
Fast and Exact Simultaneous Gate and Wire Sizingby Lagrangian RelaxationChung-Ping Chen, Chris C. N. Chu and D. F. Wongccp@cs.utexas.edu, cnchu@cs.utexas.edu and wong@cs.utexas.eduDepartment of Computer Sciences, University of Texas at Austin, Austin, TX 78712.October 13, 1997

AbstractThis paper considers simultaneous gate and wire sizing for general VLSI circuits under the Elmoredelay model. We present a fast and exact algorithm which can minimize total area subject to max-imum delay bound. The algorithm can be easily modi�ed to give exact algorithms for optimizingseveral other objectives (e.g. minimizing maximum delay or minimizing total area subject to arrivaltime speci�cations at all inputs and outputs). No previous algorithm for simultaneous gate andwire sizing can guarantee exact solutions for general circuits. Our algorithm is an iterative one witha guarantee on convergence to global optimal solutions. It is based on Lagrangian relaxation and\one-gate/wire-at-a-time" local optimizations, and is extremely economical and fast. For example,we can optimize a circuit with 13824 gates and wires in about 13 minutes using under 12 MBmemory on an IBM RS/6000 workstation.

1 IntroductionSince the invention of integrated circuits almost 40 years ago, gate sizing has always been an ef-fective technique to achieve desirable circuit performance. As technology continues to scale down,total number of gates and interconnects within a die grows over millions. In such increasinglydense integrated circuits, a signi�cant portion of the total circuit delay comes from the intercon-nects. Therefore, developing e�cient algorithms which can handle large scale gate and interconnectoptimization problems are of great importance.In the past, gate delay was the dominant factor in determining circuit performance. Thus, gateand transistor sizing have been extensively studied in the literature [5, 11, 14, 19]. As interconnectdelay plays an increasingly important role in determining circuit performance, wire sizing has beenan active research topic in the past few years [2, 4, 6, 8, 16, 18]. Since gate sizes a�ect wire-sizing solutions and wire sizes a�ect gate-sizing solutions, it is bene�cial to simultaneously sizeboth gates and wires. Very few results on simultaneous gate and wire sizing have been reported[2, 6, 7, 15, 17]. [7] studied simultaneous driver and wire sizing and [2] considered simultaneous wireand bu�er sizing, but both works only apply to circuits that are of tree topology. For simultaneousgate and wire sizing for general circuits, [17] uses a least-square optimization technique, [15] employsa sequential quadratic programming approach, and [6] uses a greedy sizing technique in conjunctionwith dynamic programming. But none of these algorithms can guarantee to give exact solutions forobjectives such as minimizing total area subject to maximum delay bound or minimizing maximumdelay.In this paper, we consider simultaneous gate and wire sizing for general VLSI circuits under theElmore delay model. We present a fast and exact algorithm which can minimize total area subjectto maximum delay bound. The algorithm can be easily modi�ed to give exact algorithms foroptimizing several other objectives (e.g. minimizing maximum delay or minimizing total areasubject to arrival time speci�cations at all inputs and outputs). Our algorithm is an iterative onewith a guarantee on convergence to global optimal solutions. It is based on Lagrangian relaxationand \one-gate/wire-at-a-time" local optimizations, and is extremely economical and fast. Forexample, we can optimize a circuit with 13824 gates and wires in about 13 minutes using under 12MB memory on an IBM RS/6000 workstation.The rest of this paper is organized as follows. In Section 2, we will introduce some notations andterminology that we will use in this paper. In Section 3, we will present our algorithm for theproblem of minimizing total area subject to maximum delay bound. In Section 4, we will showhow to modify our algorithm to minimize maximum delay, to handle arrival time speci�cations atall inputs and outputs, to consider power consumption and to use a more accurate gate model. InSection 5, experimental results to show the runtime and storage requirements of our algorithm ispresented.2 PreliminariesIn this section, we will de�ne some notations and terminology that we will use in this paper.For a general VLSI circuit, we can ignore all latches and optimize its combinational subcircuits.1

Therefore, we will focus on combinational circuits below.Given a combinational circuit with s input drivers, t output loads, and n gates or wire segments,the gate sizes or the segment widths are allowed to be varied in order to optimize some objective.For 1 � i � s, let RDi be the driver resistance of the ith input driver. For 1 � i � t, let CLi be theload capacitance of the ith output load. See Figure 1 for an illustration of a circuit.
RD

1

CL
1

CL
2

s = 2 n = 10
Input drivers

RD
2

t = 2
Gates or Wire segments (sizable) Output loads

Figure 1: An illustration of a circuit.A gate, a wire segment, or an input driver is called a component. In order to unify the notationsthat we will introduce later, imagine that two factitious components are added to the circuit. The�rst one is called an output component which consists of all the t output loads. The second one iscalled an input component which connects to all the s input drivers. Let a node be a connectionpoint between two components or the output point of the output component. Note that the outputof each component should connect to a distinct node. So it is easy to see that there are n+ s+ 2components and n+ s+ 2 nodes.Let m = n + s + 1. We label the nodes by indexes 0; : : : ;m as follows. The node with index 0is the output point of the output component. For 1 � i � t, the node with index i is the oneconnecting to the ith output load. For t+ 1 � i � n, the node with index i is a connection pointamong the gates and wire segments. The indexes are assigned in such a way that if node i andnode j are connected to an input and the output of some component respectively, then i > j. Forn+ 1 � i � n+ s, the node with index i is the one connecting to the (i � n)th input driver. Thenode with index m is the output point of the input component. It is not di�cult to see that ifwe view the circuit as a directed acyclic graph, the node index assignment is a reverse topologicalordering of the graph. We also label the components by indexes 0; : : : ;m such that the output ofthe component with index i is connected to node i. See Figure 2 for an illustration of the circuitin Figure 1 with factitious components, node indexes and component indexes.For 0 � i � m � 1, let input(i) be the set of indexes of components directly connected to theinput(s) of component i. For 1 � i � m, let output(i) be the set of indexes of components directlyconnected to the output of component i. For example, for the circuit in Figure 2, input(0) = f1; 2g,input(6) = f8; 9g, output(6) = f3; 4g, input(8) = f11g, and output(8) = f6g. Note that j 2 input(i)if and only if i 2 output(j).Let G be the set of component indexes of gates in the circuit. LetW be the set of component indexes2

7

16

2

9

3
8

9

10 5

4

510

6
8

7

3

4

12

11

2

1

013

11

12

0

13

Component
Output

Component
Input

m = 13Figure 2: An illustration of a circuit in Figure 1 with node indexes and component indexes. The factitiousinput component and output component are also shown.of wire segments in the circuit. For the circuit in Figure 2, G = f2; 6; 7g andW = f1; 3; 4; 5; 8; 9; 10g.If i 2 G, then let xi be the gate size, ri be the output resistance of the gate and ci be the inputcapacitance of a pin of the gate. (To simplify the notations, we assume that the input capacitancesof all input pins of a gate are the same. It is clear that all our results will still hold if this is not thecase.) Let bri and bci be respectively the unit size output resistance and the input capacitance perunit size of gate i. Then ri = bri=xi and ci = bcixi. If i 2W , then let xi be the segment width, ri bethe segment resistance and ci be the segment capacitance. Let bri, bci and fi be respectively the unitwidth wire resistance, the wire area capacitance per unit width and the wire fringing capacitanceof segment i. Then ri = bri=xi and ci = bcixi + fi. For i 2 G [W , let Li and Ui be respectively thelower bound and upper bound of the value of xi, i.e. Li � xi � Ui.For the purpose of delay calculation, we model components as RC circuits. A gate is modeled as aswitch-level RC circuit as shown in Figure 3. (For simplicity, we ignore the intrinsic delay of gatesin the model. It is easy to see that all our results will still hold even if intrinsic delay is considered.)A wire segment is modeled as a �-type RC circuit as shown in Figure 4.
 xi

ci

ir
ci

Component i

sizeFigure 3: The model of component i, which is a gate, by a switch-level RC circuit. Note that ri = bri=xiand ci = bcixi, where bri and bci are respectively the unit size output resistance and the input capacitance perunit size of gate i. Although the gate shown here is a 2-input AND gate, the model can be easily generalizedfor any gate with any number of input pins.Elmore delay model [10] is used for delay calculation. Basically, the Elmore delay along a signal pathis the sum of the delays associated with the resistors in the path, where the delay associated with aresistor is equal to its resistance times its downstream capacitance. For our case, each component(except the 2 factitious components) contains a resistor. We label the resistors by indexes 1; : : : ; n+s3

ci

2
ci

2

ir

width xi

Component i

Figure 4: The model of component i, which is a wire segment, by a �-type RC circuit. Note that ri = bri=xiand ci = bcixi+fi, where bri, bci and fi are respectively the unit width wire resistance, the wire area capacitanceper unit width and the wire fringing capacitance of segment i.such that resistor i is the one inside component i. For convenience, for n+1 � i � n+s, let ri = RDi�n(i.e. the driver resistance of the (i � n)th input driver). So for 1 � i � n + s, the resistance ofresistor i is ri. For 1 � i � n+s, let Ci be the downstream capacitance of resistor i. Figure 5 showsthe circuit in Figure 2 after replacing the components by the RC models. The resistance of eachresistor is marked in the �gure. Also, the regions corresponding to the downstream capacitancesof resistor 5 and resistor 12 are shaded.
r6

r10 r7 r5
r2

9r
r4

3r r1
r8

Sum of capacitance
12C=

r11

r12

11

9

7

6 3

4

5

2

1
8

12 10

Sum of capacitance
C= 5

13

0

Figure 5: Illustration of the circuit in Figure 2 after replacing the gates and wire segments by the RCmodels. The resistance of each resistor is marked in the �gure. Also, the regions corresponding to thedownstream capacitances of resistor 5 and resistor 12 are shaded.Let Di = riCi be the delay associated with resistor i. We represent a signal path passing throughresistors i1; : : : ; ik by the set p = fi1; : : : ; ikg. Let P be the set of all possible paths from node m tonode 0 (i.e. from an input driver to an output load). Then for any p 2 P , the Elmore delay alongpath p is Pi2pDi.
4

3 Minimizing total area subject to maximum delay boundIn this section, we will solve the problem of minimizing the total component area with respect tocomponent sizes x1; : : : ; xn subject to the constraint that the maximum delay from any input driverto any output load is at most some constant A0 (i.e. A0 is a bound on the arrival time at node 0).In Section 3.1, we will �rst show how to formulate the problem as a constrained optimizationproblem with a polynomial number of constraints. We call this formulation the primal problem(PP). Then we will show how to solve PP by Lagrangian relaxation, which is a general techniquefor solving constrained optimization problems. We outline the basic idea of Lagrangian relaxationbelow. More details can be found in [1, 12, 13].In Lagrangian relaxation, \troublesome" constraints are \relaxed" and incorporated into the ob-jective function after multiplying them by constants called Lagrange multipliers, one multiplier foreach constraint. For each �xed vector � of the Lagrange multipliers introduced, we have a newoptimization problem (which should be easier to solve because it is free of troublesome constraints)called the Lagrangian relaxation subproblem associated with � (LRS=�). It can be shown thatthere exists a vector � such that the optimal solution of LRS=� is also the optimal solution of theoriginal constrained optimization problem PP . The problem of �nding such a vector � is calledthe Lagrangian dual problem (LDP). So if we can solve both LRS=� and LDP, then the optimalsolution of PP will be given by LRS=� where � is the optimal solution of LDP.In Section 3.2, we will show how PP is relaxed to obtain the LRS=�. We will use the Kuhn-Tucker conditions (see [1] for a reference) to greatly simplify LRS=�. We called the simpli�edversion LRS=�. In Section 3.3, we will show how to solve LRS=� (i.e. LRS=�) for any �xedvector �. In Section 3.4, we will show how to solve the LDP by the classical method of subgradientoptimization.3.1 Problem formulationFor each i, the area of component i is proportional to its size xi. Therefore, the total component areacan be written as Pni=1 �ixi for some constants �1; : : : ; �n. Then the problem of minimizing totalarea subject to maximum delay bound can be formulated directly as the mathematical programbelow: Minimize Pni=1 �ixiSubject to Pi2pDi � A0 8p 2 PLi � xi � Ui i = 1; : : : ; nHowever, the number of possible signal paths from node m to node 0 (and hence the number ofconstraints in the mathematical program above) can be exponential in n. So this direct formulationis impractical.This di�culty can be handled by the classical technique of partitioning the constraints on pathdelay into constraints on delay across components. We associate a variable ai to each node i. airepresents the arrival time at node i (i.e. the maximum delay from node m to node i). Then itis not di�cult to see that the mathematical program below, which we called the primal problem5

(PP), is equivalent to the mathematical program above:PP : Minimize Pni=1 �ixiSubject to aj � A0 j 2 input(0) /* outputs */aj +Di � ai i = 1; : : : ; n and 8j 2 input(i)Di � ai i = n+ 1; : : : ; n+ s /* inputs */Li � xi � Ui i = 1; : : : ; nNote that the number of constraints in PP is polynomial in n and s. Also note that for the problemPP , the objective function is a posynomial [9] and the constraints can be rewritten in the formof posynomials. It is well known that under a variable transformation, the problem is convex. Soproblem PP has a unique global minimum and no other local minimum. We will consider theformulation PP in the following.3.2 Lagrangian RelaxationFollowing the Lagrangian relaxation procedure, we introduce a non-negative value called the La-grange multiplier for each constraint on arrival time. For all j 2 input(0) (i.e. j = 1; : : : ; t), weintroduce �j0 for the constraint aj � A0. For i = 1; : : : ; n and for all j 2 input(i), we introduce�ji for the constraint aj +Di � ai. For i = n + 1; : : : ; n + s, we introduce �mi for the constraintDi � ai. Let � be a vector of all the Lagrange multipliers introduced. Let x = (x1; : : : ; xn) anda = (a1; : : : ; an+s). Let L�(x;a) = nXi=1 �ixi+ Xj2input(0) �j0(aj �A0)+ nXi=1 Xj2input(i) �ji(aj +Di � ai)+ n+sXi=n+1�mi(Di � ai) (1)Then the Lagrangian relaxation subproblem associated with the Lagrange multipliers � will be:LRS=� : Minimize L�(x;a)Subject to Li � xi � Ui i = 1; : : : ; nLet (x�;a�) be the optimal solution of PP . By Kuhn-Tucker conditions, if the optimal solution ofLRS=� is also the optimal solution of PP , then � must satisfy the conditions @L�@ai (x�;a�) = 0 for1 � i � n+ s. So we can consider those � only. We observe that the conditions on the Lagrangemultipliers � can be used to greatly simplify the objective function L�(x;a), and hence the problemLRS=�. In the following, we will �rst derive the conditions. Then we will show in Lemma 1 howto simplify the problem. 6

By rearranging (1), we can writeL�(x;a) = tXi=10@�i0 � Xj2input(i) �ji1Aai+ nXi=t+10@ Xk:i2input(k)�ik � Xj2input(i) �ji1A ai+ n+sXi=n+10@ Xk:i2input(k) �ik � �mi1A ai+ nXi=1 �ixi + nXi=10@ Xj2input(i) �ji1ADi � Xj2input(0) �j0A0 + n+sXi=n+1�miDi= n+sXi=1 0@ Xk2output(i) �ik � Xj2input(i) �ji1A ai+ nXi=1 �ixi + nXi=10@ Xj2input(i) �ji1ADi � Xj2input(0) �j0A0 + n+sXi=n+1�miDi (2)By setting @L�=@ai = 0, we obtain the following conditions on �.Optimality Conditions on Lagrange Multipliers:Xk2output(i) �ik = Xj2input(i) �ji for 1 � i � n+ sLet
� = f� � 0 : � satis�es the optimality conditions on Lagrange multipliersgLemma 1 For any � 2
�, solving LRS=� is equivalent to solvingLRS=� : Minimize L�(x)Subject to Li � xi � Ui i = 1; : : : ; nwhere � = (�0; : : : ; �n+s), �i = Xj2input(i) �ji for 0 � i � n+ s, and L�(x) = n+sXi=1 �iDi + nXi=1 �ixi.Proof: By substituting the optimality conditions on Lagrange multipliers back to (2), we getL�(x;a) = nXi=1 �ixi + nXi=10@ Xj2input(i) �ji1ADi � Xj2input(0) �j0A0 + n+sXi=n+1�miDi= n+sXi=1 �iDi + nXi=1 �ixi � �0A0 (3)Note that L�(x;a) in (3) no longer depends on a. Also note that �0A0 is a constant. So if letL�(x) = n+sXi=1 �iDi + nXi=1 �ixi, then minimizing L� is the same as minimizing L�. After �nding the7

optimal x, the optimal a can be found by considering one by one the variables ai's in the order ofdecreasing i. For each ai, we set it to the smallest possible value that satis�es the constraints ofPP . Hence the lemma follows. 23.3 Solving LRS=�In this subsection, for any �xed � � 0, we will show how to solve LRS=� optimally by a greedyalgorithm based on iteratively re-sizing the gates and wire segments. Similar techniques have beensuccessfully applied to some other wire or bu�er sizing problems before (e.g. [3, 8]).If we re-size component i (i.e. changing xi) while keeping the sizes of all the other components�xed, we say that it is a local re-sizing of component i. An optimal local re-sizing of component iis a local re-sizing that minimize L�(x).For 1 � i � n, let upstream(i) be the set of resistor indexes (excluding i) on the path(s) fromcomponent i to the nearest upstream gate(s) or input driver(s). For example, for the circuit inFigure 5, upstream(1) = f3; 6g and upstream(6) = f8; 9; 11; 12g. Let Ri =Pj2upstream(i) �jrj (i.e.Ri is a weighted upstream resistance of component i). For i 2 W , let C 0i = Ci � bcixi=2, and fori 2 G or for n+ 1 � i � n+ s, let C 0i = Ci. Note that for 1 � i � n+ s, C 0i is independent of xi.Lemma 2 For 1 � i � n, L�(x) can be written in the following form:L�(x) = Ai(x)xi + Bi(x)xi +Ei(x)where Ai(x); Bi(x) and Ei(x) are independent of xi, Ai(x) = bciRi + �i and Bi(x) = �ibriC 0i.Proof: L�(x) = n+sXi=1 �iriCi + nXi=1 �ixi= Xi2G�iriC 0i + Xi2W �iri(C 0i + bcixi2) + n+sXi=n+1�iriC 0i + nXi=1 �ixi= n+sXi=1 �iriC 0i + Xi2W �ibribci2 + nXi=1 �ixiFor any i between 1 and n, �iriC 0i = �ibriC 0i=xi. For any j 6= i, if j 62 upstream(i), then �jrjC 0j isindependent of xi. If j 2 upstream(i), then �jrjC 0j = �jrjbcixi+ terms independent of xi. SoL�(x) = 0@ Xj2upstream(i)�jrjbci + �i1Axi + �ibriC 0ixi + terms independent of xi= (bciRi + �i) xi + �ibriC 0ixi + terms independent of xiHence the lemma follows. 28

Lemma 3 Let ~x = (~x1; : : : ; ~xn) be a component-sizing solution. An optimal local re-sizing ofcomponent i is given by changing the size of component i tox�i = min Ui;max Li;sBi(~x)Ai(~x)!! :Proof: If we �x the size of component j to ~xj for all j 6= i, and we change xi, we can view L� asa function of xi, and by Lemma 2, it is given byF (xi) = Ai(~x)xi + Bi(~x)xi +Ei(~x)Di�erentiating F with respect to xi, we getdFdxi = Ai(~x)� Bi(~x)x2iLet �(~x) = qBi(~x)=Ai(~x). Note thatdF=dxi = 0 if xi = �(~x)dF=dxi < 0 if xi < �(~x)dF=dxi > 0 if xi > �(~x)Hence F (xi) is decreasing when xi < �(~x), F (xi) is increasing when xi > �(~x), and F (xi) isminimum at xi = �(~x). If xi is constrained to the range [Li; Ui], we consider three cases:Case 1: �(~x) 2 [Li; Ui].In this case, F (xi) is minimized when xi = �(~x).Case 2: �(~x) > Ui.Then F (xi) is decreasing in [Li; Ui]. So F (xi) is minimized when xi = Ui.Case 3: �(~x) < Li.Then F (xi) is increasing in [Li; Ui]. So F (xi) is minimized when xi = Li.Hence the lemma follows. 2LRS=� can be solved by a greedy algorithm based on iteratively re-sizing the components. In eachiteration, the components are examined one at a time; each time a component is re-sized optimallyusing Lemma 3 while keeping the sizes of the other components �xed. We call the algorithmSOLVE LRS=� and it is described below. Note that in order to use Lemma 3 to re-size componenti, we need to compute Ri and C 0i �rst. Our algorithm SOLVE LRS=� computes C 0i's and Ri'sincrementally by traversing the circuit in a reverse topological order (step 2) and in a topologicalorder (step 3) respectively. So it is not di�cult to see that each iteration of the algorithm takesonly O(n) time.Note that L�(x) is a posynomial [9] in x. It is well known that under a variable transformation,a posynomial is equivalent to a convex function. So L�(x) has a unique global minimum and noother local minimum. We show in the following that algorithm SOLVE LRS=� always convergesto the optimal solution. 9

ALGORITHM SOLVE LRS=�:Output: x = (x1; : : : ; xn) which minimizes L�(x)1. for i := 1 to n do xi := Li2. /* Finding C 0i for 1 � i � nby traversing the circuit in a reverse topological order */for i := 1 to t doC 0i := (CLi if i 2 GCLi + fi=2 if i 2Wfor i := t+ 1 to n doC 0i := (0 if i 2 Gfi=2 if i 2Wfor all k s.t. i 2 input(k) doC 0i := (C 0i + bckxk if k 2 GC 0i + bckxk + fk=2 + C 0k if k 2W3. /* Finding Ri and xi for 1 � i � nby traversing the circuit in a topological order */for i := n downto 1 doRi := 0for all j 2 input(i) doRi := 8><>: Ri + �jRDj�n if n+ 1 � j � n+ sRi + �jbrj=xj if j 2 GRi + �jbrj=xj +Rj if j 2Wxi := min�Ui;max�Li;q(�ibriC 0i)=(bciRi + �i)��4. Repeat step 2 and 3 until no improvement.

10

Lemma 4 If algorithm SOLVE LRS=� converges, then the solution is optimal to LRS=�.Proof: Suppose the algorithm converges to x� = (x�1; : : : ; x�n). Then for 1 � i � n, by Lemma 3,x�i = min�Ui;max�Li;qBi(x�)=Ai(x�)��. Note that L�(x) is a posynomial in x, and that underthe transformation xi = ezi for 1 � i � n, the function H(z) = L�(ez1 ; : : : ; ezn) is convex over
z = fz : Li � ezi � Ui; 1 � i � ng. Let z� = (z�1 ; : : : ; z�n) where x�i = ez�i for 1 � i � n. We nowconsider 3 cases:Case 1: x�i = rBi(x�)Ai(x�) .In this case, we have @L�@xi (x�) = 0. Thus@H@zi (z�) = @L�@xi (x�)@xi@zi (z�) = @L�@xi (x�)ez�i = 0:Case 2: x�i = Li.In this case, Li � rBi(x�)Ai(x�) . We have @L�@xi (x�) � 0 and zi � z�i � 0;8z 2
z. Hence@H@zi (z�)(zi � z�i) = @L�@xi (x�)ez�i (zi � z�i) � 0;8z 2
z:Case 3: x�i = Ui.In this case, Ui � rBi(x�)Ai(x�) . We have @L�@xi (x�) � 0 and zi � z�i � 0;8z 2
z. Hence@H@zi (z�)(zi � z�i) = @L�@xi (x�)ez�i (zi � z�i) � 0;8z 2
z:So @H@zi (z�)(zi � z�i) � 0 for all i and for all z 2
z. Thus for any feasible solution x,L�(x)� L�(x�) = H(z)�H(z�)� rH(z�)(z � z�) as H is convex= nXi=1 @H@zi (z�)(zi � z�i)� 0Therefore x� is the global minimum point. 2Lemma 5 The algorithm SOLVE LRS=� always converges.Proof: For any two vectors x and x0, we use x � x0 to denote that xi � x0i for all i. Let x� be theoptimal solution, x be a feasible solution, and x0 be the solution after locally re-sizing a componentof x. If x � x�, then we can prove that x � x0 � x� (this is similar to the dominance propertyin [6]). 11

In step 1 of algorithm SOLVE LRS=�, we set xi = Li for all i initially. So we know that for alli, xi is non-decreasing for each local re-sizing, and is upper bounded by x�i . Hence the algorithmSOLVE LRS=� converges. 2By Lemma 4 and Lemma 5, we have the following theorem.Theorem 1 For any �xed vector � � 0, algorithm SOLVE LRS=� always converges to the optimalcomponent-sizing solution of the problem LRS=�.Algorithm SOLVE LRS=� runs in O(rn) time using O(n) storage, where n is the number of compo-nents and r is the number of iterations. We will observe that the number of iterations r is constant(i.e. the run time of SOLVE LRS=� is linear) in practice.3.4 Solving the LDPDe�ne the function Q(�) = the optimal value of the problem LRS=�. In this subsection, we willconsider the Lagrangian dual problem:LDP : Maximize Q(�)Subject to � 2
�As said in Section 3.1, PP can be transformed into a convex problem. So Theorem 6.2.4 of [1]implies that if � is the optimal solution of LDP, then the optimal solution of LRS=� will alsooptimize PP .By Theorem 6.3.1 of [1], Q(�) is a concave function over � � 0. However, LRS=� is not di�er-entiable in general. So methods like steepest descent, which depends on the gradient directions,are not applicable. The subgradient optimization method is usually used instead. The subgradientoptimization method can be viewed as a generalization of the steepest descent method in whichthe gradient direction is substituted by a subgradient-based direction (see [1] for a reference).Basically, starting from an arbitrary point �, the method iteratively moves from the current pointto a new point following the subgradient direction. At step k, we �rst solve LRS=� (by solving thesimpler LRS=�). Then for each relaxed constraint, we de�ne the subgradient to be the right handside minus the left hand side of the constraint, evaluated at the current solution. The subgradientdirection is the vector of all the subgradients. We move to a new point by multiplying a step size�k to the subgradient direction and adding it to �. After each time we moved, we project � backto the nearest point in
� so that we can solve LRS=� instead of LRS=� for the next iteration.The procedure is repeated until it converges.It is well known (see Theorem 8.9.2 of [1] for example) that if the step size sequence f�kg satis�esthe conditions limk!1 �k = 0 and P1k=1 �k = 1, then the subgradient optimization method willalways converge to the optimal solutionThe description is summarized in the algorithm SOLVE LDP below.Theorem 2 The algorithm SOLVE LDP always converges to the optimal solution of LDP.12

ALGORITHM SOLVE LDP:Output: � which maximizes LRS=�1. k := 1 /* step counter */� := arbitrary initial vector in
�2. � = (�0; : : : ; �n+s) where �i =Pj2input(i) �jiSolve LRS=� by calling SOLVE LRS=� to solve LRS=� andcalculating a1; : : : ; an+s as described in the proof of Lemma 1.3. /* Move to a new � by adjusting the Lagrange multipliers �ji */for i := 0 to n+ s dofor all j 2 input(i) do�ji := 8><>: �ji + �k(aj �A0) if i = 0�ji + �k(aj +Di � ai) if 1 � i � n�ji + �k(Di � ai) if n+ 1 � i � n+ s4. Project � onto the nearest point in
�.5. k := k + 16. Repeat step 2{5 until (Pni=1 �ixi �Q(�)) � error bound.We conclude Section 3 by giving the algorithm SGWS-LR (Simultaneous Gate and Wire Sizing byLagrangian Relaxation) below.ALGORITHM SGWS-LR:Output: the optimal gate and wire sizing solution x1. Call SOLVE LDP to �nd the optimal �2. � = (�0; : : : ; �n+s) where �i =Pj2input(i) �ji3. Call SOLVE LRS=� to �nd the optimal xTheorem 3 For simultaneous gate and wire sizing, the problem of minimizing total area subjectto maximum delay bound can be solved optimally by SGWS-LR.4 ExtensionsIn Section 3, the objective of our problem is the total component area and the constraint is on themaximum delay from any input to any output (i.e. the arrival time at node 0). In this section, wewill extend our approach to handle problems with other objectives and with other constraints. InSection 4.1, we will treat the maximum delay as the objective and show how to minimize it. Wewill also see that the problem of minimizing maximum delay subject to total area bound is easy tohandle. In Section 4.2, instead of assuming that all the input signals arrive at time 0 and all theoutput signals have a single bound on the arrival time, we allow di�erent arrival time speci�cationson the input and output signals. In Section 4.3, we will see that power can be handled similarly asarea. In Section 4.4, we will show that a more accurate gate model can be used.13

For all the extensions, we will see only slight modi�cations to our algorithm presented in Section3 are needed. Moreover, convergence to global optimal solutions is still guaranteed. Actually, itis not di�cult to see that any combination of the problem in Section 3 or the extensions can behandled similarly. For example, we can optimally solve the problem of minimizing power subjectto bounds on area and on maximum delay from any input to any output.4.1 Minimizing Maximum DelayInstead of having a constant bound A0 for the arrival time at node 0, we introduce one morevariable a0 to represent the arrival time at node 0, and we want to minimize a0. As in Section3.1, by partitioning the constraints on path delay into constraints on delay across components, theproblem of minimizing maximum delay by simultaneous gate and wire sizing can be formulated asthe mathematical program below:PP : Minimize a0Subject to aj � a0 j 2 input(0) /* outputs */aj +Di � ai i = 1; : : : ; n and 8j 2 input(i)Di � ai i = n+ 1; : : : ; n+ s /* inputs */Li � xi � Ui i = 1; : : : ; nIf all the constraints on arrival time are relaxed, then the Lagrangian relaxation subproblem asso-ciated with the Lagrange multipliers � will be:LRS=� : Minimize L�(x;a)Subject to Li � xi � Ui i = 1; : : : ; nwhere L�(x;a) = a0 + Xj2input(0) �j0(aj � a0) + nXi=1 Xj2input(i) �ji(aj +Di � ai) + n+sXi=n+1�mi(Di � ai).As before, by Kuhn-Tucker conditions, we have the following optimality conditions on Lagrangemultipliers. 1 = Xj2input(0) �j0Xk2output(i) �ik = Xj2input(i) �ji for 1 � i � n+ sThen for � satisfying the conditions, LRS=� can be simpli�ed toLRS=� : Minimize L�(x)Subject to Li � xi � Ui i = 1; : : : ; nwhere � = (�0; : : : ; �n+s), �i = Xj2input(i) �ji for 0 � i � n+ s, and L�(x) = n+sXi=1 �iDi.It is easy to see that LRS=� can be solved optimally by the iterative local re-sizing algorithm inSection 3.3 and the corresponding LDP can be solved optimally by the subgradient optimization14

method as described in Section 3.4. Therefore the problem of minimizing maximum delay can alsobe solved optimally by our approach.In fact, the problem of minimizing maximum delay subject to area bound can also be optimallysolved by our Lagrangian relaxation approach. The constraint on area can be relaxed and incor-porated into the objective function as well. The function L�(x;a) will be of the same form as theone in Section 3.2.4.2 Arrival Time Speci�cations on Inputs and OutputsIn Section 3, we assume that all the input signals arrive at time 0 and we want to bound thearrival time at the outputs uniformly by a single constant A0. We show in this subsection thatdi�erent arrival time speci�cations on the input and output signals can be easily handled. Wedemostrate the idea by considering the problem of minimizing total area subject to di�erent arrivaltime constraints at inputs and outputs.For n + 1 � i � n+ s, let Ai be the arrival time speci�cation of the input signal at the (i � n)thinput driver. For 1 � j � t, let Aj be the arrival time requirement on the output signal at the jthoutput load. Then the problem can be formulated as follows:PP : Minimize Pni=1 �ixiSubject to aj � Aj j 2 input(0) /* outputs */aj +Di � ai i = 1; : : : ; n and 8j 2 input(i)Ai +Di � ai i = n+ 1; : : : ; n+ s /* inputs */Li � xi � Ui i = 1; : : : ; nIf all the constraints on arrival time are relaxed, then the Lagrangian relaxation subproblem asso-ciated with the Lagrange multipliers � will be:LRS=� : Minimize L�(x;a)Subject to Li � xi � Ui i = 1; : : : ; nwhere L�(x;a) = nXi=1 �ixi + Xj2input(0) �j0(aj �Aj) + nXi=1 Xj2input(i) �ji(aj +Di � ai)+ n+sXi=n+1�mi(Ai +Di � ai).Again, by Kuhn-Tucker conditions, we have the following optimality conditions on Lagrange mul-tipliers. Xk2output(i) �ik = Xj2input(i) �ji for 1 � i � n+ sSo for � satisfying the conditions, we can simplify L�(x;a):L�(x;a) = n+sXi=1 �iDi + nXi=1 �ixi + n+sXi=n+1�miAi � Xj2input(0) �j0Aj15

So the Lagrangian relaxation subproblem can be formulated in exactly the same form as the problemLRS=� in Section 3.2. LRS=� and LDP can be solved as before. Therefore even with di�erentarrival time speci�cations on inputs and outputs, the problem can still be solved optimally by ourapproach.4.3 Power ConsiderationFor each i, the power consumption of component i is proportional to its size xi. Therefore, thetotal power consumption can be written as Pni=1 �ixi for some constants �1; : : : ; �n. It is of thesame form as the total component area. So it is easy to see that it can be handle in exactly thesame way as component area.4.4 More Accurate Gate ModelFor higher precision timing requirements, more accurate gate models are desirable. Although inSection 2, we model a gate as a switch-level RC circuit with a resistance proportional to the gatesize, better gate models can be easily integrated into our algorithm. We now show an example ofusing precharacterized function as the delay model for gates.The following precharacterized delay function Di() and output slope function Ti() can capture theinput slope e�ect as well as the di�usion capacitance e�ect to the delay of gate i:Di(xi; ti; Ci) = bsi + bpiti + bqixi + brixiCi;Ti(xi; ti; Ci) = ~si + ~piti + ~qixi + ~rixiCi;where xi is the gate size, ti is the input rise or fall time of gate i, Ci is the capacitance load,bsi; bqi; bri; ~si; ~qi and ~ri are precharacterized coe�cients. It is not di�cult to see that while keepingthe size of other components �xed, the input slope ti is a linear function of xi since bcixi contributesonly linear term to its parents' capacitance load. Hence the delay of gate i can be rewritten asfollows: Di(xi; ti; Ci) = bsi0 + bqi0xi + brixiCiwhere bsi0 = bpi(~sj + ~pjtj + ~qjxj), bqi0 = bqi + ~rjbcixi , and component j is the parent of component i.It is not hard to see that after the substitution, Ai(x) = bciRi + �i + bqi0. Hence our algorithms inSection 3 will still convergences to the optimal solution under this modi�cation.5 Experimental Results and Concluding RemarkWe implemented our algorithms in an RS/6000 workstation. Table 1 shows the experimental resultson adders of di�erent sizes ranging from 8 bits to 512 bits. Number of gates range from 120 to15360. Number of wires range from 96 to 12288 (note that the number of wires here means the16

number of sizable wire segments). The total number of sizable components range from 216 to21648. The stopping criteria of our algorithm is the solution is within 1% of the optimal solution.The lower bound and upper bound of the size of each gate are 1 and 100 respectively. The lowerbound and upper bound of the width of each wire are 1 and 3 �m respectively.Table 1 shows the runtime and storage requirements of our algorithm. For circuit with 13824 sizablecomponents, the runtime and storage requirements of our algorithm are about 13 minutes and 12MB only. For circuit with 27648 sizable components, the runtime and storage requirements of ouralgorithm are about half an hour and 23 MB. The maximum delays for the solution of minimumgate and wire sizes and for our algorithm are also listed.Figure 6 and Figure 7 show the runtime and storage requirements of our algorithm. Figure 6 showsthat the runtime increases roughly three times when the circuit size is doubled. Hence the empiricalruntime of our program are about nlog 3= log 2 � n1:6. Figure 7 shows that the ratio of the storageversus the circuit size of our algorithm is close to linear. The storage requirement for each sizablecomponent is about 0.8 KB.Figure 8 shows the area versus delay tradeo� curve of a 16-bit adder. In our experiment, we observethat to generate a new point in the area and delay tradeo� curve, SOLVE LDP converges in onlyabout 5 iterations. It is because the � of the previous point is a good approximation for that of thenew point and hence the convergence of SOLVE LDP is fast. As a result, generating these tradeo�curves requires only a little bit more runtime but provides precious information.Figure 9 shows the convergence sequence of our algorithm SOLVE LDP on a 128-bit adder. Itshows that our algorithm converges smoothly to the optimal solution. The solid line represents theupper bound of the optimal solution and the dotted line represents the lower bound of it. The lowerbound values comes from the optimal value of LRS=� at current iteration. Note that the optimalsolution is always inbetween the upper bound and the lower bound. So these curves provide usefulinformation about the distance between the optimal solution and the current solution, and helpusers to decide when to stop the programs.Finally, we would like to point out that our Lagrangian relaxation approach can be adapted tosolve the transistor sizing problem. We observe that the transistor sizing problem is very similarto the gate sizing problem. Although transistor sizing has been extensively studied, we believethe Lagrangian relaxation approach is much more e�cient than current techniques. For example,the most recent algorithm that can guarantee exact transistor sizing solutions is [19]. The largesttest circuit in [19] has 832 transistors and the reported runtime and memory are 9 hours (on aSun SPARCstation 1) and 11 MB, respectively. Note that for a problem of similar size (834), ourapproach only needs 7 seconds of runtime and 1.15 MB memory (see Table 1).References[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algo-rithms. John Wiley & Sons, Inc., second edition, 1993.[2] Chung-Ping Chen, Yao-Wen Chang, and D. F. Wong. Fast performance-driven optimization forbu�ered clock trees based on Lagrangian relaxation. In Proc. IEEE Intl. Conf. on Computer-17

Circuit Name Circuit Size Maximum Delay (ns) Runtime Memory# Gates # Wires Total Min. Size Our Alg. (min:sec) (MB)adder (8 bits) 120 96 216 8.55 4.70 0:01 0.48adder (16 bits) 240 192 432 17.23 8.12 0:02 0.76adder (32 bits) 480 384 864 33.36 16.00 0:07 1.15adder (64 bits) 960 768 1728 66.07 31.90 0:15 1.75adder (128 bits) 1920 1536 3456 131.51 63.70 0:39 2.82adder (256 bits) 3840 3072 6912 262.43 127.32 3:05 5.37adder (512 bits) 7680 6144 13824 524.08 256.21 13:09 11.83adder (1024 bits) 15360 12288 27648 1047.53 508.95 36:12 22.92Table 1: The runtime and storage requirements of our algorithm on test circuits of di�erent sizes.Aided Design, pages 405{408, 1996.[3] Chung-Ping Chen and D. F. Wong. A fast algorithm for optimal wire-sizing under Elmoredelay model. In Proc. IEEE ISCAS, volume 4, pages 412{415, 1996.[4] Chung-Ping Chen, Hai Zhou, and D. F. Wong. Optimal non-uniform wire-sizing under theElmore delay model. In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 38{43, 1996.[5] M. A. Cirit. Transistor sizing in CMOS circuits. In Proc. ACM/IEEE Design AutomationConf., pages 121{124, 1987.[6] Jason Cong and Lei He. An e�cient approach to simultaneous transistor and interconnectsizing. In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 181{186, 1996.[7] Jason Cong and Cheng-Kok Koh. Simultaneous driver and wire sizing for performance andpower optimization. In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 206{212,1994.[8] Jason Cong and Kwok Shing Leung. Optimal wiresizing under the distributed Elmore delaymodel. IEEE Trans. Computer-Aided Design, 14(3):321{336, March 1995.[9] R. J. Du�n, E. L. Peterson, and C. Zener. Geometric Programming { Theory and Application.John Wiley & Sons, Inc., NY, 1967.[10] W. C. Elmore. The transient response of damped linear network with particular regard towideband ampli�ers. J. Applied Physics, 19:55{63, 1948.[11] J. P. Fishburn and A. E. Dunlop. TILOS: A posynominal programming approach to transistorsizing. In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 326{328, 1985.[12] M. L. Fisher. An application oriented guide to lagrangian relaxation. Interfaces, 15(2):10{21,March{April 1985.[13] D. G. Luenberger. Linear and Nonlinear Programming. Addison Wesley, second edition, 1984.[14] David P. Marple and Abbas El Gamal. Optimal selection of transistor sizes in digital VLSIcircuits. In Proc. 1987 Stanford Conf., pages 151{172, 1987.18

