
Low-overhead Protocols for Fault-tolerant File-sharing

Lorenzo Alvisi , Sriram Rao , andHarrick M. Vin

Department of Computer Sciences
The University of Texas at Austin

Taylor Hall 2.124
Austin, Texas 78712-1188, USA

E-mail: florenzo,sriram,ving@cs.utexas.edu, Telephone: (512) 471-9792, Fax: (512) 471-8885
URL: http://www.cs.utexas.edu/users/florenzo,sriram,ving

Abstract

In this paper, we quantify the adverse effect of file-sharingon the performance of reliable distributed
applications. We demonstrate that file-sharing incurs significant overhead, which is likely to triple over
the next five years. We present a novel approach that eliminates this overhead. Our approach (1) tracks
causal dependencies resulting from file-sharing using determinants, (2) efficiently replicates the deter-
minants in the volatile memory of agents to ensure their availability during recovery, and (3) reproduces
during recovery the interactions with the file server as wellas the file data lost in a failure. Our ap-
proach allows agents to exchange files directly, without first saving the files on disks at the server. As a
consequence, the costs of supporting file-sharing and message passing in reliable distributed application
become virtually identical. The result is a simple, uniformapproach, which can provide low-overhead
fault-tolerance to applications in which communication isperformed through message passing, file-
sharing, or a combination of the two.

Citation: Proceedings of International Conference on Distributed Computing and Systems
(ICDCS’98), Amsterdam, Netherlands, May 1998 (to appear). Also available as Technical Report
TR-98-01, Department of Computer Sciences, University of Texas, Austin, TX.

1



1 Introduction

Low-overhead fault-tolerance protocols—such as checkpointing and message logging [2, 3, 4, 13, 14, 17,
21, 27, 32, 30]—have been extensively studied for message passing distributed applications. These protocols
seek to tolerate common failures while minimizing the use ofadditional resources and the impact on per-
formance during failure-free executions. In this paper, wefocus on low-overhead protocols for applications
in which agents communicate both through message passing and file-sharing. Our work is motivated by
the qualitative observation that file-sharing adversely affects the performance of today’s reliable distributed
applications. On the one hand, conventional file servers do not support file-sharing efficiently: on receiving
a file-access request, they require the agent possessing themost recent version of the file to synchronously
write-back the file at the server prior to servicing the request. On the other hand, conventional rollback-
recovery protocols such as checkpointing and message logging incur substantial overhead when used for
applications in which agents communicate also through file sharing.

The first contribution of this paper is to quantify the adverse effects of file sharing on performance of
reliable distributed systems. We demonstrate that the resulting overhead is significant and it is likely to
increase as the scale of the applications and the disparity between processor and disk speeds continues
to increase. The second contribution of this paper is to present a protocol that virtually eliminates this
overhead. The central idea of our solution is to track causaldependencies resulting from file-sharing and
to record them usingdeterminants—tuples that identify file I/O and message passing operations and the
order of their occurrence with respect to other events in an agent execution. We show that if determinants
are available during recovery, then interactions with the file server can be reproduced, and file data lost in
a failure can be regenerated. To ensure determinants availability, we use an efficient replication scheme [2]
that stores determinants in agents’ volatile memory. The final contribution of this paper is the introduction
of a novel concept—implementation in volatile memory of stable storage for files. This implementation—a
direct consequence of our ability to use replication in volatile memory to reproduce during recovery file data
lost in a failure—drastically reduces the cost of file sharing. Traditionally, a fileF modified by an agentp
can be shared by another agentq only afterp has synchronously writtenF to disks at the file server [5, 16].
In our solution, no synchronous write is needed, andp can sendF to q without delays.

The remainder of the paper is organized as follows. In Section 2, we describe our system model. The
effect of file sharing on the performance of reliable distributed applications is quantified in Section 3. We
describe our solution and its salient features in Sections 4and 5, respectively, and then discuss the protocol
implementation issues in Section 6. Section 7 discusses related work and finally, Section 8 summarizes our
results.

2 System Model

We assume an asynchronous distributed system consisting ofa set of agents and a file server. Agents
communicate using both message passing and file-sharing. Messages are exchanged over FIFO channels
that can fail by transiently losing messages. Files are shared according to an ownership-based consistency
protocol [5, 16]. Specifically, the file server supports shared read-ownership, and exclusive write-ownership
(i.e., a multiple-reader, single-writer policy). At any point in time, the content of a file is uniquely identified
by itsversion. We denote versionv of file F byF:v. Given a fileF , a new version ofF is created wheneverF is modified. On accessingF , the file server returns the latest version ofF .

The execution of the system is represented by arun, which is an irreflexive partial ordering of send,
receive, read, write, and local events, ordered by potential causality [20]. For each agentp, a special class
of events local top are calleddeliver events. These events correspond to the delivery of a message to the
application thatp is part of. Deliver, read and write events are non-deterministic, because the order in
which an agent receives messages and the file versions it accesses are execution-dependent. Send events and

2



other local events are instead deterministic. Agent execution ispiecewise deterministic[27]: It consists of a
sequence of deterministic intervals of execution, joined by non-deterministic events. At any point during the
execution, thestateof an agent is a mapping of program variables and implicit variables (such as program
counters) to their current values1. Given the initial state of each agent and the non-deterministic events that
start each of deterministic intervals, the remaining states in their execution are uniquely determined.

Given the statessp andsq of two agentsp andq, p 6= q, we define the following notions of consistency
for sp andsq (or, simply, forp andq):� p andq aremutually message-consistentif all messages fromq thatp has delivered during its execution

up tosp were sent byq during its execution up tosq, and vice versa.� p andq aremutually file-consistent, for all versionsv and filesF , if p has read fileF:v written byq
during its execution up tosp, thenq has writtenF:v during its execution up tosq, and vice versa.

Two agentsp andq aremutually consistentif they are both mutually message- and file-consistent. A collec-
tion of states, one from each agent, is aconsistent global stateif all pairs of states are mutually consistent [8];
otherwise it isinconsistent.

We assume that agents fail according to the fail-stop model [25]. That is, agents fail independently,
only by halting, and a faulty agent is eventually detected byall correct agents. The file server can also
fail independently and only by halting. However, its failure and recovery are not addressed in this paper.
Finally, we assume thatstable storage[15] is available throughout the system, persists across failures, and
is implemented either using disks at the file server or through replication in the volatile memory of agents.

3 Problem Statement

The next generation of distributed applications will be structured around groups of agents that communicate
in different ways. Tightly-coupled agents will use messagepassing — either directly or through distributed
shared memory — to achieve low-latency; loosely-coupled agents, or agents that communicate without
knowing each other’s identity, will use file-sharing.

Unfortunately, in today’s distributed systems, file-sharing adversely affects application performance. This
can be attributed to the following two reasons. First, conventional file servers do not support file-sharing
efficiently. On receiving a file access request, they requirethe agent possessing the most recent version of the
file to synchronously write-back the file at the server prior to servicing the request. Second, as the following
example illustrates, conventional rollback-recovery protocols such as checkpointing and message logging
[2, 3, 4, 17, 19, 31] incur substantial overhead when used forapplications in which agents communicate also
through file-sharing.
Example Consider the execution in Figure 1, in which agentsp, q, andr exchange messages and share a fileF . Processp reads fromF , sends messagem0 to q, and then fails. Processq deliversm0, writes toF , sends
messagem1 to r, and then fails. Processr eventually deliversm1. Let F:v0 be the version ofF accessed
by p and letF:v1 be the new version ofF created byq. During recovery,p will again read fileF . However
this time, instead ofF:v0, p will accessF:v1. Becausep reads a different version ofF during recovery,p may not re-sendm0, or indeed any message, toq. This has two consequences. First,q may be unable
during its recovery to re-sendm1 to r, leavingq andr mutually message-inconsistent. Second,q may be
unable to reproduce the write event that generated the versionF:v1 read byp during recovery, leavingp andq mutually file-inconsistent.

To avoid such inconsistencies, existing message logging protocols adopt the following approach: when
an agent reads or writes a file, it blocks until the information necessary to prevent inconsistencies during

1We assume that the state of the agent does not include the state of the underlying communication system, such as the queue of
messages that have been received but not yet delivered to theagent.

3


