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Abstract

Emerging multimedia applications require real-time delivery of information over computer net-
works. Providing such timeliness guarantees in a dynamic environment needs an efficient admission
test for data transmission requests. Real-time scheduling theory has produced a number of efficient
procedures for testing schedulability. Unfortunately, most of the solutions are derived in the context
of task models where each instance of a task takes constant execution time. When applied to the
multimedia domain, these models fail to characterize bursty multimedia data precisely. As a result,
resources are used ineffectively. To address this problem and to exploit the benefits of existing solu-
tions, this paper presents two task models — Enhanced Frame Model (EFM) and MultiFrame Model
(MFM). The problem of transforming a periodic task system to an EFM task system is considered and
its computational complexity is studied. An algorithm for the transformation is derived. The MFM
model can be applied when the internal patterns of tasks are known and is shown to provide much
better utilization bounds. Experiments with real-time video transmission are performed to evaluate

usefulness of the proposed models.
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1 Introduction

The necessity to support real-time delivery of multimedia data in the dynamic environment of computer
networks makes it essential to process new data transmission requests quickly and effectively. This raises
a demand for efficient admission tests.

Real-time scheduling theory thoroughly explored schedulability testing based on resource utilization
bounds. In the famous paper on hard real-time periodic tasks [9], Liu and Layland derived bounds for the
Earliest Deadline First (EDF) scheduling discipline and fixed-priority scheduling policies. Lehoczky [8]
obtained a utilization bound for fixed-priority scheduling of task systems with arbitrary deadlines. Kuo
and Mok [6] introduced the concept of a harmonic chain to achieve a better utilization bound.

Bound-based tests can be implemented in constant time per new transmission request. This makes
them a very promising approach to be used in request admission control. However, most of the bound-
based tests were obtained for task models with constant execution time per each instance of a task. In
the real world, execution time of different task instances varies. Using the maximum value as the task
execution time preserves performance guarantees but results in inefficient resource utilization. Such task
modeling may have drastic consequences in the multimedia domain where bursty data streams are quite
common (For example, in the MPEG (Moving Picture Experts Group) standard, video information is
compressed into sequences of variable-size frames with the largest I-frame being ten times as big as the
smallest B-frame [2, 7]). If the maximum utilization factor of a task system is twice its average utilization
factor, only half of the resources can be used by the real-time task system, the other half may be just
wasted.

A number of approaches have been investigated to cope with this problem. One of them is to use
allocated but not utilized resources for scheduling non-real-time tasks [3]. Unfortunately, this solution
cannot increase the number of admitted real-time tasks. The idea behind imprecise computation [1]
is that execution time can be traded for precision of the task. Resources are allocated to guarantee
some minimal performance requirements. When overflow occurs, shorter versions of tasks are scheduled.
Although able to improve resource utilization, this scheme does not suit many applications for which
reduction of execution times is not acceptable. Another way of dealing with variable execution times is
to reduce the variation itself. Lam, Chow, and Yau [7] tried to smooth fluctuation of video streams but
the resulting maximum transmission rate was still thrice as large as the minimum rate.

The discussed approaches attempted to solve the problem of inefficient resource utilization without
addressing its source — inability of existing models to characterize tasks with variable execution time
precisely. This paper refers to such tasks as irregular tasks and presents two models for their description.
By combining these models with bound-based schedulability testing, we can obtain fast admission tests
and efficient utilization of resources.

The paper is structured as follows. Section 2 formally introduces the notion of an irregular task. A

task buffering technique is discussed and the Enhanced Frame Model is presented. Section 3 studies the
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Multiframe Model which was introduced in [11]. This model is applicable when the internal structures
of multimedia streams are known and provides much better utilization bounds. Experimental results are

given in Section 4. Conclusions are provided in Section 5.

2 Irregular Tasks and The Enhanced Frame Model

Multimedia data are bursty by nature. When they are modeled as regular tasks with constant execution
times, system resources are wasted because of imprecise data characterization. To address this problem,
we introduce a notion of irregular tasks which takes into account the fact that different instances of a
task may need different execution times. To preserve consistency with previous work [11], we refer to a

task instance as a frame.

Definition 1 An irregular periodic real-time task is a tuple (I', P, D), where I' is a set of execution
times, P is the period of the task, and D is its deadline. The execution time of each frame (instance) of

the task belongs to I,

Unless specified otherwise, we will mean an irregular task when referring to a task. We will call a
task with constant execution time a regular task.

Although fixed-priority scheduling was a starting point for this work, we do not restrict our analysis to
any specific scheduling discipline. Unless stated explicitly, obtained results do not rely on any particular
scheduling policy. The only condition imposed on the scheduling discipline is existence of a bound-based
test. Testing based on resource utilization bounds can be implemented very efficiently which makes it
particularly suitable for admission control.

The maximum utilization factor U™%" of an irregular task may be much larger than its average
utilization factor U*¥®. When the maximum utilization factor of an irregular task system does not
exceed the utilization bound, the requested performance can be guaranteed. If the average utilization
factor is larger than the bound, the employed bound-based method cannot confirm schedulability of the
system. The most interesting case happens when the bound of the scheduling policy is larger than the
average utilization factor of the task system but smaller than its maximum utilization factor. Refusing
to admit such systems ensures that no granted guarantee will be violated. On the other hand, this
solution results in low resource utilization.

Our goal is to improve utilization of resources while preserving performance guarantees. Below we
present task buffering which can be viewed as a characterization/performance negotiation technique. If
the deadline of a task is postponed, the maximum utilization factor can drop below the testing bound.
As a result, the bound-based test will recognize schedulability of the task system which was previously
considered unschedulable. However, this method has its limitations. First, deadlines cannot be extended

further than some maximum values; otherwise, the task system is not real-time and becomes schedulable
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by selecting infinite deadlines (if the average utilization is smaller than the testing bound). Second, when
deadlines are postponed, additional buffers are needed to store pending frames. Thus, one has to make
sure that sufflicient space for task buffering is always available.

When these restrictions are taken into account, our problem becomes as follows: given an unschedu-
lable irregular task system, which deadlines should be assigned to every task so that the deadlines do not
exceed the requested values, there is enough buffer space, and the system becomes schedulable?

Before presenting our solution, we want to comment on choosing new values for task deadlines. It was
shown that analysis for arbitrary postponed deadlines is much more complicated than for multiple-period
deadlines [8]. Since restricting deadlines to multiples of task periods simplifies the analysis and retains
the ability to improve resource utilization, we require each postponed deadline be equal to a multiple of
the corresponding task period.

When the deadline is postponed, irregularity of the task can be smoothed since consecutive frames
of the task are combined to form a larger frame which we refer to as an enhanced frame. Because of this
reduction of the maximum utilization factor, the task system can become schedulable. We transform
each irregular task 7" with period P and deadline D = P into an enhanced-frame task 7" with period
k- P where k is the number of consecutive frames we want to combine for the given task. The execution
time of T” is the sum of %k consecutive execution times of T'; the maximum execution time of 7/ may be
much smaller than k& times the maximum execution time of T'. The deadline for each enhanced frame is
k- P. We will call this task model the Enhanced Frame Model. A more formal and general definition of
the Enhanced Frame Model (EFM) is as follows:

Definition 2 Let (I', P, D) be an irregular periodic task. An enhanced-frame task is a tuple (I', P', D')
where T is a set of execution times of enhanced frames, P' = X(P) is a period of enhanced frames,
D" = u(D) is a deadline of each enhanced frame. We refer to A(-) as a frame-enhancement func-

tion; pu(-) is called a deadline-postponement function.

In the considered transformation of an irregular task, we use identical frame-enhancement and
deadline-postponement functions A(z) = u(z) = k-2 and I = {A*} where k is a positive integer
and A* is the maximum cumulative execution requirement of k consecutive original frames. To be con-
sistent with previous work [4], we refer to A* as an arrival bound function of the task. The arrival
bound function affects the quantitative gain from transforming frames to enhanced frames and can be
determined from constraints imposed on the task. For example, if execution requirement of the task
is characterized by (C™%" C*/P) leaky bucket model (i.e. any k successive frames may not require
more than C™%" additional execution time over the average rate C'**¢ per frame), then the arrival bound
function equals to AF = gmar 4 | Cave,

Note that depending on the position inside the enhanced frame, an original frame is guaranteed at

least one of the following delay bounds: k- P, k- P +1, ..., (2k — 1)P. For instance, if the enhanced
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frame consists of three original frames, its first frame is guaranteed a delay bound of 5P, the second one
— 4P, and the third frame — 3P.

Let us consider an architecture where the number of buffers is constant and each frame is stored in
a separate buffer.

First, we compare the EFM with the Arbitrary Deadline Model (ADM) when fixed-priority scheduling
is used. The ADM is introduced by Lehoczky [8] and generalizes the regular task model by allowing tasks
to have arbitrary deadlines. If deadlines D is a multiple of periods P and A = D/P, the utilization
bound approximates Usp = Aln % when the number of tasks grows to infinity. The number of
required buffers equals to A 4 1 per task (the extra buffer is for storing the frame being served). Since
Uap exceeds In2 (the bound for regular task systems with D = P), employing the ADM can improve
resource utilization. However, this model assumes constant execution time; in the case of bursty tasks
such as multimedia streams, the utilization still remains very low. Besides, when A grows, the ADM
bound improves slower (see Figure 1 in [8]) and is always less than 1. Whenever the maximum utilization
factor of a task system exceeds 1, applying the ADM cannot make the system schedulable no matter
how many additional buffers are provided. The EFM does not have this limitation. When the EFM
is employed, k frames are combined into an enhanced frame, and the new maximum utilization factor
becomes Ugp = S(A%/(k - P;)) where A¥ denotes the arrival bound function of task i. Increasing k
always results in reducing the maximum utilization factor. As a matter of fact, when k£ — oo, the task
system becomes schedulable since Uy approaches the average utilization which is smaller than In 2 (the
testing bound for fixed-priority scheduling of regular tasks). Since only a constant number of frame
buffers is available, k is not allowed to become arbitrary large. When the EFM is employed, 2k buffers
are necessary per task: k buffers for the enhanced frame being served, and the other k buffers for the
arriving enhanced frame (without deadline postponement, each task needs two buffers: one for the frame
being processed, and another for the arriving frame).

Taking into account that the amount of buffers is constant and that delays are not allowed to exceed

some requested values, we formalize the studied problem as follows:

Problem 1 Given an irregular task system S = {1; = (I'i, P;, Dy)|1 < i < n}, D; = P;, arrival bound
functions A¥, mazimum allowed delays d; where 1 < i < n, 2b frame buffers, and utilization bound U,

find a list (ki, ks, ..., k) such that 2k; - P; < d; for 1 <i<mn, X",k <b, and E?Zl(Afi/(ki -P)) <U.

Using a separate buffer for each frame can lead to inefficient memory utilization when frame sizes
vary a lot. Many architectures, such as ATM switches, employ a fixed-size buffer space shared by all

tasks. Below we formalize the studied problem for these configurations:

Problem 2 Given an irreqular task system S = {1; = (I'i, P;, Dy)|1 < i < n}, D; = P;, arrival bound

k

functions A?,

find a list (ky, ks, ..., ky) such that 2k;- P, < d; for 1 < i <n, X7, A% < b, and ©7_, (A% /(k;- P)) < U.
=147 =1 7

mazimum allowed delays d; where 1 <1 < n, buffer space of size b, and utilization bound U,
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We prove that both the problems are as hard as the NP-complete Knapsack problem (See Appendix
A for the definition of the Knapsack problem):

Theorem 1 Problem 1 is NP-complete.
Theorem 2 Problem 2 is NP-complete.

Proofs of the theorems are given in Appendix B and Appendix C.

Let us consider a set of video streams passing through an ATM switch. According to Theorem 2,
no polynomial algorithm (unless NP = P) exists to detect what size should be chosen for the enhanced
frame of each stream so that the requested service could be guaranteed.

Below we provide an approximation polynomial-time algorithm which solves Problem 1 and tests
schedulability of an irregular task system. As it will be shown, this algorithm is effective in practice.

The algorithm employs a list of tuples (7', F, R) where R is utilization reduction per additional frame
caused by enlarging the enhanced frame of task T" by F additional frames. The list is sorted in non-
increasing order of R; tuples with the same value of R are sorted in non-increasing order of F. Given
a task T, procedure Enlist takes into account buffer and delay limitations, generates tuples for task 7T,
and inserts these tuples into the list. Initially, enhanced frames of all tasks are selected to contain one
frame. After creating the list by running Enlist on all tasks of the system, the algorithm searches for the
first tuple (T4, I1, R1) such that Iy does not exceed the number of available buffers. If there is no such a
tuple, the algorithm claims that the task system is unschedulable. Otherwise, the enhanced frame of task
Ty is enlarged by F additional frames. This decreases the maximum utilization factor by Fy - By. Then
all tuples corresponding to Ty are updated by removing old entries from the list and running Enlist on 7T}
again. This sequence of looking for the first suitable tuple and updating the maximum utilization factor,
the enhanced-frame sizes, and the tuple list is repeated until the maximum utilization drops below the
testing bound, or the list is empty, or no buffers remain available. In the former case, the task system is
claimed to be schedulable and the algorithm returns the sizes of the enhanced frames for each task. In
other cases the algorithm suggests that the system is not schedulable.

A more formal description of the algorithm is as follows:

Algorithm 1 Schedulability Testing and Construction of Enhanced Fames

input S =A{T; = (I';, P, D;)|1 <1 < n}: drregular task system;

Af: arrival bound functions, 1 <1 < mn;
d;: mazimum allowed delays, 1 <1 < n;
b: half the number of frame buffers;

U: resource utilization bound;
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type Tuples = record
Task: integer;
AdditionalFrames: integer; {number of additional frames}
RelativeDecrease: real; {utilization reduction per additional frame}

end;

var EnhancedFrameSize: array[l...n] of integer; {numbers of frames in the enhanced frames}

Tuple: Tuples;
List: list of Tuples;

{sorted in non-increasing order of RelativeDecrease; for equal values of

RelativeDecrease, it is sorted in non-increasing order of AdditionalFrames}

UsedBuffers: integer; {half the number of used buffers}
InitialUtilization: real; {initial mazimum utilization factor of the task system}
UtilizationDecrease: real; {total reduction of the maximum utilization factor}
Task: integer;

ExtraFrames: integer,

procedure Enlist (Task: integer; List: list of Tuples);
{generate tuples for Task and insert them into List}
var CurrentSize, TestedSize: integer;
CurrentUtilization, NewUtilization: real;
NewTuple: Tuples;
begin
CurrentSize := EnhancedFrameSize[Task]; {size of the current enhanced frame}
CurrentUtilization:= A%;‘Srlfe“tSize (CurrentSize - Prask);
{mazimum utilization factor for the current enhanced frame}
TestedSize :— CurrentSize + 1;
while (TestedSize < CurrentSize + b — UsedBuffers) and (2 - TestedSize - Prask < dask) do
begin
NewUtilization := A%"Zf{edsme (TestedSize - Prask);
{mazimum utilization factor for the tested enhanced frame}
if NewUtilization < CurrentUtilization then
begin
NewTuple.Task := Task;
NewTuple.AdditionalFrames :— TestedSize — CurrentSize;

s ._ CurrentUtilization—NewUtilization .
NewTuple.RelativeDecrease := NowTuple AdditionalFrames
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insert NewTuple into List;
end;
TestedSize :— TestedSize + 1;
end;

end;

begin
for Task := 1 to n do EnhancedFrameSize|[Task] := I;
{initially, every enhanced frame consists of one frame}
InitialUtilization := X7 (A}/P);
UsedBuffers := n; {initially, 2n buffers are used}
UtilizationDecrease := 0;
List := null;
for Task := 1 to n do Enlist(Task, List);
while (UsedBuffers < b) and (UtilizationDecrease < InitialUtilization — U) do
begin {of the frame-enhancement loop}
find the first Tuple in List such that Tuple.AdditionalFrames < b — UsedBuffers;
if Tuple = null
then break; {leave the loop and notify that the system is unschedulable}
else
begin
Task := Tuple.Task;
ExtraFrames :— Tuple.AdditionalFrames;
EnhancedFrameSize[Task]| := EnhancedFrameSize|[Task]| + ExtraFrames;
UsedBuffers := UsedBuffers + ExtraFrames;
UtilizationDecrease :— UtilizationDecrease + ExtraFrames-Tuple.RelativeDecrease;
remove from List any Tuple such that Tuple.Task — Task;
Enlist (Task, List);
end;
end; {of the frame-enhancement loop}
if (UtilizationDecrease < InitialUtilization — U)
then return( “The task system is unschedulable”)

else  return( “The task system is schedulable”, EnhancedFrameSize[l .. .n]);

end.

The complexity of Algorithm 1 is O(nb*(n + b)).
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After each iteration of the frame-enhancement loop in Algorithm 1, the achieved total utilization
reduction would be the largest if the number of buffers would be exactly 2- UsedBuffers. This statement
can be proven by transforming an arbitrary set of n enhanced frames consisting of Used Buffers original
frames to match the configuration specified in EnhancedFrameSize[l...n] without increasing the
maximum utilization factor.

When Algorithm 1 claims that a task system is unschedulable, two cases can occur: List is empty,
or there is no more buffers available. In the first case, the utilization factor is larger than the utilization
bound U even after the best possible sizes were chosen for the enhanced frames. Thus, there is no solution
for Problem 1 indeed. For the second case, let Tuple be the first tuple in List. Assume that the number
of buffers equals to 20’ where b’ = Used Buffers+Tuple.AdditionalFrames. The maximum utilization
reduction is achieved by adding Tuple.AdditionalFrames into EnhancedFrameSize|Tuple.Task].
The new utilization U’ = InitialUtilization — (UtilizationDecrease + Tuple.AdditionalFrames -
Tuple.RelativeDecrease) is no larger than the least utilization achievable with 2b buffers. Hence, if
U’ > U, there is no solution for Problem 1. If U’ < U and Problem 1 has a solution, the utilization factor
for that solution Ujyjuson is at least U’. In other words, U’ < Usution < U < InitialUtilization —
UtilizationDecrease. This means that if Algorithm 1 claims that a task system is unschedulable,
it is very likely that there is no solution for the problem. When such a solution exists, its maximum

utilization factor lies between U’ and U.

3 Multiframe Task Model

The previous section introduces the task buffering technique. When applied to an irregular task system,
this method can characterize the execution requirements more precisely by using the Enhanced Frame
Model and, therefore, can achieve better resource utilization. Unfortunately, task buffering relies on
postponement of task deadlines. When current delay bounds may not be extended, this method is
not able to yield considerable improvement. This feature restricts applicability of the task buffering
technique. Besides, this solution improves utilization of one resource (processing power, network link
bandwidth) by essentially decreasing utilization of another one (buffer space). Even though memory is
not as scarce as processing power, wasting of buffer space is not a desirable side effect. The approach
we present below is free from this flaw and is based on the fact that large frames of a task occur
intermittently with smaller frames located in between. For instance, video streams encoded in the
MPEG standard consist from big I-frames followed by a number of smaller B-frames and P-frames. By
taking this internal structure of tasks into account explicitly, one can derive higher utilization bounds.
It allows us to recognize schedulability of many systems which were considered unschedulable when the
tasks were described either by the regular periodic model or by the EFM.

[11] introduces a MultiFrame task Model (MFM), studies this model when fixed-priority scheduling is
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employed, and obtains a much better utilization bound than the testing bound for the regular periodic

model. The major results of that paper are summarized below. Please see [11] for details.

Definition 3 A multiframe real-time task is a tuple (I', P) where I' is an array (C°,C',... ,CN=1)
of N > 1 execution times, and P is the minimum separation time, i.e. the ready times of two consec-
utive frames must be at least P time units apart. The execution time of the i-th frame of the task is

C((i=1) mod N) yhere i > 1. The deadline of each frame is P time units after its ready time.

For example, 77 = ((3,2),4) is a multiframe task with the minimum separation time of 4. Odd
frames have the execution time of 3 while execution of an even frame requires 2 time units.

Unlike traditional task models which assign the maximum execution time to each frame, the MFM
takes into account fluctuating execution requirements of multimedia tasks. As a result, more multimedia
tasks can be scheduled and higher resource utilization is achieved.

Below we define what it means for a multiframe task to be accumulatively monotonic:

Definition 4 An array (C°,C',...,CN=1) of execution times is said to be accumulatively mono-
tonic (AM) if 3me (0: N —1) such that Vi,je (0:N—1): E?:+T£C(km°dN) > E?;]%C(kmOdN).
A multiframe task T = ((C°,C,...,CN=Y), P) is said to be AM if its array of execution times is AM.

A frame with execution time C™ is called a peak frame of T'.

Since every multiframe task can be represented as an AM multiframe task, we assume that all
considered tasks satisfy the AM property. Without loss of generality, we also assume that the first frame
of each multimedia task is its peak frame.

The following definition introduces the notion of irregularity factors of a multiframe task and a

multiframe task system:
Definition 5 Let S = {T, = ((C?,C}1,.. .,C’ZM_l), P)|1 <i<n} be a multiframe task system.
0

== if N; > 2
An irregularity factor of task T; is defined to be r; = o iz
1 ifN;=1

r=min!_, r; is called an irregularity factor of task system S.

Let us consider fixed-priority scheduling of a multiframe task system. Because execution requirements
of higher priority tasks are described more precisely, a multiframe task has a better chance to pass the

critical instance test than an analogous regular task. This leads to a higher utilization bound:

Theorem 3 ([11]) For fized-priority scheduling of systems containing n multiframe tasks, r-n-((r"'l)%—

r

1) can be used as a utilization bound

If » = 1, the derived bound is the same as the famous n(Q% — 1) bound for regular task systems.

The larger the irregularity factor r of a multiframe task system is, the higher the utilization bound
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name Maz-1| Max-P | Maz-B Ave | Frame No. | Frame Pattern

bike.mpg 116288 | 75752 | 26184 | 34270 150 | IBBPBB

tennis.mpg | 223320 | 167200 | 50672 | 66452 150 | IBBPBB

mobile.mpg | 165352 | 68112 | 44624 | 38336 150 | IBBPBBPBBPBBPBB

canyon.mpg | 26752 | 21120 7496 | 7936 1758 | IBBPBB

jfk.mpg 65184 | 56392 | 32368 | 21905 156 | IBBPBB

Red-mpg 211680 | 222504 | 143000 | 23933 1200 | IBBBBBBBBBPBBBBB
BBBBPBBBBBBBBB

Table 1: Characteristics of 6 MPEG video clips (frame sizes are in bits)

becomes. For instance, when r = 3 and systems consist of ten tasks, the bound is 22% higher than one

for analogous regular task systems.

4 Experiments

This section quantitatively evaluates benefits of employing the proposed task models. Unless specified
otherwise, the presented results are obtained in the context of rate-monotonic fixed-priority scheduling.
We simulate real-time transmission of MPEG video streams over a network link with a fixed bandwidth
(note that our experiments can be interpreted more generally as real-time processing of MPEG video
streams in a system with some fixed processing ability). The video streams consist of periodic frames;
each frame has to be sent before the arrival of the next frame. Every MPEG stream is composed of three
types of frames (I-frame, P-frame, and B-frame) occurring with some repeating pattern. The size of an
I-frame is usually bigger than ones of P-frames. I-frames and P-frames are much larger than B-frames.
We use forty five different MPEG video clips in our experiments. Parameters of some of the streams are
shown in Table 1.

Every video stream is represented as a task. When a stream is modeled as a regular task, the period
and deadline of this task are the same as the interval between two successive frames of the stream; the
execution requirement of the regular task is equal to the size of the maximum frame in the stream divided
by the link bandwidth. When a stream is modeled as a multiframe task, the minimum separation time
equals to the gap between two successive frames of the stream; the array I' of execution times is of the
same length as the repeating pattern of the stream; each execution time in I' is equal to the maximum
size of the corresponding frame in the repeating pattern divided by the bandwidth. Patterns of the
considered video streams are such that all constructed multiframe tasks possess the AM property.

To solve the problem of the limited amount of frames in each stream, we repeat the clip over and
over again to make the stream duration sufficiently long.

In general, our simulations are performed using the following three steps:
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Figure 1: Resource utilization for the regular task model

1. Initially, there is no video streams to transmit.

2. A stream is randomly selected from the video pool, and its frame rate is randomly set to one of 24,
25, 30, 50, or 60 frames per second. Then the stream is added to the task system. Transmission

of the streams is simulated for more than 10 minutes. If no deadline is missed, Step 2 is repeated.

3. The configuration of the task system as it was before adding the last stream is reported.

Each task system is simulated for at least 10 minutes (which corresponds to 18,000 frames of a video
stream with the frame rate of 30 frames per second). This duration is long enough to detect overflow
for most of overloaded systems. However, some overloaded systems can be considered as schedulable
because they miss a frame deadline for the first time already after the simulation is stopped. Therefore,
the reported maximum load can slightly exceed the actual allowed maximum load.

The average utilization factor U*¥¢ of simulated task systems is calculated more conservatively than
implied by its definition. Instead of considering all frames of a video stream, our calculation of U**® for
each stream is based on its repeating pattern and maximum sizes of I-frames, P-frames, and B-frames.

First, we compare actual utilization reported during the simulation with utilization achieved when
the video streams are described using the regular task model and schedulability is tested based on the
n(Q% — 1) bound. Figure 1 shows that the actual average utilization factor (Average Actual) is much
larger than the average utilization factor when the schedulability test is employed (Average Bound).
The same is true for achievable maximum utilization: the actual maximum utilization factor (Maximum
Actual) is much bigger than the maximum utilization factor reachable by the bound-based method
(Maximum Bound). As the link bandwidth increases, achieved resource utilization grows. It happens
because irregularities of individual video streams are smoothed out by combining a larger amount of
streams into the task system. The main conclusion of this experiment is that using the regular task
model and the n(Q% — 1) bound leads to inefficient resource utilization.

The next experiment studies an impact of task buffering on resource utilization. When the maximum

utilization factor is larger than the testing bound, additional buffers are introduced and Algorithm 1
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Figure 2: Impact of task buffering on the average utilization factor

is applied to transform the considered system of regular tasks to a system of EFM tasks. The number
of frames in an enhanced frame is not allowed to exceed the length of the repeating pattern of the
corresponding video stream. The execution time of each enhanced frame is calculated based on the re-
peating pattern and maximum execution times of I-frames, P-frames, and B-frames. The link bandwidth
is assumed to be 100 Mb/s. Figure 2 shows achievable average utilization factors as functions of the
amount of additional buffers. The solid lines represent the results for the rate-monotonic scheduler and
n(2'/™ — 1) testing bound. The dashed lines display utilization factors for the EDF scheduler and its
testing bound equal to 1. For each scheduler, we provide two utilization factors: actual (reported by our
simulations) and calculated (based on parameters of the enhanced frames). As one can see, calculated
utilization approaches the corresponding testing bound when the number of additional buffers increases.
The actual utilization factors fall below calculated one because of imprecise task characterization: many
enhanced frames of a video stream are smaller than its maximum enhanced frame. The experiment
demonstrates that the more buffers are added, the more video streams can be scheduled, i.e. the more
beneficial the transformation to the EMF system becomes.

Figure 3 compares the maximum utilization factors for different task models. The regular model is
used with association with n(Q% — 1) bound. Deadlines for the ADM are selected to be 3 times as large
as the periods of the corresponding tasks. The MFM uses r = 4 as the irregularity factor of task systems.
The EFM limits the size of each enhanced frame to two original frames. The experiment shows that the
EFM outperforms the other models and is able to provide the maximum utilization factor higher than
1.

Our last experiment investigates applying the task buffering technique to the MultiFrame Model
(i.e. transforming MFM task systems to EFM systems). Once again, the link bandwidth is assumed
to be 100 Mb/s, and sizes of enhanced frames are limited to two original frames. Figure 4 presents the

maximum achieved utilization as a function of the irregularity factor of the task system. The numbers to
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Figure 3: Comparison of the maximum utilization factors achieved by different task models
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Figure 4: Combining the MFM and the EFM models

the right from each curve show ratios of the maximum utilization factor of original frames to the maximum
utilization factor of enhanced frames. The curve with the ratio of 1.0 corresponds to data from Table 1
in [11]. This experiment demonstrates that combining the MFM (explicitly considering the internal
structure of multimedia tasks) and the EFM (employing task buffering and deadline postponement) can
drastically improve resource utilization.

Even though the proposed models allow us to achieve high maximum utilization factors U™ > 1

and considerably increase the average utilization, the latter certainly cannot exceed 100%, i.e. U*¥¢ < 1.

5 Conclusion

Efficiency of bound-based schedulability tests makes them a very promising approach to be used for
securing performance guarantees in emerging real-time multimedia applications. Unfortunately, most of
the existing tests are derived for task models which assume constant execution time for every instance

of a task. When applied to the multimedia domain, these models fail to characterize bursty multimedia
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data precisely. As a result, employing these schedulability tests leads to inefficient resource utilization.

This paper presented a notion of irregular tasks which takes into account the fact that different
instances of a task may need different execution times. Two modeling techniques — Enhanced Frame
Model (EFM) and MultiFrame Model (MFM) — were discussed and combined for analyzing the schedu-
lability of irregular tasks. A precise EFM characterization of a task system can be obtained by applying
task buffering. This method can greatly improve resource utilization but is applicable only if some task
deadlines can be postponed and additional buffer space is available. It was proven that the problem
of transforming a periodic task system to an enhanced-frame task system is NP-complete. An effective
heuristic polynomial-time algorithm for such transformations was derived.

The MFM model can be used for describing tasks which have a repeating pattern of execution
requirements, e.g. for characterizing MPEG video streams. It was shown that employing the MFM can
yield very high utilization bounds.

Experiments with real-time video transmission confirmed that using the proposed task models can

drastically improve resource utilization in multimedia systems.
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Appendix

A Definition of the Knapsack problem

Problem 3 (Knapsack) Given a finite set U, a “size” s(u) € ZT and a “value” v(u) € Zt for each
u € U, and positive integers B and K, is there a subset U' C U such that X cprs(u) < B and such that
EueU/v(u) > K*¥ [5]

B Proof of Theorem 1

Problem 1 is in NP since we can guess n integer numbers k;, 1 < ¢ < n, and test whether X7 _ k; <b
and Y, (A% /(k; - P;)) < U in linear time of n.

Problem 1 is NP-hard. We can polynomially reduce the NP-complete Knapsack problem to Prob-
lem 1.

We transform each « from an instance of the Knapsack problem into an irregular task 7' = (I', P, D)
such that D = P, the (s(u) 4+ 1)-th frame of the task has execution time 1, all frames after both
(s(u) + 1)-th and B-th frames have execution time 0, and all other frames have execution time C"** =
14+ (s(u) +1)-v(u)- P/M where M and P are as specified below. T" is an irregular task. Its maximum
utilization factor is C™% /P. Its average utilization equals to 0. Figure 5 illustrates execution times of
T for three different cases. Note that there is only one way to reduce the maximum utilization factor of
T: (s(u) + 1) frames have to be combined into one enhanced frame. This reduces the utilization factor
by C™% /P — (s(u)-C™+1)/((s(u)+1)-P) = (C"™*" —1)/((s(u) +1)- P) = v(u)/M. For the resulting
irregular task system, we choose b = B + n and select M and P such that U = X(C™*/P) — K /M and
Ccmer /P < 1. For each task T, either (s(u) + 1) frames are combined into an enhanced frame or the
enhanced frame remains to consist of one frame. Thus, k is either 1 or s(u) + 1. Corresponding values
of the arrival bound function are A' = C™* and A*(W+!1 = s(u) - C™** 4 1.

If Problem 1 can be solved for the constructed irregular task system, we have a number k for each
task 7' such that Xk < b, and YA*/(k - P) < U. For each task T, k is either 1 or s(u) + 1. It
means that we have a set U’ of u such that g1 + Syepr(s(u) + 1) < b, which implies X, eprs(u) <
B, and SAF/(k - P) = S,gu:C™* /P + Syer((s(u) - C™* 4+ 1)/((s(u) + 1) - P)) < U. This means
YugunC™ [P+, e (C™ [P —v(u) /M) < X(C™"/P)— K /M. Therefore, we have X, ¢ (v(u)) > K.
This is exactly a solution for the original Knapsack problem.

Thus, Problem 1 is NP-complete. QED

C Proof of Theorem 2

This proof is similar to the proof of Theorem 1 and is done by reducing the Knapsack problem to
Problem 2.



C PROOF OF THEOREM 2 17

o §

.
Cmaxlz s(u) B
1 r |
1 2 s(u)

" B
1AL |
1 2 B s(u)

Figure 5: Three possible structures of irregular tasks

Problem 2 is in NP since we can guess n integer numbers k;, 1 < ¢ < n, and test whether E?ZlAfi <b
and Y, (A% /(k; - P;)) < U in linear time of n.

Problem 2 is NP-hard. We can polynomially reduce the NP-complete Knapsack problem to Prob-
lem 2.

We transform each u from an instance of the Knapsack problem to an irregular task 7' = (I', P, D)
such that D = P and the task has only two kinds of execution times C™* = 2P - v(u)/M + s(u) and
C™" = s(u) where M and P are as specified below. The task switch between these two execution
times frame by frame. T is an irregular task. Its maximum utilization factor is C™%*/P. Its average
utilization is (C™%* 4 C™i")/(2P). There is only one way to reduce the maximum utilization factor
of T: two frames have to be combined into one enhanced frame. This reduces the utilization factor
by C™e /P — (C™  C™) /(2P) = v(u)/M. For the constructed irregular task system, we choose
b= B+XC™% and select M and P such that U = X(C™**/P) — K/M and C™** /P < 1. For each task
T, either two frames are combined into an enhanced frame or the enhanced frame remains to consist
of one frame. Thus, k equals to either 1 or 2. Corresponding values of the arrival bound function are
Al = ™9 and A = O™ 4 O,

If there is a solution for Problem 2, we have a set U’ of u for which some corresponding tasks
may have two-frame enhanced frames while the others have one-frame enhanced frames. We have:
YAR = YugrC™ 4 Y (CT + C™ny < b and X(A%/ (k- P)) = YugrnC™ [P+ Yyer ((C™ 4
C™)/(2P)) < U. The first inequality can be reduced to XC™ 4%, c(nC™" < B+ 0™ and further
to X,ers(u) < B. The second inequality can be reduced to S(C™% / P) =3, ¢y ((C™% — O™ /(2P)) <
Y(Cmer [P)— K /M and further to =X, ¢ (v(u)/M) < —K /M which can be written as ¥, crrv(u) > K.
This is exactly a solution for the original Knapsack problem.

Therefore, Problem 2 is NP-complete. QED



