
Hypervolume Visualization: A Challenge in SimplicityC. Bajaj V. PascucciDepartment of Computer Sciences and TICAMUniversity of Texas, Austin, TX 78733G. RabbioloDepartment of MathematicsPurdue University, West Lafayette, IN 47907D. SchikoreCenter for Applied Scienti�c ComputingLawrence Livermore National Laboratory, Livermore, CA 94550March 30, 1998AbstractHyper-volume visualization is designed to provide simple and fully explanatory images that givecomprehensive insights into the global structure of scalar �elds of any dimension. The basic idea is tohave a dimension independent viewing system that scales nicely with the geometric dimension of thedataset and that can be combined with classical approaches like isocontouring and animation of slicesof nD data. We completely abandon (for core simplicity) rendering techniques, such as hidden surfaceremoval or lighting or radiosity, that enhance three dimensional realism and concentrate on the real-time display of images that highlight structural (topological) features of the nD dataset (holes, tunnels,cavities, depressions, extrema, etc).Hyper-volume visualization on the one hand is a generalization of direct parallel projection methodsin volume rendering. To achieve e�ciency (and real-time performance on a graphics workstation) wecombine the advantages of (i) a hierarchical representations of the hyper-volume data for multiresolutiondisplay and (ii) generalized object space splatting combined with texture-mapped graphics hardwareacceleration.The development of a system that implements display techniques for multidimensional datasets re-quires careful design of both algorithms and user interfaces that scale linearly with the dimension n ofthe input geometric space. This is a major challenge since straightforward generalizations of standardtechniques that are suitable for display of 3D data yield exceedingly intricate interfaces. For example, aview manipulation graphical user interface is usually based on a rotation of the object about Cartesianrotation axes, with possibly unit quaternions internal representations for the rotation group 1. Unfortu-nately the number of independent rotation axes grows quadratically with dimension(three in 3D to six in4D to ten in 5D to �fteen in 6D space). Going back to the basics of parallel projections, we develop analternative scheme that is very simple to implement and immediately gives a view manipulation graphicaluser interface that scales linearly with the dimension. One can still utilize matrix or quaternion or higherdimensional rotational group representations, internally for calculations.The main results of our paper are thus both a multi-resolution direct rendering algorithm and scalablegraphical user interface that provides insightfull global views of scalar �elds in any dimension, whilemaintaining the fundamental characteristics of ease of use, and quick exploratory user interaction.1see for example the hypercube applet http://www.students.uiuc.edu/ ferrar/java/hypercuber/HyperCuber.html1



1 IntroductionWe introduce a new technique for informative visualization of scalar �elds embedded in n-dimensional spaces.Examples of scalar �elds de�ned over more than three variables, are gated MRI volume scans of heart motion,time varying data from computational 
uids dynamics, molecular vanDerWaal energies as a function ofmolecular con�gurations (bond angles).Our main contributions are:1. the design and implementation of a new graphical user interface for interacting with parallel projectionsof n-dimensional scalar �elds;2. the design and implementation of a higher dimension generalization of the traditional splatting algo-rithm for 3D volume rendering of scalar �elds;This paper extends the research on visualization techniques which provide \global views" of scalar �eldsindependent of the dimension of their embedding space. In this paper we directly render n-dimensional viewsof the global scalar �eld.A number of approaches have been attempted to visualize higher dimensional objects [16, 14, 1] Thegrand tour technique [2] is based on the idea of projecting the n-dimensional datasets onto a 2-dimensionalsubspace that is moved along random or selective paths. By visually perceiving coherence in the contiguous2D images the user can get an idea of the actual structure of the nD object.Bill Hibbard et al. [13] developed Vis5D for visualizing scalar �elds de�ned over 4D grids. They assumethat the last dimension is the time evolution of the dataset, so that they simply animate the display of theisosurface, volume rendering or planar slices. Hence their approach is fundamentally to animate traditionalscienti�c visualizations. For their purpose they achieve good results but the technique cannot be generalizedfor higher dimensional datasets.Hanson and Heng [9] introduced a technique to present 3D scalar �eld by means of 4D elevation modelsin the same way 2D scalar �elds can be show as 3D terrains. Rotating the 4D pseudocolored elevation modelthe user can see its structure enhanced by the illumination scheme developed in [11]. The approach has beenlater generalized [10] to be suitable for display of more general 4D geometric objects and made more e�cientto provide the speed necessary for good user interaction.Laur and Hanrahan [15] accelerate the 3D splatting [19] algorithm adopting an octree hierarchical rep-resentation of the volume data. We generalize this approach showing also how the relative storage overheadof the full 2n-tree hierarchy decreases as the dimension of the embedding space increases.On important aspect in developing a visualization tool for n dimensional data is the design of an interfacesimple enough to make the user interaction reasonably simple and intuitive. Du�n and Barret [6] addressedthis problem by presenting a simpli�ed 2D user interface to specify an n-dimensional orthonormal rotationmatrix.The approach introduced in the present paper can be considered a good complement to the previousapproaches listed above. A common aspect of all such approaches is that it can provide a realistic and detailedrepresentation of \local" (in time or space) feature of the scalar �eld. After looking at many sequences ofpictures the trained user attempts to form in his own mind a \global picture" of the dataset. The approachproposed here tries to avoid relying (as much as possible) on the geometric abstraction capabilities of users,providing them directly with global projections of higher dimensional spaces with real time interaction in areasonably similar way to how they would explore their own physical world.there are two main challenges in developing such an exploratory approach to visualization:� to make the user interaction be su�ciently intuitive, simple and \linearly" scalable with the dimension� to e�ciently render such a large amount of data (note that the size of the dataset grows exponentiallywith the dimension n of the embedding space 2



2 Hypervolume Projection TransformationIn this section we discuss how a 2D \view" of an nD object is geometrically de�ned and how such a de�nitionimpacts the user interface for view selection. We consider parallel projections. It is well known since the lastcentury (see fundamental theorem by K. Pohlke and H. A. Schwarz in [7]) that given the image of a referencecoordinate axes of a parallel projection, the projection itself is completely de�ned. A short informal proofof this fact is as follows. Consider the parallel projection as in �gure 1. In the (x; y) view plane we draw theprojection of the reference axes (X;Y; Z) of the 3D space. The unit vectors of the three axes are projectedrespectively onto the vectors ~l1;~l2;~l3 and the projection of the origin O is given by o +~lO . The projectionof the point P (a; b; c) is thus given by:o+~lP = o +~lO + a �~l1 + b �~l2 + c �~l3: (1)This vectorial equation de�nes the parallel projection as the linear mapping �(<3 ! <2) that maps the3D point (X;Y; Z) onto the 2D point (x; y):�(<3 ! <2) : (X;Y; Z) 7! (x; y);� x = lxO +X � lx1 + Y � lx2 + Z � lx3y = lyO +X � ly1 + Y � ly2 + Z � ly3 (2)where lji is the jth component of the vector ~li.In the system (2) we �x the triple (X;Y; Z) to compute the corresponding 2D point (x; y). Symmetricallywe �x a particular pair (x; y) and determine all the (X;Y; Z) that satisfy the system (2). In the latter casethe set of all the solutions is a line parallel to the vector:~� = �������� lx1 lx2 lx3ly1 ly2 ly3 ��������~� is the direction of projection that de�nes the parallel projection. Note that changing the three vectors~l1,~l2 and ~l3 in all possible ways, we obtain all the possible parallel projections. Moreover it is easy to showthat a valid view is given by any surjective linear mapping �. This implies, that the only constraint thatthe triple ~l1, ~l2, ~l3 needs to satisfy is: rank� lx1 lx2 lx3ly1 ly2 ly3 � = 2Simple additional linear constraints over the triple ~l1,~l2,~l3 guarantees the parallel projection to be ortho-graphic (isometric, dimetric or trimetric) or oblique (cavalier, cabinet or generic) [17].2.1 The general mapping �(<n ! <2)In the previous section we have discussed the methodology for de�ning a parallel projection from 3D space tothe 2D view plane. In this section we show how this allows generalization of parallel projection transformationfrom nD space to a 2D plane. We also show how one can grow the dimension n of the object space withoutincreasing the complexity of the parallel projection de�nition scheme.Let f~e1; : : : ; ~eng denote the canonical basis in the n-dimensional object space <n. The parallel projection�(<n ! <2) : (X1; : : : ; Xn) 7! (x; y)is a linear transformation and is therefore completely determined by the n vectors ~li = �(~ei); i = 1; : : : ; n:In fact by linearizing the image under � of a point P (X1; : : : ; Xn) = ~e1 �X1 +~e2 �X2+ � � �+~en �Xn is given3
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Figure 1: Parallel projection de�nition from 3D to 2D. (a) Relationship between 3D and 2D coordinates ofa point. (b) Parallel projection of the 3D reference system onto the 2D view plane.by: �(P ) = �(~e1 �X1 + ~e2 �X2 + � � �+ ~en �Xn)= �(~e1) �X1 + �(~e2) �X2 + � � �+�(~en) �Xn)= ~l1 �X1 +~l2 �X2 + � � �+~ln �XnAs in the 3D case, the mapping de�nes a system of two linear equalities:� xy � = � lx1 � � � lxdly1 � � � lyd �0B@ X1...Xn 1CA (3)Changing the vectors ~li we obtain all the possible projection matrices. For a projection matrix to be\valid" it is su�cient that it is full rank (otherwise we would project onto a line or onto a point). Changingthe vectors ~li in all the valid ways we produce all the possible 2D views of the dataset.To grow the dimension n of the object space means to add new ~li vectors and hence columns to theprojection matrix. What in the 3D case is called the \direction of projection" is in general the kernel Kof the mapping �. Since the projection is given by a full rank 2 � n matrix the kernel of � is a (n � 2)-dimensional linear space. In 3D we have that points aligned along the direction of projection are projectedonto the same 2D point. In the nD space we have that two points are projected onto the same 2D pointif and only if they are contained in the same (n � 2)-dimensional a�ne space parallel to the kernel of theprojection �. 4



2.2 OcclusionThe nice property of the 3D case is that the kernel of the mapping � is a 1-dimensional a�ne space. Hence,one can de�ne a total order among the 3D points projected onto the same point in 2D. This automaticallyyields a sound de�nition of occlusion (or visibility ordering) between points in 3D space. A point P1 occludesa point P2 if (i) �(P1) = �(P2) and (ii) and P1 is \nearer" than P2 or more formally P1 has smaller rankthan P2 in the order within their common projection ray. For dimensions four or higher, a unique total ordercannot be de�ned at least in a sound geometric sense and independent from the selected coordinate system.Arti�cial (partial) orders can be easily imposed on the points of the (n � 2)-
at that is projected onto asingle 2D point. Moreover, in 3D, given a direction of projection, one can de�ne two alternative occlusionorders that give two views of an object in a �xed position, say front view and a back view. In 4D or higherdimensions things get immediately more intricate since one needs to de�ne a coordinate system within thekernel of the mapping � to de�ne a certain occlusion order. This involves two main di�culties:� Already in 4D, one gets an in�nity of di�erent occlusion orders, each giving a di�erent view of theobject (keeping the position of the object �xed). This implies additional degrees of freedom to exploreand hence longer interaction times.� One needs to de�ne a reference system within the kernel, but by de�nition, the entire kernel is projectedinto a single point. So we need either some separate view that \shows" the kernel or a numericalinterface to control the occlusion order.Apart from the complexity introduced by an occlusion order, the more fundamental issue is the meaningof such an occlusion and what enhancement if any, the occlusion yields to the images displayed. In the 3Dcase, occlusion certainly enhances the realism of the images and better highlights silhouettes of the viewedobjects. However a case can be made is that it also hides important features of the dataset. In our case,since we are looking especially at scalar �elds to provide views that displays its topological structure, wehave chosen not to provide an occlusion information in our rendering.2.3 The graphical user interfaceFrom the general mapping de�ned in the previous section, we derive the a graphical user interface for ndimensional object exploration that di�ers from the classical rotation-based interface. usually the basic viewtransformation that allows one to change the view of an object is rotation (see section 8.2.6 of [8]), sincetranslation and scaling allow one to only change the \focus" of a view, keeping the display substantially thesame. from a users perspective interaction with rotations has two main di�culties:� since one rotation is de�ned by 2 coordinate axes (the axes that span the rotation plane) we have thatin nd space the number of independent coordinate rotations are �n2�. when one looks at a simple rigidbody con�guration space of a 3d object where the number n of coordinate axes is six (three translationsplus three rotations) one needs to explore 15 di�erent planes of rotation.� the user is usually provided with the ability to rotate an object in the coordinate planes so that arotation in a generic (non-coordinate) plane needs to be obtained by combination of the elementarytransformations. this task gets really confusing in more than three dimension since one cannot rely onnavigation experience acquired in physical 3d space.A classical rotation-based interface grows quadratically with the dimension n of the embedding spacegetting quickly unsuitable for simple and fast interaction if n > 3. we employ an alternative approach thatscales linearly with the dimension n making the interface more suitable for a higher dimensional approach(in the next subsection we show how this interface can be enriched with rotational interaction when needed).The main idea is that the user can modify the image of the reference system instead of changing the positionof the object in the embedding space. As shown in the previous section, this approach provides su�cient5



(a) (b)Figure 2: (a) User interface for selection of viewing parameters. The axes on the bottom-left can be directlyselected and stretched or rotated. The image of the standard splat is show on the right. The sliders on topallow �ne adjustment of the stretching and rotation parameters. (b) User interface for selection of transferfunction parameters.degrees of freedom to explore all the possible views of the object. in the same time the approach reducessubstantially the number of parameters that the user needs to deal with.Consider the reference system of a �ve-dimensional space as in �gure 2(a). The user can select with themouse any of the axes (highlighted in red) and then rotate/stretch it in any position. For more accurateinteraction, some buttons and sliders are provided, allowing the user to perform the same operation evenif there are overlapping axes or the precision required cannot be achieved with a simple pick-and-moveoperation. In this way the user can explore all the possible view with much less redundancy. Since theuser deals with one axis at a time the complexity of the interface is only equal to the dimension n of theembedding space. In a six dimensional con�guration space the user just needs to adjust the length andorientation of the six vectors ~l1 ~l2 ~l3 ~l4 ~l5 and ~l6 projections of the embedding space unit vectors. This issimpler that rotating in �fteen possible planes. It also may be more intuitive for axes that do not correspondto the physical extent of the object (e.g. time or rotational degrees of freedom). Of course when the userneeds to rotate the object s/he can still do that directly as in the classical approach, as detailed next.2.3.1 RotationIn this section we show how one can easily integrate in our image-space approach the classic object-spacerotation. Consider (without loss of generality) a rotation in the X;Y plane by an angle �. It maps the X;Ycoordinate to X 0; Y 0 by the rule:(X;Y ) 7! (X 0; Y 0) : � X 0 = cos � �X � sin � � YY 0 = sin � �X + cos � � Y (4)while all the other n � 2 coordinates remain unmodi�ed. To obtain the equivalent transformation in ourimage-based projection de�nition, we substitute equation (4) into the generalization of (2) to obtain:�(<n ! <2) : (X;Y; Z; : : :) 7! (x; y);� x = lxO + lx1 � (cos � �X � sin � � Y ) + lx2 � (sin � �X + cos � � Y ) + lx3 � Z + � � �y = lyO + ly1 � (cos � �X � sin � � Y ) + ly2 � (sin � �X + cos � � Y ) + ly3 � Z + � � � (5)that can be rewritten as:� x = lxO + (lx1 � cos � + lx2 � sin �) �X + (�lx1 � sin � + lx2 � cos �) � Y + lx3 � Z + � � �y = lyO + (ly1 � cos � + ly2 � sin �) �X + (�ly1 � sin � + ly2 � cos �) � Y + ly3 �Z + � � � (6)6



Figure 3: 5D interaction energy scalar �eld (Red=attraction, Blue=repulsion, Green=free movement). Theaxes con�guration is reported on the bottom left (the stretched axis corresponds to a rotational degree offreedom).Hence we provide a slider to control the rotation parameter � and at each rotation step replace ~l1 with ~l01and ~l2 with ~l02 where: ( ~l01 = ( lx1 � cos � + lx2 � sin �; ly1 � cos � + ly2 � sin �)T~l02 = ( �lx1 � sin � + lx2 � cos �; �ly1 � sin � + ly2 � cos �)T (7)In this way, the user is provided with the same intuitive ability to rotate objects as in a classical 3D userinterface.3 Hyper-Volume SplattingThis section �rst provides a working example of the Hyper-Volume splatting approach and then details thesplatting algorithm that we have implemented with the three following properties:� the use of a transfer function that highlights the basic structural features of the scalar �eld;� the use of a multiresolution hierarchical approach to speed up the drawing when is provided a userspeci�ed bound on the tolerated error;� the use of a splatting algorithm that takes advantage from texture mapping graphics hardware.3.1 Example of Hyper-Volume Splatting(5D Molecular Interaction Potential)Consider a pair of molecules, a small ligand (methanol) and a large receptor (Ecballium Elaterium TrypsinInhibitor2), of which one wants to study the possibility of docking. At this purpose one needs to understand2The Ecballium Elaterium Trypsin Inhibitor can be found in the �le 2eti.pbd available form the Protein Data Bankhttp://pdb.pdb.bnl.gov/ 7



Figure 4: 5D interaction energy scalar �eld (Red=attraction, Blue=repulsion, Green=free movement).Same view as is �gure 3 but highlighting only some of the energy components.how the interaction energy between them changes as they change relative position. In particular we regularlysample the con�guration space of the ligand translations along the x,y,z axes and rotations around the xand y axes (assuming rough symmetry of the ligand with respect to the z axis). For each sampled positionof this �ve dimensional space one gets a particular value of the interaction energy (sum of electrostaticinteraction and Van der Waals interaction components) de�ning a scalar �eld sampled over a 5D regulargrid. Figure 3 shows the direct rendering of the 5D scalar �eld highlighting in Red regions of attractingenergy, in Blue region of repulsion energy and in Green region in free movement of the ligand. The displayis performed directly by projection form 5D space to 2D space without any slicing/isocontouring stage sothat the information contained in the dataset is preserved in its globality. The axes reported on the bottomleft of the picture show how one of the degrees of freedom (a rotation) is stretched more than the others toenhance better its in
uence with respect to the overall scalar �eld structure. In this case it is clear fromthe two large red spots that correspondingly to high and low values of that degree of freedom we get moreattraction values than for intermediate values (such rotation are probably more advantageous for a dockingof the ligand with the receptor).Progressively removing all the color but the red as shown in �gure 4 one can also see how these two largered regions are connected by a narrow tunnel. Deeper understanding of the scalar �eld structure is of courseprovided by interactive navigation in the dataset structure. For example �gure 5 shows a second view ofthe dataset of �gure 3 in which the axis corresponding to the second rotational degree of freedom is alsostretched (as in the reference system on top). From this view one can see that the two large red regions arein turn divided each into two. On the left picture one can notice an interesting small site in green wherethe ligand can move along the interface with the receptor without being subject to a repulsion force. Againone can show only the attraction component (in red) and see clearly that in the central region the energyis completely repulsive (see right image). Note that this kind of check by partial color removal is necessarybecause some red spots might be hidden within the blue region.3.2 Transfer FunctionThe de�nition of a \good" transfer function is highly dependent on the type of scalar �eld displayed and thefeatures that one needs to highlight. In low dimensional cases interesting techniques have been developed tosupport the automatic selection of transfer functions which emphasize the important structures of a scalar�eld [12, 4]. In our current implementation we use the three color components to highlight regions of the �eldthat encompass values in di�erent ranges. Using the interface component in �gure 2(b) one can interactivelyselect the range of the scalar �eld values associated to each color and the relative intensity of each colorcomponent. The user clicks on one color button to select the currently modi�ed component and then usesthe sliders to determine the associated range in the scalar �eld and scale factor in luminosity. Interactively8



Figure 5: 5D interaction energy scalar �eld (Red=attraction, Blue=repulsion, Green=free movement).Same scalar �eld as in �gure 3 but from a di�erent view.the view is updated accordingly to the modi�ed parameters. In a particular the image generation is de�nedas follows. The red color component R(p) in the pixel p of the image is given by the integral:R(p) = Lr Zp+K Frdkwhere the domain of integration K is the kernel of the projection � (in 3D is the projection ray throughp), dk is the n � 2 dimensional di�erential element, Lr is the luminosity of the red component and Fr isthe scalar �eld value normalized in the (minr ;maxr) range associated to the red color component. Similarformulas can be written for the blue and green component providing the complete coloring scheme for agiven view.3.3 E�cient SplattingThe splatting algorithm is particularly simple and e�cient in the case of parallel projections since all thesplats have the same shape: they di�er only in color intensity and eventually in scale factor (see the hierar-chical representation in the next subsection). In this case the display algorithm has two main stages:1. compute the shape of the standard splat or footprint;2. draw each voxel by copying the standard splat scaled by color intensity and size.Note that we are not considering the ordering the voxels to be splatted since we do not perform occlusionbetween voxels with overlapping images.3.3.1 Splat ComputationThe input data we are displaying is a decomposition of the space in elementary volume regions or voxels. Atthe center of each voxel the scalar �eld is sampled and assumed constant within the voxel. In this framework9



(a) (b) (c)Figure 6: Standard splat footprint for di�erent axes orientations in four dimensions (a), �ve dimensions (b)and six dimensions (c).each splat is the projection of a n-dimensional cube (the voxel) of constant transparency value (the scalar�eld value) onto the 2D image space. From spline theory we get that the luminosity distribution of thesplat is a bivariate box spline [5]. This fact allows us to compute the splat luminosity distribution exactlyor to control the error of an approximated version we might use instead. In particular we observe that thesplatting algorithm applied to a volume of constant intensity is indeed an approximation of a bivariate boxspline. The level of approximation depends on what splat one uses and on the number of voxels in which thevalue is decomposed. This allows use to pursue a bootstrapping technique by using the splatting algorithmto generate a good splat to be used in the actual rendering of the scalar �eld. Note that this approach, againtransforms the problem of drawing a good splat by projecting a cube (in this case n-dimensional), into asimple reuse of the splatting algorithm. Of course in the initial splat drawing stage instead of an exact splatwe may use a simple square. To obtain an exact drawing of the initial splat we would need a square of sizeequal to one pixel (see [5]) but in practice a fairly larger one is su�cient since in the successive use of thesplat its initial footprint will be shrunk to the necessary size. Figure 6 show the splat obtained for di�erentaxes con�gurations in four, �ve and six dimensional spaces.Note also that in the case of the hierarchical approach the splats of any level in the hierarchy have exactlythe same shape. They need only be scaled in size and color intensity.3.4 Hierarchical RepresentationOne major problem that arises while dealing with multidimensional scalar �elds is that the size of thedataset grows exponentially with the dimension of the embedding space. For example, an n-dimensionalscalar �eld sampled on regular grid with k samples in each dimension one has kn samples. A regular grid inthe 6-dimensional rigid body con�guration space with only 64 samples in each direction has already 236 '68billion samples.To deal with such large datasets we adopt a 2n-tree hierarchical representation where n is the dimensionof the embedding space. We build the hierarchy in a bottom up coarsening scheme by merging at each stepgroups of 2n adjacent voxels and averaging their function values, with precomputed error bounds. In thedisplay stage we recursively visit the 2n-tree nodes in a Depth First Traversal from the coarser level andstop when the user speci�ed error bound is satis�ed (the error value is set by the user with the help of thetop slider in the interface shown in �gure 2(b)). In this way, the user is allowed to trade accuracy for speedin a fully controlled manner.3.4.1 Hierarchy Storage OverheadThere are at least two possibilities in storing the 2n-tree hierarchy: (i) store the complete 2n-tree in an array,independent from the sample values (ii) store the 2n-tree in a 2n-linked list to avoid multiple storage forneighboring voxels with equal sample value. In general it is not clear which approach is more convenient. Itcould be even better to have, instead of a 2n tree, a bin-tree where each binary division is performed along10



one of the n coordinate directions [20, 18]. Our choice to store the full 2n-tree is derived from the followingconsiderations that show how the full hierarchy storage overhead decreases as the dimension of the datasetincreases.Consider a regular grid of total size M embedded in the nD space. Assume for simplicity that the gridhas the same number m of samples in all the n directions (we have M = mn) and m = 2h for some h. Notethat the assumption made simplify the following formulas without altering the result that we shell derive.Since the coarsening stage from one level to the next in the hierarchy is based on grouping 2n adjacent cellswe have that the number of cells is reduced at each level by a factor of 2n. Overall the storage M� of thecomplete 2n-tree is: M� = hXi=0 �2h�n(2n)i = hXi=0 (2n)h�1 = hXj=0 (2n)jUsing a geometric series formula3 we have that the relative storage overhead is given by:M� �MM = (2n)h+1�1(2n�1) � (2n)h(2n)h = (2n)h+1 � 1� (2n)h (2n � 1)(2n)h (2n � 1) = (2n)h � 1(2n)h (2n � 1) < (2n)h(2n)h (2n � 1) = 1(2n � 1)The overhead due to the hierarchical representation can be bounded by a term that decreases exponen-tially with the dimension n so that the hierarchy storage overhead is very small with respect to the inputdataset especially for n > 3.3.5 Hardware AccelerationOnce the standard splat is computed we store its image in the texture map memory. Each splat is thenrendered as a 2D textured polygon. In this way we take full advantage from the hardware acceleration ofmodern graphics workstations. We can render a large number of splats quickly achieving almost interactiverates for fairly complex datasets. In our hierarchical implementation we also need to compute di�erent splatsfor di�erent levels of resolution. To perform this operation we use mipmaps so that we automatically obtainthe best scaling in size of the splat simply by drawing a larger textured polygon onto the screen.The ability to interactively view and manipulate three dimensional textures (available on high end graph-ics workstations) could also be potentially used. The general mapping � : <n ! <2 can easily be modi�edto a map � : <n ! <3 to produce hypervolume splats, which can be then be interactively explored. The fullpotential of this exploration will however be only realized when true volumetric displays become available.4 Further Enhancements and Future DirectionsBesides the coupling with classical visualization techniques like isocontouring and slicing we are also exploringthe enhancement of the hypervolume view with additional computed structural information like the scalartopology diagram a one-dimensional roadmap of the nD scalar �eld [3]. Figures 7 and 8 displays the potentialshown in section 3.1 with the scalar topology drawing enhancing the presence of high slope regions connectingcritical points of the scalar �eld. In this case we are interested in short paths of the scalar topology diagramthat connect blue regions to red regions (paths where the ligand will be attracted towards the receptor untilit is near its surface). On the bottom of �gure 8 one can see in green some regions where the receptor willstart to repell the ligand even when far from its interior (in blue). Note that in these views we show only apruned version of the scalar topology diagram on the basis of the above criterion (short paths from attractionto repulsion regions). It remains an open issue how to highlight fundamental structural feature of the scalar�eld without occluding a large portion of the displayed view. This problem may be cast into a nD embeddedgraph simpli�cation problem. We are also investigating automated colormap de�nition techniques driven bythe goal of identifying topologically interesting features.3Remember thatPki=0 xi = xk+1�1x�1 11
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Figure 7: Interaction energy of ligand-receptor pairs. Multiple views enhanced with a subgraph of the scalartopology diagram. 14



Figure 8: Interaction energy of ligand-receptor pairs. Multiple views enhanced with a subgraph of the scalartopology diagram. 15


