
Performance-Driven Board-Level Routing for FPGA-basedLogic EmulationWai-Kei Mak and D. F. WongDepartment of Computer SciencesUniversity of Texas at AustinAustin, TX 78712February 16, 1998AbstractIn [10] and [11], the board-level routing problem in FPGA-based logic emulators thatuse crossbars for interconnection was studied, and two di�erent routing algorithms wereproposed. However, the performance issue was not considered in the previous algorithms.And they are also unable to handle routing constraints that may arise from certain timingrequirement. So, in this paper we propose a performance-driven routing algorithm for theboard-level routing problem that can handle additional routing constraints and reduce thedelay of the routing solutions. It is an optimization algorithm based on minimum cost 
owcomputation.1 IntroductionE�cient veri�cation is of high importance in the design of new digital systems. Because ofthe complexity of the problem, logic simulation by software often cannot completely verify thebehaviour of large systems. Recently several logic emulation systems [3-7] that consist of a setof interconnected Field-Programmable Gate Arrays (FPGAs) [1,2] to prototype large digitallogic designs were developed. And these systems can emulate complex digital system designsseveral orders of magnitude faster than software simulators. As a result, FPGA-based logicemulators can verify large designs that otherwise are not veri�able by software simulators.There are two major steps in doing logic emulation. First, a large design is partitionedinto parts each of which can �t inside a single FPGA on the logic emulator [8,9]. Then board-level routing is performed to connect the signals between the FPGA chips.In logic emulators such as the Realizer system [3] and the Enterprise Emulation system [5]manufactured by Quickturn Design Systems, the set of FPGAs for implementing the logics are1



interconnected by a set of small full crossbars. In this paper, we address the problem ofboard-level routing applicable to the logic emulation systems that use small full crossbars forinterconnection.In the crossbar interconnect architecture, the interconnection crossbars only connect tothe FPGAs but not to each other. The I/O-pins of each FPGA are divided into proper subsetsof equal size. The pins of each crossbar are connected to the same subset of pins from eachFPGA. Thus crossbar i's pins are connected to the pins of subset i from each FPGA (seeFig. 1). The number of crossbars used is equal to the number of subsets in a FPGA, and eachcrossbar has as many pins as the number of pins in a subset times the number of FPGA chips.An inter-chip net can be connected via crossbar i if its net-pins in di�erent FPGA chips areall assigned to I/O-pins in subset i.
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A pins CrossbarsFigure 1: Interconnect Architecture.E�cient algorithms for board-level routing which always guarantee routing completionwhen all nets are two-terminal nets and the I/O-pin subset size is even were proposed inde-pendently in [10] and [11]. Both algorithms assume that each net can be freely connectedvia any crossbar. However, since the crossbars are distributed over di�erent locations on aboard, the distances a net signal needs to travel when a net is routed via di�erent crossbarscan be largely di�erent. So for some highly critical nets, there should be some restrictions aswhich crossbars each can be routed through to satisfy certain timing constraints. Moreover,for nets on critical paths but do not have any rigid routing restriction, it is still advantageousto route them through shorter routes to reduce the overall delay. So, in this paper we proposea new algorithm that can handle additional routing constraints, and reduce the overall delayby optimizing the routing cost for a given subset of nets.2 The Routing ProblemWe will refer to the FPGAs on a logic emulator simply as chips. We assume that all the chipsare identical. Let p be the number of I/O-pins in each pin subset on a chip. And let K be the2



number of pin subsets on each chip, which is also the number of crossbars. It follows that thetotal number of I/O-pins on each chip is Kp.The board-level routing problem is the problem of assigning the net-pins in each chip tothe I/O-pins on the chip so that all pins of the same net are assigned to I/O-pins of the sametype. At most one net-pin can be assigned to each I/O-pin. Fig. 2 shows a routing solutionto a problem instance with six nets and three chips where p = 2 and K = 2. The board-levelrouting problem can also be viewed as the problem of assigning each net to a pin subset typesuch that in any chip no more than p nets are assigned to the same pin subset, or equivalently,no more than p nets from the same chip are routed via the same crossbar. In this paper,we consider the board-level routing problem with some routing constraints. In particular, weconsider the problem when we are given some nets with stringent timing requirement, and thuscan only be routed via certain crossbars. And we are given a subset S of nets whose routingcost should be minimized. Our objective is to get a routing solution satisfying the routingconstraints that minimizes the total routing cost of all nets in S.
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Crossbar AFigure 2: A routing solution.3 Performance-Driven Routing AlgorithmIn this paper, we assume that all nets are two-terminal nets and the I/O-pin subset size pis even. (We have presented a multi-terminal net decomposition algorithm in [12] that canbe used to decompose multi-terminal nets in a board-level routing problem instance to two-terminal nets.) Throughout this section, we will use the routing problem instance shown inFig. 3 as a running example.The netlist of a routing problem instance can be represented succinctly using a multi-graph where the vertices and the edges correspond to the chips and the nets, respectively. Forexample, the netlist in Fig. 3 is represented as in Fig. 4.The very �rst step of our performance-driven routing algorithm is the same as in [10].We construct a bipartite graph of the given routing problem instance as described below. (We3
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Figure 3: A routing instance.
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Figure 4: The multigraph representation of a netlist.assume that the degree of each vertex in the multigraph netlist representation is equal to Kp,the total number of I/O-pins on each chip. Note that we can always ensure that by addingdummy nets to the multigraph as shown in Fig. 5.) First, we give a direction to each net inthe multigraph representation so that for each vertex the number of incoming edges is equalto the number of outgoing edges. This can be done by computing an Euler circuit on themulitgraph, and traversing the Euler circuit once to give directions to the edges along the way(see Fig. 6(a)). Then, we unfold the multigraph into a bipartite graph by splitting each vertexv into two vertices v0 and v00, and replacing each directed edge (u; v) by edge (u0; v00). Refer toFig. 6 for an example. This obtains a bipartite graph B1 and �nishes the �rst step.
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Figure 5: Addition of dummy nets.What we will do next is di�erent from that in [10]. In [10], disjoint matchings are found4
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Figure 6: (a) Addition of directions, according to the Euler circuit: 1-10-12-11-6-2-3-4-9-7-8-5. (b)Unfold into a bipartite graph.in the bipartite graph through a bipartite graph coloring problem formulation. However,additional constraints like \net 1 can be routed through crossbar A or B, but not any othercrossbar" cannot be enforced using this approach.Now we show how we can handle routing constraints like the one above, and at the sametime minimize the total routing cost of a given subset of nets. Observe that if we can assignthe edges (i.e., nets) in the multigraph to di�erent crossbars such that at any vertex v thenumber of outgoing edges and the number of incoming edges assigned to crossbar j are bothequal to p=2 for all j = 1; 2; : : : ;K without violating any routing constraints, then it will give afeasible routing solution. (For example, the assignment in Fig 8(c) corresponds to the routingsolution in Fig 9.) Or equivalently, if we can assign the edges in the bipartite graph B1 todi�erent crossbars such that for any v, the number of edges incident with node v0 assignedto crossbar j and the number of edges incident with node v00 assigned to crossbar j are bothequal to p=2 for all j = 1; 2 : : : ;K without violating any routing constraints, then it will yield afeasible routing solution. Based on this observation, our algorithm is divided into K�1 stages.In the �rst stage, we determine the edges in the bipartite graph to be assigned to crossbar 1under the above condition, then in the second stage we determine the edges to be assigned tocrossbar 2 under the above condition, so on and so forth. After K � 1 stages, the nets thatremain unassigned will all be assigned to crossbar K.To choose the nets to be routed via crossbar 1, �rst we take away those nets that cannotbe routed via crossbar 1 from B1. Let Bconst1 (read as the constrained-B1) be B1 without thoseedges corresponding to the nets that cannot be routed via crossbar 1. See Fig. 7(a)(b) for anexample. And we attach a cost ci(n) to each arc n in Bconst1 . (We will postpone the discussion5



of the suitable value for ci(n) until the whole algorithm has been described.)Then we do a minimum cost 
ow1 computation [13,14] assuming each node v0 on theleft hand side of Bconst1 is a supply node with p=2 units of 
ow supply and each node v00 onthe right hand side is a demand node with p=2 units of 
ow demand, and each arc has a unitcapacity. See Fig. 7(b) where we have p = 2. We note that the minimum cost 
ow probleminstance at hand has a very nice property. Because all arc capacities and external 
ows areintegers (given that p is even), there always exists an integral minimum cost 
ow (i.e., the 
owin each arc is an integer). Moreover, most common minimum cost 
ow algorithms will producean integral minimum cost 
ow solution under this condition. And in our case, the 
ow in eacharc is either 0 or 1. We will assign net n to crossbar 1 if and only if arc n's 
ow value is 1(refer to Fig. 7(b) and Fig. 8(a)). After a net has been assigned to crossbar 1, we can removeits arc from the original bipartite graph B1, this results in a reduced bipartite graph B2 as inFig. 7(c).To determine which nets are to be assigned to crossbar 2, we take away those remainingunassigned nets that cannot be routed via crossbar 2 from B2. Let Bconst2 be B2 withoutsuch arcs (Fig. 7(d)). We may do a minimum cost 
ow computation on Bconst2 like beforeto determine which remaining unassigned nets are to be assigned to crossbar 2 as shown inFig. 7(d) and Fig. 8(b).In general, after determining the nets assigned to crossbars 1 to i, bipartite graph Bi+1is the original bipartite graph B1 minus all nets assigned to crossbars 1 to i. If we take awaythose remaining nets that cannot be routed through crossbar (i+1) from Bi+1, we can obtainBconsti+1 . By doing a minimum cost 
ow computation on Bconsti+1 , we can determine which netsare to be assigned to crossbar (i+ 1).Finally, after the nets to be assigned to crossbars 1 to K � 1 have been determined asabove, all remaining nets will be assigned to crossbar K and this completes the routing process.Now we are going to discuss what is a suitable choice for the arc cost value ci(n) for eacharc n in bipartite network Bconsti . Suppose that the cost of routing net n through crossbar iis di(n). As our objective is to minimize the total routing cost of the nets in subset S, it mayseem natural to minimize the routing cost at each stage, this suggests to set ci(n) to di(n) ifnet n is in S. But this simple choice has its pitfall. Because the assignment of nets is donefrom crossbars 1 to K sequentially, a net in S will be assigned to crossbar i if the cost incurred1Minimum cost 
ow is the problem of shipping commodities at the minimum possible cost from a set ofsupply nodes to a set of demand nodes in a network where each arc has a capacity that limits the amount ofcommodities it can carry and an arc cost which is incurred for every unit it carries. It is a generalization of themaximum network 
ow problem, and can be optimally solved in polynomial time.6
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Figure 7: (a) B1. (b) Bconst1 (assuming net 9 cannot be routed through crossbar 1). A 
ow solutionis arcs 1, 10, 11, and 5 each carries a unit 
ow. (c) B2(= B1 minus arcs 1, 10, 11, and 5). (d) Bconst2(assuming net 6 cannot be routed through crossbar 2). A 
ow solution is arcs 4, 3, 9 , and 7 each carriesa unit 
ow. (e) B3(= B2 minus arcs 4, 3 ,9 , and 7).
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immediately is small, however, it is possible that it will incur an even smaller cost if the netis assigned to crossbar j for some j > i. To illustrate this, let us consider the example inFig. 10. If we do the assignment of nets to crossbar 1 before the assignment to crossbar 2,then nets n1 and n4 will be selected for routing via crossbar 1 (as d1(n1) + d1(n4)(= 4 + 4)< d1(n2) + d1(n3)(= 5 + 5)), and nets n2 and n3 will have to be routed through crossbar 2.The total routing cost in this case is d1(n1) + d1(n4) + d2(n2) + d2(n3) = 16. But the optimaltotal routing cost is 12 which is achieved when nets n2 and n3 are routed through crossbar 1,and nets n1 and n4 are routed through crossbar 2.So, we propose to use an adjusted arc cost ci(n) as follows.ci(n) = 8<: di(n)� PKj=i+1 dj(n)K�i if net n is in S0 otherwiseWe let dj(n), the cost of routing net n through crossbar j, to be equal to M for a verylarge constant M if net n cannot be routed through crossbar j. The second term in the thearc cost for a net in S represents an opportunity cost. When we assign a net to crossbar inow, we are giving up the opportunity for it to be assigned to some other crossbars later. Theopportunity cost is bigger when the average cost of assigning it to latter crossbars is smaller(i.e., we are forgoing a potentially higher saving that can be obtained by assigning it to somelatter crossbar). When the arc cost for an arc n in S is negative, it is advantageous to assignnet n to crossbar i now, but when the cost is positive, it is better to assign the net to somelatter crossbar. And since it does not matter which crossbar a net not in S is assigned to (notethat all dummy nets added are not in S), the arc cost for such a net is set to zero.Using the adjusted cost ensures that a net with more routing restrictions will be routedwith a higher priority to achieve routing completion of all nets. Because when a net n hasmore routing restrictions, there are less choices of crossbars it can be routed through, hencethe more the number of j such that dj(n) =M and the more negative is arc n's adjusted costat stage i if it can be routed through crossbar i. And an arc with a highly negative cost willalways be selected by the minimum cost 
ow computation.We also note that if the cost of routing any net n between chips u and v through crossbar jis a constant dujv independent of n, then except those nets that have some routing restrictions,all arcs between node u0 and v00 in Bconsti have arc cost equals to either 0 (for nets not in S)or duiv � PKj=i+1 dujvK�i (for nets in S) at any stage i. Also, multiple arcs between the same pairof nodes and with the same arc cost can be combined into a single arc with capacity equals tothe actual number of arcs it represents. So we may reduce the number of arcs tremendouslyby combining arcs, and improve the e�ciency of doing the minimum cost 
ow computation in9



each stage.The complete performance-driven routing algorithm is summarized below.Preformance-Driven Routing AlgorithmInput: Netlist of a routing problem instance; K = number of crossbars; p = pin subset size1. Represent netlist by a multigraph with dummy nets added to ensure all vertices have degree Kp; (Fig. 5)2. Give a direction to each edge in the multigraph; (Fig. 6(a))3. Unfold the multigraph into bipartite graph B1; (Fig. 6(b))4. for i = 1 to K � 1 doBconsti = Bi� nets that cannot be routed through crossbar i;compute arc cost ci(n) for each arc n;compute a minimum cost 
ow on Bconsti assuming each arc has a unit capacity,each node v0 has a 
ow supply of p=2 units and each node v00 has a 
ow demand of p=2 units;assign all nets with a unit 
ow to crossbar i and remove them from Bi to obtain Bi+1;rof; (Fig. 7 & 8)5. Assign all nets in BK to crossbar K.4 Experimental ResultsWe carried out some experiments to test the performance of our performance-driven routingalgorithm. In the experiments, we assumed that the chips are arranged linearly in one rowwhile the crossbars are arranged linearly in another row as in Fig 1. And we took di(n), thecost of routing net n via crossbar i, as the sum of the horizontal distance between chip uand crossbar i, and the horizontal distance between chip v and crossbar i when net n's twoterminals are in chips u and v.We used ten di�erent board con�gurations, and for each of them we randomly generatedten routing problem instances. In each problem instance generated, we assumed that 5% of thenets have some routing constraints that restrict which crossbars they can route through, and therouting cost of these nets plus another 25% of nets is to be optimized. Our performance-drivenrouting algortihm were successful in routing all instances satisfying all routing constraints.When previous algorithms were used to route the same instances, almost all routing contraintswere violated. We also compared the optimized routing cost of the given 30% nets to theunoptimized value. The results are shown in Table 1. It can be seen that the optimizedrouting costs are consistently less than one third of the unoptimized ones.
10



Table 1: Experimental results.Chips per board Crossbars per board Pins per subset No. of Nets optimized routing costunoptimized routing cost(avg)16 8 16 920 0.3116 16 8 920 0.3016 25 6 1076 0.3116 32 4 920 0.3120 10 16 1457 0.3220 20 8 1457 0.3220 30 6 1641 0.3225 12 8 1090 0.3125 20 6 1374 0.3125 30 4 1374 0.315 ConclusionsWe have presented a performance-driven routing algorithm for the board-level routing problemin logic emulation. It can handle routing constraints on individual critical nets which cannot behandled by previous algorithms [10,11]. Also, it reduces the delay of the �nal routing solutionby minimizing the routing cost for a set of nets on critical paths. And we have obtained verygood experimental results using the performance-driven routing algorithm.It was shown in [10, 11] that all routing problem instances with two-terminal nets onlyare feasible when the I/O-pin subset size is even and there is no routing constraint on individualnets. We note that our algorithm can always �nd a feasible routing solution and with a betterdelay than the previous algorithms in this case.References[1] S.D. Brown, R.J. Francis, J. Rose, and Z.G. Vranesic, Field-Programmable Gate Arrays,Kluwer Academic Publishers, 1992.[2] S. Trimberger (edited), Field-Programmable Gate Array Technology, Kluwer AcademicPublishers, 1994.[3] J. Varghese, M. Butts, and J. Batcheller, \An E�cient Logic Emulation System", IEEETransactions on VLSI, Vol. 1, No. 2, p.171-174, June IEEE Transactions on VLSI, Vol.11
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