
The Cost of Recovery in Message Logging Protocols

Sriram Rao , Lorenzo Alvisi , andHarrick M. Vin
Department of Computer Sciences
The University of Texas at Austin

Taylor Hall 2.124, Austin, Texas 78712-1188, USA
E-mail: fsriram,lorenzo,ving@cs.utexas.edu, Telephone: (512) 471-9792, Fax: (512) 471-8885

URL: http://www.cs.utexas.edu/users/fsriram,lorenzo,ving
Abstract

Message logging is a popular technique for building low-overhead protocols that tolerate process
crash failures. Past research in message logging has focused on studying the relative overhead im-
posed by pessimistic, optimistic, and causal protocols during failure-free executions. In this paper,
we give the first experimental evaluation of the performanceof these protocols during recovery. We
discover that, if a single failure is to be tolerated, pessimistic and causal protocols perform best, be-
cause they avoid rollbacks of correct processes. For multiple failures, however, the dominant factor
in determining performance becomeswhere the recovery information is logged (i.e. at the sender,
at the receiver, or replicated at a subset of the processes inthe system) rather thanwhen this infor-
mation is logged (i.e. if logging is synchronous or asynchronous). From our results, we distil a few
lessons that can guide the design of message-logging protocols that combine low-overhead during
failure-free executions with fast recovery.

Technical Report TR-98-02, Department of Computer Sciences, University of Texas, Austin, TX.

1



1 Introduction

Message-logging protocols (for example, [1, 4, 5, 9, 12, 13,14, 18, 20, 21, 22, 23]) are popular tech-
niques for building systems that can tolerate process crashfailures. These protocols are built on the
assumption that the state of a process is determined by its initial state and by the sequence of messages
it delivers. In principle, a crashed process can be recovered by (1) restoring the process to its initial
state and (2) rolling it forward by re-playing to it messagesin the same order they were delivered be-
fore the crash. In practice, message logging protocols limit the extent of roll-forward by having each
process periodically save its local state in a checkpoint. The delivery order of each message is recorded
in a tuple, called the message’sdeterminant, which the delivering process logs on stable storage. If the
determinants of all the messages delivered by a crashed process are available during recovery, then the
process can be restored to a stateconsistent with the state of all operational processes. Two statessp andsq of processesp andq are consistent if all messages fromq thatp has delivered during its execution
up to statesp were sent byq during its execution up to statesq, and vice versa. Anorphan process
is an operational process whose state is inconsistent with the recovered state of a crashed process. All
message-logging protocols guarantee that upon recovery noprocess is an orphan, but differ in the way
they enforce this consistency condition:� Pessimistic protocols [4, 12, 18] require that a process, before sending a message, synchronously

log on stable storage the determinants and the content of allmessages delivered so far. Thus, pes-
simistic protocols never create orphan processes. However, synchronously logging determinants
on stable storage imposes a significant overhead during failure-free executions.� Optimistic protocols [5, 13, 14, 20, 21, 23] allow processesto communicate even if the determi-
nants they depend upon are not yet logged on stable storage. These protocols only require that
determinants reach stable storage eventually. Optimisticprotocols can perform very efficiently in
failure-free executions. However, if any of the determinants are lost when a process crashes, then
orphans may be created. To reach a consistent global state, these processes must be identified and
rolled back.� Causal protocols [1, 9] combine some of the positive aspectsof pessimistic and optimistic pro-
tocols: They never create orphans, yet they do not write determinants to stable storage syn-
chronously. In causal protocols, determinants are logged in volatile memory. To prevent orphans,
processes piggyback their volatile log of determinants on every message they send1. This guaran-
tees that if the state of an operational processp causally depends [15] on the delivery of a messagem, thenp has a copy ofm’s determinant in its volatile memory. This property is sufficient to
restore a crashed process in a state consistent with the state of all operational processes.

Although several studies have measured the overhead imposed by each of these approaches during
failure-free executions [7, 10], their merits during recovery have been so far argued mostly qualitatively.
For instance, there is consensus that pessimistic protocols are well-suited for supporting fast recovery,
since they guarantee that all determinants can be readily retrieved from stable storage. The opinions
about optimistic protocols are less unanimous. On the one hand, these protocols seem unlikely candi-
dates for fast recovery because, to restore the system to a consistent state, they require to identify, roll

1If there exists an upper boundf on the number of concurrent crashes and processes fail independently, then a determinant
logged byf + 1 processes does not need to be piggybacked further.

2



back, and then roll forward all orphan processes. On the other hand, recent optimistic protocols employ
techniques for quickly identifying orphans and can roll forward orphans concurrently, thereby reducing
recovery time.

Although the literature contains careful analyses of the cost of recovery for different optimistic pro-
tocols in terms of the number of messages and the rounds of communication needed to identify and
roll back orphan processes [5, 7, 11, 13, 20, 21, 23], in general no experimental evaluations of their
performance during recovery are offered.

The performance of causal protocols during recovery has also been debated. Proponents of these
protocols have pointed to the fact that causal protocols, like pessimistic protocols, never create orphans
and therefore never roll back correct processes. However, with causal protocols a process can start
its recovery only after collecting the necessary determinants from the volatile logs of the operational
processes. It has been qualitatively argued [5] that optimistic protocols that start recovery without
waiting for data from other processes may have a shorter recovery time than causal protocols.

Finally, little is known about the effect of changes inf , the number of concurrent process failures, on
the recovery costs of pessimistic, optimistic, and causal protocols.

In the past, the absence of a careful experimental study of the performance of these protocols dur-
ing recovery could be justified by arguing that, after all, itwas not needed. Distributed applications
requiring both fault-tolerance and high availability werefew and highly sophisticated, and its users
could typically afford to invest the resources necessary tomask failures through explicit replication in
space [19] instead of recovering from failures through replication in time. As distributed computing
becomes commonplace and many more applications are faced with the current costs of high availability,
there is a fresh need for recovery-based techniques that combine high performance during failure-free
executions with fast recovery.

In this paper, we take an initial step towards the development of these new protocols by presenting
the first experimental study of the recovery performance of pessimistic, optimistic, and causal protocols.
Contrary to our initial intuition, our results indicate that pessimistic and causal protocols outperform
optimistic protocols only whenf = 1. For f > 1, the dominant factor in determining recovery time
becomeswhere the recovery information is logged (i.e. at the sender, at the receiver, or replicated at
a subset of the processes in the system) rather thanwhen this information is logged (i.e. if logging is
synchronous or asynchronous). Hence, optimistic protocols, even if suffering from rollbacks, can often
outperform implementations of pessimistic and causal protocols that are less efficient in supporting fast
retrieval of messages and determinants used during recovery. From our results, we distill a few lessons
that can guide the design of future message-logging protocols.

The rest of the paper is organized as follows. In Section 2, wedescribe our implementation of message
logging protocols and checkpointing. We briefly describe the application programs used in this study
in Section 3. The experimental analysis of the recovery costs for the pessimistic, optimistic, and causal
logging protocols is presented in Section 4. Section 5 discusses a few principles that can be used to
design message-logging protocols for fast crash recovery.Finally, Section 6 offers some concluding
remarks.

2 Implementation

To measure the cost of recovery in message logging protocols, we have implemented a fault-tolerance
layer consisting of a communication substrate, a checkpoint manager, and a message-logging proto-

3



col suite. For tolerating hardware failures, processes arenamed using a name server which provides
location-independent names.� Communication substrate : The communication substrate provides interfaces to create and de-

stroy point-to-point FIFO communication channels among cooperating processes, as well as to
send and deliver messages. Communication channels are implemented astcp connections.� Checkpoint manager : The checkpoint manager periodically saves on stable storage the state
of each process, which includes heap, stack, and data segments, plus the mapping of implicit
variables such as program counters and machine registers totheir specific values. Stable storage
for checkpoints is provided by a highly available network file server. In case of a failure, the failed
process is re-started and its state is restored to that recorded in the latest checkpoint.

In our current implementation, checkpoints are synchronous (i.e., applications block during check-
pointing). The checkpointing mechanisms used are similar to those described in [17]. We are cur-
rently enhancing our implementation to utilize optimizations such as incremental checkpointing
and copy-on-write [8]. Although such optimizations reducethe cost of checkpointing and hence
the failure-free execution time of distributed application, they do not affect the failure recovery
overhead, which is the focus of this paper.� Message-logging Protocol Suite : This suite contains representative protocols for each of the
three styles of message logging:

– Pessimistic logging: We have implemented two pessimistic protocols. The first protocol is
receiver-based: a process, before sending a message, logs to stable storageboth the deter-
minants and the contents of the messages delivered so far. The second protocol is instead
sender-based [12]: the receiver logs synchronously to stable storage only the determinant of
every message it delivers, while the contents of the messageare stored in a volatile log kept
by the message’s sender2 This protocol is similar to the one described in [22].

In both of these protocols, the first step of recovering a processp consists in restoring it to
its latest checkpoint. Then, in the receiver-based protocol, the messages logged on stable
storage are replayed top in the appropriate order. In the sender-based protocol, instead,p broadcasts a message asking all senders to retransmit the messages that were originally
sent top. These messages are matched byp with the corresponding determinants logged on
stable storage and then replayed in the appropriate order.

– Optimistic logging: Among the numerous optimistic protocols that have been proposed in
the the literature (for instance [10, 12, 13, 14, 20, 21, 23]), we have implemented the proto-
col described in [5]. This protocol, in addition to tolerating an arbitrary number of failures
and preventing the uncontrolled cascading of rollbacks known as thedomino effect [21],
implements a singularly efficient method for detecting orphans processes. In this protocol,
causal dependencies are tracked using vector clocks [16]. On a message send, the sender
piggybacks its vector clock on the message; on a message deliver, the receiver updates its
vector clock by computing a component-wise maximum with thepiggybacked vector clock.
The determinants and the content of the messages delivered are kept in volatile memory

2Some sender-based pessimistic protocols keep both determinants and message contents at the senders [12, 14]. We have
not implemented these protocols because they can only tolerate at most two concurrent failures.

4



logs at the receiver and periodically flushed to stable storage. Since in a crash these logs
in volatile memory are lost, orphans may be created. To detect orphans, a recovering pro-
cess simply sends a failure announcement message containing the vector clock of the latest
state to which the process can recover. On receiving this message, each operational process
compares its vector clock with the one contained in the message to determine whether or not
it has become an orphan. An orphan process first synchronously flushes its logs to stable
storage. Then, it rolls back to a checkpoint consistent withthe recovered state of the failed
process and uses its logs to roll-forward to the latest possible consistent state.

In our implementation, we have modified the pseudo-code presented in [5] so that the recov-
ering process sends the failure announcements before replaying any message from the log,
rather than after all messages in the log have been replayed.This optimization allows the
roll-forward of recovering processes to proceed in parallel with the identification, roll-back
and eventual roll-forward of orphan processes. As we will see in Section 4, this optimization
dramatically improves the performance of the protocol during recovery.

– Causal logging: We have implemented the�det family-based message-logging protocol [2].
This protocol is based on the following observation: in a system where processes fail inde-
pendently and no more thanf processes fail concurrently, one can ensure the availability of
determinants during recovery by replicating them in the volatile memory off +1 processes.
In our implementation, this is accomplished by piggybacking determinants on existing ap-
plication messages until they are logged by at leastf + 1 processes [3, 9]. Recovery of a
failed process proceeds in two phases. In the first phase, theprocess obtains its determinants
from the volatile logs of the operational processes. In addition, the process also obtains the
content of messages it delivered before crashing. This is because in causal protocols, mes-
sage contents are logged only in the volatile memory of the sender. Also, in the first phase, a
recovering process obtains lost messages from the remaining processes. In the second phase,
the collected data is replayed, restoring the process to itspre-crash state. To handle multi-
ple concurrent failures, we implemented a protocol that recovers crashed processes without
blocking operational processes [6]. In this protocol, the recovering processes elect a leader,
which is responsible for collecting determinants and messages on behalf of all recovering
processes. The leader then forwards the pertinent data to each recovering process.

3 Applications

For our experiments, we have chosen the following five long-running, compute-intensive applications.� grid performs successive over-relaxation (SOR) for a Laplace partial differential equation on a
grid of 200 � 200 points. In each iteration, the value of each point is computed as a function
of its value in the previous iteration and of the values of itsneighbors. The rows of the grid are
partitioned using a 1-D decomposition such that the load on all processes is balanced. At the end
of each iteration, each process exchanges with its 2 neighbors the new values on the edges of its
grid.� nbody performs ann-body simulation for 625 particles. In the simulation, the motion of a particle
depends on the interactive forces between that particle andthe remaining particles. Particles are

5



evenly distributed amongst all the processes. During each iteration, each process exchanges the
positions of its particles with the other processes in the system.� gauss performs Gaussian elimination with partial pivoting on a1024�1024matrix that represents
a system of linear equations of the formAx = B. Each process is initially assigned a subset of
the rows of matrixA such that the load on each process is balanced. In each iteration, a process
receives a row of the matrix from its predecessor, performs some local computation and sends the
row of the matrix it computed to its successor.� life is the game of life played on a500 � 500 grid of points. In each iteration, the value of a
grid point is computed as the sum of the values of its 8 neighbors. The rows of the grid are
partitioned such that the load on all processes is balanced.At the end of each iteration, each
process exchanges with its 2 neighbors the new values on the edges of its grid.� p2fox performs a predator-prey simulation over a population of rabbits and foxes on a250� 250
grid of points. For the simulation, the grid is evenly divided amongst processes. At the end of
each iteration, a process updates the population accordingto some rules and then exchanges with
its 4 neighbors the new values on the edges of its grid.

These applications exhibit different communication patterns. In thegrid andlife applications, a pro-
cess communicates mostly with its two neighbors, and inp2fox a process communicates mostly with
four of its neighbors. The size of messages exchanged are approximately 2KB. Periodically, however,
each process sends 100Byte messages to all the processes in the system. Innbody, each process com-
municates with all other processes, and the size of these messages is approximately 1KB. Ingauss,
each process communicates with two of its neighbors, and thesize of each message is approximately
15KB.

4 Experimental Evaluation

4.1 Experimental Methodology

We conducted our experiments on a collection of Pentium-based workstations connected by a lightly-
loaded 100Mb/s ethernet. Each workstation has 64 megabytesof memory and runs Solaris 2.5. In our
experiments, there is one process of the distributed application per machine. Stable storage is provided
by an NFS file server that stores files on a RAID-5 disk array consisting of 6 disks.

For each protocol, we compute our results by averaging the recovery time measured over twenty runs
of each of the five applications. For a given application, we guarantee that, independent of the protocol
used, failures occur at the same point in the execution of theapplication: taking advantage of the iterative
nature of the applications, we induce process failures after the completion of a pre-determined number
of iterations. This ensures that the amount of lost computation that has to be recovered in all three
protocols is the same.

4.2 Metrics

For pessimistic and causal protocols, the recovery time (denoted byTrec) for a process comprises of: (1)Tchk, the time to restore the state of the failed process from its latest checkpoint stored on the file server,

6



(2) Tacq, the time to retrieve determinants and messages logged during failure-free execution, and (3)Trollfwd, the time to roll-forward the execution of the process to itspre-crashed state. For optimistic
protocols, on the other hand, in addition toTchk andTacq, the recovery timeTrec consists of: (1)Treplay,
the time to replay messages to the recovering process from the acquired logs, and (2)Trollbck, the time
overhead for rolling back orphans. Note thatTacq is protocol dependent: for pessimistic and optimistic
protocols, it is the time to read logs from the file server, while for causal protocols, it is the time to
collect messages and determinants from the logs of the remaining processes. In the case of multiple
failures, the values ofTchk, Tacq, Trollfwd, Treplay, andTrollbck are averaged over the set of concurrently
recovering processes.

4.3 Measurements

For all protocols,Trec depends on three parameters.

1. The timet, within the execution interval defined by two successive checkpoint, at which a failure
is induced. For all protocols, this parameter affects the amount of lost computation that has to be
recovered and the size of the logs that have to be acquired by the recovering process.

2. The number of processes,n. For causal protocols,n may affectTacq because it may chance the set
of processes from which a recovering process collects its logs. For optimistic protocols,n may
affectTrollbck because it may change the number of orphans.

3. The number of concurrent failures,f . For optimistic protocols, multiple failures may cause a
process to rollback multiple times. For sender-based pessimistic and causal protocols, multiple
failures may complicate the task of retrieving messages anddeterminants from other processes.

For optimistic protocols,Trec depends also on the frequency with which volatile logs are flushed to
stable storage. In all our experiments, volatile logs are flushed to stable storage every minute. For all
protocols, checkpoints are taken six minutes apart.

General Observations Before we proceed to analyze in Figure 1 and Table 2 the effects onTrec of
changing the values oft, n, andf , we present a few observation about the behavior of logging protocols
that are independent of the specific value of these parameters. We illustrate these observations with the
help of Table 1, which shows the result of our experiments whenn = 4, f = 1, andt is chosen half-way
between successive checkpoints.� Messages and determinants that are available in the logs areprocessed during recovery at a rate

higher than during normal execution. This is because, during normal execution a process may
have to block waiting for messages, while during recovery these messages can be immediately
retrieved from the logs.

Note that sinceTrollfwd for pessimistic and causal protocols and(Treplay + Trollbck) for optimistic
protocols dominate the total value ofTrec, the reduction in recovery time yielded by process-
ing messages and determinants from logs can be significant. Table 1 illustrates that this re-
duction is very significant, although it is application-dependent. For communication-intensive
applications—such asgrid, nbody, life, andp2fox—Trollfwd and(Treplay + Trollbck) are signifi-
cantly smaller than 3 minutes, the value oft for this experiment. However, for compute-intensive

7



Receiver-based Pessimistic Sender-based Pessimistic
Application Tchk Tacq Trollfwd Trec Tchk Tacq Trollfwd Trec

(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

grid 0.31 1.4 30.28 31.99 0.3 3.1 30.5 33.6
nbody 0.29 3.5 78.01 81.8 0.31 4.2 77.5 82.01
gauss 2.61 11.15 207.13 220.89 2.75 14.6 211.01 228.36
life 0.31 0.95 41.1 42.36 0.33 2.1 41.5 43.93

p2fox 1.85 0.8 22.29 24.94 1.8 5.4 22.6 29.8

Optimistic Causal
Application Tchk Tacq Treplay Trollbck Trec Tchk Tacq Trollfwd Trec

(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

grid 0.31 1.2 16.8 33.1 51.41 0.36 3.67 30.74 34.77
nbody 0.31 2.91 58.1 37.4 98.72 0.35 4.42 78.1 82.87
gauss 2.64 9.83 197.2 27.6 237.27 2.56 15.7 210.7 228.96
life 0.31 0.8 25.78 40.8 67.69 0.36 2.55 38.97 41.88

p2fox 1.88 0.7 14.7 30.8 48.08 1.87 5.91 21.39 29.17

Table 1 : The cost of recovery forf = 1, n = 4, and failures induced approximately mid-way between
successive checkpoints

applications—such asgauss—reading determinants and messages from the logs does not result
in any significant speedup.

Note also that in optimistic protocols, any speedup appliesonly to the portion of the log that
is retrieved from stable storage, which in general containsonly a prefix of the sequence of the
messages and determinants delivered prior to failure. As a result,(Treplay+Trollbck) for optimistic
protocols is typically larger thanTrollfwd for receiver-based pessimistic protocols3.� Sender-based pessimistic and causal protocols take longerto collect recovery information than
receiver-based pessimistic and optimistic protocols. Sender-based pessimistic and causal proto-
cols collect message contents and determinants from operational processes. Although this in-
formation is sent concurrently by the operational processes, the recovering process incurs an
overhead in merging the received data to create a sequentiallog used during roll-forward. For
receiver-based pessimistic and the optimistic protocols,the logs are already organized sequen-
tially on stable storage. Furthermore, read-ahead, supported by conventional file systems, makes
sequential retrieval of the logs efficient.

Table 1 illustrates thatTacq for sender-based pessimistic and causal protocols can be attimes six
times higher (e.g., inp2fox) than that for receiver-based pessimistic and optimistic protocols.
However, sinceTacq contributes a relatively small fraction ofTrec, the impact of this effect on the
overall recovery performance of the protocols is minor.

3Although forf = 1, (Treplay+Trollbck) is always larger thanTrollfwd for all pessimistic and causal protocols, this does
not hold forf > 1 (see Table 2).

8


