address order, and there is no footer on allocated blocks.

Next fit FIFO. Uses the next-fit policy, and free memory is maintained in FIFO

order.

Next fit FIFO no footer. Uses the next-fit policy, memory is maintained in

FIFO order, and there is no footer on allocated blocks.

Next fit LIFO. Uses the next-fit policy, and free memory is maintained in LIFO

order.

Next fit LIFO deferred LIFO. Uses the next-fit policy, free memory is main-
tained in LIFO order, uses deferred coalescing, and the quick lists are main-

tained in LIFO order.

Next fit LIFO no footer. Uses the next-fit policy, memory is maintained in

LIFO order, and there is no footer on allocated blocks.

Next fit LIFO split-14. Uses the next-fit policy, free memory is maintained in
LIFO order, and blocks are only split if the remainder is at least 14% of the

request size.

Next fit LIFO split-7. Uses the next-fit policy, free memory is maintained in
LIFO order, and blocks are only split if the remainder is at least 7% of the

request size.
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e Next fit LIFO WPH. Uses the next-fit policy, free memory is maintained in

LIFO order, and uses the wilderness preservation heurstic.

2.5.3 Buddy Systems

We have implemented three buddy system allocators. All have a one word header

and no footer overhead. The minimum object size for all three allocators is 16 bytes.

e Binary Buddy: a classic binary buddy system. Memory is allocated in size
classes that are powers of two, (i.e., 4, 8, 16, 32, ...words). Memory is re-
quested from the operating system in 4K increments. This memory alloca-
tor was originally implemented for the COSMOS circuit simulator [BBB*88,
Bea97].

e Double Buddy 5K: a double buddy system, using a pair of buddy systems to
manage memory for two different (staggered) sets of power-of-two size classes.
One buddy system manages memory for size classes that are powers of two,
(i.e., 4, 8, 16, 32, ... words) the other for three times powers of two (i.e., 6, 12,
24, 48, ...words). In this implementation, memory reclaimed in one buddy
system is not available for use in the other, sometimes limiting the effectiveness
of coalescing. Memory is requested from the operating system in 4K and 6K

increments (averaging to 5K increments).

e Double Buddy 10K: the same allocator as double buddy 5K, except that mem-
ory is requested from the operating system in 8K and 12K increments (aver-

aging to 10K increments).

2.5.4 The Selected Allocators

The following ten allocation policies are a representative sampling of the major

allocation policies we studied for this dissertation:
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e Binary buddy

e Double buddy 5K

e Best fit LIFO no footer (nf)

e First fit AO no footer (nf)

e First fit LIFO no footer (nf)

e Half fit

e Lea 2.6.1

e Next fit LIFO no footer

e Simple segregated storage 2V

e Simple segregated storage 2V & 3 x 2%V

We will present numbers for this subset of our allocation policies in the main
body of this dissertation, in order to keep the discussion manageable. We present
the full results in Appendices A and B. However, when small policy changes do make
a large difference, and these differences are not reflected in our selected allocators,

we will point them out in the body of this dissertation.

2.6 The Test Programs

For our test programs, we used eight varied C and C++ programs that run under
UNIX (SunOS 5.5). These programs allocate between about 1.3 and 104 megabytes
of memory during a run, and have a maximum of between 69 KB and 2.3 MB of live
data at some point during execution. On average they allocate 27 MB total data,
and on average have a maximum of about 966K live data at some point during their

run. Three of our eight programs were used by Zorn and Grunwald, et al., in earlier
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studies. We use these three to attempt to provide some points of comparison while

also using new and different memory-intensive programs.

2.6.1 Test Program Selection Criteria

We chose allocation-intensive programs because they are the programs for which
allocator differences matter most. Similarly, we chose programs that have a large
amount of live data because those are the ones for which space costs matter most.
Another practical consideration is that some of our measurements of memory usage
may introduce errors of up to 4 or 5 KB in bad cases; we wanted to ensure that the
errors were generally small relative to the actual memory usage and fragmentation.

More importantly, some of our allocators are likely to incur extra overhead for
small heap sizes, because they allocate in more than one area; they may have several
partly-used pages, and unused portions of those pages may have a pronounced effect
when heap sizes are very small. We think that such relatively fixed costs are less
significant than the allocators’ scalability to medium- and large-sized heaps.!®

We obtained a wide variety of traces, including several that are widely used
as well as CPU- and memory-intensive. In selecting the programs from many
that we had obtained, we ruled out several for various reasons. We attempted
to avoid over-representation of particular program types, i.e., too many programs
that did the same thing. In particular, we avoided having several scripting language
interpreters—even though such programs are generally portable, widely available,
and widely used, they typically are not performance-critical; their memory use typ-
ically does not have a very large impact on overall system resource usage.

We ruled out some programs that appeared to “leak” memory, i.e., failed to

5Two programs used by Zorn and Grunwald [ZG92] and by Detlefs, Dosser, and Zorn [DDZ93],
which we did not use, have heaps that are quite small: Cfrac only uses 21.4 KB and Gawk only
uses 41 KB, which are only a few pages on most modern machines. Measurements of CPU costs for
these programs are interesting, because they are allocation-intensive, but measurements of memory
usage are less useful, and have the potential to obscure scalability issues with boundary effects.
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discard objects at the proper point, and led to a monotonic accumulation of garbage
in the heap. One of the programs we chose, P2C, is known to leak under some
circumstances, and we left it in after determining that it could not be leaking much
during the run we traced. Its basic memory usage statistics are not out of line with
our other programs: it deallocates over 90% of all allocated bytes, and its average
object lifetime is lower than most. Our justification for including this program is that
many programs do in fact leak, so having one in our sample is not unreasonable. It
is a fact of life that deallocation decisions are often extremely difficult for complex
programs, and programmers often knowingly choose to let programs leak on the
assumption that over the course of a run the extra memory usage is acceptable.!®
They choose to have poorer resource usage because attempts at plugging the leaks
often result in worse bugs—dereferencing dangling pointers and corrupting data
structures.

We should note here that in choosing our set of traces, among the traces
we excluded were three that did very little freeing, i.e., all or nearly all allocated
objects live until the end of execution. (Two of these were the PTC and YACR
programs from Zorn et al.’s experiments.)!” We believe that such traces are less
interesting because any good allocator will do well for them. This biases our sample
slightly toward potentially more problematic traces, which have more potential for

fragmentation. Our suite does include one almost non-freeing program, LRUsim,

which is the only non-freeing program we had that we were sure did not leak.

5One very memory-intensive program which we considered, we did not use because it had serious
leaks. These leaks survived three months of highly-skilled programmers’ attempts at fixing them.
Rather than restructuring their entire program and losing much of its modularity solely to allow
objects to be correctly allocated, they eventually chose to use the Boehm-Weiser conservative
garbage collector.

17Other programs were excluded because they had too little live data (e.g., LaTeX), or because
we could not easily figure out whether their memory use was hand-optimized, or because we judged
them too similar to other programs we chose.
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Kbytes run max num max avg
program alloc’d | time | objects | objects | Kbytes | lifetime
Espresso 104,388 146 4,390 | 1,672,889 263 | 15,478
GCC 17,972 167 | 86,872 721,353 2,320 | 926,794
Ghostscript | 48,993 53 | 15,376 566,542 1,110 | 786,699
Grobner 3,986 8 | 11,366 163,310 145 | 173,170
Hyper 7,378 131 297 108,720 2,049 | 10,531
LRUsim 1,397 | 29,940 | 39,039 39,103 1,380 | 701,598
P2C 4,641 30 | 12,652 194,997 393 | 187,015
Perl 33,041 114 1,971 | 1,600,560 69 | 39,811
Average 27,725 | 3,823 | 21,495 633,434 966 | 355,137

Table 2.1: Basic statistics for the eight test programs

2.6.2 The Selected Test Programs

We used eight programs because this was sufficient to obtain statistical significance
for our major conclusions. (Naturally it would be better to have even more, but
for practicality we limited the scope of these experiments to eight programs and a
comparable number of basic allocation policies to keep the number of combinations
reasonable.) Whether the programs we chose are “representative” is a difficult
subjective judgment: we believe they are reasonably representative of applications
in conventional, widely-used languages (C and C++), however we encourage others
to try our experiments with new programs to see if our results continue to hold true.

Table 2.1 gives some basic statistics for each of our eight test programs:

e the Kbytes alloc’d column gives the total allocation in Kilobytes over a whole

run;

e the run time column gives the running time in seconds on a Sun SPARC ELC,
an 18.2 SPECint92 processor, when linked with the standard SunOS allocator

(a Cartesian-tree based “better-fit” (indexed-fits) allocator);

e the maz objects column gives the maximum number of live objects at any time
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during the run of the program;

e the num objects column gives the total number of objects allocated over the

life of the program;

e the mazr Kbytes column gives the maximum number of kilobytes of memory
used by live objects at any time during the run of the program!® (note that
if the average size of objects varies over time, the maximum live objects and

maximum live bytes might not occur at the same point in a trace); and

e the avg lifetime column gives the average object lifetime in bytes, which is the
number of bytes allocated between the birth and death of an object, weighted
by the size of the object (that is, it is really the average lifetime of an allocated

byte of memory).

Descriptions of the programs follow, to allow others to assess how represen-

tative our sample is for their own workloads.

o FEspresso is a widely used optimizer for programmable logic arrays. The file

largest.espresso, provided by Ben Zorn, was used as the input.

e GCC is the main process (ccl) of the GNU C compiler (version 2.5.1). We
constructed a custom tracer that records obstack'® allocations to obtain this
trace, and built a postprocessor to translate the use of obstack memory into
equivalent malloc() and free() calls.?’ The input data for the compilation

was the the largest source file of the compiler itself (combine.c).?!

18This is the maximum of the number of kilobytes in use by the program for actual object data,
not the number of bytes used by any particular allocator to service those requests.

9Obstacks are an extension to the C language, used to optimize the allocation and deallocation
objects in stack-like ways. A similar scheme is described in [Han90].

20Tt is our belief that we should study the behavior of the program without hand-optimized
memory allocation, because a well-designed allocator should usually be able to do as well as or better
than most programmers’ hand optimizations. Some support for this idea comes from [Zor93], which
showed that hand optimizations usually do little good compared to choosing the right allocator.
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e Ghost is Ghostscript, a widely-used portable interpreter for the Postscript
(page rendering) language, written by Peter Deutsch and modified by Zorn,
et al., to remove hand-optimized memory allocation [Zor93]. The input was
manual .ps, the largest of the standard inputs available from Zorn’s ftp site.
This document is the 127-page manual for the Self system, consisting of a mix

of text and figures.??

e Grobner is (to the best of our very limited understanding) a program that
rewrites a mathematical function as a linear combination of a fixed set of

Grobner basis functions.?3

e Hyper is a hypercube network communication simulator written by Don Lind-
say. It builds a representation of a hypercube network, then simulates random
messaging, accumulating statistics about messaging performance. The hyper-
cube itself is represented as a large array, which essentially lives for the entire
run; each message is represented by a small heap-allocated object, which lives
very briefly—only long enough for the message to get where it is going, which

is a tiny fraction of the length of the run.

e LRUsim is an efficient locality analyzer written by Douglas Van Wieren. It
consumes a memory reference trace and generates a grey-scale Postscript plot
of the evolving locality characteristics of the traced program. Memory usage

is dominated by a large AVL tree?* which grows monotonically. A new entry

*1Because of the way the GNU C compiler is distributed, this is a very common workload—
people frequently down-load a new version of the compiler, compile it with an old version, then
recompile it with itself twice as a cross-check to ensure that the generated code does not change
between self-compiles (i.e., it reaches a fixed point).

22Note that this is not the same input set as used by Zorn, et al., in their experiments: they used
an unspecified combination of several programs. We chose to use a single, well-specified input file
to promote replication of our experiments.

23 Abstractly, this is roughly similar to a Fourier analysis, decomposing a function into a com-
bination of other, simpler functions. Unlike a Fourier analysis, however, the process is basically
one of rewriting symbolic expressions many times, something like rewrite-based theorem proving,
rather than an intense numerical computation over a fixed set of array elements.
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is added whenever the first reference to a block of memory occurs in the trace.

Input was a reference trace of the P2C program.?

e P2C is a Pascal-to-C translator, written by Dave Gillespie at Caltech. The
test input was mf . p (part of the Tex release). Note: although this translator is
from Zorn’s program suite, this is not the same Pascal-to-C translator (PTC)
Zorn et al. used in their studies. This one allocates and deallocates more

memory, at least for this input.

e Perlis the Perl scripting language interpreter (version 4.0) interpreting a Perl
program that manipulates a file of strings. The input, adj.perl, formatted
the contents of a dictionary into filled paragraphs. Hand-optimized memory

allocation was removed by Zorn [Zor93].

2.7 Trace-Driven Memory Simulation

Trace-driven memory simulation [UM97] is the process of capturing a trace of the
events of interest (instructions, loads, and stores, or allocation and deallocation
requests) of actual programs running on actual hardware, and then using these
traces to simulate and study different computer designs. The idea of trace-driven

memory simulation is not new. In his survey of cache memories, A. J. Smith [Smi82]

?The AVL tree is used to implement a least-recently-used ordering queue. The AVL tree im-
plementation was enhanced to maintain a count at each node of the descendents to the left of the
node, used to compute the LRU queue position of a node in logarithmic time, as well as supporting
logarithmic time deletion and insertion to move a node to the beginning of the queue when the
block it represents is referenced.

?The memory usage of LRUsim is not sensitive to the input, except in that each new block
of memory touched by the traced program increases the size of the AVL tree by one node. The
resulting memory usage is always non-decreasing, and no dynamically allocated objects are ever
freed except at the end of a run. We therefore consider it reasonable to use one of our other
test programs to generate a reference trace, without fearing that this would introduce correlated
behavior. (The resulting fragmentation at peak memory usage is insensitive to the input trace,
despite the fact that total memory usage depends on the number of memory blocks referenced in
the trace.)
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gives examples of trace-driven memory system studies that date back to 1966. Trace-

driven memory simulation typically consists of three stages:

1. Trace collection is the process of recording the exact sequence of memory ref-
erences (instruction and data) of a program. A modern computer can generate

several hundred million trace elements per second.

2. Trace reduction is the process of reducing these trace elements to a more
manageable number, and/or selecting the events of interest in the simulation

(e.g., the data loads and stores for the simulation of a data cache).

3. Trace processing is the process of using the reduced trace to simulate the part

of the computer system under study.

We used trace-driven memory simulation in this research for both our frag-
mentation studies and our locality studies (Chapter 3). For our fragmentation stud-
ies, we collected and processed traces of the malloc, realloc, and free calls of our
test programs by using a specially modified memory allocator that recorded these
events to disk as the test programs ran. For our locality studies, we collected and
processed the data loads and stores of our test programs by using the Shade trace
gathering tool [CK93]. These traces were processed on-line by piping directly from

Shade to the processing tools (see Section 3.5).

2.8 Experimental Design

A goal of this research is to measure the true fragmentation costs of particular
memory allocation policies independently of their implementations. In this section
we will describe how we achieved this goal.

The first step was to write substitutes for malloc, realloc, and free that

perform the basic malloc functions and, as a side-effect, create a trace of the memory
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allocation activity of the program. This trace is made up of a series of records, each

containing:
e the type of operation performed (malloc, realloc, free),

e the memory location affected (for malloc, this was the memory location re-
turned by malloc; for realloc and free, this was the memory location passed

by the application), and

e the number of bytes requested (for free, this was 0).

The second step was to build a trace processor that reads a trace and pro-

duces basic statistics about the trace:

the number of objects allocated,

the number of bytes allocated,

the average object size,

the maximum number of bytes live at any one time for the entire trace, and

the maximum number of objects live at any one time for the entire trace.

The third step was to build a trace processor that reads a trace and calls
malloc, realloc, and free of an implementation of the allocation policy under
study. We modified each of these allocators to keep track of the total number of
bytes requested from the operating system. With this information, and the maxi-
mum number of live bytes for the trace, we can determine the fragmentation for a
particular program using a particular implementation of a memory allocation policy.

However, as we will discuss in the next few subsections, this is not a good
measure of the actual fragmentation caused by the policy, but instead reflects many

artifacts of the implementation. We will present the results for this most simple
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approach, and then we will remove each of the artifacts, showing how each affected
our experimental results, until we finally arrive at numbers that measure just policy
considerations. We will present numbers averaged across all eight of our test pro-
grams. The interested reader can see Appendix A for the results of the individual
test programs.

Note that we express fragmentation in terms of percentages over and above
the amount of live data, i.e., increase in memory usage, not the percentage of actual
memory usage that is due to fragmentation. (The baseline is therefore what might

result from a perfect allocator that could somehow achieve zero fragmentation.)

2.8.1 Our Measure of Time

Throughout this chapter when we talk about time (unless otherwise specified), we
measure time normalized to the rate of allocation. Thus, if we say that something
takes one megabyte to happen, we mean that one megabyte of memory has been
allocated between the beginning and the end of the event. We believe that this is a
more interesting measure of time than standard wall-clock time because it normalizes
time to something in which we are interested: namely the rate of allocation. In other
words, when we are talking about memory fragmentation, a program that allocates
a lot of memory in short bursts with long time periods (in wall-clock) of no memory
allocation in between is just as interesting than a program that allocates the same

amount of memory slowly and steadily.
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2.8.2 Owur Measure of Fragmentation
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Figure 2.1: Measurements of fragmentation for GCC using simple segregated 2V

(top line: memory used by allocator; bottom line: memory requested by allocator)

There are a number of legitimate way to measure fragmentation. We use Figure
2.1 to illustrate four of these, and to explain the method we chose to use. Figure
2.1 is a trace of the memory usage of the GCC compiler, compiling the combine.c
program, using the simple segregated 2V allocator. The lower line is the amount
of memory requested by GCC (in kilobytes) which is currently live. The upper line
is the amount of memory actually used by the allocator to satisfy GCC’s memory
requests.

The four ways to measure fragmentation for a program which we considered

are:

1. The amount of memory used by the allocator relative to the amount of memory

requested by the program, averaged across all points in time: In Figure 2.1,
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this is equivalent to averaging the fragmentation for each corresponding point
on the upper and lower lines for the entire run of the program. For the
GCC program using the simple seg 2%V allocator, this measure yields 258%
fragmentation. The problem with this measure of fragmentation is that it
tends to hide the spikes in memory usage, and it is at these spikes where

fragmentation is most likely to be a problem.

. The amount of memory used by the allocator relative to the maximum amount
of memory requested by the program at the point of mazimum live memory:
In Figure 2.1 this corresponds to the amount of memory at point 1 relative to
the amount of memory at point 2. For the GCC program using the simple seg
2V allocator, this measure yields 39.8% fragmentation. The problem with this
measure of fragmentation is that the point of maximum live memory is usually
not the most important point in the run of a program. The most important
point is likely to be a point where the allocator must request more memory

from the operating system.

. The maximum amount of memory used by the allocator relative to the amount
of memory requested by the program at the point of mazimal memory usage:
In Figure 2.1 this corresponds to the amount of memory at point 3 relative to
the amount of memory at point 4. For the GCC program using the simple seg
2N allocator, this measure yields 462% fragmentation. The problem with this
measure of fragmentation is that it will tend to report high fragmentation for
programs that use only slightly more memory than they request if the extra

memory is used at a point where only a minimal amount of memory is live.

. The maximum amount of memory used by the allocator relative to the maxi-
mum amount of live memory: These two points do not necessarily occur at the

same point in the run of the program. In Figure 2.1 this corresponds to the
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amount of memory at point 3 relative to the amount of memory at point 2.
For the GCC program using the simple seg 2"V allocator, this measure yields
100% fragmentation. The problem with this measure of fragmentation is that
it can yield a number that is too low if the point of maximal memory usage is
a point with a small amount of live memory and is also the point where the

amount of memory used becomes problematic.

We chose the last of these definitions: the maximum amount of memory used
by the allocator relative to the maximum amount of memory requested by the pro-
gram (points 3 and 2). This measure of fragmentation indicates how much memory
is required to run a given program. However, the other measures of fragmentation
are also interesting, and deserve future study. Unfortunately, there is no right point
at which to measure fragmentation. If fragmentation appears to be a problem for a
program, it is important to identify the conditions under which it is a problem and
measure the fragmentation for those conditions. For many programs, although frag-
mentation will not be a problem at all, allocation policy is still important because
allocator placement choices can have a dramatic effect on locality (as we show in

Chapter 3).

2.8.3 Experimental Error

In this research, we worked very hard to remove as much measurement error as
possible. In this section, we will describe the error which remains.

The most important experimental error comes from the way our allocators
request memory from the operating system (using the sbrk UNIX system call). Most
of our allocators request their memory in 4K byte blocks. Thus, any measurement
of the heap size of a program using a particular allocator can be an over-estimate
by as much as 4K bytes. This error is even larger for four of our allocators (double

buddy 5K, double buddy 10K, simple segregated 2, and simple segregated 2V &
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3 % 2V). However, for our final numbers, after factoring out all overheads (Section
2.8.7), this error is just 256 bytes.

The double-buddy allocators (double buddy 5K and double buddy 10K) each
request memory from the operating system in two different sizes. The double-buddy
5K allocator requests memory from the operating system in 4K and 6K sizes, yielding
an average size of 5K. The double-buddy 10K allocator requests memory from the
operating system in 8K and 12K sizes, yielding an average size of 10K. Thus, these
allocators can yield an over-estimate of the memory used of up to 5K and 10K
respectively (320 bytes and 640 bytes for our final numbers).

The simple segregated storage allocators (simple seg 2V and simple seg 2V
& 3 % 2N) both perform no coalescing. Each size class can contribute to an over-
estimate by as much as 4K bytes. Thus, for the simple seg 2V, and the simple
seg 2V & 3 % 2V allocators, the measure of the amount of memory used can be an
over-estimate by as much as 4K times the number of size classes, which is roughly
4K xIn(largest_size — smallest_size), and 4K * 2 x In(largest_size — smallest_size)

(one sixteenth of this value for our final numbers).

2.8.4 Our Use of Averages

In this dissertation, we follow [FW86, PH96] when we present averages. If the
numbers being averaged are simple numbers, such as the fragmentation of a program
given a particular allocator, we use the arithmetic mean. If the numbers being
averaged are normalized to some consistent reference, such as the fragmentation
of a given allocator normalized to the fragmentation of best fit, then we use the
geometric mean. Finally, if the numbers being averaged are rates, such as a cache

miss rate, then we use the harmonic mean. In all cases, the averages are unweighted.
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‘ Allocator name ‘ % Waste H Allocator name ‘ % Waste ‘
first fit AO 8K 34.65% | multi-fit min 34.37%
best fit AO 8K 34.47% || next fit AO 38.32%
best fit FIFO 33.41% | next fit AO no footer 26.86%
best fit FIFO no footer 22.44% || next fit AO def AO 38.82%
best fit AO 33.41% || next fit FIFO 42.60%
best fit AO no footer 22.49% || next fit FIFO no footer | 31.52%
Lea 2.6.1 23.58% || Lea 2.5.1 41.83%
best fit LIFO 33.54% || Lea 2.5.1 no footer 30.94%
best fit LIFO no footer 22.44% || next fit AO def LIFO 40.34%
first fit AO 33.17% || next fit AO def FIFO 43.41%
first fit AO no footer 22.14% || next fit LIFO def LIFO 56.28%
best fit LIFO split-7 33.66% | first fit LIFO def LIFO 57.40%
best fit LIFO split-14 34.02% || double buddy 5K 46.22%
first fit AO def AO 32.46% || double buddy 10K 46.18%
first fit AO def LIFO 33.58% || next fit LIFO WPH 66.37%
first fit FIFO 33.86% | first fit LIFO 66.25%
first fit FIFO no footer 22.83% || first fit LIFO no footer 56.40%
best fit AO def AO 32.46% | first fit LIFO split-7 67.07%
first fit AO def FIFO 34.61% | first fit LIFO split-14 67.35%
best fit LIFO def AO 32.46% | next fit LIFO 71.78%
best fit LIFO def LIFO 33.90% || next fit LIFO no footer 58.86%
best fit LIFO def FIFO 34.61% || next fit LIFO split-7 70.07%
best fit AO def LIFO 33.90% || next fit LIFO split-14 70.53%
best fit AO def FIFO 34.61% || binary buddy 74.11%
multi-fit max 35.32% || simple seg 2V & 3 %2V | 72.54%
next fit AO 8K 39.28% || simple seg 2V 84.81%
half fit 33.88%

‘ Average: ‘ 42.50% ‘

Table 2.2: Percentage waste for all allocators averaged across all programs
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2.8.5 Total Memory Usage

In Table 2.2 we present the amount of memory wasted by each of our allocators, as
a percentage of the amount of live data at peak memory usage (the allocators are
sorted from lowest fragmentation to highest fragmentation for our final experiments
(Table 2.4)). The column labeled “Waste” shows the amount of fragmentation for
our implementation of each allocation policy. Here, we can see that the best fit
(LIFO, FIFO, and AO) no footer, first fit (FIFO and AO) no footer, next fit AO no
footer, and Lea’s 2.6.1 allocators all perform relatively well (less than 30% average
fragmentation), particularly compared to the average of 42.50% waste.

However, what we want to measure is the fragmentation of the policy, and
not the implementation. In particular, some of these implementations use footers
on the objects, and some do not. Additionally, some of these policies can be easily
implemented without any headers or footers at all. So, the next step is to account
for header and footer overhead to avoid introducing implementation artifacts into

our measurements.

2.8.6 Accounting for Headers and Footers

To account for the cost of headers and footers in the implementation of our allocator
policies, we modified each memory allocator to tell our simulator how many bytes it
had dedicated to header and footer information. We were then able to use the fact
that the minimum object size for all of our allocators was 16 bytes (no allocator used
more than 16 bytes for its internal data structures) to account for this overhead in
the following way: for each malloc or realloc request that our simulator processed, it
asked the allocator for the number of bytes in the trace minus the number of bytes
in the header and footer for the allocator being simulated. We are able to do this
because we are only simulating the program (from an actual trace), and the memory

allocated is unused.
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‘ Allocator name ‘ % Frag H Allocator name ‘ % Frag ‘

first fit AO 8K 16.91% || multi-fit min 17.62%
best fit AO 8K 16.24% || next fit AO 18.55%
best fit FIFO 14.36% || next fit AO no footer 18.55%
best fit FIFO no footer | 14.36% || next fit AO def AO 21.50%
best fit AO 14.36% || next fit FIFO 24.97%
best fit AO no footer 14.36% || next fit FIFO no footer | 24.97%
Lea 2.6.1 14.45% || Lea 2.5.1 25.48%
best fit LIFO 14.45% || Lea 2.5.1 no footer 25.48%
best fit LIFO no footer | 14.45% || next fit AO def LIFO 24.64%
first fit AO 14.41% || next fit AO def FIFO 24.28%

first fit AO no footer 14.43% || next fit LIFO def LIFO | 41.07%
best fit LIFO split-7 14.71% || first fit LIFO def LIFO | 43.58%

best fit LIFO split-14 15.99% || double buddy 5K 42.15%
first fit AO def AO 15.23% || double buddy 10K 41.49%
first fit AO def LIFO 13.72% | next fit LIFO WPH 47.31%
first fit FIFO 14.70% | first fit LIFO 49.49%
first fit FIFO no footer | 17.52% || first fit LIFO no footer | 47.40%
best fit AO def AO 14.51% || first fit LIFO split-7 48.57%
first fit AO def FIFO 15.85% || first fit LIFO split-14 49.41%
best fit LIFO def AO 14.42% || next fit LIFO 51.81%

best fit LIFO def LIFO | 14.39% || next fit LIFO no footer | 51.81%
best fit LIFO def FIFO | 15.85% || next fit LIFO split-7 51.58%
best fit AO def LIFO 14.58% || next fit LIFO split-14 52.54%

best-fit AO def FIFO 17.08% || binary buddy 62.35%
multi-fit max 16.21% || simple seg 2V & 3 %2V | 72.54%
next fit AO 8K 20.44% || simple seg 2V 84.81%
half fit 14.39%

| Average: ‘ 27.85% |

Table 2.3: Percentage fragmentation (accounting for headers and footers) for all
allocators averaged across all programs
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In Table 2.3, we present the fragmentation for each of our allocators with
header and footer costs removed. Note that now the best allocators all have around
one half of the fragmentation of the average allocator, and that the best allocators
all have around 15% fragmentation.

These numbers seem pretty good. Many people would be happy if their
memory allocator only wasted an average of 15% of the heap memory due to frag-
mentation. However, for some applications, even 15% is too much memory to waste.
So, this leads to the question: “can we develop a policy that can do even better?” As
we will see after we account for the last overhead, for the measure of fragmentation

that we chose the answer is no.

2.8.7 Accounting for Minimum Alignment and Object Size

All modern hardware requires that objects follow some form of alignment con-
straints. Some hardware, such as the Sparc architecture, requires that double float-
ing point values be aligned on 8-byte boundaries (e.g., memory location 0, 8, 16,
etc., but not memory locations 4, 12, 20, etc.). Since our allocation policies were
implemented and tested on Sparc machines, they all obey this 8-byte alignment
constraint. In fact, no allocator can avoid this cost on this machine.

An additional overhead of our implementations is that the minimum object
size is 16 bytes. So, even if the program asked for a mere 1 byte of memory, in all
cases it got 16 bytes. This overhead is strictly an implementation cost, and not a
policy cost.

To account for these overheads, we multiplied every malloc/realloc request by
16, and then divided the final amount of heap memory used by 16, to account for the
factor of 16 in the request sizes. Because all allocation requests are now multiples
of 16, and the smallest request is 16 bytes, the allocator need do no rounding of

memory requests. This leads us to the results in Table 2.4.
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2.9 Actual Fragmentation Results

In Table 2.4, we see that the two best allocation policies, first fit addressed-ordered
free list with 8K allocation, and best fit addressed-ordered free list with 8K allo-
cation, both suffer from less than 1% actual fragmentation. This is more than 17
times better than the average allocator, and more than 88 times better than the
worst allocator. In addition, 25 of our allocators had less than 5% actual fragmen-
tation. The worst of our allocators, those having over 50% fragmentation, tried
to trade increased internal fragmentation for reduced external fragmentation, and
did not coalesce all possible blocks, giving further evidence that this is not a good
policy decision. If these results hold up to further study with additional programs
we arrive at a startling conclusion: fragmentation is a solved problem, and it has
been solved for over 30 years.

In terms of rank order of allocator policies, these results contrast with tra-
ditional simulation results, where best fit usually performs well but is sometimes
outperformed by next fit (e.g., in Knuth’s small but influential study [Knu73]). In
terms of practical application, we believe this is one of our most significant findings.
Since segregated fit (as exemplified by Lea’s 2.6.1 allocator) implements an approx-
imation of best fit fairly efficiently, it shows that a reasonable approximation of a

best-fit policy is both desirable and achievable.

2.9.1 Fragmentation for Selected Allocators for Each Trace

Table 2.5 shows the percentage actual fragmentation for each of the selected allo-
cators, for each trace. The complete table of percentage actual fragmentation for
all allocators, for each trace, can be seen in Appendix A. It is particularly interest-
ing to note how high the standard deviation is for first fit LIFO and next fit LIFO.
These allocators actually perform quite well on two of our test programs: Hyper and

LRUsim. However, they perform disastrously on one program: Ghostscript. At the

75



‘ Allocator name ‘ % Frag H Allocator name ‘ % Frag ‘

first fit AO 8K 0.77% | multi-fit min 6.38%
best fit AO 8K 0.83% || next fit AO 8.04%
best fit FIFO 2.23% || next fit AO no footer 8.04%
best fit FIFO no footer | 2.23% | next fit AO def AO 16.60%
best fit AO 2.27% || next fit FIFO 18.37%
best fit AO no footer 2.27% || next fit FIFO no footer | 18.37%
Lea 2.6.1 2.27% || Lea 2.5.1 19.38%
best fit LIFO 2.30% || Lea 2.5.1 no footer 19.38%
best fit LIFO no footer | 2.30% || next fit AO def LIFO 19.52%
first fit AO 2.30% || next fit AO def FIFO 21.03%
first fit AO no footer 2.30% || next fit LIFO def LIFO | 29.82%
best fit LIFO split-7 2.41% | first fit LIFO def LIFO | 32.54%
best fit LIFO split-14 3.03% || double buddy 5K 34.25%
first fit AO def AO 3.10% || double buddy 10K 34.27%
first fit AO def LIFO 3.10% | next fit LIFO WPH 34.64%
first fit FIFO 3.14% | first fit LIFO 36.24%
first fit FIFO no footer 3.14% || first fit LIFO no footer | 36.24%
best fit AO def AO 3.79% || first fit LIFO split-7 36.59%
first fit AO def FIFO 3.91% || first fit LIFO split-14 38.11%
best fit LIFO def AO 3.98% || next fit LIFO 38.45%
best fit LIFO def LIFO | 4.53% || next fit LIFO no footer | 38.45%
best fit LIFO def FIFO 4.70% || next fit LIFO split-7 39.05%
best fit AO def LIFO 4.72% | next fit LIFO split-14 | 39.38%
best fit AO def FIFO 4.94% || binary buddy 53.35%
multi-fit max 5.40% || simple seg 2%V & 3 % 2N | 61.50%
next fit AO 8K 5.55% || simple seg 2 73.61%
half fit 6.01%
| Average: ‘ 16.96% |

Table 2.4: Percentage fragmentation (accounting for headers, footers, minimum
object size, and minimum alignment) for all allocators averaged across all programs
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same time, the best fit LIFO no footer, first fit address ordered no footer, and Lea’s
2.6.1 allocators all perform quite well on all of the test programs. Perl is the only
program for which they have any real fragmentation (10%), and that program only
has 70K bytes maximum live data. Because all of the allocators allocate memory
in 4K chunks, we have a potential error of 4K in our measurements. Thus, most of
the 10% fragmentation could be measurement error.

The next important question is: “are the differences in Table 2.5 statistically
significant?” Table 2.6 shows the t-test results for the values in Table 2.5. To find
the probability that one allocator really performs better than another, find the row
for one of the allocators and the column for the other. The value at the intersection
point is the probability that the allocator with the lower fragmentation really has
lower fragmentation than the other allocator.26

From Table 2.6, we can conclude with 90% confidence that the best fit LIFO,
first fit address ordered, and Lea’s 2.6.1 allocators all perform better than binary
buddy, double buddy 5K, first fit LIFO, next fit LIFO, half fit, simple segregated
storage 2V, and simple segregated storage 2V & 3 x 2V. We can not, however,
conclude at the 90% confidence level that there is any difference between the per-

formance of the best fit LIFO, first fit address ordered, and Lea’s 2.6.1 allocators.

2.9.2 Policy Variations

We will now discuss how the different policy variations affected the actual fragmen-
tation results as reported in Table 2.4. One interesting result is that no version of
best fit had more than 5% actual fragmentation. This is also true for all versions of
first fit that used an address-ordered free list, and the two versions of first fit that
used a FIFO free list. This strongly suggests that the basic best-fit algorithm and

the first-fit algorithm with an address-ordered free list are very robust algorithms.

*This interpretation of the t-test comes from [Fre84]. The values in Table 2.6 were computed
using Microsoft Excel version 7.0’s ttest function with paired samples and a single tail distribution.
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In addition, it suggests that for these two basic policies the other variations in policy
(for best fit, order of free list; for first fit address ordered, immediate or deferred
coalescing) do not matter, and should only be considered if they make the imple-
mentation more efficient. Because we only have one variation on first fit FIFO (the
second first fit FIFO allocator only removed footer costs, which have been removed
in the actual fragmentation tests anyway) we cannot make any claims about the
robustness of this policy. However, its performance indicates that this policy should
be studied in more detail.

A second interesting result is that only three versions of next fit had less than
10% actual fragmentation, and all of those versions used an address ordered free list.
This, combined with the observations for first fit, strongly suggests that an address-
ordered free list is a very good policy for reducing fragmentation.?” In addition,
these results show that next fit is a poor policy, and should be avoided. Finally, we
can see from Table 2.4 that buddy systems and segregated storage systems suffer
from considerable fragmentation.

A third interesting result is that for good allocation policies, deferred coa-
lescing appears not to increase fragmentation much. For best fit with a LIFO free
list, the highest average fragmentation when using deferred coalescing was 4.70%
(for a FIFO ordered quick list). While this is more than twice the fragmentation
of the immediate coalescing version of this allocator, it is still very acceptable for
most applications. For first fit with an address-ordered free list, the highest average
fragmentation when using deferred coalescing, which occurred with a FIFO ordered
quick-list, was 3.91%. This compares to 2.3% fragmentation when using immediate

coalescing. Finally, for next-fit with an address-ordered free list, the highest frag-

*"Recall that an address-ordered free list can be cheap to implement if a bit-map is used to
indicate which memory locations are allocated. Just because a good policy appears expensive to
implement, it should not be discarded because of this concern alone. Often further thought can
reveal an efficient implementation of the desirable policy. This is why it is so important to separate
policy from mechanism.
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mentation when using deferred coalescing, which also occurred with a FIFO ordered
quick-list, was 21.03%. This compares to 8.04% fragmentation with the immediate
coalescing version of this allocator, and is a further indication of the instability of
the next-fit policy. However, because of the small number of programs studied, none
of these three differences is statistically significant at the 85% confidence level.

Because programs tend to allocate many objects of exactly the same size (see
Section 2.12), this is an important result suggesting that coalescing costs need not
be much of a concern, and that deferred coalescing can provide a substantial benefit
with little cost in terms of fragmentation. However, the low statistical significance of
these differences is an indication that more programs must be studied to determine
the true cost of deferred coalescing.

A fourth interesting result is that simple segregated storage 2V & 3 % 2% sig-
nificantly outperforms simple segregated storage 2V, even though simple segregated
storage 2V & 3x2% has twice as many size classes as simple segregated storage 2'V.28
Also notice that the binary-buddy allocator suffers from much more fragmentation
than the double-buddy allocators. Again, the double-buddy allocators have size
classes which are twice as precise as the binary-buddy allocators. We believe that
this is evidence that very coarse size classes generally lose more memory to internal

fragmentation than they save in external fragmentation.

2.10 A Strategy That Works

Up until this point, we have been talking about the importance of separating policy
from mechanism. There is yet a third consideration that is important to separate:

strategy. In Section 2.9.2, we saw that there are several policies that result in low

*8Recall that in Section 2.8.3 we said that neither of the simple segregated storage allocators
coalesce memory, and that the simple segregated storage 2~ & 3 * 2"V allocator has twice as many
size classes as the simple segregated storage 2%V allocator. Thus, the simple segregated storage 2~
& 3 % 2N allocator will over-estimate the total amount of memory used by about twice as much as
the simple segregated storage 2~ allocator.
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fragmentation. The question is: “are these policies in some way related?” In other
words, is there some underlying strategy to allocating memory that will lead to
policies that usually provide low fragmentation? We believe that there is such a
strategy, and that when this strategy is understood, it will lead to new policies that
expose even more efficient implementations.

All of the policies that performed well in our studies share two common
traits: they all immediately coalesce memory, and they all preferentially reallocate
objects that have died recently over those that died further in the past.2? In other
words, they all give some objects more time to coalesce with their neighbors, yielding
larger and larger contiguous free blocks of memory. These in turn can be used in
many ways to satisfy future requests for memory that might otherwise result in high
fragmentation. In the following paragraphs, we will analyze each memory allocation
policy that performs well to show how it fits into this strategy.

The best-fit policy tries to preferentially use small free blocks over large free
blocks. This characteristic gives the neighbors of the large free blocks more time to
die and be merged into yet larger free blocks, which, in turn, makes them even less
likely that best fit will allocate something out of these larger free blocks. The cycle
continues until there are only a few very large areas of contiguous free memory out
of which to allocate free blocks. When one of these free blocks is used for memory
allocation, a small piece is split out of it, making it somewhat smaller, which will
make it more likely that that same free block will be used for subsequent memory
requests, saving the other larger free areas for later needs.

Using address-ordered free lists, which worked so well for first fit and next

fit, can be viewed as a variation on this same theme. Blocks at one end of memory

2 An important exception is the first-fit FIFO free list allocator. This allocator performed re-
markably well, and does not preferentially reallocate objects that have died recently over those that
died further in the past. We do not know if this indicates that there is a different effective strategy
at work, or if this is evidence that our suggestion of a good strategy is not correct. Clearly, more
study is needed on this allocator.
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Program name | 90% | 99% [ 99.9% | Total allocation time |

GCC 1K | 2,409K | 17,807 18,404K
Espresso 1K 8K 57K 106,893K
Ghostscript 1K | 40,091K | 48,593K 50,170K
Grobner 2K | 3,311K | 3,939K 4,082K
Hyper 2K 12K 18K 7,556K
P2C 11K | 3,823K | 4,494K 4,753K
Perl 1K 11K | 184K 33,834K
LRUsim 1K 1K 1K 1,431K
| Average | 25K | 6,208K | 9,387K | 28,390K |

Table 2.7: Time before given % of free objects have both temporal neighbors free

are used preferentially over blocks at the other end. This gives objects at the end of
memory from which new blocks are not being allocated more time to die and merge
with their neighbors. Note, however, that this theme is much stronger with first fit
address ordered than with next fit address ordered. We believe this is why first fit
address ordered performs much better than next fit address ordered.

In both best fit and first fit address ordered, objects allocated at about the
same time tend to be allocated from contiguous memory. In the case of best fit, this
is because once a block is split, its remainder is smaller, making it a better fit for
the next request. In the case of first fit address ordered, this is because blocks tend

to be allocated out of memory at one end of the heap.

2.11 Objects Allocated at the Same Time Tend to Die

at the Same Time

The tendency of best fit and first fit address ordered to place blocks allocated at
about the same time in contiguous memory may interact favorably with another
observation about our test programs: objects allocated at about the same time tend
to die at about the same time.

Table 2.7 shows the amount of time (in terms of bytes allocated: see Section
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Program name | 90% | 99% [ 99.9% | Total allocation time |

GCC 223K | 2,355K | 17,805K 18,404K
Espresso 1K 62K | 9,552K 106,893K
Ghostscript 14K | 44,876K | 48,752K 50,170K
Grobner 2K | 2,464K | 3,836K 4,082K
Hyper 1K 11K 16K 7,556K
P2C 16K | 4,142K | 4,614K 4,753K
Perl 1K 13K | 7,153K 33,834K
LRUsim 1K 1K 8K 1,431K
| Average | 32K | 6,740K | 11,467K | 28,390K |

Table 2.8: Time before given % of free bytes have both temporal neighbors free

2.8.1) before 90%, 99%, and 99.9% of all objects have both of their temporal neigh-
bors free (those objects allocated just before and just after the given object). On
average, after just 2.5K of allocation 90% of all objects have both of their temporal
neighbors free. Thus, if we allocate blocks from contiguous memory regions, waiting
just a short time after an object becomes free before allocating the memory again,
then most of the time its neighbors will also be free and can be coalesced into a
larger free block.

Table 2.8 shows the same information as Table 2.7, except weighted by the
size of the objects becoming free. Thus, the table shows how long (in allocation
time) before 90%, 99%, and 99.9% of the bytes allocated can be coalesced with
neighboring memory. Here, we see that if we wait for just 32K of allocation, 90% of
all memory allocated can be coalesced with its neighboring memory.

Thus, whether we measure in bytes or objects, the vast majority of all objects

allocated at around the same time also die at around the same time.

2.12 Programs Tend to Allocate Only a Few Sizes

For most programs, the vast majority of objects allocated are of only a few sizes.

Table 2.9 shows the number of object sizes represented by 90%, 99%, 99.9%, and
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Program 90% | 99% | 99.9% | 100% || Total Objects
GCC 5 12 254 641 721,353
Espresso 9 95 308 758 1,672,889
Ghostscript 7 85 344 589 566,542
Grobner 12 55 100 139 163,310
Hyper 1 2 6 108,720
LRUsim 1 1 5 21 39,103
P2C 4 26 58 92 194,997
Perl 10 27 60 99 1,600,560
Average 6 38 141 293 628,551

Table 2.9: Number of object sizes representing given percent of all object sizes

100% of all objects allocated. The last column is the total number of objects al-
located by that program. On average, 90% of all objects allocated are of just 6.12
different sizes, 99% of all objects are of 37.9 sizes, and 99.9% of all objects are of
141 sizes.

The reason that most objects allocated are of so few object sizes is that,
for most programs, the majority of dynamic objects are of just a few types. These
types often make up the nodes of large or common data structures upon which the
program operates. The remaining object sizes are accounted for by strings, buffers,
and single-use objects.

A good allocator should try to take advantage of the fact that, for most
programs, the majority of all objects allocated are of only a few sizes. We believe
that this is part of the reason that the buddy systems and simple segregated storage
policies have so much fragmentation. These policies increase internal fragmentation
to try to reduce external fragmentation. As we can see from Table 2.9, this is
unnecessary. The vast majority of dynamic memory requests are for objects of
ezactly the same size as recently freed objects, and there is no need to worry about
the next memory request being for a block that is just a little larger than any free

region.
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2.13 Small Policy Variations Can Lead to Large Frag-

mentation Variations

A result of particular importance to anyone presenting research in memory allocation
algorithms is that seemingly small variations in policy can lead to large variations
in fragmentation. In Table 2.4 we saw that the difference in fragmentation between
next fit address ordered and next fit LIFO is 478%. The difference between first fit
address ordered with memory requested from the operating system in 8K chunks
and first fit LIFO is a staggering 4,706%. It is therefore very important, when
presenting memory allocation research results, to carefully describe the algorithm

being studied.

2.14 A View of the Heap

To further validate the idea that best fit and first fit address ordered work well
because they allow large contiguous areas in the heap to become free, we wrote a
program that generates an image of the heap over time. In the pictures that follow,
the X-axis is allocation time, and the Y-axis is the heap (going from low heap
addresses to high heap addresses). For any given pixel on the graph, the darkness
represents the percentage of that portion of the heap at that interval in time which
is allocated. So, a black pixel is 100% allocated, and a white pixel is 100% free. A
gray pixel is somewhere in between, depending on its darkness.

In what follows, we will show and discuss allocation graphs for a subset of
the eight test programs, and nine selected allocators (binary buddy, best fit LIFO,
first fit address ordered, first fit LIFO, half fit, Lea’s 2.6.1, next fit LIFO, simple
segregated storage 2V, and simple segregated storage 2V & 3 x 2V — we do not
present allocation graphs for double buddy 5K because our implementation of this

allocator made interpreting these graphs difficult). In addition, we present graphs
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of the memory usage of a special allocator that we call a “linear allocator.” This al-
locator allocates all of its memory sequentially, and never reuses freed memory. The
allocation graphs of this allocator give us an indication of the natural fragmentation
inherent in the trace. By comparing graphs for this allocator to those of the other
allocators, we can get a better idea of how the different allocation policies interact
with each trace.

These pictures correspond to the actual fragmentation numbers from Ta-
ble 2.4. In other words, all header, footer, minimum object size, and alignment
costs have been removed. Thus, these are graphs of memory use of the policies, and
not the allocator implementations. The complete set of allocation graphs for the

eight programs and nine selected allocators can be found in Appendix C.

2.14.1 GCC Allocation Graphs

The first ten pictures (Figures 2.2 to 2.11) are of the gnu C compiler, compiling
the file combine.c (part of the GCC distribution). As can be seen in the plots,
this program exhibits very strong phase behavior, with two particularly large data
structures freed at allocation time 4 and 7 megabytes. The horizontal lines running
across the plot are objects that remain live after the data structures are freed (pre-
sumably, the results of some computation involving the data structure). Figure 2.2
is the plot of the linear allocator. In this plot, the strong phase behavior of the GCC
compiler is shown as triangular features.

As can clearly be seen in Figures 2.5, 2.7, 2.9, 2.10, and 2.11, the reuse of
memory after the first data structure becomes free (at around allocation time 4
megabytes) critically influences later fragmentation. In Figures 2.4, 2.5, and 2.8
memory in the lower address range is aggressively reused, allowing for very large
free areas in the upper address range. Thus, at later times (particularly for the large

data structure allocated between times 5.5 and 7 megabytes), this memory can be
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