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AbstractWe investigate a new way to represent arbitrary triangle meshes. We prove thata large class of triangle meshes, called normal triangle meshes, can be representedby a subdivision tree, where each subdivision is one of four elementary subdivisiontypes. We also show how to partition an arbitrary triangle mesh into a small setof normal meshes. The subdivision tree representation can be used to encode meshconnectivity information. Our theoretical analysis shows that such a coding schemeis very promising.



10.1 IntroductionTriangle meshes are popular in graphics and other application areas. One problemin dealing with meshes is to store topological information or connectivity of meshes.Recently, some methods have been presented to e�ciently code meshes [5, 3, 4, 13,6, 9]. A recent survey can be found in [12].A triangle mesh has two di�erent parts: topological information and geometricinformation. The topological information (also called connectivity) is about the re-lationship between vertices, edges and triangles in the mesh, while the geometricalinformation is about the position of vertices. Usually, the topological information isindependent from geometric information, except some special cases such as regulargrid, or Delaunay Triangulations, where geometric information is able to determineconnectivity.Most current methods try to generate long triangle strips [5, 3, 13, 1] to code meshconnectivity so that they can be used in some graphical library such as OpenGL. Somemethods use vertex split/merge to code topological information implicitely [6, 9]. Thehierarchical triangulation presented in [4] discussed the representations of meshes intree structures. A recursive re�nement of meshes naturally forms tree representationsof triangle meshes. However, paper [4] uses links to code vertices, edges and trianglesexplicitely. It may result in large storage in storing these links (indices for vertices,edges and triangles).It is true that a recursive re�nement has a tree representation. But for a givenmesh, whether we can generate its tree representation is not obvious. We have notseen any work on this reverse problem. The main purpose of this paper is to answersolve this problem. We are going to �nd the necessary and su�cient conditions for atriangle mesh to be represented by a tree.This paper is organized as follows: In Section 2 gives basic terminologies. Ourmain results are presened in Section 3.0.2 Notation and De�nitionWe �rst list some topological concepts used in our study. Some terms are de�nedin Rn in their general forms, although we are only interested in orientable bounded



2surfaces in R3. For details about these terms and related information, readers mayrefer to topology textbooks, such as [8].De�nition 1 The Euclidean distance between x = (x1; :::; xn) and y = (y1; :::; yn) inRn is given by kx� yk = q(x1 � y1)2 + :::+ (xn � yn)2De�nition 2 A topological space is a set X with a collection B of subsets N � X,called neighborhoods, such that� every point is in some neighborhood, i.e., 8x 2 X;9N 2 B such that x 2 N� N1; N2 2 B with x 2 N1 \N2;9N3 2 B such that x 2 N3 � N1 \N2.The set, B, of all neighborhoods is called a basis for the topology on X.De�nition 3 Two topological spaces A and B are homeomorphic if there is a con-tinuous invertible function f : A ! B with continuous inverse f�1 : B ! A. Such afunction f is called a homeomorphism.De�nition 4 An n-cell is a set whose interior is homeomorphic to the n-dimensionaldisc Dn = fx 2 Rn : kxk < 1g with the additional property that its boundary must bedivided into a �nite number of lower-dimensional cells, called the faces of the n-cell.� A 0-dimensional cell is a point.� A 1-dimensional cell is a line segment.� A 2-dimensional cell is a triangle.� A 3-dimensional cell is a tetrahedron.De�nition 5 A complex K is a �nite set of cells, K = [f� : � is a cellg such that:� if � is a cell in K, then all faces of � are elements of K.� if � and � are cells in K, then Int(�)\ Int(� ) = ;.



3where Int(A) denotes the interior of a set A. The dimension of K is the dimensionof its highest-dimensional cell.De�nition 6 An n-dimensional manifold is a topological space such that every pointhas a neighborhood homeomorphic to an n-dimensional open discDn = fx 2 Rn : kxk < rgWe further require that any two distinct points have disjoint neighborhoods. A 2-manifold is often called a surface.De�nition 7 A n-dimensional manifold with boundary is a topological space suchthat every point has a neighborhood homeomorphic to either a 2-dimensional opendisc or the half-disc Dn+ = fx = (x1; :::; xn) 2 Rn : kxk < r; xn � 0g. Points withhalf-disc neighborhoods are called boundary points.De�nition 8 Let K be a complex. The set of all points in the cells of K isjKj = fx : x 2 � 2 K;� is a cell in Kgis the space underlying the complex K, or the realization of K.De�nition 9 Let S1 and S2 be two surfaces. Remove a small disc from each of S1; S2and glue the boundary circles of these discs together to form a new surface called theconnected sum of S1 and S2, written as S1#S2.De�nition 10 A locally 2-dimensional topological space X is triangulizable if a 2-complex structure K can be found with X = jKj and K has only triangle cells satis-fying the additional condition that any two triangles are identi�ed along a single edgeor at a single vertex or are disjoint. A triangulated complex K is called a simplicialcomplex or a triangulation on X. A cell of a simplicial complex is called a simplex.De�nition 11 Let K be a complex. The Euler characteristic of K is�(K) = #(0-cells)�#(1-cells) + #(2-cells)�#(3-cells):::where #(S) denotes the number of elements in a �nite set S.



4De�nition 12 If S is a surface with boundary, the associated surface (without bound-ary) is S�, where S� is S with a disc sewn onto each of the boundary circles.In other words, S� is the surface S with all its holes patched. If S has k holes orboundary components, then S� can be considered as S with k discs or 2-cells addedso �(S�) = �(S) + k.De�nition 13 The genus g of a closed surface of Euler characteristic � is given by(2� �)=2 if � is even, and (1 � �)=2 if it is odd.The genus of a surface counts how many "handles" the surface has. For orientablesurfaces, this is the number of "holes" in the surface.De�nition 14 The genus of a compact surface with boundary S is g(S) = g(S�)where S� is the associated surface without boundary.Theorem 1 Every compact connected orientable surface is homeomorphic to a sphereor a connected sum of n tori.Intuitively, the orientable surfaces are the sphere and tori with any number ofhandles. Since a torus is a sphere with a handle, every orientable surface can bedescribed as a sphere with some number of handles. Because an orientable surfacewith genus n is n tori glued together, and a torus is two closed discs glued together,an orientable surface can be generally decomposed into 2n closed discs. A genus 0surface (sphere) is two closed discs glued together. Based on these facts and for thesake of simplicity, we are going to focus on 2D surfaces homeomorphic to a closeddisc, i.e., surfaces in 2D with simple boundaries and no holes.From our previous de�nition of triangulation, we have the following de�nition for2D triangle meshes:De�nition 15 A 2D triangle mesh is a collection of disjoint triangles in a 2D planesuch that they cover a conencted region in the plane, and a triangle is not allowed tohave a verex of another triangle in the interoir of one of its edge.



5In the following, we assume M is a 2D triangle mesh with a simple boundary andno holes. We denote @M as the boundary (polygon) of M . For a pair of adjacentvertices v1; v2 2 M , the edge connecting them is denoted by v1v2. A path in Mconsists of edges v1v2; :::; vn�1vn is denoted as < v1; ::; vn >. For simplicity, a pathconnecting v1; v2 is also denoted as v1v2 if there is no confusion as to which path weare talking about. The length of a path is de�ned as the number of vertices formingthe path.De�nition 16 : A graph G = (V;E) consists of two sets: a �nite set V of elementscalled vertices and a �nite set E of vertex pairs called edges.Generally speaking, a 2D triangulation cannot be represented by a graph non-ambiguously. For instance, when a triangle mesh has a hole which is a single triangle,the mesh has the same graph as the mesh without the hole.De�nition 17 : A dual graph of mesh M Dual(M) is a 2D graph obtained as fol-lows. For each triangle of M we have a vertex in dual(M). If two triangles share acommon edge e in M then the corresponding vertices in Dual(M) will be adjacent,i.e., connected by an edge ~e. We call ~e 2 Dual(M) the dual of e 2M (Fig. 1-1).
Dual(M)

MFig. 1-1. M (in solid lines) and its dual Dual(M) (in dotted lines)De�nition 18 : Two graphs G1 and G2 are said to be isomorphic if there exists aone-to-one correspondence between their vertex sets and a one-to-one correspondencebetween their edge sets such that the corresponding edges of G1 and G2 are incidenton the corresponding vertices of G1 and G2.



6De�nition 19 : Two triangle meshes M1 and M2 are called topologically equivalentif their dual graphs are isomorphic.De�nition 20 All vertices/edges on @M are called boundary vertices/edges, the restvertices/edges in M are called interior vertices/edges.It is easy to see that a boundary edge is contained by only one triangle in M ,while an interior edge is shared by exactly two triangles in M . An edge is interior inM i� it has a dual edge in Dual(M).De�nition 21 For a vertex v in a graph G, the number of edges incident to v iscalled the valence (or degree) of v, denoted by �(v).Obviously, �(v) � 3 for an interior vertex v, and �(v) � 2 for a boundary vertexv.De�nition 22 For a vertex A 2 @M , A is called subdivisible if �(A) > 2.De�nition 23 For a point A 2 @M , we de�ne its cone cone(A;M) ascone(A;M) = f4AV1V2j4AV1V2 2Mgi.e., cone(A;M) is the collection of all triangles (in M) containing vertex A. Thecollection of all edges in cone(A;M) excepting those containing vertex A is called thefrontier of cone(A;M).The frontier of cone(A;M) is a connected path. Fig. 1-2 shows a cone of vertexA and its frontier < U1; U2; U3; U4; U5; U6 >.
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U6Fig. 1-2. A cone and its frontier



7De�nition 24 A pair of vertices v1 and v2 in M are called interior-connected ifthere exists k(k � 0) vertices w1; ::; wk such that wi's (i = 1; :::k) are distinct interiorvertices in M , and v1w1, wiwi+1 (i = 1; :::; k� 1), and wkv2 are interior edges in M .The path < v1; w1; ::; wk; v2 > is called an interior-path between v1 and v2 in M .Based on this de�nition, we immediately have the following property.Property 1 A path < v1; w1; ::; wk; v2 > is not an interior path i� there exists avertex wj(1 � j � k) 2 @M when k > 0 or edge v1v2 is on @M (when k=0).Because M is a single triangulated mesh without holes, all vertices are connected(not necessarily interior-connected). In addition, for any pair of vertices in M , thereare at least two paths (possibly partially overlapping) in M connecting them due tothe fact that any vertex has valence larger than one.De�nition 25 For a pair of vertices v1; v2 2M , an edge e in M is called a blockingedge for v1 and v2 (w.r.t. M) if the edge e cuts M into two disjoint sub-trianglemeshes M1;M2 �M such that v1 2M1; v1 =2M2; v2 2M2; v2 =2M1;M1 \M2 = e. Avertex v 2M is said to have no blocking edge in M if there is no blocking edge for vand any other vertex w 2M ; otherwise, we say v has a blocking edge in M .In the dual space Dual(M), removing the dual edge ~e of the blocking edge e willresult in two separated subgraphs of Dual(M).Lemma 1 An edge e is a blocking edge for some vertices v1; v2 2 M i� e is aninterior edge and both of its end points are on @M .Proof:): Assume e is a blocking edge for some vertices v1; v2 2M .If e is a boundary edge, cutting M along e will generate two meshes M1 = M ,and M2 = e, thus, both v1; v2 2M1. This contradicts the de�nition of blocking edgeof e. Thus, e must be an interior edge.If at least one of the two end points of e is interior to M , cutting along e is notable to separate M into two disjoint parts. Thus, both of the two end points of emust be on @M .



8(: If e is an interior edge and both of its endpoints u1; u2 are on @M , then e cutsM into two disjoint sub-meshes M1;M2; each of them has at least one triangle. Letv1 =2 e be a vertex in M1, and v2 =2 e be a vertex in M2, then e is a blocking edge forv1; v2. 2Lemma 2 For any pair of non-adjacent vertices v1; v2 2 M , either there exists aninterior-path between v1 and v2 or there is a blocking edge e for v1 and v2.Proof: If there is a blocking edge e for the vertices v1 and v2, then v1 and v2 arein disjoint submeshesM1 and M2. All paths connecting v1 and v2 must pass throughone of the two end points of e, which are boundary points. Thus, there is no interiorpath for v1; v2.If there is no blocking edge for non-adjacent vertices v1 and v2, there must be aninterior path between v1 and v2. If not, any path connecting v1 and v2 has at least onevertex which is on @M . Assume m > 0 is the minimum number of boundary verticeson all such paths, and the path P =< v1; w1; :::; wk; v2 > has m vertices wj1; :::; wjmwhere (j1 < j2 < ::: < jm) are on @M . Without loss of generality, we assume thepath P has the shortest length among such paths.For convenience, we denote w0 = v1; wk+1 = v2. Consider the angle (inside M)bounded by two edges wj1�1wj1; wj1wj1+1. Assume wj1wj1�1; wj1u1; :::; wj1ur; wj1wj1+1are all edges inside the angle, where r � 0 (See Fig. 1-3 (a)).
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(a) Fig. 1-3The vertices u1; u2; ::; ur must be interior, otherwise, say, us (1 � s � r) is on theboundary. Then the edge wj1us cuts M into two separated parts M1 and M2.



9If v1 and v2 are not in the same part, wj1us is a blocking edge for v1; v2. This is acontradiction.If v1; v2 are in the same part (See Fig. 1-3 (b)), then the path P must pass throughus and wt = us for some t > j1+1. Therefore, we can shorten the path P by replacingsubpath < wj1; wj1+1; ::; wt > by a single edge wj1wt. This contradicts the shortestlength assumption of P.Thus, all vertices u1; u2; ::; ur must be interior in M . We construct a new pathP 0 =< w0; w1; :::; wj1�1; u1; u2; :::; ur; wj1+1; :::; wk+1 >;which has only m � 1 vertices vj2; ::; vjm on @M . This contradicts the assumptionthat m is minimized. Thus, v1; v2 are interior-connected. 2Remark: If v1 and v2 are adjacent, it might be that neither a blocking edge noran interior-path exists for them. An example is shown in Fig. 1-4.
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2Fig. 1-4De�nition 26 If A;B;C are three vertices on @M , we call M a triangular patch,denoted by P4ABC;M . The boundary part of @M between A and B is called the patchedge AB, denoted by PE(A;B). Similarly, we have PE(A;C); PE(B;C). The ver-tices on PE(A;B); PE(A;C); PE(B;C) are called the boundary vertices of the patch.The vertices A;B;C are called the corners of the patch.Note: For simplicity, we still use M and P4ABC;M interchangeably if no confusionis caused.



10De�nition 27 A edge e = u1u2 in a triangular patch P4ABC;M is called illegal if itis interior and both of its end points are on same patch edge PE(A;B); PE(B;C);or PE(A;C). Otherwise, is called legal.De�nition 28 A triangular patch P4ABC;M is normal if it contains no illegal edges.Otherwise, the patch is called abnormal. If there exists a normal triangular patchP4ABC;M for a mesh M , we call M normal, otherwise, abnormal.Fig. 1-5 show two examples of abnormal triangular patches.
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Fig. 1-5. Examples of abnormal triangular patchesIt is easy to see that a su�cient (but not necessary) condition to be a abnormaltriangular patch is that valence �(v) = 2 for some boundary vertex v which is not acorner.As we mentioned earlier, a surface can be decomposed (cut along some paths onthe surface) into a �nite number of closed discs. For a 3D triangle mesh, we maychoose the cutting paths to be paths of the mesh, i.e., we can cut a 3D triangle meshinto a number of sub-meshes, each of them topologically equivalent to a 2D disc. Weshould point out that we can select our cutting paths so that no illegal edges will becreated by our cutting.
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M1Fig. 1-6. Removing illegal edges by adjust cutting pathesFig. 1-6 shows the strategy for avoiding generating illegal edges. In Fig. 1-6,assume we cut a sphere-like triangle mesh into two submeshes M1 and M2. If thereis an illegal edge p = V1V4 (shown as a wide-solid line) on the cutting path (shownas solid lines on the front and dotted lines on the back), we can change our cuttingpath by replacing sub-path < V1; V2; V3; V4 > by the edge p. The edge p is no longerillegal. Based on this strategy, when we cut a 3D triangle mesh without boundary intoseveral sub-meshes, we can assume that all sub-meshes are topologically equivalentto normal triangular patches.When a surface has boundaries, we cannot remove illegal edges simply by adjustingcutting edges if illegal edges exist on the existing boundaries. In this case, we mayuse a construction based on adding a vertex to get rid o� all illegal edges immediatelyas shown in the following example.LetM be an abnormal 2D triangular patch with the boundary @M = fV0; V1; :::; V11gand three corners A = V0; B = V4; C = V8 (Fig. 1-7(a)). The patch P4ABC;M hastwo kinds of illegal edges: those caused by degree-2-vertices { edges V0V2,V2V4, V4V6,V6V8, V8V10, V10V0, and those not caused by degree-2-vertices { edge V8V10. We adda vertex W outside the plane of support of M and construct triangles 4WViVi+1 forall successive boundary points Vi; Vi+1 (shown as dotted lines in Fig. 1-7(a)). Thisresults in a 3D triangle mesh denoted by ~M which is topologically equivalent to asphere. We consider @M as the path cutting ~M into two sub-meshes, one is themesh M , the other is formed by W with all vertices on @M . Now, we adjust thecutting path as mentioned above to remove illegal edges. In the example here, ournew cutting path is shown in bold lines (Fig. 1-7(a)). Under the new cutting, themesh ~M is decomposed into two submeshes M1 and M2, as shown in Fig 1-7(b) and



12(c) respectively. Both of them are normal patches.
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M2

C=V8Fig. 1-7. Removing illegal edgesNote: The advantage of this technique is that we only need to code two sub-patches if there are many illegal edges. The major drawback is that it may createmany new triangles in M2, although the topological information is very cheap tostore (we will address this problem later). An alternative way to normalize triangularpatches is to cut a patch into many sub-patches so that each sub-patch is normal,but it may reduce the e�ciency of coding.0.3 General subdivision theoremTheorem 2 Let P4ABC;M be a normal triangular patch obtained from triangle meshM . We can reconstruct another triangle mesh �M by adaptively subdividing a singletriangle 4 �A �B �C such that each subdivision is one of the following four elementarytypes (called binary, ternary, quaternary, and mitsubishi, respectively) as shown inFig 2-1(a)(b)(c)(d), �M is topologically equivalent to M , and the vertices �A; �B; �Ccorrespond to the vertices A;B;C.



13
(d): mitsubishi(a): binary (b): ternary (c): quaternaryFig. 2-1. Four di�erent ways to subdivide a triangleProof: We have two steps in our proof.In step 1, we prove that P4ABC;M can be subdivided into several sub-triangularpatches using one of the four elementary subdivisions. In the second step, we provethe sub-triangular patches generated in the �rst step can be normalized. Therefore,we can repeat the subdivision on the sub-patches until all sub-patches have only threevertices, i.e., a single triangle.0.3.1 step 1There are two cases.Case 1: At least one vertex of A;B;C has no blocking edge in MAssume the vertex A has no blocking edges, in other words, for any point v 2M ,there exists an interior path from A to v.� Case 1.1: If there is a point v on the boundary PE(B;C), then we can subdivideM along the interior path from A to v using 'binary subdivision' (Fig. 2-2 (a))and �nish our proof.� Case 1.2: Suppose the patch edge PE(B;C) is a single edge BC. Let 4DBCbe the triangle inM containing the edge BC. The vertexD must be an interiorpoint of M . Otherwise, either BD or CD will be a blocking edge for the vertexA, and thus it contradicts our assumption.Because D and A are inner-connected by a path P , we can subdivide M intothree sub-triangular patches by cutting edge BD;CD and the path P (Fig. 2-2(b)) using the ternary subdivision.
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DFig. 2-2.Case 2: All three vertices A,B,C have blocking edges in M .Let edge A1A2 be a blocking edge for vertex A. We can assume that vertices A1and A2 are on PE(A;B) and PE(A;C),respectively. If this condition is not satis�ed,then one of the two vertices A1; A2, say, A1, must be on the PE(B;C). That leadsto A1 = B and then B;A2 are interior-connected.We run over all such blocking edges, and assume the blocking edge A1A2 is selectedsuch that the area AA1A2 is maximized.Similarly, we have blocking edges B1B2 and C1C2 for vertices B and C, whichmaximize area BB1B2 and CC1C2, respectively (Fig 2-3).
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2A Fig. 2-3.We call this assumption the maximum area assumption in the following.We denote by M 0 the region bounded by A1B1B2C2C1A2.Based on the maximum area assumption, we immediately get the following result:there are no blocking edges inside the region M 0, and any interior point v 2 M 0 isinterior-connected to all vertices of A1; A2; C2; C1; B2; B1.



15If one of the following happens: A1 = B1 or A2 = C1 or B2 = C2, we say there is adegeneracy. We can deal with the degeneracy as follows. If, say, A1 = B1 (Fig. 2-4),then Lemma 2 implies that A2 and B2 must be interior-connected by a path P inthe region bounded by A1A2CB2. Otherwise, there will be a blocking edge A1Q suchthat Q 2 A2C or Q 2 B2C (shown by a dotted line in Fig. 2-4), which contradictsthe maximum area assumption. Thus, we can subdivide M along path P and twoblocking edges A1A2 and A1B2 using quaternary subdivision.
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1Fig. 2-4.From now on, we assume there is no degeneracy, i.e., A1 6= B1, A2 6= C1 andB2 6= C2.Consider the triangles 4A1A2A3, 4B1B2B3 and 4C1C2C3 in the region M 0.These triangles exist because of the maximum area assumption and the triangulationof M 0. In addition, the maximum area assumption guarantees that all three pointsA3; B3; C3 are interior points in M 0. Based on Lemma 2, it follows that there existinterior-paths P1;P2;P3 inside M 0 connecting A3 and B3, A3 and C3, B3 and C3,respectively (Fig 2-5).
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16We let MA;B denote the region bounded by A1A3;P1; B3B1 and A1B1; MA;Cbounded by A2A3;P2; C3C1 and A2C1; MB;C bounded by C2C3;P3; B3B2 and B2C2(Fig 2-5).We assume paths P1;P2;P3 do not cross, although in general they may overlap.(If the paths cross, we can always re-organize the paths to remove the crossing.) Wedenote the three possible overlapping sub-paths by A3A4, B3B4 and C3C4 (Fig 2-6).We assume the lengths of these overlapping sub-pathes are minimized.
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A,BFig. 2-6Claim: There exist six edges (Fig. 2-6) A4S1, C4S2, B4R1, C4R2, A4T1, B4T2 suchthat� S1; S2 2 A2C1, T1; T2 2 A1B1, R1; R2 2 B2C2,� A4S1; C4S2 2MA;C ,� B4R1; C4R2 2MB;C,� A4T1; B4T2 2MA;B.We now prove the existence of the edge A4S1. If A3 = A4, we immediately getS1 = A2 and �nish the proof. If A3 6= A4, the angle A4 in the region MA;C must besubdivisible. Otherwise, we can reduce the length of path A3A4, which contradictsour shortest length assumption on A3A4 above. Now build the cone of A4 inside theregion MA;C . The frontier of the cone must have a vertex S1 on the boundary A2C1,otherwise, the frontier can be used to reduce the length of A3A4.Similarly, we can prove the existence of the remaining �ve edges.



17It is easy to see that the regions MA;B;MA;C ;MB;C are disjoint, but share partsof their boundaries.Based on Fig.2-6, we will �nd subdivision paths inM . The problem can be solvedwhen we classify M into the following three cases.� Case 2.1: A4 6= B4, A4 6= C4, C4 6= B4. (Fig. 2-7 (a)).We claim that there exist six paths U1U2; U1U3; V1V2; V1V3;W1W2;W1W3 suchthat{ vertex U1 2 S1S2, vertices U2; U3 2 A4C4, U2 6= U3,{ vertex V1 2 T1T2, vertices V2; V3 2 A4B4, V2 6= V3,{ vertex W1 2 R1R2, vertices W2;W3 2 B4C4, W2 6=W3,{ paths U1U2; U1U3 are interior paths in region A4C4S2S1,{ paths V1V2; V1V3 are interior paths in region A4T1T2B4,{ paths W1W2;W1W3 are interior paths in region B4R1R2C4,{ all six paths are interior to M .
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1 Fig. 2-7It su�ces to prove the existence of the paths U1U2 and U1U3. We can use thefollowing recursive algorithm to �nd them.Algorithm for searching pathes U1U2; U1U3 in the region A4C4S2S1:



18init:U1  S2; U2 C4; U3  A4;path U1U2 = S2C4,done = FALSEwhile done = FALSE do {If there is an interior path P for U1; U3 in A4C4S2S1path U1U3 Pdone = TRUEelse if there is a blocking edge U 01U 02 in the region A4C4S2S1such that U 01 2 S1S2 and U 02 2 C4A4 (Fig 2-7 (b))U1  U 01; U2  U 02.else /* U1 = S1 */U2  A3 ; path U1U3 = S1A4; done = TRUE}The algorithm will terminate because there are only a limited number of verticeson S1S2.Now, we are able to subdivideM along three pathes: U1U2; U2C4; C4W3;W3W1,W1W2;W2B4; B4V3; V3V1, V1V2; V2A4; A4U3; U3U1 using the quaternary subdivi-sion (Fig. 2-7 (a)).� Case 2.2: A4 = B4 = C4.We �nd an edge U11U12 and a path A4U11 such that U11 2 A1T1; U12 2 A3A4,and U11U12; A4U11 are interior to M as follows.{ If A1 = T1, we simply select U11 = A1; U12 = A3, path A4U11 = path A4T1,and U11U12 = A1A3. Obviously, these two paths are interior to M .



19{ If A1 6= T1 and there is an interior path P inside the region A1T1A4A3 (Fig.2-8(a)), we select U11 = A1; U12 = A3; U11U12 = A1A3, and path A4U11 =path P.{ Suppose A1 6= T1 and A1; A4 are not interior-connected in the regionA1T1A4A3. Based on Lemma 2, there is a blocking edge u1u2 for A1; A4.Because A1A3; A4T1 are edges, the vertices u1 and u2 must be on A1T1 andA3A4, respectively (Fig. 2-8 (b)). There might be more than one suchblocking edge. We assume u1u2 is the one closest to A4, i.e., there is apath P connecting A4 and u1, and P is an interior path in M . Now weassign U11 = u1; U12 = u2; U11U12 = u1u2, and path A4U11 = path P.Similarly, we can get an edge U21U22 and a pathA4U21 such that U21 2 A2S1; U22 2A3A4, and U21U22; A4U21 are interior to M (Fig. 2-8 (c)). Together, we haveconstructed a sub-triangular patch A4U1U2 (we rename U1 = U11; U2 = U21, andthe triangular patch is shown by the shadowed area in Fig. 2-8 (c)) inside theregion AT1A4S1. The patch A4U1U2 intersects @M only at U1; U2, and its threeboundary edges are all interior to M .
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1Fig. 2-8 Mesh near vertex AIn the same way, we can obtain two other sub-triangular patches A4V1V2 insideBR1A4T2, and A4W1W2 inside CS2A4R2 (Fig. 2-9 (a)). All three sub-triangularpatches A4U1U2, A4V1V2, A4W1W2 are disjoint, because they are separated bysix edges A4R1; A4R2; A4S1; A4S2; A4T1; A4T2.



20If U1 6= V1; V2 6= W2;W1 6= U2 (Fig. 2-9 (a)), we can subdivide M along theboundaries of these three sub-triangular patches using mitsubishi subdivision.If one of the following happens: U1 = V1; V2 = W2;W1 = U2, and, say, U1 = V1(Fig. 2-9 (b)), we can subdivide M along paths U1U2, V1V2, U2A4 and V2A4using quaternary subdivision.
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A Fig. 2-9� Case 2.3: Exactly one of the following is true: A4 = B4, A4 = C4, C4 = B4.Assume A4 = C4, A4 6= B4 (Fig. 2-10 (a)). Using the exact same methods asin Case 2.1 and Case 2.2, we can get sub-triangular patches A4U1U2, A4X1X2,and paths V1V2; V1V3, W1W2;W1W3 (Fig. 2-10 (b). We obtain a third sub-triangular patch bounded by the following eight paths: A4V3, V3V1, V1V2, V2B4,B4W3, W3W1, W1W2, W2A4. Therefore, we get a result similar to Case 2.2.The rest of the argument is exactly same as in Case 2.2.
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2Fig. 2-100.3.2 step 2In step 1, we proved that any normal triangular patch M can be subdivided intoseveral sub-triangular patches. But these sub-triangular patches may be abnormal,so we cannot apply our general subdivision theorem on the sub-patches. Fortunately,we can normalize abnormal sub-patches in the way we described earlier.Consider the result of using binary subdivision (Fig. 2-11). Assume we subdivideM along the path CD (in solid lines). There are three new boundaries AD, DB, CDin the two sub-triangular patches ACD and BCD. Obviously, paths AD and BD donot have any blocking edges because M is normal. If path CD has a blocking edge,say UV (shown in a dotted line), we can subdivide M using a new path formed bypath CU , edge UV and path V D. Thus, the blocking edge is removed in the newsubdivision.
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UFig. 2-11It is easy to see that this technique applies to all abnormal sub-triangular patchesgenerated by the other three subdivisions. 2



22Remark: From our arguments before, we know that the 'normality' of a trianglemesh is a weak condition: all closed 3D triangle meshes can be subdivided into normaltriangular patches, and an abnormal triangular patch with an arbitrary number ofillegal edges can always be decomposed into two normal triangular patches if we addone point.In CAGD and computer graphics, it is common that a single triangular surfacede�ned on a triangle domain, say, a triangular Bezier surface or B-spline surface, issubdivided into many triangular sub-patches by a 'divide and conquer' technique. Noillegal edges are created in the subdivision procedure. ThereforeCorollary 3 If triangle mesh M is generated by arbitrarily subdividing a singulartriangular surface de�ned on a triangle domain, then M can be represented as asubdivision tree where each subdivision is one of the four elementary types de�nedabove.Corollary 4 A necessary and su�cient condition for a triangle mesh to be repre-sented by a single subdivision tree is that the mesh be normal.0.4 E�ciency analysis0.4.1 About entropy codingBefore we analyze the e�ciency of our subdivision tree representation for topologicalcoding, we need to briey introduce some basic concepts from information theory.Information theory uses entropy as a measure of how much information is con-tained in a message [10]. The higher the entropy of a message, the more information itcontains. For a message consisting of symbols S = fs1; :::; smg, each si with proabilitypi, the entropy of the information is de�ned asmXi=1 pi log2 1pi (0.1)If we use li bits to encode each symbol si (i=1,..,m), the average codeword length islower bounded by the entropy, i.e.,laverage = mXi=1 pili � mXi=1 pi log2 1pi



23When log2 1pi are integers, we can code each si using li = log2 1pi bits with a Hu�mancoding scheme. Otherwise, a more complicated scheme called arithematic coding canbe used so that the average coding length laverage is as close to the entropy boundas possible [2]. Hu�man and arithmetic coding are both often called entropy codingtechniques.When we analyze e�ciency of a compression method theoretically, we can use theentropy of its output message without actually encoding the message.It can be veri�ed that the entropy de�ned by Eq.( 0.1) has the maximum valueof log2m when pi = 1m for all i = 1; :::;m. Therefore, we can always use an averagelog2m bits to encode each symbol in a message which consists of m symbols s1; :::; sm.0.4.2 E�ciency analysisOur general subdivision theory tells us that the topological structure of a normaltriangular patch can be represented (thus encoded) as a tree. Each node represents atriangle and each node has only four di�erent ways to generate its children. Becausethe �rst elementary subdivision (binary subdivision) can involve adding a point toany of three edges, it has three cases. In addition, we have to include a 'leaf' casewhich has no subdivision. Thus we have seven subdivision cases to represent. Basedon information theory, we can roughly estimate that each case can be coded by atmost log27 � 2:81 bits.When a normal triangular patch is represented by a subdivision tree, the repre-sentation is usually not unique. Fig 2-12 (b)(c) are two di�erent subdivision treerepresentations for the same triangular patch shown in Fig 2-12(a). Excluding leafnodes, the tree in Fig. 2-12(b) has 6 subdivisions while Fig 2-12(c) has 11 subdivi-sions for the total 14 triangles. That brings up the question: how can we get themost e�cient subdivision?
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Fig 2-12 (a):  mesh Fig 2-12 (b): subdivision tree Fig 2-12 (c): another subdivision tree 

triangle PQR subdivided by i-th elemental subdivisionPQR(i)

PQRFig. 2-12 a triangular patch and its subdivision tree representationsWe de�ne BT rate as 'bits/triangle (BT)' to measure the coding e�ciency. The BTrate for each of our four elementary subdivisions is log272 (� 1:40); log273 (� 0:94); log274 (�0:70) and log279 (� 0:31), respectively. Obviously, the �rst elementary (binary) subdi-vision has the least e�ciency, the last (mitsubishi) has the greatest.The subdivision tree for a normal triangular patch with n triangles has n leafnodes and at most n � 1 non-leaf nodes. Therefore, if we use log27 bits for eachsubdivision case, the BT rate is upper bounded by (2n�1) log2 7n � 2 log2 7 � 5:62(BT).That happens when all non-leaf nodes use binary subdivisions. However, taking theprobabilities into account, the BT rate of entropy coding is much smaller than the5.62. Actually, we have the following theorem.Theorem 5 For a normal triangular patch with n triangles ( n � 1), the entropyof BT rate for any subdivision tree representation of the patch is lower bounded by98 log2 9� 3 � 0:57 and upper bounded by 2.52.Proof: Let's assume there are ni nodes using the i-th elementary subdivision (i=1,2,3,4)and the total number of triangles is n. Notice that the four elementary subdivisionsincrease the number of triangles by 1, 2, 3, and 8, respectively. Therefore, we havethe following relations: 4Xi=1 ki � n4 = n� 1 � n (0.2)where k1 = 1; k2 = 2; k3 = 3; k4 = 8.With entropy coding, the BT rate is expressed asE = �P4i=1(ni log2 niN ) + n log2 nNn (0.3)



25where N = n+P4i=1 ni. MaximizingE under the constraint Eq. (0.2), we immediatelyget the following equations using Langrange multiplers:log2 niNki = � = constant; for i = 1; 2; 3; 4Denoting x = 2�, we have 4Xi=1 ni = 4Xi=1 xki(n+ 4Xi=1 ni)i.e. 4Xi=1 ni = n P4i=1 xki1 �P4i=1 xkiSo, ni = xki(n + 4Xi=1 ni) = n xki1�P4i=1 xki>From Eq (0.2), we get P4i=1 kixki1�P4i=1 xki = n� 1n � 1i.e., 4Xi=1(ki + 1)xki = 1 (0.4)Eq. (0.4) has a unique positive solution x � 0:30435, and thus � = log2 x � �1:7162.Based on the values of x and �, we also have the following P4i=1 ni � 0:7399n,n1 = x(n + P4i=1 ni) � 0:5295n, n2 = x2(n + P4i=1 ni) � 0:1612n, n3 = x3(n +P4i=1 ni) � 0:0490n, n4 = x8(n+P4i=1 ni) � 0:000128n.The maximumvalue of the BT rate can be calculated from Eq. (0.3): Emax = 2:52.Because Eq (0.4) has only one positive root, which leads to the maximum valueof E, the minimum value of E must be reached at the boundary of the region: fn1 �0; n2 � 0; n3 � 0; n4 � 0; n1+2 �n2+3 �n3+8 �n4 = n� 1g. It is easy to verify thatE gets its minimum value when n1 = n2 = n3 = 0; n4 = n� 1 � n, i.e., the minimumvalue is Emin � 98 log2 9 � 3 � 0:57 2



26The proof above suggests us that a smaller BT rate can be obtained when fewerbinary subdivisions are used and more quaternary and mitsubishi subdivisions areused.Although topological information is only a small part of mesh representation, thee�ciency of topological coding is still an important problem, especially for hardwaresupported rendering.Assume there are n vertices in a big mesh. According to the Euler's theory, thereare roughly 2n triangles. The simplest way to code the topological information is tostore each triangle separately by indexing its three vertices. That costs 3 log2 n(BT).OpenGL allows triangles to be coded in strips. A triangle of k triangles can be codedby indexing only k+2 vertices. That reduces costs to (k+2)k log2n (BT). A generalizedtriangle strip method includes swap commands in a triangle strip [5]. Its BT rate isroughly 12 log2n+c for c � 2 (BT). Deering developed the notion of generalized trianglemesh to reuse a limited number previously appearing vertices stored in a bu�er [3].The BT rate is about 116log2n + 4 (BT). PM in [6] uses about 12log2n + 2:5 (BT) fortopological coding. And modi�ed PM in [11] uses 12 log2n+ 3:5(BT). Li's method [9]has an average BT rate of 12 log2n+ 4:5 (BT).We notice that all coding schemes above have a term log2n in their BT rates.The reason is that they access triangles randomly. Random accessing is useful inrendering, especially in view-dependent rendering.One big improvement made by Taubin and Rossignac is to arrange all verticesand triangles in a �xed way so that no indexing term log2n appears [13]. An averagecost of 2 (BT) is reported in their testing. More importantly, when all vertices arearranged in a �xed order, their geometric information can be coded e�ciently using abit-plane coding scheme. However, the method cannot generate hierarchical topology,and is not good for rendering.Our method uses subdivision trees to put all vertices in a �xed positions. Oncea tree is constructed, the topological information coded by the tree is complete. Weneed not spend log2 n bits for indexing a vertex. The BT rate in our scheme is upperbounded by 2.52 (BT) for a normal triangular patch. The BT rate is lower than allexisting methods, except [13]. Taubin et al. reported 2 (BT) in their tests, but didn'tgive theoretical analysis of their coding e�ciency.The e�ciency of our method will be reduced when we cut a big mesh into many



27normal triangular patches. We mentioned earlier that we can always cut a meshwith genus g and k boundaries into 2n+ k normal triangular patches with a penaltyof adding nk triangles and k vertices, where nk is the total number of vertices ink boundaries. Thus, our e�ciency reduces at most by 2nk log2 72n = nk log2 7n (BT). Weshould point out that for most cases, nk � n. In addition, the actual cost may muchless than the upper bound we estimated here. Therefore, our coding e�ciency isbelieved to be very high.The e�ciency of topological coding is not the main goal of our compression. Moststorage is spent on geometry coding, not topology coding. We use subdivision treerepresentation because it helps us to construct wavelets on an arbitrary mesh, andwavelets are expected to have excellent performance in geometry coding.
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