Performance-Driven Board-Level Routing for FPGA-based

Logic Emulation

Wai-Kei Mak and D. F. Wong
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

February 16, 1998

Abstract

In [10] and [11], the board-level routing problem in FPGA-based logic emulators that
use crossbars for interconnection was studied, and two different routing algorithms were
proposed. However, the performance issue was not considered in the previous algorithms.
And they are also unable to handle routing constraints that may arise from certain timing
requirement. So, in this paper we propose a performance-driven routing algorithm for the
board-level routing problem that can handle additional routing constraints and reduce the
delay of the routing solutions. It is an optimization algorithm based on minimum cost flow

computation.

1 Introduction

Efficient verification is of high importance in the design of new digital systems. Because of
the complexity of the problem, logic simulation by software often cannot completely verify the
behaviour of large systems. Recently several logic emulation systems [3-7] that consist of a set
of interconnected Field-Programmable Gate Arrays (FPGAs) [1,2] to prototype large digital
logic designs were developed. And these systems can emulate complex digital system designs
several orders of magnitude faster than software simulators. As a result, FPGA-based logic
emulators can verify large designs that otherwise are not verifiable by software simulators.

There are two major steps in doing logic emulation. First, a large design is partitioned
into parts each of which can fit inside a single FPGA on the logic emulator [8,9]. Then board-
level routing is performed to connect the signals between the FPGA chips.

In logic emulators such as the Realizer system [3] and the Enterprise Emulation system [5]

manufactured by Quickturn Design Systems, the set of FPGAs for implementing the logics are

interconnected by a set of small full crossbars. In this paper, we address the problem of
board-level routing applicable to the logic emulation systems that use small full crossbars for
interconnection.

In the crossbar interconnect architecture, the interconnection crossbars only connect to
the FPGAs but not to each other. The I/O-pins of each FPGA are divided into proper subsets
of equal size. The pins of each crossbar are connected to the same subset of pins from each
FPGA. Thus crossbar i’s pins are connected to the pins of subset ¢ from each FPGA (see
Fig. 1). The number of crossbars used is equal to the number of subsets in a FPGA, and each
crossbar has as many pins as the number of pins in a subset times the number of FPGA chips.
An inter-chip net can be connected via crossbar ¢ if its net-pins in different FPGA chips are
all assigned to I/O-pins in subset i.

4 subsets of pins

AN
ZAERN Logic

A B CD||ABCD|ABCD| ABCD| FPGAS

M=

=
‘ A pins ‘ ‘ B pins H Cpins H D pins Crossbars

N0, §

Figure 1: Interconnect Architecture.

Efficient algorithms for board-level routing which always guarantee routing completion
when all nets are two-terminal nets and the I/O-pin subset size is even were proposed inde-
pendently in [10] and [11]. Both algorithms assume that each net can be freely connected
via any crossbar. However, since the crossbars are distributed over different locations on a
board, the distances a net signal needs to travel when a net is routed via different crossbars
can be largely different. So for some highly critical nets, there should be some restrictions as
which crossbars each can be routed through to satisfy certain timing constraints. Moreover,
for nets on critical paths but do not have any rigid routing restriction, it is still advantageous
to route them through shorter routes to reduce the overall delay. So, in this paper we propose
a new algorithm that can handle additional routing constraints, and reduce the overall delay

by optimizing the routing cost for a given subset of nets.

2 The Routing Problem

We will refer to the FPGAs on a logic emulator simply as chips. We assume that all the chips
are identical. Let p be the number of I/O-pins in each pin subset on a chip. And let K be the

number of pin subsets on each chip, which is also the number of crossbars. It follows that the
total number of I/O-pins on each chip is Kp.

The board-level routing problem is the problem of assigning the net-pins in each chip to
the I/O-pins on the chip so that all pins of the same net are assigned to I/O-pins of the same
type. At most one net-pin can be assigned to each I/O-pin. Fig. 2 shows a routing solution
to a problem instance with six nets and three chips where p = 2 and K = 2. The board-level
routing problem can also be viewed as the problem of assigning each net to a pin subset type
such that in any chip no more than p nets are assigned to the same pin subset, or equivalently,
no more than p nets from the same chip are routed via the same crossbar. In this paper,
we consider the board-level routing problem with some routing constraints. In particular, we
consider the problem when we are given some nets with stringent timing requirement, and thus
can only be routed via certain crossbars. And we are given a subset S of nets whose routing
cost should be minimized. Our objective is to get a routing solution satisfying the routing

constraints that minimizes the total routing cost of all nets in S.

Ch|p 1 Chip 2 Chip 3
B qe || 05 qz qe
Crossbar A Crossbar B

Figure 2: A routing solution.

3 Performance-Driven Routing Algorithm

In this paper, we assume that all nets are two-terminal nets and the I/O-pin subset size p
is even. (We have presented a multi-terminal net decomposition algorithm in [12] that can
be used to decompose multi-terminal nets in a board-level routing problem instance to two-
terminal nets.) Throughout this section, we will use the routing problem instance shown in
Fig. 3 as a running example.

The netlist of a routing problem instance can be represented succinctly using a multi-
graph where the vertices and the edges correspond to the chips and the nets, respectively. For
example, the netlist in Fig. 3 is represented as in Fig. 4.

The very first step of our performance-driven routing algorithm is the same as in [10].

We construct a bipartite graph of the given routing problem instance as described below. (We

Vi V2 V3 V4

1,2,3,4,5,6 1,2,3,7,8 4, 9 5,6,7,8,9

AABBCC AABBCC AABBCC AABGBTCZC

Figure 4: The multigraph representation of a netlist.

assume that the degree of each vertex in the multigraph netlist representation is equal to Kp,
the total number of I/O-pins on each chip. Note that we can always ensure that by adding
dummy nets to the multigraph as shown in Fig. 5.) First, we give a direction to each net in
the multigraph representation so that for each vertex the number of incoming edges is equal
to the number of outgoing edges. This can be done by computing an Euler circuit on the
mulitgraph, and traversing the Euler circuit once to give directions to the edges along the way
(see Fig. 6(a)). Then, we unfold the multigraph into a bipartite graph by splitting each vertex
v into two vertices v’ and v”, and replacing each directed edge (u,v) by edge (u',v"). Refer to

Fig. 6 for an example. This obtains a bipartite graph B; and finishes the first step.

\Y

1
6 >
\Y

4ﬁV3 \\

Figure 5: Addition of dummy nets.

What we will do next is different from that in [10]. In [10], disjoint matchings are found

Figure 6: (a) Addition of directions, according to the Euler circuit: 1-10-12-11-6-2-3-4-9-7-8-5. (b)
Unfold into a bipartite graph.

in the bipartite graph through a bipartite graph coloring problem formulation. However,
additional constraints like “net 1 can be routed through crossbar A or B, but not any other
crossbar” cannot be enforced using this approach.

Now we show how we can handle routing constraints like the one above, and at the same
time minimize the total routing cost of a given subset of nets. Observe that if we can assign
the edges (i.e., nets) in the multigraph to different crossbars such that at any vertex v the
number of outgoing edges and the number of incoming edges assigned to crossbar j are both
equal to p/2 for all j = 1,2,..., K without violating any routing constraints, then it will give a
feasible routing solution. (For example, the assignment in Fig 8(c) corresponds to the routing
solution in Fig 9.) Or equivalently, if we can assign the edges in the bipartite graph B; to
different crossbars such that for any v, the number of edges incident with node v’ assigned
to crossbar j and the number of edges incident with node v" assigned to crossbar j are both
equal to p/2 for all j = 1,2..., K without violating any routing constraints, then it will yield a
feasible routing solution. Based on this observation, our algorithm is divided into K — 1 stages.
In the first stage, we determine the edges in the bipartite graph to be assigned to crossbar 1
under the above condition, then in the second stage we determine the edges to be assigned to
crossbar 2 under the above condition, so on and so forth. After K — 1 stages, the nets that
remain unassigned will all be assigned to crossbar K.

To choose the nets to be routed via crossbar 1, first we take away those nets that cannot
be routed via crossbar 1 from Bj. Let BfO"St (read as the constrained-B;) be By without those
edges corresponding to the nets that cannot be routed via crossbar 1. See Fig. 7(a)(b) for an

example. And we attach a cost ¢;(n) to each arc n in B, (We will postpone the discussion

of the suitable value for ¢;(n) until the whole algorithm has been described.)

Then we do a minimum cost flow! computation [13,14] assuming each node v’ on the
left hand side of B{°"*! is a supply node with p/2 units of flow supply and each node v" on
the right hand side is a demand node with p/2 units of flow demand, and each arc has a unit
capacity. See Fig. 7(b) where we have p = 2. We note that the minimum cost flow problem
instance at hand has a very nice property. Because all arc capacities and external flows are
integers (given that p is even), there always exists an integral minimum cost flow (i.e., the flow
in each arc is an integer). Moreover, most common minimum cost flow algorithms will produce
an integral minimum cost flow solution under this condition. And in our case, the flow in each
arc is either 0 or 1. We will assign net n to crossbar 1 if and only if arc n’s flow value is 1
(refer to Fig. 7(b) and Fig. 8(a)). After a net has been assigned to crossbar 1, we can remove
its arc from the original bipartite graph By, this results in a reduced bipartite graph Bs as in
Fig. 7(c).

To determine which nets are to be assigned to crossbar 2, we take away those remaining
unassigned nets that cannot be routed via crossbar 2 from Bj. Let Bg‘m“ be By without
such arcs (Fig. 7(d)). We may do a minimum cost flow computation on B§**¢ like before
to determine which remaining unassigned nets are to be assigned to crossbar 2 as shown in
Fig. 7(d) and Fig. 8(b).

In general, after determining the nets assigned to crossbars 1 to ¢, bipartite graph B; i
is the original bipartite graph B; minus all nets assigned to crossbars 1 to i. If we take away
those remaining nets that cannot be routed through crossbar (i + 1) from B;;1, we can obtain

const. By doing a minimum cost flow computation on B{?}**, we can determine which nets
are to be assigned to crossbar (i + 1).

Finally, after the nets to be assigned to crossbars 1 to K — 1 have been determined as
above, all remaining nets will be assigned to crossbar K and this completes the routing process.

Now we are going to discuss what is a suitable choice for the arc cost value ¢;(n) for each
arc n in bipartite network Bf°"*'. Suppose that the cost of routing net n through crossbar i
is d;(n). As our objective is to minimize the total routing cost of the nets in subset S, it may
seem natural to minimize the routing cost at each stage, this suggests to set ¢;(n) to d;(n) if
net n is in S. But this simple choice has its pitfall. Because the assignment of nets is done

from crossbars 1 to K sequentially, a net in .S will be assigned to crossbar ¢ if the cost incurred

!Minimum cost flow is the problem of shipping commodities at the minimum possible cost from a set of
supply nodes to a set of demand nodes in a network where each arc has a capacity that limits the amount of
commodities it can carry and an arc cost which is incurred for every unit it carries. It is a generalization of the

maximum network flow problem, and can be optimally solved in polynomial time.

(@

(©

()

Figure 7: (a) B;. (b) B{°"*! (assuming net 9 cannot be routed through crossbar 1). A flow solution
is arcs 1, 10, 11, and 5 each carries a unit flow. (¢) Ba(= B; minus arcs 1, 10, 11, and 5). (d) B5°"st
(assuming net 6 cannot be routed through crossbar 2). A flow solution is arcs 4, 3, 9 , and 7 each carries

a unit flow. (e) Bs(= By minus arcs 4, 3,9, and 7).

(@ 1(A) (b) ()
V1 VZ V2
> 5(A) 110 (A) 110 (A)
y y ¢
R T R 3

6(C)

Figure 8: (a) Assignment after stage 1. (b) Assignment after stage 2. (c¢) Final assignment.

Vi V2 V3

V4

1

1,53,426 3,7 2,8 4,9

5

7,9 68

A B C A B C A B C

Figure 9: A feasible routing solution.

, ni(4,1) "
i —— L]

v, Ny
2 na@) 2

A B C

Figure 10: The ordered pair (d1,ds) beside an arc n indicates the costs of routing net n through two

different crossbars, d; is the cost of routing through crossbar 1 and ds is the cost of routing through

crossbar 2.

immediately is small, however, it is possible that it will incur an even smaller cost if the net
is assigned to crossbar j for some j > i. To illustrate this, let us consider the example in
Fig. 10. If we do the assignment of nets to crossbar 1 before the assignment to crossbar 2,
then nets n; and n4 will be selected for routing via crossbar 1 (as dj(n1) + di(n4)(= 4 + 4)
< di(n2) + di(n3)(= 5+ 5)), and nets ny and ng will have to be routed through crossbar 2.
The total routing cost in this case is di(n1) + d1(n4) + da(n2) + d2(ng) = 16. But the optimal
total routing cost is 12 which is achieved when nets ng and nj3 are routed through crossbar 1,
and nets n; and ng4 are routed through crossbar 2.
So, we propose to use an adjusted arc cost ¢;(n) as follows.

K
., . dj(n
di(n)—;J%.]() if net nisin S

0 otherwise

ci(n) =

We let d;(n), the cost of routing net n through crossbar j, to be equal to M for a very
large constant M if net n cannot be routed through crossbar j. The second term in the the
arc cost for a net in S represents an opportunity cost. When we assign a net to crossbar @
now, we are giving up the opportunity for it to be assigned to some other crossbars later. The
opportunity cost is bigger when the average cost of assigning it to latter crossbars is smaller
(i.e., we are forgoing a potentially higher saving that can be obtained by assigning it to some
latter crossbar). When the arc cost for an arc n in S is negative, it is advantageous to assign
net n to crossbar ¢ now, but when the cost is positive, it is better to assign the net to some
latter crossbar. And since it does not matter which crossbar a net not in S is assigned to (note
that all dummy nets added are not in S), the arc cost for such a net is set to zero.

Using the adjusted cost ensures that a net with more routing restrictions will be routed
with a higher priority to achieve routing completion of all nets. Because when a net n has
more routing restrictions, there are less choices of crossbars it can be routed through, hence
the more the number of j such that d;(n) = M and the more negative is arc n’s adjusted cost
at stage ¢ if it can be routed through crossbar ¢. And an arc with a highly negative cost will
always be selected by the minimum cost flow computation.

We also note that if the cost of routing any net n between chips v and v through crossbar j
is a constant d,,;, independent of n, then except those nets that have some routing restrictions,

all arcs between node v’ and v" in B{"$! have arc cost equals to either 0 (for nets not in S)
K
Zj=i+1 ujv
K—i
of nodes and with the same arc cost can be combined into a single arc with capacity equals to

or dyiy — (for nets in S) at any stage 7. Also, multiple arcs between the same pair

the actual number of arcs it represents. So we may reduce the number of arcs tremendously

by combining arcs, and improve the efficiency of doing the minimum cost flow computation in

each stage.

The complete performance-driven routing algorithm is summarized below.

Preformance-Driven Routing Algorithm
Input: Netlist of a routing problem instance; K = number of crossbars; p = pin subset size
1. Represent netlist by a multigraph with dummy nets added to ensure all vertices have degree Kp; (Fig. 5)
2. Give a direction to each edge in the multigraph; (Fig. 6(a))
3. Unfold the multigraph into bipartite graph Bi; (Fig. 6(b))
4. fori=1to K —1do
Bgonst = B, — nets that cannot be routed through crossbar i;
compute arc cost ¢;(n) for each arc n;
compute a minimum cost flow on B{"** assuming each arc has a unit capacity,
each node v’ has a flow supply of p/2 units and each node v" has a flow demand of p/2 units;
assign all nets with a unit flow to crossbar ¢ and remove them from B; to obtain Bj;y1;
rof; (Fig. 7 & 8)

5. Assign all nets in By to crossbar K.

4 Experimental Results

We carried out some experiments to test the performance of our performance-driven routing
algorithm. In the experiments, we assumed that the chips are arranged linearly in one row
while the crossbars are arranged linearly in another row as in Fig 1. And we took d;(n), the
cost of routing net n via crossbar ¢, as the sum of the horizontal distance between chip u
and crossbar ¢, and the horizontal distance between chip v and crossbar ¢ when net n’s two
terminals are in chips u and v.

We used ten different board configurations, and for each of them we randomly generated
ten routing problem instances. In each problem instance generated, we assumed that 5% of the
nets have some routing constraints that restrict which crossbars they can route through, and the
routing cost of these nets plus another 25% of nets is to be optimized. Our performance-driven
routing algortihm were successful in routing all instances satisfying all routing constraints.
When previous algorithms were used to route the same instances, almost all routing contraints
were violated. We also compared the optimized routing cost of the given 30% nets to the
unoptimized value. The results are shown in Table 1. It can be seen that the optimized

routing costs are consistently less than one third of the unoptimized ones.

10

Table 1: Experimental results.

Chips per board | Crossbars per board | Pins per subset | No. of Nets uggggﬁiﬁi% dr %Egﬁgczitst
(avg)
16 8 16 920 0.31
16 16 8 920 0.30
16 25 6 1076 0.31
16 32 4 920 0.31
20 10 16 1457 0.32
20 20 8 1457 0.32
20 30 6 1641 0.32
25 12 8 1090 0.31
25 20 6 1374 0.31
25 30 4 1374 0.31

5 Conclusions

We have presented a performance-driven routing algorithm for the board-level routing problem
in logic emulation. It can handle routing constraints on individual critical nets which cannot be
handled by previous algorithms [10,11]. Also, it reduces the delay of the final routing solution
by minimizing the routing cost for a set of nets on critical paths. And we have obtained very
good experimental results using the performance-driven routing algorithm.

It was shown in [10, 11] that all routing problem instances with two-terminal nets only
are feasible when the I/O-pin subset size is even and there is no routing constraint on individual
nets. We note that our algorithm can always find a feasible routing solution and with a better

delay than the previous algorithms in this case.

References

[1] S.D. Brown, R.J. Francis, J. Rose, and Z.G. Vranesic, Field-Programmable Gate Arrays,
Kluwer Academic Publishers, 1992.

[2] S. Trimberger (edited), Field-Programmable Gate Array Technology, Kluwer Academic
Publishers, 1994.

[3] J. Varghese, M. Butts, and J. Batcheller, “An Efficient Logic Emulation System”, IEEE
Transactions on VLSI, Vol. 1, No. 2, p.171-174, June IEEE Transactions on VLSI, Vol.

11

8]

[10]

[11]

[12]

1, No. 2, p.171-174, June 1993.

M. Slimane-Kadi, D. Brasen, and G. Saucier, “A Fast-FPGA Prototyping System that
Uses Inexpensive High-Performance FPIC,” ACM/SIGDA International Workshop on
Field-Programmable Gate Arrays, Feb 1994.

L. Maliniak, “Multiplexing Enhances Hardware Emulation,” Electronic Design, p.76-78,
Nov. 1992.

S. Walters, “Computer-Aided Prototyping for ASIC-based Systems,” IEEE Design and
Test, p.4-10, June 1991.

K. Yamada, H. Nakada, A. Tsutsui, and N. Ohta, “High-Speed Emulation of Communi-
cation Circuits on a Multiple-FPGA System,” ACM/SIGDA International Workshop on
Field-Programmable Gate Arrays, Feb 1994.

N.C. Chou, L.T. Liu, C. K. Cheng, W.J. Dai, and R. Lindelof, “Circuit Partitioning
for Huge Logic Emulation Systems,” Proc. of the 31st ACM/IEEE Design Automation
Conference, p.244-249, 1994.

H.Q. Liu, and D. F. Wong, “Network Flow Based Multi-Way Partitioning with Area and
Pin Constraints,” Proc. of the ACM International Symposium on Physical Design, April
1997.

P.K. Chan, and M.D.F. Schlag, “Architectural Tradeoffs in Field-Programmable-Device-
Based Computing Systems,” IEEE Workshop on FPGAs for Custom Computing Ma-
chines, p.138-141, April 1993.

W.K. Mak, and D.F. Wong, “On Optimal Board-Level Routing for FPGA-based Logic
Emulation,” Proc. of the 32nd ACM/IEEE Design Automation Conference, p.552-556,
1995.

W.K. Mak, and D.F. Wong, “Board-Level Multi-Terminal Net Routing for FPGA-based
Logic Emulation,” Proc. of International Conference on Computer Aided Design, p.339-
344, 1995.

M.S. Bazaraa, J.J. John, and H.D. Sherali, Linear Programming and Network Flows, John
Wiley & Sons, 1990.

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, 1993.

12

