Fast and Exact Simultaneous Gate and Wire Sizing
by Lagrangian Relaxation

Chung-Ping Chen, Chris C. N. Chu and D. F. Wong
ccp@cs.utexas.edu, cnchu@cs.utexas.edu and wong@cs.utexas.edu
Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712.

October 13, 1997

Abstract

This paper considers simultaneous gate and wire sizing for general VLSI circuits under the Elmore
delay model. We present a fast and exact algorithm which can minimize total area subject to max-
imum delay bound. The algorithm can be easily modified to give exact algorithms for optimizing
several other objectives (e.g. minimizing maximum delay or minimizing total area subject to arrival
time specifications at all inputs and outputs). No previous algorithm for simultaneous gate and
wire sizing can guarantee exact solutions for general circuits. Our algorithm is an iterative one with
a guarantee on convergence to global optimal solutions. It is based on Lagrangian relaxation and
“one-gate/wire-at-a-time” local optimizations, and is extremely economical and fast. For example,
we can optimize a circuit with 13824 gates and wires in about 13 minutes using under 12 MB
memory on an IBM RS/6000 workstation.

1 Introduction

Since the invention of integrated circuits almost 40 years ago, gate sizing has always been an ef-
fective technique to achieve desirable circuit performance. As technology continues to scale down,
total number of gates and interconnects within a die grows over millions. In such increasingly
dense integrated circuits, a significant portion of the total circuit delay comes from the intercon-
nects. Therefore, developing efficient algorithms which can handle large scale gate and interconnect
optimization problems are of great importance.

In the past, gate delay was the dominant factor in determining circuit performance. Thus, gate
and transistor sizing have been extensively studied in the literature [5, 11, 14, 19]. As interconnect
delay plays an increasingly important role in determining circuit performance, wire sizing has been
an active research topic in the past few years [2, 4, 6, 8, 16, 18]. Since gate sizes affect wire-
sizing solutions and wire sizes affect gate-sizing solutions, it is beneficial to simultaneously size
both gates and wires. Very few results on simultaneous gate and wire sizing have been reported
(2,6, 7,15, 17]. [7] studied simultaneous driver and wire sizing and [2] considered simultaneous wire
and buffer sizing, but both works only apply to circuits that are of tree topology. For simultaneous
gate and wire sizing for general circuits, [17] uses a least-square optimization technique, [15] employs
a sequential quadratic programming approach, and [6] uses a greedy sizing technique in conjunction
with dynamic programming. But none of these algorithms can guarantee to give exact solutions for
objectives such as minimizing total area subject to maximum delay bound or minimizing maximum
delay.

In this paper, we consider simultaneous gate and wire sizing for general VLSI circuits under the
Elmore delay model. We present a fast and exact algorithm which can minimize total area subject
to maximum delay bound. The algorithm can be easily modified to give exact algorithms for
optimizing several other objectives (e.g. minimizing maximum delay or minimizing total area
subject to arrival time specifications at all inputs and outputs). Our algorithm is an iterative one
with a guarantee on convergence to global optimal solutions. It is based on Lagrangian relaxation
and “one-gate/wire-at-a-time” local optimizations, and is extremely economical and fast. For
example, we can optimize a circuit with 13824 gates and wires in about 13 minutes using under 12
MB memory on an IBM RS/6000 workstation.

The rest of this paper is organized as follows. In Section 2, we will introduce some notations and
terminology that we will use in this paper. In Section 3, we will present our algorithm for the
problem of minimizing total area subject to maximum delay bound. In Section 4, we will show
how to modify our algorithm to minimize maximum delay, to handle arrival time specifications at
all inputs and outputs, to consider power consumption and to use a more accurate gate model. In
Section 5, experimental results to show the runtime and storage requirements of our algorithm is
presented.

2 Preliminaries

In this section, we will define some notations and terminology that we will use in this paper.

For a general VLSI circuit, we can ignore all latches and optimize its combinational subcircuits.

Therefore, we will focus on combinational circuits below.

Given a combinational circuit with s input drivers, ¢ output loads, and n gates or wire segments,
the gate sizes or the segment widths are allowed to be varied in order to optimize some objective.
For 1 <17 <s, let RiD be the driver resistance of the ith input driver. For 1 <17 <, let C’iL be the
load capacitance of the ith output load. See Figure 1 for an illustration of a circuit.

Input drivers Gates or Wire segments (sizable) Output loads
s=2 n=10 t=2
= <X <>

Figure 1: An illustration of a circuit.

A gate, a wire segment, or an input driver is called a component. In order to unify the notations
that we will introduce later, imagine that two factitious components are added to the circuit. The
first one is called an output component which consists of all the ¢t output loads. The second one is
called an input component which connects to all the s input drivers. Let a node be a connection
point between two components or the output point of the output component. Note that the output
of each component should connect to a distinct node. So it is easy to see that there are n + s + 2
components and n + s + 2 nodes.

Let m = n+ s+ 1. We label the nodes by indexes 0,...,m as follows. The node with index 0
is the output point of the output component. For 1 < ¢ < ¢, the node with index 7 is the one
connecting to the ¢th output load. For t 4+ 1 < i < n, the node with index ¢ is a connection point
among the gates and wire segments. The indexes are assigned in such a way that if node ¢ and
node j are connected to an input and the output of some component respectively, then ¢ > j. For
n+1<i<n+ s, the node with index 7 is the one connecting to the (i — n)th input driver. The
node with index m is the output point of the input component. It is not difficult to see that if
we view the circuit as a directed acyclic graph, the node index assignment is a reverse topological
ordering of the graph. We also label the components by indexes 0, ..., m such that the output of
the component with index ¢ is connected to node i. See Figure 2 for an illustration of the circuit
in Figure 1 with factitious components, node indexes and component indexes.

For 0 < i < m — 1, let input(i) be the set of indexes of components directly connected to the
input(s) of component 7. For 1 <i < m, let output(i) be the set of indexes of components directly
connected to the output of component i. For example, for the circuit in Figure 2, input(0) = {1, 2},
input(6) = {8,9}, output(6) = {3,4}, input(8) = {11}, and output(8) = {6}. Note that j € input(i)
if and ounly if i € output(j).

Let G be the set of component indexes of gates in the circuit. Let W be the set of component indexes

Input Output
Component Component

Figure 2: An illustration of a circuit in Figure 1 with node indexes and component indexes. The factitious
input component and output component are also shown.

of wire segments in the circuit. For the circuit in Figure 2, G = {2,6,7} and W = {1, 3,4,5,8,9,10}.

If i € G, then let x; be the gate size, r; be the output resistance of the gate and ¢; be the input
capacitance of a pin of the gate. (To simplify the notations, we assume that the input capacitances
of all input pins of a gate are the same. It is clear that all our results will still hold if this is not the
case.) Let 7; and ¢; be respectively the unit size output resistance and the input capacitance per
unit size of gate i. Then r; = 7;/x; and ¢; = ¢;x;. If i € W, then let x; be the segment width, r; be
the segment resistance and c; be the segment capacitance. Let 7, ¢; and f; be respectively the unit
width wire resistance, the wire area capacitance per unit width and the wire fringing capacitance
of segment 7. Then r; = 7;/x; and ¢; = ¢z; + f;. For i € GUW, let L; and U; be respectively the
lower bound and upper bound of the value of z;, i.e. L; < x; < U;.

For the purpose of delay calculation, we model components as RC circuits. A gate is modeled as a
switch-level RC circuit as shown in Figure 3. (For simplicity, we ignore the intrinsic delay of gates
in the model. It is easy to see that all our results will still hold even if intrinsic delay is considered.)
A wire segment is modeled as a w-type RC circuit as shown in Figure 4.

Component i

D=

Size X,

Figure 3: The model of component i, which is a gate, by a switch-level RC circuit. Note that r; = 7;/z;
and c; = ¢;x;, where 7; and ¢; are respectively the unit size output resistance and the input capacitance per
unit size of gate i. Although the gate shown here is a 2-input AND gate, the model can be easily generalized
for any gate with any number of input pins.

Elmore delay model [10] is used for delay calculation. Basically, the Elmore delay along a signal path
is the sum of the delays associated with the resistors in the path, where the delay associated with a
resistor is equal to its resistance times its downstream capacitance. For our case, each component
(except the 2 factitious components) contains a resistor. We label the resistors by indexes 1,...,n+s

Component i

ko LM/WL

width x; 3 T T 3

Figure 4: The model of component i, which is a wire segment, by a w-type RC circuit. Note that r; = 7;/z;
and ¢; = ¢;x;+ f;, whereT;, ¢; and f; are respectively the unit width wire resistance, the wire area capacitance
per unit width and the wire fringing capacitance of segment 1.

such that resistor ¢ is the one inside component 7. For convenience, for n+1 < ¢ < n+s, let r; = R£ n
(i.e. the driver resistance of the (i — n)th input driver). So for 1 < i < n + s, the resistance of
resistor ¢ is r;. For 1 < ¢ < n+s, let C; be the downstream capacitance of resistor ¢. Figure 5 shows
the circuit in Figure 2 after replacing the components by the RC models. The resistance of each
resistor is marked in the figure. Also, the regions corresponding to the downstream capacitances
of resistor 5 and resistor 12 are shaded.

Sum of capacitance

Sum of capacitance

=Cp =G

Figure 5: Illustration of the circuit in Figure 2 after replacing the gates and wire segments by the RC
models. The resistance of each resistor is marked in the figure. Also, the regions corresponding to the
downstream capacitances of resistor 5 and resistor 12 are shaded.

Let D; = r;C; be the delay associated with resistor i. We represent a signal path passing through
resistors i1, ..., by the set p = {i1,...,ix}. Let P be the set of all possible paths from node m to
node 0 (i.e. from an input driver to an output load). Then for any p € P, the Elmore delay along

path pis > ;o) D;

3 Minimizing total area subject to maximum delay bound

In this section, we will solve the problem of minimizing the total component area with respect to
component sizes x1, ..., T, subject to the constraint that the maximum delay from any input driver
to any output load is at most some constant Ay (i.e. Ay is a bound on the arrival time at node 0).

In Section 3.1, we will first show how to formulate the problem as a constrained optimization
problem with a polynomial number of constraints. We call this formulation the primal problem
(PP). Then we will show how to solve PP by Lagrangian relaxation, which is a general technique
for solving constrained optimization problems. We outline the basic idea of Lagrangian relaxation
below. More details can be found in [1, 12, 13].

In Lagrangian relaxation, “troublesome” constraints are “relaxed” and incorporated into the ob-
jective function after multiplying them by constants called Lagrange multipliers, one multiplier for
each constraint. For each fixed vector A of the Lagrange multipliers introduced, we have a new
optimization problem (which should be easier to solve because it is free of troublesome constraints)
called the Lagrangian relaxation subproblem associated with A (LRS/A). It can be shown that
there exists a vector A such that the optimal solution of LRS/A is also the optimal solution of the
original constrained optimization problem PP. The problem of finding such a vector A is called
the Lagrangian dual problem (LDP). So if we can solve both LRS/A and LDP, then the optimal
solution of PP will be given by LRS/A where A is the optimal solution of LDP.

In Section 3.2, we will show how PP is relaxed to obtain the LRS/A. We will use the Kuhn-
Tucker conditions (see [1] for a reference) to greatly simplify LRS/A. We called the simplified
version LRS/p. In Section 3.3, we will show how to solve LRS/u (i.e. LRS/A) for any fixed
vector p. In Section 3.4, we will show how to solve the LDP by the classical method of subgradient
optimization.

3.1 Problem formulation

For each ¢, the area of component 7 is proportional to its size x;. Therefore, the total component area
can be written as > ;- ; a;x; for some constants ai, ..., a,. Then the problem of minimizing total
area subject to maximum delay bound can be formulated directly as the mathematical program
below:
Minimize > ; oix;
Subject to > ;c, Di < Ag VpeP
LzSCCZSUz izl,...,n

However, the number of possible signal paths from node m to node 0 (and hence the number of
constraints in the mathematical program above) can be exponential in n. So this direct formulation
is impractical.

This difficulty can be handled by the classical technique of partitioning the constraints on path
delay into constraints on delay across components. We associate a variable a; to each node ¢. a;
represents the arrival time at node ¢ (i.e. the maximum delay from node m to node 7). Then it
is not difficult to see that the mathematical program below, which we called the primal problem

(PP), is equivalent to the mathematical program above:

PP : Minimize Y i o4z

Subject to aj < A J € input(0) /* outputs */
aj+D; <a; i=1,...,n and Vj € input(i)
D; <a; i=n+1,...,n+s /*inputs */

LZSCCZSUz izl,...,n

Note that the number of constraints in PP is polynomial in n and s. Also note that for the problem
PP, the objective function is a posynomial [9] and the constraints can be rewritten in the form
of posynomials. It is well known that under a variable transformation, the problem is convex. So
problem PP has a unique global minimum and no other local minimum. We will consider the
formulation PP in the following.

3.2 Lagrangian Relaxation

Following the Lagrangian relaxation procedure, we introduce a non-negative value called the La-

grange multiplier for each constraint on arrival time. For all j € input(0) (i.e. j = 1,...,t), we
introduce \jo for the constraint a; < Ag. For ¢ = 1,...,n and for all j € input(i), we introduce
Aji for the constraint a; + D; < a;. For i = n+1,...,n + s, we introduce \y,; for the constraint
D; < a;. Let X be a vector of all the Lagrange multipliers introduced. Let & = (z1,...,2z,) and
a=(ay,...,ants). Let

n
Ly(z,a) = Y o
i—1

+ Z)\jg(aj — Ao)

Jje€input(0)
n
+ Z Z)\ji(aj + D; — a;)
1=1 jeinput(s)

n-+s

+ Z)\mi(Di — ai) (].)

i=n+1
Then the Lagrangian relaxation subproblem associated with the Lagrange multipliers A will be:

LRS/A: Minimize Ly(x,a)
Subject to L; <z; <U; i=1,...,n

Let (z*,a*) be the optimal solution of PP. By Kuhn-Tucker conditions, if the optimal solution of
L

LRS/A is also the optimal solution of PP, then A must satisfy the conditions ?(w*, a*) =0 for
@

1 <7< n+s. So we can consider those A only. We observe that the conditions on the Lagrange
multipliers A can be used to greatly simplify the objective function Ly(z, a), and hence the problem
LRS/A. In the following, we will first derive the conditions. Then we will show in Lemma 1 how
to simplify the problem.

By rearranging (1), we can write

t
Li(z,a) = Z(Aio— >)\ji) @i

i=1 Jje€input(s)

+ i(Z Aik — Z)\ji)ai

i=t+1 \k:icinput(k) jE€imnput (i)

n+s
+ (>)\ik_)\mi) i
(%)

i=n+1 \k:i€input

n-+s
+ ZO[ZCCZ + Z (Z)\ji) D; — Z)\jvo + Z AmiDi

=1 \j€input(i) Jj€input(0) i=n+1

= "i:s(Z Aik — Z)\ji)ai

1=1 \k€eoutput(i) JjeE€input(s)
n+s
+ ZO[VCCZ + Z Z)\ji D; — Z)\jvo + Z AmiDi (2)
=1 \jeinput(i) Jjeinput(0) i=n+1
By setting 0L)/0a; = 0, we obtain the following conditions on A.

Optimality Conditions on Lagrange Multipliers:

S Ak = D, A forl<i<n+s
ke output () j€input(s)

Let Q) = {X >0 : X satisfies the optimality conditions on Lagrange multipliers}

Lemma 1 For any A € Qy, solving LRS/A is equivalent to solving

LRS/p: Minimize L, (x)
Subject to L; <z; <U; 1=1,...,n

n-+s

where = ([0, .-, Pnts), Hi = Z Nji for 0 <i<n+s, and Ly(Z,uzD —i—Zalmz
jEinput(3)

Proof: By substituting the optimality conditions on Lagrange multipliers back to (2), we get

n+s
Li(z,a) = Zalwl"’_Z(Z)‘ji) D; — Z AjoAo + Z AmiD;
i=1 \j€Einput(i) jeinput(0) i=n+1
n-+s

= Z,uzD +Zazmz oA (3)

Note that Ly(x,a) in (3) no longer depends on a. Also note that pgAg is a constant. So if let
n+s

L,(z Z wiD; + Z a;x;, then minimizing L, is the same as minimizing L). After finding the
i=1 i=1

optimal x, the optimal a can be found by considering one by one the variables a;’s in the order of
decreasing i¢. For each a;, we set it to the smallest possible value that satisfies the constraints of
PP. Hence the lemma follows. O

3.3 Solving LRS/u

In this subsection, for any fixed g > 0, we will show how to solve LRS/p optimally by a greedy
algorithm based on iteratively re-sizing the gates and wire segments. Similar techniques have been
successfully applied to some other wire or buffer sizing problems before (e.g. [3, 8]).

If we re-size component i (i.e. changing ;) while keeping the sizes of all the other components
fixed, we say that it is a local re-sizing of component ¢. An optimal local re-sizing of component %
is a local re-sizing that minimize L,(x).

For 1 < i < n, let upstream(i) be the set of resistor indexes (excluding ¢) on the path(s) from
component ¢ to the nearest upstream gate(s) or input driver(s). For example, for the circuit in
Figure 5, upstream(1) = {3,6} and upstream(6) = {8,9,11,12}. Let R; = 3 cupstream(s) AiTs (1€
R; is a weighted upstream resistance of component ¢). For i € W, let C! = C; — ¢;z;/2, and for
i€Gorforn+1<i<n+s,let C; =C;. Note that for 1 <i < n+s, C} is independent of z;.

Lemma 2 For 1 <i<n, L,(x) can be written in the following form:

Bi(z)

Lq

Lyx) = Aj(x)z; + + Ei(x)

where A;(x), Bi(x) and E;(x) are independent of x;, Ai(x) = G;R; + o; and B;(x) = \i7;C].

Proof:
n-+s

Lu(z) = Zﬂzrzc + Zaﬂ%

A_ n-+s
= ZMTZC + Z piri(Cl + e)+ Z piriCl + Zalmz
1€G W i=n+1
_ = Iy Nzrzcz
= Z piriC; + Z + Z Q;T;

ieW

For any i between 1 and n, p;r;C} = u;7;C}/x;. For any j # i, if j & upstream(7), then ,uJTJC is
independent of z;. If j € upstream(), then u,r]C = p;7;C;Ti+ terms independent of z;. So

~ r;C!
L,(z) = (Z piTiCi + ai) T+ —— Fili™i | terms independent of x;
JjE€upstream(i) i
KN
= (GRi+ o) m; + Riliti + terms independent of x;
T;
Hence the lemma follows. O

Lemma 3 Let & = (&1,...,%,) be a component-sizing solution. An optimal local re-sizing of
component i is given by changing the size of component i to

r; = min <Uz,max <Lz, A,(i‘)))

Proof: If we fix the size of component j to Z; for all j # 7, and we change x;, we can view L, as
a function of z;, and by Lemma 2, it is given by

Bi(z -
Flz) = A@)wi+ gf‘”) + Bi(#)
(3

Differentiating F' with respect to xz;, we get

dF - B;(@)

— = A& -
Let 6(z) = 1/ Bi(&)/Ai(x). Note that

dF'/dz; 0 ifx; =6(x)

dF/dCCZ < 0 if:ci<9(5:)
dF/dz; > 0 ifz; > 0(x)

Hence F(z;) is decreasing when z; < 0(Z), F(z;) is increasing when z; > (&), and F(z;) is
minimum at z; = 6(&). If z; is constrained to the range [L;, U;], we consider three cases:

Case 1: 6(&) € [L;,U;).
In this case, F(z;) is minimized when z; = 0(Z).

Case 2: (%) > U;.
Then F(x;) is decreasing in [L;, U;]. So F(z;) is minimized when z; = U;.

Case 3: (%) < L;.
Then F(x;) is increasing in [L;, U;]. So F(z;) is minimized when z; = L;.

Hence the lemma follows. O

LRS/p can be solved by a greedy algorithm based on iteratively re-sizing the components. In each
iteration, the components are examined one at a time; each time a component is re-sized optimally
using Lemma 3 while keeping the sizes of the other components fixed. We call the algorithm
SOLVE_LRS/u and it is described below. Note that in order to use Lemma 3 to re-size component
i, we need to compute R; and C] first. Our algorithm SOLVE_LRS/p computes C!’s and R;’s
incrementally by traversing the circuit in a reverse topological order (step 2) and in a topological
order (step 3) respectively. So it is not difficult to see that each iteration of the algorithm takes
only O(n) time.

Note that L,(x) is a posynomial [9] in . It is well known that under a variable transformation,
a posynomial is equivalent to a convex function. So L,(«) has a unique global minimum and no
other local minimum. We show in the following that algorithm SOLVE_LRS/pu always converges
to the optimal solution.

ALGORITHM SOLVE_LRS/u:
Output: & = (z1,...,2,) which minimizes L,(x)
1. fori:=1tondox;:=L;
2. /*Finding C] for 1<i<n
by traversing the circuit in a reverse topological order */
fori:=1tot do
crk ifi e G
CL+rf/2 ifiew
fori:=t+1tondo
0 ifie@
fi)2 ifiew
for all k s.t. 7 € input(k) do
Cz{ + Crpxk ifke@G
Cl+ ¢y + fr/2+C), ifkeW
3. /*Finding R; and z; for 1 <i<mn
by traversing the circuit in a topological order */
for ¢ := n downto 1 do

C! .=

2

C! .=

2

C! .=

2

R;,:=0
for all j € input(i) do
Ri—i—,ujR]D_n fn+l1<j<n+s
R; = Ri-i-/,Lij/a?j ifjed

R+ p;rj/zj + Ry ifjeWw
x; ;= min (Ui, max (Li, (witiCy) /(G R; + oz,)))

4. Repeat step 2 and 3 until no improvement.

10

Lemma 4 If algorithm SOLVE_LRS/p converges, then the solution is optimal to LRS/p.

Proof: Suppose the algorithm converges to * = (z7,...,2}). Then for 1 < i < n, by Lemma 3,
r; = min (Ui, max (Lz-, BZ(JJ*)/AZ(.’B*)>> Note that L,(x) is a posynomial in &, and that under
the transformation z; = e* for 1 < i < n, the function H(z) = L,(e*,...,e*") is convex over

Q,={z : L;<e* <U;,1 <i<n}. Let z* = (2],..., %) where z} = €% for 1 <i<n. We now
consider 3 cases:

Bi(x*)
A,(CB*) .

Case 1: 7] =

In this case, we have %%(w*) = 0. Thus

oH, ., 0L,

* 8.[/“ *
821’ (Z) - 0.171

*axl *\ *\ 2F
(%) = 8%(:1:)e*i =0.

=) 5

Case 2: z; = L;.

In this case, L; > 4/ izgg We have %%(w*) >0 and 2z — 27 > 0,Vz € Q,. Hence

OH . . 0L,
8Zz' (Z)(zl_zi)_ 8.’171

(x*)e* (2 — 2) > 0,Vz € Q.

Case 3: z; =U;.

In this case, U; < izg*g We have %(w*) <0 and z — 2z <0,Vz € Q,. Hence

OH oL,

8Zz' (Z)(zl _zi) = 8.’171

(x*)e™ (2 — 2) > 0,Vz € Q.

So g—g(z*)(zi — z}) >0 for all ¢ and for all z € 2,. Thus for any feasible solution x,

Lu(®) = Lu(2*) = H(z)—H(z")

> VH(z")(z —2z%) as H is convex
" OH
= > ()= — %)
o 9%
> 0
Therefore * is the global minimum point. O

Lemma 5 The algorithm SOLVE_LRS/p always converges.

Proof: For any two vectors & and &', we use < &’ to denote that z; < «} for all i. Let * be the
optimal solution, & be a feasible solution, and &’ be the solution after locally re-sizing a component
of xz. If x < x*, then we can prove that & < &’ < x* (this is similar to the dominance property
in [6]).

11

In step 1 of algorithm SOLVE_LRS/u, we set x; = L; for all ¢ initially. So we know that for all
i, ; is non-decreasing for each local re-sizing, and is upper bounded by z;. Hence the algorithm
SOLVE_LRS/p converges. O

By Lemma 4 and Lemma 5, we have the following theorem.

Theorem 1 For any fized vector p > 0, algorithm SOLVE_LRS/p always converges to the optimal
component-sizing solution of the problem LRS/p.

Algorithm SOLVE_LRS/p runs in O(rn) time using O(n) storage, where n is the number of compo-
nents and r is the number of iterations. We will observe that the number of iterations r is constant
(i.e. the run time of SOLVE_LRS/p is linear) in practice.

3.4 Solving the LDP

Define the function Q(A) = the optimal value of the problem LRS/A. In this subsection, we will
consider the Lagrangian dual problem:

LDP : Maximize Q(A)
Subject to A € Qy

As said in Section 3.1, PP can be transformed into a convex problem. So Theorem 6.2.4 of [1]
implies that if A is the optimal solution of LDP, then the optimal solution of LRS/A will also
optimize PP.

By Theorem 6.3.1 of [1], @(A) is a concave function over A > 0. However, LRS/A is not differ-
entiable in general. So methods like steepest descent, which depends on the gradient directions,
are not applicable. The subgradient optimization method is usually used instead. The subgradient
optimization method can be viewed as a generalization of the steepest descent method in which
the gradient direction is substituted by a subgradient-based direction (see [1] for a reference).

Basically, starting from an arbitrary point A, the method iteratively moves from the current point
to a new point following the subgradient direction. At step k, we first solve LRS/A (by solving the
simpler LRS/p). Then for each relaxed constraint, we define the subgradient to be the right hand
side minus the left hand side of the constraint, evaluated at the current solution. The subgradient
direction is the vector of all the subgradients. We move to a new point by multiplying a step size
pr. to the subgradient direction and adding it to A. After each time we moved, we project A back
to the nearest point in) so that we can solve LRS/p instead of LRS/A for the next iteration.
The procedure is repeated until it converges.

It is well known (see Theorem 8.9.2 of [1] for example) that if the step size sequence {p} satisfies
the conditions limy_, o pr = 0 and Y 72, px = 00, then the subgradient optimization method will
always converge to the optimal solution

The description is summarized in the algorithm SOLVE_LDP below.
Theorem 2 The algorithm SOLVE_LDP always converges to the optimal solution of LDP.

12

ALGORITHM SOLVE_LDP:
Output: A which maximizes LRS/A
1. k:=1/* step counter */
A := arbitrary initial vector in)
2. p= (Nﬂv s nun+s) where p; = Zjeinput(i))‘ﬂ
Solve LRS /A by calling SOLVE_LRS/u to solve LRS/p and
calculating ay, ..., 6,45 as described in the proof of Lemma 1.
3. /* Move to a new A by adjusting the Lagrange multipliers \;; */
for ¢ :==0ton+ s do
for all j € input(i) do

)\ji—i-pk(aj—Ao) ifi=0
)\ji =)\ji-l-pk(aj-l-Di—ai) if1<i<n
Nji + pr(Di — a;) fn+1<i<n+s
4. Project A onto the nearest point in 2.

o

k:=k+1
6. Repeat step 2-5 until (31 ; oyz; — Q(A)) < error bound.

We conclude Section 3 by giving the algorithm SGWS-LR (Simultaneous Gate and Wire Sizing by
Lagrangian Relaxation) below.

ALGORITHM SGWS-LR:

Output: the optimal gate and wire sizing solution x
1. Call SOLVE_LDP to find the optimal A
2. p= (/1’07 s 7:u’n+5) where M = Zjeinput(i))‘]z
3. Call SOLVE_LRS/p to find the optimal x

Theorem 3 For simultaneous gate and wire sizing, the problem of minimizing total area subject
to mazimum delay bound can be solved optimally by SGWS-LR.

4 Extensions

In Section 3, the objective of our problem is the total component area and the constraint is on the
maximum delay from any input to any output (i.e. the arrival time at node 0). In this section, we
will extend our approach to handle problems with other objectives and with other constraints. In
Section 4.1, we will treat the maximum delay as the objective and show how to minimize it. We
will also see that the problem of minimizing maximum delay subject to total area bound is easy to
handle. In Section 4.2, instead of assuming that all the input signals arrive at time 0 and all the
output signals have a single bound on the arrival time, we allow different arrival time specifications
on the input and output signals. In Section 4.3, we will see that power can be handled similarly as
area. In Section 4.4, we will show that a more accurate gate model can be used.

13

For all the extensions, we will see only slight modifications to our algorithm presented in Section
3 are needed. Moreover, convergence to global optimal solutions is still guaranteed. Actually, it
is not difficult to see that any combination of the problem in Section 3 or the extensions can be
handled similarly. For example, we can optimally solve the problem of minimizing power subject
to bounds on area and on maximum delay from any input to any output.

4.1 Minimizing Maximum Delay

Instead of having a constant bound Ay for the arrival time at node 0, we introduce one more
variable ag to represent the arrival time at node 0, and we want to minimize ag. As in Section
3.1, by partitioning the constraints on path delay into constraints on delay across components, the
problem of minimizing maximum delay by simultaneous gate and wire sizing can be formulated as
the mathematical program below:

PP : Minimize ag

Subject to a; < ag J € input(0) /* outputs */
aj+D; <a; i=1,...,n and Vj € input(i)
D; <a; i=n+1,...,n+s /*inputs */

Li<z; <U; 1=1,...,n
If all the constraints on arrival time are relaxed, then the Lagrangian relaxation subproblem asso-
ciated with the Lagrange multipliers A will be:

LRS/A: Minimize Ly(x,a)
Subject to L; <x; <U; i=1,...,n

n n+s
where Ly(z,a) =ao+ >, Nolaj—ao)+>, > Nilaj+Di—a)+ Y Ani(Di—ai).
Jj€Einput(0) 1=1 jeinput (i) i=n+1

As before, by Kuhn-Tucker conditions, we have the following optimality conditions on Lagrange
multipliers.

1 = > o

Jjeinput(0)
Z AN = Z)\ji for1<i<n+s
ke output () Jj€input(s)

Then for A satisfying the conditions, LRS/A can be simplified to
LRS/p: Minimize L,(x)
Subject to L; <z; <U; t=1,...,n

n-+s
where g = (po, - -+, fints), ti = Z Aji for 0 <i<n+s,and L,(x) = Z wiD;.
j€input(s) i=1

It is easy to see that LRS/p can be solved optimally by the iterative local re-sizing algorithm in
Section 3.3 and the corresponding LDP can be solved optimally by the subgradient optimization

14

method as described in Section 3.4. Therefore the problem of minimizing maximum delay can also
be solved optimally by our approach.

In fact, the problem of minimizing maximum delay subject to area bound can also be optimally
solved by our Lagrangian relaxation approach. The constraint on area can be relaxed and incor-
porated into the objective function as well. The function Ly(x,a) will be of the same form as the
one in Section 3.2.

4.2 Arrival Time Specifications on Inputs and Outputs

In Section 3, we assume that all the input signals arrive at time 0 and we want to bound the
arrival time at the outputs uniformly by a single constant Ag. We show in this subsection that
different arrival time specifications on the input and output signals can be easily handled. We
demostrate the idea by considering the problem of minimizing total area subject to different arrival
time constraints at inputs and outputs.

For n +1 <i<n+s, let A; be the arrival time specification of the input signal at the (i — n)th
input driver. For 1 < j <t, let A; be the arrival time requirement on the output signal at the jth
output load. Then the problem can be formulated as follows:

PP : Minimize Y ;" oz;
Subject to a; < A; j € input(0) /* outputs */
aj+D; <a; i=1,...,nand Vj € input(i)
Ai+D;<a; i=n+1,...,n+s /*inputs */
LZS.’L'zSUZ izl,...,n

If all the constraints on arrival time are relaxed, then the Lagrangian relaxation subproblem asso-
ciated with the Lagrange multipliers A will be:

LRS/A: Minimize Ly(x,a)
Subject to L; <z; <U; i1=1,...,n

n
where Ly(x,a) ZozzsvZ + Z Njola; — Aj) + Z Z Nji(a; + Dy — a;)

Jj€input(0) 1=1 jecinput(s)
n+s
+) Ami(4i + Di — ai).
i=n+1

Again, by Kuhn-Tucker conditions, we have the following optimality conditions on Lagrange mul-
tipliers.

S Ak = D, Ay forl<i<n+s
ke output () j€input(s)

So for A satisfying the conditions, we can simplify Ly(x,a):

n+s n+s
L Z wiD; + Z o;T; + Z Amidi — Z)\jOAj
t=n+1 j€input(0)

15

So the Lagrangian relaxation subproblem can be formulated in exactly the same form as the problem
LRS/p in Section 3.2. LRS/pu and LDP can be solved as before. Therefore even with different
arrival time specifications on inputs and outputs, the problem can still be solved optimally by our
approach.

4.3 Power Consideration

For each ¢, the power consumption of component i is proportional to its size z;. Therefore, the
total power consumption can be written as > ;' ; f;z; for some constants i, ...,5,. It is of the
same form as the total component area. So it is easy to see that it can be handle in exactly the
same way as component area.

4.4 More Accurate Gate Model

For higher precision timing requirements, more accurate gate models are desirable. Although in
Section 2, we model a gate as a switch-level RC circuit with a resistance proportional to the gate
size, better gate models can be easily integrated into our algorithm. We now show an example of
using precharacterized function as the delay model for gates.

The following precharacterized delay function D;() and output slope function T;() can capture the
input slope effect as well as the diffusion capacitance effect to the delay of gate i:

S . Ti
Di(z4,t;,Ci) = 8 + Diti + iz + x—z_Cz',
(2

- - - T
Ti(xi, ti, Ci) = 5; + Piti + Gz + iCi,
(]

where x; is the gate size, t; is the input rise or fall time of gate ¢, C; is the capacitance load,
Si, i, Ti, 8i,G; and 7; are precharacterized coefficients. It is not difficult to see that while keeping
the size of other components fixed, the input slope ¢; is a linear function of z; since ¢;x; contributes
only linear term to its parents’ capacitance load. Hence the delay of gate i can be rewritten as
follows:

o Ti
Di(xi, t;,Ci) = &' + @i'vi + ici
(]

.~
TjCi

where :9}’ =]’7\1(5] -I-ﬁjtj + ljjl’j), l’]\i, =q; + z
It is not hard to see that after the substitution, A;(x) = &;R; + a; + §;'. Hence our algorithms in
Section 3 will still convergences to the optimal solution under this modification.

, and component j is the parent of component .

5 Experimental Results and Concluding Remark

We implemented our algorithms in an RS/6000 workstation. Table 1 shows the experimental results
on adders of different sizes ranging from 8 bits to 512 bits. Number of gates range from 120 to
15360. Number of wires range from 96 to 12288 (note that the number of wires here means the

16

number of sizable wire segments). The total number of sizable components range from 216 to
21648. The stopping criteria of our algorithm is the solution is within 1% of the optimal solution.
The lower bound and upper bound of the size of each gate are 1 and 100 respectively. The lower
bound and upper bound of the width of each wire are 1 and 3 pm respectively.

Table 1 shows the runtime and storage requirements of our algorithm. For circuit with 13824 sizable
components, the runtime and storage requirements of our algorithm are about 13 minutes and 12
MB only. For circuit with 27648 sizable components, the runtime and storage requirements of our
algorithm are about half an hour and 23 MB. The maximum delays for the solution of minimum
gate and wire sizes and for our algorithm are also listed.

Figure 6 and Figure 7 show the runtime and storage requirements of our algorithm. Figure 6 shows
that the runtime increases roughly three times when the circuit size is doubled. Hence the empirical
runtime of our program are about n'°83/1082 ~ p1-6 Figure 7 shows that the ratio of the storage
versus the circuit size of our algorithm is close to linear. The storage requirement for each sizable
component is about 0.8 KB.

Figure 8 shows the area versus delay tradeoff curve of a 16-bit adder. In our experiment, we observe
that to generate a new point in the area and delay tradeoff curve, SOLVE_LDP converges in only
about 5 iterations. It is because the A of the previous point is a good approximation for that of the
new point and hence the convergence of SOLVE_LDP is fast. As a result, generating these tradeoff
curves requires only a little bit more runtime but provides precious information.

Figure 9 shows the convergence sequence of our algorithm SOLVE_LDP on a 128-bit adder. It
shows that our algorithm converges smoothly to the optimal solution. The solid line represents the
upper bound of the optimal solution and the dotted line represents the lower bound of it. The lower
bound values comes from the optimal value of LRS/A at current iteration. Note that the optimal
solution is always inbetween the upper bound and the lower bound. So these curves provide useful
information about the distance between the optimal solution and the current solution, and help
users to decide when to stop the programs.

Finally, we would like to point out that our Lagrangian relaxation approach can be adapted to
solve the transistor sizing problem. We observe that the transistor sizing problem is very similar
to the gate sizing problem. Although transistor sizing has been extensively studied, we believe
the Lagrangian relaxation approach is much more efficient than current techniques. For example,
the most recent algorithm that can guarantee exact transistor sizing solutions is [19]. The largest
test circuit in [19] has 832 transistors and the reported runtime and memory are 9 hours (on a
Sun SPARCstation 1) and 11 MB, respectively. Note that for a problem of similar size (834), our
approach only needs 7 seconds of runtime and 1.15 MB memory (see Table 1).

References

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algo-
rithms. John Wiley & Sons, Inc., second edition, 1993.

[2] Chung-Ping Chen, Yao-Wen Chang, and D. F. Wong. Fast performance-driven optimization for
buffered clock trees based on Lagrangian relaxation. In Proc. IEEE Intl. Conf. on Computer-

17

[11]

[12]

[13]
[14]

Circuit Name Circuit Size Maximum Delay (ns) || Runtime | Memory

Gates | # Wires | Total || Min. Size | Our Alg. || (min:sec) (MB)
adder (8 bits) 120 96 216 8.55 4.70 0:01 0.48
adder (16 bits) 240 192 432 17.23 8.12 0:02 0.76
adder (32 bits) 480 384 864 33.36 16.00 0:07 1.15
adder (64 bits) 960 768 | 1728 66.07 31.90 0:15 1.75
adder (128 bits) 1920 1536 | 3456 131.51 63.70 0:39 2.82
adder (256 bits) 3840 3072 | 6912 262.43 127.32 3:05 5.37
adder (512 bits) 7680 6144 | 13824 524.08 256.21 13:09 11.83
adder (1024 bits) 15360 12288 | 27648 1047.53 508.95 36:12 22.92

Table 1: The runtime and storage requirements of our algorithm on test circuits of different sizes.

Aided Design, pages 405-408, 1996.

Chung-Ping Chen and D. F. Wong. A fast algorithm for optimal wire-sizing under Elmore
delay model. In Proc. IEEE ISCAS, volume 4, pages 412-415, 1996.

Chung-Ping Chen, Hai Zhou, and D. F. Wong. Optimal non-uniform wire-sizing under the
Elmore delay model. In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 38-43, 1996.

M. A. Cirit. Transistor sizing in CMOS circuits. In Proc. ACM/IEEE Design Automation
Conf., pages 121-124, 1987.

Jason Cong and Lei He. An efficient approach to simultaneous transistor and interconnect
sizing. In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 181-186, 1996.

Jason Cong and Cheng-Kok Koh. Simultaneous driver and wire sizing for performance and
power optimization. In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 206-212,
1994.

Jason Cong and Kwok Shing Leung. Optimal wiresizing under the distributed Elmore delay
model. IEEE Trans. Computer-Aided Design, 14(3):321-336, March 1995.

R. J. Duffin, E. L. Peterson, and C. Zener. Geometric Programming — Theory and Application.
John Wiley & Sons, Inc., NY, 1967.

W. C. Elmore. The transient response of damped linear network with particular regard to
wideband amplifiers. J. Applied Physics, 19:55—63, 1948.

J. P. Fishburn and A. E. Dunlop. TILOS: A posynominal programming approach to transistor
sizing. In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 326-328, 1985.

M. L. Fisher. An application oriented guide to lagrangian relaxation. Interfaces, 15(2):10-21,
March—April 1985.

D. G. Luenberger. Linear and Nonlinear Programming. Addison Wesley, second edition, 1984.

David P. Marple and Abbas El Gamal. Optimal selection of transistor sizes in digital VLSI
circuits. In Proc. 1987 Stanford Conf., pages 151-172, 1987.

18

