Low-overhead Protocols for Fault-tolerant File-sharing

Lorenzo Alvisi , Sriram Rao , andHarrick M. Vin

Department of Computer Sciences
The University of Texas at Austin
Taylor Hall 2.124
Austin, Texas 78712-1188, USA
E-mail: {lorenzo,sriram,vih@cs.utexas.edu, Telephone: (512) 471-9792, Fax: (512p88%
URL: http://www.cs.utexas.edu/usefi®tenzo,sriram,vih

Abstract

In this paper, we quantify the adverse effect of file-shadnghe performance of reliable distributed
applications. We demonstrate that file-sharing incursisagmt overhead, which is likely to triple over
the next five years. We present a novel approach that eligsrihis overhead. Our approach (1) tracks
causal dependencies resulting from file-sharing usingrehiti@nts, (2) efficiently replicates the deter-
minants in the volatile memory of agents to ensure theidaldity during recovery, and (3) reproduces
during recovery the interactions with the file server as waslthe file data lost in a failure. Our ap-
proach allows agents to exchange files directly, without $iasing the files on disks at the server. As a
consequence, the costs of supporting file-sharing and gegsssing in reliable distributed application
become virtually identical. The result is a simple, unifaapproach, which can provide low-overhead
fault-tolerance to applications in which communicatiorpexrformed through message passing, file-
sharing, or a combination of the two.

Citation: Proceedings of International Conference on Distributednuting and Systems
(ICDCS'98), Amsterdam, Netherlands, May 1998 §ppeaj. Also available as Technical Report
TR-98-01, Department of Computer Sciences, Universityexfab, Austin, TX.

1 Introduction

Low-overhead fault-tolerance protocols—such as checitpg and message logging [2, 3, 4, 13, 14, 17,
21, 27, 32, 30]—have been extensively studied for messaggiadistributed applications. These protocols
seek to tolerate common failures while minimizing the usadditional resources and the impact on per-
formance during failure-free executions. In this paperfooeis on low-overhead protocols for applications
in which agents communicate both through message passihfjlessharing. Our work is motivated by
the qualitative observation that file-sharing adversellgca$ the performance of today’s reliable distributed
applications. On the one hand, conventional file serversotisupport file-sharing efficiently: on receiving
a file-access request, they require the agent possessingotaecent version of the file to synchronously
write-back the file at the server prior to servicing the rexgjueOn the other hand, conventional rollback-
recovery protocols such as checkpointing and messagenipggcur substantial overhead when used for
applications in which agents communicate also through Hiéing.

The first contribution of this paper is to quantify the adeeedfects of file sharing on performance of
reliable distributed systems. We demonstrate that thdtimgloverhead is significant and it is likely to
increase as the scale of the applications and the dispastiyelen processor and disk speeds continues
to increase. The second contribution of this paper is togmtea protocol that virtually eliminates this
overhead. The central idea of our solution is to track cadepkendencies resulting from file-sharing and
to record them usingleterminants—tuples that identify file I/O and message passing operataond the
order of their occurrence with respect to other events ingamaexecution. We show that if determinants
are available during recovery, then interactions with tledéerver can be reproduced, and file data lost in
a failure can be regenerated. To ensure determinants lailiilave use an efficient replication scheme [2]
that stores determinants in agents’ volatile memory. Tha Gontribution of this paper is the introduction
of a novel concept—implementation in volatile memory obstastorage for files. This implementation—a
direct consequence of our ability to use replication in tfldanemory to reproduce during recovery file data
lost in a failure—drastically reduces the cost of file shgwifiraditionally, a fileF’ modified by an agent
can be shared by another agemnly afterp has synchronously writtef to disks at the file server [5, 16].
In our solution, no synchronous write is needed, ardn send” to g without delays.

The remainder of the paper is organized as follows. In Se@jowve describe our system model. The
effect of file sharing on the performance of reliable distréal applications is quantified in Section 3. We
describe our solution and its salient features in Secticaus5, respectively, and then discuss the protocol
implementation issues in Section 6. Section 7 discussateteWork and finally, Section 8 summarizes our
results.

2 System Model

We assume an asynchronous distributed system consistiagset of agents and a file server. Agents
communicate using both message passing and file-sharingsdges are exchanged over FIFO channels
that can fail by transiently losing messages. Files areeshaccording to an ownership-based consistency
protocol [5, 16]. Specifically, the file server supports slaread-ownership, and exclusive write-ownership
(i.e., a multiple-reader, single-writer policy). At anyipoin time, the content of a file is uniquely identified
by its version We denote version of file F' by F.v. Given a fileF', a new version of' is created whenever
F'is modified. On accessing, the file server returns the latest versionfof

The execution of the system is represented byra which is an irreflexive partial ordering of send,
receive, read, write, and local events, ordered by poferdiasality [20]. For each agept a special class
of events local tgp are calleddeliver events These events correspond to the delivery of a message to the
application thatp is part of. Deliver, read and write events are non-detestimi because the order in
which an agent receives messages and the file versions g#smscare execution-dependent. Send events and

other local events are instead deterministic. Agent exatis piecewise deterministi@7]: It consists of a
sequence of deterministic intervals of execution, joingddn-deterministic events. At any point during the
execution, thestateof an agent is a mapping of program variables and implicitades (such as program
counters) to their current valuesGiven the initial state of each agent and the non-detestiinévents that
start each of deterministic intervals, the remaining staieheir execution are uniquely determined.

Given the states, ands, of two agentgp andq, p # ¢, we define the following notions of consistency
for s, ands, (or, simply, forp andg):

¢ p andq aremutually message-consistefll messages from thatp has delivered during its execution
up tos, were sent byy during its execution up te,, and vice versa.

e p andq aremutually file-consistenffor all versionsv and filesF, if p has read fileF.v written by ¢
during its execution up te,, theng has writtenF.v during its execution up te,, and vice versa.

Two agent andq aremutually consisterif they are both mutually message- and file-consistent. fecel
tion of states, one from each agent, toasistent global statiéall pairs of states are mutually consistent [8];
otherwise it isinconsistent

We assume that agents fail according to the fail-stop ma2le]. [That is, agents fail independently,
only by halting, and a faulty agent is eventually detectedalbycorrect agents. The file server can also
fail independently and only by halting. However, its fadueind recovery are not addressed in this paper.
Finally, we assume thatable storagd15] is available throughout the system, persists acrdhgda, and
is implemented either using disks at the file server or thinaeglication in the volatile memory of agents.

3 Problem Statement

The next generation of distributed applications will beistured around groups of agents that communicate
in different ways. Tightly-coupled agents will use messpgssing — either directly or through distributed
shared memory — to achieve low-latency; loosely-coupleentsy or agents that communicate without
knowing each other’s identity, will use file-sharing.

Unfortunately, in today’s distributed systems, file-shgradversely affects application performance. This
can be attributed to the following two reasons. First, cotiemal file servers do not support file-sharing
efficiently. Onreceiving a file access request, they regheegent possessing the most recent version of the
file to synchronously write-back the file at the server priosérvicing the request. Second, as the following
example illustrates, conventional rollback-recoverytpeols such as checkpointing and message logging
[2,3,4,17,19, 31] incur substantial overhead when usedgplications in which agents communicate also
through file-sharing.

Example Consider the execution in Figure 1, in which agentg, andr exchange messages and share afile
F'. Proces® reads fromF', sends messagey to ¢, and then fails. Procegdeliversmy, writes toF’, sends
messagen; to r, and then fails. Processeventually deliversn,. Let F.vy be the version of’ accessed
by p and letF.v; be the new version af created byy. During recoveryp will again read fileF'. However
this time, instead of".vg, p will accessF.v;. Becausep reads a different version d@f during recovery,

p may not re-sendny, or indeed any message, ¢o This has two consequences. Firgtnay be unable
during its recovery to re-sena; to r, leavingq andr mutually message-inconsistent. Secogdyay be
unable to reproduce the write event that generated theoweFsi; read byp during recovery, leaving and

g mutually file-inconsistent.

To avoid such inconsistencies, existing message loggiopgols adopt the following approach: when
an agent reads or writes a file, it blocks until the infornmatieecessary to prevent inconsistencies during

1We assume that the state of the agent does not include teeo$tae underlying communication system, such as the quieue o
messages that have been received but not yet delivered &g éme.

3

