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Address Translation and Storage Managementfor Persistent Object StoresPublication No.Sheetal Vinod Kakkad, Ph.D.The University of Texas at Austin, 1997Supervisor: Paul R. WilsonA common problem in software engineering is e�ciently saving the state of application datastructures to non-volatile storage between program executions. If this is accomplished usingnormal �le systems, the programmer is forced to explicitly save the data to �les as a streamof uninterpreted bytes, thereby losing both pointer semantics and object identity. A betterapproach is to use persistent object storage, a natural extension to virtual memory that allowsheap data to be saved automatically to disk while maintaining the topology of data structureswithout any explicit programmer intervention.If persistent object stores are to replace the functionality of normal �le systems, theymust be able to address large volumes of data e�ciently on standard hardware. High-performance address translation techniques are necessary and important for supporting largeaddress spaces on stock hardware. We present pointer swizzling at page fault time (PS@PFT),a coarse-grained address translation scheme suitable for this purpose, and demonstrate it bybuilding a persistent storage system for C++ called the Texas Persistent Store. We alsodiscuss alternative approaches for portably incorporating �ne-grained address translation inTexas for situations where coarse-grained swizzling alone is insu�cient. As part of the perfor-mance results, we present a detailed analysis of various components of a coarse-grained addresstranslation technique, including a comparison with overall I/O costs.Pointer swizzling requires run-time knowledge of in-memory object layouts to locatepointers in objects. We have developed and implemented Run-Time Type Description (RTTD)for this purpose; our implementation strategy is portable because it is based on a novel useof compiler-generated debugging information for extracting the necessary type description.RTTD is also useful for other applications such as data structure browsing, and advancedpro�ling and tracing.
vii



Another part of this research is a study of the interaction between systems similar toPS@PFT and operating systems, particularly regarding virtual memory management issues.We suggest areas where operating system implementations can be made more open to improvetheir performance and extensibility. Finally, we briey discuss storage management issues,speci�cally log-structured storage, disk prefetching, and compressed in-memory storage, andprovide directions for future research in this area.
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Chapter 1IntroductionIt is often desirable to support a virtual address space that is larger than what can be speci�eddirectly by the word size of the available hardware. Applications such as persistent object stores(e.g., [ABC+83a, SKW92, DSZ90, AM92]), operating systems with a single shared addressspace (e.g., [CLLBH92]), distributed shared memories (e.g., [Li86]), etc. can bene�t fromlarge address spaces. For example, persistent object stores provide sharable, recoverable heapstorage to eliminate the use of �les for most purposes, operating systems with single sharedaddress spaces provide a common addressing model for all processes on one or more machines,and distributed shared memory models provide a single address space for applications thatspan multiple machines.All these systems typically emphasize simpli�ed programming by preserving pointersemantics in data structures. In other words, they inherently support the notion of objectidentity by maintaining the programmer's default view of data, which is a heap of objectsinterconnected by pointers. Object identity is de�ned as the property by virtue of whichan object can be uniquely identi�ed among a collection of objects, such that any two objectreferences can be compared to determine whether they identify the same object. By thisde�nition, an object identi�er is never reused, even after the object is deleted. A detailedstudy of various forms of object identity is available in [KC86].It is often necessary to send data from one host to another, or to save application datastructures to stable storage so that they can be either operated on later (possibly by otherapplications) or used for recovering the application state in case of a crash. In systems that donot support large shared address spaces, it is usually necessary to write routines that attendata structures into a low-level linear bytestream and manually reconstruct them later. Ingeneral, this procedure tends to be tedious and error-prone because programmer interventionand coding is required for the appropriate data structure conversions. In addition, the linearrepresentations bypass type systems, lose all pointer semantics and object identity, and leavethe burden of maintaining data structure consistency up to the programmer.Persistent objects have the ability to outlive the execution of the program that createsthem; in contrast, transient objects disappear with the termination of the program in whichthey were created. A persistent object store is a repository for persistent objects; it is typi-cally used to allow programmers to save complex pointer-linked data structures directly andautomatically to non-volatile storage, without requiring additional code or further intervention1



to convert between representations. A persistent object store strongly supports the notion ofobject identity because all type information, as well as the topology of the data structures,is preserved when objects are saved to stable storage, allowing each object to be uniquelyidenti�ed.In this dissertation, we propose and implement a persistent storage mechanism basedon a coarse-grained address translation technique that exploits existing virtual memory hard-ware and operating system facilities to achieve high performance and increased portability.The basic idea is to load (one or more) pages from the persistent storage into memory ondemand, and \�x up" (i.e., translate) all persistent pointers into local hardware-supportedvirtual memory pointers, guaranteeing that a running program will never see any untranslatedpointer values. Once the data has been loaded into memory and various pointers have beentranslated, there is absolutely no overhead for future accesses to that data. Any referentscorresponding to newly-translated pointers that are not in memory are marked as such usingthe operating system's virtual memory protection facilities; any attempt to access protecteddata will raise an exception that is handled by loading the data from the persistent store andtranslating pointers as necessary.An address translation mechanism such as ours has several advantages over other tra-ditional approaches, in terms of both performance and portability. As we will show in laterchapters of the dissertation, the performance overhead of our system is zero when the applica-tion is operating on data that has already been loaded into memory and there is no faulting.For other situations, that is, when new data is being loaded into memory from the persistentstore, the overhead of our system is very low, usually between 1 and 5 percent of the overall runtime. We will show that this is much smaller than the I/O costs incurred for loading the datainto memory. There are also some indirect costs of our approach because of an inadvertentinteraction with the underlying virtual memory system; these costs, however, can be avoidedby improving the operating system implementations to provide a better memory managementinterface. Regarding improved portability, our persistent storage system is compatible withstandard o�-the-shelf compilers and has been ported to a variety of modern operating systemssuch as SunOS, Solaris, Linux, Mach, Ultrix, OS/2, etc. It should also be relatively easy toport to other modern operating systems such as Windows NT.1.1 Scope of the DissertationThis dissertation is about high-performance address translation techniques for implementingorthogonal persistence. Orthogonal persistent systems require that any arbitrary object canbe made persistent without regard to its type. That is, persistence is a storage class of anobject, and is orthogonal to its type. Our basic approach relies on the use of coarse-grainedaddress translation for performance and portability reasons. In order to support this claim,we analyze the various costs of both coarse-grained and �ne-grained techniques and present acost model which shows that page-wise address translation can be implemented e�ciently andcan achieve good performance on standard hardware.
2



1.1.1 Our ThesisAddress translation is the most important issue that must be considered when implementingorthogonal persistence. Once this has been resolved e�ectively, all other related issues canbe resolved independently without a�ecting address translation. Our thesis can be stated asfollows:High-performance address translation for orthogonal persistence can be e�ectivelyrealized through coarse-grained translation schemes. Pointer swizzling at page faulttime is one such coarse-grained scheme that can be implemented e�ciently on stockhardware by exploiting the existing virtual memory hardware and protection facil-ities o�ered by most modern operating systems, without requiring special systemprivileges.Since pointer swizzling at page fault time uses only standard capabilities of an operatingsystem, it is easily ported to other modern operating systems which also support the samefunctionality. The basic approach exploits user-level virtual memory protection facilities toavoid (more expensive) software checks for pointer formats, and works with standard o�-the-shelf compilers.1.1.2 MotivationThere are a variety of factors that motivate the need for a exible and e�cient persistencemechanism. Many applications operate on large amounts of data represented using complexdata structures. Before such an application terminates execution, the data in volatile memorymust be saved to stable storage for future use. A persistent storage system is designed to saveand restore data reliably, e�ciently and automatically, and is therefore preferable to an ad hocmechanism implemented by the application itself. The underlying persistent object store mustbe able to support large volumes of data, essentially acting as an eventual replacement for thenormal �le system.However, it is important to realize that for most applications, a persistent programminglanguage is still a programming language, and raw speed of computation is usually very impor-tant. In fact, orthogonally persistent programming languages (and object-oriented databasesystems) are largely motivated by a combination of performance and expressiveness consider-ations relative to traditional database systems. They are intended for use in applications withrich heap-allocated data structures and e�cient algorithms to manipulate those data structures.Where traditional database systems are designed largely to optimize I/O for I/O-intensive ap-plications, persistent programming languages allow programmers to optimize computation forCPU-intensive applications such as CAD tools and simulation programs. Although it is desir-able for such programs to be able to transparently traverse pointers through large amounts ofdisk-resident data, the majority of their execution time is usually spent operating on persistentdata previously loaded into memory.Furthermore, many such applications usually also operate extensively on transient data.Typically, a large majority of these transient objects constitute temporary data that die fairly\young" [Wil97, WJNB95]. Thus the total execution costs in a CPU-intensive application3



are dominated by operations on transient objects and in-memory persistent objects. A high-performance persistent system should allow these operations to be executed as fast as possible,while imposing minimal overheads on the overall performance.Thus there is a need for an address translation mechanism that incurs extremely lowoverheads during CPU-bound operations, low overheads during I/O-bound operations, and nooverhead for operations on transient data. Ideally, the mechanism should also work with thebest available high-performance compilers without requiring any signi�cant changes or specialsupport from these compilers.1.1.3 Cost of Orthogonal PersistenceThe cost of using orthogonal persistence in an application can be divided into two majorcomponents: the cost incurred when accessing data on disk, and the cost incurred when notreferencing any data on disk (i.e., when not using persistence). The former is the normally-expected cost associated with loading persistent data from secondary storage into memory. Thelatter, however, represents costs incurred while performing normal CPU-bound operations ondata that is already in memory. This is important because although reducing I/O cost isbene�cial for most CPU-intensive applications, maintaining computation performance almostalways has higher priority. In general, we de�ne the cost of orthogonal persistence as the\cost" of making the distinction between transient and persistent data access transparent tothe programmer, that is, it is the cost incurred when not using the persistence mechanism.Traditional �ne-grained address translation mechanisms implemented by persistent pro-gramming languages incur signi�cant overhead and have fundamental performance limitationsfor normal CPU-intensive applications. Such schemes typically incur continual overhead forchecking pointer formats|even if a pointer references in-memory data, a validity check isstill necessary before it can be dereferenced because compiled code does not \know" that thepointer is already in an appropriate format.1 Furthermore, these techniques require sophisti-cated custom compilers to generate additional code for checking and translating pointer valuesas necessary. This can be a major downside of such approaches because there are few resourcesto extensively develop, distribute, and support custom compilers. In fact, the cost of usingcompilers with poor code generation is typically higher than the cost of address translationitself, defeating the original purpose of building a high-performance implementation. Even ifresources were available for compiler development, the continual costs of validity checks makethe approach less attractive.1.1.4 OverviewPointer swizzling at page fault time satis�es all of the requirements outlined earlier for a high-performance address translation scheme. It incurs zero overhead during normal CPU-boundoperations on data that has already been loaded into memory, and a small overhead|roughly1 to 5 percent depending on the underlying hardware and operating system|when data is1It is possible to use compiler optimizations (similar to the Self system [Cha92]) to infer information aboutthe data and reduce the excessive checking overhead. However, such optimizations are fairly hard to implementbecause of inherent distinctions between object types and object residency.4



being faulted into virtual memory from persistent storage on disk. This technique does incur asmall space overhead for storing meta-data that is necessary for facilitating address translation,but this is very small compared to the amount of persistent data that can be supported. Weexpect that the overheads incurred when loading data from disk will be reduced further asCPU speeds improve faster relative to disk speeds.Pointer swizzling at page fault time also works with existing high-performance o�-the-shelf compilers without requiring any additional support from these compilers. This ispossible because the approach does not require extending the language syntax or relying onthe run-time system for implementing necessary checks and translation. In addition, the basicapproach is portable to di�erent operating systems because it requires only minimal supportfrom the underlying virtual memory system.We can also support a larger (e.g., 64-bit or more) address space on a 32-bit machineusing pointer swizzling at page fault time as a general-purpose address reconciliation layer.At the same time, it still has advantages on hardware where address reconciliation may notbe necessary. In such cases, it can be used for sharing data across multiple machines withdi�erent native formats. Persistent data can be maintained in a common data format that isindependent of the hardware word size of the di�erent machines operating on that data, andcan be translated into appropriate local addresses as necessary.The key idea behind our approach is a novel layering of mechanisms. We rely on the op-erating system and the compiler to do their \jobs" mostly as usual, but strategically interveneat appropriate points for mapping one level of abstraction onto another with techniques such asnon-traditional use of virtual memory hardware (in particular, the translation lookaside bu�er,or the TLB) and extraction of object layout information from compiler-generated debugginginformation. We believe that approaching the problem at the right level of abstraction helpsin resolving various issues independent of each other.As part of this dissertation, we have implemented coarse-grained address translationusing pointer swizzling at page fault time to provide an e�cient persistence mechanism forC++. In doing so, we have essentially implemented a form of reection [KdRB91]2 for C++via a \back door" because the language itself does not provide builtin support for it.3 Althoughour approach is simple and elegant, there are still some complexities|albeit hidden from theaverage user|in the implementation, due to a lack of language features. The mechanism canbe made more general, and easier to implement, with improved language support for reection.1.1.5 ContributionsThis dissertation makes several useful contributions:� a novel address translation technique that is mostly independent of the underlying op-erating system implementation, and can be implemented e�ciently on stock hardware;2Reection can be loosely de�ned as the ability to manipulate or change the internal behavior of a systemwithout actually modifying its implementation (i.e., from the \outside").3C++ does provide some support for reection, most notably via the operator overloading capability fornormal classes. However, it falls short of complete support because builtin types (including pointers) aretreated di�erently than user-de�ned classes. 5



� a new classi�cation scheme based on granularity of several important design choices forimplementing orthogonal persistence;� a detailed performance analysis of various components of a coarse-grained address trans-lation mechanism;� notion of run-time type description for providing implementation-level information aboutobject layouts at run time;� a persistent storage system for C++;� a technique for dynamically resolving C++ method dispatch tables (virtual functiontables) in applications against those in persistent storage; and �nally,� an analysis of interactions with operating system implementations and recommendationsfor improving these implementations to provide better support for system extensions suchas persistence, garbage collection, etc.Novel Address Translation TechniquePointer swizzling at page fault time is a novel address translation mechanism that exploitsexisting virtual memory hardware and operating system features to e�ciently implement or-thogonal persistence. The approach is highly portable because it uses only standard featuresprovided by modern operating system, and is also compatible with existing high-performancecompilers for languages such as C and C++. Pointer swizzling at page fault time is classi�edas a coarse-grained address translation technique because the granularity of translation is avirtual memory page.New Classi�cation SchemeVarious researchers have put forth di�erent taxonomies for address translation approachesbased on di�erences in the pointer swizzling techniques used [Mos92, KK95, MS95, Whi94].Unfortunately, some of these classi�cations are unclear, and sometimes even contradictory toeach other. Instead of attempting to clarify these taxonomies, we present a new classi�cationscheme using several design choices that we consider important for implementing orthogonalpersistence. The classi�cation is presented in terms of the granularity of design choices becausewe believe that granularity selection is the fundamental issue for implementing persistence.Performance AnalysisWe present detailed performance analysis for various components of a coarse-grained addresstranslation technique, and evaluate the overhead of page-wise address translation against theI/O costs incurred during benchmark operation. As part of the performance results, we alsodescribe our benchmarking philosophy which contends that standard database benchmarks donot accurately model real-world applications, and are not very exible or con�gurable. Assuch, these benchmarks are appropriate only for controlled use in measuring performance ofindividual components of a persistence mechanism and deriving qualitative conclusions aboutthe system rather than for comparative analysis across multiple systems.6



Run-Time Type DescriptionAll address translation techniques require knowledge about the structural layouts of dataobjects in-memory at run time. This is necessary in order to locate and translate all addresses(pointer �elds) in each object that is loaded into memory. We introduce the term Run-TimeType Description (RTTD) to describe such implementation-level type information about dataobjects that is made available to the address translation mechanism at run time. Since C++is not sophisticated enough to provide builtin support for RTTD, we have implemented ourown RTTD mechanism for C++ using compiler-generated debugging information.A Persistent Storage System for C++We have implemented the pointer swizzling at page fault time scheme in the Texas persistentstorage system to provide persistence for C++. Texas has been ported to several modernoperating systems and is highly suitable as a prototype framework for further research. Thesystem comprises of less than 10,000 lines of C++ source, and the design is modularizedsuch that the code for distinct functionalities (for example, address translation mechanismor operating system interaction) has been separated into individual modules. The system isavailable via anonymous ftp in source form under the GNU Library General Public License.A Technique for Dynamically Resolving C++ Method Dispatch TablesC++ implements dynamic binding by using virtual functions [Lip91], and pointers to thesefunctions are stored in virtual function tables (VFTs). When an object of a particular class isinstantiated, a pointer to the corresponding VFT is (automatically) inserted in that object|dynamic method dispatch is implemented by indexing into the virtual function table of theobject on which the method is originally invoked. Unfortunately, unlike data pointers, theVFT pointer in the object points into the code segment, and is therefore tightly coupled withthe application. Further, the actual value of the pointer usually varies across applications (oreven di�erent versions of the same application). This is obviously a problem for persistentobjects which are not related to any speci�c application. Therefore we dynamically resolveVFT pointers specially by \unswizzling" them into special token values that can later beidenti�ed and \swizzled" into actual values valid in the current application. In e�ect, this isequivalent to an extremely simpli�ed dynamic linker that resolves VFT pointers in persistentobjects against the appropriate values in the current application. Further details about theexact mechanism are described in Chapter 4.Analysis of Operating System InteractionsFinally, we describe various issues that are related to the interaction of low-level systems (e.g.,persistent stores and garbage collectors) with the underlying operating system implementa-tions. We present an analysis of di�erent aspects of virtual memory management and providerecommendations for changes in operating system implementations to improve their couplingwith low-level system extensions, and contribute towards making them more portable. We7



also discuss a few other relevant operating system features such as virtual memory protection,fault handling, etc.1.2 Advanced IssuesIn addition to the various contributions described above, there are many other advanced issuesthat are beyond the scope of this dissertation and are therefore not addressed here. Some ofthese issues are:� schema evolution: Currently, there is no support for schema evolution in Texas, althoughthis is independent of address translation and can be implemented on top if necessary.Of course, language support for reective techniques would be very helpful in such animplementation;� security: We also do not address security issues for access to data in the persistent objectstore, but it is easy to imagine an implementation along the lines of protection domainsin Opal [CLLBH92] or \areas" as in ObjectStore [LLOW91], or just Unix-style ownerand group privileges (also supported by Opal); and� distribution and fault tolerance: These issues need to be carefully designed and ar-chitected, and must be implemented to interface well with the basic address transla-tion mechanism. However, it is not an impossible task|we are aware of at least oneproject where the Texas persistent store has been ported to a Fujitsu AP1000 multicom-puter [BS96].1.3 Organization of the DissertationThe rest of this dissertation is organized as follows.Chapter 2 describes several important design issues for implementing an orthogonalpersistence mechanism. We present a new classi�cation scheme for persistence mechanismsthat is based on the granularity choices for di�erent issues, namely, address translation, addressmapping, data fetching, data caching, and checkpointing. For any persistent system, each issuecan be resolved at a granularity that is independent of the granularity choice for any otherissue. In addition, we also discuss the granularity choices that we have made for each designissue in our implementation of the pointer swizzling at page fault time mechanism in the Texaspersistent store.Chapter 3 contains a detailed description of the pointer swizzling at page fault mecha-nism. We describe the basic algorithm as well as discuss various related issues such as addressspace management, and sharing and compatibility with existing systems and code. Althoughour coarse-grained approach works well for most cases, there are situations where the lackof locality of reference in an application's data structures requires a less coarse-grained ap-proach for address translation. To this end, we discuss �ne-grained and mixed-granularityaddress translation techniques that can also be portably implemented along with the basiccoarse-grained technique. We present a competitive argument that pointer swizzling at page8



fault time incurs zero overhead when the data is already loaded into memory (CPU-boundoperations) and a very small overhead during the loading of data from the persistent storage(I/O-bound operations).Chapter 4 describes the design and implementation of the Texas persistent store, ane�cient persistent storage system for C++ that uses the pointer swizzling at page fault timemechanism as a key component for high-performance address translation. We describe thebasic design and implementation of Texas; the implementation details also include informationabout virtual memory and �le system abstraction layers designed to make interactions with theunderlying operating system easy to implement. It should be noted that although Texas relieson virtual memory caching, it is simply an implementation choice that is completely orthogonalto the address translation mechanism. We intend for Texas to be used as a research platformfor further studies in issues related to e�cient orthogonal persistence implementation. In thecurrent context, we use it for gathering detailed performance results of the pointer swizzlingat page fault time technique.Chapter 5 presents detailed results for the performance of Texas and pointer swizzlingat page fault time using the OO1 database benchmark traversal operations. The performanceresults presented in this chapter empirically validate our basic competitive argument for pointerswizzling at page fault time. We have measured the performance on Linux and Solaris, twoof the most popular operating systems, and show that the total overhead of Texas is usuallybetween 1 and 5 percent for most situations on both platforms. In addition to the empirical re-sults, we also describe our philosophy for benchmarking; speci�cally, we argue that some of thewidely-used standard benchmarks are inappropriate for quantitative performance comparisonacross di�erent persistent systems, and are acceptable only for controlled measurements andqualitative analysis of a single system. These benchmarks do not represent real applicationswhich are most likely to take advantage of a persistent storage system. We believe that suchapplications typically have sophisticated data structures and perform signi�cant CPU-boundcomputations over these data structures, unlike the benchmarks which do not o�er rich datastructures and include minimal computation behavior.Chapter 6 tackles the issue of providing implementation-level information for typesat run time. We call this Run-Time Type Description (RTTD) to distinguish it from therecently-introduced Run-Time Type Identi�cation (RTTI) feature for C++. RTTD constitutesinformation about types and in-memory layouts of data objects, and is necessary for the correctoperation of pointer swizzling at page fault time. In contrast, RTTI supports only language-level information such as run-time type equivalence checks, which is obviously insu�cientfor object layout information. RTTD may also be useful for other systems such as garbagecollectors, advanced pro�ling and tracing tools, etc. which also bene�t from detailed objectlayout information. We describe our basic strategy which uses compiler-generated debugginginformation instead of special-purpose preprocessors, and present arguments about why ourapproach is preferable. The chapter also presents details about our RTTD implementation forC++ which is currently used for Texas and a real-time garbage collector. We also describeexpected performance characteristics of our approach based on some preliminary measurementsand show that the additional overhead is negligible compared to the typical compilation andlinkage costs. 9



Chapter 7 is devoted to a discussion of various issues that are important for portabilityand interaction with various operating system implementations. It also suggests directions forimproving operating system implementations to make it easy for integrating low-level systemextensions such as persistence mechanisms, garbage collectors, etc. We are mainly interestedin interaction with the virtual memory system because pointer swizzling at page fault time isprimarily dependent on existing virtual memory hardware and protection facilities supportedby the operating system. An important point that is highlighted during the discussion is thatunlike some other systems, pointer swizzling at page fault time does not require advancedcapabilities from the operating system although it is designed to exploit such capabilities, ifthey exist, for improved performance. We also briey describe other operating system features,particularly virtual memory protection violation handling, that can be improved for overallperformance gains.Chapter 8 contains a brief sketch of some future research directions that appear promis-ing for further study of high-performance address translation techniques and other extensionsto the Texas persistent storage system. Many of these issues are related to the development ofa competitive storage management technique for e�cient checkpointing and stable storage ca-pabilities. We also reiterate the advanced issues (mentioned above) that are beyond the scopeof the current discussion. Finally, we summarize our �ndings and conclude in Chapter 9.
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Chapter 2Design Issues for Persistence2.1 IntroductionIn this chapter, we provide a general background for persistence, including a description ofdi�erent types of persistence that are commonly implemented by various persistent systems.Our approach is designed to implement orthogonal persistence which provides the cleanestimplementation model by separating the persistence property of an object from its type.We also briey describe some existing taxonomies for address translation mechanisms,and show that they are unclear for general usage. Instead, we choose to use the granularity ofan operation as the metric for classifying di�erent persistence mechanisms. We identify a setof basic design issues that must be considered when implementing a persistent system, andde�ne the classi�cation in terms of granularity choices for these design issues. We argue thatthis classi�cation is better than the existing taxonomies which are primarily concerned onlywith the issue of address translation.Another interesting part of this chapter is a brief discussion on �ne-grained addresstranslation and how it measures up to a coarse-grained mechanism such as ours. As we willshow, �ne-grained translation schemes incur some basic costs that are inherent to their generalimplementations. We believe that �ne-grained approaches should be avoided except in thosecases where other features such as locking, consistency, etc. are also being implemented at a�ner granularity. Finally, we provide a background survey of some other research in persistencethat is most relevant to the current discussion.2.2 BackgroundFile systems have traditionally been used to save data both for temporary storage between pro-gram executions and for general long-term storage. Unfortunately, �le systems have e�ciencydrawbacks, because there are two parallel memory hierarchies (disk and RAM1 in both), anddata must be moved between them. Often there are situations where the same data exists inboth memory caches, and in both disk areas; this is a poor use of resources. Also, a �le system'snormal view of data is a \stream of bytes" with no associated structure or type information,1In this dissertation, we use the terms RAM and main memory interchangeably for referring to the physicalmemory in a computer system. 11



while the in-memory representation of data structures is in terms of pointer-linked objects.This creates a fundamental impedance mismatch [CM84] between the two representations.Persistent systems are designed to solve this impedance mismatch between volatile andnon-volatile storage, and to alleviate the e�ciency problems associated with �le systems. Inthis section, we provide a general background on persistence, including descriptions of varioustypes of persistence, before briey discussing our approach which is designed to implementpersistence for C++ and other high-level languages.2.2.1 PersistenceAll data created and manipulated by normal applications are usually transient in nature be-cause their lifetime is bounded by the execution of the process in which they were created. Incontrast, persistent data can outlive the execution of the process that creates them. Persistentobject stores are repositories used for storing arbitrarily complex persistent data structureswhile maintaining pointer semantics just as in virtual memory. In essence, a persistent objectstore can be viewed as a long-lived virtual memory that persists after applications completeexecution, and which can be accessed by the same (or di�erent) applications when they arerun again in the future.2.2.2 Types of PersistenceWe classify persistence implementation mechanisms into di�erent kinds based on the type ofpersistence supported by each speci�c approach. In general, persistence can be broadly dividedinto three kinds:� class-based persistence,� orthogonal persistence, and� reachability-based persistence.The simplest persistence mechanism incorporated in many applications relies on class-based persistence. The basic idea requires that any type or class which may be instantiatedto create persistent objects must inherit from a top-level abstract \persistence" class. Thisspecial class de�nes the interface for saving and restoring data from a persistent object store.Each derived class that inherits from the top-level class is required to implement the speci�edinterface (possibly via serialization methods) to save and restore objects of that particularderived class. This is obviously cumbersome for the programmer who must carry the burdenof implementing the persistence mechanism, making the whole process extremely tedious andhighly error-prone. Another problem with this approach is that it promotes code duplication inthe usual case. Any type that may potentially be used to create persistent objects requires twode�nitions|one for normal transient objects and the other (derived from the special abstractclass) for persistent objects. As a result, transient and persistent objects of the same \logical"(application) type are now not equivalent in terms of the \physical" (actual) type, and codethat operates on one kind of object cannot operate on the other. One obvious solution is tomake the derived class multiply inherit from both the actual type and the abstract class but12



this is likely to add a slew of other problems related to the use of multiple inheritance. Also,this approach does not work for builtin types because their de�nitions cannot be changedeasily in most languages.Unlike class-based persistence, orthogonal persistence [ABC+83a, AM95] decouples thelifetime of an object from its type. In other words, persistence is viewed as a storage class2rather than as a property of the object type. The name derives from the requirement thatthe type of an object must be independent of (that is, orthogonal to) its storage class. Inother words, persistence is a property of individual objects, not of their classes (or types), andany object can be made persistent regardless of its type. Since persistence is decoupled fromthe type system, this approach supports a clean implementation model that is transparentto the application programmer who does not need to make any major modi�cations to theapplication code to use the persistence mechanism.Finally, reachability-based persistence [ABC+83a, ACCM83] is a general form of orthog-onal persistence. The basic principle of this approach requires that all objects reachable froma well-de�ned persistent root (or roots) automatically become persistent. As with orthogonalpersistence, the type of an object is not relevant when making it persistent based on the reach-ability property. The implementation ease for this approach depends on the support availablefrom the programming language. In general, we believe that orthogonal persistence (and itsderivatives such as reachability-based persistence) are preferable to class-based persistence orother ad hoc mechanisms.2.2.3 Our ApproachHistorically, implementations of persistence mechanisms have been slow due to at least twodi�erent cost factors. One of them is a direct (and fairly signi�cant) cost of actions such aschecking pointer formats, maintaining bookkeeping information, etc. in software. The otheris an indirect cost related to the use of specialized compilers for implementing persistencethrough language extensions. Typically, there has been a lack of resources for extensive de-velopment of these specialized compilers and as a result, code generated by such compilersis often several times slower than that generated by most widely-available, high-performanceoptimizing compilers. In addition, we believe that fundamentally slow approaches used forimplementing traditional address translation techniques are another potential source of per-formance problems. For example, some pointer-wise translation techniques require that theformat of a pointer be checked every time it is dereferenced, even if it is a transient pointer.We solve both these problems by designing a novel implementation strategy that iscompatible with code generated by existing o�-the-shelf compilers without requiring any specialmodi�cations or sacri�cing optimization opportunities. We also reduce our overheads to aminimum by e�ectively using existing hardware to check for pointer formats, thereby avoidingsoftware checks which are usually more expensive. This has an overall e�ect of removing majorobstacles in the acceptance of general-purpose languages for persistent applications because ofits performance and compatibility with both stock hardware and existing compilers.2A storage class describes how an object is stored. For example, the storage class of an automatic variablein C or C++ corresponds to the stack because the space for the object is typically allocated on the data stack,and its lifetime is bounded by the scope in which it was allocated.13



Although our approach is focused on implementing mainly orthogonal persistence (forlanguages such as C and C++), it is designed to be compatible with reachability-based per-sistence. However, the current implementation of Texas does not support reachability-basedpersistence. The primary obstacle in implementing this is the lack of language support foridentifying type information for arbitrary data on both the stack and the transient heap. Thisis essentially the same problem as the one faced by garbage collectors for languages such asC or C++. We believe that it is straightforward to use solutions that are similar to thoseapplicable in the other domain3 but we have not yet done so. We are aware of at least oneproject that is using pointer swizzling at page fault time techniques and extending Texas toimplement reachability-based persistence for C++ and Modula-3 [HN97].2.3 Address Translation TaxonomiesPersistence has been an active research area for over a decade and several researchers haveput forth taxonomies for pointer swizzling techniques [Mos92, KK95, MS95, Whi94]. In thissection, we describe important details about each of these taxonomies and highlights varioussimilarities and di�erences among them. In addition, we also provide motivation for a generalclassi�cation of persistent systems based on granularity issues.2.3.1 Eager vs. Lazy SwizzlingMoss [Mos92] describes one of the �rst studies of di�erent address translation approaches andthe associated terminology developed for classifying these techniques. The primary classi�-cation is in terms of \eager" and \lazy" swizzling based on when the address translation isperformed. Typically, eager swizzling schemes swizzle an entire collection of objects together,where the size of the collection is somehow bounded. In other words, the need for checkingpointer formats, and the associated overhead, is avoided by performing aggressive swizzling.In contrast, lazy swizzling schemes follow an incremental approach by using dynamic checksfor unswizzled objects. That is, there is no predetermined or bounded collection of objectsthat must be swizzled together. Instead, the execution dynamically locates and swizzles newobjects depending on the access patterns of the application.Other researchers (Kemper and Kossman [KK95], and McAuli�e and Solomon [MS95])have also used classi�cations along similar lines in their own studies. However, we considerthis classi�cation to be ambiguous for general use because it does not clearly identify the fun-damental issue|the granularity of address translation|that is important in this context. Forexample, consider pointer swizzling at page fault time using this classi�cation. By de�nition,we swizzle all pointers in a virtual memory page as it is loaded into memory and applicationsare never allowed to \see" any untranslated pointers. As such, there is no need to explicitlycheck the format of a pointer before using it4 and therefore, pointer swizzling at page faulttime is an eager swizzling scheme. On the other hand, the basic approach is incremental in3Typically, conservative garbage collectors operate by scanning the stack and treating any value that appearsto be a pointer as a pointer.4The format checking is actually done implicitly by hardware based on the use of virtual memory access-protections. 14



nature because swizzling is performed one page at a time and only on demand, making it alazy swizzling scheme as per the original de�nition.In general, a scheme that is \lazy" at one granularity is likely to be \eager" at anothergranularity. For example, a page-wise swizzling mechanism is lazy at the granularity of pagesbecause it only swizzles one page at a time. However, the same scheme would be considered aneager swizzling scheme at the granularity of objects because it swizzles multiple objects|anentire page's worth|at one time. Therefore, the fundamental issue is the granularity at whichaddress translation is performed.2.3.2 Node Marking vs. Edge Marking SchemesIn addition to eager and lazy swizzling, Moss also describes another classi�cation based on thestrategy used for distinguishing between resident and non-resident data in the case of \lazy"swizzling (i.e., the incremental approach). The persistent heap and various data structures areviewed as a directed graph, where data objects represent nodes and pointers between objectsrepresent edges that connect the nodes. Given this view, the address translation mechanismsare then classi�ed as either node marking or edge marking schemes.
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Figure 2.1: Node marking and edge marking schemesFigure 2.1 pictorially shows the basic technique for both node marking and edge mark-ing schemes. As the name suggests, edge marking schemes mark edges of the graph|thepointers between objects|to indicate whether they have been translated into local formatand reference resident objects, or not. In contrast, node marking schemes guarantee that allreferences in resident objects are always translated and the graph nodes are marked as resi-dent or non-resident. In other words, edges are guaranteed to be valid local references but thereferents may be non-resident.Figure 2.2 shows a classic implementation of a node marking scheme; non-residentnodes are \marked" as such by using proxy objects, that is, pseudo-objects that stand in fornon-resident persistent objects and contain their corresponding persistent identi�ers. Whenan object is loaded from the database, all references contained in that object must be swizzledas per the de�nition of node marking|pointers to resident objects are swizzled normally15
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Figure 2.2: Node marking using proxy objectswhile pointers to non-resident objects are swizzled into references to proxy objects. Whenthe application follows a reference to a proxy, the system loads the referent (F in the �gure)from the database and updates the proxy to reference the newly-resident object (Figure 2.2b).Alternatively, the proxy may be bypassed by overwriting the (old) reference to it with a pointerto the newly-resident object; if there are no other references to it, the proxy may (eventually) bereclaimed by the system. Note, however, that the compiled code must still check for presenceof the proxy object on every pointer dereference because any general pointer may referencea proxy object. This adds continual checking overhead, even if all pointers directly referencedata objects without any intervening proxy objects.Pointer swizzling at page fault time is essentially a node marking scheme becauseswizzled pointers always correspond to valid virtual memory addresses while the referentsare distinguished on the basis of residency. However, it di�ers in an important way fromthe classic scheme|we do not use explicit pseudo-objects for non-resident nodes. Instead,access-protected virtual address space pages act as proxy objects. The biggest advantage ofthis approach is that there is no need to reclaim proxy objects (because none exist) as theapplication progresses and more data is loaded from the database; consequently, there are noindirections that must be dealt with by compiled code, and continual checks are not necessary.2.3.3 General Classi�cation for PersistenceWe have shown that existing classi�cations describe address translation techniques which con-stitute only one of several design issues that must be considered when implementing persis-tence. We have identi�ed a set of �ve design issues that we believe are fundamental to e�cientimplementation of any persistence mechanism. We contend that a speci�c combination ofthese issues can be used to characterize a particular persistence implementation. In e�ect, weare proposing a classi�cation scheme based on granularity of fundamental design issues.As described earlier, a classi�cation based on eager and lazy swizzling is likely to be16



ambiguous because it does not attack the problem at the right level of abstraction. Instead,we notice that the real issue in the lazy vs. eager swizzling distinction is the size of the unitof storage for which address translation is performed. This can range from as small as a singlereference (as in Moss' so-called \pure lazy swizzling" approach) to a virtual memory page(as in pointer swizzling at page fault time), or even as large as an entire database (as in theso-called \pure eager swizzling" approach in Moss' terminology).Based on this observation, we believe that it is better to consider address translation(and other design issues) from the perspective of a granularity choice rather than as an ad hocclassi�cation based on confusing translation semantics. In fact, the ambiguity described abovearises because the classi�cations either do not clearly identify the granularity choices or un-necessarily adhere to a single predetermined granularity.We believe that addressing all design issues in terms of granularity choices enables auniform process for identifying the consequence of each design issue on the performance andexibility of the resulting persistence mechanism. This is preferable to ambiguous classi�-cations such as eager and lazy swizzling because any scheme is both \eager" and \lazy" atdi�erent granularities.2.4 Granularity Choices for PersistenceAddress translation is only one of several issues that must be resolved when implementing anorthogonally persistent system. We have identi�ed a set of �ve design issues that are relevantto the implementation of any persistence mechanism. Each of these issues can be resolvedby making a speci�c granularity choice that is independent of the choice for any other issue.The combination of granularity choices for all issues can be used to characterize a persistentsystem.The speci�c design issues that we describe in this section are the granularities of addresstranslation, address mapping, data fetching, data caching and checkpointing. We de�ne anddiscuss each issue in detail and also present the rationale behind the granularity choices forthese issues in our implementation of orthogonal persistence in the Texas persistent storagesystem.To a �rst approximation, the basic unit for all granularity choices in Texas is a virtualmemory page because pointer swizzling at page fault time relies heavily on virtual memoryfacilities, especially to trigger data transfer and address translation. The choice of a virtualmemory page as the basic granularity unit allows us to exploit conventional virtual memories,and avoid expensive run-time software checks in compiled code, by taking advantage of user-level memory protection facilities of most modern operating systems. However, sometimes itis necessary to change the granularity choice for a particular issue to accommodate the specialneeds of unusual situations. As we will explain below, these issues can be addressed at adi�erent granularity in a way that integrates gracefully into the general framework of Texas.2.4.1 Address TranslationThe granularity of address translation is the smallest unit of storage within which all pointersare translated from persistent (long) format to virtual memory (short) format. In general, the17



spectrum of possible values can range from a single pointer to an entire page or more.The granularity of address translation in Texas is typically a virtual memory page forcoarse-grained translation implemented via pointer swizzling at page fault time. The rationalefor this choice is the advantages o�ered by the use of virtual memory pages in terms of overalle�ciency because we can use the virtual memory hardware to check residency of the referents.In addition, we also rely on the application's spatial locality of reference to amortize the costsof handling protection faults and swizzling entire pages.As we will describe in Chapter 3, it is also possible to implement a �ne-grained addresstranslation mechanism for special situations where the coarse-grained approaches are unsuit-able because of poor locality of reference in the application. Since Texas is designed to perform�ne-grained translation on individual pointers, the granularity of address translation in thosecases would be a single pointer.2.4.2 Address MappingA related choice is the granularity of address mapping, which is de�ned as the smallest unitof addressed data (from the persistent store) that can be mapped independently to an area ofvirtual address space.To a �rst approximation, this is a virtual memory page in Texas because any page ofpersistent data can be mapped into an arbitrary page of the virtual address space of a process.A major bene�t of page-wise mapping is the savings in table sizes; we only need to maintaintables that contain mappings from persistent to virtual addresses and vice versa on a page-wisebasis, rather than (much larger) tables for recording the locations of individual objects. Thisreduces both the space and time costs of maintaining the address translation information.The granularity of address mapping is bigger than a page in the case of large (multi-page) objects. When a pointer to (or into) a large object is swizzled, virtual address spacemust be reserved for all pages that the large object overlaps. This reservation of multiple pagesis necessary to ensure that normal indexing and pointer arithmetic works as expected withinobjects that cross page boundaries. The granularity of address mapping is then equivalent tothe number of pages occupied by the large object.2.4.3 Data FetchingAs the name suggests, the granularity of data fetching is the smallest unit of storage thatis loaded from the persistent store into virtual memory. As with the other two granularitiespresented above, we use a virtual memory page for this purpose in the current implementationof Texas. However, the primary motivation for making this choice was simplicity and ease ofimplementation, and the fact that this correlated well with the default granularity choices forsome of the other design issues in our implementation.It is possible to change the granularity of fetching without a�ecting any of the othergranularity choices. In essence, we can implement our own prefetching to preload data fromthe persistent store. As we will discuss in Chapter 7, this may actually be desirable forsome applications when using raw unbu�ered I/O instead of normal �le I/O. Raw I/O istypically used to bypass the �le system cache in order to avoid the double caching problem18



(see Chapter 7) but in doing so, we also lose the bene�t of �le system readahead (prefetching)mechanism. Depending on the access characteristics of the application and the dataset size,the overall cost of I/O can be reduced by prefetching several (consecutive) pages instead of asingle faulted-on page. Thus the granularity of data fetching is closely tied to the exact I/Ostrategy selected in the implementation.2.4.4 Data CachingThe granularity of data caching is de�ned as the smallest unit of storage that is cached invirtual memory. For Texas, the granularity of caching is a single virtual memory page becauseit relies exclusively on the virtual memory system for caching persistent data.As we will describe in Chapter 4, a persistent page is usually cached in a virtual memorypage as far as Texas is concerned. The underlying virtual memory system determines whetherthe page actually resides in main memory or on disk (i.e., swap space) without any interventionfrom Texas. This is quite di�erent from some other persistent storage systems which directlymanage physical memory and control the mapping of persistent data into main memory. Ingeneral, Texas moves data between a persistent store and the virtual memory without regardto the distinction between virtual pages in main memory and on disk.It is, of course, possible to change this behavior such that Texas directly managesRAM (i.e., physical memory). However, we believe that this is unnecessary (and may even beundesirable) for most applications|the fact that Texas behaves like any normal applicationwith respect to virtual memory replacement may be bene�cial for most purposes because itprevents any particular application from monopolizing system resources (physical memory inthis case). As we will discuss in Chapter 7, additional control over memory management ispossible depending on the support available from the underlying operating system.2.4.5 CheckpointingFinally, we consider the granularity of checkpointing which is de�ned as the smallest unit ofstorage that is written to non-volatile media for the purpose of saving recovery information toprotect against failures and crashes.Similar to the address translation strategy, Texas uses virtual memory protections todetect pages that are modi�ed by the application between checkpoints. Therefore, the defaultunit of checkpointing in the usual case is a virtual memory page. Texas employs a simplelogging scheme to support checkpointing and recovery. At checkpoint time, modi�ed pages arewritten to a log on stable storage before the actual database is updated.5The granularity of checkpointing can be re�ned by the use of sub-page logging. Theapproach relies on a page \di�ng" technique that we originally proposed in [SKW92], and alsobriey describe it again in Chapter 4 of this dissertation. The basic idea is to save clean versionsof pages before they are modi�ed by the application; the original (clean) and modi�ed (dirty)versions of a page can then be compared to detect the exact sub-page areas that are actuallyupdated by the application and only those \di�s" are logged to stable storage. This techniquecan be used to reduce the amount of I/O at checkpoint time, subject to the application's5Chapter 4 provides further details for checkpointing and recovery support in Texas.19



locality characteristics. The granularity of checkpointing in this case is equivalent to the sizeof the \di�s" which are the units of storage saved to stable storage.6Another enhancement to the checkpointing mechanism is to maintain the log in acompressed format. As the checkpoint-related data is streamed to disk, we intervene to performsome inline compression using specialized algorithms tuned to heap data. Further research hasbeen initiated in this area [WKB97a, WKB97b] and preliminary results indicate that the I/Ocost can be reduced by at least a factor of two (based on a 2-to-1 compression ratio). Furtherreduction in costs is possible with improved compression algorithms and adaptive techniques.2.5 Fine-grained Address TranslationIt is obvious from the foregoing discussion on granularity choices that pointer swizzling at pagefault time is inherently a coarse-grained address translation mechanism. There are severalfactors that motivated us to develop and implement a coarse-grained mechanism over a �ne-grained approach. Obviously, the primary motivation is related to the fact that we wanted toexploit existing hardware to avoid expensive software checks. However, we believe that thereare also some other factors against �ne-grained address translation. In this section, we presenta discussion on �ne-grained address translation techniques and why we believe that they arenot practical for high-performance implementations in terms of e�ciency and complexity.Overall, �ne-grained address translation techniques are likely to incur various hiddencosts that have not been measured and quanti�ed in previous research. In general, we havefound that most current �ne-grained schemes appear to be slower than pointer swizzling atpage fault time in terms of the basic address translation performance.2.5.1 Basic CostsFine-grained address translation techniques usually incur some inherent costs due to their basicimplementation strategy. These costs can be divided into the usual time and space components,as well as the less tangible components related to implementation complexity. We believe thatthese costs are likely to be on the order of tens of percent, even in well-engineered systemswith custom compilers and �ne-tuned run-time systems. Some of the typical costs incurred ina �ne-grained approach are as follows:� A major component of the total cost can be attributed to pointer validity checks. Thesechecks can include both swizzling checks and residency checks. A swizzling check is usedto verify whether a reference is swizzled (i.e., translated into valid local format or not7while a residency check veri�es whether the referent is resident and accessible. Thesetwo checks, while conceptually independent of each other, are typically combined inimplementations of �ne-grained schemes.� Another important component of the overall cost is related to the implementation of acustom object replacement policy, which is typically required because physical memory6The basic \di�ng" technique has been implemented in the context of QuickStore [Whi94]; preliminaryresults are encouraging, although more investigation is required.7For example, all swizzled pointers in Texas must contain valid virtual memory address values.20



is directly managed by the mechanism that implements persistence. This cost is usuallydirectly proportional to the rate of execution since it requires a read barrier8 implemen-tation approach. This cost component is discussed further in the next subsection.� As resident objects are evicted from memory (during the course of replacement), a pro-portional cost is usually incurred in invalidating references to the evicted objects; this isnecessary for maintaining referential integrity by avoiding \dangling pointers." This costis also directly proportional to both the rate of execution and the locality characteristicsof the application.� By de�nition, �ne-grained translation techniques permit references to be in di�erentformats during application execution. This requires that pointers be checked to ensurethat they are in the right format before they can be used, even for simple equalitychecks. It may also be necessary to check transient pointers depending on the underlyingimplementation strategy. As such, there is a continual pointer format checking cost thatis also dependent on the rate of execution and pointer use.� Finally, it is possible to incur other costs that exist mainly because of unusually con-strained object and/or pointer representations used by the system. For example, access-ing an object through an indirection via a proxy object is likely to require additionalinstructions. Another example is the increased complexity required for handling lan-guages features such as interior pointers.9Note that all cost factors described above do not necessarily contribute to the overall perfor-mance penalty in every �ne-grained address translation mechanism. However, the basic costsare usually present in some form in most systems.2.5.2 Object ReplacementFine-grained address translation schemes typically require that the persistence mechanismdirectly manage physical memory because persistent data are usually loaded into memoryon a per-object basis.10 Therefore, it is usually necessary to implement a custom objectreplacement policy as part of the persistence mechanism. This a�ects not only the overall costbut also the implementation complexity.As part of the replacement policy, a read barrier is typically implemented for everyobject that resides in memory. The usual action for a read barrier is to set one bit per objectfor maintaining recency information about object references to aid the object replacementpolicy. The read barrier may be implemented in software by preceding each object read with acall to the routine that sets the special bit for that object. Compiled code then contains extrainstructions|usually inserted by the compiler|to implement the read barrier. (Alternatively,8The term read barrier is borrowed from garbage collection research [Wil97], and is used to denote a triggerthat is activated on every read operation. A corresponding term, write barrier, is used to denote triggers thatare activated for every write operation.9Interior pointers point inside the bodies (i.e., middle parts) of objects rather than at their heads.10The data are usually read from the persistent store into a bu�er in terms of pages for minimizing I/Ooverhead. However, only the objects required are copied from the bu�er into memory.21



it may be implemented with specialized hardware checks and/or microcoded routines.) Theread barrier is typically expensive on stock hardware because, in the usual case, all readrequests must be intercepted and recorded. It is known that one in about ten instructions isa pointer store (i.e., a write into a pointer) in Lisp systems that support compilation. Sinceread actions are more common than write actions, we estimate that between 5 and 20 percentof total instructions in an application usually correspond to a read from a pointer. The exactnumber obviously varies by application, and more importantly, by the source language; forexample, it is likely to be higher in heap-oriented languages such as Java. It may be possibleto use data ow analysis during compilation such that the read barrier can be optimized awayfor some object references; such analysis is, however, hard to implement.The object replacement policy also interferes with general swizzling, especially if an edgemarking technique is being used. In such cases, the object cannot be evicted from memorywithout �rst invalidating all edges that reference it. This obviously requires knowledge aboutall references to the object being evicted. Kemper and Kossman [KK95] solved this by using aper-object data structure known as a Reverse Reference List (RRL) to maintain a set of back-pointers to all objects that reference a given object. McAuli�e and Solomon [MS95] use adi�erent data structure, called the swizzle table, which is a �xed-size hash table that maintainsa list of all swizzled pointers in the system. Both these approaches are generally not favorablebecause they increase the storage requirements (essentially doubling the number of pointersat the minimum) and the implementation complexity.2.5.3 DiscussionOne of the problems in evaluating di�erent �ne-grained translation mechanisms is the lack ofgood measurements of system costs and other related costs in these implementations. Thefew measurements that do exist correspond to interpreted systems (except the E system) andusually underestimate the costs for a high-performance language implementation. For example,a 30% overhead in a slow (interpreted) implementation may be acceptable for that system,but will certainly be unacceptable as a 300% overhead when the implementation is sped upby a factor of ten.Another cost factor for �ne-grained techniques that has generally been overlooked is thecost of maintaining mapping tables for translating between the persistent and local pointerformats. Since �ne-grained schemes typically translate one pointer at a time, the mappingtables must contain one entry per pointer. This is likely to signi�cantly increase the size ofthe mapping table, making it harder to manipulate e�ciently.We believe that the E system [RC89, SCD90] is probably the fastest �ne-grained schemethat is comparable to a coarse-grained address translation scheme; however, it still falls short interms of performance. Based on the results presented in [Whi94], E is about 48% slower thantransient C/C++ for the hot traversals of the OO1 database benchmark [Cat91, CS92].11This is a fairly signi�cant overhead considering that the overhead of our system is zero forhot traversals and much smaller (less than 5%) otherwise. Even with generous estimates forperformance improvements (say, double the performance), the costs might be reduced to only11The hot traversals are ideal for this purpose because they represent operations on data that have alreadybeen faulted into memory, avoiding performance impacts related to di�erences in loading patterns, etc.22



20% of total costs incurred for a transient application. This number is still quite high forgeneral acceptance in mainstream applications.We believe that there are several reasons why it is likely to be quite di�cult to drasti-cally reduce the overheads of �ne-grained techniques. Some of these are:� Several of the basic costs (outlined above) for a �ne-grained translation scheme cannotbe changed or reduced easily. For example, the pointer validity and format checks, whichare an integral part of �ne-grained address translation, cannot be optimized away.� There is a general performance penalty (maintaining and searching large hash tables formapping information, etc.) that is typically independent of the checking cost itself. Asmapping tables get larger, it will be more expensive to probe and update them, especiallybecause locality e�ects enter the overall picture.12� Fancy data ow analysis and code generation techniques are required from the compiler tooptimize some of the costs associated with the read barrier used in the implementation.Furthermore, such extra optimizations will probably cause unwanted code bloat (e.g.,excessive loop unrolling).� Although the residency property can be treated as a type so that Self-style optimiza-tions [Cha92] can be applied to eliminate residency checking, it is not quite easy to do sobecause unlike types, residency can changes across procedure calls depending on the dy-namic run-time state. In e�ect, residency check elimination is fundamentally a non-localproblem that depends on complex analysis of control ow and data ow.� It is necessary to check residency of an object at least once before it is used. Thusif many di�erent unique objects are referenced by the application, the cost of initialresidency checking must still be incurred. For example, an application may traverse alist containing several thousand objects. Unless the compiler can abstract the access overthe entire collection, full residency checking cost will be incurred for every list element.Based on these arguments, we believe that �ne-grained translation techniques are not as at-tractive for high-performance implementations of persistence mechanisms.Taking the other side of the argument, however, it can certainly be said that �ne-grained mechanisms have their advantages. A primary one is the potential savings in I/Obecause most traditional �ne-grained schemes fetch data only as necessary. There are at leasttwo other bene�ts over coarse-grained approaches:� �ne-grained schemes can support reclustering of objects within pages, and� the checks required for �ne-grained address translation may also be able to support other�ne-grained features (such as locking, transactions, etc.) at little extra cost.In principle, �ne-grained schemes can recluster data over short intervals of time compared tocoarse-grained schemes. However, clustering algorithms are themselves an interesting topic12Hash tables are known to have extremely poor locality because, by their very nature, they \scatter" relateddata in di�erent buckets. 23



for research, and further studies are necessary for conclusive proof. We also make anotherobservation that �ne-grained techniques are attractive for unusually-sophisticated systems,e.g., those supporting �ne-grained concurrent transactions. This becomes further attractive ifthe �ne-grained checking is supported in hardware (as in the early Lisp machines).2.6 Survey of Related WorkPersistence has been an active research area since the early eighties and various approacheshave been proposed and developed for implementing di�erent types of persistence. Theseapproaches range from special languages (or language extensions) with builtin support forpersistence to general-purpose languages that support persistence with the help of some kind ofexternal mechanism. In this section, we survey several representative persistence mechanismswith respect to our proposed classi�cation based on di�erent granularity choices.2.6.1 Persistent Programming LanguagesWe start by looking at approaches that incorporate persistence as part of the programminglanguage implementation. Some of the important ones that we describe below are PS-algol,Napier88, LOOM, E and PS-Smalltalk. PS-algol and Napier88 are among the �rst persistentlanguages that implemented �ne-grained orthogonal persistence. While E and PS-Smalltalkare implemented by extending existing popular non-persistent languages (C++ and Smalltalkrespectively), LOOM is actually a virtual memory system for Smalltalk that implements per-sistence as a side e�ect of providing large virtual memory. We briey describe the salientfeatures of each language implementation and how it relates to our own approach. We focusexclusively on advanced languages that support object-oriented data models, and do not dis-cuss database programming languages (e.g., Pascal/R, RIGEL, etc.) that extend relationalprogramming techniques because the former are more relevant to our research.PS-algolPS-algol [ACC82, ABC+83a, ABC+83b] was the �rst truly persistent programming language,and has contributed much to the study and development of e�cient persistent systems. Thenotion of orthogonal persistence was pioneered in the implementation of PS-algol, which sup-ports full reachability-based orthogonal persistence.PS-algol is built by adding functional extensions on top of S-algol, a high-level algolused for teaching at the University of St. Andrews. The basic goal was to implement per-sistence in a transparent manner, such that there is a minimal impact on existing code andprogramming styles. Therefore, the language syntax was left unchanged and the run-time sys-tem was modi�ed to recognize and support a collection of procedures (e.g., opening or closingdatabases, committing or aborting transactions, etc.) that embodied the persistence facilities.Pointers and references in PS-algol are dynamically typed, and therefore full type check-ing is usually necessary at run time. An explicit residency check is piggy-backed onto the typecheck made by the run-time system to ensure that the referent is either resident, or can be lo-cated and loaded from the database. Persistent references are implemented as object identi�ers24



(OIDs), and the granularity of address translation is individual pointers. The granularities ofaddress mapping and data fetching is individual objects which are loaded from the databaseinto the heap by the run-time system.Napier88Napier88 [MBC+89] is the successor to PS-algol; while PS-algol uses dynamic typing, Napier88attempts to use strong typing in most cases. There are some special situations where run-timedynamic type checking is necessary because the type cannot be determined statically.The basic implementation strategy is in terms of environments which are treated as�rst-class objects. An environment is an encapsulation of variables and their storage bindings.All expressions are evaluated in the context of some speci�c environment, using the informationencapsulated in that environment. Persistence is implemented via a top-level environment thatassociates persistent objects to their corresponding values in the persistent store.As in PS-algol, Napier88 implements reachability-based persistence, using the run-timetype information that is available for all variables in the corresponding environment. Thevarious granularity choices for persistence are also same as before, that is, individual objectsare loaded from the database on demand when OIDs that reference non-resident objects aretraversed by the application.LOOMLOOM [KK83, Kae86], or Large Object-Oriented Memory, is a virtual memory system that wasdesigned to support large address spaces for early Smalltalk-80 implementations on machineswith 16-bit hardware word size. Persistent references are stored as 32-bit OIDs and translatedinto 16-bit OIDs when persistent objects are fetched from disk; these 16-bit OIDs are used toindex into a resident object table that holds references to actual object locations in memory.LOOM attempts to provide transparent persistence; once objects are loaded into mem-ory, they contain only 16-bit �elds, just as in a non-persistent Smalltalk-80 implementation.13When all objects of the working set have been loaded into memory, LOOM behaves similarlyto a normal Smalltalk-80 implementation because there is no distinction between transientobjects and resident persistent objects.An obvious question is how the system maintains references to non-resident objects in16-bit �elds of resident objects. LOOM accomplishes this by using one of two mechanisms,namely leaves and lambdas. A leaf is a proxy for a persistent object on disk; it is, however,resident and occupies an entry in the object table. In other words, leaf objects are used as proxyobjects to implement node marking. Each leaf contains the 32-bit OID of the correspondingnon-resident object so that it can be found easily when the reference to the leaf is traversed.On the other hand, a lambda is a 16-bit OID with a special value 0 (zero) that is distinct fromall other values for 16-bit OIDs. This is equivalent to an edge marking approach because thereferences are tagged as invalid. As such, there is no need for a proxy object or an entry in theobject table corresponding to a lambda. The lambda mechanism does not maintain the 32-bit13This is very similar to the invariant maintained by pointer swizzling at page fault time such that all objectsloaded into memory contain only hardware-supported virtual addresses.25



OID of the original object|in order to load the object corresponding to a lambda value inthe current object, the system must �rst read the current object from disk, locate the 32-bitvalue for the non-resident object corresponding to the lambda and then load that object fromdisk, overwriting the lambda with the newly-generated 16-bit OID into the object table.The interpreter implements explicit checks for references to non-resident objects viaeither leaves or lambdas, and triggers loading as necessary using di�erent mechanisms de-pending on whether a leaf or a lambda is being processed. This is termed as object faulting,drawing a similarity to paged virtual memory systems. The granularity of address translationis individual object references and the granularities of address mapping and data caching isindividual objects. Finally, it should be noted that LOOM does not provide support for trans-actions or for saving recovery data in case of a crash/failure because it was primarily designedto implement a virtual memory system, not a persistence storage system.The E Programming LanguageThe E programming language [RC89, SCD90] was developed at University of Wisconsin as apersistent extension to C++. Persistence is implemented by adding special database types suchthat only objects of these types can persist. This is a necessary but not su�cient condition forpersistence. In order to persist, an object must be of one of the database types, and must beallocated specially in persistent heap. This approach breaks the orthogonal persistence modelbecause persistent objects are tied to a special type (and associated type hierarchy).The basic strategy in E is implemented by extending gcc, the GNU C compiler, tosupport database types and to generate special residency checks for triggering address transla-tion and object faulting as necessary. In addition, the E Persistent Virtual Machine (EPVM),an interpreter, is used for accessing persistent objects. The code generated by the compilerinvokes the interpreter to load persistent objects and translate pointers as necessary.The Exodus Storage Manager (ESM) [Car89] is used as the object storage managementlayer in the language implementation. Each persistent pointer is represented by a 12-byte OIDin the storage manager, and is swizzled to the word size of the local hardware. The �rstimplementation of the interpreter, EPVM 1.0, interfaced with ESM to explicitly manage clientbu�er pool by pinning and unpinning physical memory pages as necessary. A new architecture,EPVM 2.0, has since been implemented to improve performance by copying data into virtualmemory while translating OIDs into virtual memory addresses, and then unpinning the originalpage from the memory [WD92]. Copying into virtual memory can be done in terms of eitherindividual objects or entire pages containing those objects. Applications manipulate datadirectly in virtual memory and no further overhead is incurred in OID translation, whilepinning is only required during copying.The granularity choice for address translation is in terms of individual pointers, basedon the compiler-generated residency checking code that is inserted at appropriate points in thecode. Address mapping and data caching is handled by the storage manager which explicitlymanages the client bu�er pool. In the case of EPVM 2.0, the granularity of caching variesdepending on whether individual objects or entire pages were copied from the bu�er pool intovirtual memory. The granularity of checkpointing is in terms of individual objects because thesystem updates them in the database from their corresponding copies in virtual memory.26



PS-SmalltalkPS-Smalltalk [Hos95] is also designed to implement persistence for Smalltalk. The basic ar-chitecture of the system is similar to the EPVM 2.0 object caching architecture [WD92] butthe underlying storage manager is Mneme [Mos92]. Objects are copied from the Mneme bu�erpool into virtual memory on demand, translating Mneme OIDs into virtual memory addressvalues. Mneme implements reachability-based persistence, as well as garbage collection for allobjects reachable from a persistent root. The basic mechanism relies on user-supplied callbackroutines to �nd object references contained in other objects. In essence, this pushes o� thetype description responsibility on the programmer who must supply the callback routines.The system uses node marking for supporting object faulting. The implementationuses fault blocks which are proxy objects for non-resident objects that hold the correspondingpersistent addresses.14 All object references corresponding to non-resident objects are con-verted into valid virtual memory addresses of corresponding fault blocks, while maintainingthe invariant required by node marking. Note that this is very similar to pointer swizzling atpage fault time which e�ectively uses protected virtual memory pages as fault blocks.Address translation is done only when object faults are generated, that is, the ap-plication attempts to dereference a pointer to a fault block. The actual object is loaded intomemory from the bu�er pool, swizzled as necessary (including generation of references to otherfault blocks), and is then made available to the application. The fault block, now called an in-direct block, contains the actual memory reference to the object. The extra level of indirectionthrough indirect blocks is periodically cleaned up by a garbage collector.Method invocation in Smalltalk is usually done by sending a message whose receiver isthe object on which the method must be invoked. Given this approach, the residency checkscan usually be piggy-backed onto normal message sends which can check whether the intendedreceiver is resident and load it if necessary. Recall that data are copied into virtual memoryon demand and address translation is done automatically as objects are loaded into memory.The granularity of address translation, therefore, is an individual object. The granularity ofcaching is a single object as far as the data copied from the bu�er pool into virtual memoryare concerned. Mneme itself uses segments (or collections of objects) for fetching data fromstable storage into the bu�er pool.2.6.2 External LibrariesApart from implementing persistence as part of the run-time system of a persistent program-ming language, it is also possible to support persistence through external mechanisms such asclass libraries or shared object modules, without actually modifying the language implemen-tation. These approaches are typically designed and implemented to exploit existing featuresof a general-purpose language (and operating systems) to achieve their goals.In this section, we describe three such approaches, each of which implements persis-tence for C++. Although it is not an absolute requirement to use virtual memory protectionfacilities to implement persistence outside the language's run-time system, all three approachesdescribed here are similar to Texas in that respect.14Note the similarity between PS-Smalltalk's fault blocks and LOOM's leaf objects.27



Vaughan and Dearle's Hybrid ApproachVaughan and Dearle [VD92] have developed a scheme that is similar to ours because it alsoutilizes virtual memory protections for residency checking, but di�ers in the way the actualswizzling is performed. Unlike our approach where the pointers are always swizzled directlyinto valid virtual memory addresses, their scheme performs swizzling in an \incremental"fashion as described below.When a newly-loaded pointer is being considered for swizzling, the �rst step is to checkthe residency of the referent. If the referent has already been loaded into memory, the pointeris translated into the corresponding virtual address. However, if the referent is not resident,the pointer is translated into a reference to an object table entry that contains the 32-bit OIDof the non-resident object. This is referred to as \partial" swizzling because more actionsare required before the referent can be accessed via that pointer. The object table entry isaccess-protected so that any attempt to dereference the pointer will trigger another protectionfault. This fault is handled by locating the object on disk using the information from theobject table entry,15 loading it into memory and translating the partially-swizzled pointer intoa valid virtual memory address corresponding to the new object location.The primary goal of this approach is to reduce consumption of virtual memory (i.e.,swap space) by avoiding allocation of backing storage for objects that are never accessedby the application. This is accomplished by only partially swizzling pointers until they areactually used, at which time full swizzling is completed by allocating memory for the referentand translating the pointer appropriately. Although this is the right idea in principle, webelieve that the implementation strategy has been adversely a�ected because the authorsmisunderstood our approach. As we will discuss in Chapter 3, we reserve only virtual addressspace, not actual memory or swap space, for pages that are not yet accessed by the application.Unfortunately, modern operating systems do not always provide such exible control overmemory management. We defer further discussion on this issue until Chapter 7 where wedescribe interactions with operating systems.There are also several other problems associated with an incremental swizzling ap-proach. Since pointers are swizzled in two steps, the system must handle pointers in twodi�erent formats, partially-swizzled and fully-swizzled. This is similar to the pointer formatchecking problem in �ne-grained address translation mechanisms. The basic scheme is alsounlikely to work with standard operating systems and o�-the-shelf compilers|when a partially-swizzled pointer is dereferenced and is fully swizzled into the �nal virtual memory address ofthe actual object, it is necessary to overwrite the (old) partially-swizzled pointer value with the(new) fully-swizzled pointer value. The fault handler must therefore actually update the savedmachine state, which may not be allowed without special system-level privileges.16 Overall,we believe that there is no extra bene�t to this scheme, while there is an added overhead ofhandling partially-swizzled pointers.15Once again, note the similarity between protected object table entries and fault blocks in PS-Smalltalk orleaves in LOOM.16Pointer swizzling at page fault time does not have this problem because we alway translate pointers intovalid virtual addresses, which do not need to be changed.28



ObjectStoreObjectStore [LLOW91] is a commercial system that also uses pointer swizzling at page faulttime as the primary address translation mechanism to implement persistence for C++. Al-though both Texas and ObjectStore use the same underlying address translation mechanisms,each was developed independently without any inuence from the other, and the two systemsdi�er in several ways.While Texas is designed to provide simple persistence for C++ with a small run-timecode footprint, ObjectStore is a full-edged object-oriented database system. Texas is designedto be compatible with existing o�-the-shelf compilers and uses compiler-generated debugginginformation from object �les to extract type and object layout information (Chapter 6). Incontrast, ObjectStore uses a special preprocessor to extract the same information from theapplication source code. Chapter 6 also enumerates several reasons why we chose to usedebugging information over a special-purpose preprocessor.The most signi�cant di�erence between the two systems is the strategy for performingpointer swizzling. ObjectStore is designed to avoid swizzling as far as possible by attemptingto map a page to the same virtual address as it was the last time it was mapped into memory. Ifthis can be done successfully for referents of all pointers on the page, no swizzling is necessary.In order to implement this strategy, however, additional information regarding previous map-pings must be maintained for each persistent page so that it can be consulted before mappingthe page into memory. Furthermore, after a page has been mapped into memory, it must bescanned to ensure that all pointers are either swizzled correctly, or that their referents can bemapped into the same location as the last time. In addition, since the application can modifyarbitrary data on a page, a similar scanning is necessary (only for dirty pages) at checkpointtime to regenerate the mapping information for referents of all pointers on that page.We believe that avoiding swizzling by mapping pages at the same locations is simplyan \optimization" to the basic pointer swizzling mechanism. It is not clear whether thisoptimization provides any signi�cant performance improvement because our measurements(presented in Chapter 5) indicate that the major component of the overall cost is usuallythe I/O cost, while the actual cost of translating the pointer is much smaller in comparison.Any small advantages are usually negated by the cost of maintaining additional mappinginformation for each page of the persistent store. It would be relatively easy to incorporate asimilar optimization in Texas; however, we have not done it so far because it does not appearto provide any major bene�ts.QuickStoreQuickStore [WD94, Whi94] is a research system that is very similar to ObjectStore in terms ofits implementation strategy. QuickStore also uses pointer swizzling at page fault time approachfor address translation, and like ObjectStore, it maintains additional mapping information toavoid swizzling as far as possible. An interesting di�erence, however, is the use of Exodusas the storage manager. As in the implementation of E, this allows the system to directlymanage physical memory and the client bu�er pool by explicitly moving data between the twohierarchies. 29



In the area of checkpointing for saving recovery information, QuickStore uses a page\di�ng" technique similar to the idea that we �rst proposed in [SKW92]. The results pre-sented in [Whi94] indicate that such \di�ng" should perform well depending on the localitycharacteristics of the application. This observation is in line with our original projections ofexpected performance characteristics. However, further study is necessary in this area, alongwith research on storage management techniques for persistent object stores.2.6.3 Other ApproachesIn addition to the various systems described above, many other approaches for supportingpersistence have been designed and implemented by various researchers. Below, we provide abrief overview of some of the more interesting systems.Recoverable-Persistent Virtual MemoryThe Recoverable-Persistent Virtual Memory (RPVM) system [CS93, CRRS93] promotes theextension of virtual memory to support a Recoverable-Persistent Update (RPU) model forrealizing a wide range of recovery services. Although the model essentially supports a mecha-nism for implementing persistence, the primary focus is on ensuring that the state of virtualmemory can be recovered. As such, RPVM is not a classic persistence mechanism and thereis no explicit pointer swizzling or address translation in the system. Instead, the database ismemory-mapped into the virtual address space using a Mach-equivalent of mmap.The RPU model de�nes mechanisms that control the propagation of virtual memorypages to stable storage. In particular, the system allows ush locks to be placed on virtualmemory pages. A ush-locked page is pinned in virtual memory and cannot be propagatedto the database.17 The model also de�nes page-ush before rules that specify a partial orderbetween two pages for propagation to the database. Page-ush policies are de�ned per databaseto guarantee that each database is in a recoverable-persistent state.RPVM is implemented by modifying the Mach 3.0 kernel to incorporate support forpage-ush policies. Speci�cally, user processes can add and remove both ush locks and page-ush before rules to specify the appropriate policies for a given database. The granularity ofaddress translation is not applicable because no swizzling is performed, while granularities ofaddress mapping and data fetching correspond to the entire database which is mapped intomemory in a single step.CricketCricket [SZ90] uses the memory management primitives supported by Mach to implementa single-level persistent object store. The primary strategy relies on Mach external pagerfacilities [You89] to locate and load the persistent data from the disk into memory. Cricketalso supports transparent concurrency control and recovery facilities.The basic architecture is distributed, with a centralized server that is the primaryinterface of clients for accessing the persistent object store on disk. The clients communicate17Note that pages are pinned in virtual memory, not physical memory; a ush-locked page can be paged outto swap space if necessary. 30



with the Cricket server via an RPC interface. The server, which acts as an external pager,treats the persistent store as a memory object18 and maps it directly into the client's virtualaddress space. The client can then access persistent data as if it were in virtual memory.Cricket does not implement any kind of pointer swizzling mechanism. Instead, it al-ways maps the database at the same range of virtual addresses such that all references areautomatically validated. This also means that the size of the database is restricted by themaximum address space supported by the operating system. The granularity of address trans-lation is obviously not applicable in this case, and the granularities of address mapping anddata fetching correspond to the entire database.DaliDali [JLR+94] is a storage manager optimized for main memory databases, that is, situationswhere the persistent store resides in memory. It does not perform any address translation, anduses memory mapping techniques to map database �les into the virtual address space of a userprocess. A collection of database �les forms a single database (i.e., a persistent object store).Persistent references are maintained through the use of database pointers. These aretypically represented by using a �le identi�er (for example, the full path to a database �le) andan o�set into that �le. The system also supports indirect references through the use of objectidenti�ers, also known as ItemIDs. Address translation is typically done in a �ne-grainedmanner as each database pointer is dereferenced. The virtual address is calculated by addingthe o�set to the base address where the corresponding database �le has been mapped,The granularity of address translation is typically a single pointer because of the use ofspecial database pointers. The granularity of address mapping is on the order of a database�le, since the entire �le is usually mapped into memory. Checkpointing and crash recoveryis implemented using either physical (data) logging or operation logging. The granularity ofcheckpointing in the usual case is in terms of predetermined checkpointing units (or chunks)as de�ned by the system.P3LP3L, developed by Suzuki et al. [SKT94], is a persistent variant of the C language. Thesystem introduces and describes the notion of reservation and residency in the context of objectfaulting. The term reservation refers to the action of reserving a local identi�er correspondingto a persistent identi�er in preparation for an upcoming load of the referent into memory whilethe term residency refers to the state of the referent, including information on whether thedata has been loaded from the persistent store. The latter is similar to residency checks thatare part of the pointer validity tests for most �ne-grained address translation mechanisms.P3L has been implemented by modifying the GNU C compiler to generate additionalcode at appropriate points in code. Address translation is performed at the granularity ofobjects|references to non-resident objects are translated into special surrogate values (similarto LOOM's lambda). The compiler automatically inserts extra instructions for reservation18Mach supports the abstraction of memory objects to allow external memory management in user-levelprocesses. 31



checking and incremental translation. The Exodus Storage Manager is used for underlyingpersistent storage, although a speci�c storage manager is not dictated by any design choice ofthe system.[SKT94] presents a performance comparison between the software-only approach ofP3L and several other systems, including pointer swizzling at page fault time, using the OO1database benchmark. The results show that coarse-grained address translation is generally su-perior to other approaches in almost all situations. The only variation where P3L outperformspointer swizzling at page fault time is a non-standard benchmark traversal where all localityin the data structures has been eliminated arti�cially. This result, however, is not surprisingbecause coarse-grained address translation techniques implicitly rely on locality of referenceto amortize the higher costs of faulting and swizzling entire pages.2.7 ConclusionsThe primary goal of this chapter was to identify the basic design issues that are importantwhen implementing a persistence mechanism. As part of this exercise, we provided a basicde�nition of persistence and described the di�erent types of persistence that are popularlyused and implemented in current systems. We believe that orthogonal persistence is the rightapproach, and our system is designed to be compatible with this approach.We have found that existing classi�cations are primarily concerned with address trans-lation mechanisms only, and do not approach the problem at the right level of abstraction. Webelieve that the fundamental issue is the granularity at which address translation is performed.As such, we have developed a new classi�cation scheme for persistent systems that is based ongranularity choices for the basic design issues, and described where our approach �ts into theoverall hierarchy. Identifying the fundamental design issues for implementing persistence isimportant and useful for understanding their impact on overall performance and exibility ofpersistent systems. By using granularity as the main factor, we have provided a general classi-�cation mechanism that is not constrained or unclear. We believe that the �ve issues identi�edin this chapter form a core set of fundamental design issues for implementing persistence.Our scheme is primarily a coarse-grained address translation mechanism, with fewspecial situations where it can be changed to �ner granularity. The coarse granularity allowsus to exploit existing hardware and reduce total overheads while maintaining compatibilitywith existing compilers and operating systems. On the other hand, �ne-grained schemes incursome basic costs that make them inherently slower overall, except in a few cases that alsorequire �ne-grained control over other mechanisms such as transactions, locking, etc.Finally, we have provided a survey of related work in the area of persistence imple-mentation in a variety of systems. We broadly divided this into two groups based on whetherthe persistence facilities are provided as part of the language implementation. Persistent pro-gramming languages such as PS-algol, E, etc. fall into the �rst category that contains specialpersistent languages. The other category includes mechanisms that are implemented outsidethe language (usually as a object code library), and take advantage of existing features of thelanguage, compiler and operating system to do their job.32



Chapter 3Pointer Swizzling at Page Fault Time3.1 IntroductionPersistent object stores are designed to manipulate large volumes of data by implementing vir-tual address spaces that are larger than hardware-supported address spaces. Early schemes forsupporting large virtual addresses on normal hardware (e.g., LOOM [KK83, Kae86], E [WD92],etc.) have typically incurred signi�cant overhead due to their use of traditional �ne-grainedaddress translation techniques.There are at least two basic approaches that are commonly used for implementinglarge address spaces in software. One is to use an object table and indirect all object referencesthrough the object table by translating object identi�ers into table o�sets as objects are loadedinto memory. Untranslated object identi�ers can be marked as such and translated lazily (asnecessary). The second approach is called pointer swizzling|rather than using indirect refer-ences through an object table, object identi�ers are converted into actual hardware-supportedaddresses (that is, virtual memory pointers) in an incremental fashion.In this chapter, we describe our approach which is a variation on the basic pointerswizzling mechanism. Conventional pointer swizzling schemes perform the translation onlywhen the running program tries to use a particular persistent pointer. As part of the translationprocess, the object is loaded into virtual memory if it is not already present. Unfortunately,translating individual pointers may involve checking each pointer at each use to determine ifit is a valid address, thereby increasing the overhead. Alternatively, it is possible to swizzlepointers in an object the �rst time the object is referenced [Mos92]. However, this approachalso requires that pointers are checked before each use to ensure that they are swizzled asnecessary.We would like to avoid these extra costs, so that programs that do not access persistentdata do not pay the cost of checking, and programs that do access persistent objects multipletimes do not incur additional costs at every access. Ideally, we would like this scheme tooperate e�ciently on standard hardware without requiring any special-purpose hardware suchas that of the MUSHROOM project [WWH87].Our approach, called pointer swizzling at page fault time (PS@PFT), is to load pagesinto virtual memory on demand, swizzling persistent pointers into normal hardware-supportedvirtual memory addresses at page fault time. Pointer swizzling at page fault time is a novel33



address translation mechanism that relies on standard virtual memory hardware to checkwhether referents are already in memory and to trigger swizzling as necessary. The schemeswizzles entire pages at a time, translating all pointers into corresponding virtual addresses;no extra hardware is required and there is no continual checking overhead because swizzledpointers can be dereferenced at normal memory speeds. Our strategy is based on exploitinglocality of access by amortizing the cost of swizzling over multiple accesses to the same data.In addition, we also take advantage of the fact that I/O costs are typically much higher thanswizzling costs so that swizzling an entire page as it is faulted in does not add signi�cantoverhead compared to the I/O costs for loading the page from disk.The remainder of this chapter is organized as follows. We start by discussing themotivation behind designing a page-wise address translation scheme (Section 3.2). Next, wedescribe the basic algorithm (Section 3.3) and briey discuss indirect costs of pointer swizzling(Section 3.4). Other related details such as handling of large objects (Section 3.5), addressspace exhaustion (Section 3.6), and issues regarding sharing and compatibility of pointer swiz-zling at page fault time (Section 3.7) are also described. Finally, we discuss �ne-grained andmixed-granularity address translation schemes in Section 3.8 before concluding in Section 3.9.3.2 MotivationPointer swizzling at page fault time is inherently a page-wise address translation scheme. Ourdecision to implement a coarse-grained scheme was motivated by several factors.A potential advantage of �ne-grained (pointer-wise or object-wise) address translationis the savings in I/O costs because typically only the data required by the application isloaded in. Since today's disks have high latencies, the argument about savings in I/O istruly applicable only when data is fetched from a remote host via a fast network instead of alocal disk. However, if the application has good locality and accesses most objects on a page,the advantage of �ne-grained loading and swizzling is quickly lost. Furthermore, althoughexperimental network protocols have achieved surprisingly good performance [TL93, vEBB95],most widely available current networks are still an order of magnitude (or more) slower, furtherreducing potential bene�ts of �ne-grained schemes.In addition to the I/O cost, the cost of maintaining meta-data for address translationis also likely to a�ect the performance of a �ne-grained scheme. Speci�cally, the table used tohold the mappings between persistent and virtual addresses is likely to get signi�cantly large.While page-wise swizzling requires only one entry per page in the mapping table, �ne-grainedswizzling will require one entry per object (or more likely, per pointer) thereby increasing thetable size.A larger table size a�ects the cost of the actual address translation; each time a per-sistent pointer is swizzled, the mapping table must be probed to check if a mapping alreadyexists, and a new one is created if necessary. Research in garbage collection techniques hasshown that typically 75-80% of the pointers in an application are likely to be unique [Wil97].This means that the mapping table lookup will also fail as often. As table sizes increase, thecost of probing (and inserting new mappings) also tends to increase, adding to the overallcosts of translation. In general, the table size and access characteristics coupled with addi-34



tional overhead associated with the translation itself can impact the overall performance of�ne-grained schemes.If most objects on a page are referenced by the application, �ne-grained schemes endup mapping and swizzling all those objects eventually, creating several entries in the table.In contrast, pointer swizzling at page fault time will create a single entry for the entire pageand swizzle all objects as the page is loaded into memory. Fine-grained schemes are thereforepreferable if the application references less than n% of the objects on the page, where n issome threshold whose exact value depends on factors such as object size, average number ofpointers in objects (and pages), mapping table implementation, etc.Compared to object-wise (or pointer-wise) address translation schemes, a page-wiseapproach allows additional exibility in the usual case. We can exploit the existing virtualmemory hardware and memory protection mechanism o�ered by most modern operating sys-tems. This makes our scheme compatible with stock hardware and o�-the-shelf compilers,without requiring any special features or support from the operating system.We believe swizzling at page fault time to be especially attractive because it scaleswell to systems with large main memories. As memories get larger, the average numberof instructions executed between page faults goes up; this should make the cost of pointerswizzling proportionally smaller. Conventional pointer swizzling schemes usually do not havethis property, because their checking and translation overheads are tied directly to the rate ofprogram execution.3.3 Algorithm DescriptionPointer swizzling at page fault time is a coarse-grained address translation scheme becausewe load and translate entire pages at a time. This is di�erent from other schemes with �nergranularity that load and swizzle either entire objects or individual pointers only. The basicapproach is incremental because pages are faulted into virtual memory only as required bythe application and address translation is done for an entire page when it is loaded from thepersistent store (on disk). Address translation involves translating pointers from persistent(long) format into actual hardware-supported virtual memory address (short) format.Any incremental faulting scheme must somehow detect references to objects in persis-tent memory,1 so that they can be loaded into virtual memory before being operated on. Wechoose to use existing virtual memory hardware and page-wise access-protection capability ofthe operating system for this purpose. This avoids continual overhead in software and workswell with modern operating systems on standard hardware.Our scheme relocates objects into virtual memory somewhat sooner than a straightfor-ward (software-only) pointer swizzling scheme because we load an entire page when any objecton that page is accessed. This allows us to preserve one essential invariant|the applicationis never allowed to \see" any pointers into the persistent address space. Pages containingpersistent pointers are access-protected so that when the application attempts to access sucha page, a trap handler is invoked to relocate the whole page from the persistent store into vir-tual memory. The trap handler also translates all persistent pointers in the page into transient1Recall that these residency checks are part of the general pointer validity checks described in Chapter 2.35



pointers, reserving address space for their referents as needed. The page is then unprotectedand the application may continue without further interruptions for accesses to objects on thatsame page.
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Figure 3.1: Bootstrap state for swizzlingFigures 3.1 through 3.3 illustrate the pointer swizzling at page fault time mechanism.When an application is given access to the persistent store, it can request pointers to one or afew special persistent roots that can be retrieved by name. These roots act as entry pointersinto the data stored in the persistent store. When a rooted object is requested by name, the�rst step is to relocate the page(s) that are referenced by the entry pointers. This allows theentry pointers to be translated into hardware-supported virtual address format so that theapplication can begin execution. Figure 3.1 shows this bootstrap state of our system. Note,however, that we do not actually relocate the page (page A in the �gure); instead, we simplyreserve and access-protect a page of virtual address space (page A0 in the �gure) withoutloading the data from the persistent store. The virtual memory address of the object is thenreturned as the entry pointer to the application.As the application attempts to dereference a pointer into an access-protected page(page A0 in our example), an access-protection violation is generated. We provide a handlerthat intercepts this violation, locates the corresponding page (page A in our example) inthe persistent store, and loads it into memory at the predetermined (reserved) location A0.Next, we convert all pointers from persistent address format into virtual address format tomaintain the aforementioned invariant. However, for all pointers to be swizzled correctly,their corresponding virtual memory address values must be known. Since all referents may36
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data from that page. Thus the page is \clean" from the application's perspective becauseit has not actually modi�ed any data on that page. However, the virtual memory systemconsiders the page to be \dirty" because the act of swizzling has modi�ed the page, even ifthe application itself may never do so. Unfortunately, in the usual case, the virtual memorysystem cannot automatically distinguish between modi�cations done by our system for pointerswizzling and those done by the application. We call this the mistaken-dirty-pages problembecause pages that are clean from the application's point of view are \mistakenly" marked asdirty by the virtual memory system.Note that the mistaken-dirty pages are not really an issue unless the application exhibitspaging behavior. When a page must be evicted from main memory, the virtual memory systemhas two choices. If the page is clean (i.e., there exists an unmodi�ed copy on disk), then itcan simply be discarded. On the other hand, if the page is marked dirty, it must �rst be pagedout (i.e., written to the backing store) before it can be discarded. In the current scenario, itis obvious that the mistaken-dirty pages must be paged out by the virtual memory systembefore they can be evicted from memory.Under certain conditions, the page-outs for mistaken-dirty pages may be consideredunnecessary because the corresponding data already exists in the persistent store, albeit in anunswizzled form. Instead, the memory can be reclaimed simply by discarding the data andremoving the virtual-to-physical mapping for the page. The virtual address space for the pagemust still be retained (and reprotected) so that future accesses to the page will be interceptedby the normal swizzling mechanism and will cause data to be reloaded from the persistentstore. In essence, we are \paging" from the persistent store rather than from local swap space.Narasayya et al. [NNM+96] originally raised the issue about swizzled pages that areerroneously marked as dirty by the virtual memory system and the corresponding page-outsthat are unnecessary if paging from the persistent store. They classi�ed it as the virtualmemory overhead of pointer swizzling resulting from the cost of additional actions necessaryfor pages that are mistakenly considered dirty by the virtual memory system.3.4.2 Is it a Bug or a Feature?Although the issue with mistaken-dirty pages appears to be a major problem at �rst glance,we argue that there are other factors related to the general con�guration that contribute tothe ultimate classi�cation of this issue as a problem or as expected behavior. We considerthree di�erent con�gurations in this context:1. In a traditional relational database-style setup, there are one or more dedicated databaseservers, typically con�gured with large amounts of main memory. If the persistent storeis maintained on such well-equipped servers, the mistaken-dirty pages are indeed a prob-lem because the server-side caching mechanism|designed explicitly for such use|is notbeing exploited.2. Another con�guration is where the persistent store is on local storage, that is, there areno servers or networks involved. In this case too, the mistaken-dirty pages are undesirablebecause it is unnecessary to have two copies|one in the persistent store and the otherin the backing store|of a clean page. 40



3. Finally, the third con�guration is where the persistent store is maintained on a remote,centralized �le server that is explicitly designated for �le service, and normal applicationsare not allowed to page o� that server. This is an important kind of situation for whichthe current implementation of our persistent object store is designed as described belowin our observations on client caching.3.4.3 ObservationsWe have argued that the \problem" with mistaken-dirty pages is not always a problem depend-ing on the con�guration as well as application usage patterns. We now make some importantobservations about the basic issues; these observations indicate that, (1) the problem is notas bad as it seems at �rst glance, (2) it is not a fundamental shortcoming of the pointer swiz-zling approach, and (3) the default behavior is often the intended behavior for most normalapplications that use our mechanism to incorporate basic persistence.Onetime Costs. The �rst observation is to note that the costs related to unnecessary page-outs and mistaken-dirty pages are not continual costs; rather, they are only onetime costsfor every such page. That is, a swizzled page is considered dirty by the virtual memory onlythe �rst time it is loaded from the persistent store and swizzled. If it is referenced again afterhaving been paged out once locally, the virtual memory system will load it in from the swapspace and no swizzling would be necessary. As such, the page is now marked clean and willnot need to be paged out before it can be evicted. In other words, the page has e�ectivelybeen \cleaned" by the virtual memory system because it was paged out once.E�ect of Locality and Paging. The mistaken-dirty-pages problem is strongly tied to thelocality characteristics and paging behavior of the application. If there is no paging duringapplication execution, there is obviously no additional overhead because the virtual memorysystem does not need to evict any pages. The mistaken-dirty pages are harmless in this case,and will be reclaimed by the operating system at the end of program execution. The other endof the spectrum is when the working set of an application is much larger than the available mainmemory. In this case, we expect the overall performance to be dominated by heavy pagingbehavior, and the onetime cost of page-outs due to mistaken-dirty pages will only be a smallfraction of the overall paging costs. Finally, the middle of the spectrum is characterized by lightto moderate paging; this is the least favorable for pointer swizzling because the unnecessarypage-outs are likely to be a larger fraction of the overall paging costs depending on the accesscharacteristics of the application and the working set size. Further research, including detailedstudies using actual applications, is necessary for quantifying these costs in general.Client Caching. The �nal observation is about the importance of client caching in the basicrun-time environment. One can imagine a situation where it is cheaper to page o� the localswap space instead of using the persistent store. For example, if the persistent store resides ona centralized �le server across a (slow) network, the costs of local paging may o�set the costsof loading a page from the persistent store and swizzling it. Furthermore, it is possible thatcentralized �le servers are con�gured to prohibit general paging. Thus in situations where local41



paging is preferred over paging from the persistent store, page-outs due to the mistaken-dirtypages are typically not an issue because those pages would have been written to local swapspace regardless of whether they were swizzled or not.We have designed a persistent object store, the Texas Persistent Store (Chapter 4),to incorporate persistence in normal applications, not just database-style applications. Asstated earlier, in a traditional database context, there are dedicated servers with large amountsof main memory for improved performance from server-side caching. However, in a normalcomputing environment, the con�gurations are often very di�erent. Texas is implemented asa library archive; it provides an interface to allow applications to manipulate persistent objectstores that may be stored remotely (e.g., on an NFS �le server).File servers are commonly centrally administered to provide reliable �le service, notto act as servers that provide backing storage for virtual memory on clients. In fact, inmany environments, paging o� a central �le server is not allowed.3 If Texas were to avoidthe mistaken-dirty-pages problem by evicting pages to the persistent store, and the persistentstore were NFS-mounted from a central server, this would amount to paging o� the server.Thus the current approach of client-side local caching is the right one in many situations. IfTexas were to do otherwise by default, applications would unintentionally violate server usagepolicies (and possibly a�ect general network performance) simply by linking against the Texaslibrary.4 Of course, if the persistent store is stored locally or if the user has a right to use adedicated server, client-side caching is not the best approach.3.4.4 DiscussionIt is obvious that the mistaken-dirty-pages problem and the associated page-outs are de�-nitely a source of additional overhead for some con�gurations, a�ecting overall performancedepending on factors such as memory size, locality characteristics, etc. It must be emphasized,however, that these are not fundamental costs of the pointer swizzling at page fault time tech-nique. Instead, we classify these costs as indirect costs because pointer swizzling is indirectlyresponsible for them due to its interactions with the virtual memory system. Depending onoperating system features that are available, the mistaken-dirty-pages problem can be solvedin several ways. We briey sketch some of these here; Chapter 7 contains further discussionabout interactions between pointer swizzling and virtual memory management. Of these solu-tions, the most desirable ones usually require features that are currently not available on mostproduction operating systems. However, the most portable solutions require only the abilityto mount a new �le system that is designed to manage the paging for the persistent store.An obvious solution is to not do pointer swizzling at all, following an approach similarto the one used by systems that directly map the entire persistent store in memory [SZ90].However, this usually limits the amount of persistent data that can be accessed at one time.More importantly, it a�ects portability because the same mappings and virtual address rangescannot be used across di�erent operating systems. A slightly better alternative is to use anapproach similar to the one used in ObjectStore [LLOW91] and QuickStore [WD94]; speci�-3Our own environment is an example of this situation.4Systems administrators typically tend to frown upon software that arbitrarily changes the applicationpaging behavior and adversely a�ects general performance in networked environments.42



cally, this approach swizzles a page only if it cannot be mapped at the old address. However,this approach still has limitations in the general case, and does not resolve the basic problem.Narasayya et al. [NNM+96] suggest a special system call to clear the dirty statusbit of a page. While this is a good idea, it can be generalized to implement an extendedprimitive that can communicate a variety of information from an application to the virtualmemory system. An even better approach is to modify operating systems to support externalmemory management mechanisms. Operating systems that support such models already exist(e.g., Mach [BKLL93], and L3/L4 microkernels [Lie95]) and can be exploited. For example,Mach supports external pagers which can be used as pointer swizzling servers to swizzle pagesbefore loading them into memory so that they appear clean to the virtual memory system.Another solution that does not require external memory management support or otherkernel modi�cations is based on exploiting the virtual �le system (VFS) and vnode interfaceprovided by most operating systems [Vah96]. Using this interface, a special \�le system"can be implemented to handle the paging for a given persistent store; this �le system canbe designed to handle the pointer swizzling mechanism such that the virtual memory systemonly receives clean, swizzled pages thereby avoiding the mistaken-dirty-pages problem. Weelaborate on this solution further in Chapter 7.Ultimately, the righteous solution is to improve operating system implementations toprovide a better separation of concerns between components such as address mapping andvirtual memory management. Further discussion about this and other related issues is deferreduntil Chapter 7.3.5 Handling Large ObjectsThe description of the basic algorithm for pointer swizzling at page fault time implicitly as-sumed that objects were smaller than a virtual memory page, and one or more objects �ton a single page. A potential problem in our scheme is the need to ensure that if an objectcrosses page boundaries in the persistent store, the corresponding pages must be adjacent inthe transient virtual memory as well. If an object straddling a page boundary is not relocatedas a contiguous object, indexing to access its �elds will not work properly.5 We resolve theproblem of large objects by handling them slightly di�erently; as many pages as necessary to �tthe large object are reserved when any page of the object is faulted on the �rst time, but onlythe page that was accessed is loaded into memory. In other words, address space is reservedfor the entire object, but only parts of the object that are referenced by the application arefaulted in. Lazy copying of data is particularly helpful here|although address space must bereserved for the whole object, there need not actually be any physical memory (RAM or disk)used for unreferenced pages.To support incremental copying/faulting of large objects, the language implementationmust support operations for locating object boundaries and maintaining mapping tables totrack pages that belong to large objects. These requirements are similar to those of garbagecollected systems that must perform page-wise (or \card-wise") operations [AEL88, WM89]5An example of such an object would be a large array which spans multiple pages, even though the size ofeach individual element may be smaller than a page. 43



within the heap. There is no major di�culty supporting such operations e�ciently for lan-guages like Lisp or ML; slightly conservative versions of these schemes will work well forlanguages with derived pointers and (limited) pointer arithmetic, in much the same way thatconservative garbage collectors operate with languages like C or C++ [BW88]. The main mod-i�cations are to the allocation and deallocation routines, which must provide headers and/orgroupings and/or alignment restrictions to allow objects to be identi�ed.Large objects still pose a potential problem for our system in terms of exhaustion ofvirtual address space. If a page is touched and it holds pointers to several large (multi-page)objects, address space must be reserved for all of those objects' pages, even if they are nevertouched. Programs that deal with many large objects may therefore bene�t from a largerhardware address space by decreasing the frequency of address space reuse. While we thinkthat this is unlikely to be a serious problem for most applications on most machines, it is stillworth considering. As discussed in Section 3.7, it is possible to integrate machines that requirelarge hardware addresses with those that do not, for sharing of most data between them.3.6 Avoiding Address Space ExhaustionA potential problem with the basic scheme is that the transient memory could �ll up withrelocated pages that are used for a while, and then not used again for a long time. Thesepages could �ll up the virtual memory, causing excessive paging. This is actually not muchof a problem because the process of swizzling is nearly orthogonal to issues of levels in thestorage hierarchy|an inactive page can still be paged out to backing store as in normal virtualmemory. It may be paged to swap space temporarily, or it may be unswizzled and evictedback to the persistent store.The real problem, then, is not the exhaustion of hardware memory, but the exhaustionof the hardware-supported virtual address space. As mentioned in previous sections, this is notjust a problem for programs that actually reference millions of pages, because touching onepage may cause reservation of several pages of the address space. In the worst case, a pagecontains nothing but pointers may be referenced, causing reservation of as many pages as thereare pointers|in our current system, about 500 times as many pages may be reserved as areactually touched. While this is unlikely for most programs, it is conceivable and in fact rathernear-fetched|pages holding multi-way index tree nodes may approximate the worst case.To avoid exhausting the virtual address space, we have three strategies. The �rst isto have smaller pages or to reduce the e�ective page size, and slow the rate of address spaceuse. Since this strategy may not be entirely e�ective, we have also devised an algorithm forreclaiming virtual address space incrementally and reusing it. Finally, we also describe waysto implement �ne-grained and mixed-granularity schemes which may be useful in situationswhere the programmer has more control over the data structures.3.6.1 Smaller Page SizesSince rate of address space consumption is directly proportional to number of objects andpointers in a page, it is obvious that smaller page sizes would favor our scheme by reducing44



the number of pointer that are swizzled. There are many ways in which page sizes can bereduced; we discuss some of these below.We can reduce the e�ective page size by only using part of each virtual page whenallocating objects with large numbers of pointers. For example, if we only use one fourth ofeach 4KB page, we reduce the fanout by a factor of four. A naive implementation of thisstrategy would be very wasteful, however, so it is desirable to avoid using actual RAM anddisk storage sparsely. A better strategy is to only use a fraction of each virtual page, butarrange the fragments in a complementary pattern so that several virtual pages can share aphysical (RAM or disk) page. For example, suppose we wanted to implement 1KB fragmentsof 4KB pages; we could map four virtual pages to a single physical page, and use a di�erentquarter of each virtual page for data. While the physical page as a whole would have fouraliases (virtual page numbers), the non-overlapping pattern of allocation would ensure that noobject (or cache block) was actually aliased.This solution is not entirely satisfactory for two reasons. First, it does not deal withlarge objects very well. Second, it wastes little or no physical storage, but decreases thee�ectiveness of translation lookaside bu�ers|each partially-used virtual page requires its ownvirtual-to-physical page mapping in the virtual memory system. While it defers the exhaustionof the address space in the sense of delaying the discovery and swizzling of pointers, it actuallyincreases total address space usage (in the long run) by decreasing the usable size of eachvirtual page.If the hardware and/or operating system provide a facility for sub-page protections,it would be possible to fault in full pages but only swizzle partial pages, thus reducing theamount of new address space reserved. Using sub-page protection produces the same e�ect assmaller page sizes in terms of address translation; the whole page must still be loaded in the�rst time it is faulted on. We defer further discussion of this issue until Chapter 7.3.6.2 Address Space ReuseAn easy approach for dealing with the exhaustion of the address space is simply to occasionallyevict all pages from virtual memory, throw away the existing mappings, and then begin faultingpages in again.6 Pages that are no longer in use will not be faulted in again, but the currentworking set will be restored quickly. Once the new mappings have been built, pages (of addressspace) from the old mappings that are not present in the new mappings can be reused.Unfortunately, this method incurs unnecessary and bursty tra�c between the transientmemory and the persistent store when mappings are rebuilt because the working set is faultedout and immediately faulted back in. To avoid this, we take advantage of the fact that addresstranslation and data caching are essentially orthogonal. We do not really have to write data outto reclaim the corresponding pages of the virtual address space. Evicting pages from virtualmemory is easy; clean pages can simply be discarded, and dirty pages can be unswizzled andwritten back to the persistent store.6Note that we cannot just evict a page from the virtual address space, because we do not keep track ofpointer assignments|any page that is in the virtual address space must be assumed to have pointers into itfrom other pages in the address space. Therefore, we cannot reuse that page until we rebuild the mappings|wehave to �rst traverse the graph of pointers and rebuild the mappings to �nd out which pages are reclaimable.45



Rather than actually writing everything out, we can simply invalidate and incrementallyrebuild the virtual memory mappings. That is, we \pretend" to write out all of the data, butwe leave it cached locally, and just access-protect the pages. We can then incrementally faulton them to build a new set of mappings. If a page is faulted on and it is still in local storage(RAM or disk), so much the better|its pointers can simply be reswizzled according to thecurrent mappings, in much the same way as when the page was originally faulted in. The\obsolete" mappings could be consulted, and could even be re-used in many cases. (If a pageis not dirty since it was faulted into transient memory, then it can contains no pointers intopages that it did not previously contain pointers into.)Reclamation of pages can begin after the application has run a while, to recreate orrevalidate all the mappings of its current working set. Candidates for reclamation are pagesthat have not been referenced since the mass invalidation, and which are not directly reachablefrom pages that have been. The reclamation policy should probably favor evicting pages thatare only directly reachable from pages that have not been touched for a long time. To increasee�ciency in systems where page faults are expensive, the virtual memory system's recencyinformation might be consulted (if accessible via the operating system), and the most recently-touched pages could be assumed to be part of the current working set. These pages would havetheir addresses recomputed or revalidated immediately (rather than being access-protected)to avoid most of the urry of access-protection faults immediately after the mass invalidation.Note that address space reuse is not implemented in our system yet|we currently haveno applications requiring it, but expect to in the future.3.6.3 Fine-grained and Mixed-granularity TranslationThe last strategy for dealing with address space exhaustion is to use �ne-grained (pointer-wise)address translation mechanism for speci�c data structures that have high fanout. A mixed-granularity scheme (that is, coarse-grained address translation by default, and �ne-grainedaddress translation for selected data structures) should provide most of the bene�t withoutmuch additional overhead.We have implemented �ne-grained address translation by using the C++ smart pointeridiom [Str87, Ede92b]. Smart pointers allow implementation of pointer-wise address translationthat behaves well with the standard page-wise pointer swizzling scheme without requiringadditional hardware support. Further details about mixed-granularity address translation arediscussed in Section 3.8.3.7 Sharing and CompatibilityPointer swizzling at page fault time can be used as a general purpose reconciliation layerbetween distinct systems at little performance cost. For example, it can be used to supportdata formats that allow sharing of data between machines with 32-bit and 64-bit addressing. Ofcourse, applications that truly require a huge at address space (for example, applications thatneed at array indexing into multi-gigabyte arrays) cannot be executed on 32-bit machines.Sharing pages across nodes in a distributed system would not be costly; in a straight-forward scheme, pointers could be unswizzled on transmission and re-swizzled according to the46



prevailing mappings on the receiving machine. This cost would probably be small relative tothe basic trapping and messaging costs in a shared virtual memory. Also, the costs of pointerswizzling could be optimized away in those cases where it is not needed. In a network of 64-bitmachines where a larger address space is unnecessary, pages could be permanently assigned tothe same virtual addresses on all nodes. Data could then be shared in a \preswizzled" format,with no translation costs whatsoever.Pointer swizzling at page fault time has a signi�cant advantage in that it can serve asa reconciliation layer to resolve conicts between di�erent address spaces in a heterogeneousnetwork containing machines with di�erent hardware word sizes. Even in a world of purely 64-bit hardware, this is very desirable. For example, consider the case of merging two local-areanetworks, each with its own at shared address space (a la [CLLBH92]). Pointer swizzling canbe used to resolve conicts between address spaces without an agonizing renaming process|byits very nature, pointer swizzling at page fault time allows di�erent machines (or sub-nets) tomap the same data to di�erent local virtual addresses. Therefore, it requires no clairvoyanceon the part of system administrators to ensure that conicts do not arise between systemsthat might eventually be merged, e.g., when an organization is restructured or one companyacquires another.Finally, another remaining concern is the complexity added by having the memorysystem rely on ability to locate pointer �elds within heap data. We believe this to be a verysmall cost; as discussed in Chapter 4, our interface to C++ does not require modifying thecompiler at all. True \higher-level" languages (e.g., Smalltalk, Ei�el, Modula-3) would be eveneasier to interface with the memory system.3.7.1 Data Formats for Sharing across MachinesFor compatibility across di�erent machines, it may be desirable to have a single data formatthat can be used, irrespective of the address word size of the machine operating on the data.This is particularly attractive for a shared persistent store or a distributed virtual memory.It is easy to accomplish this by using pointer swizzling to adjust pointer sizes. When pagesare transferred from one machine to another, it is only necessary to translate the pointers ina page into the native format of the receiving machine.Pointer swizzling only requires that it be easy to �nd the pointers in a page, and thatit be easy to convert a large persistent pointer into the hardware-supported format. This isdone by translating the high order bits (page number) to the shorter bit pattern of the virtualpage number, and adjusting the low-order bits that represent the o�set within the page. Thesimplest way to ensure this is to have the persistent data format be the same as the transientformat, so that the o�set part of a pointer does not change at all. This can be done for multiplepointer sizes by simply leaving enough room for the largest hardware-supported pointer size,whether it is needed on all machines or not. So a 64-bit pointer �eld can be used on 64-bitmachines, and also on 32-bit machines|but only half of the �eld is used for transient pointerson 32-bit machines. The other half of the �eld goes to waste, but this space cost is relativelysmall, especially for languages such as C/C++ because most �elds are not pointers.This is similar to the approach used in the Commandos [MG89] operating system,where object identi�ers are used on disk, but are swizzled to actual pointers when data is47



loaded into memory. However, Commandos does not use page-wise swizzling and incurs highoverhead in checking for unswizzled pointers. Using object identi�ers rather than persistentaddresses also makes translations more expensive.3.7.2 Linking to Existing CodeBecause pointer swizzling at page fault time requires no changes to objects' data formatsor the code that manipulates them, it allows swizzled and unswizzled objects to be usedfreely in the same programs, with only a few restrictions on how they may interact. Asdiscussed in Chapter 2, we use pointer swizzling at page fault time to implement orthogonalpersistence [AM95].The orthogonal persistence model allows both transient and persistent objects to betreated in exactly the same way. This allows existing code, typically object code libraries, tobe linked with an application without requiring any recompilation, as long as these libraries donot need to create persistent objects. Also, transient objects may hold pointers to persistentobjects, and vice versa, as long as they follow a few simple rules. As persistent objects are savedto the store, all references to transient objects from those persistent object become \stale,"and the system must ensure that such references are cleared before the persistent object canbe accessed again.3.7.3 Interfacing with Languages and CompilersWhile pointer swizzling at page fault time is obviously applicable to languages like Lisp andSmalltalk that use tagged pointers, it can also be used for strongly-typed languages such asModula-3, ML, and (with slight restrictions) C or C++. The main restriction for C and C++is the avoidance of untagged unions with pointers in the variant part. Untagged unions anywayare not very attractive in C++ because of its object-oriented features. The success of conser-vative garbage collectors shows that most C/C++ programs require little or no modi�cationto meet the necessary constraints.Unfortunately, conservative pointer identi�cation|as done for conservative garbagecollectors [BW88]|is not su�cient for pointer swizzling. Instead, precise information aboutobject layouts is necessary at run time to accurately locate and swizzle pointers. Thus there isa need for a mechanism that facilitates run-time type description (RTTD) rather than simplerun-time type identi�cation (RTTI), the latter being designed more towards supporting queriesabout language-level information. Chapter 6 describes the design of our RTTD mechanism infurther detail, along with a description of our implementation for C++. We use the debugginginformation in object �les to extract the necessary object layouts. This allows us to interfacewith existing compilers since the format of debugging information is typically independent ofboth the source language and the compiler.We have implemented pointer swizzling at page fault time for C++ in the Texas Per-sistent Store (Chapter 4) using existing o�-the-shelf compilers. We use RTTD in conjunctionwith allocator modi�cations to maintain information about object layouts and swizzle pointersin heap-allocated persistent data structures. 48



3.8 Fine-grained and Mixed-granularity TranslationPointer swizzling at page fault time usually provides good performance for most applicationswith good locality of reference. However, certain applications that exhibit poor locality ofreference, especially those with large sparsely-accessed index data structures, may not producebest results with such coarse-grained translation mechanisms. Applications that access bigmulti-way index trees are a good example; usually, such applications sparsely access the indextree, that is, only a few paths are followed down the tree from the root. If the tree nodes arelarge in size and have a high fanout, the �rst access to a node will cause all those pointers tobe swizzled, and possibly reserve several pages of virtual address space|most of this swizzlingis probably unnecessary since only a few pointers will be dereferenced.The solution is to provide a �ne-grained address translation mechanism which translatespointers individually, instead of doing it a page at a time. Unlike the coarse-grained mechanismwhere the swizzling was triggered by an access-protection violation, the translation of a pointermay be triggered by one of two events|either when it is \found"7 or when it is dereferenced.There are many ways of implementing a �ne-grained (pointer-wise) address translationmechanism. We have selected an implementation strategy that remains consistent with ourgoals of maintaining portability and compatibility with existing o�-the-shelf compilers, by us-ing the C++ smart pointer abstraction [Str87, Ede92b]. In this section, we �rst briey explainthe smart pointers abstraction and then describe how we use smart pointers for implementing�ne-grained translation in Texas. Finally, we discuss how both �ne-grained and coarse-grainedschemes can coexist in a single application to create a mixed-granularity environment.3.8.1 Smart PointersA smart pointer is a special C++ parameterized class such that instances of this class behavelike regular pointers. Smart pointers support all standard pointer operations such as derefer-ence, cast, indexing etc. However, since they are implemented as C++ classes with overloadedoperators to support these pointer operations, it is possible to execute arbitrary code as partof any such operation. A smart pointer class declaration is typically of the following form:template <class T> class Ptr{ public:Ptr (T *p = NULL); // constructor~Ptr (); // destructorT& operator * (); // dereference via `*'T *operator -> (); // dereference via `->'operator T * (); // cast operator (cast to `T *')...};Given the above declaration of a smart pointer class, we can then use it as follows:7A pointer is \found" when its location becomes known. This is similar to the notion of \swizzling upondiscovery" as described in [WD92]. 49



class Node; // assume previously definedNode *node_p; // regular pointer to Node objectPtr<Node> node_sp; // smart pointer to Node object...node_p->some_method(); // invoke method via regular pointernode_sp->some_method(); // invoke method via smart pointerIt is obvious from the above code fragment that the declaration of a smart pointer is di�erentfrom that of a regular pointer, but the usage is identical.Note that we have only shown some of the operators in the declaration of the smartpointer above. Also, we avoid describing the private data members of the smart pointer becausethe interface is much more important than the internal representation. In other words, it is onlynecessary to ensure that a smart pointer instance will support all standard pointer operations;it does not matter how the class is structured as long as the interface is implemented correctly.In fact, as will be clear from our discussion about variations in �ne-grained address translationmechanisms, the smart pointer will need to be implemented di�erently for di�erent situationsand implementation choices.Smart pointers were originally used in garbage collectors to implement write barri-ers [Wil92, Wil97] so that pointer updates by the application (also called the mutator) can betracked easily, allowing the garbage collector to do its job. However, smart pointers are alsosuitable for implementing address translation for persistence; the overloaded pointer derefer-ence operations (via the \*" and \->" operators) can be implemented to translate persistentpointers into transient pointers as necessary.Smart pointers were designed with the goal of transparently replacing regular pointers(except for declarations), and providing additional exibility because arbitrary code can be exe-cuted for every pointer operation. In essence, it is an attempt to introduce reection [KdRB91]into C++ for builtin data types (i.e., pointers).8 However, as described in [Ede92b], it is impos-sible to truly replace the functionality of regular pointers in a completely transparent fashion.Part of the problem stems from some of the inconsistencies in the language de�nition andthe implementation dependence. Thus we do not advocate smart pointers for arbitrary usageacross the board, but they are useful in certain situations.3.8.2 Fine-grained Address TranslationWe are interested in building a �ne-grained address translation mechanism using smart point-ers. The idea is to swizzle individual pointers, instead of entire pages at a time, to reduce theconsumption of virtual address space for sparsely-accessed data structures with high fanout.By using smart pointers, the programmer can easily choose the data structures that are swiz-zled on a per-pointer basis, without requiring any inherent changes in the implementation ofthe basic swizzling mechanism.Note that although the pointers are swizzled individually, the granularity of data trans-fer is still units of pages, not individual objects, to avoid excessive I/O costs. Below we describe8C++ already provides limited reective capabilities in the form of operator overloading for user-de�nedtypes and classes. 50



at least two possible ways to handle �ne-grained address translation, and discuss why we chooseone over the other.Fine-grained SwizzlingA straightforward way of implementing �ne-grained address translation is to cache the trans-lated address value in the pointer �eld itself; we call this �ne-grained swizzling, because thepointer value is cached after being translated.9 We chose not to follow this approach becauseof a few problems with the basic technique.First, �ne-grained swizzling incurs checking overhead for every pointer dereference; the�rst dereference will check and swizzle the pointer, while future dereferences will only check(and �nd) that the swizzled virtual address is already available and can be used directly.A more signi�cant problem is presented by equality checks|when two smart pointers arecompared, the comparison can only be made after ensuring that both the pointers are in thesame representation, that is, either both are persistent addresses or both are virtual addresses.In the worst-case scenario, the pointers will be in di�erent representations, and one of themwill have to be swizzled before the equality check can complete. Thus a simple equality check,on average, can become more expensive than desired.One obvious solution is to make the pointer �eld large enough to store both the persis-tent and virtual address values as implemented in E [RC89, SCD90]. In the current context,the smart pointer internal representation could be extended such that it can hold both thepointer �elds. This technique avoids the overhead on equality checks which can be carriedout by simply comparing persistent addresses, without regard to swizzling or existence of thecorresponding virtual address.Unfortunately, a more serious problem with �ne-grained swizzling is presented by itspeculiar interaction with checkpointing. When a persistent pointer is swizzled, the virtualaddress must be cached in the pointer �eld (either E-style or otherwise), that is, we mustmodify the pointer. However, since virtual memory protections are also used to detect updatesinitiated by the application for checkpointing purposes, updating a smart pointer to cachethe swizzled address will clash with this approach, generating \false positives" for updatesand causing unnecessary checkpointing. We could, of course, work around this problem by�rst resetting the permission (i.e., the virtual memory protection) on the page, swizzling (andcaching) the pointer, and then restoring the protection on the page. However, this solution isvery slow on average, since it requires kernel intervention to change page protections and mostmodern operating systems are not optimized for such actions.Translations at Each UseAs described above, a simple �ne-grained swizzling mechanism is likely to have some unusualinteractions with the operating system and the underlying virtual memory system, thus re-ducing its attractiveness. However, we can slightly modify the basic technique and overcomemost of the disadvantages without losing any of the bene�ts.9The term \swizzling" implies that the translated address is cached|as opposed to discarded|after use.51



The idea is to implement smart pointers that are translated on every use and avoidany caching of the translated value. In other words, these smart pointers hold only the persis-tent addresses, and must be translated every time they are dereferenced because the virtualaddresses are not cached. Equality checks do not incur any additional overhead because thepointer �elds are always in the same representation, that is, they hold only persistent addresses,which can be compared directly.Pointer dereferences also do not incur any additional checking overhead. The costof translating at each use does not add a very large overhead to the overall cost, and isusually amortized over other \work" done by the application, that is, the application maydereference a smart pointer and then do some computations with the resulting target objectbefore dereferencing another smart pointer.The advantage of this approach is that since the translated address values are nevercached, the pointer �elds do not need to be modi�ed, and all unwanted interactions withcheckpointing and the virtual memory system are avoided. However, this approach is stillunsuitable as a general-purpose swizzling mechanism compared to the costs incurred by pointerswizzling at page fault time.3.8.3 Mixed-granularity Address TranslationIt is possible to implement a mixed-granularity address translation scheme that consists ofboth coarse-grained pointer swizzling and �ne-grained address translation. The interaction ofswizzling with data structures such as B-trees can be handled without compiler interventionthrough the use of smart pointer abstraction. The details of a �ne-grained address translationscheme are hidden by the abstraction, thus making the approach partially reective.In a system con�gured with only �ne-grained address translation, we would not need toexamine (and swizzle) any objects at page fault time, because we know that all data pointersare smart pointers that will be translated at each use. In other words, virtual memory accessprotections are not required to trigger the transfer of data (and pointer swizzling), since allpointer operations will be through user-de�ned code (via smart pointers). If access protectionsare never used, no access-protection violations will be generated by the application.A fully �ne-grained approach may, however, introduce a strange interaction with virtualfunction table (VFT) pointers in C++. Virtual functions are used for dynamic dispatch inC++; they are implemented by incorporating a VFT pointer �eld, that points to a table ofvirtual functions, in the object. A VFT pointer is inherently a pointer �eld, and thus it needsto be swizzled like other pointer �elds in the object. However, the di�erence is that it isa pointer into the code segment (instead of the data segment) and is also compiler-de�ned,which means that its representation cannot be changed by the user; in other words, we cannotimplement it via a smart pointer. Without using virtual memory access protections, it wouldbe impossible to detect use of the VFT pointer without special compiler-generated code. Wenow have conict with the default behavior of �ne-grained address translation that needs to beresolved somehow. In general, using a mixed-granularity approach, with �ne-grained addresstranslation used only for speci�c data structures will solve the problem with VFT pointers.
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3.9 ConclusionsWe have presented a novel address translation technique for supporting large address spaceson stock hardware, using only standard compilers and operating system features. Our page-wise approach is designed to take advantage of the fact that most applications exhibit spatialand temporal locality; we exploit this locality of reference in much the same way as a normalvirtual memory, gaining many desirable performance characteristics, especially given the trendtoward larger main memories. Swizzling at page fault time does not add signi�cant overheadbecause CPU speeds are much higher compared to disk speeds.The implementation uses conventional virtual memory hardware and the operatingsystem's memory protection facilities to check residency of persistent data and trigger addresstranslations as necessary. This avoids the need for any software checks which are likely to bemore expensive in general. There is, however, a one-time indirect cost associated with pointerswizzling due to its interaction with the underlying virtual memory system. Fortunately, thisis not a fundamental limitation of the technique itself, but rather an external overhead dueto lack of interaction with the operating system, and can be resolved with operating systemsupport.Pointer swizzling at page fault time is highly portable because it uses only standardfeatures supported by most modern operating systems. Furthermore, continual checking ofpointer format is unnecessary once a persistent address has been translated into a hardware-supported address format because the translated value is cached locally. Thus data accessproceeds at full memory speeds after the initial faulting and swizzling is completed. Theapproach is also compatible with existing o�-the-shelf compilers because no special code gen-eration is necessary to incorporate the address translation mechanism. The basic techniqueis a coarse-grained scheme because the default unit of translation is a virtual memory page.However, for situations where coarse-grained address translation is not appropriate (e.g., datastructures with poor locality characteristics), we have developed portable �ne-grained andmixed-granularity address translation schemes.We believe that pointer swizzling at page fault time has a wide variety of applications.As described in the next chapter, it can be used to provide a portable and e�cient persistencemechanism for mainstream languages such as C and C++, in essence providing support for64-bit (or larger) address spaces on standard 32-bit hardware. In general, it is also suitable asa reconciliation layer between otherwise-incompatible system components and abstractions.
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Chapter 4Design and Implementation of theTexas Persistent Store4.1 IntroductionTexas is a persistent storage system for C++, providing high performance while emphasizingsimplicity, modularity and portability. A key component of the design is the use of pointerswizzling at page fault time as the default address translation technique for implementingpersistence and large address spaces on standard hardware. In this chapter, we describe thebasic design and complete implementation details of the Texas persistent store.Texas is designed to support orthogonal persistence as its underlying persistence model.Our scheme is also compatible with reachability-based persistence, which can be implementedon top of our approach. Orthogonal persistence allows Texas to support standard o�-the-shelfC++ compilers which emit code in the usual way, without having to distinguish betweentransient and persistent objects. Using standard compilers also provides the added bene�t ofe�ciency and compatibility.The current implementation o�ers simple checkpointing capabilities and basic loggingmechanisms for storage management and data recovery. As described later in the chapter,these modules are independent of other parts of the system and can be replaced with betteralgorithms as necessary. Currently, the implementation allows a persistent store to be savedeither as a regular �le in the �le system or directly to a raw disk partition. A �le system ab-straction layer has been designed to allow advanced storage management and logging strategiesto change the underlying implementation transparently. Similarly, we have also implementeda virtual memory abstraction layer to simplify portability to di�erent operating systems.As discussed earlier, pointer swizzling at page fault time can be used to e�cientlysupport very large address spaces on standard hardware. We intend for Texas' addressingscheme to be extensible and scalable to networked systems where a single address space isused across many machines with large amounts of data apiece.11Despite the fact that we actually live in a hilly area, the name \Texas" is intended to suggest a large, atspace.
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4.2 Goals and FeaturesTexas has been designed with several speci�c goals and features in mind:� Portability Texas is compatible with o�-the-shelf C++ compilers and standard operat-ing systems. It requires only a minimal support from the operating system for virtualmemory protection and access-protection violation handling capabilities. Most modernoperating systems provide these features. In addition, Texas does not require any spe-cial system privileges; any user can link Texas with their application without superuserintervention.� Transparency Texas allows an application to access both transient and persistent objectsin the same way without distinguishing between them. In other words, persistent objectscan be manipulated by the same code that manipulates transient objects because per-sistent objects \seem" to reside in virtual memory. Thus if the client code does not needto distinguish between transient and persistent objects, it is not forced to do so. Thetypes of persistent and corresponding transient objects are \same," unlike other systemswhere persistence is implemented by deriving from a top-level \persistence" class andadhering to a speci�c interface for reading and writing objects.� E�ciency In most cases, access to persistent objects is as fast as access to transientobjects. The only overhead associated with persistent object access is the initial cost oftranslating persistent pointers into swizzled pointers when a page is brought into virtualmemory. All future accesses to a persistent object in memory occur at full memory speedwithout any additional checks. In addition, no overhead is imposed on access to transientobjects.� Robustness Texas uses simple logging techniques to provide checkpointing and crashrecovery facilities. The system is also designed to be compatible with advanced storagemanagement and logging facilities for achieving improved performance and exibility.� Scalability Repeated touches to a page incur no extra overhead in address translation,that is, once a page has been swizzled, it is unprotected so that all future accesses causeno further access-protection violations. In addition, the costs incurred at page fault timeshould decrease as memory sizes increase and thus the number of instructions betweenfaults increases.� Compatibility The implementation is designed to be compatible with existing code li-braries which can manipulate both persistent and transient objects alike. Recompilationis necessary only if the library needs to create persistent objects. Moreover, the userinterface is simple so that minimal source code modi�cations are necessary for an ap-plication to take full advantage of Texas' persistent storage and recovery facilities. Theaddress translation scheme can also reconcile data formats for sharing data betweenheterogeneous machines and/or merging distinct address spaces.� Modularity Texas is composed of a set of largely orthogonal modules, with address trans-lation, caching and checkpointing handled in nearly disjoint code. The system also55



contains abstractions for operating system interaction with respect to virtual memoryand �le system facilities. This has made development simpler, and facilitates easierexperimentation and enhancements.� Pay-as-you-go Costs Pointer swizzling costs are incurred only by programs that use thefeature, rather than by all programs. This parallels the usual policy of C++ languageimplementations|you only pay for features that you use.4.3 Basic DesignThe driving requirement for the basic design is to maintain simplicity and modularity in thesystem. To achieve this, Texas is divided into several modules, each designated with a speci�cresponsibility. However, note that several of the algorithms and their implementations arestraightforward, and could easily be replaced with modules that are better suited to speci�capplications. For example, although Texas currently supports only C++, it could easily beadapted for use with other languages by replacing some of the language-speci�c modules.
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Figure 4.1 shows the main modules of the system and their interactions. It is obviousthat only the language interface and the memory manager are language-dependent becausethey need to interact with the actual data objects in the application. In contrast, the cachingand storage/recovery management are done in terms of uninterpreted blocks of data. Currently,we have implemented a language interface only for C++, but it would be trivial to extend itto C by making minimal changes, especially because the memory manager would not requireany further modi�cations.Although the mapping and pointer swizzling module is independent of any speci�clanguage, it still needs to interact with the memory manager to locate data objects in memory.In addition, it also needs information about layouts of these objects at run time to locateand swizzle pointers. This kind of run-time type description (RTTD) is captured at compiletime and provided to the swizzling mechanism at run time via type descriptor records. Ourimplementation of the type descriptor generator is based on the use of debugging information,which is typically language-independent. Complete details about RTTD and our case studyimplementation for C++ are discussed in Chapter 6.It should be noted that the various modules shown in Figure 4.1 are designed to beorthogonal to each other. For example, the swizzling and mapping manager does not interactwith the storage and recovery manager except as speci�ed by the latter's published interface.This orthogonality allows easy replacement of speci�c modules without a�ecting other modulesor the rest of the system.4.4 Implementation DetailsWe have implemented Texas as a C++ library; client applications can be linked with thislibrary so that they can create and manipulate persistent objects using Texas' persistencemechanism. Texas is relatively small in terms of implementation|the code size is less than10,000 lines of C++ and the run-time footprint is only about 100KB, making it suitable forapplications that must operate with small memory constraints. The code has been ported to avariety of operating systems (SunOS, Solaris, Linux, Mach, Ultrix, and OS/2), and ports shouldbe possible to other modern operating systems such as Windows NT. Texas also works withthe GNU g++ compiler (for all Unix-like platforms), Sun C++ compiler (for SunOS/Solarisonly) and the IBM VisualAge compiler (for OS/2).In the remainder of this section, we describe implementation details about variouscomponents of the system and how they implement the features mentioned in Section 4.2.Note, however, that several of the algorithms are straightforward, and could easily be replacedwith other similar algorithms that are better suited to speci�c applications. Although Texas iscurrently implemented for C++, it can be modi�ed to adapt to other languages by replacingthe user interface (for languages such as C) and other modules such as the heap managementand run-time type description (for languages that are not similar to C/C++).4.4.1 Heap ManagementTexas allows applications to access multiple persistent stores, each with its own heap; inaddition, applications may also create transient objects on a normal transient heap. A naive57



memory manager would create separate heap areas for persistent and transient objects. Eachpersistent heap would start at some (di�erent) arbitrary address, and each heap would growand shrink independently. Obviously, this design requires an ad hoc static partitioning of aprocess' virtual address space, which may not be possible (or desirable) on di�erent platforms.Our memory manager avoids statically partitioning the address space and the unnecessaryrestrictions on the number of pages used for any particular heap.To avoid static partitioning limitations, our memory manager manages heap space asnon-contiguous sets of pages. A given page holds objects belonging to exactly one heap, butpages belonging to several heaps may be interleaved in any order in memory. Large objectsthat do not �t on a single page are allocated on contiguous pages to allow normal indexingand pointer arithmetic to work as expected; each of such pages is agged as being part of alarge object to ensure correct swizzling behavior.Like any heap allocation system, the Texas memory manager maintains data structuresthat record free heap space. Because transient and persistent objects cannot reside on the samepage, separate free lists are maintained for each heap. The free lists for persistent heaps arethemselves stored as data structures in the appropriate persistent store, so that free spacewithin partially-�lled persistent pages can be (re)allocated during subsequent program runs.Currently, Texas uses a segregated storage allocation policy for memory allocationof both transient and persistent objects. We describe the basic algorithm for this memorymanager and discuss abstractions that can be used to plug in an arbitrary memory managerinstead of the segregated storage allocation model.Algorithm DescriptionAs the name implies, a segregated storage allocator segregates the allocation of objects basedon some speci�c criteria. In our current implementation, objects are segregated on the basisof their size. A given virtual memory page is split into uniformly-sized chunks, each of whichholds a single object. Since it is possible to have an arbitrarily large number of unique objectsizes, the allocator maps di�erent sizes into a limited number of size classes to allow easymemory management. A size class is de�ned simply as a representation of a small range ofobject sizes; objects are allocated in free chunks of memory large enough to hold the actualobjects, but possibly with some wasted space if there is not an exact �t. Using this approach,an object of a given size is allocated in the page containing chunks that correspond to thatobject's size class.A typical scheme is to use size classes that are powers of 2 (for example, 2, 4, 8, andso on). We compute the size class for a given object size by �nding a number n such that thevalue 2n is the closest power of 2 that is higher than the object size. In other words, the sizeclass is derived by rounding up the object size to the closest value that is a power of 2 andthen computing the log (base 2) of that value. It is obvious that this approach will generatechunk sizes of 1 byte, 2 bytes, 4 bytes, 8 bytes, 16 bytes, 32 bytes, and so on2 correspondingto a powers-of-2 (2n) series starting at n = 0.2Note that very small chunk sizes (for example, 1 to 2 bytes) may not be suitable for actual allocation dueto memory alignment constraints and storage requirements for allocator meta-data.58



The above scheme works fairly well and is quite easy to implement in practice. Un-fortunately, it is also subject to potentially severe external fragmentation [RK68] because noattempt is made to split or coalesce blocks in order to satisfy requests for other size classes.However, there is a tradeo� between expected internal fragmentation and external fragmenta-tion. As the spacing between chunk sizes gets large, a larger number of di�erent object sizesfall into each size class, allowing space for some sizes to be reused for others. On the otherhand, using a powers-of-2 series is also likely to generate larger internal fragmentation as sizeclasses get bigger because more space is potentially wasted. To reduce some of the fragmenta-tion e�ects, we use two interspersed series for chunk sizes|the normal powers-of-2 (2n) seriesstarting at n = 0 and a powers-of-2-times-3 (2n�1 �3) series starting at n = 1. The resultingchunk sizes (in bytes) would then be 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, and so on, producing twiceas many chunk sizes compared to the typical approach, allowing some �ner granularity controlover object allocation.The free list for each heap is actually structured as a vector of separate free lists, one foreach di�erent size class. When an object must be allocated and the free list for the appropriatesize class is empty, new storage is allocated from the operating system to that heap, and isimmediately divided into uniform-sized chunks (corresponding to the required size class) thatare linked onto the free list. No special handling is required to allocate large objects becausethe size classes for the larger object sizes will automatically ensure that multiple pages areallocated as necessary.Splitting each page into uniform-sized chunks makes object identi�cation extremelyeasy. We only need to examine the header of the �rst object in the page; its size class|andthus the size class of all the objects on the page|can be determined from the header. Thealignment of objects' headers follows trivially. A special exception is the case of objects thatare too large to �t on a single page. Instead of recording the actual size class for such pages,each page is marked as being part of a large object and object boundaries are stored in aspecial table so that their starting addresses (and type descriptors) can be found.Allocator Abstraction LayerOur allocator expends little e�ort attempting to coalesce (or split) free blocks into larger (orsmaller) blocks although such coalescing and splitting could potentially a�ect locality andfragmentation. Simple segregated storage allocator can be made quite fast in the usual case,especially when objects of a given size are repeatedly freed and reallocated over short periodsof time. Since the policy does not coalesce or split free blocks, almost no work is done whenan object is freed, and subsequent allocations of the same size can be quickly satis�ed byremoving that block from its free list.In general, segregated storage policies are known to be prone to higher fragmenta-tion [Joh97]. However, we still chose to implement a memory manager based on this policyprimarily because study of memory allocation policies is not our research focus, and because weonly needed a fast implementation of a simple allocation policy. A desirable approach wouldbe to de�ne an allocator abstraction layer that speci�es the basic functionality required byTexas from a memory allocation policy. Given such a layer, it would be possible to replace theunderlying allocator simply by \plugging in" implementation of a di�erent policy that adheres59



to the interface of the abstraction layer.Since Texas uses a virtual memory page for most of the granularities of persistence(Chapter 2), the allocator must ensure that a given page belongs to a single heap only. Inaddition, the allocator must provide a mechanism to store the type information (Chapter 6)for every persistent object allocated.3 The memory manager requires that the allocator beable to locate this type information for an object using a pointer to (or to interior of) theobject. Finally, given some virtual memory page, it must be possible to �nd all objects thatexist on that page.Given the above abstractions, it would be easy to use an arbitrary policy (such as �rst-�t or best-�t) for memory allocation in Texas as long as the implementation of policy providesthe appropriate functionality dictated by the abstraction layer.4.4.2 CachingPointer swizzling at page fault time implements address translation on top of an abstractionof a conventional virtual memory; we exploit this fact to use the underlying virtual memory asa caching mechanism. Once a page has been loaded into virtual memory from the persistentstore, it may be paged out and paged back in again as necessary without intervention fromthe swizzling mechanism. That is, pages containing swizzled pointers may be paged in andout independently of the transfer of pages between virtual memory and persistent store.Texas does not explicitly manage physical memory; instead it relies on virtual memoryto do the caching in the usual way. While Texas does take advantage of the protection featuresprovided by a modern virtual memory system, it does not look beneath the virtual memoryabstraction per se|that is, it does not distinguish between pages cached in main memory(RAM) and in the backing store (on disk).This approach is appropriate for many applications such as typical CAD databases,or for simply replacing conventional �les in normal applications. Paging swizzled data locallyavoids unnecessary communication with the persistent store, and also avoids the (much smaller)cost of unswizzling and reswizzling pages. In other applications, it might be preferable to pagedirectly from the persistent store. This would avoid redundant storage of pages in both thepersistent store and the local disk's swap space. It would also reduce the possibility of dirtypages being paged out to backing store, only to be subsequently paged back in so that they canbe written to the persistent store.4 Naturally, evicting pages directly back to the persistentstore would be especially appropriate for diskless clients.Texas could easily be modi�ed to evict pages back to the persistent store, given controlover page-outs. One approach for achieving this is to use something similar to Mach's externalpager facility [BKLL93], but it would make the system somewhat more complex and lessportable. We will discuss this issue in detail in Chapter 7.It is also possible to implement the persistent store as a normal �le in the �le system(see Section 4.4.6). When using the virtual memory system for caching, it is important toavoid caching the persistent storage �le in the �le system cache. Once a page has been loaded3The current implementation uses a hidden header �eld in the allocator meta-data.4We believe this problem can also be addressed satisfactorily by writing dirty pages back to the persistentstore early, in e�ect \cleaning" them, as we will describe in Section 4.4.6.60



from the persistent store into the virtual memory, it is implicitly cached, and caching the samepage in a �le system bu�er is a waste of resources. Thus the persistent storage �le should bestored in an uncached area of disk to avoid this double caching.4.4.3 Virtual Memory Abstraction LayerWe have implemented all virtual memory interactions through an intermediate abstractionlayer, allowing us to abstract away the virtual memory facilities required by the system withoutgetting involved in the low-level details of how these facilities are implemented on di�erentoperating systems. This has greatly helped with the e�ort required to port Texas to multipleoperating systems, as well as to experiment with di�erent virtual memory primitives on asingle operating system.Texas requires minimal interactions with the underlying virtual memory system. Thebasic operations required by Texas are supported by most modern operating systems and areas follows:� ability to allocate a page of virtual address space,� ability to set and unset memory access protections (no access, read-only or read-write)on a virtual memory page,� generation of a prede�ned signal for an application's access-protection violations, and� ability to specify user-de�ned signal handlers to catch signals generated due to access-protection violations.The abstraction layer de�nes interfaces that allow Texas to communicate with the underlyingvirtual memory system without becoming involved with the actual implementation details.Chapter 7 contains a detailed discussion on various interactions of Texas and pointer swizzlingat page fault time with the underlying operating system.4.4.4 Run-Time Type DescriptionBy de�nition, pointer swizzling needs to know the exact locations of pointer �elds withinvarious persistent objects that are being swizzled. Traditionally, other run-time support sys-tems such as garbage collectors tend to use a conservative approach such that any value thatappears to be a pointer is assumed to be a pointer. Unfortunately, this is not su�cient forpointer swizzling techniques; precise information about pointer locations is required in orderto function (i.e., swizzle pointers) correctly.To solve this problem, it is necessary to have access to implementation-level information,such as object layouts, at run time so that pointer �elds can be identi�ed accurately. Therecently-introduced C++ Run-Time Type Identi�cation (RTTI) facility is not su�cient forthis because it only provides language-level information. Thus we have introduced a notion ofRun-Time Type Description (RTTD) facility which is designed with speci�c goals for providingimplementation-level information at run time. Chapter 6 provides the description of our RTTDapproach, including details about the C++ implementation used for Texas.61



4.4.5 Handling Virtual Function Table PointersThe most common implementation used for dynamic binding in C++ is via virtual func-tions [Lip91]. To minimize performance impacts of dynamic binding, virtual functions areimplemented via virtual function tables (VFTs). There is one VFT for every class that has atleast one virtual function, and a pointer to the appropriate VFT is stored in every object thatis instantiated for a class with virtual functions.This implementation only adds a few instructions of overhead (typically, an index intothe table and a load) for every virtual function invocation. However, it poses a challenge forpointer swizzling schemes, because VFT pointers usually reference executable code5 unlikenormal data pointers and therefore cannot be swizzled (or unswizzled) as usual.We have modi�ed our normal swizzling algorithm to adapt to virtual function tablepointers. The basic idea is to convert a VFT pointer into a pointer to a string representing the\name" of the corresponding table in the executable. Conceptually, this string is implementedvia a persistent object such that the converted VFT pointer will be handled automaticallyby the normal swizzling mechanism. In practice, we implement this by converting the VFTpointer into a index into a persistent table that contains names of all VFTs in the executable.The actual conversion is done by performing a lookup in a table that maps VFT addresses tonames and vice-versa. Swizzling a VFT pointer is the reverse process; we use the VFT nameto look up the corresponding address in the current executable and replace the index with theactual address.4.4.6 Disk Storage ManagementTexas allows a persistent store to be implemented either as a normal �le in the standard �lesystem or as a raw disk partition that is not explicitly managed by the �le system. We haveimplemented an abstraction layer that contains standard �le operations such as open, read,write, etc. for interacting with the underlying storage management module. This abstractionlayer makes porting to di�erent �le systems (with di�erent interfaces) relatively easy. Forexample, an interface to a raw disk partition can easily be implemented through the abstractionlayer such that the higher level code is completely unaware of the actual details.In the remainder of this section, we briey discuss some issues regarding storage man-agement in Texas. Chapter 8 provides further details into important issues related to storagemanagement for persistent object stores in general.Checkpointing and RecoveryWith a persistent store, the distinction between a conventional heap and �les is lost, and ex-plicit checkpointing must take the place of \saving changes to a �le." Texas, like any otheruseful persistent store, supports checkpointing and recovery. As with pointer swizzling, weuse virtual memory access protections to determine which pages are modi�ed by the applica-tion and save those pages to the persistent store; the actual checkpointing is triggered by aprogrammer-controlled language-level interface.5Typically, VFT pointers reference virtual function tables corresponding to a speci�c executable.62



Texas is most conducive to both no-undo/redo and undo/no-redo logging strategiesas described in [HR83]. Our current implementation uses a two-phase, write-ahead loggingmechanism to provide atomic checkpoints. We implement the no-undo/redo strategy as shownin Figure 4.2.
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Sub-page LoggingCoarse-grained page-wise pointer swizzling is attractive in most cases because it is designed toexploit spatial locality. However, for very short transactions or transactions with poor localitycharacteristics, page-wise checkpointing is likely to be ine�cient because it will save too muchunmodi�ed data|for example, a single write to a page during a transaction will cause theentire page to be written to disk with page-wise checkpointing.While our system is designed primarily for applications with relatively long transac-tions, such as typical CAD applications, we would like to provide support for small transactionsas well. Sub-page logging (as we originally proposed in [SKW92]) is attractive for short trans-actions because we can checkpoint areas of memory that are smaller than pages. Rather thanwriting out entire dirty pages, we write out only those parts of a page that have actuallychanged by \di�ng" against a clean copy of the page. In e�ect, we are trading CPU cyclesagainst disk I/O costs by expending CPU cycles to reduce the amount of data to be written.This is advantageous because of the huge disparity between CPU and disk speeds.Log-structured Storage SystemInstead of re�ning our simple write-ahead logging scheme, we can replace both the log and thepersistent storage �le with a log-structured storage system (LSS) that supports checkpointingand recovery both directly and e�ciently. An LSS is essentially the lower levels of a log-structured �le system [RO91]; and manipulates a single large uncached �le (typically, a rawUnix disk partition).In a log-structured store, the entire disk (or �le) is used as a log, and the log itself actsas the �nal repository of data pages. Blocks do not have a single \home" location on disk.Instead, logical blocks can migrate such that the \current" version of a block is simply the lastone written to the log. The blocks used for indexing information are also treated similarly. Allchanges to a �le are committed when the top-level indexing information is updated to pointto new versions of modi�ed blocks.4.5 ConclusionsWe have presented the design and implementation of Texas, our persistent storage systemfor C++ that uses pointer swizzling at page fault time as the primary address translationmechanism to support large address spaces on standard hardware. We enumerated some ofthe main goals and features of Texas that we strived for while designing and implementingthe system. Our basic design philosophy was to ensure that the system was divided intoindependent modules which interacted with each other using only the published interfaces.We have described some of the important details corresponding to our implementationof Texas. Among these, we discussed issues in heap management and caching, and the abstrac-tion layers that we implemented for interacting with the memory allocator and the underlyingvirtual memory system. The implementation of such abstraction layers is in line with thegeneral design philosophy which dictates use of orthogonal modules that are easily replaceablewith other similar modules that implement the same published interface. It should be noted64



that these issues, particularly the virtual memory caching, are simply implementation choicesand, as such, are independent of the address translation strategy.We also discussed various factors related to the �le system interaction and permanentstorage management. Speci�cally, we described logging techniques for implementing simplecheckpointing and recovery facilities in Texas. Although the current implementation incor-porates only simple write-ahead logging, advanced mechanisms such as sub-page logging arealso feasible and certainly not impossible to implement. However, we have not implementedadvanced storage management techniques in detail because our focus is on high-performanceaddress translation schemes. We briey discuss issues in storage management and also presentsome future research directions in Chapter 8.Although the implementation of Texas is only about 10,000 lines of C++ code, the sys-tem is fairly robust and has been used in real applications|both commercial and otherwise|for providing fast and inexpensive persistence for C++. We have ported the basic system toseveral di�erent avors of Unix, as well as to a non-Unix system (OS/2), and believe that itcan be easily ported to other modern operating systems with few technical obstacles.
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Chapter 5Performance of theTexas Persistent Store5.1 IntroductionThe previous chapters have presented the entire theory behind pointer swizzling at page faulttime and address translation in the Texas persistent store. We have noted that the overheadof Texas is likely to be very small compared to the I/O costs when data is being loadedinto memory from the persistent store, and zero when the data has already been loaded intomemory and there is no further faulting. In this chapter, we discuss various issues regardingthe performance of Texas and pointer swizzling at page fault time, and present results thatsupport our original assertions about the performance. We use the standard OO1 databasebenchmark [Cat91] with some minor variations as the workload for most of our performancemeasurements.Note that the OO1 benchmark is a synthetic benchmark designed speci�cally with thepurpose of measuring the performance of object-oriented database systems and persistencefacilities. However, OO1 and other similar benchmarks are not necessarily suitable for quanti-tative comparisons across di�erent systems because they have not been validated against realapplications in the domain represented by the benchmark. Instead, the results should be inter-preted as qualitative results about quantitative performance of real applications. Speci�cally,it is important to always remember that although the results are obtained empirically, theyare ultimately derived from a synthetic benchmark and are only as good as the mapping ofbenchmark behavior onto real applications. Further discussion on benchmarking limitationsis available in Section 5.8.Although OO1 is a crude benchmark and does not strongly correspond to a real appli-cation, we use it for most of our performance measurements for several reasons. First, OO1 issimple for measuring raw performance of pointer traversals (which is what we are interested in)and is fairly amenable to modi�cations for di�erent address translation granularities. Use of asynthetic benchmark (as opposed to a real application) is appropriate in this situation becauseour performance is very good in some cases (i.e., zero overhead when there is no faulting)and dependent on the rate of faulting (usually minimal overhead compared to I/O costs) forother cases. As such, crude benchmarking is the most practical way to measure performance66



of di�erent components of our system because it is easy to separate our costs from those ofthe underlying benchmark; this is usually more di�cult with a real application. Of course, ascautioned earlier, we must be careful to interpret the results in qualitative terms only.The rest of the chapter is organized as follows. Section 5.2 presents the experimentaldesign used for gathering the actual results, which are presented in Sections 5.3 through 5.6followed by a discussion in Section 5.7. As part of the overall performance results, we presentdata for benchmark runs on two popular operating systems|Linux (Section 5.4) and Solaris(Section 5.5)|to highlight the impact of operating system implementation on the overall per-formance. In Section 5.8, we discuss some issues related to limitations in benchmarking, focus-ing mainly on the OO1 and OO7 database benchmarks. Finally, we present some concludingremarks in Section 5.9.5.2 Experimental DesignWe are most interested in measuring the overall performance of pointer swizzling at page faulttime as implemented in Texas and the speci�c overheads of the various subcomponents of thesystem. In addition, we are also interested in studying the impact of variations in the basicscheme (for example, changing the address translation granularity) on the general performance.In this section, we describe the experimental design and methodology followed for gatheringour experimental results.We �rst briey examine di�erent benchmarks that are available and discuss the reasonsthat motivated our choice of the OO1 benchmark, which is then described in further detail.We also describe the experimental methodology that we used for the performance analysisand measurements, including issues about I/O strategies (raw I/O vs. �le system I/O) andprecise timing requirements. Finally, we describe the hardware and operating systems usedfor gathering our results.5.2.1 BenchmarksOne of the most popular object database benchmarks that has become the de facto stan-dard is the OO1 (Object Operations One) benchmark [CS92]. OO1 was also one of the �rstwidely-used database benchmarks, followed by others such the HyperModel [ABM+90] andOO7 [CDN93] benchmarks.The OO7 benchmark is designed as a successor to the OO1 benchmark, and supportssome advanced data structures and complex operations over these structures to represent ahypothetical CAD application. We used OO1 for all our performance measurements becauseof several fundamental reasons. OO1 is simple for what we are most interested in measuring|the raw performance of pointer traversals|to calculate the basic overhead of a coarse-grainedaddress translation mechanism. However, the results obtained from this benchmark should beinterpreted carefully. For the pointer traversal performance, we use the traversal results asqualitative indicators of quantitative performance of real applications.We believe that the OO1 and OO7 benchmarks are unsuitable for performance mea-surements of orthogonally persistent systems in general; this is further discussed in Section 5.8.67



The rest of this section describes the OO1 benchmark, the primary workload used to measurethe performance of various subcomponents of pointer swizzling at page fault time and Texas.OO1 Benchmark DatabaseThe OO1 benchmark database is made up of a set of part objects (representing parts in ahypothetical engineering database application) interconnected to each other. The benchmarkspeci�es two database sizes based on the number of parts stored in the database|a smalldatabase containing 20,000 parts and a large database containing 200,000 parts. The rationalebehind specifying two database sizes is to allow performance measurements of a system whenthe entire database is small enough to �t into main memory and compare it with situationswhere the database is larger than the available memory.The parts are indexed by unique part numbers associated with each part.1 Each part is\connected" via a direct link to exactly three other parts, chosen partially randomly to producesome locality of reference. In particular, 90% of the connections are to \nearby" 1% of partswhere \nearness" is de�ned in terms of part numbers, that is, a given part is considered to be\near" other parts if those parts have part numbers that are numerically close to the numberof this part. The remaining 10% of the connections are to (uniformly) randomly-chosen parts.The direct connections are also referred to as forward connections. In addition to these,each part also maintains a set of reverse connections containing pointers to other parts thathave forward connections to this part. The forward connections are implemented throughdirect pointers to part objects. Each part has a �xed-size array of pointers that representforward connections because the number of forward connections is �xed (i.e., three) by thebenchmark speci�cation. In addition, each part also has a few other data �elds (integers andstrings) that are used during the benchmark operations.OO1 Benchmark OperationsThe OO1 benchmark suite comprises of several di�erent types of operations, rather than justa single test. These operations are broadly classi�ed into three types:� Lookup Locate a predetermined number of randomly-chosen parts by using the partsindex and invoke an empty procedure on each part;� Traversal Perform a depth-�rst traversal of all connected parts starting from a randomly-chosen part and traversing up to seven levels deep for a total of 3280 parts (includingpossible duplicates), and invoke an empty procedure on each visited part; and� Insertion Allocate and insert new parts into the database using the same criteria thatwere used for making the forward connections.The OO1 operations are designed to represent various phases of an engineering databaseapplication. For example, the Lookup operation can be used to measure the performance of in-dexed object retrieval in a database system. In contrast, the Traversal operation concentrates1The benchmark speci�cation does not de�ne a data structure that must be used for the index; we used aB+ tree for all our experiments. 68



on raw performance of pointer traversals, which is what we are interested in for measuringthe performance of pointer swizzling at page fault time. The Insertion operation is suit-able for measuring performance of checkpointing and updates because it actually modi�es thedatabase on disk. Another approach for this is a variation on the traversal operation describedin [WD92]; the basic idea is similar to the traversal except that, in addition to invoking anempty procedure on visited parts, it also allows for updates with some predetermined proba-bility. However, it is not clear whether this variation makes for a good benchmark because it istightly coupled to the (randomized) interconnections and is likely to cause scattered updatesacross the entire database with poor locality of reference. We believe that this approach shouldbe used with caution because it makes page-wise checkpointing look unnecessarily bad, whilemaking page-wise \di�ng" [SKW92, Whi94] look unrealistically attractive.Although the randomized interconnection scheme exhibits some locality (that is, 90%of connections are close by), it has disastrous e�ects on locality of simple algorithms operatingover the data because, on average, every tenth pointer traversal accesses a randomly-chosenpart that is not close. The OO1 designers were aware of this, at least to some degree; theyspecify that traversals must be executed ten times, each starting at a di�erent \root" part.The �rst traversal is for a \cold cache" when none of the database is cached in memory, andthe subsequent traversals are for a cache that is getting \warmer." In addition, ten traversalsmust also be executed for a \hot cache" which already contains the data to be traversed. (Thisis accomplished by starting the hot traversals at the same root as the last warm traversal,essentially repeating the last warm traversal exactly, and guaranteeing that all visited partsare already in memory.)5.2.2 MethodologyWe use the OO1 benchmark traversal operation for all our performance measurements. Eachtraversal set contains a total of 45 traversals split as follows: the �rst traversal is the coldtraversal (when no data is cached in memory), the next 34 are warm traversals (as more andmore data is cached in memory) and �nally the last 10 are hot traversals (when all data iscached in memory). Note that this is di�erent from the standard benchmark speci�cationwhich contains only 20 traversals (split as 1 cold, 9 warm, and 10 hot traversals). However,we chose to run more warm traversals because we believe that 9 traversals are not su�cientto provide meaningful results, especially for the large database case. As we will describe inSection 5.8, OO1 (and other benchmarks) are not necessarily good indicators of general appli-cation behavior, and are unsuitable for quantitative comparisons between di�erent systems.We use a random number generator to ensure that each warm traversal selects a new\root" part as the initial starting point, thus visiting a mostly-di�erent set of parts in eachtraversal. (Of course, some warm traversals are likely to visit parts that have already beenvisited in a previous traversal because of the randomized interconnections in the data struc-tures.) We run the entire traversal set (45 traversals) multiple times interspersed with a \chill"program that \cools" the memory between runs to ensure that cold traversals are truly cold.2Then, we average over all runs after discarding outliers to obtain the �nal performance results.2The program allocates as much data as the available memory size, writes everything to a �le on disk andthen reads it back in, clearing both memory and �le system bu�ers in the process.69



The remainder of this section describes the methodology used to measure the basicperformance of our system, and to study various granularities of address translation and theirimpact on the overall performance of a pointer swizzling system. We also discuss some issuesrelated to precise timing before presenting the empirical results starting with Section 5.6.Basic Performance MeasurementsFor basic performance analysis, we are primarily interested in measuring the overhead ofpointer swizzling at page fault time during various phases of the benchmark execution. Wecan accomplish this by placing timers at various strategic points in the code and using themeasurements from these timers to accurately identify the costs of di�erent components of thesystem. The basic timers setup is pictorially depicted in Figure 5.1.
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system during that traversal. Using simple arithmetic subtraction, we can then calculate thetime spent only in pointer swizzling and the corresponding overhead compared to I/O andbenchmark costs.The only time component that we cannot accurately measure using this approach isthe time taken by the kernel itself to service a fault, that is, the time from the point when thefault is generated until our fault handler gains control (shown as a jagged edge in Figure 5.1).Similarly, the return from the fault handler also cannot be timed, although it is likely to beminor (equivalent to a function call return). We estimate these values by measuring themusing a stand-alone test program that generates a few thousand protection faults in a tightloop. We measure the total time for the entire loop and divide by the number of faults to getthe average time required by the kernel to service a fault, transfer control to a user-level faulthandler, and return from the handler. We believe that this estimation is acceptable becausewe are likely to get an underestimate (a lower bound) on the cost due to caching e�ects.3Further details about general exception handling performance of modern operating systemsare discussed in Chapter 7.OO1 Benchmark Traversal CharacteristicsThe basic OO1 traversal set (comprised of 45 traversals described earlier) can be broadlydivided into three phases. The overhead of our system typically varies for each phase dependingon the behavior and access patterns of the benchmark during that phase. Each phase mayalso be thought of as representing applications that exhibit behavior similar to that particularphase. The three phases can be characterized as follows:� The hot traversals correspond to a situation where there is no I/O activity and thebenchmark is operating on data that has already been faulted into memory. This issimilar to CPU-intensive applications that �rst load a �xed amount of data into memoryand then operate exclusively on that data throughout their execution; such applicationstypically want a simple persistence mechanism for their data without being forced to\roll their own" through ad hoc techniques. Pointer swizzling at page fault time imposesabsolutely no overhead for such applications because no new data is faulted in and allexisting pointers have already been swizzled for the major part of their execution.� The cold traversal and the �rst few warm traversals typically represent the other end ofthe spectrum. Since most of the data accessed by the benchmark during these traversalshas to be fetched from disk, this phase is characterized by a lot of faulting and I/Orequests as the traversal references parts that have never been seen before. This phasecorresponds to applications that are largely I/O-intensive, and do not have an equivalentamount of computation. For such applications, our overheads are much smaller than thecost of I/O, which usually dominates the overall performance.� Finally, the third phase is characterized by moderate I/O and faulting behavior inter-spersed with general computation, representing the middle ground between the other3Since faults are generated in a tight loop in the test program, the kernel code and data structures forfault handling are likely to be cached (possibly in the second-level cache) after the �rst iteration. However, anactual application is unlikely to bene�t from such caching with normal faulting behavior.71



two phases. Most applications generally end up in this phase only after going throughan I/O-intensive phase for loading large amounts of data. The overhead of our systemfor this phase is likely to vary signi�cantly depending on the application behavior andfaulting patterns.As we present the performance results in the following sections, we will show that the empiricaldata supports this overall classi�cation of the benchmark traversal set.File I/O vs. Raw I/OOn most operating systems, under normal circumstances, reads and writes to a regular �le gothrough the kernel (for example, using the seg map driver on SVR4 systems [Vah96]). Whena read system call is invoked, data is �rst read from the �le into kernel space and then copiedinto user space (into a user-speci�ed bu�er). In addition, operating systems also implementa sequential readahead mechanism (akin to simple lookahead prefetching) to read more datathan requested, at every disk seek, for minimizing the overall I/O costs. The prefetched datais stored in a �le system cache and transferred to user space if the application requests thatdata before it is evicted from memory.The �le system readahead and caching works favorably for most normal applicationsthat read and write data from the disk. For our purposes, however, it is obviously ine�cientbecause our access patterns are unsuitable for such caching. Speci�cally, we know that thedata will be cached in virtual memory, causing unnecessary double caching (that is, cachingin both user space and kernel space). This is particularly undesirable because the �le systemcache also competes for the available physical memory, reducing the e�ective RAM availablefor virtual memory caching.One solution for avoiding �le system caching is to use a raw device which provides adirect interface to a raw partition on disk without involving the �le system. Each read or writefrom the raw device causes an actual I/O operation, and data is copied directly into the userspace. This avoids double caching and the �le system reads only as much data as requested(i.e., no prefetching). Such I/O is usually known as raw I/O to distinguish it from �le I/Odone via a normal �le system.Currently, Linux does not provide any user-level support for raw I/O,4 and hence weuse a normal �le (on a local disk attached to the test machine) for storing the benchmarkdatabases. The e�ects of �le system caching and readahead are typically more evident inthe small database results because the database �ts easily in the available RAM, and thereadahead pays o� because almost the entire database is accessed during the traversal set. Forlarge database results, we found that Linux is aggressive with �le system bu�er management,reducing any adverse e�ects on virtual memory caching and overall performance.The situation is quite di�erent for the experiments on Solaris. Unlike Linux, Solarisdoes support I/O to a raw device, allowing us to avoid the unwanted caching and readahead.In Section 5.5, we present results on Solaris corresponding to the use of both �le I/O and rawI/O for loading data from the database, and highlight some important di�erences between thetwo strategies.4We believe that this feature is under development as of this writing.72



Address Translation GranularitiesIn addition to the performance overheads, we are also interested in comparing various addresstranslation granularities described in Chapter 3. The standard pointer swizzling at page faulttime strategy corresponds to a coarse-grained address translation approach where all pointersin a page are swizzled when the page is loaded into memory regardless of whether they will beaccessed by the application. A pure �ne-grained scheme falls at the other end of the spectrum,and can be realized by using smart pointers instead of normal (language-de�ned) pointers forall persistent data structures. This scheme performs pointer-wise address translation, trans-lating persistent pointers into virtual memory addresses every time the persistent pointers aredereferenced. Between the two extremes is a mixed-granularity address translation approachwhich uses a combination of smart pointers and normal pointers in the persistent data struc-tures to have a mix of both coarse-grained and �ne-grained address translation granularities.We modi�ed the data structures used in the basic traversal of OO1 benchmark toimplement the above three di�erent address translation granularities. As might be expected,the pure coarse-grained and �ne-grained approaches were implemented by using all normalpointers and all smart pointers respectively in the benchmark data structures. We implementedthe mixed-granularity approach by modifying only the parts index structure to use smartpointers while maintaining normal pointers for the rest of the data. We believe that a B+tree (the data structure used to implement the parts index) is appropriate for such conversionbecause it is a sparsely-accessed data structure with high fanout, typical access characteristicsand topological properties of data structures suitable for �ne-grained address translation.Precise TimingFor all experiments described so far, we need a highly precise timing mechanism to accuratelymeasure the overheads of our system in di�erent situations. Furthermore, as we will showthrough the empirical results, some of the overheads in our system are extremely small, thusplacing an additional requirement for high resolution on the timers. Unfortunately, commonlyavailable timers on most modern operating systems have a poor resolution, sometimes on theorder of several milliseconds.Most modern operating systems provide various system calls that can be used to mea-sure either CPU time or real (\wall-clock") time for some event in the application. CPU timeis the time actually spent in processor execution, while real time is the total wall-clock timefor the event, including time spent in I/O waits, paging, context switches, etc. The CPU timeis further split into user and system components corresponding to the time spent executingon the processor in user mode and kernel mode respectively. Typically, the best resolution ofreal-time timers on most modern operating systems, without any special hardware support,is on the order of microseconds. The resolution tends to be even lower for CPU-time timersbecause of the added overhead in maintaining appropriate data structures and tracking kernelboundary crossings during execution. For example, the resolution of a CPU timer on a 200MHzIntel Pentium Pro processor running Solaris 2.5 is approximately ten milliseconds; this is verycoarse considering the fact that the processor can execute about two million instructions inthat time frame. Even a one millisecond resolution is equivalent to the time required to execute73



approximately 200,000 instructions.Obviously, these resolutions are too coarse for our purposes given the low overheads ofour system (especially when compared to I/O costs). Fortunately, platforms that are compat-ible with the Intel Pentium architecture contain special hardware that allows high resolutiontiming measurements at the granularity of processor clock cycles. The basic idea exploits a64-bit register in the Pentium architecture; this register counts the number of processor clockcycles since the last reboot, thus providing a true �ne-grained mechanism for precise timing.There is an instruction (rdtsc, mnemonic for \read time stamp counter") that can be usedto read the current value stored in the register. Using this counter register and the associatedinstruction, it is relatively easy to build a timer that can be used for precise measurementsof various low-overhead events in terms of clock cycles.5 A (relatively minor) downside ofusing such cycle timers is that they can be used to measure only real time without additionalsupport from the operating system for measuring CPU time at the same granularity. In orderto minimize the e�ects of arbitrary swings in real-time measurements due to transient events,we run the benchmark suite multiple times on unloaded machines and average the results afterdiscarding signi�cant outliers.We also experimented with Solaris high-resolution time via the gethrtime system call.This timer also measures real time with typical resolution in microseconds; the actual resolu-tion, however, depends on the underlying hardware. For the platforms that we used (describednext), this resolution was between one and two microseconds. Since the gethrtime call is o�-cially supported for arbitrary hardware, it is obviously more portable than the clock-cycle timerdescribed above, which is usable only on Pentium-compatible processors. However, since thecycle timer provides a much better granularity, we use it for all our experiments that were runon Pentium-based platforms, and only use the CPU time measurements for address translationgranularity comparisons that were run on SPARC-based platforms.5.2.3 Hardware and Operating SystemsWe ran the various benchmark operations on both Linux and Solaris platforms to gain insightin the behavior of two of the most popular and widely-used operating systems. Although wewere able to derive the same qualitative conclusions for both operating systems, we found someinteresting di�erences between them, as well as potential for both to be improved.For both operating systems, we used identical hardware setup (except for di�erencesin component manufacturers, which are not relevant for our study). Each test machine wasequipped with a 200MHz Intel Pentium Pro processor (with a 256KB L2 cache) and 32MBof EDO RAM. The operating system versions used were Linux 2.0.0, (the current majorstable release of Linux)6 and Solaris 2.5 (the current major release of Solaris). (During thecourse of gathering our results, we also used some SPARC-based platforms for performancemeasurements on Solaris. We found that the results (not presented here) correlated well withthose on the Pentium-based platform, and as such were useful as a good sanity check.)5We use a modi�ed version of a timer originally developed by Mark Johnstone. Other approaches, such aspreprocessor macros and inline procedures containing assembly code to access the special register, have alsobeen suggested on various Usenet newsgroups devoted to Linux.6As of this writing, the current minor stable release is version 2.0.30.74



In addition to the standard Solaris measurements, we also needed access to a Solarisplatform with main memory that was big enough to completely �t the large database in RAM.As we will describe later, this setup was needed to validate a theory about speci�c behavior ofSolaris for workloads involving databases bigger than available memory size. For this purpose,we used the same test machine after upgrading its memory to 64MB, which was su�cientlylarge for our purposes.Finally, for the comparison between di�erent address translation granularities, it isnecessary to measure CPU time for each variation because the costs typically di�er only interms of CPU execution. However, since our overheads are relatively small, and because mostCPU-time timers have a coarse granularity, it is di�cult to accurately measure CPU timeon most modern processors. Instead, we used an older 33MHz SPARCstation ELC for theseexperiments; the processor on this machine is slow enough to o�set the coarse granularity ofthe CPU-time timer. We believe that such controlled use of an older (and slower) processor isacceptable here because the results are reported relative to each other, that is, the performanceis compared to other variations that are also executed on the same processor.5.3 Instruction-Count Pro�ling ResultsAs part of the overall results, we �rst present an analysis of instruction-count pro�ling forvarious key components of the pointer swizzling at page fault time mechanism as implementedin Texas. We used QPT [BL92]|an instruction-count pro�ling tool|for this purpose andmeasured the costs of swizzling a single pointer and swizzling an entire page. QPT is similarto the Unix pro�ling tool gprof with one important distinction. Unlike gprof, which reportsresults in terms of absolute time per procedure, QPT is capable of calculating the numberof instructions for each procedure by analyzing and instrumenting basic blocks in executablecode. This is very useful for pure overhead measurements because the output of QPT is interms of number of instructions for each procedure, an absolute result that is independent ofother procedures in the application. In contrast, gprof is more suitable for general pro�lingand comparative analysis because it highlights \problem areas" that are most likely to bene�tfrom optimization compared to other parts of the application.feature instructionstranslate a single pointer 40decode a type descriptor record 130swizzle a page (with normal decoding) 12,000swizzle a page (with optimized decoding) 8,000Table 5.1: Estimated instruction countsTable 5.1 shows the cost of several important components of our system. The mostbasic result is the cost of translating the value of a single pointer which is approximately40 instructions. The bulk of this cost is attributed to the hash table lookup based on theaddress value in the pointer �eld being translated. Note that this estimate is for an untunedhash table implementation that does not use highly-optimized data structures and algorithms.75



With further optimizations, it should be possible to reduce the translation cost by half thecurrent amount.Note that the cost of translating a single pointer is measured in isolation, and excludescosts for all other actions that may be necessary during swizzling but are not directly relatedto the actual translation itself. For example, if the swizzled value references a new page thathas not been seen before, we must reserve a page by allocating virtual address space from theoperating system and access-protecting the new space. Although this is necessary for ensuringthat swizzling works correctly over the course of the application, it is not directly involvedwith the translation of a single pointer, and is therefore excluded from our measurements.Another important cost to be accounted for during pointer swizzling is the cost of de-coding a single type descriptor record7 for locating various pointer �elds in the object describedby the record. On average, for the OO1 benchmark, each type descriptor record contains in-formation about four data pointers and one virtual function table (VFT) pointer, and the costof decoding such a type descriptor record is approximately 130 instructions.Apart from measuring costs of speci�c routines in isolation, it is equally important tomeasure the costs at a higher level of abstraction so that we can study the e�ect of swizzling onthe overall performance. For this purpose, we measured the number of instructions requiredfor swizzling an entire page, including the costs of all supporting actions such as reservingnew pages of address space, decoding type descriptor records, etc. As shown in the table,approximately 12,000 instructions are necessary on average to swizzle a page during the OO1traversal operation.This cost can be reduced by optimizing the decoding of type descriptor records. Usingthe size of type descriptor record objects, we calculate that there are about 30 such objectson any given virtual memory page. Thus the cost of decoding type descriptor records on onepage is approximately 3,900 instructions, or about one-third the total cost of swizzling anentire page. In Chapter 6, we describe an optimization that can reduce the cost of decodinga type descriptor record to a single procedure call, thereby reducing the per-page swizzlingcost to approximately 8,000 instructions. On today's commonly available processors rated at200 million instructions per second (or more), this is equivalent to one-twentieth of a millisec-ond (or less). Obviously, this is very insigni�cant compared to typical I/O costs incurred byan application for fetching data from disk.5.4 Performance on LinuxThe hot traversals for both small and large database experiments on Linux correspond to the�rst (CPU-intensive) phase of the traversal set described earlier. In general, the large databaseis better suited for the second (I/O-intensive) phase; since the database is relatively big, evenlater warm traversals reference at least one or more pages that have not been seen before,thus keeping up the I/O activity. On the other hand, the small database results typicallyhighlight the third phase, because most of the database is loaded into memory within the �rstfew traversals due to both benchmark locality characteristics and �le system readahead.7Type descriptor records are objects used to maintain run-time type information (Chapter 6).76



We �rst present detailed results for the large database, followed by a correspondingset of results for the small database. As mentioned above, each of these highlights di�erentcharacteristics of the access patterns and corresponding behavior from Texas. The set of resultsfor each database size are further split into three parts comprising the raw performance data,a measure of real I/O activity8 during the traversal set, and lastly the overhead of Texas andpointer swizzling as a percentage of both I/O time and total benchmark time. We end thesection with a brief analysis of the basic results for the two database sizes.5.4.1 Large Database ResultsWe start with the raw performance numbers of OO1 forward traversals over the large database.The database, which contains 200,000 parts, is approximately 43MB in size, roughly one-thirdmore than the available RAM on the test machine.Basic PerformanceFigure 5.2 shows the overall run time of the entire traversal set (45 traversals) on the largedatabase. The same data is also plotted on a log scale in Figure 5.3 for additional detail duringlater traversals. These �gures (and all other �gures for performance results) contain multipleplots, each corresponding to a di�erent component of the system. The total time per traversal(labeled as \Total" in the �gures) is the most obvious measure. In addition to this, the �guresalso include the costs for di�erent components plotted in a cumulative manner starting with theI/O cost. In particular, the plots labeled as \I/O," \S+I/O" (short for \Swizzling+I/O") and\FH+S+I/O" (short for \FaultHandler+Swizzling+I/O") correspond to measurements fromthe timers placed at various strategic points in the code (see Figure 5.1). We also generatea plot that includes the estimated time required by the operating system for trapping pro-tection faults, labeled as \F+FH+S+I/O" (short for \Fault+FaultHandler+Swizzling+I/O").Alternatively, this plot can also be labeled as \Texas+I/O" because the sum of the three com-ponents other than I/O (\Fault+FaultHandler+Swizzling") is e�ectively the total overhead ofTexas and pointer swizzling at page fault time.8We use the term real I/O to indicate that actual disk I/O (including a disk seek) was performed for anI/O request that could not be satis�ed from a cache.
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Figure 5.2: Times for all traversals, large database (Linux)
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Figure 5.3: Times for all traversals, large database, log scale (Linux)The individual plots for the di�erent components are not discernible from Figure 5.2,but I/O time is the largest component for the cold and warm traversals, while the Texasoverhead for the same is comparatively very small. This observation is supported by the factthat the lines for various plots are very close to each other even on a log scale (see Figure 5.3).The low overhead of pointer swizzling at page fault time is further evident from results78



presented in Figures 5.4{5.8 which show the closeups of all cold and warm traversals (i.e.,traversals 1 through 35). Finally, Figure 5.9 shows the overall performance for the ten hottraversals (i.e., traversals 36 through 45); as expected, there are absolutely no I/O costs andthe Texas overhead for these traversals is zero.
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Figure 5.4: Times for traversals 1 through 3, large database (Linux)
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Figure 5.5: Times for traversals 4 through 9, large database (Linux)79
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Figure 5.6: Times for traversals 7 through 15, large database (Linux)
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Figure 5.7: Times for traversals 16 through 25, large database (Linux)
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Figure 5.8: Times for traversals 24 through 36, large database (Linux)

0

1e+06

2e+06

3e+06

4e+06

5e+06

36 38 40 42 44

C
lo

ck
 C

yc
le

s 
pe

r 
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.9: Times for traversals 35 through 45, large database (Linux)From Figures 5.4{5.8 above, we note that the I/O cost dominates for all traversalswhile the overhead of Texas is comparatively minimal. (Recall that the Texas overhead isessentially the di�erence between plots labeled \F+FH+S+I/O" and \I/O.") In fact, for mostof the later traversals, it is hard to distinguish individual plots corresponding to I/O and othercomponents of Texas from the various �gures.81



Measuring Real I/O ActivityBased on the above results, it is obvious that the OO1 benchmark traversals on the largedatabase exhibit the characteristics of an I/O-intensive application during the �rst 35 traver-sals. We speculated earlier that this behavior occurs because the database is large enoughsuch that the randomized interconnections cause new pages to be referenced (and faultedupon) even during the later warm traversals. An obvious way to con�rm this hypothesis is bymeasuring the number of real I/O requests during each traversal for the entire traversal set.Note that this is di�erent from the number of reads issued by Texas (for loading pages fromthe database into memory) since not all those read requests translate into real I/O due to �lesystem caching and readahead.Unfortunately, most operating systems do not provide a convenient way to preciselymeasure real I/O activity. However, we can count the number of major page faults incurredduring each traversal to get a good approximation. This is reasonable because a major pagefault is any kernel fault that requires a real disk I/O to be serviced. In other words, the kernelhas to wait for an I/O request to be satis�ed by actually reading from (or writing to) disk,rather than via a �le system cache. Major page faults are a good indicator of real I/O activitybecause all reads and writes through the �le system are implemented via internal kernel pagefaults for most modern Unix variants [Vah96].
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Figure 5.10: Page faults for all traversals, large database (Linux)Figure 5.10 presents this measure along with the number of reads issued by Texas forall traversals. Note that there is a one-to-one correspondence between the number of readsissued by Texas, the number of protection faults and the number of pages swizzled; this isbecause, for each fault on a protected page, Texas �rst issues a read request to load that page82



from the persistent store and then swizzles it.9 It is obvious that the number of new pagesread into memory gradually decreases as the cache gets warmer. The real I/O activity alsodecreases proportionately, although it never reaches zero during the warm traversals.10Percentage OverheadsBased on the results presented so far, we can conclude that the direct overhead of pointerswizzling at page fault time (and Texas) is minimal in the presence of I/O, and zero whenthere is no I/O. Figure 5.11 shows the empirical data that supports this conclusion for largedatabase traversals.
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Figure 5.11: Overhead as percentage of I/O time, large database (Linux)We plot the costs for various components of the pointer swizzling mechanism as apercentage of I/O time for each traversal. The plot labeled \F+FH+S" represents the totaloverhead of pointer swizzling at page fault time (as implemented in Texas). It is clear fromthe �gure that the average overhead is only around 1.5% of I/O cost while the maximum isjust under 2.5%. This is obviously very small compared to the overall I/O costs incurred whenrunning the application.119As such, we use the three phrases, that is, number of protection faults, number of reads issued, and numberof pages swizzled, interchangeably depending on the context of the usage.10The number of major faults is always higher than the number of reads issued by Texas in the �gure.This may seem unusual, but it is actually okay because major page faults also include I/O for other faultingbehavior, such as that required by the memory replacement policy.11Note that this does not include the indirect cost of pointer swizzling related to unnecessary page-outs ofmistaken-dirty pages, although it is not an issue in the current experiment because there is no paging, eventhough we are using the large database.
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Figure 5.12: Overhead as percentage of total time, large database (Linux)Another interesting metric is the overhead of Texas as a percentage of the total runtime of the actual benchmark traversal, including any I/O that may have been necessary forthat traversal but excluding the costs of Texas itself. This measure gives us an approximationof the overhead that would be imposed on an ordinarily non-persistent application that ismodi�ed to use Texas as a persistence layer. Figure 5.12 plots this metric for all traversals onthe large database. In addition, the �gure also plots I/O time as a percentage of total timefor each traversal to determine the fraction of benchmark time typically spent in I/O (i.e., theI/O \overhead"). Once again, we note that the Texas overhead is very low (around 2%) for allcold and warm traversals, reinforcing our earlier conclusions about the performance of pointerswizzling at page fault time. In comparison, I/O cost makes up the majority of the benchmarkrun time (e.g., 90% or more for 31 out of 35 traversals). As expected, both overheads drop tozero for the hot traversals which, by de�nition, do not cause any faulting or swizzling.5.4.2 Small Database ResultsThe results for the large database have unequivocally shown that pointer swizzling at pagefault time techniques do not impose a major overhead on the run time of an application in thepresence of I/O activity. We now present results for OO1 benchmark traversals on the smalldatabase which highlights some important situations. The database contains 20,000 objectsand is small enough (one-tenth the size of the large database, or about 4MB) to easily �t intothe main memory. The basic conclusions about performance of Texas are still valid, but thereare a few quantitative variations related to interactions between locality characteristics andthe operating system.
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Basic PerformanceFigures 5.13{5.17 present the performance of the entire traversal set on the small database.Figure 5.13 shows overall run time of the entire traversal set (45 traversals) on a log scale, andthe rest are closeups (on a linear scale) of di�erent traversals.
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Figure 5.13: Times for all traversals, small database, log scale (Linux)
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Figure 5.14: Times for traversals 1 through 5, small database (Linux)85
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Figure 5.15: Times for traversals 3 through 9, small database (Linux)
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Figure 5.16: Times for traversals 8 through 36, small database (Linux)
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Figure 5.17: Times for traversals 30 through 45, small database (Linux)Consider Figure 5.13, which plots the performance results of various components for alltraversals, and compare with the corresponding plot for the large database (Figure 5.3). Themajor di�erences between the two sets of plots are partly due to the size of the database andpoor locality in the benchmark traversals, as well as their interaction with �le system cachingand readahead mechanism of the operating system. However, although the overall plots lookvery di�erent for traversals on the small database, the overall structure still conforms to thethree phases described earlier, and can be divided it into three qualitative regions as follows:� I/O-intensive region consisting of the cold traversal and �rst few warm traversals (i.e.,left end of Figure 5.13 up to and including traversal 7, as well as Figures 5.14 and 5.15),where the Texas overhead is obviously small compared to the I/O cost, which typicallydominates the overall run time;� CPU-intensive region consisting of the hot traversals (i.e., right end of Figure 5.13,traversals 36 through 45, as well as Figure 5.17), where Texas overheads are zero andthere is no I/O; and� mixed-behavior region consisting of rest of the warm traversals (i.e., middle part of Fig-ure 5.13, traversals 8 through 35, and Figure 5.16), which is a little complicated becausethe overheads vary signi�cantly with number of faults and I/O requests per traversal.The �rst two regions obviously support the conclusions drawn from the large databaseresults, and are not discussed further here. Instead, we focus on the third (mixed-behavior)region which corresponds to the phase that exhibits moderate I/O and faulting activity inter-spersed with computation. The unusual behavior in this region is related to the fact that theentire database is small enough to �t into memory and most of it is loaded into memory (or87



prefetched into a �le system cache) within the �rst few traversals because of poor locality inthe randomized interconnections. As a result, most warm traversals do not pay the cost of realI/O (i.e., disk seeks) since their requests are likely to be satis�ed from the �le system cache.From Figure 5.13 (and also Figure 5.16), we note that for six traversals (speci�callytraversals 10, 14, 21, 22, 27 and 30) in the mixed-behavior region, the I/O cost is fairlyhigh (between one and three million clock cycles) while the Texas overhead is very small incomparison. This is because the I/O requests for these traversals cannot be satis�ed from the�le system cache and require real I/O activity. In contrast, sixteen other traversals (speci�callytraversals 8, 9, 11 through 13, 15 through 20, 25, 26, 28, 29 and 33) intermixed with thesix mentioned above incur I/O cost of only about 15,000 cycles, which is equivalent to 75microseconds on the test machine with a 200MHz clock rate. Given the fact that typical disklatencies are on the order of milliseconds, it is impossible that this number represents the costof a real I/O request. Instead, it is likely that the requests were satis�ed from a (�le system)cache without ever involving any moving parts while paying only for software costs. For thesetraversals, the Texas overhead appears to be signi�cant (about 45,000 clock cycles) since itis not masked by I/O costs. This is not a problem during actual execution because overallperformance is typically swamped by the cost of real I/O requests for all other traversals.Measuring Real I/O ActivityIn the foregoing discussion, we have argued that seven traversals in the I/O-intensive regionand only six traversals (out of twenty-two that have non-zero I/O costs) in the mixed-behaviorregion have some real I/O activity. We can con�rm this hypothesis by measuring the numberof real I/O requests using the major page faults described earlier. Figure 5.18 presents thismeasure along with the number of reads issued by Texas for the entire traversal set.
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Figure 5.18: Page faults for all traversals, small database (Linux)88



Note that while the two plots are visually similar, they do not coincide with each other.That is, the number of real I/O requests is not exactly the same as the number of pages readby Texas due to the operating system readahead mechanism. By correlating the number ofreal I/O requests (from the �gure) with the overhead results in Figure 5.13, we con�rm thatreal I/O activity indeed corresponds to higher I/O costs in overall performance. Conversely,there are no major page faults (i.e., no real I/O) for traversals that exhibit low I/O costs.Percentage OverheadsFinally, we plot the Texas overhead both as a percentage of I/O time and as a percentageof total benchmark time for each traversal in the traversal set. These plots are shown inFigures 5.19 and 5.20 respectively. The latter also plots the fraction of total benchmark timespent in I/O for each traversal. (The corresponding plots for large database were shown inFigures 5.11 and 5.12 respectively.)
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Figure 5.19: Overhead as percentage of I/O time, small database (Linux)
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Figure 5.20: Overhead as percentage of total time, small database (Linux)It may be startling at �rst to see that the overhead of Texas is around 300% of I/Ocost for several warm traversals in Figure 5.19. However, on closer inspection, we note thatthese traversals are the same as the sixteen traversals for which there is no real I/O activity asper Figure 5.18. As before, correlating the two �gures clearly shows that the Texas overheadis small in the presence of real I/O activity, exactly the same conclusion that was derived fromthe large database results. In terms of actual numbers, from Figure 5.20, we conclude thatTexas overhead is around 2-4% of real I/O costs. Finally, we note that although the smalldatabase traversals do not always have real I/O activity because of �le system caching andreadahead, when present, real I/O tends to dominate the overall run time of the benchmark,usually by accounting for 60-80% (or more) of the total time.5.4.3 AnalysisWe have broadly divided the OO1 benchmark traversal results into three qualitative regions,each representing applications with a di�erent mix of I/O and computation phases, and dis-cussed our overhead under various situations. The results for both small and large databaseshave shown that the overhead of Texas and pointer swizzling at page fault time is minimalin the presence of real I/O, and zero when there is no I/O. Furthermore, although the Texasoverhead seems outrageously high in the absence of real I/O (especially for the small database),the overall performance during actual execution is not a�ected much because the I/O activity,when it does occur, tends to swamp the rest of the costs. In fact, we calculated the cumulativeoverhead of Texas as a percentage of total benchmark time (including I/O) over all cold andwarm traversals, and found it to be only about 2% for the small database and slightly morethan 1.5% for the large database. Both these numbers are obviously very small compared tothe other costs incurred by the benchmark. 90



The performance results presented for Linux correspond to the use of normal �le I/Ofor loading data from the benchmark database. As described earlier, this means that theoperating system usually prefetches more data than requested during a read to minimizeoverall I/O costs; the prefetched data is stored in a �le system cache and is used to satisfyfuture I/O requests wherever possible. We have clearly seen the e�ects of this action in thesmall database results, where the mixed-behavior region contains traversals with I/O coststhat are too small to be real I/O.It is possible to avoid the operating system readahead and caching by using a rawdevice, instead of a normal �le in the �le system, for storing the database. Although Linuxcurrently does not support this feature, the heuristics used by the operating system to balancethe �le system and virtual memory caches seem favorable for our usage patterns because theperformance results do not appear to be adversely a�ected. (As we will see next, the Solarisbu�er management policies do not work as favorably for our usage patterns.)5.5 Performance on SolarisWe ran the same performance experiments using the OO1 benchmark on Solaris to compare andcontrast the results with those obtained on Linux. We have found that the basic conclusionsderived from the Linux results are still valid for Solaris, although there are a few quantitativevariations in the raw data for the latter. In this section, we present the performance resultsobtained on Solaris, and briey discuss the factors responsible for the various di�erences andtheir impact on the benchmark measurement.An important di�erence here is that, unlike Linux, Solaris supports a raw I/O mech-anism allowing us to measure the performance of the system in the absence of �le systemcaching and readahead. We present results corresponding to the use of both �le I/O and rawI/O,12 and highlight important di�erences between the two strategies.5.5.1 Large Database ResultsFollowing the earlier format, we �rst present the results obtained for benchmark traversals onthe large database. As before, we split the results into three parts: the raw performance data,a measure of real I/O activity, and the overhead of Texas as a percentage of both I/O timeand total benchmark time.Basic PerformanceFigure 5.21 shows the overall run time of the entire traversal set (45 traversals) on Solaris.As before, we plot the cumulative costs of di�erent components, starting with the I/O time.Comparing the results to the corresponding plots for Linux (Figure 5.2), we note that theoverall cost of various components is qualitatively similar to that on Linux, that is, both setsof plots have similar features.12Unless otherwise speci�ed, all results presented are for normal �le I/O.
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Figure 5.21: Times for all traversals, large database (Solaris)One obvious di�erence between Solaris and Linux results is that the total benchmarktime on Solaris exhibits unusual spiky behavior for most of the warm traversals. This particularplot represents the total time measured for the entire traversal, including costs of I/O and allpointer swizzling components (see Figure 5.1). It is obvious from the �gure that the time for thetraversal component of the benchmark (measured by subtracting cost of all other componentsfrom the total time) is quite high, varying from two to four times larger than the rest of thecosts. This is unusual because the traversal component itself is not CPU-intensive and is notexpected to add a big overhead to the overall execution time.We believe that the unusually high total time for each traversal is actually due toexcessive virtual memory paging because the database is much larger than the available mainmemory and is accessed with poor locality. Based on the randomized interconnections, onaverage, every tenth pointer visits a randomly-chosen part that is not nearby (and has not beenreferenced before), causing more data to be faulted in and swizzled. The interaction betweenthese access characteristics and the operating system's bu�er management policies indirectlyleads to paging because there is insu�cient memory available for the virtual memory system;as a result, the benchmark execution spends much time waiting during paging. Since our cycletimer can measure only real (wall-clock) time, the time spent in waiting for I/O during pagingis \mistakenly" billed to the traversal component.Measuring Real I/O ActivityWe can con�rm our observation about paging by measuring the real I/O requests for eachtraversal and comparing with the number of read requests issued by Texas. As with Linuxresults, the number of major page faults is ideal for getting an approximation of the real I/Oactivity. Figure 5.22 shows this result, along with the number of reads issued by Texas, for all92



45 traversals. Also, in Figure 5.23, we plot the time billed only to the traversal component,that is, the total time for the entire traversal less the cumulative time for all other componentsincluding I/O.13
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Figure 5.22: Page faults for all traversals, large database (Solaris)
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The �rst thing to notice from Figure 5.22 is that the number of page faults remainsrelatively high throughout the cold and warm traversals rather than gradually decreasing as thecache gets warmer. This is quite di�erent from the downward trend of the number of pages read(and swizzled) by Texas as the cache gets warmer. We also contrast this with the correspondingplots for Linux in Figure 5.10. However, an even more interesting observation is that the plotscorresponding to major page faults and to the benchmark-only time exhibit identical visualcharacteristics for all warm traversals starting after traversal 5. This observation stronglysupports our theory about the high traversal time (in Figure 5.21) being due to excessivepaging. The number of page faults indicates heavy paging behavior over the benchmarkinterval, and the visual \tracking" of features between the benchmark-only time and the pagefaults con�rms that overall run time is directly a�ected by paging.Percentage OverheadsWe also plot Texas overhead as a percentage of I/O cost for each traversal; this is shown inFigure 5.24. As expected, the overhead of di�erent components is very small compared to theI/O cost. There are, however, a few unusual features in the plot. In particular, the overheadof user-level and kernel fault handling (plots labeled \FH+S" and \F+FH+S" respectively)varies signi�cantly for later warm traversals (traversals 26 through 35, except 33) althoughthe overhead of swizzling itself (plot labeled \S") remains low and stable. The reasons for thisbehavior are unclear, especially because the user-level fault handler has only a few actions andcannot account for such large fraction of I/O. As described in detail later (Section 5.5.6), webelieve that this is likely due to interaction between paging and our approach of measuringthe overheads with di�erent timers.
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Figure 5.24: Overhead as percentage of I/O time, large database (Solaris)94
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Figure 5.25: Overhead as percentage of total time, large database (Solaris)Finally, Figure 5.25 shows the overhead of Texas overhead as a percentage of the totalbenchmark time for all traversals. In the same �gure, we also plot the I/O costs as a percentageof the total benchmark time. It is obvious that the I/O time typically makes up a signi�cantportion of the total benchmark run time (especially for the early traversals), and using pointerswizzling at page fault time is relatively inexpensive. Note that I/O costs percentage in thiscase reduces faster compared to corresponding results on Linux (Figure 5.25) because of themuch higher total benchmark time due to paging.5.5.2 Small Database ResultsWe have seen that the large database results on Solaris are qualitatively similar to the cor-responding results on Linux, although there are a few unusual quantitative variations in theraw data. Nevertheless, the overall performance results support the conclusions derived so farabout the low overhead of Texas and pointer swizzling at page fault time. We now present thesmall database traversal results on Solaris, and show that the basic conclusions are valid evenfor the small database.Basic PerformanceWe start by presenting the performance of the entire traversal set on the small database; thisis shown on a log scale in Figure 5.26. Not surprisingly, this looks very similar to the smalldatabase results on Linux (presented in Figure 5.13), modulo a few minor details. Thesevariations are due to the di�erences in the operating system readahead policy and its imple-mentation on both operating systems. 95
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Figure 5.26: Times for all traversals, small database, log scale (Solaris)Most of the arguments presented for the corresponding results on Linux are also appli-cable here. As before, we can divide the plot into three qualitative regions, each with di�erentI/O and faulting characteristics. Unlike the Linux results, the mixed-behavior region in thecurrent data contains only four traversals (speci�cally traversals 14, 16, 27, and 30) that appearto exhibit real I/O activity.Measuring Real I/O ActivityFigure 5.27 shows the number of reads issued by Texas and the corresponding number of majorpage faults (i.e., real I/O requests) for all traversals. Compare this with the corresponding plotfor Linux (Figure 5.18), and we can draw the same conclusions as before regarding performanceof Texas in the presence of real I/O. That is, we can con�rm that higher I/O costs (Figure 5.26)are directly related to real I/O activity (as represented by major page faults). Similarly,traversals with low I/O costs correspond to those with no real I/O activity.
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Figure 5.27: Page faults for all traversals, small database (Solaris)Percentage OverheadsFinally, for completeness, we present results for the Texas overhead plotted both as a percent-age of I/O costs and as a percentage of the total benchmark time for the whole traversal set.These plots are shown in Figures 5.28 and 5.29 respectively. The latter also includes a plot ofI/O time as a percentage of the total benchmark time for all traversals. The correspondingresults for Linux were presented in Figures 5.19 and 5.20 respectively.
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Figure 5.28: Overhead as percentage of I/O time, small database (Solaris)
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Figure 5.29: Overhead as percentage of total time, small database (Solaris)Once again, we note that the Texas overhead is consistently more than 100% for alltraversals that do not have real I/O associated with them, very small for traversals that havereal I/O, and zero for all others when there is no I/O. Although the pointer swizzling overheadseems too high for speci�c traversals, the overall execution is not a�ected proportionatelybecause it is usually swamped by real I/O activity for all other traversals. As before, we98



calculated the cumulative overhead of Texas as a percentage of total benchmark time (includingI/O) over all cold and warm traversals, and found it to be only about 5%. Although thisis higher than the corresponding overhead measured for Linux (around 2%), it is still veryreasonable compared to overheads for some individual traversals (measured at 100% or more).5.5.3 Large Database Results Using Raw I/OThe large database results presented earlier correspond to the use of �le I/O for loading datafrom the database. Obviously, this includes the e�ects of the �le system caching and readaheadmechanism of the operating system. We also ran the OO1 benchmark traversal using raw I/Ofor loading data into memory. This was achieved by storing the database on a raw diskpartition that did not have any associated �le system. We present a subset of the results forthese experiments and briey discuss some di�erences compared to the results for �le I/O.
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Figure 5.30: Times for all traversals, large database, raw I/O (Solaris)Figure 5.30 shows the overall run time for the entire traversal set on the large databaseusing raw I/O; the corresponding plot for �le I/O was shown in Figure 5.21. From the �gure,we see that the overhead of various components of the system is still small compared to I/Ocosts. Note that the total traversal time for most warm traversals is unusually high and, asbefore, this can be attributed to paging behavior. However, unlike the earlier results (whenusing �le I/O), paging behavior does not start until traversal 9 when using raw I/O.Figure 5.31 plots the number of major page faults for the entire traversal set. It isobvious from the �gure that there are no major page faults before traversal 9, indicating thatpaging does not start until then. We also plot the time billed only to the benchmark traversalcomponent in Figure 5.32. 99
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Figure 5.31: Page faults for all traversals, large database, raw I/O (Solaris)
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Comparing File I/O and Raw I/O ResultsIn general, the performance results when using raw I/O correspond to the basic results whenusing normal �le I/O, with some interesting di�erences in the paging behavior. However, apartfrom this obvious di�erence, there are a couple of other issues that should also be highlighted.First, if we compare the total run-time when using �le I/O (Figure 5.21) and whenusing raw I/O (Figure 5.30), we notice that it is a little lower in the latter case for the �rstfew (about 8) traversals. This is because the former involves additional I/O attributed to �lesystem readahead, thus increasing the overall run time. Another interesting di�erence is thenumber of pages involved in the paging behavior for each I/O strategy. When using �le I/O,the page faults plot (Figure 5.22) indicates that about 600 pages were involved in paging (attraversal 5) gradually reducing to about 200 by the last warm traversal. In contrast, whenusing raw I/O, this number always remains between 100 and 200 for all warm traversals. Thisis because the readahead mechanism in the �le I/O case prefetches many additional pagesduring earlier traversals and stabilizes as the cache gets warmer. The extra pages involved inI/O also increase the total benchmark run time for �le I/O.5.5.4 Small Database Results Using Raw I/OSince the benchmark traversals have a poor locality of reference, the �le system caching andreadahead mechanism of the operating system cause most of the small database to be eitherloaded (or prefetched into �le system bu�ers) from disk within the �rst few traversals. Asdescribed earlier, �le system caching can be avoided by using raw I/O for loading data fromthe database. We now present results for the OO1 benchmark traversals on the small databaseusing raw I/O for all database access.
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Figure 5.33: Times for all traversals, small database, raw I/O, log scale (Solaris)101



Following the format used so far, we present the overall performance results for theentire traversal set; this is shown on a log scale in Figure 5.33. We notice several di�erencesbetween this �gure and the corresponding results for normal �le I/O in Figure 5.26. The partof the results that is interesting for this comparison is the mixed-behavior region (among thethree qualitative regions described earlier) that comprises of traversals 8 through 35. Mostnotably, the I/O time for all traversals (with the exception of traversal 9) in this region isbetween one and six million clock cycles, that is, between 5 and 30 milliseconds,14 comparedto a very low number of 45,000 clock cycles observed earlier. The higher I/O time for the rawI/O con�guration is more in line with the expectation of real I/O activity for each traversal.By enforcing real I/O for each traversal, we have essentially transformed the smalldatabase traversal benchmark into an I/O-intensive benchmark, much like the large databasetraversals. Therefore, the performance results presented in Figure 5.33 are qualitatively similarto the large database results; the Texas overhead in both situations is minor compared tothe I/O costs incurred during each traversal in the traversal set. Of course, in the currentcon�guration, we do not see the paging behavior that normally occurs during traversals on thelarge database because the small database easily �ts into memory.In order to get a qualitative approximation of the various overheads of pointer swizzlingat page fault time, we plot the overhead of each individual component as a percentage of I/Otime for all traversals in the entire traversal set; the corresponding results are plotted in acumulative fashion in Figure 5.34. We also plot the overhead of Texas as a percentage of totalbenchmark time in Figure 5.35. As before, this �gure includes the fraction of total benchmarktime spent in I/O, that is, the I/O \overhead," for the purpose of comparison.
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Figure 5.34: Overhead as percentage of I/O time, small database, raw I/O (Solaris)14The I/O time for traversal 9 is about half as much as the lowest I/O time for any other traversal, althoughit is still on the order of milliseconds. It is possible that this is because the request is satis�ed from a \cache"(e.g., track bu�er) on the disk itself. 102
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Figure 5.35: Overhead as percentage of total time, small database, raw I/O (Solaris)From the above �gures, we can conclude that the Texas overhead is a very small fractionof the I/O cost, usually about 3-5% on average while the maximum is about 8% (excludingtraversal 9). Although the average overhead is more than that on Linux, it is not outrageouslyhigh enough to signi�cantly a�ect the overall performance. In comparison, the I/O cost is amajor fraction of the benchmark run time and more or less dominates all other costs. Thecumulative overhead of Texas (calculated separately) as a percentage of total benchmark time(including I/O) over all cold and warm traversals is about 3%. This is slightly less than the5% overhead reported for normal �le I/O-based traversals because raw I/O is a little moreexpensive due to the cost of extra disk seeks.5.5.5 Large Database Results with Bigger Memory SizeIn both �le I/O-based and raw I/O-based results for the large database presented above, thetotal benchmark run time has shown some unusual behavior (marked by spikes in the plots).Even after avoiding the e�ects of caching and readahead by using raw I/O, we were ableto delay the spiky behavior by only a few traversals. We have speculated that this is dueto excessive paging that occurs because the database is larger than the memory size and istypically accessed with poor locality of reference. To verify this hypothesis, we upgraded thememory in the test machine from 32MB to 64MB, and reran the benchmark traversal withthe new con�guration.15 Since the new memory size is big enough to easily �t the entire largedatabase, we do not expect any paging; instead, the general behavior should be very similarto the small database results.15Although we used raw I/O for the new con�guration, using �le I/O should be acceptable because 64MBis large enough to avoid unwanted contention between �le system and virtual memory caches.103
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Figure 5.36: Times for all traversals, large database (Solaris, large memory)Figure 5.36 presents the results for large database traversals on the new (large memory)con�guration. There are at least two important features that should be noted here. First, asexpected, the unusually high run time is no longer present and we can safely conclude that thereis indeed no paging. An even more interesting observation, however, is the strong similaritybetween this �gure and the large database results for Linux presented in Figure 5.2. Thesimilarity is especially interesting because the Linux results correspond to the use of �le I/Ofor database access while the Solaris results are for raw I/O.We also plot the overhead of Texas both as a percentage of I/O time and as a percentageof total benchmark time. Figure 5.37 shows the overheads of di�erent components of Texasas percentage of I/O time for each traversal. It is obvious that the overhead of Texas (theplot labeled \F+FH+S") is a small percentage of I/O time, about 2.5% on average, for mostwarm traversals on the large database when there is little or no paging because the database�ts into memory.
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Figure 5.37: Overhead as percentage of I/O time, large database (Solaris, large memory)
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Figure 5.38: Overhead as percentage of total time, large database (Solaris, large memory)Finally, Figure 5.38 shows the overhead of Texas as a percentage of total benchmarktime. We note that the overhead is much smaller compared to the fraction of total time spentin I/O. Once again, note the remarkable similarity between these results and the correspondingLinux results (in Figure 5.12). In terms of raw numbers, the Texas overhead is slightly higheron Solaris (around 2.5%) than on Linux (around 1.5%).105



5.5.6 AnalysisFor the performance measurements on Solaris, we ran the benchmark for two database sizesusing both �le I/O and raw I/O, and presented the corresponding results for each databasesize. In general, the results con�rm our basic assertion that the overhead added by Texas isrelatively small compared to typical I/O costs incurred for loading the data into memory.Analysis of Large Database ResultsThe results for both I/O strategies con�rm our assertion that Texas overhead is relativelysmall compared to I/O costs. There are, however, a few quantitative variations that seemunusual. For example, the plot in Figure 5.24 shows that the actual swizzling overhead itselfis relatively small for all warm traversals, but there are a few unexpected spikes in the faulthandling (both user-level and kernel-level) costs. We believe that these are actually transiente�ects, possibly due to paging, rather than a reection on the faulting overhead.There are several reasons that led us to this conclusion. First, we have observed thatthese spikes \shift" to other traversals for di�erent runs of the same experiment with nodiscernible pattern in the variation, except that they mostly occur in the later warm traversals.In addition, the height of the spikes also varied for di�erent runs, further indicating that theoverhead is transient in nature. Finally, based on the number of pages swizzled for eachtraversal (Figure 5.22), we know that there are only a few (usually less than ten) protectionfaults in the later warm traversals and it is not possible to have such large overheads forhandling just a few faults. Instead, we believe that the measurements are a�ected by spuriouse�ects of paging behavior and therefore incorrectly billed to faulting.We have also shown that the e�ects of paging behavior disappear as we move to abigger memory size and the database �ts into memory. In general, the performance of Texason Solaris (using raw I/O with larger memory to avoid paging) is very similar to that on Linux(using �le I/O with smaller memory). This is further indication that bu�er management onLinux is more aggressive than on Solaris.Raw I/O vs. File I/OThe main di�erence between raw I/O and �le I/O strategies is the �le system caching andreadahead that is implicitly performed by the underlying operating system in the latter case.We can bypass this behavior simply by storing the data in a raw disk partition and usingraw I/O for all data access. Turning o� �le system caching is usually a good idea for mostapplications running under Texas because the problem of double caching is avoided.16 However,as illustrated below, it may or may not be bene�cial to turn o� caching depending on theapplication characteristics.For example, consider the small database results for both �le I/O and raw I/O cases(Figures 5.26 and 5.33 respectively), and compare the absolute I/O costs for the initial I/O-intensive region (traversals 1 through 7) for both sets of results. Speci�cally, I/O times fortraversals that use �le I/O are uniformly lower than those that use raw I/O. This is because16Of course, if client-side (local) caching is important (e.g., multiple distinct runs of one or more applicationson the same input data), then �le system caching may be bene�cial.106



every I/O request in the latter case results in an actual disk I/O request and therefore incursthe cost of extra disk seeks. In contrast, since normal �le I/O prefetches data during real diskI/O, it avoids the cost of extra disk seeks corresponding to prefetched pages for which thereadahead pays o� sooner.Now consider the absolute I/O times for large database results using the two di�erentI/O strategies (Figures 5.21 and 5.30). In this case, the I/O times for raw I/O-based traversalsare lower than those for �le I/O after the �rst two traversals. This is because the �le systemprefetches are not paying o� soon enough and the competition between �le system cache andvirtual memory cache reduces the e�ective memory size causing paging behavior which, inturn, increases the number of I/O requests, quickly wiping out any advantages gained due toprefetching.As such, turning o� the readahead mechanism may have unexpected e�ects on theperformance of various applications depending on their access characteristics and the amountof data accessed. It may be bene�cial to perform readahead for many applications becausetheir access characteristics are favorable to prefetching and can e�ectively avoid the extradisk seeks. However, others may do well to not pay the cost of readahead because they areunlikely to bene�t from it. Unfortunately, most operating systems currently do not provideindependent user-level control over readahead and �le system caching other than support forraw I/O. Of course, we can implement our own prefetching, and possibly \preswizzling," usingonly raw I/O. This avoids unnecessary interference between �le system and virtual memorycaches, and a�ords more control over the readahead mechanism.5.6 Comparison of Address Translation GranularitiesThe results presented so far have concentrated on the overall performance of pointer swizzlingat page fault time, a coarse-grained address translation mechanism. We now present resultsof the OO1 benchmark traversals corresponding to di�erent address translation granularitiesfor the data structures used during the traversals. Recall that we use the smart pointer idiom(Chapter 3) for implementing �ne-grained and mixed-granularity address translation withoutrequiring any additional support from the compiler or the operating system.In particular, we are interested in the three di�erent address translation granularities,namely coarse-grained, mixed-granularity and �ne-grained strategies, that were described inChapter 3. The following table describes the types of pointers used for each granularity andthe corresponding key for the performance results plots.Granularity Type(s) of pointers Keycoarse-grained All \raw" (language-supported) pointers all-rawmixed-granularity \Smart" pointers for index, raw otherwise smart-index�ne-grained All smart pointers all-smartUnlike the performance results presented in Sections 5.4 and 5.5, when presentingresults for address translation granularities, it is important to use CPU time rather than realtime because the di�erence in performance is primarily due to di�erences in faulting andswizzling, and allocating address space for reserved pages. Unfortunately, as discussed in107



Section 5.2.2, CPU-time timers on most operating systems have a very coarse granularity,and it would be impossible to measure any reasonable di�erences in the performance due toa change in the address translation granularity because our overheads are very small. Hencewe use an older (and slower) SPARCstation ELC, which is slow enough to o�set the coarsegranularity of the timers.
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Figure 5.39: CPU time for translation granularities, large database (Solaris, SPARC ELC)Figure 5.39 presents the CPU time for all traversals in an entire traversal set run ona large database. As expected, the cost for coarse-grained address translation (the \all-raw"case) is the highest for the �rst 15 or so traversals. This is not unusual because the coarse-grained address translation scheme swizzles all pointers in the faulted-on pages and reservesmany pages that may never be used by the application. This is exacerbated by the poorlocality of reference in the benchmark traversals because many pages of the database areaccessed during the initial traversals, causing a large number of pages to be reserved. Thenumber of new pages swizzled decreases as the cache warms up, and we see the correspondingreduction in the CPU time.We also note that the cost for �ne-grained address translation (the \all-smart" case) isthe lowest for the �rst 15 traversals. Again, this is expected because the address translationscheme does not swizzle any pointers in a page when it is faulted in because they are all smartpointers that must be translated at every use. Finally, the CPU time for mixed-granularityaddress translation (the \smart-index" case) falls between the other two cases for the �rst15 traversals. This is also reasonable because only the parts index structure contains smartpointers, and each traversal uses this index only once (to select the root part for the traversal).This cost is only slightly less than the \all-raw" case because our B+ tree implementationgenerated a tree that was only three levels deep, reducing the number of smart pointers thathad to be translated for each traversal. 108



Now consider the hot traversals. The �rst thing to note is that the CPU time for the\all-smart" case is higher than that for the other two cases. This is because smart pointersimpose a continual overhead for each pointer dereference, that is, the cost is incurred even if thetarget object is resident. In contrast, the \all-raw" case has zero overhead for hot traversals.(We expect the \smart-index" results to be identical to the \all-raw" results because thereis no index lookup during hot traversals, and no smart pointers need to be translated. Weattribute the small di�erence between the hot results in these two cases to caching e�ects.)
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Figure 5.40: CPU time for translation granularities, small database (Solaris, SPARC ELC)Figure 5.40 shows the corresponding results for the small database. In this case, onlythe �rst few (3 or 4) traversals contain faulting and swizzling. Once again, a phenomenonsimilar to the one in large database results can be seen in the current results. In particular,the CPU time is highest for the �rst few traversals of the \all-raw" case and lowest for the\all-smart" case. However, for the hot traversals, the two granularities swap their positions;the \all-smart" case is more expensive because of the continual translation overhead, while the\all-raw" and \smart-index" results are identical for hot traversals because no index pointersare dereferenced.5.7 DiscussionWe have presented results for the performance of pointer swizzling at page fault time asimplemented in the Texas persistent store. We used the standard OO1 benchmark traversalsfor measuring the cost of various components of our system, and compared them with I/O costs.We measured the performance of benchmark traversals for both small and large database sizes.All results were presented for benchmark runs on two popular operating systems, Linux and109



Solaris. For Solaris, we also presented results using raw I/O (instead of �le I/O) for databaseaccess to study the e�ects of �le system caching and readahead on the overall performance.We have seen that the empirical results are qualitatively similar across Linux and So-laris, but there are some quantitative variations in the raw data depending on the combinationof speci�c experiment and the operating system. However, these variations are not signi�cantoverall and do not a�ect the results adversely. In this section, we present our basic argumentfor the performance of Texas, and discuss the impact of operating system implementations.5.7.1 Basic ArgumentWe have shown that pointer swizzling at page fault time imposes absolutely no overhead if thedata has already been loaded into memory, and minimal overhead when faulting (i.e., in thepresence of I/O activity). The basic idea exploits locality of reference in the application toamortize the cost of swizzling at page fault time. Since processors are much faster than disks,the cost of swizzling entire pages at fault time is very small compared to the I/O costs. Byusing existing virtual memory hardware, we do not incur any other overheads for compiler oroperating system support.The various results presented earlier correspond to the benchmark database stored ona local disk. However, the database may be stored in the main memory of a remote host,and faulted in over a fast network without involving any disk access. An example of this is adistributed system where the data is stored on a centralized data server and fetched over thenetwork by di�erent clients. Since networks are much faster than disks, network I/O costs arelikely to be much smaller than disk I/O costs. As a result, the overheads of pointer swizzlingat page fault time cannot \hide" as well in the I/O costs. However, there are at least twocounterarguments for this. First, very fast networks are still in the experimental research state,and are not likely to be widely available in the very near future, and second, as fast networksbecome ubiquitous, we expect corresponding improvement both in hardware and operatingsystems, which will combine to reduce our overheads as well.5.7.2 Impact of Operating System ImplementationsWe have run the same benchmark experiments on both Linux and Solaris, using identicalunderlying hardware setup. Although the overall results conformed in qualitative terms, therewere some unusual quantitative variations, especially for Solaris. In particular, Linux appearsto be more aggressive than Solaris in terms of the kernel memory usage. Although both testmachines had the same amount of RAM (i.e., 32MB), the amount of main memory availableto user applications on Solaris was a few megabytes less than that on Linux (approximately27MB vs. 30MB). Normally, such a minor di�erence should not have any signi�cant impacton the overall performance. However, for the large database results, the split happens to be\just right" in terms of total data faulted into memory from the database. As a result, wesee some paging behavior on Solaris, while the few extra megabytes of memory (combinedwith aggressive bu�er management) is su�cient to avoid any unnecessary paging on Linux.Of course, depending on its bu�er management algorithms, the Solaris performance may besuboptimal even with a slightly larger memory size.110



Another interesting di�erence between Solaris and Linux is the cost of handling aprotection fault. Speci�cally, we focus on the time taken from the point when a protectedpage is accessed by an application till the point where a user-level fault handler gains control.We found that this number is several times larger on Solaris than on Linux. The higherfaulting cost obviously a�ects the performance of Texas, especially during the cold and earlywarm traversals where many protection faults are generated (and handled). Further detailsabout exception handling, including some measurements on fault handling costs, are providedin Chapter 7.5.7.3 Indirect Costs of Pointer SwizzlingWe do not separately measure or account for the indirect cost of swizzling in our perfor-mance measurements. There are at least two reasons for this. First, benchmark traversalsfor small and large database sizes correspond to situations with no paging and heavy pagingrespectively.17 Recall that the indirect costs of pointer swizzling are not a major issue in eitherof these two situations. Another important reason is that the indirect costs are a�ected heavilyby the locality characteristics of the application. As is obvious from some of the performanceresults presented so far, the OO1 benchmark exhibits extremely poor locality characteristicsin its data structures, and consequently the traversal operations. As such, any measurementsof indirect costs using the OO1 benchmark are likely to be arti�cially skewed and not veryuseful for drawing any meaningful conclusions.5.8 Benchmarking LimitationsOver the last few years, several new systems for implementing persistence and full-edgedobject-oriented database capabilities have been proposed, implemented, and studied by aca-demic research groups and commercial database vendors. During this period, several bench-marks have also been developed for measuring the performance of these new systems. Ofthese, the OO1 [CS92] and OO7 [CDN93] benchmarks have become the most popular, andhave been used widely for measuring the performance of various systems in isolation, as wellas for comparing two or more systems.The canonical application domain for object-oriented databases (OODBs) is the Com-puter Aided Design (CAD) domain. We posit that the OO1 and OO7 benchmarks are notrepresentative of typical applications in the CAD domain. As such, the results from thesebenchmarks are not necessarily indicative of typical CAD application behavior. In this sec-tion, we discuss some issues about benchmarking methodology, and present our views on thelimitations of synthetic benchmarks, particularly the OO1 and OO7 benchmarks. We are espe-cially interested in their use as object database benchmarks, and as benchmarks for measuringorthogonally persistent systems. As discussed in the rest of this section, we believe that thebenchmarks are unsuitable for both these roles.17Actually, large database results for Linux appear to correspond to the no paging situation.
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5.8.1 Synthetic BenchmarksMost performance measurements and analysis of persistent object systems (and OODB sys-tems) have been done using synthetic benchmarks in lieu of using real applications. There aretwo reasons for this: �rst, there are few large, realistic applications that exercise all persistencemechanisms of the underlying system and of those that exist, few are available for general use;and second, it is typically extremely hard to adapt a large piece of code to any given persistencemechanism without having a detailed understanding of the application.Synthetic benchmarks, however, provide a useful solution to these problems. Usually,the benchmarks are much smaller than any real applications and are (hopefully) designed to beported to di�erent systems without requiring large modi�cations. The underlying assumptionis that the benchmarks are designed to model behavior of real applications and as such theresults from the benchmark studies can be extrapolated for a wide variety of applications.However, this is not always true, and results from synthetic benchmarks must be interpretedwith extreme caution.Often, the synthetic benchmarks reect their designers' intuitions about program be-havior, and these intuitions may not be exactly right. Worse, the benchmarks may implicitlyincorporate unrealistic assumptions about underlying common analytic models. The appar-ently \empirical" nature of these \experimental" results is likely to lull people into relying onthe results more than appropriate. A benchmark may resemble real applications in certainways that are relevant to certain aspects of system design, but in other ways, synthetic bench-marks indicate very little about the behavior of real applications. Even when a benchmarkhas been validated with respect to certain issues, it may be quite inappropriate for any otherpurpose for which it has not been validated.This is not to say that synthetic benchmarks are never useful. In fact, synthetic bench-marks often have the advantage that they can be varied systematically by using a few pa-rameters, which allows for experimentation with a range of possible behaviors. Of course,the results should be interpreted cautiously to ensure that the conclusions drawn from thoseresults are valid for real application behaviors.The OO1 and OO7 Benchmarks. The OO1 benchmark [CS92] was one of the �rst widely-used benchmarks for performance measurements of OODBs, designed to model applicationsin the engineering CAD domain. The benchmark database schema is very simple and is basedon a network of biased random interconnections of part objects, which are manipulated usingsome simple benchmark operations. The OO7 benchmark [CDN93] was developed at theUniversity of Wisconsin as a successor to the OO1 benchmark. While the benchmark retainsthe CAD application model, the data structures are enhanced to add much more hierarchyand additional complexity is incorporated for tuning various benchmark parameters. OO7has been widely used by OODB developers to measure the performance of their systems, andby researchers to benchmark and compare performance of various persistence mechanisms.However, to the best of our knowledge, OO7 has not been validated against real applicationsfrom the CAD domain to ensure that it indeed represents a realistic workload. We believethat OO7 is not representative of typical CAD applications; other researchers [TNL95] havealso reached similar conclusions. 112



5.8.2 Common Problems with the OO1 and OO7 BenchmarksWe are primarily interested in the behavior of the OO1 and OO7 benchmarks, speci�cally forperformance measurements in an orthogonally persistent systems such as ours. In particular,we believe that these benchmarks typically measure the overall I/O performance instead ofmeasuring the costs of address translation and orthogonal persistence, which is our primaryfocus.18 This is obviously a problem because OODBs and persistent programming languagesare usually intended to be used for CPU-intensive applications. For applications that exhibitI/O-intensive behavior, it may be preferable to use traditional relational databases which areoptimized to improve I/O performance.For the purpose of this discussion, we de�ne two terms, normal program behavior anddatabase program behavior, to categorize behaviors of di�erent applications. Normal programbehavior denotes typical CPU-intensive applications that spend most of their execution timeperforming some computation, and use the persistence mechanism only to save their �nalresults. For such applications, a majority of objects need not to be saved to stable storage be-cause they constitute transient data that does not live for very long [Wil97, WJNB95, Joh97].In such situations, execution costs are dominated by operations over transient data; the per-sistence mechanism must not interfere with these operations, making them as fast as possible.In contrast, database program behavior denotes applications that are usually I/O-intensive anddo not perform signi�cant computation during their execution. Traditional relational databasesystems are better suited for stable storage management in such applications. Most OODB sys-tems and persistent programming languages are (and should be) targeted towards applicationsthat exhibit normal program behavior, enabling the persistence technology to be incorporatedinto normal applications that operate primarily on in-memory data.Below, we discuss several common problems that we have identi�ed with both thebenchmarks; although we focus mostly on the OO1 benchmark, many of the same issues areapplicable to the OO7 benchmark also. While the following is not meant to be an exhaustivecompilation of the problems, we believe these issues are the most important especially in thecontext of a coarse-grained persistent system.Separation of I/O CostsThe benchmarks do not specify any way to separate I/O costs from other costs, including thosethat are necessitated by architectural choices in the implementation of the persistent system.For example, if a particular system aggressively prefetches data, the majority of the persistentstore will be loaded into memory during early traversals, and the later warm traversals willbe closer to hot traversals. In contrast, if the system prefetches little or not at all, the warmtraversals are comparatively \cooler." Thus the results for warm traversals mostly representthe loading and caching costs, rather than the overhead of the persistence mechanism itself.That is, they are a measure of the \warmth" of warm traversals rather than fundamental costsof the architecture.18Recall that the costs of orthogonal persistence include the costs incurred when not using the persistencefacilities|for example, when accessing transient data or persistent data that has already been loaded intomemory. 113



The designers of OO7 appear to have recognized this issue, and specify only \cold" and\hot" performance measurements. On the other hand, OO1 requires that results be reportedonly for cold and warm performance, omitting the hot performance measurements. Thisis a problem because the hot performance essentially represents the baseline and, withoutthis information, it is not possible to judge the performance of a given persistent system,regardless of how well caching is working. This is particularly important for our approachwhich incurs absolutely no overhead during hot traversals when accessing both in-memorypersistent pointers and transient pointers. As a result, our hot performance is equal to thebest-case performance in a fully-transient con�guration. In other words, the cost of orthogonalpersistence is zero in our system.19 However, this is not evident unless the hot performance isalso reported as part of the benchmark results.Locality of ReferenceAnother issue with these benchmarks is regarding the locality of reference. Although therandomized interconnection scheme in OO1 exhibits some locality|90% of the connectionsare local|it actually has disastrous e�ects on locality of simple algorithms operating over thedata. On average, every tenth pointer references a randomly-chosen object. Because of this, theOO1 benchmark has extraordinarily poor locality of reference. The cold and hot performancerepresents two extremes of behavior|very bad locality and very good locality|which can beused to roughly assess the overall performance of a system under two very di�erent kinds ofuse. Unfortunately, there is no guidance in terms of the \expected" mix of these behaviors.The unusually poor locality may not matter for some purposes, but may be crucial forother purposes. For example, �ne-grained systems incur several instructions of overhead atevery pointer dereference (and perhaps at every pointer comparison), while the coarse-grainedschemes (such as ours) incur thousands of instructions of overhead only at page faults, and zerootherwise. If the frequency of pointer traversals is several orders of magnitude higher than thefrequency of page faults, coarse-grained techniques will obviously be more e�cient. This isalmost always true for most normal applications, which achieve good CPU utilization, usuallygreater than 50%. (Recall that, on a modern processor, a program that incurs a fault everymillion instructions is probably paging heavily.) For object databases, this is less clear. Mostrelational databases are designed for applications that tend to be I/O-intensive, but object-oriented databases are likely to be used for CPU-intensive tasks such as CAD applications. Thelack of locality in OO1 raises questions regarding its appropriateness as a general benchmarkfor arbitrary systems.The only other useful information in the graph of part objects is the connectivity, whichis based on a biased random distribution of interconnections. This ensures that there will bea strong correlation between the static structure of the graph and the dynamic locality of thebenchmark traversals. Furthermore, it means that the locality characteristics are likely to beconsistent, especially with respect to relative heat of links. If an object or link is hot duringone traversal, it is very likely to be hot during any other traversal that encounters it at all.While the OO7 benchmark was designed to support better locality characteristics, it is19This is unlike other (�ne-grained) systems that usually incur costs at every pointer dereference, includingboth in-memory persistent pointers and transient pointers.114



not clear whether this goal has been achieved. We are not aware of any studies that measuresthis factor; the closest appears to be one by Tiwary et al. [TNL95], and their conclusionsindicate that OO7 is unsuitable as a generic CAD workload. Our own preliminary analysisof OO7 (not presented in this dissertation) has shown that the OO7 database connectivityexhibits poor locality of reference characteristics.Computation BehaviorBoth OO1 and OO7 benchmarks specify minimal computation behavior when a persistentobject is visited during a benchmark operations (e.g., a traversal). In OO1, as each newobject is visited, an empty procedure is invoked on that object to represent the \computation"performed by a real application. The direct e�ect of this is that the benchmark operationsare data- or I/O-intensive rather than CPU-intensive. This is not representative of most realapplications, which usually do much more \work" on their data compared to just invoking anempty procedure. OO7 assumes a uniform workload behavior, which is unrealistic becausereal application usually exhibits di�erent phases during a single execution.The I/O-intensive nature of benchmark traversals makes coarse-grained address trans-lation techniques look unnecessarily bad because their basic premise|locality of reference indata access and page faults interspersed with long periods of computation|is violated. In ad-dition, each persistent pointer is dereferenced only once during a traversal. This is unrealisticfor CAD applications; for example, Tiwary et al. [TNL95] found that OO7 reused pointers20about 100 times less frequently than their CAD visualization application. Furthermore, notransient pointer traversal is included in both benchmarks. This unfairly a�ects the results fora coarse-grained address translation scheme which relies on high pointer reuse for overall per-formance bene�ts over a �ne-grained scheme, that adds overhead to every pointer dereference,regardless of whether it is a persistent or a transient pointer.Data Structures and AlgorithmsAnother point against the benchmarks is their failure to exactly specify data structures andalgorithms that must be used for the benchmark schema and during various benchmark op-erations. For example, the original OO1 speci�cation does not specify the exact structure ofthe parts index. Similarly, the OO7 benchmark does not specify the kinds of containers (e.g.,sets, bags, lists, etc.) that must be used for various collections of objects in the benchmarkschema. This is quite undesirable, especially for comparison across di�erent systems, becauseperformance di�erences between these systems can be signi�cantly a�ected due to �ne-tuningof speci�c data structures. The benchmarks also do not specify transient data structures,although they are required for the benchmark operations.In a similar vein, both OO1 and OO7 benchmarks do not specify some importantalgorithms that may a�ect the connectivity of the graph and the corresponding traversals.For example, the default implementations use the standard pseudo-random number genera-tor available in the underlying operating system. The algorithm for pseudo-random number20A pointer is said to be reused when an application traverses (or dereferences) it more than once.115



generation is likely to vary between di�erent operating systems, or even between di�erent ver-sions of the same operating system. The random number generator is an integral piece of theOO1 benchmark|the initial connections when building the original connectivity graph andthe root part for each traversal are selected randomly|and di�erences in its implementationmay signi�cantly a�ect the performance of a system.5.8.3 SummaryWe have presented some common problems with OO1 and OO7, two of the most populardatabase benchmarks used for studying the performance of various OODB systems and persis-tent object stores. We believe that these benchmarks are unsuitable for performance measure-ments of orthogonal persistent systems and as general object database benchmarks. There isalso some independent evidence that these benchmarks do not emulate the characteristics andbehavior of CAD applications, which typically represent the kind of applications that exploitOODB systems.With both OO1 and OO7 benchmarks, we have identi�ed several issues| especiallypoor locality characteristics and lack of computation behavior|that are not representative ofnormal application behavior. In general, we believe that these benchmarks are not designedto measure address translation costs which is what we are most interested in; instead, theymostly measure the cost of loading and caching persistent data. Furthermore, because of therandomization in the data, it is unclear whether the results are at all meaningful; most realapplications exhibit both locality of reference and distinctive phase behavior.Finally, we believe that OO1 and OO7 are also not suitable for studying other issuessuch as clustering. Since the characteristics of both benchmarks are fairly random, there islittle opportunity for a sophisticated clustering scheme to exploit the same regularities thatit might successfully exploit for real applications. Furthermore, the interconnections betweendatabase structures (at least in OO7) also discourage static clustering. Of course, the e�ectsof clustering, etc. on the overall performance is beyond the scope of this dissertation.5.9 ConclusionsThe various performance results presented in this chapter have supported our basic argumentthat pointer swizzling at page fault time has zero costs when there is no faulting from thepersistent store. The major cost of the system is incurred when a page is loaded into memoryand the pointers are swizzled into virtual memory addresses. Even then, the overhead is smallcompared to the I/O costs incurred for fetching the page from disk. The basic idea takesadvantage of the locality of reference in the application access patterns such that the higherper-page costs of swizzling at page fault time are o�set by avoiding unnecessary overheadduring all subsequent accesses to the same object.As networks get faster, it is likely that the persistent stores will be stored in the mainmemory of a remote data server rather than on a local disk of the client host. This reduces theplaces where we can \hide" our overheads, and has a potential to make coarse-grained addresstranslation look unattractive. However, we believe that this will not be a major issue because116



we expect signi�cant improvements in processor speeds, as well as operating systems, that wille�ectively reduce the swizzling overheads as well.We also experimented with di�erent granularities of address translation for studyingthe general applicability of these granularities. We found that mixed-granularity schemes maybe appropriate in some cases, speci�cally for data structures that have a high fanout and areonly accessed sparsely. An example of such a data structure is the parts index used in the OO1benchmark. For such structures, it may be preferable to use pointer-wise address translationto reduce the rate of address space consumption. Depending on the application characteristics,a mixed-granularity approach might work well in such situations.In the process of measuring performance of the pointer swizzling at page fault timemechanism and its di�erent components, we have also learned some interesting lessons aboutoperating system implementations. For example, the cost of handling protection faults onSolaris is several times higher than that on Linux, even when using identical hardware. Theexact reasons for this slowdown are not clear but it does a�ect the performance of Texas, espe-cially during the �rst few traversals. In addition, we also found that the bu�er managementson both operating systems played an important roles in overall results. The aggressive bu�ermanagement under Linux frees up a few extra megabytes which appears to be just su�cientto avoid unnecessary paging activity during the actual traversals.
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Chapter 6Run-Time Type Description6.1 IntroductionAccess to information about data object layouts at run time is necessary for clean and e�-cient implementation of various families of run-time support software. Texas (Chapter 4) andother persistent object stores [ABC+83a, AM95, LLOW91, WD94] that use pointer swizzlingtechniques such as pointer swizzling at page fault time need to know the locations of pointersin data objects at run time in order to �nd and manipulate these pointers correctly. Similarly,precise garbage collectors [WJ93] also use this information to locate pointers in objects fortracing the reachability graph and reclaiming garbage.1 Other applications that bene�t fromthe knowledge of low-level layout information are:� data structure browsing,� data structure pickling,� data format conversion for sharing between machines with opposite endianness,� parameter marshaling for distributed communication (including remote procedure calls),� advanced foreign function call interfaces for e�cient cross-language data sharing, and� advanced pro�ling, tracing and debugging.The ability to support run-time type queries about data objects is available for somehigh-level languages such as Smalltalk [GR89], CLU [LAB+81] and Modula-3 [Nel91]. Theterm Run-Time Type Identi�cation (RTTI) [SL92] has been used to represent language-levelsemantics and the ability to support operations that allow the application to ask whether agiven type is a subtype of some other type. Recently, the C++ standard has added RTTIto support operations such as \downcasts" without circumventing the type system. Unfortu-nately, the standard RTTI information is insu�cient for our purposes since it does not describe1Traditional garbage collectors for languages such as C++ have been conservative [BW88]. That is, anydata value which \looks" like a pointer is treated as such while tracing the reachability graph. In contrast,precise garbage collectors, which are typically used for real-time applications, cannot be conservative becausethey need exact pointer information to honor the necessary correctness and performance guarantees.118



the implementation-level information necessary for run-time support systems. We introducethe term Run-Time Type Description (RTTD) to denote low-level object layout descriptionsand other implementation-dependent information made available at run time.In this chapter, we describe a portable, general purpose, high-performance mechanismfor generating and manipulating RTTD; this mechanism is designed to be applicable to varioushigh-level programming languages and is compatible with conventional compilers. The funda-mental idea is to use compiler-generated debugging information to extract the implementation-level information necessary for RTTD. We believe that this is the most portable approach for avariety of applications and argue that compiler-generated debugging information is preferableto the use of preprocessors because preprocessors are hard to use, develop, maintain, oftenincompatible with other preprocessors, and not portable.A Note on \Portability." We use the term \portable" at two levels: the portability ofour approach, and the portability of our implementation. Our approach relies heavily onthe compiler providing object layout information in its debugging output. It is reasonable toexpect any modern compiler that supports debugging will provide this information. Hence, ourapproach works with standard compilers and operating systems. The other level of portabilityis related to the implementation of our system. We do not mean that our system is portable inthe \compile out-of-the-box and run" sense, but rather that it is relatively easy to port becausethe implementation does not rely on any unusual compiler or operating system features. Inother words, our system is less portable than an ANSI C program, but much more portablethan (say) a \portable" compiler or operating system.Scope of this Approach. We focus mainly on dynamically-allocated objects because weinteract with the allocator to locate and record the type information with the object; this issu�cient for most applications. Extensions to handle statically-allocated instances are possible(using link information from the object �les), but are beyond the scope of this dissertation.Stack-allocated objects may pose greater di�culties, and are also a topic for future work. Theuse of debugging information is su�cient for most purposes, but some may require further en-hancements if the compiler-generated debugging information does not contain all the requiredlow-level information.Current Status and Availability. We have implemented this system for multiple platformsby leveraging code from the GNU debugger, gdb, and the source is publicly available underthe GNU General Public License (GPL)2 at ftp://ftp.cs.utexas.edu/pub/garbage/texas.We are currently using this system in Texas (Chapter 4) and a real-time garbage collector forC++ [WJ93]. The system has been tested under several avors of Unix (SunOS, Solaris,Ultrix, Linux, etc.) with the GNU C++ compiler and under OS/2 with IBM VisualAgecompiler (previously known as CSet compiler).2Because our code does not link with the application code, the application does not fall under the scope ofthe GPL. In addition, the output (i.e., the type information embodied by type descriptor records) generated bythe system is not covered by GPL either. Thus our system can be (and is) used with commercial applicationswithout royalty or licensing restrictions. 119



Structure of the Chapter. The remainder of the chapter is organized as follows. Sec-tion 6.2 provides an introduction to RTTD and motivation for its need and use. It alsodiscusses other techniques for generating RTTD, including preprocessors, and compares themto our approach of using debugging information. Section 6.3 discusses details of RTTD genera-tion and manipulation, including the overall steps necessary for providing RTTD in a high-levellanguage. We provide a detailed description of a case study implementation for C++ in Sec-tion 6.4, followed by a description of our storage model (Section 6.5) and a sketch of expectedperformance characteristics (Section 6.6). Sections 6.7 and 6.8 describe current status andsome related research, and �nally we conclude in Section 6.9.6.2 RTTD IssuesThis section discusses some fundamental issues concerning RTTD and provides motivationbehind the design of a general-purpose mechanism to provide implementation-level type in-formation. In addition, we introduce our approach of using debugging information for RTTDgeneration, and compare it with a seemingly obvious (but problematic) scheme of using special-purpose preprocessors.We believe that preprocessors are not suitable for RTTD generation because of a fun-damental \impedance mismatch"|preprocessors operate at the language-level (for example,parsing language constructs) whereas we are primarily interested in the implementation-levelsemantics (for example, exact locations of pointers in objects). Because a preprocessor is notan integral part of a compiler, it can only infer the compiler's actions based on the informa-tion available at the language level (that is, in the source code). In contrast, using debugginginformation allows us to \ask" the compiler about its exact behavior that is relevant for ourpurposes.6.2.1 MotivationThe primary motivation for a portable RTTD mechanism is to support the development ofe�cient, powerful language extensions for use with o�-the-shelf high-performance conventionalcompilers for languages such as C, C++ and Ada. O�-the-shelf compilers typically do notdirectly support low-level object layout information required to implement such extensionswell. In addition, we want to ensure that RTTD can be used with any language whose compilerprovides the necessary debugging information. Other goals of the design are to achieve:� e�ciency, by performing all complex steps at compile time and minimizing run-timespace and time overheads,� ease of use, by requiring minimal changes to the source programs,� elegance, by providing graceful integration at appropriate steps in the usual compilationand linkage process, and� portability, by relying on standard compilers and debugging information formats.120



6.2.2 RTTD vs. RTTIThe current C++ draft standard [WC96] describes a proposal for Run-Time Type Identi�-cation (RTTI) as part of the language. Similar features are also available in other languagessuch as Java. Typically, the information provided by the RTTI mechanism is useful only forlanguage-level semantics such as run-time type equivalence checks and \safe downcasts." Incontrast, RTTD is designed to provide implementation-level information such as the actualin-memory layout of data objects, including sub-objects as well as the layout dictated by theinheritance hierarchy.As described in the C++ standard, the language implementation must provide a classcalled type info; objects of this class are used (at run time) to represent type informationabout application types. An object of this class is returned as a result of applying a typeidexpression on an application data object. The only operations permitted on an object of typetype info are equality checks to compare with other objects of the same type, and a namefunction that returns a null-terminated string containing a unique implementation-de�nedvalue which represents the name of the corresponding type.Compared to the RTTI schemes, the RTTD mechanism described here is signi�cantlymore powerful and allows an application to \ask" various questions about the object layout.For example, it is possible to query the types or o�sets of all �elds, or explicitly determinelocations of pointer �elds, in an object at run time. In general, RTTD is not equivalent toRTTI as speci�ed for C++ and Java because. unlike the latter, it provides extensive low-level information required for applications such as persistent stores, precise garbage collectors,schema evolution mechanisms, etc.6.2.3 Type Descriptor RecordsType descriptor records form an integral part of RTTD and are used to represent object layoutdescriptions at run time. We generate a type descriptor record corresponding to each type forwhich RTTD is desired; this record contains the low-level layout information for all objectsof that type. Section 6.5 provides further details about the di�erent formats used for storingtype information in the type descriptor records.6.2.4 Preprocessors vs. Debugging InformationWe consider two main approaches for generating type descriptor records:1. using special-purpose preprocessors, and2. using debugging information.We will argue for the second approach. Other possible techniques include requiring signi�cantprogrammer intervention,3 extending language syntax or using custom compilers. We believethat these methods are unsuitable because they are expensive, inexible and place unnecessarydemands on the programmer. For example, building a high-quality compiler is a complex task,3In practice, as described in Section 6.4, we do require a minor amount of programmer intervention for ourC++ implementation. 121



and is not always worth the e�ort for implementing one or a few features. In addition, portingand maintaining such a compiler on various platforms is likely to be prohibitively expensive.Using PreprocessorsAn obvious technique for building type descriptor records is to provide a preprocessor thatparses the source and extracts the necessary information. At �rst glance, allowing portablesource-to-source translation using a preprocessor seems to be a simple and e�ective solution forRTTD. However, we believe that it is not the right approach for several reasons.4 Preprocessorsare typically:� hard to use: Simple preprocessors do not provide a clean syntax or complete syntacticerror-checking; errors are reported inconsistently and may confuse the programmer;� hard to develop: Sophisticated preprocessors that gracefully extend the language syntaxand do exhaustive syntactic error-checking and reporting must duplicate a signi�cantamount of the work done by the compiler. In e�ect, they become precompilers rather thanjust preprocessors. As compilers evolve, it is di�cult to keep preprocessors consistentwith them;� hard to maintain: Many languages, such as C++, are still undergoing standardization.This makes preprocessors hard to maintain because unrelated changes to the syntax ofthe language still require modi�cations of the preprocessor to parse these changes;� usually incompatible with other preprocessors: Relying on preprocessors leads to a trendof providing a speci�c preprocessor for solving each problem. This eventually results ina sequence or a pipeline of preprocessors that are usually incompatible|each is confusedby the constructs understood by later preprocessors in the series. This problem is exacer-bated for \nested constructs" which require repeated applications of a preprocessor suchthat no speci�c order of preprocessor invocation is acceptable. In general, constructsimplemented by di�erent preprocessors in a sequence do not interact properly; and� not portable: Preprocessors are compiler-dependent with respect to several issues:{ compiler-speci�c language extensions. Some compilers may extend the languagewith additional keywords and syntactic variations;{ structural alignment and padding. Di�erent compilers and operating systems mayimpose di�erent alignment and padding restrictions on objects;{ component order. Some languages, such as C++, do not specify the placementorder of �elds within objects; and{ hidden �elds. Some language features may require implementation-de�ned �eldsthat are generally not exposed at the source code level.54We believe that these arguments against preprocessors are valid not only for RTTD, but also for mostother purposes.5One example is the usual implementation of virtual functions in C++ using virtual function table pointersinserted by the compiler. 122



In general, preprocessors reduce exibility and we do not advocate their use, both for RTTDgeneration and other situations. In contrast, our approach is similar to a postprocessor in thatwe rely on actual information generated by the compiler itself, rather than inferring it froman examination of the source code.Using Debugging InformationMost compilers can emit debugging information that includes a description of the layout of thetypes used in the application so that a source-level debugger can be used to examine the datastructures while running the program. The debugging information is included in the object�les when the application source is compiled using the (compiler-speci�c) debug option. Itis possible to extract this information and format it into type descriptor records to provideRTTD. This approach requires minimal compiler cooperation, that is, only to the extent ofexisting capabilities of most modern compilers, and has major advantages over other solutions:� it is mostly independent of the source language used, because the format of debugginginformation for a speci�c platform does not typically depend on the details of the sourcelanguage, and� it is mostly compiler-independent; the only compiler cooperation required is that thedebugging information be generated in one of the standard formats.Finally, it should be noted that our method does not impose a space or time penalty onthe production version of the application because the debugging information can be \stripped"from the object �les once the type descriptor records have been generated.6 Alternatively, theapplication may be recompiled without debugging and with additional optimization.7 Thusour approach is usable with compilers that prohibit or reduce optimization when producingdebugging information. We are unaware of any compilers that change the layout of heap-allocated objects based on the presence or absence of debugging information, or the level ofoptimization used during compilation. In general, compilers should not do this anyway becauseit complicates normal library linkage; if libraries linked into the applications are compiled withdi�erent optimizations, the �nal result can be disastrous if object layout varied with degreeof optimization. This situation is exacerbated by mechanisms such as persistence where theobjects stored in a persistent store may suddenly have di�erent layouts than expected becausethe application that is accessing these objects is compiled with di�erent optimization than theone that created the objects.6.2.5 Adapting to Future Compiler SupportSome compilers may eventually provide some form of implementation-level type information.Currently there are no standards for the format or methods by which such information will bemade available, and we do not expect standardized, full-featured low-level type informationto be available soon. However, when this information does become available, code may be6Of course, the type descriptor records need to be stored somewhere, but that cost is negligible comparedto the cost of retaining debugging information.7This recompilation can easily be automated using standard make�les.123



written to transform such non-standard information into our type descriptor records. Such atechnique will require neither a preprocessor nor the debugging information. We hope thatstandards and programming interfaces for implementation-level type information will emerge,making it trivial to write such \adaptor" code.6.3 RTTD Generation and ManipulationThe basic goal of RTTD is to provide a mechanism to obtain the low-level object layoutinformation given the address of an object. Before accomplishing this, the following twoproblems must be solved:� constructing type descriptor records that describe the layouts of objects of various types,and� associating these type descriptor records with actual instances of appropriate types atrun time.The type descriptor records are stored in a table indexed by type names. To generatethese records from the debugging information, the application source is �rst compiled withcompiler-speci�c debug ag. Next, the resulting debugging information in the object code isparsed to extract the layout information which is then formatted into type descriptor records.Type descriptor generation can easily be accomplished at compile time as an additional actionafter each object �le has been generated from a corresponding source �le.The second problem is more challenging because we need a mechanism to identifyconcrete types8 being instantiated at each allocation site, use this information to look up thecorresponding type descriptor record and associate it with the newly-allocated instance. Unfor-tunately, conventional languages do not provide any direct support for associating compile-timeinformation with run-time instances. For languages such as C that do not have parameterizedor nested types, concrete types can easily be identi�ed from the source. For others, such asC++ and Ada, that provide more complex type systems, a sophisticated approach is necessaryand it may involve some minor system dependencies.Once these problems have been solved, a mapping from an object to its type descriptorrecord can be made available at run time. We accomplish this by providing a two-step mapping:from an object to its type identi�er, and from the type identi�er to the type descriptor record.While conceptually a single mapping is su�cient for most uses of RTTD, we chose a two-stepmapping for added implementation exibility and e�ciency. (As we explain later, the extralevel of indirection is inexpensive, and is useful for linking separately-compiled modules.)The type identi�er (or typeid, for short) is a token that uniquely represents a concretetype in the application. Note that any representation may be used for the type identi�er aslong as it provides a key that uniquely identi�es the associated type descriptor record. Inour current implementation, a type identi�er is simply an integer o�set into a table of typedescriptor records. A unique type identi�er also allows us to eliminate duplicate type descriptorrecords across separately-compiled modules, as described in Section 6.3.4.8A concrete type is any basic type such as integer or character, an aggregate type or the instantiation ofa parameterized type; a concrete type is instantiated to create an actual instance.124



6.3.1 Generating Type Descriptor RecordsThe basic approach for generating type descriptor records is to parse the debugging informationfrom object �les and build a table that maps type names of concrete types to corresponding ob-ject layout information embodied by the type descriptor records.9 This table is made availableto the running programs via an application program interface (API).Although the debugging information format varies from platform to platform (i.e.,across di�erent operating systems), there are a few representative formats that can be trans-lated into a common type descriptor record format. Our implementation of the type descriptorgenerator is divided into two parts: a platform-speci�c part to extract debugging informationfrom object �les, and a platform-independent part to build the type descriptor records from theextracted debugging information. To further generalize the implementation of the platform-speci�c part on di�erent avors of Unix systems, we have leveraged code from the GNUdebugger, gdb, to parse and extract debugging information from various object �les formatsunderstood by gdb. However, it is not di�cult to implement this functionality directly; a ver-sion for OS/2 and IBM VisualAge compiler has also been implemented using a 2000-line C++module instead of gdb code.10 Using gdb for the platform-speci�c part of the implementationmakes our type descriptor generator highly portable to other systems as gdb is enhanced tounderstand a variety of debugging information formats on di�erent systems.A note about reliability of debugging information is perhaps in order here. The cor-rectness of code generated by a compiler is obviously much more critical than the correctnessof debugging information, and sometimes compilers are released with incomplete or brokendebugging support. This is a possible problem with our approach. Fortunately, our systemrelies on only a subset of the standard debugging information|the layout information|whichis much more reliable than other debugging information such as the mapping between linenumbers and program counter, or between variables and registers. Occasionally, some versionof a compiler may be \broken" in a relevant way, and in such cases, a di�erent version mustbe used to work around the problem.116.3.2 Associating Type Descriptor Records with ObjectsAs mentioned earlier, associating type descriptor records with actual objects is somewhat moredi�cult than generation them. We divide this problem into two smaller parts, each of whichcan be solved individually:� identify concrete types at allocation sites, and� record the type descriptor record with the instance.Recall that the table of type descriptor records generated at compile time maps type namesto corresponding object layout information. Hence, we can locate type descriptor records9Type descriptor records are actually linked together into a data structure that represents the type graphof the application.10In retrospect, this module is more general than necessary, and could probably be half as long. Futureports should be easier because we can reuse code from this module as well as avoid the excessive generality.11For example, a few of the many releases of the GNU C++ compiler have a�ected our system, but it hasnot been a serious problem in general. 125



corresponding to concrete types by using their (unique) type names. The type information ispassed to the allocator, which performs a table lookup and retrieves the corresponding typedescriptor record to be recorded with the instance.Type identi�cation using type names may be tricky for some languages, because thenecessary information is not directly available at an allocation site. For a language like C,it is easy to capture the type name at an allocation site by implementing the allocator callas a preprocessor macro that takes the type name as an argument and converts it into astring representation. This is acceptable because the language does not provide an advancedtype system and actual type names are directly available at allocation sites. However, forlanguages such as C++ and Ada, this is not a viable solution because the type name isnot directly available at allocation sites such that macro expansion occurs \too early" in theoverall compilation process|before parameterized and nested types have been resolved tounique concrete types|to capture the type name.Instead, we determine concrete types after the code has been compiled and types atallocation sites have been resolved to concrete types. This approach requires a mechanismfor backpatching the allocation sites. That is, we must plug in a concrete type identi�er ateach allocation site after it has been compiled and the concrete types have been resolved. Aswe describe in detail later, this backpatching can easily be implemented by adding an extralevel of indirection and leveraging linker name resolution. We introduce special backpatchingvariables that hold type identi�ers for each type, and reference these variables at correspondingallocation sites. After the application has been compiled, we can generate code to initializethese variables appropriately|the linker resolves references to the variables in the normal way,and their initialized values will be available at the allocation sites.Finally, our allocator simply stores the type identi�er in a hidden header for the object.Most allocators already attach a header to every object for bookkeeping data, and we canaugment that data to include the type information for RTTD. In addition, the allocator mustalso support mapping from pointers to (or to the interior of) an object to the header ofthe object. This is especially necessary for C and C++ because pointers may not point tobeginnings of objects, due to pointer arithmetic or the standard implementation of multipleinheritance that implicitly uses pointers to sub-objects.6.3.3 Compilation and Linkage ModelWe gracefully integrate the generation of type descriptor records and their association withactual instances at appropriate steps in the normal compilation and linkage process. Thisallows us to build type descriptor records when corresponding debugging information is avail-able, generate code to create and initialize backpatching variables to hold type information,and link object modules together along with the initialization code and libraries for manipu-lating type descriptor records. We describe the overall compilation and linkage process below,speci�cally noting the steps required for integration of RTTD.Source code for an application is typically divided across multiple �les. The applicationexecutable is built using a compile-and-link model|source �les are usually compiled individ-ually to generate corresponding object �les (compile phase), which are then linked togetherto create a single executable for the application (link phase). We have designed the RTTD126



generation mechanism to use a similar model; the type descriptor generator extracts typeinformation from individual object �les to build corresponding mapping tables (\tdcompile"phase), which are then merged to produce a single table corresponding to the applicationexecutable (\tdlink" phase).12
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Figure 6.1: Compilation and linkage processFigure 6.1 shows the overall compilation and linkage process. The basic steps involvedin RTTD generation for a particular application are as follows:1. Compile source �les with the debugging option enabled and generate object �les (stan-dard compile phase).2. Generate type descriptor records from debugging information in each object �le (\td-compile" phase).This is done by a stand-alone program, o2tdesc, supplied with our system.3. Merge type descriptor records from multiple modules to be linked, into a single table oftype descriptor records for the application and eliminate duplicates (\tdlink" phase).12We use the terms tdcompile and tdlink to denote the two phases of type descriptor records generation, andto distinguish them from the standard compile and link phases.127



This is done by another utility, tdlink, also provided with our system.4. Generate auxiliary object �le containing initializations of all backpatching variables thatare used to hold information about concrete types.First, an auxiliary source �le containing the initialization code is generated by a stand-alone utility, tnamemap. This source �le is then compiled with the same compiler thatwas used to compile the application source �les. (Section 6.4 provides full details aboutthe backpatching variables while describing the case study implementation for C++.)5. Link all object �les (including the one from the previous step) with a support library foraccessing type descriptor records, to generate the �nal application executable (standardlink phase).It should be noted that our \tdcompile" phase follows the standard compile phasebecause we use object �les to generate the type descriptor records. In contrast, the \tdlink"phase precedes the standard link phase because it generates auxiliary source code which mustthen be compiled and linked into the �nal executable.The above steps can be easily automated by using straightforward make�les. Since mostlarge applications already use make�les to automate the standard compile and link phases, itis easy to extend this by providing additional targets and actions for RTTD generation.6.3.4 RTTD Across Multiple Compilation UnitsFor languages such as C or C++, each compilation unit usually refers to an object �le thatis typically generated from a distinct source �le. Several compilation units are put togetherto generate a single application executable. As can be seen from Figure 6.1, our compilationand linkage model has been designed to be conducive for supporting RTTD across multiplecompilation units. The type descriptor records are generated for each compilation unit, andthen linked together into a single set of type descriptor records for the entire application. Thisallows us to regenerate type descriptor records selectively based on compilation units that aremodi�ed. If make�les are used to regenerate object �les when source �les change, a simplemodi�cation of the make�le will also cause new type descriptor records to be generated whena new object �le is created.The use of backpatching variables for type identi�ers is also favorable for providingRTTD across multiple compilation units. Usually, the type descriptor generator only has localknowledge about type information in the object �le being processed in the current execution.It is not possible to assign unique type identi�ers to types during a particular execution with-out maintaining some global knowledge about type information from all object �les processedearlier. However, since type identi�ers are stored in backpatching variables that are initializedseparately after the standard compile phase, it is relatively trivial to assign unique type iden-ti�ers to types; the tnamemap utility, which generates the initialization code, can ensure thateach type is assigned a unique type identi�er value.The compilation and linkage model also facilitates elimination of duplicates. Becausethe same types may be used in di�erent modules of an application, type information may beduplicated across various object �les, and hence across mapping tables generated from these128



�les. The tdlink utility performs duplicate elimination when it merges type descriptor recordsfrom multiple modules into a single table for the application. Duplicate elimination can bedone based either on name equivalence or on structural equivalence. As the names imply, nameequivalence considers two entities (types) to be equivalent if both have the same name, whilestructural equivalence uses the structure of the entities to compare them.6.4 RTTD for C++Section 6.3 discussed the high-level issues involved in generating and manipulating RTTD forany conventional source language, while avoiding an elaborate discussion of some language-speci�c issues such as the implementation of backpatching variables. In this section, we de-scribe our case study implementation of RTTD for C++. We currently use this implementationin the Texas Persistent Store and a real-time garbage collector for C++ [WJ93].As described earlier, type descriptor generation relies on the existence of debugginginformation in object �les, and as such, does not directly depend on the source language. Incontrast, associating type descriptor records with appropriate instances requires modi�cation ofallocation sites, and is obviously language-dependent because it involves the language interface.Below, we �rst provide a high-level overview of the whole system in Section 6.4.1 beforedescribing the implementation details in Section 6.4.2. We also discuss issues about handlingmultiple compilation units (Section 6.4.3) and the use of types names for added exibility insome applications (Section 6.4.4). Finally, we briey discuss some possible complications andand enhancements in Section 6.4.5.6.4.1 OverviewOur approach exploits some common features of C++, while minimizing dependencies on anyspeci�c compiler implementation. Our goal is to provide a language interface that requiresminimal changes to existing source in order to facilitate ease of use; most of the complexprocessing is performed behind the curtains while providing a simple front-end to the user.Recall that the basic strategy is to provide a mechanism to associate type descriptorrecords with the corresponding objects when they are instantiated; this can be accomplished bymodifying the allocation site to make type identi�ers available to the allocator, which in turnstores them with the newly created object. For C++ implementation, the main mechanism formodifying the allocation site and the underlying allocator is to change the C++ new operator;13we overload14 the operator to expect the type identi�er as an additional argument and store itin the header of the object. In addition, we also provide a macro interface which encapsulatesthe (slightly awkward) syntax of the overloaded new operator.For languages such as C, where concrete type information is directly available at theallocation site, a literal type identi�er may be passed to the allocator. However, becauseC++ supports nested and parameterized types, information about the concrete type beinginstantiated is not always available directly at the source level, and hence a literal type identi�er13C++ provides a new operator to dynamically allocate objects in an application's memory.14C++ allows a programmer to overload a function or an operator by providing di�erent implementationwith the same name, as long as the function signatures can be used to distinguish the implementations.129



cannot be passed to the allocator. The type information usually becomes available only afterthe source has been compiled and the compiler has resolved the concrete type at each allocationsite. Hence we need a mechanism to backpatch the overloaded new operator call-sites to providethe appropriate type identi�er value after compilation. However, we also want to avoid objectcode modi�cation for this purpose. Therefore, we implement backpatching by introducing anextra level of indirection, and leveraging the compiler's own type processing and the linker'snatural name resolution as follows. We use (and reference) special backpatching variables,rather than literals, for the type identi�ers at each allocation site; when the source is compiled,the compiler generates unde�ned references to these variables in the object code. Once theappropriate concrete type information has been extracted from the object code using thetype descriptor generator, we generate auxiliary source code to initialize the variables to theirappropriate type identi�er values. This initialization code is then compiled and linked withthe application object code, and the linker resolves the unde�ned references appropriately. Ine�ect, this achieves the desired backpatching without requiring object code modi�cation.Note that each backpatching variable holds the type identi�er for only a single typebecause each allocation site can instantiate only one type at any given time. In other words,there is a one-to-one mapping between a type and the corresponding backpatching variable.This observation allows us to have one backpatching variable for each type, rather than onefor each allocation site; if the same type is instantiated at another allocation site, the samevariable can be used at that allocation site without introducing any errors.A simple approach for providing backpatching variables|which does not work in thegeneral case|is to ensure that each type instantiated has a special class variable15 which playsthe role of the backpatching variable. However, this approach cannot handle builtin types (forexample, int, float, etc.) in C++ because the language allows de�nition of class variablesonly for aggregate types. In addition, it requires modi�cation of user-de�ned types (to addthe class variable) which would burden the application programmer.However, we can get essentially the same e�ect by modifying the solution slightly. Weensure that, for each unique type instantiated, there exists a wrapper class that contains theabove-mentioned class variable; we can then use the variable in the wrapper class to holdthe type identi�er of the corresponding instantiated type. In order to maintain the one-to-onemapping between the instantiated type and the corresponding class variable, the wrapper classis parameterized such that a unique wrapper class is created for each type instantiated by theoverloaded new operator. In e�ect, we have added a one-to-one mapping between a wrapperclass and the associated type.Use of a wrapper class provides several bene�ts for RTTD:� It allows easy and automatic creation of class variables for non-aggregate types.Since a separate class is used to hold the class variable, this approach works for builtintypes and does not require modi�cation of user-de�ned types.� It allows easy generation of references to class variables in the overloaded new operator.The macro interface can simply refer to the class variable in the wrapper class using themember reference operator (::), and the compiler automatically resolves the reference.15A variable associated with a class, rather than instances of the class, is known as a class variable.130



The instantiation of the parameterized wrapper class (to create a concrete wrapper class)occurs at compile time, and the run-time reference to the class variable of the wrapperclass is fast.� It ensures that debugging information is generated by the compiler for all types allocatedvia the overloaded new operator.C++ compilers may sometime optimize away the generation of debugging informationfor prede�ned types or types which may not be used in certain ways. Use of the wrapperclass forces the inclusion of the type information of the instantiated type with that ofthe wrapper class.� It allows easy identi�cation of types for which type descriptor records need to be generated.Since a new concrete wrapper class is instantiated for each \interesting" type (i.e., a typefor which RTTD is desired, because it was instantiated via the overloaded new operator),the type descriptor generator can use this information to generate type descriptor recordsonly for selected types.(Readers familiar with advanced object-oriented languages and �rst-class classes may recognizethat a wrapper class for a given type acts as a class metaobject, holding information aboutinstances of that type.)Note that while the parameterized wrapper class is instantiated for each \interesting"type to create a concrete wrapper class, the resulting concrete wrapper class does not needto be instantiated to create unnecessary instances. Since the backpatching variable is a classvariable, it is not associated with any speci�c instances and can directly be referenced usingthe class name.6.4.2 Implementation DetailsThe previous section provided a general overview of the approach used to implement theRTTD mechanism for C++. This section describes the important components of the actualimplementation based on operator new overloading and our macro interface to the overloadednew operator.We �rst describe some background information about C++ new operator and howit is overloaded, before moving on to explain how we use it to associate type identi�ers toappropriate objects at run time.The C++ new OperatorThe normal behavior of the new operator may be described as conceptually two distinct steps,even if code generated by a particular compiler may not explicitly distinguish between them:1. a compiler-de�ned operator new() function is called to obtain storage for the object,and2. the constructor for the type is called to initialize the object appropriately.131



It is important to note the distinction between new operator and operator new() functionin the above description. The new operator calls both the operator new() function and theconstructor for a type.16C++ allows a programmer to overload the new operator for providing additional argu-ments to the operator new() function. Note that overloading the new operator is di�erentfrom other C++ operator overloading, in that the entire behavior of this operator is notrede�ned|only the �rst step above is overloaded while the constructor for the type is stillinvoked as in the normal behavior. Although this is referred to as \overloading the new op-erator" in C++ terminology, we are actually overloading only the operator new() function,without changing the constructor-invocation semantics of the new operator.17Overloading the new Operator for RTTDRecall that we need to associate a type identi�er with each object that is allocated by theapplication. We achieve this by storing the type identi�er as part of the bookkeeping infor-mation (maintained by the allocator) for the object so that the corresponding type descriptorrecord can later be referenced. We overload the new operator (actually the operator new()function) and use the so-called placement syntax18 to pass the type identi�er as an additionalargument to the underlying allocator which can then store it with the appropriate bookkeepinginformation. Thus the syntax of the new operator call is as follows:X *obj = new (<typeid>) X (<constructor arguments>);The constructor arguments are optional depending on whether a default constructor19 is pro-vided for type X. The expression \<typeid>" is a reference to the backpatching variable thatwill contain the corresponding type identi�er value at run time.Macro Interface for Overloaded new OperatorIt would be burdensome to require programmers to remember the exact syntax required forthe overloaded new operator, including the reference to the backpatching variable. Instead,we de�ne a C preprocessor macro that encapsulates the syntax of the overloaded new operatorcall to provide a simple interface to the programmer. As will be evident from later sections,the scheme for generating a reference to the backpatching variable can result in a complicatedsyntax which may be awkward to use. The purpose of the macro interface is to make the entiremechanism of providing the type identi�er transparent to the programmer. An additionalbene�t of using a macro is that it allows us to modify the underlying implementation forproviding the type identi�er without requiring modi�cations to existing application source.The normal syntax for calling the new operator is:16In the remainder of the chapter, we use the phrase \new operator" to refer to the operator and \operatornew()" to refer to the storage allocation function.17An excellent discussion about the new operator and semantics of overloading can be found in [Lip91].18This term was originally used to provide \placement" information for the object as an additional argumentto the underlying allocator. It is now a misnomer because the same syntax can be used to pass any additionalarguments to the allocator.19A constructor that takes no arguments is called a default constructor in C++, and is automatically gen-erated for a class if no other constructors have been declared for that class.132



X *obj = new X (<constructor arguments>);Note that the constructor arguments are optional, and the number of such arguments is notpredetermined. As shown earlier, the corresponding syntax for calling the new operator usingplacement arguments is:X *obj = new (<typeid>) X (<constructor arguments>);The expression \<typeid>" corresponds to the placement arguments to the new operator,and in the current description, it is a shorthand for an actual expression (reference to thebackpatching variable) which evaluates to the type identi�er value for type X at run time. Ingeneral, the number of placement arguments is not restricted but it must be predeterminedfor de�ning the overloaded new operator.We provide a macro, rttd new, that encapsulates the unusual placement syntax. Thede�nition is of the form:#define rttd_new(type) new (<typeid>) typewhere the expression \typeid" is derived in some way from the type argument provided tothe macro. Using this de�nition, the syntax for calling our macro is:X *obj = rttd_new (X) (<constructor arguments>);Note that this is similar to, but not quite the same as, the syntax for a call to the standardnew operator without any placement arguments. Speci�cally, an \extra" set of parentheses isrequired around the type name. This is necessary because the C/C++ macro preprocessorsemantics are very weak; there is no support for macros with variable number of arguments,or for arguments not enclosed in parentheses. In our de�nition, the macro expects only oneargument, the type name, and the (variable number of) constructor arguments are not part ofthe macro de�nition.Note that the macro de�nition matches only the initial \rttd new (X)" part of thestatement. If the constructor arguments are provided (as in our example above) after theprede�ned part, the macro will not a�ect them; they will be in the \right place" after macroexpansion and will function as expected. If the constructor of type X does not require anyparameters, the user may either provide an empty set of parentheses, or not provide anythingat all, in place of \(<constructor arguments>)" in the above example. The macro de�nitionhandles these cases correctly without additional user intervention. In e�ect, we simulate amacro with variable number of arguments for the trivial case where these arguments are nottransformed or processed in any way during the macro expansion; the macro is de�ned suchthat it only recognizes the �rst argument (the type) and after macro expansion, the callresembles the placement syntax call. (Also, note that no special processing is required fromthe C preprocessor for this de�nition, and the scheme works correctly regardless of whetherconstructor arguments are provided.)The Wrapper ClassWe use the C++ template facility to implement a parameterized wrapper class that is auto-matically instantiated once for every unique type used in calling the rttd new macro to create133



a corresponding unique concrete wrapper class.20 The template wrapper class de�nition hasthe following form:template <class T> class TypeDescriptorWrapper{ private:T *wrappee;public:static int typeid;...};For every type X instantiated using the rttd newmacro, a corresponding concrete wrapper classTypeDescriptorWrapper<X> is created by instantiating the template TypeDescriptorWrapperwith X. The class member typeid is used to hold the type identi�er of X at run time, and thedata member wrappee may be used to selectively generate type descriptor records for onlythose types for which RTTD is desired, that is, those instantiated via the macro.We associate the typeid with the class TypeDescriptorWrapper<X> itself rather thaninstances of the class because there is always a one-to-one mapping between type X and corre-sponding wrapper class TypeDescriptorWrapper<X>. We use static data members to imple-ment typeids because they represent the C++ mechanism for implementing class variables.As mentioned earlier, the concrete wrapper class itself is not instantiated because we onlyaccess its static data member, and no other normal instance variables..21Based on the above parameterized wrapper class de�nition, a simpli�ed version of therttd new macro de�nition, using static data member from the appropriate concrete wrapperclass for accessing the typeid, is as follows:#define rttd_new(type) \new (TypeDescriptorWrapper<type>::typeid) typeThe reference to TypeDescriptorWrapper<type> in the macro expansion automatically in-stantiates the template TypeDescriptorWrapper for that type without any user intervention,and the one-to-one mapping between type X and type TypeDescriptorWrapper<X> guaranteesthat the static data member will always hold the type identi�er for the correct type X.Finally, we have to ensure that static data members are de�ned and initialized correctly.This is necessary because static data members in C++ are considered to be only declared,not de�ned, when they are speci�ed in the class de�nition. As described in Section 6.3.3, wegenerate an auxiliary source �le containing these de�nitions and initializations. This �le isthen compiled and linked in with the application object code. For each type X, we generate aline of the following form in the auxiliary source �le:int TypeDescriptorWrapper<X>::typeid = <typeid for X>;20In C++, when we instantiate a template by providing actual arguments (type or value arguments) for thetemplate arguments, a concrete type is created from the parameterized (template) type.21As might be expected of class variables, static data members in C++ can be accessed without referring toany speci�c instance. 134



The expression \<typeid for X>" represents the actual type identi�er value for type X. Theuse of a wrapper class to explicitly identify types for which RTTD is desired (Section 6.4.1)can be used in a similar way to generate the appropriate initializations.6.4.3 Handling Multiple Compilation UnitsWhen multiple sets of type descriptor records from di�erent compilation units are mergedtogether to generate a single set corresponding to the application, we need to perform duplicateelimination to avoid making the �nal table too large. In our C++ implementation, we usename equivalence for this purpose. We do not need to use structural equivalence becausestandard linkers for C/C++ consider types with the same name in distinct object �les to bethe same type.22 In other words, when the object �les are linked together to generate a singleexecutable, the linker resolves references to types using their names rather than their structure.Each execution of the type descriptor generator creates a mapping table that maps typename tokens to type descriptor records. At link time, a single mapping table is generated aftereliminating duplicates using type name tokens as keys. The type identi�er for a speci�c type isthen given by the index of the corresponding type descriptor record in the �nal mapping table,and the static data member initializations can be generated by performing a table lookup andreplacing the expression \<typeid of X>" above with the actual type identi�er value.Note that any value can be used for a type name token as long as it uniquely identi�esthe same type across all compilation units. In the current implementation, we use fully quali�edtype names23 because they exhibit the exact property required for the tokens. We made thischoice because it is easy to access fully quali�ed type names and they also provide addedexibility for applications such as persistence as described in the next section.6.4.4 Using Type Names for Added FlexibilityConceptually, fully quali�ed type names can be used as type identi�ers, instead of usinginteger values. However, because string manipulation is slow, we use integer type identi�ers asan optimization. Initially, we use the fully quali�ed type name to look up the type descriptorrecord in the type descriptor mapping table. However, once we have performed the lookup,the integer index of the type descriptor record is cached as the type identi�er thereby avoidingexpensive table lookup when the type is instantiated again. Thus we pay the cost of stringmanipulation only the �rst time a type is instantiated using rttd new; all future instantiations(anywhere in the application) will use the cached type identi�er value. As described later inthis section, the wrapper class is an ideal candidate for caching the type identi�er due to itsone-to-one correspondence with the wrapped type. In addition, integer type identi�ers alsoallow us to quickly look up the corresponding type descriptor record by simple array indexing.Fully quali�ed type names are also useful for our persistent object storage system be-cause they provide a robust mechanism to resolve type information between a single persistent22Note that C++ type names do include some structural information about the way classes are composedbecause of scoping and name mangling.23In C++, the fully quali�ed name of a type is the string representation of the name after all templateinstantiations, if any, have been performed, and nested class and namespace scope information has beencompletely resolved. 135



store and multiple applications. The primary goal is to ensure that when an application ac-cesses objects from a persistent store, the types of these objects from the application's pointof view are the same as those from the persistent store's point of view.Type descriptor records corresponding to types in a persistent store are saved in amapping table similar to the one generated for an application. Depending on the locations oftype descriptor records (for a given type) in both mapping tables, the integer type identi�ervalue from the application side (we call this the transient typeid) is likely to be di�erent thanthe type identi�er value from the persistent store side (that is, the persistent typeid). Thuswe cannot perform type equivalence test between types in the persistent store and types in theapplication based solely on the value of type identi�ers. Instead, fully quali�ed names of typesare a better choice because they will be same in both tables since they are independent oflocations of the type descriptor records. In general, unlike standard C/C++ linkers, we mustconsider types to be identical only if they have both the same name and the same structure.We cannot rely only on name equivalence like standard linkers because a persistent store maybe manipulated by many applications which may potentially use same names for types withdi�erent structures and semantics. Deferring the type identi�er lookup and caching until runtime, as described above, allows us the exibility to use fully quali�ed type names to searchboth mapping tables (i.e., name equivalence), locate the appropriate type descriptor records,and compare them (i.e., structural equivalence) to resolve types between an application and apersistent store.Unlike an application's type descriptor records table that is built by the type descriptorgenerator, the table for a persistent store is built incrementally as objects of di�erent types areallocated in that persistent store. First, we use the fully quali�ed type name at an allocationsite to look up the corresponding persistent typeid. If no such typeid is found, we then lookup the corresponding transient typeid and copy the relevant information to the mapping tablefor the persistent store, thereby creating a new persistent typeid. On the other hand, if apersistent typeid is found in the initial lookup, it is stored with the object, after performingtype equivalence tests as described above.Generating Fully Quali�ed Type NamesIt is important to devise a general-purpose scheme to generate fully quali�ed types names forusing them as described above. An obvious approach|which does not work in the generalcase|might be to simply use the string representation of the type name at the time of instan-tiation. The idea is based on the use of standard C preprocessor \stringi�cation" operator inthe de�nition of the rttd new macro to capture the fully quali�ed type name during macroexpansion. This solution works for languages like C that do not support parameterized types,and hence the fully quali�ed name of the type is trivially available in the source. However,because of parameterized and nested types, stringi�cation is not a general solution for C++;macro expansion and stringi�cation happen during the preprocessing stage before the compilerhas instantiated templates and resolved scoping, whereas the fully quali�ed type names mustbe generated after the templates have been instantiated and the scoping has been resolved. Inother words, preprocessor stringi�cation is \too early" in the overall compilation process toextract fully quali�ed type names. 136



Instead, we choose to use the type descriptor generator itself to generate fully quali�edtype names; since it is already a general-purpose tool for building type descriptor recordsindexed by fully quali�ed type names, we can provide a natural extension to save fully quali�edtype names as part of this process. Recall that the type descriptor generator relies on debugginginformation extracted from object �les that are created after the compiler has instantiatedtemplates and resolved all scoping. Therefore, all type names encountered in the debugginginformation will be fully quali�ed.As described in Section 6.4.1, the type descriptor generator selectively generates typedescriptor records only for \interesting" types for which RTTD is desired. We extend thismodel to selectively generate a separate table containing the fully quali�ed names of thesetypes. This is trivial because we are already using the fully quali�ed concrete wrapper classnames to �nd the \interesting" types; we can simply discard the wrapper-speci�c part of thename to obtain the fully quali�ed name of the instantiated type. Now, in a manner similar toduplicate elimination and merging of mapping tables for all object �les (Section 6.4.3), we cangenerate a single table of fully quali�ed type names for all types in the application for whichRTTD is desired. (This table is saved in a �le whose name is su�xed with .tni as shown inFigure 6.1.)Accessing Fully Quali�ed Type NamesOnce the fully quali�ed type names have been generated from object �les, we can make themavailable to the application at run time using static data members similar to the ones usedfor type identi�ers. We extend the template wrapper class to contain an additional staticdata member typename that holds the fully quali�ed name of the type. The de�nition of therttd new macro is updated such that the type name is now passed as an additional argument,along with the typeid, to the overloaded new operator:#define rttd_new(type) \new (TypeDescriptorWrapper<type>::typename, \TypeDescriptorWrapper<type>::typeid) \typeThe change in the de�nition of the macro does not a�ect the programmer interface in anyway.24 Consider the following code fragment (same as the earlier example) used to allocate anobject of type X:X *obj = rttd_new (X) (<constructor arguments>);Using the new macro de�nition, the above code fragment would now be expanded by the Cpreprocessor as follows:X *obj = new (TypeDescriptorWrapper<X>::typename,TypeDescriptorWrapper<X>::typeid)X (<constructor arguments>);24Recall that one of the motivations for providing the macro interface was to allow us freedom in changingthe underlying mechanism without a�ecting existing user source code.137



As with the typeid, we have to ensure that static data members for type names areinitialized correctly. Since we have already generated a single table of type names for all\interesting" types in the application (saved in a .tni �le), it is trivial to generate appropriatede�nitions and initializations of the corresponding static data members in the auxiliary source�le using this information. For each type X, we now generate the following initialization code:int TypeDescriptorWrapper<X>::typeid = <typeid for X>;char *TypeDescriptorWrapper<X>::typename = "X";The expression \<typeid for X>" may be replaced by the index of the corresponding typedescriptor record in the �nal mapping table. However, there is no added cost to defer the tablelookup for initializing the typeid until run time and, as described earlier in this section, itprovides bene�ts for some applications such as persistence. For such cases, the typeid datamember is initialized with an invalid value (e.g., -1) to signal the run-time environment toperform the appropriate table lookup.6.4.5 Complications and EnhancementsThe implementation described above is a fairly portable and robust mechanism for generatingand manipulating type descriptor records in C++ applications. However, given the complexityof the language, it is almost impossible to provide a completely elegant interface to the low-level features. Below we sketch some of the complications related to our implementation andalso describe possible enhancements.Forcing Generation of Debugging InformationSome compilers may optimize away the generation of debugging information for a given typebased on whether that type is instantiated to create any actual objects and whether thoseobjects are used later. This may be especially problematic for the template wrapper class,TypeDescriptorWrapper, which is used only to generate concrete types that are themselvesnever instantiated to create any actual objects.Our solution to this problem is as follows. We \fool" the compiler into thinking thatwe may instantiate the concrete wrapper class at run time|though we never actually do|bymodifying the de�nition of the rttd new macro. We include an expression that conditionallyinstantiates the concrete wrapper class to create an object and calls a dummy method on thatobject:#define rttd_new(type) \new (TypeDescriptorWrapper<type>::typename, \TypeDescriptorWrapper<type>::typeid, \(dummy_test_condition \? (new TypeDescriptorWrapper<type>)->nop() \: 0)) typeUsing the above de�nition, the code fragment from the earlier example would now be expandedas follows: 138



X *obj = new (TypeDescriptorWrapper<X>::typename,TypeDescriptorWrapper<X>::typeid,(dummy_test_condition? (new TypeDescriptorWrapper<X>)->nop(): 0)) X (<constructor arguments>);The last expression in the macro expansion fools the compiler into thinking that the concretewrapper class TypeDescriptorWrapper<X> may be instantiated to create an actual object,and a method (nop) would be invoked on that object. We ensure that the dummy conditionused in the expression will always be false at run time, so that we do not actually createunnecessary objects. However, the compiler cannot predict the outcome of the condition atcompile time, and cannot optimize away the instantiation. A simple way to ensure this is byusing the value of a global variable as the condition and initializing this variable to false ina separate compilation unit. This forces the compiler to generate debugging information forthe concrete wrapper class, and consequently we can generate a type descriptor record for theappropriate type in the application (type X in our example).25Interaction with Template Repository MechanismsComplex template handling schemes, such as template repository mechanisms, may be anothersource of problems. In template repository implementations, actual code generation for thetemplate methods is typically deferred until link phase. The linker automatically detectsmissing template instances, generates them as necessary and invokes the compiler for each ofthem. The purpose of this mechanism is to ensure that only a single copy of template codeis instantiated and included in the �nal executable, thus avoiding code bloat and duplication.With such implementations, we need a way to generate type descriptor records after thetemplates are instantiated and compiled but before the �nal linking is done.One possible solution is to have the template repository mechanisms provide \hooks"so that additional actions (such as calls to the type descriptor generator) may be inserted whenthe template code is instantiated and compiled into object code. However, we are not aware ofany template repository mechanisms that currently provide such a capability. Another possiblesolution is to have the compiler generate the debugging information normally in the object �leswhere the templates are used and only defer instantiation of code for the template methodsuntil link time.In general, we propose that there be some type of a published \contract" between acompiler and a debugger regarding contents of the debugging information. If the compilerfollows some pre-speci�ed guidelines for debugging information generation and contents, toolssuch as the type descriptor generator can be implemented portably based on those guidelines.25Note that we pass the value of the expression (which should always be zero) as an additional argument tothe overloaded new operator. This additional argument is present only as a harmless side e�ect of our solutionand is ignored by the overloaded new operator.
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Handling Nested Types and ClassesNested types26 in C++ pose a special di�culty for generating the auxiliary source �le that con-tains the de�nitions and initializations of the class variables used for backpatching. Considerthe following de�nition and initialization in an auxiliary source �le:char *TypeDescriptorWrapper<X>::typename = "X";The language requires that the auxiliary �le must have a forward declaration (or the actualde�nition) for type X before it can be used in the de�nition and initialization as shown above.This is necessary so that the compiler recognizes the name as a valid type, and does notgenerate an error. Typically, a forward declaration is su�cient if information about the size,structure or behavior of the type is not required. A full de�nition may always be provided inlieu of (or in addition to) the forward declaration but it is not always necessary.For the auxiliary initialization �le, a forward declaration is usually su�cient becausethe type is not instantiated or used in any other fashion. Unfortunately, C++ does not allowforward declarations for nested types. As a result, we cannot generate the de�nitions andinitializations of backpatching variables for nested types without some user intervention toprovide the de�nition of the nested types. Currently, our system requires some programmercooperation to solve this problem; the programmer must provide a list of header �les thatcontain the de�nitions of the nested types. These �les will be included in the auxiliary source�le (and no forward declarations will be generated) so that the compiler can recognize namesas valid type names when used in the de�nition and initialization.The right solution, however, for this problem is to modify the language semantics toallow the forward declarations of nested types in the same way as for non-nested types. Webelieve that C++ can provide such a mechanism without any signi�cant impact on the rest ofthe language de�nition.Handling Virtual Function TablesFor some applications such as persistence, we need to treat C++ virtual function table pointersspecially.27 Unlike normal data pointers in an application, the virtual function table pointerspoint into code representing the executable program. That is, these pointers point into theload image of an executable, not into the data heap.For data that may be operated on by multiple programs (or by recompiled versions ofthe same program), we need a symbolic representation of virtual function table pointer values.We achieve this by translating these pointer values (unswizzling) into indexes into a table ofname strings when the data are saved, and later translating the indexes back (swizzling) intoaddresses of the corresponding virtual function tables of the new process that reloads the data.26We use the term nested types to refer to both classes and non-aggregate types that may be nested withinother classes.27A virtual function represents the C++ mechanism for implementing dynamic method dispatch (run-timepolymorphism). Each instance of a class that de�nes one or more virtual functions contains a virtual functiontable pointer, which is a pointer to a table of function pointers generated automatically by the compiler.
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6.5 Storage ModelAs described earlier, the low-level type information extracted from the application object andexecutable �les is maintained in type descriptor records. Various utilities that need access tothis type information manipulate the type descriptor records by loading them from disk intomemory and \decoding" them at run time.Depending on the application requirements, type information can be stored in one oftwo formats. By default, type descriptor records are generated and maintained in a hierarchicalformat that resembles a type graph containing complex or aggregate types as interior nodes andbasic types as leaf nodes. It is possible to convert the hierarchical format into a at formatbased on the speci�c requirements of the application. In the remainder of this section, wedescribe each of these formats in detail as well as our motivation for developing such formats.Although we will focus primarily on the formats used for in-core storage, the basic discussionalso applies to disk storage. Further, the choice of in-core storage format also directly a�ectsperformance characteristics at run time (as discussed in Section 6.6).6.5.1 Hierarchical FormatAs the name implies, the hierarchical format maintains type information in a hierarchy of typesimplemented essentially as a type graph. Basic types are represented as leaf nodes in the graph,and are composed together to form aggregate types which form the interior nodes. Hierarchiesare typically created by language semantics such as containment (one object contained insideanother) or inheritance relationships (from the object-oriented programming domain). Assuch, a representation that maintains the notion of hierarchies maps well into the natural typestructures enforced by the language.We describe the hierarchical format by using a simple example. Consider the followingtwo type de�nitions from some user application:28
struct Pet
{
  short tag;
  char *name;
};

struct Owner
{
  char *name;
  void *userdef;
  short numpets;
  Pet pets[2];
};The type descriptor records generated for the above de�nitions can be conceptuallyrepresented as a type graph shown in Figure 6.2. Each node in the type graph essentiallyrepresents a type descriptor record for a speci�c type; the leaf nodes represent type descriptorsfor basic builtin types such as short and char while the interior nodes represent complexor aggregate types. Each node has two labels|the top label is the name of the actual datastructures used by the type descriptor generator, and the lower label is the name of the typethat is being represented. Directed edges indicate that the source node (i.e., the node wherethe edges originate) represents an aggregate type and the destination nodes (i.e., nodes where28For the sake of simplicity, we use C syntax here but the basic idea is applicable to C++ or other languageswith aggregate types. 141
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Figure 6.2: Type graphthe edges terminate) represent the types of �elds of the aggregate type. The actual names ofthe �elds are given as edge labels. Note that pointers and arrays are also treated as complextypes composed of other types (char and Pet, respectively, in our example); we use undirected(and unlabeled) edges in the graph to denote this type composition.Note that the type graph shown in Figure 6.2 is highly simpli�ed on purpose to alloweasier explanation of the basic concepts. Speci�cally, we have excluded information such astype sizes, �eld o�sets, etc. that is obviously necessary to fully describe the type structure. Theactual data structures used to represent the hierarchical type graph are indeed more complexand contain all necessary information to fully describe the types at run time; see Appendix Afor a detailed description of these structures.6.5.2 Flat FormatIt is evident from the foregoing discussion that the hierarchical type descriptor format containsall possible information about a given type in the application, and is therefore necessarilycomplex. This complexity is justi�able because of the need to maintain generality for a varietyof possible uses. However, depending on speci�c application requirements, only a subset ofthe information maintained in the hierarchical format may be interesting. For example, whenimplementing pointer swizzling at page fault time, we are primarily interested in locatingonly pointer �elds within objects, disregarding all other information about the various types.It is possible to decode the hierarchical type descriptor records to obtain only the requiredinformation while ignoring the rest. However, in the interest of run-time performance, it maybe preferable to transform the hierarchical format into a at format up front, thus reducingthe decoding e�ort required at run time. In essence, compile-time complexity and cost (i.e.,format conversion) is traded for run-time e�ciency and performance (i.e., faster decoding).For pointer swizzling at page fault time, we convert the hierarchical format into a at142



format that essentially contains a list of �eld o�sets (corresponding to pointer �elds) withinthe objects. The actual data structure, however, is slightly more complex; it consists of twoparts, a �xed part and a variable part. The latter is necessary to support a commonly-usedmemory model in many C/C++ programs|by default, the language does not check for boundsviolations, and hence it is possible to allocate a chunk larger than the size of the object anduse the additional memory (at the end of the object) as an extension to the object. Thistechnique is typically used to allocate an \inline" array within an object such that the array is\growable."29 In terms of implementation, the array is usually declared as the last componentof the object and dynamic allocation is used to allocate (or reallocate) a chunk of memory forthe object; any excess memory past the (language-de�ned) end of the object can be used as ifit was a part of the array, thereby changing (extending) its size. Although this heuristic is notde�ned in the o�cial language speci�cation, we support it because many programs actuallyrely upon this behavior. Note that this heuristic can be realized only by repeating some �xedsub-structure, that is, the structure of at least one element of the array must be known.A at format type descriptor record contains a �xed part, a variable part and an integerthat maintains the statically-declared size of the inline array. Each part contains a pointer to anarray of integers that represents the pointer o�set values within the object. In addition, thereare two integers used to maintain the count of entries in the array and the compiler-determinedsize corresponding to the part. Although the two parts are identical in structure, the semanticsof each are quite di�erent; the �xed part maintains information about all components of thetype that cannot change in size at run time, while the variable part maintains informationabout only one element of the repeated sub-structure of the object. That is, the variable partmaintain information about a single element of the inline array, irrespective of the original(statically-declared) size which is maintained separately.Recall the type de�nitions provided as part of the example in the previous section. Theat type descriptor record and in-memory object layout for type Pet are shown in Figure 6.3.The type does not contain any variable-sized arrays, and hence only the �xed part of the typedescriptor record is applicable. It shows that the object is 8 bytes in size, and contains onlyone pointer at o�set 4.30 This information matches with the in-memory layout of a sampleobject also shown in the �gure. Note that the 2-byte \padding" is automatically added by thecompiler to maintain alignment constraints.Now consider the type Owner from our example. This type has a variable-sized array(pets) and hence will contain valid information in both �xed and variable parts as shown inFigure 6.4. The information in the �xed part is similar to that described above and can bematched with the in-memory object layout also shown in the �gure. We are more interested inthe variable part; as can be seen, the information in the variable part for type Owner is identicalto the information in the �xed part for type Pet. This corresponds to the de�nition of variableparts, which requires them to contain information about a single element of the repeated sub-structure (type Pet in our example). Finally, note the last �eld in the type descriptor recordwhich maintains the statically-declared size of the array. This �eld is necessary in situations29An array is said to be \inline" if it is contained within the object; such arrays are typically �xed in sizebecause the size of the containing object is �xed (and determined) at compile time.30We assume that word size is 4 bytes, size of short integers is half-word and usual alignment constraintsrequiring word-size �elds to be aligned on word-size boundaries.143
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Figure 6.3: Flat format type descriptor records (simple)where objects of type Owner are themselves used in a variable part of some other object; insuch cases, layout rules dictate that the pets array in owners cannot be variable-sized andmust be decoded using the statically-declared array size.6.6 Performance CharacteristicsThe performance of our RTTD mechanism can be measured in terms of space and time costsof the system. We divide each of these costs into a compile-time component and a run-timecomponent based on \when" the cost is incurred. Below we describe these costs in detail andsketch the performance characteristics of our system based on some preliminary results.6.6.1 Compile-Time CostsAs the name suggests, the compile-time component includes costs that are incurred during\compilation," that is, before the application is actually executed.31 The compile-time com-ponent of the time cost is typically the time required to run the type descriptor generator overthe application object �le(s) to generate type descriptor records. The space required to storethese type descriptor records (typically on disk) constitutes the corresponding compile-timecomponent of the space cost.As long as compile-time cost components are within \reasonable" limits, they are usu-ally less important than the corresponding run-time cost components. An obvious comparisonpoint for establishing reasonable limits is the corresponding costs for compiling and linking theapplication itself. That is, the RTTD compile-time costs should be comparable to the cost of31We use the term \compilation" loosely to indicate all steps other than running the application. Forexample, compiling and linking the application, as well as generating the type descriptor records from theobject �les, are examples of actions that belong to the compilation phase.144
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In general, we can conclude that our system does not impose any signi�cant overheadat compile time, both for generating and storing type descriptor records, for an arbitrary userapplication.6.6.2 Run-Time CostsBy de�nition, run-time costs are incurred when the application is actually executed. The run-time component of the time cost usually includes the time to load the type descriptor recordsinto memory as well as the time to access information stored in these type descriptor records.The actual memory usage of the data structures that maintain the type descriptor records inmemory is part of the run-time component of the space cost.With respect to the time cost, the initial loading of type descriptors is considered tobe part of the startup costs and is relatively minor compared to other startup costs such asdynamically linking and loading libraries, handling shared objects, etc. The cost of actuallydecoding the in-memory type descriptor records is the most important cost at run time. Theapproach used to access information from the type descriptor records is very dependent on thedata structures used to represent these records in memory. Section 6.5 described the variousformats used to store type information.We estimate the cost for an aggregate type while temporarily ignoring the variable partin the interest of simplicity. Recall that a �xed part (Figures 6.3 and 6.4) contains two inte-gers and a pointer to an array of integers (i.e., �eld o�sets). Thus, for a type with n pointer�elds, the approximate storage cost for the �xed part would be ((2 � sizeof(integer) + 1 �sizeof(pointer)) + (n � sizeof(integer))) bytes. Taking the variable part into considerationmakes the cost estimation a little trickier. Recall that the variable part is used to maintain in-formation about a single element of the repeated sub-structure; thus, the overhead of includingthe variable part in the type descriptor record (for the top-level aggregate type) is equivalentto the cost of the �xed part for one element.6.6.3 Making Decoding Costs NegligibleFor pointer swizzling at page fault time, we use at type descriptor records described earlier tomaintain information about the locations of pointer �elds within various objects. Due to thenature and structure of the at representation, the decoding is highly optimized by allowingdirect access to the pointer �elds based on the o�sets recorded in �xed parts. Decoding variableparts is only slightly more complex because it requires iterating over the relevant portion ofthe object using the type information in the variable part during each iteration; this iteratingitself does not add any signi�cant overhead compared to the cost of the actual decoding.Although this decoding mechanism is relatively fast, it still adds a few tens of instruc-tions per object to the overall run-time costs of using type descriptor records. In an e�ort tofurther minimize the costs, we have developed an approach that reduces the decoding coststo negligible levels (on the order of cost of a procedure call). The basic idea can be explainedwith the following analogy. If type descriptor records are viewed as \bytecodes," then the run-time decoding process can be thought of as \bytecode interpretation." Bytecodes can usuallybe compiled into native (binary) code allowing execution at full speed without requiring any146



run-time interpretation. Similarly, as described below, we can \compile" the type descriptorrecords such that the generated code does not require any run-time decoding.As described in Section 6.3.3, we generate auxiliary source containing initializationsof backpatching variables. In a similar vein, when hierarchical type descriptor records arebeing converted into at format, we generate code for a procedure corresponding to eachtype. This procedure embodies the run-time decoding of type descriptor records|for each�eld of interest, we generate an invocation of a \callback" function that will be responsible forhandling the speci�c actions for that �eld. The auxiliary code containing these procedures isthen compiled and linked into the application, along with the other initialization code. Whenthe type information for an object is required at run time, the top-level procedure for thatobject's type is invoked instead of actually decoding the corresponding type descriptor record.Note that the end result is still the same as decoding the type descriptor record at run time,but instead of run-time interpretation we have \compiled the type descriptor record" therebyreducing the decoding costs to a single procedure call.Type descriptor record \compilation" is compatible with variable-sized object eventhough the actual size of such objects is not known until run time. The \compilation" processis the same as that described above for the �xed part of the type descriptor record. Thevariable part is also easily handled. By de�nition, the variable part of the type descriptorrecord describes a single element of the variable-sized array and hence we simply generatea loop around the callback function invocations corresponding to the \compiled" variablepart; the loop termination condition is based on actual run-time object size guaranteeingcorrect behavior. Again, this approach does not add any more overhead compared to run-timedecoding of the type descriptor record.There is one minor disadvantage of using type descriptor record \compilation" as de-scribed above. The basic approach works well as long as entire objects are manipulated,starting at the beginning of each object. However, it is not suitable for objects that must bepartially processed (e.g., large objects) because of the static ordering imposed on the callbackfunction invocations. In such situations, the basic approach must be augmented to allow addi-tional control over the callback functions. Of course, a simple workaround is to just fall backto run-time decoding of the type descriptor records. For pointer swizzling at page fault time,because the basic swizzling unit is one page, the problem is likely to arise only for large objectsthat cross page boundaries; all objects smaller than a page are always swizzled in entirety.6.7 Current Status and Future WorkWe have implemented the type descriptor generator and other mechanisms as described inthis chapter. We use these in our Texas Persistent Store (Chapter 4) and a real-time garbagecollector for C++ [WJ93]. Currently, we have two versions of the type descriptor generatoravailable: one for most modern Unix systems and the other for OS/2, the only di�erencebetween the two being the platform-speci�c code to parse the debugging information.Since the debugging information format on di�erent Unix systems varies signi�cantly,we have leveraged code from the GNU debugger, gdb, to extract the debugging information.This approach is portable because gdb understands several di�erent kinds of object �le formats147



and debugging information formats for various architectures and compilers. Using gdb forthe platform-speci�c operations makes the type descriptor generator instantly portable to allarchitectures supported by gdb. Our code uses standard gdb routines to parse the debugginginformation for all types used in the application into in-memory data structures; these datastructures are then transformed into type descriptor records.Note that it is not necessary to always use gdb for this purpose; it is feasible to im-plement platform-speci�c code that extracts the debugging information directly from object�les. This approach has been used for adapting our type descriptor generator for OS/2 andIBM VisualAge compiler.32 Of course, if the compiler already provides low-level object layoutinformation in some form, \adaptor" code can be written to transform the compiler-speci�cinformation into type descriptor records.Our code modules for implementations based on using debugging information are rel-atively small. For example, the new code that we added for the gdb-based type descriptorgenerator is only around 600 executable lines33 of C++. Similarly, the OS/2 version is ap-proximately 2000 executable lines of C++. The source code for both versions is publiclyavailable (under GNU GPL) at ftp://ftp.cs.utexas.edu/pub/garbage/texas.Our system has been designed to be easily portable to other compilers and platforms.The only major e�ort required for porting is providing the platform-speci�c code to parse thedebugging information in object �les. We intend for the system to be ported to a variety ofPC-based operating systems and compilers. We believe that this should be relatively easybecause most PC-based compilers can usually generate debugging information in more thanone format; by choosing a few representative formats and providing speci�c code to parse thoseformats, it should be possible to support multiple compilers.6.8 Related WorkSeveral other techniques have been proposed and implemented for providing RTTD. However,most of these techniques are either speci�c to a source language or incur signi�cant additionalrun-time overheads, and do not provide an e�cient, general-purpose mechanism to generateand manipulate RTTD.Two other systems similar to ours have been developed, to our knowledge, both in-dependently; unfortunately, no published descriptions exist for either. Marc Shapiro and hiscollaborators at INRIA have developed a type description facility, also using code from gdb.34It also appears that Object Design, Inc. (ODI) developed a similar facility for its Object-Store persistent object storage system for C++, but details on this proprietary system are notavailable. (ODI also provides a preprocessor supporting other extensions of C++.)Other researchers have proposed using special-purpose preprocessors and precompilersin conjunction with user intervention to provide support for RTTD. Edelson [Ede92a] pro-poses using a precompiler to automatically augment a C++ source program with additionalRTTD information for garbage collection. The underlying idea is based on using smart point-32Thanks to Tom Porcaro of IBM{Austin for implementing the platform-speci�c part for OS/2.33The count excludes blank lines, comments and source lines that do not get compiled into executable code.34Marc Shapiro, personal communication, May 1996.148



ers [Ede92b] which are class objects that emulate normal (raw) pointers. The precompilerperforms two tasks that are necessary for safe garbage collection for C++, namely �nding theroot set35 and accurately identifying internal pointers within objects. Because the system usessmart pointers to identify roots, the �rst task of the precompiler is to parse the source codeand de�ne appropriate smart pointer classes to be used (instead of raw pointers) for the rootset. The second task of the precompiler is to parse the type de�nitions and emit a memberfunction for each garbage-collected type to identify the internal pointers within that type.Detlefs [Det92] describes a modi�ed scheme that is also based on smart pointers. Thisscheme extends the smart pointer de�nition further and constrains the programmer to usethis interface for all garbage-collected objects. The extended smart pointer de�nition providesadditional actions to be performed when standard pointer operations are invoked on the smartpointer objects. Garbage collection can then be implemented using this extended functionalityof smart pointers.Both these schemes require placing additional restrictions on the user and incur addi-tional run-time overheads for manipulating smart pointers. In addition, Edelson's precompileris quite similar to a preprocessor because it needs to parse type de�nitions from the sourcecode, and hence is susceptible to the same problems we described earlier for preprocessors.Interrante and Linton [IL90] proposed a Dossier class as a standard interface for run-time type information in C++. A (preprocessor-style) dossier generator is used to createDossier objects from the source code. Interrante and Linton propose that the language beextended to automatically generate a virtual function for each class to access the appropriatedossier object. If this feature is not provided as part of the language, programmers can providethe information manually for each class. As before, this scheme requires a preprocessor and isalso closely dependent on C++ language implementation features (that is, virtual functions).6.9 ConclusionsWe have introduced the term Run-Time Type Description (RTTD) to denote availability oflow-level object layout information at run time in contrast to Run-Time Type Identi�cation(RTTI) which is used to access language-level information at run time. We have also describeda portable, general-purpose mechanism for generating and manipulating RTTD for high-levellanguages such as C, C++ and Ada which do not provide this information as a language feature.Our approach does not require special compiler cooperation and allows the programmer to useo�-the-shelf high-performance conventional compilers.We have presented type descriptor records for representing the low-level layout infor-mation at run time. We have developed a novel approach to build type descriptor records byusing the debugging information generated by modern compilers. Since debugging informa-tion format typically does not depend on a speci�c source language or compiler, our approachworks for combinations of di�erent languages and normal compilers.We have implemented a type descriptor generator for C++ to illustrate the issues in-volved in providing RTTD for a speci�c language. For Unix systems, we have leveraged code35An application must maintain entry pointers into various data structures; these pointers are known asroots and collectively referred to as the root set. 149



from the GNU debugger, gdb, to provide the platform-speci�c part of the type descriptorgenerator. This approach is portable because gdb understands several di�erent debugging in-formation formats on various architectures. A version of the type descriptor generator for OS/2(and VisualAge compiler), which uses non-gdb code for parsing the debugging information, isalso available.We described the storage model and various formats used to store type descriptorrecords in memory at run time. Depending on the application requirements, it is possible toconvert full-edged (hierarchical) type descriptor records into a simpler, at format to allowfor faster decoding. We have also presented an approach that can be used to e�ectively reducethe run-time decoding costs to zero. Preliminary performance results of our untuned imple-mentation have shown that both compile-time and run-time costs of the RTTD mechanismare not excessive.In general, we believe that a facility for accessing implementation-level type informationat run time is useful, and possibly quite necessary, for a variety of utility system extensions.The RTTD mechanism as described in this chapter provides a framework for implementingrun-time type description for a variety of high-level languages that do not o�er it as a standard,builtin language feature. We believe that our approach of using the debugging information ishighly portable and is preferable to other techniques because it does not depend on knowledgeof the source language or speci�c compilers.
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Chapter 7Interactions with Operating Systems7.1 IntroductionIt is evident from earlier discussion that Texas interacts strongly with low-level features pro-vided by the operating system. Most of this interaction stems from the use of virtual memoryprotection and access-protection violation handling for implementing coarse-grained addresstranslation. In addition to Texas, there are many other useful system-level extensions andlibraries (for example, garbage collectors [AEL88, Wil97], distributed shared virtual memorysystems [Li86, LH89], virtual memory tracing and compression facilities [WKBK97, WKB97a],advanced pro�ling, etc.) that closely interact with the operating system.We believe that operating system implementors should take interactions of such low-level systems and libraries into consideration when designing new systems. That is, a modernoperating system should provide su�cient \hooks" to allow various extensions to be imple-mented e�ciently outside the kernel but still be able to exploit the low-level features. Thiswould greatly improve the portability of such systems while maintaining their general highperformance characteristics.In this chapter, we discuss several areas of operating system interactions that are im-portant for e�ciently implementing system-level extensions. Although this discussion is basedmostly on our experience with implementing pointer swizzling at page fault time in Texas, thesame issues should also be applicable to other systems mentioned earlier. We are primarilyinterested in interactions with the virtual memory system, that is, memory allocation, protec-tion, and replacement. Most operating systems allow some degree of exibility in this area,but further control is desirable and achievable. We also briey describe other related issuessuch as e�cient handling of access-protection violations that are generated by attempts toaccess protected memory. Although we focus mostly on Unix-like operating systems, the basicideas are also applicable to other modern operating systems.7.1.1 Background: Virtual MemoryVirtual memory [Den70, KELS82] was originally designed simply to manage two distinct levelsof memory hierarchies|main memory and secondary storage|while giving the applications anillusion of a single level of storage that is larger than the size of the available physical memory.151



Today, however, virtual memory is essential for smooth operation of computer hardware andsoftware. Modern operating systems provide various primitives that allow application programsto interact with (and exploit) the virtual memory system; such interactions can range from asimple allocation (and deallocation) model to advanced interfaces such as shared memory [Li86,LH89] and memory inheritance as supported by Mach [BKLL93].In the absence of a virtual memory system, if an application program outgrew the sizeof available memory, it was the programmer's responsibility to manually split the code intooverlays that had to be explicitly controlled. In contrast, a virtual memory system providesseamless program execution by automatically handling data transfer between main memoryand secondary storage as necessary without involving the programmer.7.1.2 Basic TerminologyVirtual memory is typically implemented by allowing each process to have its own virtualaddress space that is distinct from all other processes. Pages of the virtual address space aremapped into the physical address space (i.e., main memory) as an application accesses dataon those pages. The application is allowed to access data only via virtual addresses, and isnever made aware of the actual physical location of the data in main memory. This makes thepages easily relocatable depending on the availability of the physical memory. It is the job ofthe operating system's memory manager to maintain current mappings between virtual andphysical addresses and automatically translate between the two as necessary.The collection of pages accessed \together" (i.e., at roughly the same time) by anapplication is usually called the working set. As the application continues execution throughdi�erent phases, its working set changes because some pages are no longer accessed and newpages, not referenced before, are accessed. In order to maximize main memory utilization,the memory manager implements a page replacement policy for pages in main memory. As thename suggests, old pages that are no longer in use are removed from main memory and replacedwith newer pages. This is usually accomplished as follows. Each page of virtual address spacereferenced by an application typically has a corresponding page of backing store associatedwith it; the backing store, which may be assigned lazily (i.e., only when necessary), is wherethe page is actually stored when it is replaced from main memory. A special disk partition,called swap space or paging space, is usually con�gured on secondary storage to serve as thebacking store although it is certainly possible to use a conventional �le or the main memory(or even secondary storage) of a remote host on the network for this purpose. The process oftransferring data between memory and backing store to maximize the memory utilization isoften known as paging (or remote paging, if the backing store is on a di�erent host).7.2 Virtual Memory AllocationThe fundamental principle behind virtual memory allocation is to allow applications to allocatemore memory than is physically available on the machine. Theoretically, it is possible toallocate as much virtual memory as is addressable by the hardware word size. In practice,however, this varies based on the operating system implementation and is usually limited bythe maximum secondary storage con�gured as swap space on the system.152



We use the phrase virtual memory allocation quite loosely throughout this chapter. Theusual connotation refers to allocation of both the virtual address space and the correspondingbacking store. However, we are also interested in allocation of only the address space withouthaving any physical memory associated with it; we highlight the distinction as necessary inthe rest of the chapter.This section discusses various issues related to virtual memory allocation, includingthe di�erences between storage space and address space allocation, and various primitivesthat are available for this purpose. Speci�cally, we describe standard Unix primitives forvirtual memory allocation and their overall performance characteristics for two major operatingsystems, Linux and Solaris. Section 7.3 contains further details about these primitives andswap space allocation.7.2.1 Storage Space vs. Address Space AllocationAlthough the distinction is typically not exposed to normal users, we believe that it is veryimportant for system implementors to distinguish between allocation of virtual storage spaceand allocation of virtual address space. This distinction is very relevant to pointer swizzlingat page fault time, and possibly also to other low-level system algorithms that bene�t fromadditional control over virtual memory mechanisms.We de�ne virtual storage space allocation as allocation of both the virtual address spaceand the corresponding backing store for that address space. In contrast, virtual address spaceallocation simply allocates the address space, but does not actually assign any backing store forthat chunk of address space. Later, if the allocated space needs to be used by the application,a page of backing store is allocated and assigned (either by the operating system or by theapplication itself) before the address space can be referenced. Alternatively, a lazy approachis to \reserve" a page of backing store but not actually allocate it until the page is ready tobe written out; an even lazier approach is to wait until the page is ready to be evicted.Although pointer swizzling at page fault time functions correctly with either addressspace or storage space allocation strategies, the former is preferable for pages that are reserved(access-protected) during the normal course of operation. This is because many reserved pagesmay never be referenced by the application, thus not requiring any data to be loaded into thosepages|allocating backing storage for such pages would obviously be wasteful because it willnever be used. In contrast, virtual address space allocation strategy works well with our basicswizzling mechanism. Pages that are referenced by the application cause our protection faulthandler to be invoked; the handler then assigns backing store for the faulted-on page and loadsthe data from the persistent store before returning control back to the application. Using thisapproach, backing storage is assigned only for pages that are actually used by the application.7.2.2 Virtual Memory PrimitivesWe are primarily interested in low-level primitives (for example, the sbrk primitive availableon various Unix systems) that are used to allocate virtual memory from the operating systems.We are not interested in high-level standard library routines such as malloc or free whichrepresent an implementation of some allocation policy (such as �rst-�t or best-�t [WJNB95])153



on top of the low-level primitives. Of course, the exibility and features of the underlyingvirtual memory primitives are likely to guide the implementation choices of these high-levelallocation mechanisms.Most modern Unix avors provide two standard primitives, sbrk and mmap, for virtualmemory allocation. Historically, most Unix variants have always supported sbrk in someform or other, while mmap is a newer feature that originally existed in 4.2BSD but has sinceappeared in other variants within the last decade [GMS87]. All currently popular avors ofUnix for workstations and PCs now support mmap, albeit with minor di�erences in the interface.The exact behavior of the primitives may be slightly di�erent across variants, but the basicfunctionality remains the same.1Although we classify both sbrk and mmap in the same class of primitives for the purposesof the current discussion, their interface and implementation details vary signi�cantly comparedto each other. We briey describe each of them below before comparing the two with respect totheir exibility and features. Note that the rest of this section focuses primarily on primitivesprovided in Unix-based operating systems, but the basic ideas are also applicable to virtualmemory primitives in other modern operating systems such as Windows NT and OS/2.The sbrk PrimitiveMost high-level allocation mechanisms commonly use sbrk as the underlying virtual memoryprimitive because it provides a simple mechanism to extend the data region of an application.The interface is very simple|the caller requests allocation in number of bytes; the request isthen satis�ed by allocating as many bytes as necessary using normal swap space as the backingstore for the allocated address space.Figure 7.1 shows the classic view of a process' virtual address space. It is typicallydivided into four regions (sometimes also called segments2), namely text, data, heap, and stack.The text region maintains the code segment of the process and the data segment containsboth the initialized and uninitialized data for the process. The heap segment represents thedynamically-allocated data; as shown in the �gure, it starts beyond the data segment andgrows \upwards" in address space (i.e., increasing address values). In contrast, the stacksegment usually starts at a high address and grows \downwards."The last-allocated position in address space is always represented by the break point,also shown in the �gure. The sbrk actions are very closely related to the notion of this breakpoint. As more memory is dynamically allocated from the operating system using sbrk, thebreak point is moved appropriately to maintain the invariant as per its de�nition. Note thatthe break point moves monotonically upwards in address space as more memory is allocatedfrom the operating system.1This is typical of general Unix programming where one has to deal with minor but tedious incompatibilitiesacross di�erent variants. The usual approach is to use preprocessor directives (e.g., #ifdef, etc.) to customizethe application source for each variant.2It should be emphasized that a segment in this context refers to a mapping between a process' addressspace and the backing store, and not to segmented addressing.
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Figure 7.1: Address space of a processThe mmap PrimitiveUnlike sbrk, mmap is more exible and provides several additional features. The basic interfaceallows applications to \map" a �le (or parts of a �le) into the virtual address space such thatthe �le itself acts as backing store for that address space. The data, if any, from the �leis made available directly in the corresponding virtual address space without requiring anyexplicit I/O requests on the �le. When the �le is eventually unmapped from memory, in theusual case, any modi�ed data in the virtual memory is automatically updated in the �le. Inaddition to this mapping facility, mmap also o�ers other features such as memory protection(a la mprotect), mapping the �le copy-on-write, etc. These features, although useful, are notimmediately relevant to the current discussion and are ignored for the moment.Some operating systems (for example, Linux and AIX) provide additional features thatallow applications to map anonymous regions instead of �les. An anonymous region is usuallyjust a chunk of normal swap space that is used as backing store instead of a �le in the �lesystem.3 Use of anonymous regions allows essentially the same semantics as sbrk, but withthe additional capabilities of mmap.Note that mmap actions are not directly related to the break point shown in Figure 7.1.4Instead, mmap can be used to map a �le (almost) anywhere in the heap segment of the addressspace. There are two ways of selecting the address range for the mapping. By default, theoperating system selects the address range using its own heuristics and the existing mappings.3The term \anonymous" is used because the backing store (i.e., swap space) cannot be referenced througha �le, and hence does not have a \name."4For some systems, sbrk may actually be implemented in terms of mmap in the kernel, but this fact is notgenerally apparent or exposed to the user. 155



In addition, most implementation also allow the programmer to override the default and ex-plicitly specify the exact address range for the mapping (typically by using the MAP FIXEDoption with mmap). However, the call may fail if the speci�ed address is \unsuitable" for somereason (for example, if it is not page-aligned). The use of this option is usually discouragedbecause it results in unportable code. In general, it is preferable to let the operating systemselect the address range in order to avoid conicts with other allocated data. However, thefacility is provided for applications that may require (and bene�t from) explicit user selectionof the address range.Comparing sbrk and mmapIt is obvious from the above discussion that sbrk provides a simple functionality and interface,and mmap can provide the same semantics while o�ering additional capabilities. We believethat mmap is preferable in general because it also provides additional control over the allocatedmemory. Such control is desirable for many systems (especially, pointer swizzling at page faulttime) that interact extensively with the operating system.Most operating systems also provide a primitive, munmap, that complements the func-tionality of mmap|the purpose of this primitive is to \unmap" the memory previously mappedby mmap. In other words, it breaks the association between the backing store (which can beeither a �le or an anonymous region) and the speci�ed range of virtual address space. If thebacking store is represented by an anonymous region, then munmap is an excellent way to re-claim unused swap space from the application and return it to the operating system. There isno similar primitive corresponding to sbrk, that is, there is no convenient way to reclaim swapspace corresponding to memory allocated using sbrk until the application �nishes execution.Although we prefer mmap over sbrk, we are not necessarily advocating that a persistentstore be mapped directly into virtual memory. In fact, it may not be advisable to do thisbecause the persistent store may either be stored in compressed storage or cached across anetwork, making it unsuitable for direct mapping via mmap. Instead, we favor mmap only forallocating virtual address space with better control over backing storage.7.2.3 Performance of Virtual Memory PrimitivesSo far, we have discussed the di�erences between sbrk and mmap in terms their functionalityand the exibility a�orded by di�erent features of each primitive. We now describe resultsbased on experiments that we conducted for measuring the performance of each primitive.Since both primitives allocate address space from the operating system, every call toeither primitive causes control to cross kernel boundary, which in turn causes the executionto switch from normal user mode to a privileged mode. This is obviously more expensivethan non-kernel calls that operate only in unprivileged mode. One solution to reduce theperformance penalty is to amortize the cost of multiple calls by batching several requests intoa single large request. Such batching can be implemented by using simple application-levelbu�ering as described below.The application maintains a batch of (contiguous) virtual address space pages in a batch156



bu�er of predetermined size (the batch size).5 The batch bu�er is empty on startup; the �rstallocation request invokes the chosen primitive to allocate as many pages of address space asthe selected batch size, and the batch bu�er is now full. The original request is then satis�edby removing one (or more) pages from the batch bu�er, and control returns to the application.As future allocation requests arrive, we �rst check whether there are enough pages availablein the batch bu�er. If so, the request can be satis�ed from the batch bu�er and there is noneed to switch into kernel mode. However, if the request cannot be satis�ed from the batchbu�er, or if the batch bu�er is empty, the full cost of invoking the primitive is incurred.The choice of batch size involves a tradeo� between space and time costs. The largerthe batch size used, more memory is \preallocated" as part of the batch bu�er even thoughthe application may not use it all. On the other hand, the smaller the batch size, morefrequent is the need to cross kernel boundary and switch execution modes, a�ecting the overallperformance. We studied various choices for the batch size and found that relatively smallbatch sizes (e.g., 4 to 8 pages) provide signi�cant bene�ts over no batching, and a moderatebatch size (e.g., 32 or 64) usually provides almost all the bene�t of batching, approachingdiminishing returns for larger sizes. Below, we present the experimental design and results infurther detail.Experimental DesignWe used two benchmark suites for measuring overall performance of the virtual memory prim-itives and the e�ect of batching. One of these is a set of microbenchmarks designed speci�callyto measure the absolute performance of the primitives with several di�erent batch sizes (rang-ing from 0 through 128). The other comprises of standard OO1 benchmark forward traversaloperations that were also used extensively to measure the performance of Texas (Chapter 5).We use the results from the microbenchmarks to select a set of \interesting" batch sizes forthe OO1 benchmark traversal operation experiments.The microbenchmarks are relatively simple, designed to only measure the performanceof the primitives in isolation. Each run of the benchmark repeatedly calls the speci�c primitiveunder consideration in a tight loop, measures the time for the entire loop, and �nally dividesthe total time by the number of iterations to obtain the average time per invocation of theprimitive. Although each iteration of the loop always requests only a single page of virtualaddress space, for batch sizes greater than one, we implemented the batching mechanismdescribed earlier to group multiple small requests into a single large one. We iterate for a totalof 5000 times, and record the time using a clock cycle timer to get an accurate measurement.6Each microbenchmark is run multiple times, such that the batch size is one larger than in theprevious run, starting at 1 (i.e., no batching) up to a maximum of 128.Using the results from the microbenchmarks, we select a set of four \interesting" batchsizes (speci�cally, 1, 4, 16 and 64) for each of the two primitives, for a total of eight possible5Note that we bu�er the address space allocation itself, (i.e., only the virtual addresses), not the actualcontents of virtual memory, as it would be in traditional bu�ering techniques.6Although the batching a�ects mostly system time only (by reducing the kernel boundary crossings), weuse a real-time cycle timer because its resolution is signi�cantly better than any CPU-time timer. We expectreal time to be a very close approximation of CPU time in this case because the microbenchmarks do not incurany system- or user-level overhead other than the primitives.157



combinations for allocating virtual address space during the OO1 benchmark traversal oper-ation. For each of these combinations, we generated a unique version of Texas that uses thespeci�c primitive and batch size for allocating new address space. Each version is then linkedwith the same benchmark code, giving us a suite of eight benchmark traversal operations. Asbefore, we ran the benchmark for both the small and large databases, and measured the timefor each traversal.We use the same hardware (a 200MHz Intel Pentium Pro processor with 32MB RAM)and operating systems (Linux 2.x and Solaris 2.5) that were used for Texas performancemeasurements (Chapter 5). We �rst present the results from our microbenchmarks beforepresenting the results from the OO1 benchmark traversals using the representative set ofbatch sizes.Experimental Results: MicrobenchmarksIn addition to the plots for the sbrk and mmap primitives (labeled accordingly), the microbench-marks results also include a third plot labeled fixedmmap. This corresponds to a variant ofthe mmap primitive that allows a programmer to explicitly specify the address range to beused for the mapping via the MAP FIXED option. Note that we provide the performance resultsfor �xed-map variant of mmap only for the sake of comparison. The use of this variant is notpractical because it places additional restrictions on the application and results in unportablecode. Speci�cally, there is no portable way to determine a \safe" address range across di�erentoperating systems, or even for the same operating system on di�erent platforms, and hencethe use of MAP FIXED is usually discouraged.Figure 7.2 shows the overall performance of both primitives (and the �xed-map variant).The Y-axis represents the average cost (in clock cycles) of calling the primitive for di�erentbatch sizes enumerated along the X-axis. Note that even relatively small batch sizes (e.g.,between four and eight) reduce the average per-call cost by a factor of 4 to 10. As expected,the cost decreases as the batch size is further increased, exponentially reaching a point ofdiminishing returns. Zooming in on the lower part of the curves (Figure 7.3), we notice thatthe costs of both primitives are similar, thus making mmap preferable to sbrk because of itsadded exibility.
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Figure 7.2: Performance of virtual memory primitives (Linux)
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Figure 7.3: Performance of virtual memory primitives, zoom (Linux)Next, we present the same results for Solaris, and note some surprisingly unusual be-havior for both primitives. Figure 7.4 shows the overall performance for all di�erent batchsizes. The �rst thing to notice from the �gure is that, with no batching, mmap is extremelyexpensive on Solaris; the overall cost is approximately 20 times that of either sbrk or the�xed-map variant of mmap. However, a batch size as small as four is su�cient to reduce this159



high cost to within a factor of two of the cost of sbrk without batching. These results, whencompared to the Linux results (Figure 7.2), also clearly show that Solaris is uniformly sloweras far as pure performance of the virtual memory primitives is concerned. We believe that thisis probably due to some gross ine�ciency in the kernel implementation that should not be toodi�cult to overcome.
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Figure 7.4: Performance of virtual memory primitives (Solaris)
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Figure 7.5: Performance of virtual memory primitives, zoom (Solaris)160



As before, we zoom in on the lower part of the curves (Figure 7.5). However, unlikethe Linux results (Figure 7.3), we notice some unusual behavior in the plot corresponding tothe performance of sbrk. In particular, at batch sizes 9 and 17, there are sudden jumps in theaverage cost per call of the primitive, forming \sawtooth-like" shapes in the plot. This is quitean unusual feature, and we believe that it is closely related to either an internal data structureor a particular algorithm used in the implementation of the primitive. Given access to kernelsources or other related implementation details, it should be relatively easy to con�rm thishypothesis.Finally, there is one more useful piece of information that can be derived from theresults. Speci�cally, we notice that both variants of mmap eventually converge to approximatelythe same average cost per call at a moderately large batch size. This is quite reassuring becauseit indicates that normal mmap usage can have a performance that is equivalent to the faster�xed-map variant which is not suitable for practical use. At the same time, sbrk continues tobe about twice as expensive as mmap, even with a batch size as large as 128. We believe thatthese observations further justify our position that mmap should be selected as the primitive ofchoice for virtual memory allocation.Experimental Results: OO1 Benchmark Traversal OperationsThe microbenchmarks results have clearly shown that batching multiple allocation requeststogether provides a signi�cant improvement in the overall performance of the virtual memoryprimitives. In this section, we present the results for the OO1 benchmark forward traversaloperations using batched variants of the two primitives for address space allocation. In partic-ular, we present the results for traversal on the large database on Solaris using four di�erentbatch sizes for each primitive.Before showing the actual traversal results, we briey revisit some characteristics ofthe OO1 benchmark that must be kept in mind when comparing performance of the virtualmemory primitives and their batched variants. Recall that, on average, every tenth pointerin the benchmark database references an arbitrary part object because of the randomizedinterconnections. This causes many pages of address space to be reserved during the initialtraversals as a lot of new data is loaded into memory and swizzled. However, as the executionprogresses into later warm traversals, we �nd that pages corresponding to most newly-swizzledpointers have already been either reserved or loaded into memory during an earlier traversaland no further action is necessary. Hence, most of the new address space reservation happensonly during the �rst few traversals when pointers into new pages (not seen before) are swizzled.Figure 7.6 plots the number of pages swizzled and number of pages reserved for eachtraversal of a traversal set run on the large database. It is clear from this �gure that newpages are swizzled throughout the entire set of warm traversals but most of the address spacereservation indeed occurs only within the �rst 15 traversals. As such, these early traversalsare obviously the most relevant for performance comparison of the virtual memory primitivesand their batched variants.
161



1

10

100

1000

10000

0 5 10 15 20 25 30 35

N
um

be
r 

of
 P

ag
es

Traversal Number

reserved
swizzled

Figure 7.6: Pages swizzled/reserved during all traversals, large database (Solaris)Given this background, we now present the traversal results for each of the primitives.In the various �gures below, the X-axis represents di�erent traversals (i.e., cold, warm and hotiterations) of a single traversal set and the Y-axis represents the CPU time7 (in milliseconds)for each traversal. We plot CPU time instead of total real time because the batching a�ectsmostly system time (and to a minor extent, user time) since it primarily reduces the numberof switches between user and kernel mode. Unfortunately, most operating systems do notprovide a high-resolution timer for measuring CPU time; typical resolutions are on the orderof several milliseconds, which is very coarse for our purposes since most of the overheads arefairly small. This is not as severe as it seems at �rst because we are mostly interested only inthe initial traversals which contain a lot of swizzling and new address space reservation suchthat the cumulative times are large enough and therefore less likely to be a�ected by the coarsegranularity of the timers.8Figure 7.7 shows the CPU time for all traversals of the OO1 benchmark forward traver-sal set for the large database, using mmap with di�erent batch sizes for allocating virtual addressspace during swizzling. It is obvious that mmap with no batching is very expensive, and even abatch size as small as 4 improves the performance by a factor of six (or more). This observationis in line with earlier results obtained from the microbenchmarks (Figure 7.4).7We refer to the sum of user and system time as the CPU time.8Note that using real time, as we did for the microbenchmarks, is not su�cient in this situation becausethe traversal contains computation and I/O components that interfere with performance measurements of onlythe primitives.
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Figure 7.7: CPU times for all traversals using mmap, large database (Solaris)
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Figure 7.8: CPU times for all traversals using mmap, large database, zoom (Solaris)Zooming in on the lower part of the curves (Figure 7.8) con�rms that increasing thebatch size reduces the overall cost as expected, eventually reaching diminishing returns. Again,recall that the �rst 10 to 15 traversals are the most relevant for new address space reservationand meaningful comparison of performance improvements due to batching.163



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40 45

C
P

U
 T

im
e 

(in
 s

ec
on

ds
)

Traversal Number

no batching
batch size =   4
batch size = 16
batch size = 64

Figure 7.9: CPU times for all traversals using sbrk, large database (Solaris)
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Figure 7.10: CPU times for all traversals using sbrk, large database, zoom (Solaris)Figures 7.9 and 7.10 show the corresponding traversal results using sbrk instead of mmapfor allocating the virtual address space for reserved pages. As before, we note that sbrk withoutany batching is more expensive than when any batching|even as small as four pages|isused. Again, this corresponds to the results obtained from the corresponding microbenchmarks(Figure 7.4). However, the performance improvement for sbrk is only between a factor of 2164



and 4, smaller than the absolute numbers for mmap. However, this is not surprising becausewe know from the microbenchmarks results that the performance of mmap without batchingis extremely bad compared to that of sbrk. This is also evident from the plots labeled \no-batch" in Figures 7.7 and 7.9|at least for the �rst ten traversals|where the mmap version isconsistently more expensive than the sbrk version by a factor of 3 (or more).The results for traversals on the small database are not reported here because of tworeasons. First, they do not show any interesting behavior that is not already obvious fromthe results presented for the large database and second, only the �rst four traversals on thesmall database are relevant for performance comparisons (i.e., only those traversals had newaddress space reservation actions) making it harder to measure any signi�cant performanceimprovements. In the same vein, we do not present any Linux results either, because theyshowed similar overall behavior with one important distinction. The Linux results for bothsbrk and mmap did not show as large a di�erence as the results obtained on Solaris; instead,the results were mostly similar for both primitives. Of course, this is also in line with theconclusions derived from the microbenchmarks results presented earlier.DiscussionThe empirical results presented above clearly show that the bene�t of batching multiple smallrequests into a single larger request is measurable performance improvement over using indi-vidual requests. Further, we notice that batch sizes do not have to be very large to be e�ective.Speci�cally, a batch size of 16 pages usually provides most of the bene�t, while a batch size of64 provides almost all the bene�t of batching and quickly approaches the point of diminishingreturns for larger sizes beyond 64.The cost of batching is the amount of memory \wasted" due to preallocation when theapplication uses only part of (or none of) the preallocated memory. With a typical virtualmemory page size of 4KB on current systems, batching would preallocate anywhere between64KB (16 pages) and 256KB (64 pages) of backing store. These numbers are much smallercompared to today's typical main memory sizes of 16MB to 64MB (or more), and swap spacesizes that range in hundreds of megabytes. Thus we conclude that batching is useful and canprovide substantial performance improvements without equivalent increases in the overall cost.Note that some high-level allocation library routines (e.g., malloc, free, etc.) may alreadybe using a variation of the batching technique described above. However, in general, it wouldbe useful to provide some batching directly through the virtual memory primitives themselvesbecause their implementation is more tightly coupled with the operating system.Another interesting conclusion that can be derived from the empirical results is re-garding the performance of Solaris. We have seen that the virtual memory primitives underSolaris are several times slower than those under Linux, on identical hardware setups. It canbe argued that this is not a fair comparison because Solaris implements a layered VM ar-chitecture [GMS87] which a�ords cleaner abstractions and better portability, but also has animpact on the overall performance. However, we believe that even after allowing for layeringand abstractions, Solaris is likely to be slower than Linux (which has also been ported toseveral di�erent architectures) by a factor of at least two. We have also found that user-levelprotection fault handling is another area where Solaris performance is worse than expected.165



7.3 Issues in Swap Space AllocationAs described earlier, we actively distinguish between allocation of virtual address space andallocation of virtual storage space for a given application based on whether backing store isassociated with the allocated address space. Most user applications do not know (or care)about this distinction because their typical use always requires swap space to be allocated.However, the basic nature of pointer swizzling at page fault time warrants additional controlover virtual memory allocation, and lazy allocation of backing store.A naive approach would allocate swap space as soon as a page of address space isallocated, irrespective of whether the application has referenced the page or has any data onthe page; we call this eager allocation of swap space. In contrast, a smarter approach wouldrecognize that it is unnecessary to save a page to backing store as long as the page has not beenreferenced by the application. Based on this heuristic, swap space allocation can be deferreduntil the page has been referenced (read or written); this is called lazy allocation. A potentialproblem with lazy allocation is that it may cause resources (in this case, the swap space) to be\overcommitted." Applications may fail if they attempt to access all of the allocated memoryand su�cient swap space is not available to provide the required backing storage.In this section, we discuss how the additional control over backing storage allocationis bene�cial for our purposes (speci�cally for pointer swizzling at page fault time), and usefulin general for other low-level algorithms which interact with the virtual memory system. Wealso describe how existing implementations of virtual memory primitives on various modernoperating systems handle allocation of swap space. Finally, we end with suggestions for somepossible improvements that would be useful for various applications.7.3.1 PS@PFT and Swap Space AllocationAs described in Chapter 3, we use virtual memory protection techniques to access-protectthe address space corresponding to reserved pages.9 The memory protection ensures that anapplication cannot attempt to use data from these pages without causing an access-protectionviolation. This violation is �elded by our handler which then locates and loads the correspond-ing data from the persistent store. Thus we are guaranteed that reserved pages can never beused by the application without our handler receiving a noti�cation of such access.It follows that when pages are reserved during the course of swizzling, it is not necessaryto allocate any backing store for those pages. That is, we need to allocate only virtual addressspace for reserved pages, without consuming any real memory or swap space for those (unused)pages. Since we are guaranteed that the fault handler will always gain control before anyattempt to access data from a protected page, we can arrange to have the necessary backingstore assigned at that time. One easy way to associate backing store with the faulted-on pageis to mmap an anonymous region to that page.Lazy allocation of swap space is particularly useful for pointer swizzling at page faulttime because coarse-grained swizzling can be done without worrying about wasted swap spacefor unused pages. Virtual address space is still consumed for all reserved pages; however,9Recall that reserved pages are those pages that are referenced from swizzled pages, and are used as\placeholders" because the data has not been loaded yet from the persistent store.166



address space is a less scarce resource compared to swap space. Furthermore, if the swapspace is allocated lazily using mmap (or similar), we can potentially reclaim it using munmap(or similar) for pages that are no longer in use by the application. Of course, if swap space isreclaimed, the address space must still be retained because it may be referenced from anywherein the application data structures. We reprotect such address space to guard against (and toget noti�cation of) future attempts to access the data in that space.7.3.2 Survey of Existing ImplementationsA wide variety of Unix-like operating systems are currently available in the market. Each ofthese implements standard virtual memory primitives that provide the basic functionality asdescribed earlier, but with minor variations compared to others. Following is a brief surveyof implementations of the virtual memory primitives with respect to swap space allocation onsome popular modern operating systems.SunOS 4.1.x, Solaris 2.x and Ultrix 4.2The virtual memory primitives on each of these operating systems allocate swap space lazily.However, although the actual allocation is done only when required, swap space is \reserved"eagerly. That is, for every page of address space allocated, the operating system \sets aside"corresponding swap space but does not actually generate the physical-to-virtual mapping entryin the page table.This eager reservation of swap space is designed to avoid the problem of overcommit-ment associated with lazy allocation of swap space. By reserving swap space at the same timewhen the page is allocated, the operating system guarantees that there will always be su�cientswap space for all allocated pages. However, for our purposes, the overall e�ect is the same asthat of eager swap space allocation, that is, we still \waste" swap space for pages that are notused by the application.Solaris 2.5 de�nes a new option, MAP NORESERVE, that can be speci�ed when usingmmap. As the name suggests, this ag lets the application indicate to the operating systemthat no swap space should be reserved (or allocated) for the newly-mapped address range, andthat the application will be responsible for ensuring that adequate backing storage is availablewhen the address space is accessed. This is exactly what we would like to have for e�cientlyimplementing our coarse-grained pointer swizzling mechanism. It would be useful to also havesuch control when sbrk is used for situations where mmap cannot be used.AIX 3.2 and AIX 4.1By default, swap space is allocated lazily, that is, only when the application actually uses (readsfrom or writes to) the page. However, unlike any of the systems above, users are allowed todynamically modify this behavior to cause early allocation of swap space for speci�c sessions.This is done by setting a user environment variable, PSALLOC, to a special value, early.All applications executed after this environment variable has been set will default to eagerallocation of swap space. 167



In addition, there exists a special signal SIGDANGER that is sent to all running processeswhen the available swap space falls below a certain threshold. This signal is designed to allowgraceful handling of swap space exhaustion as far as possible; if processes ignore the signal, theoperating system will eventually kill one or more processes to avoid a complete \meltdown."It is certainly debatable whether having such a signal and arbitrarily killing processesis a good design decision in general. We believe that having a mechanism that allows processnoti�cation for controlling memory usage is a useful idea in principle. Unfortunately, thereare no good heuristics for selecting processes that are amenable to termination. For example,the current heuristic selects processes with the largest memory allocation. At �rst glance,this seems reasonable because getting rid of the largest processes should provide the biggestbene�t. However, it is also possible that these large processes are the most critical or long-running processes and terminating them e�ectively wastes the CPU utilization that has alreadybeen devoted to their execution.We believe that it is extremely di�cult to �nd a process selection strategy that wouldbe acceptable in all situations. Of course, it would be very helpful if programmers were bettereducated about the existence and behavior of SIGDANGER so that more applications will beimplemented to gracefully handle the signal, thereby reducing the need for drastic actionsfrom the operating system.Finally, there is one minor quirk of AIX that should be highlighted. The operatingsystem divides the 32-bit process address space into sixteen segments, each of which is 256MBin size.10 Every application is then classi�ed as supporting either a small allocation modelor a large allocation model. By default, all applications fall into the former category whichrestricts maximum virtual address space allocation to a single segment. It is possible to buildapplications that support the large allocation model by providing a special option to the linker,increasing the upper limit of address space allocation to 2GB (i.e., 8 segments).OS/2 WarpThe default swap space allocation model is eager allocation. As with AIX, it is possible toexplicitly control this behavior to achieve lazy allocation. However, the operating systemsupports the lazy allocation model on a per-request basis, that is, it is possible to select lazyallocation by using a special ag during an allocation request. This selection is in e�ect onlyfor that particular allocation request. Note that this is quite di�erent from AIX where theenvironment variable a�ects allocation requests in all applications that are executed after thevariable is set.Linux 2.xLinux appears to be the most unusual regarding its swap space allocation model compared toall other operating systems described above. The default model is completely lazy allocation|unlike a normal lazy allocation scheme where swap space is allocated when the page is refer-enced for the �rst time, Linux defers allocation of swap space even further by waiting until10This is unlike classic segmented addressing because applications are not aware of segments and use directvirtual addresses, but the operating system internally uses segment register addressing to locate the data inthe larger (52-bit) hardware-supported address space.168



the page is ready to be swapped out. In essence, swap space is treated as an \extension" tomain memory rather than its backing store. This approach allows con�gurations without anyswap space as long as all running processes consume less than the total available main memory.Note that Linux provides no mechanisms to \turn o�" the lazy allocation model.7.3.3 DiscussionIt is evident from the above discussion that there are no standard heuristics for swap spaceallocation|each operating system implements the virtual memory primitives di�erently andprovides its own variant on the mechanism for con�guring lazy or eager allocation of swapspace. We believe that the lazy allocation model is preferable in general, as long as appli-cations are aware of|and are willing to handle|situations where possible overcommitmentof backing store could occur. An ideal situation would have the default as lazy allocationwith an application-con�gurable option for switching to eager allocation. With such a setup,applications that truly need eager allocation can ensure that backing storage is allocated alongwith the address space.Using Unmapped Address SpaceIn addition to the inherent lazy allocation supported by sbrk and mmap implementations, an-other possible way to achieve the same e�ect would be through the use of unmapped addressspace, that is, virtual address space that has never been mapped and consequently has nocorresponding entries in the page table. With this approach, applications can use unmappedaddress space (instead of access-protected address space) and handle unmapped memory vi-olations (instead of access-protection violations) to detect accesses to the \protected" region.The main advantage of this approach is that it supports true lazy allocation since the addressspace is not even mapped until it is accessed.A naive implementation of the above scheme would simply select a range of addresseswhen reserving address space without ever involving the operating system in the selectionprocess. At �rst glance, this seems reasonable because, by de�nition, address ranges that arenot known to the operating system are unmapped. However, there are at least two obviousproblems with this approach:1. Other modules of the application may be allocating memory in cooperation with theoperating system; it is possible that the operating system may accidentally select addressranges that clash with the \reserved" addresses because it did not know that those rangeswere already \in use."2. There is no portable way to determine \safe" address ranges across multiple operatingsystems, or even for a single operating system across di�erent hardware platforms orkernel versions, such that these ranges do not clash with the normal allocation. (This isthe same problem as the one that we face when using the MAP FIXED option of mmap.)The basic solution is to disallow the operating system from adding new mappings into our\reserved" area. For example, if we let the operating system map a �le or a dynamically linked(possibly shared) library into memory, it may select an address range that either partially169



overlaps or completely clobbers the pages that we have already reserved as part of the pointerswizzling process. This is potentially even more serious problem for simple mmap'ed persistentstorage systems that do not use pointer swizzling because the actual persistent object store isvery tightly coupled to speci�c virtual address ranges where it must be mapped.It is clear that, in order to solve these problems e�ectively, the operating system mustbe involved in the address space reservation process. One approach for this might be to providea new virtual memory primitive, say mreserve, that can be used to \inform" the operatingsystem that a certain address range is now \in use" by the application but no backing storeneeds to be allocated as yet. Alternatively, the primitive can be designed to \ask" the operatingsystem for an unmapped address range on behalf of the application. The implementation of thisprimitive can be made very fast, in part because of the minimal actions required to implementthe simple functionality. A fast primitive would also reduce the overhead of reserving addressspace during swizzling; currently, either sbrk or mmap must be used for this purpose; thisadversely impacts the overall performance of the system.117.4 Pointer Swizzling and Virtual Memory ManagementPointer swizzling at page fault time uses existing virtual memory hardware and protectionfacilities supported by the operating system to detect references to non-resident object and totrigger loading and swizzling of pages containing these objects. Once a page has been faultedin from the persistent store, it is cached in the virtual memory and no distinction is madebetween the page in memory and on secondary storage. In other words, the virtual memorysystem is free to move swizzled pages between main memory and swap space without a�ectingthe normal operation of Texas. This is unlike some other systems which enforce that some orall pages corresponding to persistent memory must be \pinned" in RAM.In general, pointer swizzling at page fault time is independent of page replacementpolicies of the underlying virtual memory system. Of course, if necessary, it can exploit anyadditional control that may be o�ered by the operating system (a la Mach-style externalpagers). By default, however, Texas \plays nice" with other applications running on thesystem because it does not impose any special considerations on the virtual memory system.In this section, we discuss various issues related to interactions between the virtualmemory system and pointer swizzling at page fault time in the context of control over memorymanagement. We �rst revisit the mistaken-dirty-pages problem (described earlier in Chap-ter 3) which arises due to the extremely loose coupling between pointer swizzling at pagefault time and the virtual memory system. Using this example, we describe the possible spec-trum of interactions between an application and the virtual memory system, and provide somedirections for additional application-level control over memory management, including paging.7.4.1 Control over Memory ManagementRecall that the mistaken-dirty-pages problem arises because the virtual memory system cannotdistinguish between modi�cations by Texas (for pointer swizzling) and those by the application11The batching mechanism is one simple way to amortize the cost of crossing kernel boundaries.170



itself. As a result, pages are \erroneously" marked dirty by the virtual memory system andpaged out if necessary. The basic resolution for the problem lies in providing mechanisms thatallow additional interactions between the virtual memory system and the application regardingthe latter's access characteristics and status of its pages. A general solution might allowapplications to have complete control over the virtual memory management of the operatingsystem. However, it is not necessary to have such extensive control|a simpler virtual �lesystem interface can be exploited for this purpose at the expense of some operating system-speci�c implementation.It is possible to imagine a spectrum of di�erent levels of interaction between an appli-cation and the virtual memory system, ranging from simple (i.e., no interaction) to completeapplication control over various virtual memory management policies. The default situationfalls at one end of the spectrum where the application does not exert any control over thevirtual memory system and therefore cooperates with other applications. At the other end ofthe spectrum is the situation where an application has full control over the virtual memorysystem, including the replacement policy and mechanism. In this case, the application hasspecial privileges compared to other applications on the system whose performance can beadversely a�ected by the actions of the privileged application. For example, if one applicationpins some pages in RAM, the memory available to other applications is e�ectively reduced,possibly causing extra paging activity. In general, any situation where resources are exclusivelyassigned to a single privileged process will adversely a�ect other less-privileged processes.Finally, between the two extremes, there are a variety of levels that a�ord di�erentdegrees of interaction with the virtual memory system. We briey describe some of theseapproaches and discuss how they can be applied to solve the mistaken-dirty-pages problem.Special-purpose Virtual Memory Primitive(s)Narasayya et al. [NNM+96], who originally identi�ed the mistaken-dirty-pages problem, pro-pose a special system call that allows the application to clear the dirty status bit of a page. Theidea is to use this system call for pages that have not been modi�ed by the application; later,if these pages need to be evicted from memory, they can simply be discarded without any un-necessary page-outs. The corresponding virtual address space must also be reprotected so thatfuture references to that space will be intercepted by the normal fault handling mechanism.This solution can be generalized to provide new special-purpose primitive(s) that can beused by an application to communicate various types of information to the underlying virtualmemory system. Using such primitives, the paging policy for mistaken-dirty pages can easilybe con�gured as either local paging or remote paging (i.e., from the persistent store) dependingon the current application-speci�c conditions, and the virtual memory system behavior can becontrolled accordingly.Some operating systems such as Solaris 2.x and AIX 4.x already support a primitive,madvise, that is essentially a simpler version of a full-edged primitive for communicatingwith the virtual memory system. Currently, madvise can only be used for memory that hasbeen mmap'ed, and supports a limited amount of information that can be communicated. Itis possible to extend the functionality of madvise and generalize it for arbitrary pages in theaddress space. 171



External Memory ManagementWe envision an external memory managementmechanism that allows user-level code to controlvarious memory management operations such as paging, address mapping, etc. Some operatingsystems such as Mach [BKLL93], Choices [Rus91], and Chorus [ARG89] already provide someform of external memory management.Mach allows user-level tasks to act as external pagers that fully control the use ofmemory within the process address space. A pager may control all or part of the addressspace and multiple pagers can coexist, each managing a di�erent part of the address space.External pagers also handle the page-in and page-out requests generated by the kernel, andare free to save and restore data using any arbitrary mechanism. Mach also provides defaultpagers (also called internal pagers), which are used if no external pagers are con�gured.An external page-in facility can be combined with our pointer swizzling mechanism tocreate an intermediate \loading and swizzling module" that executes as a separate thread andhandles all requests to load data from the persistent store. It is the job of this module tolocate the page, swizzle it and then load it into memory. Since pages are modi�ed before beingloaded into memory, the virtual memory system cannot erroneously consider a page dirty dueto swizzling only. This provides a general solution that allows pointer swizzling at page faulttime to coexist with the virtual memory system.Using a Virtual File SystemAlthough a builtin, operating system-supported external page-in facility can be used as adedicated swizzling module, a similar mechanism can be implemented by exploiting the virtual�le system (VFS) interface provided by most modern operating systems, at the expense ofrequiring some system-speci�c implementation and superuser privileges for mounting a new�le system. In essence, we can implement a simpli�ed external pager-like facility through avirtual �le system.The basic idea is to implement a simple, special-purpose \�le system" that managesonly two speci�c �les. One of these acts as the backing store for data that is loaded intothe heap from the persistent store, and the other is a pseudo-�le that is actually used tocommunicate information from the application to the special �le system. We use the term �lesystem module for code that implements the actual �le system mechanism by interacting withthe VFS interface. In contrast, the term �le system instance corresponds to a unique set ofthe two special �les managed by a �le system module. We have only one �le system modulethat must be loaded and/or mounted specially into the kernel as a new virtual �le system;however, we can have multiple �le system instances, one for each persistent store manipulatedby an application. In other words, we have a one-to-one mapping between persistent stores and�le system instances that \manage" them. Apart from managing the paging for a particularpersistent store, each �le system instance also acts as the \swizzling server" for that persistentstore, swizzling the data as necessary and maintaining the information required for mappingbetween persistent and virtual addresses.When an application opens a persistent store, the �rst step is to mmap a page of virtualaddress space to the special backing storage �le, without actually loading any data from the172



persistent store.12 By de�nition, this page corresponds to the �rst page of the persistent store,and the persistent store entry pointers can be swizzled into corresponding virtual addresses onthis page. As with the current implementation, this concludes the bootstrap phase.As the application attempts to dereference the entry pointer(s), a normal virtual mem-ory (kernel) fault is generated because the data for the �rst page is not yet available.13 Thevirtual memory system transfers control to our special �le system for loading the data intomemory. The �le system then locates and loads the page from the actual persistent store(stored in a regular �le system), swizzles it appropriately while maintaining the necessarymappings between persistent and virtual addresses, and then provides the swizzled page tothe virtual memory system, which then �nishes handling the virtual memory fault by makingthe data available to the application. Notice that the page is delivered to the virtual mem-ory system after it has been swizzled, ensuring that it will be considered clean by the virtualmemory system. Any other pages that need to be reserved during swizzling can be handled bymapping address space to the special backing storage �le and making corresponding entries inthe mapping table.When the virtual memory system needs to evict pages as part of the page replacementpolicy, it can simply discard the clean (but swizzled) pages without any further interventionfrom our �le system. If the application references this page again, a new kernel fault is gener-ated which is handled as before, by loading the page from the persistent store and swizzling itwithin the special �le system. On the other hand, if pages that are actually modi�ed by theapplication (the truly-dirty pages, as opposed to the mistaken-dirty pages) need to be evicted,they will be paged out to our �le system, which can write them to local swap space (as withnormal virtual memory paging). Alternatively, depending on the checkpointing and loggingmechanism, the truly-dirty pages may be written directly to the log, which may be uni�edwith the persistent store itself if a log-structured storage system is being used.Notice that we avoid the mistaken-dirty pages problem completely by providing swiz-zled pages to the virtual memory system. By implementing our own \�le system" to handle thebacking storage for a persistent store, we are able to intervene at the right level of abstraction(similar to an external pager) without requiring extensive modi�cations to the operating sys-tem. Referring back to system architecture shown in Figure 4.1 (Chapter 4), we have e�ectivelymigrated the swizzling and mapping module into a separate entity|the special �le system. Ofcourse, the type descriptor information must still be communicated to the swizzling moduleas before, requiring some additional communication|handled using the pseudo-�le|betweenthe application and the special �le system.Another bene�t of this approach is that user-level fault handling is no longer requiredfor implementing pointer swizzling at page fault time. Instead, we manage the loading andswizzling entirely using normal kernel-level faults generated by the virtual memory system.Even pages that are actually modi�ed by the application can be distinguished easily becauseonly the truly-dirty pages will be paged out to our �le system, while the clean pages will directlybe discarded by the virtual memory system. Finally, this approach avoids the traditional12This is very similar to the current bootstrapping mechanism. One optimization may be to use batchingas currently implemented|we mmap multiple pages of address space at a time rather than individual pages ondemand.13This is very similar to normal kernel-level faults for loading data from �les mapped into memory.173



database system strategy of \wiring down" a chunk of RAM and managing it explicitly. Thisis similar to our current faulting and swizzling approach, where Texas \plays nice" with otherapplications in terms of virtual memory management.The approach works across most modern operating systems; we can achieve a highdegree of portability by ensuring that all actions are in terms of a well-known �le interface(i.e., reads and writes to �les). Some operating system-speci�c implementation will still berequired for interacting with the virtual �le system interface which is likely to be speci�c toeach operating system. Another issue is the need for superuser privileges to mount the special\�le system" appropriately such that the kernel recognizes it as a valid module. However,this is necessary only to mount the single �le system module; running a normal application(that implicitly interacts with �le system instances) does not require any special privileges. Webelieve that these minor disadvantages are acceptable costs for the portability and performancebene�ts gained by avoiding the mistaken-dirty-pages problem.7.4.2 DiscussionAddress mapping and virtual memory management are two separate issues that should be man-aged separately. Unfortunately, most current operating systems combine these two together intheir implementations, leading to unexpected interactions with low-level mechanisms such aspointer swizzling at page fault time and compressed virtual memory. The mistaken-dirty-pagesproblem, and the associated additional page-outs that follow, provide an excellent example ofsuch unexpected (and unnecessary) interactions. The right solution is to improve operatingsystem implementations to provide better separation of concerns and additional control tothe programmer. Some modern operating systems provide an extended memory managementmodel that separates the fundamental issues and allows programmers to externally control thebehavior of various operating system components.We have seen from the earlier discussion that there are many issues that must be re-solved in order to provide a exible mechanism that user-level applications can interact withand control. An approach that implements the basic operating system functionality in a micro-kernel core and layers the rest on top via external modules is probably the best way to handlesuch interactions. We envision a exible external memory management mechanism, similar toMach-style external paging, for supporting additional user-level control over operating systemfunctionalities.Besides the actual mechanics of page-ins and page-outs, paging policy is another impor-tant aspect of virtual memory paging. The paging policy is used by the virtual memory systemto select which pages should be replaced and when they should be replaced. Although Machsupports user-level pagers for handling the mechanics of the actual paging itself, control overpaging policy is still retained by the operating system and external pagers typically cannota�ect any policy decisions.There is a wide spectrum of applicability corresponding to di�erent levels of controlover the virtual memory system's behavior. For most applications, having control over onlythe paging mechanism is likely to be su�cient; for others, it may not even be necessary tohave any control. In contrast, for some special-purpose applications, a full custom replacementpolicy and complete control will probably be a signi�cant win over any of the default policies.174



Therefore, it is important to approach and resolve a problem at the right level of abstractionto achieve the cleanest solution. For example, it is easy to solve the mistaken-dirty-pagesproblem simply by using Mach-style external pagers without requiring complete control over(and arbitrarily changing) the replacement policies of the virtual memory system or diving toodeep into low-level implementation issues.There are, of course, a few disadvantages of allowing user-level control over operatingsystem functionalities. Speci�cally, the overall performance may be signi�cantly a�ected if theuser-level code makes \bad" decisions. However, the bene�ts appear to outweigh the potentialperformance problems. An ideal setup would provide su�cient \hooks" into various operatingsystems facilities along with default processing so that applications that truly need additionalcontrol (and are aware of the consequences) can indeed do so relatively easily. Of course, theremust still be centralized control for certain critical issues to ensure fairness.7.5 Other Operating System FeaturesMost of our discussion until this point has concentrated on issues related to the virtual memorysystem and how existing features can be exploited for e�ciently and portably implementingcoarse-grained address translation. In this section, we briey discuss other operating systemfeatures that are useful for implementation of low-level system extensions. In particular, wediscuss the need for e�cient and exible exception handling as well as issues in selection ofvirtual memory page sizes and extended page protection facilities. Finally, we also brieydiscuss raw I/O which allows unbu�ered access to block devices for applications with specialI/O characteristics.7.5.1 Exception HandlingWe use the term exception for any kind of fault (or signal) that occurs during program ex-ecution. These exceptions may be classi�ed into two types, asynchronous and synchronous.Asynchronous exceptions may be generated due to external events that are not under an appli-cation's control|for example, when the user types Ctrl-C (for interactive programs) or somepreset alarm goes o�. On the other hand, synchronous exceptions are triggered by eventsthat are directly related to the execution of the program|for example, when a divide-by-zerooperation is performed.Historically, exception handling has been used to permit graceful handling of seriouserror conditions that are encountered during application execution. For example, an interactiveapplication may choose to handle user interrupts14 by releasing all resources and terminatingcleanly with a useful error code. Similarly, a oating point exception, typically generatedbecause of a divide-by-zero operation, can be handled such that a helpful error message isprinted before execution is terminated.Since the usual response to an exception is termination of execution, most operatingsystem implementations do not consider e�ciency to be an important factor in exception han-dling. However, current day usage of exception handling has advanced signi�cantly beyond the14Most Unix system generate the SIGINT signal when the user types Ctrl-C.175



simple \graceful error handling" usage model. An obvious example is our pointer swizzling atpage fault time technique, which uses virtual memory access-protection violations to avoid thesoftware overhead of checking pointer formats. Examples of other applications include garbagecollectors, distributed shared virtual memory systems, and compressed virtual memory. Witha wide variety of \non-traditional" uses for exceptions [AL91], it is becoming increasingly nec-essary that operating system implementors recognize the need for e�cient exception handlingand improve their implementations appropriately.Experimental DesignWe have measured the performance of access-protection violation handling on both Solarisand Linux using our clock cycle timer. Speci�cally, we measured the time elapsed betweenthe point where a signal is raised (as the application attempts to access a protected page)and the point where the user-level protection fault handler gains control of execution. Thisapproximates the overhead imposed by the operating system for servicing an exception andtransferring control to the user-speci�ed handler.For this purpose, we use a microbenchmark that is set up as follows. We attemptto access a single page that is access-protected, generating an appropriate signal (SIGSEGV)which is then handled by a a user-level signal handler. However, the handler simply incre-ments a counter (originally initialized to zero) and returns without changing the protectionson the page. When the faulting instruction is restarted, it immediately generates anothersignal because the page is still access-protected and the same sequence of events occurs again.Eventually when the counter reaches a prede�ned maximum (5000 in our microbenchmark),the fault handler unprotects the faulted-on page and returns, allowing the application to suc-cessfully complete the original access without generating any further signals. We measure thetotal time for the entire sequence (starting from the �rst attempt to access the protected page,until the page is actually unprotected) and divide by the total number of faults to obtain thetime taken by the operating system for servicing a single fault.Note that this approach really gives us a lower bound on the operating system cost forhandling a single access-protection violation because of the loop-like nature of the microbench-mark. That is, a large number of faults are generated in quick succession, much like iterationsof a loop, and we are likely to see e�ects of caching; in particular, the relevant kernel datastructures and fault handling code may be cached in a second-level cache after the �rst fault.However, an application which is not generating protection faults heavily is unlikely to bene�tfrom such caching and consequently may incur higher overhead per fault.Experimental ResultsWe ran our microbenchmark on both Linux and Solaris systems, using identical underlyinghardware (a 200MHz Intel Pentium Pro processor with 32MB RAM) as before for both systems.Table 7.1 shows the actual cost for each operating system. The results clearly show thatexception handling on Linux is several times faster than on Solaris. Both SunOS 4.x andSolaris 2.x implement a layered VM architecture [GMS87] that is substantially di�erent fromthe 4.3BSD memory management architecture. In particular, it is more modular and requires176



Operating system Cost (in cycles)Linux 2.0.x 2,500Solaris 2.5.1 17,500Table 7.1: Cost of handling an access-protection violationmany function calls, sometimes indirected via a function table lookup. This will obviouslyimpact the overall performance, and indeed Chen et al. [CBL90] have shown that layeringof components adds a 20% overhead to fault handling. However, the empirical results thatwe have obtained indicate a slowdown factor of six, de�nitely much larger than what can beaccounted by the extra 20% penalty.DiscussionOther researchers have also recognized the problem with slow exception handling on variousoperating systems. Thekkath and Levy [TL94] contend that it is easier to improve perfor-mance of handling synchronous exceptions than it is for asynchronous exceptions because theinformation needed for servicing the former is already available in the user space of the pro-cess. They describe both hardware (architectural changes) and software approaches (kernelchanges) for this purpose and present encouraging results for their software approach. Imple-mented by modifying the DEC Ultrix 4.2A kernel, their approach requires only 8 microsecondsfor handling a null exception compared to 80 microseconds taken by the unmodi�ed kernel.Another great example of fast exception handling mechanism is the L3 (and subse-quently, L4) microkernel [Lie95, Lie96]; the full cost of a kernel call in the L3 microkernelis between 123 and 180 cycles [Lie93], or less than one microsecond on a modern 200MHzprocessor. This is an extremely impressive result, given that our best performance on Linuxis more than an order of magnitude slower. Anderson et al. [ALBL91] have discussed theinteraction between hardware architecture and operating systems, including virtual memoryand fault handling.7.5.2 Virtual Memory Page Size and Sub-page ProtectionsPointer swizzling at page fault time generally bene�ts from the use of a smaller page sizebecause it reduces the amount of swizzling that is required at page faults. In addition, theaddress space consumption rate is also reduced as fewer pointers are swizzled for every pageloaded from disk.In general, virtual memory page size plays an important role in the implementation andperformance of systems that exploit virtual memory features to implement new abstractions.Unfortunately, opposing forces are usually at work when a page size needs to be selected [HP96].On one hand, larger sizes are preferable from the perspective of reducing hardware costs|pagetables and Translation Lookaside Bu�ers (TLBs) can be made smaller|and for improving e�-ciency of data transfer between memory and secondary storage because larger units of transferreduce the e�ect of latency. On the other hand, smaller sizes provide additional exibility interms of allocation and memory protection, and for reducing internal fragmentation.177



One possible approach for resolving the page size selection conict is to choose a sizethat provides a balance between the opposing forces without considering pointer swizzling atpage fault time (or other systems), and then support operations|mainly page protections andsignal handling|at a sub-page granularity for those systems that bene�t from smaller pagesizes. This approach is likely to have minimal impact on the normal operation of a virtualmemory system because page sizes are selected based only on the relevant trade-o�s. At thesame time, it works well for coarse-grained address translation; with sub-page protections,only parts of reserved pages are swizzled, e�ectively providing the same bene�t as if the pageswere smaller.We believe that with a little hardware support, operating systems should be able toprovide sub-page protection facilities relatively easily. In fact, the ARM600 processor providessuch support [SW91] facilitating the easy implementation of sub-page protections in the AppleNewton. The 801 prototype RISC machine also incorporated support for protections at thesub-page granularity [CM88]. Finally, Thekkath and Levy [TL94] have shown that a littlekernel support can be used to emulate sub-page protections in a simple manner at a higherlevel of abstraction.7.5.3 Support for Raw I/OIn any computer system, disk I/O is usually much slower compared to the performance ofother components, most notably the CPU. Typical disk latencies are on the order of �veto ten milliseconds, which is several orders of magnitude slower than main memory speeds.Therefore, it is advisable to minimize the number of disk I/O operations to avoid a majorimpact on general performance. Most Unix systems implement this by providing �le systemcaching (sometimes also known as the bu�er cache). As with any cache, the basic idea isto store recently accessed disk blocks in fast storage speculating that the same data will beread again soon. Most operating systems also implement a readahead mechanism to prefetchadditional data into the cache with the hope that expensive disk seeks can be avoided if theprefetched data is accessed soon.Traditional Unix implementations have typically used a �xed-size, independent area ofmemory specially designated for the bu�er cache. However, most modern systems integrate thebu�er cache with the virtual memory system and dynamically control the fraction of memoryassigned to each component. When a read is issued, the kernel �rst maps the speci�ed partof the �le into its own (protected) address space, faults the data in, and then copies it tothe user-speci�ed bu�er. The procedure for handling a write follows a similar model, alsoperforming an extra copy from user space to kernel space.However, for specialized application with well-understood (but possibly unusual) I/Obehavior, the extra copy from/to the bu�er cache may adversely a�ect the performance bothin time and space. For example, database-style applications that transfer large amounts ofdata to and from disk are likely to bene�t from bypassing the bu�er cache because they usuallyimplement their own caching mechanisms. In the case of Texas, the data is fetched only oncefrom the disk and is subsequently cached in virtual memory. A bu�er cache is undesirablein this situation because it will compete with the virtual memory system for real memory,e�ectively reducing the memory available to the application.178



Most Unix systems provide a facility called raw I/O (or direct I/O) that allows un-bu�ered access to a block device, avoiding the extra copy because the data is faulted indirectly into user space. The interface is still the same (normal read and write system calls),although the requests must be made to the appropriate character device corresponding to theblock device;15 the kernel internally handles the requests di�erently. Another alternative foreliminating the extra copy is to use mmap instead of standard �le system read/write inter-face; this is, however, less attractive for two reasons: mmap is not as portable, and it presentssemantics that are di�erent from the read and write system calls.As operating system implementations become more open, it would be extremely usefulto have application-con�gurable disk I/O characteristics. In particular, applications shouldbe able to perform either normal, bu�ered I/O or direct I/O for arbitrary �les in the normal�le system based on their speci�c �le access characteristics and semantics. It appears thatvarious operating system implementations are indeed moving in that direction. For example,Irix (from Silicon Graphics, Inc.) supports a special ag (O DIRECT) that can be speci�ed whenopening a �le (via the open system call) to notify the operating system that direct I/O mustbe used for reading and writing that �le. Similarly, the new Solaris 2.6 release supports a newlibrary routine, directio, that can be used to dynamically switch access characteristics forthe speci�ed �le. Alternatively, the operating system also allows a �le system to be mountedsuch that I/O to all �les in that �le system will be direct.167.6 ConclusionsIn this chapter, we have described various aspects of operating system interactions that arerelevant when implementing low-level system extensions such as distributed shared virtualmemory and pointer swizzling at page fault time. Since our system relies heavily on virtualmemory hardware, our discussion is primarily focused on interaction with the virtual memorysystem, but we also briey discussed some other useful features of the operating system.We have shown that sbrk and mmap, the two virtual memory primitives most commonlyused for allocation, di�er signi�cantly in terms of their features and interface, and overall per-formance. The exibility of mmap with respect to additional control over swap space allocationand reclamation is likely to provide a major bene�t over sbrk. As such, we believe that mmapshould be used as the basic primitive for implementing high-level allocation policies.We also discussed issues regarding external memory management and control overvirtual memory paging as related to pointer swizzling at page fault time. In this context,we described various levels of interactions with the virtual memory system that are possibledepending on the capability of the underlying operating system kernel. It should be emphasizedagain that although pointer swizzling at page fault time can exploit additional support fromthe virtual memory system, it is not a requirement for normal and correct operation in general.Other than virtual memory system interactions, we also briey described some relatedissues in operating system development. The most important of these is the support for15For example, on Solaris, the name /dev/dsk/c0d0s7 represents a block device, so the corresponding rawdevice would be named /dev/rdsk/c0d0s7.16Gavin Maltby, personal communication, July 1997.179



e�cient exception handling. We have measured exception handling costs on both Linux andSolaris and shown that although the latter is slower by a factor of about six, it has potentialto be improved. We believe that fast microkernel implementations are likely to be the winnersin this category. Another important issue is the support for virtual memory protections andextensions to allow protections at the sub-page granularity. The latter would be useful forvarious systems that rely on virtual memory facilities and would bene�t from smaller pagesizes. Finally, we make a case for providing additional control to the programmer with respectto �le I/O and ability to bypass �le system caching.In conclusion, operating system implementations should be more open and reective,allowing \responsible" user-level applications to control some of the key features to suit theirneeds. In other words, operating systems should provide the basic building blocks that can beassembled together by user-level facilities to implement useful and extensible systems e�ciently.Overall, it would be bene�cial if the operating systems had more separation of concerns,thereby allowing systems (such as ours) to approach and solve problems at the right levelof abstraction, without getting distracted by tedious (and irrelevant) implementation issues.There is evidence that other researchers also have similar goals for improving operating systemimplementations [KLM+93].
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Chapter 8Future Work8.1 IntroductionThe previous chapters have described the design and implementation of Texas, our portablepersistent storage mechanism based on high-performance coarse-grained address translationusing pointer swizzling at page fault time. Although Texas is an actual system that has beenused in both commercial and non-commercial systems, we also intend for it to be used as aresearch testbed for exploring various avenues in address translation and advanced storagemanagement issues. In this chapter, we describe some of these research directions, concentrat-ing mainly on storage management and briey discussing other related extensions to Texas.8.2 Storage ManagementThe current design of Texas is exible in terms of the implementation of underlying storagemanagement. We have implemented an abstraction layer that can be used to implementdi�erent kinds of storage mechanisms without disturbing any of the other functionality. Inthe current implementation, the storage mechanism is designed such that the persistent storecan be saved either to a regular �le in the �le system or to a raw disk partition. It is possibleto implement a log-structured storage system that simpli�es the checkpointing and recoverymechanism, while improving exibility and performance.We are also interested in studying prefetching and compressed in-memory storage astwo issues important to storage management. Prefetching can be viewed as a way to improveI/O performance by reducing the time spent in waiting for I/O to complete. In contrast,compressed in-memory storage is a way to avoid I/O by attempting to keep more data inmemory. Finally, we also discuss adaptive techniques for both prefetching and compressedin-memory storage.8.2.1 Log-structured Storage SystemAs described in Chapter 4, Texas currently implements a simple checkpointing and recoverymechanism. We can replace the simple logging mechanism with a more exible log-structuredstorage system that supports additional functionality.181



A log-structured storage system (LSS) is essentially the lower levels of a log-structured�le system [RO91]. The storage system typically manages a single raw disk partition, althougha normal �le could be used instead. We choose not to implement an entire �le system becausethe complexity is not needed for simple persistent storage management. Instead, only the stor-age functionality is implemented at the lowest layer and the upper layers may build additionalfacilities such as �les and directories, access permissions, etc. any way they choose.In a log-structured storage system, the entire disk (or �le) being managed is used asa log, and the log itself acts as the �nal repository of data pages (i.e., the persistent store).In other words, there are no separate entities corresponding to the persistent store and thelog that is used for checkpointing. By de�nition, blocks (i.e., pages) in a log-structured storedo not have a single, �xed \home" location on disk. Instead, logical blocks in the system areallowed to \migrate" by simply writing a new version of the block at some di�erent locationon the (managed) disk; the \current" version of the block is the last one written to the log.Since blocks do not have a �xed location, changes to a �le are committed by updating theindex structures to point to the new data.It is easy to see how a log-structured storage system can be used to maintain thepersistent data and support the necessary checkpointing. In fact, since multiple versionsof data can exist on disk, we can save multiple checkpoints and support rollback to oldercheckpoints. Given the \write anywhere" strategy of log-structured systems, writes can also beclustered such that related data are stored consecutively on disk, improving the read latencyand bandwidth for future access. Our original paper on Texas [SKW92] describes furtherdetails about the log-structured storage system, including a description of its data structures.8.2.2 Adaptive PrefetchingModern computer memory systems are hierarchical, being composed of several levels of mem-ory [HP96]. The lower levels (e.g., magnetic disks and tapes) are inexpensive and thereforelarge but slow, while the higher levels (e.g., RAM and caches) are expensive but small and fast.As memory systems become more hierarchical by growing \downward" to become persistentobject stores, it becomes increasingly important to make good decisions about which datashould be in fast memory at any given time. The most commonly used policy in current sys-tems is demand prefetching combined with an approximation of LRU replacement. Demandprefetches are those that occur only in conjunction with demand fetches, that is, real pagefaults. There are several choices to be made when selecting a prefetching policy. One is thepolicy of which pages to prefetch, while another is how many pages to prefetch, and yet anotheris how long prefetched pages are retained in memory if they are not immediately referencedby the program. The most common prefetching rule is one-block lookahead|when a page (orblock) is faulted on, the next consecutive page is prefetched. For example, if page number 237is faulted on, page number 238 is brought into memory as well. One-block lookahead is anattractive policy because it is easy to implement; consecutively-numbered pages are usuallyconsecutive on disk, and can be brought into memory without an additional seek.
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Whether to Prefetch: The \fool-me-once" RuleWe believe Horspool and Huberman's work on prefetching [HH87] to be among the mostinteresting, though not for the reasons they intended. They experimented with a variation ofone-block lookahead that was designed to be easy to simulate e�ciently. Our interpretation oftheir data, however, is that they inadvertently simulated an adaptive prefetching policy, whichis more interesting than what they were actually attempting to approximate.Horspool and Huberman modi�ed one-block lookahead to preserve the inclusion prop-erty; this property allows simulation of many memory sizes in one pass through a trace.Inclusion is a well-known property of LRU replacement [MGST70]|it guarantees that pagesin a memory of a given size are always a subset of pages that would be in a memory of anylarger size, and therefore the misses for a given memory are a subset of the misses for anysmaller size. For e�cient simulation, a single queue of pages can be maintained as a trace isanalyzed, as though memory were arbitrarily large. This queue shows the recency ordering ofall pages that have been touched, independent of any actual memory size.LRU inclusion means that moving a page to the head of the queue will be interpretedas a hit for a particular memory size (as well as for all larger sizes), and a miss for smallermemories. Horspool and Huberman's innovation is to devise a prefetching scheme, similarto conventional one-block lookahead, while preserving the inclusion property. Their policyreorders pages in the queue in ways that are independent of any particular memory size.These reordering will be interpreted as prefetches for some sizes of memory, but as reorderingof in-memory pages for larger sizes of memory. The particular ordering rule they use is this:pages that are actually touched are always brought to the head of the queue, as though it werean LRU queue; the next (lookahead) page in memory is also brought to the head of the queue,if and only if it was nearer the head of the queue than the page that was actually touched.Details of the scheme can be found in [HH87].Horspool and Huberman were surprised to �nd that their algorithm actually outper-formed conventional one-block lookahead. We believe that in preserving the demand prefetchpolicy, Horspool and Huberman inadvertently simulated an adaptive prefetching policy, whichapproximates what we call the \fool-me-once" rule|if a page is prefetched but not referencedby the application, it is not prefetched the next time.Unfortunately, the details of Horspool and Huberman's algorithms introduce unex-pected anomalous properties [WKM94]. In particular, their policies are not properly timescalerelative|events occurring on a timescale that should only matter to some sizes of memoryadversely a�ect replacement decisions for memories of very di�erent sizes. As we describein [WKM94], slight changes to the algorithms can restore timescale relativity and make themmuch better-behaved.What to PrefetchHorspool and Huberman's policy decides whether to prefetch based on previous observations ofreference behavior. It is equally interesting what to prefetch. One possibility is to dynamicallyreorganize small pages within larger units of disk transfer. As a program accesses di�erentpages, the ordering of those accesses can be recorded. When the pages are (eventually) paged183



out, they can be written to disk in a new order that reects the recent access ordering. Iffuture access orderings are correlated with past orderings, then this enables a very convenientform of prefetching.In the mid-1970's, Baer and Sager [BS76] simulated a prefetching policy that relied onreorganizing pages on disk using the order of initial accesses by the program. Unfortunately,their results were disappointing; even though preliminary measures of locality indicated thatprevious page fault orderings were a good indicator of subsequent access patterns, the policythey actually simulated was unsuccessful, and did not improve performance. We believe thatthis negative result was due to subtle and interacting aws in the design of their experiment,and that their data are actually quite encouraging when properly interpreted.For example, Baer and Sager's reorganization policy used the LRU queue ordering ofpages to determine the order in which pages were written out. One problem with this policy isthat the LRU ordering is the order of last reference to the pages in question, not the page faultordering that originally brought the pages in. While these two grouping principles are probablystrongly correlated, they are not identical. We believe that further research and analysis inthis area is necessary, and is likely to yield interesting results.8.2.3 Compressed In-memory StorageCurrent trends in hardware con�gurations indicate that there is a huge gap in performance|about �ve orders of magnitude|between main memory latencies and disk latencies. A coste�ective approach to bridge this gap is to introduce a new level into the memory hierar-chy. Compressed in-memory storage uses part of main memory as a cache for compressedpages [Wil90, WLM91, Wil91, AL91, Dou93]; this divides the main memory into partitionsfor uncompressed pages and compressed pages. The use of compressed in-memory storagecan improve overall system performance because \paging" from the compression cache may befaster than paging from disk.The performance of this scheme depends on the relative costs of processor cycles anddisk transfers, and on the e�ciency of the compression algorithm. Consider the fact thatcurrently it is reasonable to expect machines that can execute over 200 million instructions persecond on average and have disks with 8 millisecond latencies. This means that in the time ittakes to perform a single disk operation, the processor can execute over 1.6 million instructions.Therefore, as long as each 1.6 million instructions of compression and uncompression saves onedisk seek, it is worthwhile to use the compression cache. As disk speeds lag further and furtherbehind processor speeds, compressed in-memory storage becomes increasingly attractive.Novel Compression TechniquesWe avoid the common trap of adapting text-oriented compression algorithm to compress in-memory data. Instead, we aim towards using domain-speci�c compression algorithms for heapdata to take advantage of the knowledge about the data representation in memory.In-memory data typically show di�erent kinds of regularities than character data from�les. This is due to the demands of computer architectures, which favor word-sized �eldsaligned on word and double-word boundaries. Therefore, we use words as the basic unit of184



matching, re�ned by discriminating between high-order bits (which are mostly stable) andlow-order bits (which are more likely to di�er). This is quite e�ective for both integers andpointers; integers are likely to be small and similar to other small integers, while pointers arelikely to be similar to nearby pointers. We can also tailor our techniques to compress oatingpoint data which usually show regularities in the exponent and high order bits of the mantissa.DiscussionPreliminary experiments have shown a compression factor between two and three, and a timecost of only one-third of a millisecond to compress a 4KB page on a 200MHz Pentium Proprocessor running Linux. While more re�ned experiments and a wider selection of test pro-grams are required, we believe that the early results are very promising. We expect to reducethe time cost by another factor of two based on more �ne-tuning of the basic implementation.Furthermore, our virtual memory trace-gathering tool [WKBK97] can also be extended togather compressibility information on the y, and our simulators can be modi�ed to evaluateadaptive compressed paging techniques based on information from the traces.It should be noted that unlike other compression-based memory management schemes,our primary goal is not to increase the available disk storage, but to increase system through-put by reducing the average memory latency and increasing e�ective performance. Our systemshould also give bene�ts similar to those of �le-compression schemes [CG91, BJLM92]. Fur-ther research is currently underway and detailed results will be presented in an upcomingpaper [WKB97a].8.3 Advanced IssuesIn Chapter 1, we briey mentioned some advanced issues that are beyond the scope of thisdissertation. Speci�cally, we discussed issues related to distribution, concurrency control andfault tolerance, schema evolution, and security.It should be emphasized that none of these issues are fundamentally in conict withthe basic pointer swizzling at page fault time technique and the implementation of orthogonalpersistence in Texas. In fact, some of these have been resolved speci�cally in the context ofTexas, as well as in other related systems. Of particular interest is the issue of distribution andconcurrency control. Our current implementation of Texas does not support either of these;however, we are aware of at least one system, MC-Texas [BS96], implemented on a FujitsuAP1000 multicomputer as a precursor to developing a reference architecture for distributedpersistence. Blackburn and Stanton report encouraging results regarding the overall scalabilityof Texas, modulo a couple of situations related to false sharing of implementation meta-datathat should be relatively easy to resolve.As persistent storage becomes more popular, data security will also become increasinglyimportant because persistent data must be protected against unauthorized access. Previouswork has been done in this area and various solutions are possible (e.g., protection domains inOpal [CLLBH92] and areas in ObjectStore [LLOW91]).
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Chapter 9ConclusionsCoarse-grained address translation techniques have been disregarded in the past as a viablealternative to traditional �ne-grained address translation techniques for building e�cient per-sistence mechanisms in general-purpose languages. An overall goal of this dissertation was to\set the record straight" regarding the performance and exibility of coarse-grained translationtechniques and their potential as high-performance address translation mechanisms.As part of this research, we have implemented Texas, a high-performance persistencestorage system for C++ that uses pointer swizzling at page fault time, a coarse-grained addresstranslation technique. In the foregoing chapters, we described various aspects of building suchsystems to provide e�cient orthogonal persistence in general-purpose languages. In particular,we discussed pros and cons of di�erent address translation approaches, presented a new clas-si�cation scheme for persistent systems based on granularity issues, introduced the concept ofrun-time type description (RTTD) for accessing implementation-level type information at runtime, and discussed lessons that we learned in interacting with operating systems. We alsoprovided research directions in storage management for persistent object stores, including alog-structured storage strategy and compressed in-memory storage.9.1 Address TranslationWe have shown that a coarse-grained approach to address translation does not necessarilyconstrain the performance requirements for most applications that incorporate orthogonalpersistence. By exploiting the virtual memory facilities of modern operating systems and ex-isting virtual memory hardware on modern computers, we have implemented a coarse-grainedaddress translation scheme that runs on stock hardware and has minimum overheads in theusual case. We rely on locality of reference (usually exhibited by most applications) to amor-tize the cost of translating an entire page over repeated accesses to that page (which incur nofurther overhead).We have empirically validated our competitive argument for coarse-grained swizzlingtechniques by using controlled measurements with existing benchmarks. Speci�cally, we havedemonstrated that the direct cost of our approach is zero for normal CPU-bound operationsthat manipulate in-memory data, and very small (between 1 and 5 percent) for I/O-boundoperations when the data is being loaded into memory from stable storage. In general, the186



address translation costs are much smaller than the corresponding I/O costs incurred duringloading the data itself. We expect these overheads to decrease even further because CPUspeeds typically improve faster than I/O speeds.While the direct costs of pointer swizzling at page fault time are minimal, there aresome indirect costs related to unexpected interactions with the virtual memory system leadingto unnecessary page-outs of swizzled pages. Although not directly related to pointer swiz-zling, these costs may a�ect the total performance of an application because of extra pagingand therefore must be accounted for in the overall measurements. Fortunately, the costs arebounded and also incurred only once per swizzled page. There are also several ways to avoid theproblem altogether if the operating system provides additional virtual memory managementsupport (e.g., external pagers in Mach).9.2 Granularity Choices for PersistenceWe have identi�ed a set of design issues that we believe are fundamental to the implementationof any persistent system. The choice of granularity for each design issue forms a classi�cationscheme for any persistence implementation. The design issues that we have identi�ed are thegranularities of address translation, address mapping, data fetching, data caching and check-pointing. We believe that using a combination of granularity choices for these design issuesprovides a better classi�cation mechanism than the existing ad hoc taxonomies.We have chosen the basic unit for all granularity choices in Texas to be a virtual memorypage. This is because pointer swizzling at page fault time is a page-wise translation scheme andthe implementation relies heavily on the virtual memory facilities of the underlying operatingsystem. However, if necessary, it is possible to temporarily change the granularity to a �nerlevel|for example, we implement pointer-wise address translation for situations where purecoarse-grained approach will not provide the best bene�t.9.3 Run-Time Type DescriptionAnother important contribution of this dissertation is the notion of Run-Time Type Descrip-tion (RTTD) for making implementation-level type information accessible at run time. It isuseful to have such detailed information about layouts of data objects in memory at run timefor a variety of applications. For example, in addition to its applicability to address translationand persistence, detailed run-time object layout information is also useful for applications suchas garbage collection, advanced tracing and pro�ling, etc. The RTTD mechanism presentedhere is designed to generate the layout information at compile time and make it available tothe application at run time.We have shown that the RTTD mechanism can be implemented portably by usingcompiler-generated debugging information as the basis for extracting the necessary informationfor RTTD. We chose to use debugging information over the seemingly more obvious approachbased on using special-purpose preprocessors for reasons of portability and compatibility|ourapproach is portable across multiple compilers and operating systems, and is compatible withdi�erent source languages because the debugging information format is usually independent of187



these factors. Our case study implementation for C++, based on the GNU debugger, is fullyoperational and is currently used in Texas and a real-time garbage collector for C++.9.4 Operating System InteractionsDuring the course of implementing and porting pointer swizzling at page fault time and theTexas persistent store to di�erent operating systems, we have learned several interesting lessonsabout interacting with di�erent operating systems and the subtle di�erences in their relatedfeatures. Most of this interaction has been concentrated in the areas of virtual memory man-agement and protection fault handling, the two most important features relevant to the im-plementation of Texas.We discussed several aspects of interactions with virtual memory systems. Amongthese, we presented a comparison of virtual memory allocation primitives and their perfor-mance characteristics on Linux and Solaris, described a study of heuristics for swap spaceallocation on di�erent operating systems, and discussed advanced facilities for external mem-ory management and additional control over paging a la Mach. For protection fault handling,we found signi�cant room for performance improvements in terms of operating system supportfor e�cient exception handling.As part of our analysis, we presented some suggestions that we believe are importantfor improving operating system implementations, and consequently their interactions withsystems such as Texas. In general, we argue for implementations that are more \open" and\reective," and which provide basic building blocks that can be assembled by higher-leveluser facilities to tailor the system to their speci�c needs. We believe that microkernel-basedapproaches, with additional layering of functionality on top, are likely to provide some of theperformance characteristics that are desirable for general usage.9.5 Storage Management IssuesMost of the discussion in this dissertation has concentrated on the implementation of a high-performance address translation mechanism. However, issues related to storage managementfor persistent object stores are also important when implementing persistence. In our currentimplementation of Texas, we have incorporated a simple no-undo/redo write-ahead loggingstrategy to provide simple checkpointing and crash recovery support. We discussed alternativeapproaches ranging from simple page \di�ng" and sub-page logging techniques to advancedlog-structured storage management for the entire persistent store.We also described other issues related to storage management, speci�cally adaptiveprefetching and compressed in-memory storage. The former is designed to improve the perfor-mance of I/O while the latter attempts to minimize the amount of I/O necessary. Compressedin-memory storage can be used for increasing the e�ective memory size by using part of mainmemory to store compressed pages. Preliminary results have shown promise, and furtherresearch is currently underway.
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9.6 Final WordsOrthogonal persistence is becoming increasingly important as applications get more sophisti-cated and manipulate complex, heap-allocated data structures. In this dissertation, we haveshown that the problem of addressing large amounts of data on standard hardware and oper-ating systems can be resolved e�ectively using coarse-grained address translation techniques,without compromising on issues of performance, portability and compatibility. By this, wehope to enable wider acceptance of persistence as a useful and important feature in general-purpose programming languages.
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Appendix AHierarchical Type GraphChapter 6 (Section 6.5) described the storage model (i.e., both hierarchical and at formats)for type descriptor records in our RTTD implementation. In discussing the hierarchical format,we simpli�ed the structure of the type graph for ease of explanation of the basic concepts. Theactual data structures maintained by the type descriptor are much more complex and containall the necessary information to fully describe the various types at run time. Below we describethe full hierarchical graph data structures in further detail.Recall that we used the following sample type de�nitions in Chapter 6 to describe thestorage model:
struct Pet
{
  short tag;
  char *name;
};

struct Owner
{
  char *name;
  void *userdef;
  short numpets;
  Pet pets[2];
};Figure A.1 shows the structure of the full hierarchical type graph representing thesetwo type de�nitions. Compare this with the simpli�ed structure shown in Figure 6.2 and it isobvious that the actual data structures store much more information about the types.Each application type is classi�ed as either a simple type (e.g., basic builtin type suchas short and char) or a complex type (e.g., pointer or aggregate type), and is represented bya unique type descriptor record in the hierarchical type graph. Each type descriptor recordobject is instantiated from a special RTTD type1 that represents a speci�c application type.The RTTD type names follow a simple convention|each name has three parts: predeterminedpre�x (`TD") and su�x (\Type"), and a middle component that depends on the applicationtype. Thus RTTD type TDStructType would be instantiated to generate a type descriptorrecord that maintains information about a struct (or class) in an application. Using this nam-ing convention, we note that boxes labeled TDStructType, TDBuiltinType, TDPointerTypeand TDArrayType in Figure A.1 represent the type of various type descriptor records in thehierarchical type graph. (By the same token, boxes labeled TDField are not type descriptor1We use the phrase \RTTD type" to distinguish types de�ned in our system (i.e., types of various typedescriptor record objects) from types in the application, which are represented by the type descriptor records.190



records, but just auxiliary data structures used by TDStructType as described later.)Each type descriptor record must maintain a set of information that is common acrossall application types; this corresponds to the �rst four sub-components of each type descriptorrecord shown in the �gure. In terms of implementation, this is accomplished by ensuringthat all RTTD types inherit from a single superclass that has the common information. Thisinformation includes the size of the application type in bits (the size �eld) and informationabout inheritance hierarchy in the application type structure (the numprnts and prnts �eldswhich track information about \parents" of an application type). In addition, since pointertypes are also considered to be complex types in our system, each type descriptor recordmaintains a reference to another type descriptor record that represents a pointer type of theapplication type represented by this type descriptor record (the ptrtype �eld). For example,the type descriptor record that represents type char will reference another type descriptorrecord that represents type char*; the latter, in turn, may reference yet another type descriptorrecord that represents type char**, and so on.In addition to the common information, each RTTD type contains additional informa-tion depending on the requirements for the application type that must be represented. Forexample, type TDBuiltinType maintains a tag whose (predetermined) enumerated values de-scribe the speci�c builtin type being represented, while types TDPointerType and TDArrayTypecontain a pointer to another type descriptor record that represents either the pointed-to type(for TDPointerType) or the array-of type (for TDArrayType). In contrast, type TDStructTypehas several additional �elds which are necessary for fully representing an aggregate type. Apartfrom its name, we also need to maintain information about each �eld of an aggregate type;this is done via an auxiliary type TDField that can maintain information about the name andsize of a �eld (in bits), a reference to the type descriptor record that represents the type ofthe �eld, and the o�set of the �eld in the overall aggregate type. Note that it is necessary tomaintain both size and o�set for each �eld (rather than deriving the o�set from the size of theprevious �eld) because the compiler may insert padding between �elds to comply with speci�clayout and alignment requirements of the language and/or the operating system.In summary, we have described the details of a type descriptor record structure, andthe various interconnections that make up the full hierarchical type graph created by the typedescriptor generator. It is obvious that, in addition to a common set of information that isnecessary for describing any application type, each RTTD type must also maintain additionalinformation that is speci�cally geared towards representing a particular application type, andmay be arbitrarily complex. Finally, we have briey described the structure and behavior ofseveral important RTTD types which represent type structures (builtin type, pointers, arraysand aggregate types) that are common in most applications.
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