
The Performance of Work Stealing
in Multiprogrammed Environments

Robert D. Blumofe Dionisios Papadopoulos
Department of Computer Sciences, The University of Texas at Austinfrdb,dionisisg@cs.utexas.edu

May 28, 1998

Abstract

We study the performance of user-level thread schedulers inmultiprogrammed environments. Our
goal is a user-level thread scheduler that delivers efficient performance under multiprogramming without
any need for kernel-level resource management, such as coscheduling or process control. We show that
a non-blocking implementation of the work-stealing algorithm achieves this goal. With this implemen-
tation, the execution time of a computation running with arbitrarily many processes on arbitrarily many
processors can be modeled as a simple function of work and critical-path length. This model holds even
when the processes run on a set of processors that arbitrarily grows and shrinks over time. We observe
linear speedup whenever the number of processes is small relative to the average parallelism.

1 Introduction

As small-scale multiprocessors make their way onto desktops, the high-performance parallel applications
that run on these machines will have to live alongside other applications, such as editors and web browsers.
Similarly, users expect multiprocessor compute servers tosupport multiprogrammed work loads that include
parallel applications. Unfortunately, unless parallel applications are coscheduled [40] or subject to process
control [44], they display poor performance in such multiprogrammed environments [10, 17, 18, 19, 26].

As an alternative to coscheduling or process control, in this paper we investigate the use of dynamic,
user-level, thread scheduling in order to achieve efficientperformance under multiprogramming. We show
that a non-blocking implementation of the well-known and provably efficient “work-stealing” scheduling
algorithm [15] delivers efficient performance under multiprogramming. Moreover, we develop and evaluate
a simple performance model based on “work” and “critical-path length” that characterizes accurately the
performance of parallel applications that use this non-blocking work stealer. In fact, this performance model
is based on an analytical bound that we have proven to hold in amodel where the kernel-level scheduling is
actually performed by an adversary [9]. Thus, our model is extraordinarily robust.

We shall restrict attention to shared-memory multiprocessors, and all experiments are performed on a
Sun Ultra Enterprise 5000 with 8 167-Mhz UltraSPARC processors running Solaris 2.5.1. We shall use the
word “process” to denote a kernel-scheduled entity, and we shall assume that all processes belonging to the
same executing program can share memory and synchronize through the use of synchronization variables.
Such processes are often referred to as “light-weight processes” or “kernel threads.” We shall reserve the

This research was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Grant F30602-97-1-
0150 from the U.S. Air Force Research Laboratory. Multiprocessor computing facilities were provided through a generous donation
by Sun Microsystems, Inc.



word “thread” to denote a user-level task that is scheduled by a user-level library. The user-level library
schedules threads onto processes, and the kernel schedulesprocesses onto processors.

Our goal is to develop a scheduler for a user-level threads library that performs well under multipro-
gramming, regardless of the behavior of the kernel scheduler. Specifically, our scheduler should utilize
efficiently whatever set of processors the kernel schedulerhappens to give it, even if the kernel scheduler
gives it fewer processors than it has processes and even if that set of processors grows and shrinks over time.
Such a scheduler could be employed by a parallelizing compiler, or the runtime system for a multithreaded
language such as Cilk [14] or Java [8].

1.1 The problem with static partitioning

Before considering dynamic thread scheduling, we first review a well-known performance anomaly that
occurs when parallel programs use a static partitioning of the work [31, pages 284–285]. In the simplest
case when such a program executes, it creates some numberP of processes, where typicallyP is selected
by a command-line argument, and each process performs a1=P fraction of the total work. LetT1 denote
the work of the computation, which we define as the execution time withP = 1 process. UsingP � 1
processes, each process performsT1=P work, and if the overhead of creating and synchronizing these
processes is small compared to theT1=P work per process, then we can hope that the execution timeTP
will be given byTP = T1=P , thereby giving aspeedup of T1=TP = P . Of course, this aspiration assumes
that we have at leastP processors on which to execute the program.

In a multiprogrammed environment, we might find that the actual numberPA of processors on which
our program runs is smaller than the numberP of processes, and in this case we cannot hope to achieve a
speedup ofP . Note that we always havePA � P , because a program cannot run on more processors than
it has processes. Thus, in a multiprogrammed environment, we can aspire more reasonable to achieve an
execution time ofTP = T1=PA, thereby giving a speedup ofT1=TP = PA — that is,linear speedup —
and a (processor)utilization of T1=(PATP ) = 1:0. Unfortunately, for some problem inputs, our statically
partitioned applications do not come close to fulfilling this aspiration unless we havePA = P , effectively a
non-multiprogrammed, dedicated machine.

Figure 1(a) shows the measured speedup of several statically partitioned applications for different num-
bersP of processes. More information about these applications isgiven in Table 1, and various characteris-
tics for each of these applications, including the value ofT1, are given in Table 2. The applications are run
on a dedicated machine withPM = 8 processors, so the actual numberPA of processors used is given byPA = minfPM ; Pg = min f8; Pg. Observe that when we haveP � 8, we havePA = P , and all four appli-
cations come reasonably close to the ideal linear speedup. On the other hand, when we haveP > 8, we havePA < P , and performance drops off dramatically. In fact, the worstcase is when we are off by only 1 — that
is, whenP = 9 = PA + 1. In this case, thePA processors begin by executingP � 1 of the processes, all of
which complete in timeT1=P . Then, one of the processors executes the one remaining process, which also
completes in timeT1=P . Thus, we have an execution time ofTP = 2(T1=P ) = 2T1=(PA+1), thereby giv-
ing a speedup ofT1=TP = (PA+1)=2 � PA=2 and an utilization ofT1=(PATP ) = (PA+1)=(2PA) � 0:5
— roughly half the desired speedup and utilization.

The traditionally proposed solution to this problem is to use a numberP of processes that is significantly
greater than the numberPM of machine processors, so that we are guaranteed to haveP � PA [31, page
285]. Indeed, using extra processes can improve the load imbalance, but as we see in Figure 1(a), it does
not solve the problem. AsP grows, the overhead of creating and synchronizing the processes grows and the
work per processT1=P shrinks. For sufficiently large values ofT1, this problem will not occur, because the
time slicing divides each process into smaller pieces and fixes the load imbalance. Ultimately, however, this
observation cannot console us. We want our applications to perform well for all input problems.

2


