The Cost of Recovery in Message Logging Protocols

Sriram Rao , Lorenzo Alvisi , andHarrick M. Vin
Department of Computer Sciences
The University of Texas at Austin
Taylor Hall 2.124, Austin, Texas 78712-1188, USA
E-mail: {sriram,lorenzo,vih@cs.utexas.edu, Telephone: (512) 471-9792, Fax: (512883%
URL: http://www.cs.utexas.edu/usefsfiram,lorenzo,vif

Abstract

Message logging is a popular technique for building lowrbead protocols that tolerate process
crash failures. Past research in message logging has tbousstudying the relative overhead im-
posed by pessimistic, optimistic, and causal protocolindurilure-free executions. In this paper,
we give the first experimental evaluation of the performawicdese protocols during recovery. We
discover that, if a single failure is to be tolerated, pesstimand causal protocols perform best, be-
cause they avoid rollbacks of correct processes. For nrifigiures, however, the dominant factor
in determining performance becomehkere the recovery information is logged (i.e. at the sender,
at the receiver, or replicated at a subset of the procesdbe system) rather thamhen this infor-
mation is logged (i.e. if logging is synchronous or asynaborgs). From our results, we distil a few
lessons that can guide the design of message-logging pisttat combine low-overhead during
failure-free executions with fast recovery.

Technical Report TR-98-02, Department of Computer Scigndaiversity of Texas, Austin, T*.

1 Introduction

Message-logging protocols (for example, [1, 4, 5, 9, 12,143,18, 20, 21, 22, 23]) are popular tech-
niques for building systems that can tolerate process deakhies. These protocols are built on the
assumption that the state of a process is determined byititd state and by the sequence of messages
it delivers. In principle, a crashed process can be recavieye(1) restoring the process to its initial
state and (2) rolling it forward by re-playing to it messagethe same order they were delivered be-
fore the crash. In practice, message logging protocolg time extent of roll-forward by having each
process periodically save its local state in a checkpoine delivery order of each message is recorded
in a tuple, called the messageéaerminant, which the delivering process logs on stable storage. If the
determinants of all the messages delivered by a crashedgwace available during recovery, then the
process can be restored to a statesistent with the state of all operational processes. Two stajesd

s, Of processeg andgq are consistent if all messages fragnthatp has delivered during its execution
up to states, were sent byy during its execution up to statg, and vice versa. Amrphan process

is an operational process whose state is inconsistent gtinetcovered state of a crashed process. All
message-logging protocols guarantee that upon recovepyaoess is an orphan, but differ in the way
they enforce this consistency condition:

e Pessimistic protocols [4, 12, 18] require that a procedsrbeending a message, synchronously
log on stable storage the determinants and the contentwiesibages delivered so far. Thus, pes-
simistic protocols never create orphan processes. Howsuechronously logging determinants
on stable storage imposes a significant overhead duringdaitee executions.

e Optimistic protocols [5, 13, 14, 20, 21, 23] allow processesommunicate even if the determi-
nants they depend upon are not yet logged on stable stordggse protocols only require that
determinants reach stable storage eventually. Optinpstitocols can perform very efficiently in
failure-free executions. However, if any of the determisare lost when a process crashes, then
orphans may be created. To reach a consistent global $tase, processes must be identified and
rolled back.

e Causal protocols [1, 9] combine some of the positive asp&Egiessimistic and optimistic pro-
tocols: They never create orphans, yet they do not writerak@@nts to stable storage syn-
chronously. In causal protocols, determinants are loggedlatile memory. To prevent orphans,
processes piggyback their volatile log of determinantsvememessage they sehdThis guaran-
tees that if the state of an operational progesausally depends [15] on the delivery of a message
m, thenp has a copy ofn’s determinant in its volatile memory. This property is sti#fint to
restore a crashed process in a state consistent with tieeo$talt operational processes.

Although several studies have measured the overhead imhfiyseach of these approaches during
failure-free executions [7, 10], their merits during reepvhave been so far argued mostly qualitatively.
For instance, there is consensus that pessimistic pratacelwell-suited for supporting fast recovery,
since they guarantee that all determinants can be readilgwed from stable storage. The opinions
about optimistic protocols are less unanimous. On the ond,ltaese protocols seem unlikely candi-
dates for fast recovery because, to restore the system tossstent state, they require to identify, roll

Lif there exists an upper bourftbn the number of concurrent crashes and processes failéndeptly, then a determinant
logged byf + 1 processes does not need to be piggybacked further.

back, and then roll forward all orphan processes. On the bdred, recent optimistic protocols employ
techniques for quickly identifying orphans and can rollWard orphans concurrently, thereby reducing
recovery time.

Although the literature contains careful analyses of th& obrecovery for different optimistic pro-
tocols in terms of the number of messages and the rounds afhcaication needed to identify and
roll back orphan processes [5, 7, 11, 13, 20, 21, 23], in geémar experimental evaluations of their
performance during recovery are offered.

The performance of causal protocols during recovery has lzéen debated. Proponents of these
protocols have pointed to the fact that causal protocdds,gessimistic protocols, never create orphans
and therefore never roll back correct processes. Howevér, acausal protocols a process can start
its recovery only after collecting the necessary deterntm&om the volatile logs of the operational
processes. It has been qualitatively argued [5] that optimprotocols that start recovery without
waiting for data from other processes may have a shorteveegdime than causal protocols.

Finally, little is known about the effect of changesfinthe number of concurrent process failures, on
the recovery costs of pessimistic, optimistic, and causabgols.

In the past, the absence of a careful experimental studyeopénformance of these protocols dur-
ing recovery could be justified by arguing that, after aliwds not needed. Distributed applications
requiring both fault-tolerance and high availability wdesv and highly sophisticated, and its users
could typically afford to invest the resources necessamask failures through explicit replication in
space [19] instead of recovering from failures throughiogpion in time. As distributed computing
becomes commonplace and many more applications are fatietheicurrent costs of high availability,
there is a fresh need for recovery-based techniques thatinerhigh performance during failure-free
executions with fast recovery.

In this paper, we take an initial step towards the developraethese new protocols by presenting
the first experimental study of the recovery performancesgEpnistic, optimistic, and causal protocols.
Contrary to our initial intuition, our results indicate th@essimistic and causal protocols outperform
optimistic protocols only wherf = 1. For f > 1, the dominant factor in determining recovery time
becomeswhere the recovery information is logged (i.e. at the sender, atréteiver, or replicated at
a subset of the processes in the system) ratherwhan this information is logged (i.e. if logging is
synchronous or asynchronous). Hence, optimistic progpeven if suffering from rollbacks, can often
outperform implementations of pessimistic and causalgoals that are less efficient in supporting fast
retrieval of messages and determinants used during recdwem our results, we distill a few lessons
that can guide the design of future message-logging prtgoco

The rest of the paper is organized as follows. In Section 2jegeribe our implementation of message
logging protocols and checkpointing. We briefly describe déipplication programs used in this study
in Section 3. The experimental analysis of the recoverystmstthe pessimistic, optimistic, and causal
logging protocols is presented in Section 4. Section 5 dises a few principles that can be used to
design message-logging protocols for fast crash recovenally, Section 6 offers some concluding
remarks.

2 Implementation

To measure the cost of recovery in message logging protoselfiave implemented a fault-tolerance
layer consisting of a communication substrate, a checkpoanager, and a message-logging proto-

col suite. For tolerating hardware failures, processesamed using a hame server which provides
location-independent names.

e Communication substrate : The communication substrate provides interfaces to eraad de-
stroy point-to-point FIFO communication channels amongpewating processes, as well as to
send and deliver messages. Communication channels arenrapted as cp connections.

e Checkpoint manager : The checkpoint manager periodically saves on stable getotiae state
of each process, which includes heap, stack, and data segnpéus the mapping of implicit
variables such as program counters and machine registtrsitspecific values. Stable storage
for checkpoints is provided by a highly available networé fierver. In case of a failure, the failed
process is re-started and its state is restored to thatdedan the latest checkpoint.

In our current implementation, checkpoints are synchreifoe., applications block during check-
pointing). The checkpointing mechanisms used are sinultrdse described in [17]. We are cur-
rently enhancing our implementation to utilize optiminat such as incremental checkpointing
and copy-on-write [8]. Although such optimizations redtice cost of checkpointing and hence
the failure-free execution time of distributed applicatithey do not affect the failure recovery
overhead, which is the focus of this paper.

e Message-logging Protocol Suite : This suite contains representative protocols for eaclhef t
three styles of message logging:

— Pessimistic logging: We have implemented two pessimistic protocols. The firstqmol is
receiver-based: a process, before sending a message, logs to stable stwtygthe deter-
minants and the contents of the messages delivered so farséidond protocol is instead
sender-based [12]: the receiver logs synchronously to stable storagg thrd determinant of
every message it delivers, while the contents of the messa&g&tored in a volatile log kept
by the message’s sendefhis protocol is similar to the one described in [22].

In both of these protocols, the first step of recovering agseg consists in restoring it to
its latest checkpoint. Then, in the receiver-based prdtdhe messages logged on stable
storage are replayed oin the appropriate order. In the sender-based protocdieads

p broadcasts a message asking all senders to retransmit 8sages that were originally
sent top. These messages are matcheg ith the corresponding determinants logged on
stable storage and then replayed in the appropriate order.

— Optimistic logging: Among the numerous optimistic protocols that have beepgsed in
the the literature (for instance [10, 12, 13, 14, 20, 21, 288 have implemented the proto-
col described in [5]. This protocol, in addition to tolerggian arbitrary number of failures
and preventing the uncontrolled cascading of rollbacksasmnas thedomino effect [21],
implements a singularly efficient method for detecting @mpdhprocesses. In this protocol,
causal dependencies are tracked using vector clocks [16]a Dessage send, the sender
piggybacks its vector clock on the message; on a messageietie receiver updates its
vector clock by computing a component-wise maximum withgigglybacked vector clock.
The determinants and the content of the messages delivezekkpt in volatile memory

2Some sender-based pessimistic protocols keep both detartaiand message contents at the senders [12, 14]. We have
not implemented these protocols because they can onlhatelat most two concurrent failures.

logs at the receiver and periodically flushed to stable g&réince in a crash these logs
in volatile memory are lost, orphans may be created. To tlet@hans, a recovering pro-
cess simply sends a failure announcement message cogtthieinector clock of the latest
state to which the process can recover. On receiving thisages each operational process
compares its vector clock with the one contained in the ngestadetermine whether or not
it has become an orphan. An orphan process first synchrgnfiushes its logs to stable
storage. Then, it rolls back to a checkpoint consistent wiéhrecovered state of the failed
process and uses its logs to roll-forward to the latest ptesssbnsistent state.

In our implementation, we have modified the pseudo-codespted in [5] so that the recov-
ering process sends the failure announcements before/mgplany message from the log,
rather than after all messages in the log have been replay@d.optimization allows the
roll-forward of recovering processes to proceed in paralith the identification, roll-back
and eventual roll-forward of orphan processes. As we wdligeSection 4, this optimization
dramatically improves the performance of the protocolmiyiriecovery.

Causal logging: We have implemented tHé&,.; family-based message-logging protocol [2].
This protocol is based on the following observation: in aeyswhere processes fail inde-
pendently and no more thghprocesses fail concurrently, one can ensure the avathabfli
determinants during recovery by replicating them in thetitd memory off + 1 processes.

In our implementation, this is accomplished by piggybagkieterminants on existing ap-
plication messages until they are logged by at Igast1 processes [3, 9]. Recovery of a
failed process proceeds in two phases. In the first phaspraleess obtains its determinants
from the volatile logs of the operational processes. Intimiiithe process also obtains the
content of messages it delivered before crashing. Thisdause in causal protocols, mes-
sage contents are logged only in the volatile memory of theeae Also, in the first phase, a
recovering process obtains lost messages from the remganicesses. In the second phase,
the collected data is replayed, restoring the process fwésrash state. To handle multi-
ple concurrent failures, we implemented a protocol thabvers crashed processes without
blocking operational processes [6]. In this protocol, #eorering processes elect a leader,
which is responsible for collecting determinants and mgssan behalf of all recovering
processes. The leader then forwards the pertinent dat@loreeovering process.

3 Applications

For our experiments, we have chosen the following five lamgamg, compute-intensive applications.

e grid performs successive over-relaxation (SOR) for a Laplacggbdifferential equation on a
grid of 200 x 200 points. In each iteration, the value of each point is conghate a function
of its value in the previous iteration and of the values ohigghbors. The rows of the grid are
partitioned using a 1-D decomposition such that the loadlqr@cesses is balanced. At the end
of each iteration, each process exchanges with its 2 neighibe new values on the edges of its

grid.

e nbody performs am-body simulation for 625 particles. In the simulation, thetian of a particle
depends on the interactive forces between that particlégfetemaining particles. Particles are

evenly distributed amongst all the processes. During gachtion, each process exchanges the
positions of its particles with the other processes in tlstesy.

e gauss performs Gaussian elimination with partial pivoting or024 x 1024 matrix that represents
a system of linear equations of the fouta: = B. Each process is initially assigned a subset of
the rows of matrixA such that the load on each process is balanced. In eachdteratprocess
receives a row of the matrix from its predecessor, perfoimnseslocal computation and sends the
row of the matrix it computed to its successor.

e life is the game of life played on 500 x 500 grid of points. In each iteration, the value of a
grid point is computed as the sum of the values of its 8 neighbdhe rows of the grid are
partitioned such that the load on all processes is balané¢édhe end of each iteration, each
process exchanges with its 2 neighbors the new values onltes ®f its grid.

e p2fox performs a predator-prey simulation over a population bbiis and foxes on 250 x 250
grid of points. For the simulation, the grid is evenly dividemongst processes. At the end of
each iteration, a process updates the population accomsgne rules and then exchanges with
its 4 neighbors the new values on the edges of its grid.

These applications exhibit different communication pate In thegrid andlife applications, a pro-
cess communicates mostly with its two neighbors, anp2fox a process communicates mostly with
four of its neighbors. The size of messages exchanged arexapyately 2KB. Periodically, however,
each process sends 100Byte messages to all the processesystem. Imbody, each process com-
municates with all other processes, and the size of theseages is approximately 1KB. lgauss,
each process communicates with two of its neighbors, andigieeof each message is approximately
15KB.

4 Experimental Evaluation

4.1 Experimental Methodology

We conducted our experiments on a collection of Pentiuned&sorkstations connected by a lightly-
loaded 100Mb/s ethernet. Each workstation has 64 megabltasmory and runs Solaris 2.5. In our
experiments, there is one process of the distributed agifmit per machine. Stable storage is provided
by an NFS file server that stores files on a RAID-5 disk arraysistimg of 6 disks.

For each protocol, we compute our results by averaging twvezy time measured over twenty runs
of each of the five applications. For a given application, wargntee that, independent of the protocol
used, failures occur at the same point in the execution apipécation: taking advantage of the iterative
nature of the applications, we induce process failuresg Hitecompletion of a pre-determined number
of iterations. This ensures that the amount of lost compartahat has to be recovered in all three
protocols is the same.

4.2 Metrics

For pessimistic and causal protocols, the recovery timedigel byT’...) for a process comprises of: (1)
T.n:, the time to restore the state of the failed process fronaiest checkpoint stored on the file server,

(2) T,cq, the time to retrieve determinants and messages loggedgfaiiure-free execution, and (3)
Trouswa, the time to roll-forward the execution of the process topits-crashed state. For optimistic
protocols, on the other hand, in additionfg, and7,.,, the recovery timé,... consists of: (1)}piay.

the time to replay messages to the recovering process freradtpired logs, and (Z),.,;isx, the time
overhead for rolling back orphans. Note tfat, is protocol dependent: for pessimistic and optimistic
protocols, it is the time to read logs from the file server, letior causal protocols, it is the time to
collect messages and determinants from the logs of the némgaprocesses. In the case of multiple
failures, the values df,ny, Tocqs Trotifwds Lrepiay, ANATonper, @re averaged over the set of concurrently
recovering processes.

4.3 Measurements

For all protocols{,.. depends on three parameters.

1. The timet, within the execution interval defined by two successiveckpeint, at which a failure
is induced. For all protocols, this parameter affects thewamof lost computation that has to be
recovered and the size of the logs that have to be acquirdaetgtovering process.

2. The number of processes, For causal protocols, may affectl,., because it may chance the set
of processes from which a recovering process collects gs. |[&-or optimistic protocols; may
affectT, .. bECAUSE it may change the number of orphans.

3. The number of concurrent failureg, For optimistic protocols, multiple failures may cause a
process to rollback multiple times. For sender-based pestst and causal protocols, multiple
failures may complicate the task of retrieving messagesiatetrminants from other processes.

For optimistic protocols7;... depends also on the frequency with which volatile logs arh#d to
stable storage. In all our experiments, volatile logs arghihd to stable storage every minute. For all
protocols, checkpoints are taken six minutes apart.

General Observations Before we proceed to analyze in Figure 1 and Table 2 the effatt;.. of
changing the values of n, andf, we present a few observation about the behavior of loggiatppols
that are independent of the specific value of these paramété illustrate these observations with the
help of Table 1, which shows the result of our experimentsrwhe- 4, f = 1, andt is chosen half-way
between successive checkpoints.

e Messages and determinants that are available in the logg@cessed during recovery at a rate
higher than during normal execution. This is because, dumisrmal execution a process may
have to block waiting for messages, while during recovepséhmessages can be immediately
retrieved from the logs.

Note that sincd’,..; ., for pessimistic and causal protocols di@pia, + Troupcr) fOr optimistic
protocols dominate the total value ©f.., the reduction in recovery time yielded by process-
ing messages and determinants from logs can be significaaible T illustrates that this re-
duction is very significant, although it is application-depgent. For communication-intensive
applications—such agrid, nbody, life, andp2fox—7T; fwa @NA (T repiay + Trouner) are signifi-
cantly smaller than 3 minutes, the valuetdbr this experiment. However, for compute-intensive

7

Receiver-based Pessimistic Sender-based Pessimistic
AppliCation Tchk Tacq Trollfwd Trec Tchk Tacq Trollfwd Trec
(sec.)| (sec.)| (sec.) (sec.) || (sec.)| (sec.)| (sec.) (sec.)

grid 031 |14 30.28 31.99 || 0.3 3.1 30.5 33.6
nbody 0.29 | 3.5 78.01 81.8 0.31 | 4.2 77.5 82.01
gauss 2.61 | 11.15| 207.13 | 220.89| 2.75 | 14.6 | 211.01 | 228.36
life 0.31 | 095 | 411 4236 || 0.33 | 2.1 41.5 43.93
p2fox 1.85 | 0.8 22.29 2494 | 1.8 5.4 22.6 29.8

Optimistic Causal
AppliCation Tchk Tacq Treplay Trollbck Trec Tchk Tacq Trollfwd Trec
(sec.)| (sec.)| (sec.) | (sec.) (sec.) || (sec.)| (sec.)| (sec.) (sec.)

grid 031 | 1.2 16.8 33.1 51.41 || 0.36 | 3.67 | 30.74 34.77
nbody 0.31 | 291 | 58.1 37.4 98.72 || 0.35 | 442 | 781 82.87
gauss 264 | 983 | 197.2 | 27.6 237.27| 2.56 | 15.7 | 210.7 228.96

life 0.31 | 0.8 25.78 | 40.8 67.69 || 0.36 | 2.55 | 38.97 41.88
p2fox 1.88 | 0.7 14.7 30.8 48.08 | 1.87 | 5.91 | 21.39 29.17

Table 1: The cost of recovery fof = 1, n = 4, and failures induced approximately mid-way between
successive checkpoints

applications—such agauss—reading determinants and messages from the logs doessuitt re
in any significant speedup.

Note also that in optimistic protocols, any speedup appi@y to the portion of the log that
is retrieved from stable storage, which in general contamy a prefix of the sequence of the
messages and determinants delivered prior to failure. BS@(7}cpiay + Trouncr) fOr optimistic
protocols is typically larger thaifi..; ..« for receiver-based pessimistic protocols

e Sender-based pessimistic and causal protocols take lbogedlect recovery information than
receiver-based pessimistic and optimistic protocols.d8ebased pessimistic and causal proto-
cols collect message contents and determinants from apeshprocesses. Although this in-
formation is sent concurrently by the operational procgssige recovering process incurs an
overhead in merging the received data to create a sequégialsed during roll-forward. For
receiver-based pessimistic and the optimistic protodbks,logs are already organized sequen-
tially on stable storage. Furthermore, read-ahead, stggbby conventional file systems, makes
sequential retrieval of the logs efficient.

Table 1 illustrates thély,, for sender-based pessimistic and causal protocols cantimaest six
times higher (e.g., ip2fox) than that for receiver-based pessimistic and optimistotqeols.
However, sincd,., contributes a relatively small fraction @.., the impact of this effect on the
overall recovery performance of the protocols is minor.

SAlthough forf =1, (Trepiay + Trouner) is always larger thaff..;; £.,q for all pessimistic and causal protocols, this does
not hold forf > 1 (see Table 2).

