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Abstract

We investigate a new way to represent arbitrary triangle meshes. We prove that
a large class of triangle meshes, called normal triangle meshes, can be represented
by a subdivision tree, where each subdivision is one of four elementary subdivision
types. We also show how to partition an arbitrary triangle mesh into a small set
of normal meshes. The subdivision tree representation can be used to encode mesh
connectivity information. OQur theoretical analysis shows that such a coding scheme
is very promising.



0.1 Introduction

Triangle meshes are popular in graphics and other application areas. One problem
in dealing with meshes is to store topological information or connectivity of meshes.
Recently, some methods have been presented to efficiently code meshes [5, 3, 4, 13,
6, 9]. A recent survey can be found in [12].

A triangle mesh has two different parts: topological information and geometric
information. The topological information (also called connectivity) is about the re-
lationship between vertices, edges and triangles in the mesh, while the geometrical
information is about the position of vertices. Usually, the topological information is
independent from geometric information, except some special cases such as regular
grid, or Delaunay Triangulations, where geometric information is able to determine
connectivity.

Most current methods try to generate long triangle strips [5, 3, 13, 1] to code mesh
connectivity so that they can be used in some graphical library such as OpenGL. Some
methods use vertex split/merge to code topological information implicitely [6, 9]. The
hierarchical triangulation presented in [4] discussed the representations of meshes in
tree structures. A recursive refinement of meshes naturally forms tree representations
of triangle meshes. However, paper [4] uses links to code vertices, edges and triangles
explicitely. It may result in large storage in storing these links (indices for vertices,
edges and triangles).

It is true that a recursive refinement has a tree representation. But for a given
mesh, whether we can generate its tree representation is not obvious. We have not
seen any work on this reverse problem. The main purpose of this paper is to answer
solve this problem. We are going to find the necessary and sufficient conditions for a
triangle mesh to be represented by a tree.

This paper is organized as follows: In Section 2 gives basic terminologies. Our

main results are presened in Section 3.

0.2 Notation and Definition

We first list some topological concepts used in our study. Some terms are defined

in R" in their general forms, although we are only interested in orientable bounded



surfaces in R?. For details about these terms and related information, readers may

refer to topology textbooks, such as [8].

Definition 1 The Euclidean distance between v = (x1,...,2,) and y = (Y1, ..., Yn) in
R" is given by

e = yll = /(21— 91)? + oo+ (2 — ya)?

Definition 2 A topological space is a set X with a collection B of subsets N C X,
called neighborhoods, such that

o cvery point is in some neighborhood, i.e., Vo € X, AN € B such that x € N
[ ] Nl,NQ € B with z - N1 ONQ,EIN;), € B such that z - N3 g N1 ONQ

The set, B, of all neighborhoods is called a basis for the topology on X.

Definition 3 Two topological spaces A and B are homeomorphic if there is a con-
tinuous invertible function f: A — B with continuous inverse f~': B — A. Such a

function f is called @ homeomorphism.

Definition 4 An n-cell is a set whose interior is homeomorphic to the n-dimensional
disc D" = {x € R" : ||z|| < 1} with the additional property that its boundary must be

divided into a finite number of lower-dimensional cells, called the faces of the n-cell.
o A 0-dimensional cell is a point.
o A I-dimensional cell is a line segment.
o A 2-dimensional cell is a triangle.

o A S-dimensional cell is a tetrahedron.

Definition 5 A complex K is a finite set of cells, K = U{o : o is a cell} such that:
o if o is acell in K, then all faces of o are elements of K.

e if o and 7 are cells in K, then Int(c)N Int(t) = 0.



where Int(A) denotes the interior of a set A. The dimension of K is the dimension

of its highest-dimensional cell.

Definition 6 An n-dimensional manifold is a topological space such that every point

has a neighborhood homeomorphic to an n-dimensional open disc
D" ={xe R": =] <r}

We further require that any two distinct points have disjoint neighborhoods. A 2-

manifold is often called a surface.

Definition 7 A n-dimensional manifold with boundary is a topological space such

that every point has a neighborhood homeomorphic to either a 2-dimensional open
disc or the half-disc DY = {x = (z1,...,2,) € R" : ||z|| < r,x, > 0}. Points with
half-disc neighborhoods are called boundary points.

Definition 8 Let K be a complex. The set of all points in the cells of K is
|K|={z:x€0€ K,0isacel in K}
is the space underlying the complex K, or the realization of K.

Definition 9 Let S7 and Sy be two surfaces. Remove a small disc from each of Sy, S2
and glue the boundary circles of these discs together to form a new surface called the

connected sum of Sy and Sy, written as S1#.5,.

Definition 10 A locally 2-dimensional topological space X is triangulizable if a 2-
complex structure K can be found with X = |K| and K has only triangle cells satis-
fying the additional condition that any two triangles are identified along a single edge
or at a single vertex or are disjoint. A triangulated complex K is called a simplicial

complex or a triangulation on X. A cell of a simplicial complex is called a simplex.
Definition 11 Let K be a complex. The Euler characteristic of K is
X(K) = #(0-cells) — #(1-cells) + #( 2-cells) — F#( 3-cells)...

where #(5) denotes the number of elements in a finite set S.



Definition 12 [f S is a surface with boundary, the associated surface (without bound-

ary) is S*, where S* is S with a disc sewn onto each of the boundary circles.

In other words, S* is the surface S with all its holes patched. If S has k holes or
boundary components, then S* can be considered as S with & discs or 2-cells added

o \(57) = \(5) + k.

Definition 13 The genus g of a closed surface of Fuler characteristic x is given by
(2—x)/2 if x is even, and (1 — x)/2 if it is odd.

The genus of a surface counts how many "handles” the surface has. For orientable

surfaces, this is the number of "holes” in the surface.

Definition 14 The genus of a compact surface with boundary S is g(S) = ¢(5)
where S* is the associated surface without boundary.

Theorem 1 Fuvery compact connected orientable surface is homeomorphic to a sphere

or a connected sum of n tori.

Intuitively, the orientable surfaces are the sphere and tori with any number of
handles. Since a torus is a sphere with a handle, every orientable surface can be
described as a sphere with some number of handles. Because an orientable surface
with genus n is n tori glued together, and a torus is two closed discs glued together,
an orientable surface can be generally decomposed into 2n closed discs. A genus 0
surface (sphere) is two closed discs glued together. Based on these facts and for the
sake of simplicity, we are going to focus on 2D surfaces homeomorphic to a closed
disc, i.e., surfaces in 2D with simple boundaries and no holes.

From our previous definition of triangulation, we have the following definition for

2D triangle meshes:

Definition 15 A 2D triangle mesh is a collection of disjoint triangles in a 2D plane
such that they cover a conencted region in the plane, and a triangle is not allowed to

have a verex of another triangle in the interoir of one of its edge.



In the following, we assume M is a 2D triangle mesh with a simple boundary and
no holes. We denote M as the boundary (polygon) of M. For a pair of adjacent
vertices vy, vy € M, the edge connecting them is denoted by vyv3. A path in M

consists of edges U103, ...,0,_10, is denoted as < wvy,..,v, >. For simplicity, a path
connecting vy, vy 1s also denoted as vyvy if there is no confusion as to which path we
are talking about. The length of a path is defined as the number of vertices forming
the path.

Definition 16 : A graph G = (V, E) consists of two sets: a finite set V' of elements
called vertices and a finite set £ of vertex pairs called edges.

Generally speaking, a 2D triangulation cannot be represented by a graph non-
ambiguously. For instance, when a triangle mesh has a hole which is a single triangle,
the mesh has the same graph as the mesh without the hole.

Definition 17 : A dual graph of mesh M Dual(M ) is a 2D graph obtained as fol-
lows. For each triangle of M we have a vertex in dual(M ). If two triangles share a
common edge e in M then the corresponding vertices in Dual(M ) will be adjacent,

i.e., connected by an edge €. We call € € Dual(M ) the dual of e € M (Fig. 1-1).

Fig. 1-1. M (in solid lines) and its dual Dual(M) (in dotted lines)

Definition 18 : Two graphs G and Gy are said to be isomorphic if there exists a
one-to-one correspondence between their vertex sets and a one-to-one correspondence
between their edge sets such that the corresponding edges of Gy and Gy are incident
on the corresponding vertices of Gy and (G5.



Definition 19 : Two triangle meshes My and My are called topologically equivalent

if their dual graphs are isomorphic.

Definition 20 All vertices/edges on OM are called boundary vertices/edges, the rest

vertices/edges in M are called interior vertices/edges.

It is easy to see that a boundary edge is contained by only one triangle in M,

while an interior edge is shared by exactly two triangles in M. An edge is interior in

M iff it has a dual edge in Dual(M).

Definition 21 For a vertex v in a graph G, the number of edges incident to v is
called the valence (or degree) of v, denoted by p(v).

Obviously, p(v) > 3 for an interior vertex v, and p(v) > 2 for a boundary vertex
v.

Definition 22 For a vertex A € OM, A is called subdivisible if p(A) > 2.
Definition 23 For a point A € M, we define its cone cone(A, M) as
cone(A, M) = {ANAVIVZ|AAVV, € M}

i.e., cone(A, M) is the collection of all triangles (in M) containing vertex A. The
collection of all edges in cone(A, M) excepting those containing vertex A is called the

frontier of cone(A, M).

The frontier of cone(A, M) is a connected path. Fig. 1-2 shows a cone of vertex

A and its frontier < U1,U2,U3,U4,U5,U6 >.

Fig. 1-2. A cone and its frontier



Definition 24 A pair of vertices vy and vy in M are called interior-connected if
there exists k(k > 0) vertices wy, .., wy, such that w;’s (i = 1,...k) are distinct interior
vertices in M, and tywy, Wiwi1 (1 = 1,...,k — 1), and Wro3 are interior edges in M.

The path < vy, wy, .., wg, v > is called an interior-path between vy and vy in M.
Based on this definition, we immediately have the following property.

Property 1 A path < vy, wy, .., wr,v2 > s not an interior path iff there exists a
verter w;(1 < j <k) € OM when k >0 or edge v1v; is on OM (when k=0).

Because M is a single triangulated mesh without holes, all vertices are connected
(not necessarily interior-connected). In addition, for any pair of vertices in M, there
are at least two paths (possibly partially overlapping) in M connecting them due to

the fact that any vertex has valence larger than one.

Definition 25 For a pair of vertices vi,vo € M, an edge e in M is called a blocking
edge for vy and vy (w.r.t. M) if the edge e cuts M into two disjoint sub-triangle
meshes My, My C M such that vi € My, v1 &€ My, vy € My, v ¢ My, MiN My =e. A
vertex v € M s said to have no blocking edge in M if there is no blocking edge for v

and any other vertex w € M ; otherwise, we say v has a blocking edge in M.

In the dual space Dual(M ), removing the dual edge € of the blocking edge e will
result in two separated subgraphs of Dual(M).

Lemma 1 An edge e is a blocking edge for some vertices vi,vo € M iff € is an
interior edge and both of its end points are on OM.

Proof:

=-: Assume e is a blocking edge for some vertices vy,vs € M.

If e is a boundary edge, cutting M along e will generate two meshes M; = M,
and M, = e, thus, both vy, vy € M;. This contradicts the definition of blocking edge
of e. Thus, e must be an interior edge.

If at least one of the two end points of e is interior to M, cutting along e is not
able to separate M into two disjoint parts. Thus, both of the two end points of e
must be on dM.



«: If e is an interior edge and both of its endpoints uy, us are on AM, then e cuts
M into two disjoint sub-meshes M;, My; each of them has at least one triangle. Let
v1 € e be a vertex in My, and vy € e be a vertex in M,, then e is a blocking edge for

U1, V3. O

Lemma 2 For any pair of non-adjacent vertices vi,vy € M, either there exists an

interior-path between vy and vy or there is a blocking edge ¢ for vy and v,.

Proof: If there is a blocking edge e for the vertices vy and vy, then vy and vy are
in disjoint submeshes M; and M,. All paths connecting vy and vy must pass through
one of the two end points of e, which are boundary points. Thus, there is no interior
path for vy, vs.

If there is no blocking edge for non-adjacent vertices vy and vy, there must be an
interior path between vy and v,. If not, any path connecting v; and vy has at least one
vertex which is on dM. Assume m > 0 is the minimum number of boundary vertices
on all such paths, and the path P =< vy, w, ..., wg, vz > has m vertices w;,, ..., w; .
where (j1 < j2 < ... < jm) are on M. Without loss of generality, we assume the
path P has the shortest length among such paths.

For convenience, we denote wy = vy, wry1 = vy. Consider the angle (inside M)

bounded by two edges w;, —1w,,, W;, W;,11. Assume W, w;,_1, W;, U1, ..., W;, Uy, W;, Wj, 41
are all edges inside the angle, where r > 0 (See Fig. 1-3 (a)).

(€Y (b)
Fig. 1-3

The vertices uy, uz, .., u, must be interior, otherwise, say, us (1 <s <r)is on the

boundary. Then the edge w; @, cuts M into two separated parts M; and M.



If vy and vy are not in the same part, W; u; is a blocking edge for vy, v,. This is a
contradiction.

If vy, vy are in the same part (See Fig. 1-3 (b)), then the path P must pass through
us and w; = u, for some t > j; +1. Therefore, we can shorten the path P by replacing
subpath < w;,,wj 41,..,w; > by a single edge w;;w;. This contradicts the shortest
length assumption of P.

Thus, all vertices uy, us, .., u, must be interior in M. We construct a new path

’]D’ — . .
=< wp, Wi, ey Wi =1, ULy Uy ey Upy Wy 41y veey Wh41 >,

which has only m — 1 vertices v;,,..,v;, on dM. This contradicts the assumption

that m is minimized. Thus, vy, vy are interior-connected. a
Remark: If vy and v, are adjacent, it might be that neither a blocking edge nor

an interior-path exists for them. An example is shown in Fig. 1-4.

Fig. 1-4

Definition 26 [f A, B,C are three vertices on M, we call M a triangular patch,
denoted by Paapcar. The boundary part of OM between A and B is called the patch
edge AB, denoted by PE(A, B). Similarly, we have PE(A,C), PE(B,C). The ver-
tices on PE(A, B), PE(A,C), PE(B,C) are called the boundary vertices of the patch.
The vertices A, B,C are called the corners of the patch.

Note: For simplicity, we still use M and Paapcam interchangeably if no confusion

is caused.
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Definition 27 A edge e = uyu; in a triangular patch Paapoar ts called illegal if it
is interior and both of its end points are on same patch edge PE(A, B), PE(B,C),
or PE(A,C). Otherwise, is called legal.

Definition 28 A triangular patch Paapca s normal if it contains no illegal edges.
Otherwise, the patch is called abnormal. [f there exists a normal triangular patch
Paapcoy for a mesh M, we call M normal, otherwise, abnormal.

Fig. 1-5 show two examples of abnormal triangular patches.

B B

A C

A C
Fig. 1-5. Examples of abnormal triangular patches

It is easy to see that a sufficient (but not necessary) condition to be a abnormal
triangular patch is that valence p(v) = 2 for some boundary vertex v which is not a
corner.

As we mentioned earlier, a surface can be decomposed (cut along some paths on
the surface) into a finite number of closed discs. For a 3D triangle mesh, we may
choose the cutting paths to be paths of the mesh, i.e., we can cut a 3D triangle mesh
into a number of sub-meshes, each of them topologically equivalent to a 2D disc. We
should point out that we can select our cutting paths so that no illegal edges will be
created by our cutting.
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M1

Fig. 1-6. Removing illegal edges by adjust cutting pathes

Fig. 1-6 shows the strategy for avoiding generating illegal edges. In Fig. 1-6,
assume we cut a sphere-like triangle mesh into two submeshes M; and M,. If there
is an illegal edge p = V;V; (shown as a wide-solid line) on the cutting path (shown
as solid lines on the front and dotted lines on the back), we can change our cutting
path by replacing sub-path < Vi, V5, V5, V) > by the edge p. The edge p is no longer
illegal. Based on this strategy, when we cut a 3D triangle mesh without boundary into
several sub-meshes, we can assume that all sub-meshes are topologically equivalent
to normal triangular patches.

When a surface has boundaries, we cannot remove illegal edges simply by adjusting
cutting edges if illegal edges exist on the existing boundaries. In this case, we may
use a construction based on adding a vertex to get rid off all illegal edges immediately
as shown in the following example.

Let M be an abnormal 2D triangular patch with the boundary M = {V5, V4, ..., Vi1 }
and three corners A = Vo, B = V4, C = V3 (Fig. 1-7(a)). The patch Paapca has
two kinds of illegal edges: those caused by degree-2-vertices — edges Vo V5, V4V, ViV,
Ve Vs, VaVio, VioVo, and those not caused by degree-2-vertices — edge VaVio. We add
a vertex W outside the plane of support of M and construct triangles AW V;V;,; for

all successive boundary points V;, Viy1 (shown as dotted lines in Fig. 1-7(a)). This
results in a 3D triangle mesh denoted by M which is topologically equivalent to a
sphere. We consider 9M as the path cutting M into two sub-meshes, one is the
mesh M, the other is formed by W with all vertices on dM. Now, we adjust the
cutting path as mentioned above to remove illegal edges. In the example here, our
new cutting path is shown in bold lines (Fig. 1-7(a)). Under the new cutting, the
mesh M is decomposed into two submeshes M; and M,, as shown in Fig 1-7(b) and
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(c) respectively. Both of them are normal patches.

Fig1-7 (3) Fig 1-7 (b) Fig1-7 (0)

Fig. 1-7. Removing illegal edges

Note: The advantage of this technique is that we only need to code two sub-
patches if there are many illegal edges. The major drawback is that it may create
many new triangles in My, although the topological information is very cheap to
store (we will address this problem later). An alternative way to normalize triangular
patches is to cut a patch into many sub-patches so that each sub-patch is normal,
but it may reduce the efficiency of coding.

0.3 General subdivision theorem

Theorem 2 Let Prapeym be a normal triangular patch obtained from triangle mesh
M. We can reconstruct another triangle mesh M by adaptively subdividing a single
triangle NABC such that each subdivision is one of the following four elementary
types (called binary, ternary, quaternary, and mitsubishi, respectively) as shown in
Fig 2-1(a)(b)(c)(d), M is topologically equivalent to M, and the vertices A, B,C
correspond to the vertices A, B,C'.
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(a): binary (b): ternary (c): quaternary (d): mitsubishi
Fig. 2-1. Four different ways to subdivide a triangle

Proof: We have two steps in our proof.

In step 1, we prove that Paapc,am can be subdivided into several sub-triangular
patches using one of the four elementary subdivisions. In the second step, we prove
the sub-triangular patches generated in the first step can be normalized. Therefore,
we can repeat the subdivision on the sub-patches until all sub-patches have only three

vertices, i.e., a single triangle.

0.3.1 stepl

There are two cases.
Case 1: At least one vertex of A, B, has no blocking edge in M
Assume the vertex A has no blocking edges, in other words, for any point v € M,

there exists an interior path from A to v.

e Case 1.1: If there is a point v on the boundary PFE(B, (), then we can subdivide
M along the interior path from A to v using ’binary subdivision’ (Fig. 2-2 (a))

and finish our proof.

e Case 1.2: Suppose the patch edge PE(B, () is a single edge BC. Let ADBC
be the triangle in M containing the edge BC. The vertex D must be an interior
point of M. Otherwise, either BD or C'D will be a blocking edge for the vertex

A, and thus it contradicts our assumption.

Because D and A are inner-connected by a path P, we can subdivide M into
three sub-triangular patches by cutting edge BD,C'D and the path P (Fig. 2-2
(b)) using the ternary subdivision.
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A B A B
€Y (b)
Fig. 2-2.

Case 2: All three vertices A,B,C have blocking edges in M.

Let edge A;A; be a blocking edge for vertex A. We can assume that vertices A,
and A, are on PE(A, B) and PE(A, C),respectively. If this condition is not satisfied,
then one of the two vertices Ay, As, say, Ay, must be on the PE(B,C). That leads
to Ay = B and then B, A, are interior-connected.

We run over all such blocking edges, and assume the blocking edge A; A, is selected
such that the area AA; A, is maximized.

Similarly, we have blocking edges By By and C1C5 for vertices B and C', which
maximize area BBy By and CC1Cy, respectively (Fig 2-3).

C

A A, B, B
Fig. 2-3.

We call this assumption the mazimum area assumption in the following.

We denote by M’ the region bounded by Ay By BoC5Ch A,.

Based on the maximum area assumption, we immediately get the following result:
there are no blocking edges inside the region M’, and any interior point v € M’ is
interior-connected to all vertices of Ay, Ay, Cy,C1, By, By.



15

If one of the following happens: Ay = By or Ay = C or By = (5, we say there is a
degeneracy. We can deal with the degeneracy as follows. If, say, Ay = B; (Fig. 2-4),
then Lemma 2 implies that A; and B, must be interior-connected by a path P in
the region bounded by A; A;C B;y. Otherwise, there will be a blocking edge A;() such
that @ € A3C or Q € B2C (shown by a dotted line in Fig. 2-4), which contradicts

the maximum area assumption. Thus, we can subdivide M along path P and two

blocking edges A; A and Ay By using quaternary subdivision.
C

A;

A A=B B
Fig. 2-4.

From now on, we assume there is no degeneracy, i.e., A; # By, Ay # C; and
By #£ C.

Consider the triangles AA;A3A3, AB1ByBs and AC;C5C5 in the region M.
These triangles exist because of the maximum area assumption and the triangulation
of M’. In addition, the maximum area assumption guarantees that all three points
Az, B3, U5 are interior points in M’. Based on Lemma 2, it follows that there exist
interior-paths Py, P, Ps inside M’ connecting As and Bs, Az and C3, Bz and Cj,
respectively (Fig 2-5).
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We let M4 p denote the region bounded by AyAs, Py, BsB; and A By; My e
bounded by A;As, Py, C5Cy and A;Cy; Mp ¢ bounded by CyCs5, Ps, Bs By and ByC,
(Fig 2-5).

We assume paths Py, Py, P53 do not cross, although in general they may overlap.

(If the paths cross, we can always re-organize the paths to remove the crossing.) We
denote the three possible overlapping sub-paths by AsA4, BsBy and C3Cy (Fig 2-6).

We assume the lengths of these overlapping sub-pathes are minimized.

Claim: There exist six edges (Fig. 2-6) A4S1, C4Ss, BiRy, C4Ry, A4Ty, B4T, such
that

o 1.8 € AyCh, Ty, Ty € A By, Ry, Ry € ByCh,
o A,5,,C4S; € Myc,
e B4R, C4R; € Mpc,
o AT, BJT;, € Myp.

We now prove the existence of the edge A4S;. If A3 = A4, we immediately get
S1 = Ay and finish the proof. If A3 # A4, the angle Ay in the region M4 ¢ must be
subdivisible. Otherwise, we can reduce the length of path As;A4, which contradicts
our shortest length assumption on A3A4 above. Now build the cone of A4 inside the
region M4 c. The frontier of the cone must have a vertex S; on the boundary A;Cf,
otherwise, the frontier can be used to reduce the length of A3Aj,.

Similarly, we can prove the existence of the remaining five edges.
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It is easy to see that the regions My g, M4 ¢, Mp ¢ are disjoint, but share parts
of their boundaries.
Based on Fig.2-6, we will find subdivision paths in M. The problem can be solved

when we classify M into the following three cases.

o Case 2.1: Ay # By, Ay # Cy, Cy # By. (Fig. 2-7 (a)).
We claim that there exist six paths U,U,, U Uz, ViV, Vi Vs, Wi W, Wi W3 such
that
— vertex Uy € 515, vertices Uy, Us € A4Cy, Uy # Us,
— vertex Vi € 1Ty, vertices Vo, V3 € AyBy, Vo # V5,
— vertex Wy € Ry Ry, vertices Wy, W5 € B,Cy, Wy #£ W,
— paths UyU,, U1Us are interior paths in region A4C45557,
— paths Vi V5, V1 V5 are interior paths in region A4T17T, By,
— paths Wi W,, W W3 are interior paths in region By Ry R2Cly,

— all six paths are interior to M.

€ (b)
Fig. 2-7

It suffices to prove the existence of the paths U;U; and U;Us. We can use the

following recursive algorithm to find them.

Algorithm for searching pathes U;U;,U;Us in the region A4C4525::
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init:
Uy + 5y, Uy Cy, Us + Ay,
path U U, = S,CY,
done = FALSE
while done = FALSE do {
If there is an interior path P for U;,Us in A4C4.5,5,
path U Us < P
done = TRUE
else
if there is a blocking edge U;U) in the region A4;C45,5)
such that U] € 5153 and Uj € C4 A, (Fig 2-7 (b))
Uy« Uj, Uy« Ul
else /x U, =5, */
Uy « As, path U;Us = S| Ay, done = TRUE
}

The algorithm will terminate because there are only a limited number of vertices

on S195.

Now, we are able to subdivide M along three pathes: U;U;, UsCy, CyW3, W3y,
WiWs, Wy By, B4V, VaVi, ViVa, Vo Ay, AyUs, UsUy using the quaternary subdivi-
sion (Fig. 2-7 (a)).

Case 2.2: Ay =B, =0C,.

We find an edge Uy1U;5 and a path A4Up; such that Uy € ATy, Uy € AsAy,

and U;1Uy, AyUqq are interior to M as follows.

— If Ay =17, we simply select Uy; = Ay, Uy = Az, path AUy, = path AT,
and U;1U;3 = A1 As. Obviously, these two paths are interior to M.
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— If Ay # T} and there is an interior path P inside the region A;T; A4 A5 (Fig.
2—8(&)), we select U11 == A17U12 == A3,U11U12 == A1A3, and path A4U11 ==
path P.

— Suppose A; # T; and Ay, A4 are not interior-connected in the region
A1 T1A4As. Based on Lemma 2, there is a blocking edge wyuy for Ay, Ay.

Because A; As, A T} are edges, the vertices u; and uy must be on AT and

AsAy, respectively (Fig. 2-8 (b)). There might be more than one such
blocking edge. We assume uyusy is the one closest to Ay, i.e., there is a
path P connecting A4 and uy, and P is an interior path in M. Now we

ELSSigH U11 = Uy, U12 = U2, U11U12 = UjU3, and path A4U11 = path P.

Similarly, we can get an edge U, U, and a path A4l such that Uy, € AyS, Usy €
AzAy, and Uy Usy, AyUs; are interior to M (Fig. 2-8 (c)). Together, we have
constructed a sub-triangular patch A4U U, (we rename Uy = Uyy, Uy = Uy, and
the triangular patch is shown by the shadowed area in Fig. 2-8 (¢)) inside the
region ATy A4S7. The patch AU U, intersects M only at Uy, Uy, and its three

boundary edges are all interior to M.

As

Aly T,

A A U=U,, Ti
(€) (b) ©
Fig. 2-8 Mesh near vertex A

In the same way, we can obtain two other sub-triangular patches A4V; V5 inside
BR1 ATy, and AJWi Wy inside C'S; Ay Ry (Fig. 2-9 (a)). All three sub-triangular
patches A U Uy, AyViVa, AgW W, are disjoint, because they are separated by
six edges A Ry, AyRy, AySt, AySse, ATy, AT
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If Uy # Vi, Vo #£ Wy, Wy # Uy (Fig. 2-9 (a)), we can subdivide M along the

boundaries of these three sub-triangular patches using mitsubishi subdivision.
If one of the following happens: U; = Vi, Vo, = Wy, W; = U, and, say, U; = V)
(Fig. 2-9 (b)), we can subdivide M along paths UyU,, ViV,, Uy Ay and V3 Ay

using quaternary subdivision.

A U.=T=T,=V, B
(b)

Fig. 2-9

Case 2.3: Exactly one of the following is true: Ay = By, Ay = Cy, Cy = By

Assume Ay = C4, Ay # By (Fig. 2-10 (a)). Using the exact same methods as
in Case 2.1 and Case 2.2, we can get sub-triangular patches A4U;U,, A4X; X5,
and paths ViVa, ViVs, WiW,, WiWs (Fig. 2-10 (b). We obtain a third sub-
triangular patch bounded by the following eight paths: A V5, V3Vi, ViV, V4 By,
BWs, WsWy, WiW,, WAy, Therefore, we get a result similar to Case 2.2.

The rest of the argument is exactly same as in Case 2.2.
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Fig. 2-10

0.3.2 step 2

In step 1, we proved that any normal triangular patch M can be subdivided into
several sub-triangular patches. But these sub-triangular patches may be abnormal,
so we cannot apply our general subdivision theorem on the sub-patches. Fortunately,
we can normalize abnormal sub-patches in the way we described earlier.

Consider the result of using binary subdivision (Fig. 2-11). Assume we subdivide
M along the path C'D (in solid lines). There are three new boundaries AD, DB, C'D
in the two sub-triangular patches AC'D and BC D. Obviously, paths AD and BD do
not have any blocking edges because M is normal. If path C'D has a blocking edge,
say UV (shown in a dotted line), we can subdivide M using a new path formed by
path CU, edge UV and path VD. Thus, the blocking edge is removed in the new

subdivision.
c

U

A D B
Fig. 2-11
It is easy to see that this technique applies to all abnormal sub-triangular patches

generated by the other three subdivisions. O
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Remark: From our arguments before, we know that the normality’ of a triangle
mesh is a weak condition: all closed 3D triangle meshes can be subdivided into normal
triangular patches, and an abnormal triangular patch with an arbitrary number of
illegal edges can always be decomposed into two normal triangular patches if we add
one point.

In CAGD and computer graphics, it is common that a single triangular surface
defined on a triangle domain, say, a triangular Bezier surface or B-spline surface, is
subdivided into many triangular sub-patches by a 'divide and conquer’ technique. No

illegal edges are created in the subdivision procedure. Therefore

Corollary 3 If triangle mesh M is generated by arbitrarily subdividing a singular
triangular surface defined on a triangle domain, then M can be represented as a
subdivision tree where each subdivision is one of the four elementary types defined
above.

Corollary 4 A necessary and sufficient condition for a triangle mesh to be repre-

sented by a single subdivision tree is that the mesh be normal.

0.4 Efficiency analysis

0.4.1 About entropy coding

Before we analyze the efficiency of our subdivision tree representation for topological
coding, we need to briefly introduce some basic concepts from information theory.
Information theory uses entropy as a measure of how much information is con-
tained in a message [10]. The higher the entropy of a message, the more information it
contains. For a message consisting of symbols S = {s1,..., s,,}, each s; with proability
p;, the entropy of the information is defined as
" 1
Zpi log, —
i=1 Di

k3

(0.1)

If we use [; bits to encode each symbol s; (i=1,..,m), the average codeword length is

lower bounded by the entropy, i.e.,
m m 1
laverage = szlz > Zpl 10g2 -

Pi
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When logzpii are integers, we can code each s; using [; = logzp% bits with a Huffman
coding scheme. Otherwise, a more complicated scheme called arithematic coding can
be used so that the average coding length [,,erq4e 18 as close to the entropy bound
as possible [2]. Huffman and arithmetic coding are both often called entropy coding
techniques.

When we analyze efficiency of a compression method theoretically, we can use the
entropy of its output message without actually encoding the message.

It can be verified that the entropy defined by Eq.( 0.1) has the maximum value
of loggm when p; = % for all « = 1,...,m. Therefore, we can always use an average

logam bits to encode each symbol in a message which consists of m symbols sq, ..., 5,,.

0.4.2 Efficiency analysis

Our general subdivision theory tells us that the topological structure of a normal
triangular patch can be represented (thus encoded) as a tree. Each node represents a
triangle and each node has only four different ways to generate its children. Because
the first elementary subdivision (binary subdivision) can involve adding a point to
any of three edges, it has three cases. In addition, we have to include a ’leaf’ case
which has no subdivision. Thus we have seven subdivision cases to represent. Based
on information theory, we can roughly estimate that each case can be coded by at
most logy 7 & 2.81 bits.

When a normal triangular patch is represented by a subdivision tree, the repre-
sentation is usually not unique. Fig 2-12 (b)(c) are two different subdivision tree
representations for the same triangular patch shown in Fig 2-12(a). Excluding leaf
nodes, the tree in Fig. 2-12(b) has 6 subdivisions while Fig 2-12(c) has 11 subdivi-
sions for the total 14 triangles. That brings up the question: how can we get the

most efficient subdivision?



24

Al Al
AHEE

AGH (F31) [CFID] GHD

triangle PQR subdivided by i-th elemental subdivision

(PQR  leaf triangle

Fig 2-12 (a): mesh Fig 2-12 (b): subdivision tree Fig 2-12 (c): another subdivision tree

Fig. 2-12 a triangular patch and its subdivision tree representations

We define BT rate as "bits/triangle (BT)’ to measure the coding efficiency. The BT
rate for each of our four elementary subdivisions is @Tﬂ(% 1.40), @Tﬂ(% 0.94), @Tﬂ(z
0.70) and 227 (~ 0.31), respectively. Obviously, the first elementary (binary) subdi-

vision has tﬁe least efficiency, the last (mitsubishi) has the greatest.

The subdivision tree for a normal triangular patch with n triangles has n leaf
nodes and at most n — 1 non-leaf nodes. Therefore, if we use log,7 bits for each
subdivision case, the BT rate is upper bounded by ﬁmnloﬂ < 2log, 7~ 5.62(BT).
That happens when all non-leaf nodes use binary subdivisions. However, taking the
probabilities into account, the BT rate of entropy coding is much smaller than the

5.62. Actually, we have the following theorem.

Theorem 5 For a normal triangular patch with n triangles (n > 1), the entropy
of BT rate for any subdivision tree representation of the patch is lower bounded by

glog2 9 — 3 ~ 0.57 and upper bounded by 2.52.

Proof: Let’s assume there are n; nodes using the i-th elementary subdivision (i=1,2,3,4)
and the total number of triangles is n. Notice that the four elementary subdivisions
increase the number of triangles by 1, 2, 3, and 8, respectively. Therefore, we have
the following relations:
4

Zki*ml:n—l%n (0.2)

=1
where kl == 1,k2 == 2,k3 == 3,k4 =&.

With entropy coding, the BT rate is expressed as

Z?ﬂ(ni log, %) + nlog, %
n

E=-—
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where N = n+31_, n;. Maximizing F under the constraint Eq. (0.2), we immediately

get the following equations using Langrange multiplers:

log, &«
082N _ o = constant, for 1 =1,2,3,4

k;

Denoting = = 2, we have

le.
4 B 2?21 xk,
Zni - nl 4 k
i=1 - Zi_l T
So,
n;=a"(n+ Y n;)=n ra—
i=1 L =20

iFrom Eq (0.2), we get

le.,
(ki + 1) =1 (0.4)
i=1
Eq. (0.4) has a unique positive solution x & 0.30435, and thus a = log, © ~ —1.7162.
Based on the values of # and a, we also have the following >+, n; ~ 0.7399n,
ny = x(n + X n;) & 0.5295n, ny = 2¥(n + T, ) & 0.1612n, ny = 2*(n +
S ni) & 0.0490n, ng = 28%(n + 1, n;) &~ 0.000128n.
The maximum value of the BT rate can be calculated from Eq. (0.3): F,,.. = 2.52.
Because Eq (0.4) has only one positive root, which leads to the maximum value
of F, the minimum value of £ must be reached at the boundary of the region: {n; >
0,n9 >0,n3 >0,n4 >0,n1+2%ny+3%n3+8*ny =n—1}. It is easy to verify that
E gets its minimum value when ny = ny = ng =0,ny = n —1 & n, i.e., the minimum
value 1s F,;n ~ glog2 9 — 3 ~ 0.57 O
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The proof above suggests us that a smaller BT rate can be obtained when fewer
binary subdivisions are used and more quaternary and mitsubishi subdivisions are
used.

Although topological information is only a small part of mesh representation, the
efficiency of topological coding is still an important problem, especially for hardware
supported rendering.

Assume there are n vertices in a big mesh. According to the Euler’s theory, there
are roughly 2n triangles. The simplest way to code the topological information is to
store each triangle separately by indexing its three vertices. That costs 3log, n(BT).
OpenGL allows triangles to be coded in strips. A triangle of £ triangles can be coded

by indexing only k + 2 vertices. That reduces costs to (kzz)logzn (BT). A generalized
triangle strip method includes swap commands in a triangle strip [5]. Its BT rate is
roughly %loggn—l—c for ¢ & 2 (BT). Deering developed the notion of generalized triangle
mesh to reuse a limited number previously appearing vertices stored in a buffer [3].
The BT rate is about 11—6loggn +4 (BT). PM in [6] uses about %loggn + 2.5 (BT) for
topological coding. And modified PM in [11] uses Llogyn + 3.5(BT). Li’s method [9]
has an average BT rate of %loggn + 4.5 (BT).

We notice that all coding schemes above have a term logan in their BT rates.
The reason is that they access triangles randomly. Random accessing is useful in
rendering, especially in view-dependent rendering.

One big improvement made by Taubin and Rossignac is to arrange all vertices
and triangles in a fixed way so that no indexing term logzn appears [13]. An average
cost of 2 (BT) is reported in their testing. More importantly, when all vertices are
arranged in a fixed order, their geometric information can be coded efficiently using a
bit-plane coding scheme. However, the method cannot generate hierarchical topology,
and is not good for rendering.

Our method uses subdivision trees to put all vertices in a fixed positions. Once
a tree is constructed, the topological information coded by the tree is complete. We
need not spend log, n bits for indexing a vertex. The BT rate in our scheme is upper
bounded by 2.52 (BT) for a normal triangular patch. The BT rate is lower than all
existing methods, except [13]. Taubin et al. reported 2 (BT) in their tests, but didn’t
give theoretical analysis of their coding efficiency.

The efficiency of our method will be reduced when we cut a big mesh into many
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normal triangular patches. We mentioned earlier that we can always cut a mesh
with genus g and & boundaries into 2n + k normal triangular patches with a penalty
of adding nj triangles and k vertices, where n; is the total number of vertices in
k boundaries. Thus, our efficiency reduces at most by 2nk212g27 = lzgﬂ(BT). We
should point out that for most cases, ny < n. In addition, the actual cost may much

less than the upper bound we estimated here. Therefore, our coding efficiency is
believed to be very high.

The efficiency of topological coding is not the main goal of our compression. Most
storage is spent on geometry coding, not topology coding. We use subdivision tree
representation because it helps us to construct wavelets on an arbitrary mesh, and

wavelets are expected to have excellent performance in geometry coding.
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