
Design Considerations for Distributed Caching on the Internet�
Renu Tewari, Michael Dahlin, Harrick M. Vin Jonathan S. Kay

Department of Computer Sciences, University of Texas at Austin Cephalapod Proliferationists, Inc.ftewari,dahlin,ving@cs.utexas.edu jkay@cs.utexas.edu

Technical Report UTCS TR98-04
February 1998 (Revised October 1998)

Abstract
In this paper, we describe the design and implementation of
an integrated architecture for cache systems that scale to hun-
dreds or thousands of caches with thousands to millions of
users. Rather than simply try to maximize hit rates, we take
an end-to-end approach to improving response time by also
considering hit times and miss times. We begin by studying
several Internet caches and workloads, and we derive three
core design principles for large scale distributed caches:(1)
minimize the number of hops to locate and access data on
both hits and misses, (2) share data among many users and
scale to many caches, and (3) cache data close to clients.
Our strategies for addressing these issues are built arounda
scalable, high-performance data-location service that tracks
where objects are replicated. We describe how to construct
such a service and how to use this service to provide direct
access to remote data and push-based data replication. We
evaluate our system through trace-driven simulation and find
that these strategies together provide response time speedups
of 1.27 to 2.43 compared to a traditional three-level cache
hierarchy for a range of trace workloads and simulated envi-
ronments.

1 Introduction
The growth of the Internet and the World Wide Web allow
increasing number of users to access vast amounts of infor-
mation stored at geographically distributed sites. However,
long round-trip propagation delays between client and server
sites, as well as hot spots of network and server load yield
high latencies for information access.

Caching provides an opportunity to combat this latency by
allowing users to fetch data from a nearby cache rather than
from a distant server. But because users tend to access many
sites, each for a short period of time, hit rates of per-user�This work was supported in part by an NSF Research Infrastructure
Award (CDA-9624082) and grants from IBM, Intel, Lucent BellLaborato-
ries, Mitsubishi Electronic Research Laboratories (MERL), NASA, Novell,
and Sun Microsystems. Dahlin was also supported by an NSF CAREER
grant (CCR-9733842), and Vin was also supported by an NSF CAREER
grant (CCR-9624757).

caches are low. Thus, some organizations have begun to uti-
lize shared proxy caches [19] or hierarchical caches [8] so that
each user can benefit from data fetched by others. Current
shared cache architectures face a dilemma. On one hand, they
wish to share data among a large number of clients to achieve
good hit rates. On the other hand, as a shared cache system
services more clients, the response time it provides to any one
client worsens due to the increased distance between client
and cache, the increased load on the cache, or the increased
number of levels in the cache hierarchy. Thus, these hierar-
chies of data caches achieve modest hit rates [2, 14, 19, 21],
can yield poor response times on a cache hit [30, 36], and can
slow down cache misses.

This paper examines techniques for building systems of
shared, distributed caches that scale to hundreds or thou-
sands of caches with tens of thousands to millions of users.
We believe our techniques will be of interest to system
designers building large-scale, distributed cache infrastruc-
tures in a range of environments including network ser-
vice providers, independent service providers, cache service
providers [9, 33, 40, 45], collections of caches linked by for-
mal service agreements [39], and large intra-nets.

Using measurements of several caches on the Internet and
analysis of several traces of web traffic, we first attempt to un-
derstand the factors that limit the performance of current web
caches. We find that to provide good performance to the end
user, it is important not only to maximize hit rates, but alsoto
improve hit times and miss times. Based on these measure-
ments, we derive three basic design principles for large-scale
caches: (1) minimize the number of hops to locate and ac-
cess data on both hits and misses, (2) share data among many
users and scale to many caches, and (3) cache data closed
to clients. Although these principles may seem obvious in
retrospect, current cache architectures routinely violate them
at a significant performance cost. For example, hierarchical
caches in the United States are often seen as a way to reduce
bandwidth consumption rather than as a way to improve re-
sponse time.

To address these principles, we design a scalable, high-

1



performance data-location service that tracks where objects
are replicated. We describe how to construct such a service
and how to use this service to meet our design principles via
direct access to remote data and push-based data replication.
Through simulation using a range of workloads and network
environments, we find that direct access to remote data can
achieve speedups of 1.3 to 2.3 compared to a standard hier-
archy. We also find that pushing additional replicas of data
provides additional speedups of 1.12 to 1.25.

We construct our data-location service using a scalable
hint hierarchy in which each node tracks the nearest location
of each object. Scalability and performance of the hint hierar-
chy comes from four sources. First, we use simple, compact
data structures to allow each node’s view of the hint hierarchy
to track the location many objects. Second, the location sys-
tem satisfies all on-line requests locally using the hint cache;
the system only sends network messages through the hierar-
chy to propagate information in the background—off the crit-
ical path for end-user requests. Third, the hierarchy prunes
updates so that updates are propagated only to the affected
nodes. Fourth, we adapt Plaxton’s algorithm [35] to build a
scalable, fault tolerant hierarchy for distributing information.

We have implemented a prototype of our system by aug-
menting the widely-deployed Squid proxy cache [45].1 It im-
plements hint caches, push-on-write, and self-configuringdy-
namic hierarchies.

The rest of the paper is organized as follows. Section 2
evaluates the performance of traditional cache hierarchies
and examines the characteristics of several large workloads
and then derives a set of basic design principles for large-
scale, distributed caches. Section 3 provides an overview of
our design, and Section 4 discusses implementation details
and evaluates system performance. Section 5 surveys related
work, and Section 6 summarizes our conclusions and outlines
areas for future research.

2 Evaluating traditional cache hierarchies
In this section, we evaluate the performance of traditional
cache hierarchies using measurements of several caches on
the Internet and trace-driven simulations, with the goal ofun-
derstanding the factors that limit cache performance.

2.1 Workload characteristics
We examine how characteristics of web workloads stress dif-
ferent aspects of shared cache systems. We find that:� Cache systems shouldshare data among many clients to

reduce compulsory misses (misses due to the first refer-
ences to objects by clients) andscale to large numbers
of caches.

1The simulator and prototype are available at
http://www.cs.utexas.edu/users/tewari/cuttlefish.

Trace # of Accesses Distinct Dates # of
Clients (millions) URLs Days

(millions)

DEC [13] 16,660 22.1 4.15 Sep96 21
Berkeley [21] 8,372 8.8 1.8 Nov96 19
Prodigy 35,354 4.2 1.2 Jan98 2

Table 1: Trace workloads. Note: for the DEC and Berkeley traces,
each client has a unique ID throughout the trace; for the Prodigy
trace, clients are dynamically bound to IDs when they log onto the
system.� Cache hit time constitutes a significant fraction of the

total information access latency. Hence, cache architec-
turesshould minimize the cost to access a cache.� Even an ideal cache will have a significant number of
compulsory and communication misses (misses to ob-
jects that have changed since they were last referenced.)
Thus,cache systems should not slow down misses.

We also find that capacity misses (misses to objects that
have been replaced due to limited cache capacity) are a sec-
ondary consideration for large-scale cache architecturesbe-
cause it is economical to build shared caches with small num-
bers of capacity misses. If more aggressive techniques for us-
ing cache space are used (for example, pre-fetching and push
caching), capacity may again be a significant consideration.

2.1.1 Methodology
Our simulation experiments use three multi-day traces taken
at proxies serving thousands of clients. Table 1 summarizes
key parameters. In analyzing the cache behavior of these
traces, we use the first two days of each trace to warm our
caches before gathering statistics.

To determine when objects are modified and should not be
serviced from the cache, we use the last-modified-time infor-
mation provided in the DEC traces. For the other traces or
when the DEC trace does not contain the last-modified-time
information, we infer modifications from document sizes and
return values to if-modified-since requests. Both of these
strategies will miss some of the modifications in these traces.

Current web cache implementations generally provide
weak cache consistency via ad hoc algorithms. For example,
current Squid caches discard any data older than two days.
In our simulations, we assume that the system approximates
strong cache consistency by invalidating all cached copies
whenever data change. We do this for two reasons. First,
techniques for approximating or providing strong cache con-
sistency in this environment are improving [24, 29, 47], so we
expect this assumption to be a good reflection of achievable
future cache technology. Second, weak cache consistency
distorts cache performance either by increasing apparent hit
rates by counting “hits” to stale data or by reducing apparent
hit rates by discarding perfectly good data from caches. In
either case, this would add a potentially significant sourceof
“noise” to our results.

2



These traces have two primary limitations that affect our
results. First, although we use traces with thousands of
clients, it still represents only a small fraction of the client
population on the web. Several studies [6, 14, 21] suggest that
will improve as more clients are included in a cache system
The second limitation of these traces is that they are gathered
at proxies rather than at clients. Thus, all of these traces will
display less locality and lower total hit rates than would be
seen by clients using such a system.

2.1.2 Sources of cache misses
Figure 1 shows the breakdown of cache miss rates and byte
miss rates for a global cache shared by all clients in the system
as cache size is varied. The cache uses LRU replacement.
Misses fall into four categories:

1. Compulsory misses. These misses correspond to the
first access to an object. The two key strategies for re-
ducing compulsory misses are increasing the number of
clients sharing a cache system and prefetching. Facili-
tating sharing is an important factor in designing large
scale caches, and we discuss sharing in detail in the next
subsection. We do not address prefetching in this paper.

2. Capacity misses. These misses occur when the sys-
tem references an object that it has previously discarded
from the cache to make space for another object. Our
original intuition had been that it would be important
to coordinate the contents of different caches to mini-
mize capacity misses. However, the data suggest that
for shared caches, capacity misses are a relatively minor
problem that can be adequately addressed by building
cache nodes with a reasonable amount of disk space.
This study, therefore, does not focus on coordinated
cache replacement [11, 16].

3. Communication/consistency. These misses occur when
a cache holds a stale copy of data that has been modi-
fied since it was read into the cache. Providing efficient
cache consistency in large systems is a current research
topic [24, 29, 47], and we do not focus on that problem
here. We do note, however, that the data location ab-
straction we construct could also be a building block for
a scalable consistency system [10].

4. Uncachable/error. Objects are marked “uncachable” or
encounter errors for a number of reasons, some of which
might be addressed by more sophisticated cache proto-
cols that support better cache consistency, caching dy-
namically generated results [41], dynamically replicat-
ing servers [43], negative result caching [31, 8], and
caching programs along with data [7, 42]. We do not ad-
dress such protocol extensions here. Also, because we
are interested in studying the effectiveness of caching
strategies, for the remainder of this study, we do not in-
clude “Uncachable” or “Error” requests in our results.

DEC Berkeley Prodigy
0.0

0.2

0.4

0.6

0.8

1.0

H
it

 R
at

io

Hierarchy Level 3
Hierarchy Level 2
Hierarchy Level 1HR

BHR

HR

BHR
HR

BHR

0.0

0.2

0.4

0.6

0.8

1.0

H
it

 R
at

io

Figure 2: Overall per-read hit rate (HR) and per-byte hit rate
(BHR) within infinite L1 caches shared by 256 clients, infinite L2
caches shared by 2048, and infinite L3 caches shared by all clients
in the trace. As sharing increases, so does the achievable hit rate.

For all of the traces, even an ideal cache will suffer a sig-
nificant number of misses. Thus, one key design principle is
that in addition to having good hit rates and good hit times,
cache systems should not slow down misses.

2.1.3 Sharing
Figure 2 illustrates the importance of enabling widespread
sharing in large cache systems. In this experiment, we con-
figure the system as a three-level hierarchy with 256 clients
sharing a L1 proxy, eight L1 proxies (2048 clients) sharing a
L2 proxy, and all L2 proxies sharing an L3 proxy. As more
clients share a cache, the compulsory miss rate for that cache
falls because it becomes less likely that any given access to
an object is the first access to that object. For example, in the
DEC traces going from a 256-client shared cache to a 16,336-
client shared cache improves the byte hit rate by nearly a fac-
tor of two. Prior studies [21, 14, 6] have also reached similar
conclusions. This characteristic of the workload suggeststhat
cache systems should accommodate large numbers of clients
and thereby reduce compulsory miss rates.

For caches with different degrees of sharing, Figure 3 de-
picts the variation in the request response times with increase
in the distance between clients and the shared cache. It il-
lustrates a dilemma faced by the designers of shared proxy
caches: although it is important to share a cache among many
clients, it is also important that the shared cache be close to
clients. For example, a 256-client cache with an average hit
time of 50 ms can outperform a 16,336-client cache that av-
erages 300 ms per access.

Another limitation of large, monolithic caches is load.
Duska et. al [14] point out that shared caches require thou-
sands of clients and that Maltzahn and Richardson [30] found
that peak processor throughput of the Squid v1.1 proxy was
less than 35 req/s on a Digital AlphaStation 250 4/266. Grib-
ble and Brewer observe that request rates are bursty at the
time scale of seconds [21]. In our traces, we found peak re-
quest rates of 2850 req/s (139 MB/s) over periods of 1 second
and peak rates of 294 req/s (14.4 MB/s) over periods of 10
seconds. Although processor performance will improve, we

3


