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Abstract

Our concerns are data authenticity and integrity for delay-sensitive packet flows. For an
individual message (packet), these concerns can be addressed by one of several popular digital
signature schemes. However, these schemes are not fast enough for signing/verifying packets
individually for delay-sensitive flows, such as packet video. Furthermore, for a multicasted
flow, the intended receivers generally get different subsequences of packets in the flow. Existing
techniques that depend upon reliable flow delivery cannot be used.

In this paper, we first present and compare chaining techniques for signing/verifying mul-
tiple packets using a single signing/verification operation. We then present flow signing and
verification procedures based upon a tree chaining technique. Since a single signing/verification
operation is amortized over many packets, these procedures improve signing and verification
rates by 1-2 orders of magnitude compared to the approach of signing/verifying packets individ-
ually. Our procedures do not depend upon reliable delivery of packets, provide delay-bounded
signing, and are thus suitable for delay-sensitive flows and multicast applications.

To further improve our procedures, we propose several extensions to the Feige-Fiat-Shamir
digital signature scheme to speed up both the signing and verification operations, as well as to
allow “adjustable verification.” The extended scheme, called eFFS, is compared to four other
digital signature schemes (RSA, DSA, ElGamal, Rabin) on the same computing platform. We
compare their signing and verification times, as well as key and signature sizes. We observe that
(i) the signing and verification operations of eFFS are highly efficient compared to the other
schemes, (ii) eFFS allows a tradeoff between memory and signing/verification time, and (iii)
eFFS allows adjustable and incremental verification by receivers.

*Research sponsored by Texas Advanced Research Program grant no. 003658-063.



1 Introduction

Data confidentiality, integrity, and authenticity are basic concerns of securing data delivery over an
insecure network, such as the Internet. Data confidentiality means that only authorized receivers
will get the data; data authenticity, an authorized receiver can verify the identity of the data’s
source; data integrity, an authorized receiver can verify that received data have not been modified.!

Most investigations on securing data delivery over packet networks have focused on unicast
delivery of data sent as independent packets. Exceptions include recent papers on scalable secure
multicasting [1, 13, 20] and a flow-based approach to datagram security [14]. All of these papers
are mainly concerned with data confidentiality.

In this paper, our concerns are data authenticity and integrity for delay-sensitive packet flows,
particularly flows to be delivered to large groups of receivers. For an individual message (packet),
these concerns can be addressed by one of many available digital signature schemes [6, 15, 17, 19].
However, these schemes are not fast enough for signing/verifying packets individually for delay-
sensitive flows, such as packet video.

In the Internet, multicast has been used successfully to provide an efficient, best-effort delivery
service to large groups [2]. Consider a packet flow multicasted to a group of receivers. A consequence
of best-effort delivery is that many receivers will not receive all of the packets in the multicasted
flow. Furthermore, many multicast applications allow receivers to have widely varying capabilities
(e.g., to receive layered video and audio transmissions) or needs (e.g., to receive different stock
quotes, news, etc.). Consequently, receivers get different subsequences of packets from the same
multicasted flow.

1.1 Existing techniques for signing flows

Conceptually, a digital signature scheme is defined by functions for key generation, signing, and
verification. The signer (sender) uses the key generation function to create a pair of keys, a
signing key, kg, and a verification key, k,. The signer keeps the signing key private, and makes the
verification key publicly known to all verifiers (receivers).?

To sign a message m using signing key ks, the signer calls the signing function which returns
the signature of message m. The signer then sends the signed message, consisting of message m
and its signature, to verifiers. Having received the signed message, a verifier calls the verification
function with key k,. If the verification function returns true, then the verifier concludes that the
signer did sign the message and the message has not been altered. Moreover, the signer cannot
deny having signed the message (nonrepudiation).

In practice, a message digest function, such as MD5 [18], is first applied to the message to
generate a fixed-size message digest which is independent of message size. Signing a message
means signing the digest of the message. (MD5 message digests are 128 bits long.)

A flow is a sequence of packets characterized by some attribute [16, 21]. Packets in a flow may
be obtained from segmenting the bit stream of digitized video, digitized audio, or a large file. Or
they may be related data items, such as stock quotes, news, etc., generated by the same source.

It is easy and efficient to sign an all-or-nothing flow, that is, a flow whose entire content is
needed before any part of it can be used, e.g., a long file. In this case, the signer simply generates
a message digest of the entire flow (file) and sign the message digest.

Most applications, however, create flows that are not all-or-nothing, i.e., a receiver needs to
verify individual packets and use them before the entire flow is received. For these flows, a straight-

'In the balance of this paper, we use “receiver” to mean “authorized receiver” unless otherwise stated.
2The signing and verification keys are also referred to as private and public keys, respectively.



forward solution is to sign each packet individually and each packet is verified individually by
receivers. This solution is called the sign-each approach.

The sign-each approach is computationally expensive. The signing rate and verification rate
are at most 1/(Tq(l) + Tsign) and 1/(T4(l) + Tverify) packets per second, respectively, where Ty(1)
is the time to compute the message digest of an [-byte packet, T;g, is signing time, and Tyepify
is verification time for the message digest of a packet. The signing and verification rates® of two
widely used digital signature schemes, RSA [19] and DSA [15], on a Pentium II 300 MHz machine,
are given in Table 1. The signing and verification rates with 100% processor time of the machine
used for signing/verification are in Table 1(a). If a slower machine is used, or only a fraction of
processor time is available for signing/verification (e.g., a receiver machine has only 20% processor
time for verification because the other 80% is needed for receiving and processing packets), then the
rates should be decreased proportionally. The signing and verification rates using 20% processor
time of the Pentium II machine are in Table 1(b).

packet size Signing rate Verification rate
(bytes) | 512-bit RSA  512-bit DSA | 512-bit RSA 512-bit DSA
16 79.4 178 2550 129
512 78.8 176 2180 128
1024 78.7 175 1960 127
2048 78.0 172 1620 126

(a) 100 % processor time

packet size Signing rate Verification rate
(bytes) | 512-bit RSA 512-bit DSA | 512-bit RSA  512-bit DSA
16 15.9 35.6 510 25.8
512 15.8 35.2 436 25.6
1024 15.7 35.0 392 254
2048 15.6 344 324 25.2

(b) 20 % processor time

Table 1: Signing and verification rates (packets per second).

The signing rate is not important for a non-real-time generated flow, i.e., a flow whose entire
content is known in advance (such as stored video). This is because packets in the flow can be
signed in advance. For a real-time generated flow, however, the signing rate must be higher than
the packet generation rate of the flow. Furthermore, for delay-sensitive flows, real-time generated or
not, the verification rate is important. From Table 1, we see that the signing and verification rates of
the sign-each approach, using either RSA or DSA, are probably inadequate for many applications.

Two techniques were proposed for signing digital streams in [7] which, at first glance, may be
used for signing packet flows. To describe the technique in [7] for signing a non-real-time generated
flow, consider a sequence of m packets. The sender first computes message digest D,, of packet m
(the last packet) and concatenates packet m — 1 and D, to form augmented packet m — 1. Then,
for « = 1,...,m — 2, the sender computes message digest D,, ; of augmented packet m — ¢, and
concatenates packet m —i—1 and D,,_; to form augmented packet m —i — 1. Message digest Dy of
augmented packet 1 is computed and signed. In this manner, only one expensive signing/verification
operation is needed for the sequence of m packets. However, a necessary condition for using the

3The signing and verification rates in Table 1 are rates for signing and verifying 128-bit message digests of packets
except for 16-byte packets which were signed directly).
t for 16-byt kets which igned directl



above technique is the following get-all-before requirement: To verify packet ¢ in the sequence, a
receiver must have received every packet from the beginning of the sequence.

For a real-time generated flow, a similar technique is suggested in [7] with the same get-all-
before requirement. For a sequence of m packets, only one expensive signing/verification operation
is needed, plus one inexpensive one-time signature signing/verification for each packet in the se-
quence. However, since one-time signatures and keys are very large, this technique has a large
communication overhead (around 1000 bytes per packet) [9, 10].

The get-all-before requirement of both techniques in [7] is too strong for practical Internet
applications. Reliable packet delivery is not used by many applications for flows and multicasts.
For example, reliable delivery is generally not used for video and audio flows due to the extra delays
associated with retransmissions; either losses are tolerated or forward error correction techniques
are used instead.

For large-scale multicast applications, reliable delivery of multicast packets is a difficult problem
[5]. Moreover, even if reliable multicasting is available, receivers with different needs/capabilities
may choose to get different subsequences of packets in a multicasted flow. In short, the get-all-before
requirement is not satisfied.

1.2 Characteristics and requirements

We have observed various characteristics in the delivery of flows and multicasts by an unreliable
packet network, such as the Internet. They are summarized below:

e Each packet in a flow may be used as soon as it is received.

e A receiver may get only a subsequence of the packets in a flow. Different receivers may get
different subsequences.

e Delay sensitive flows require fast processing at a sender as well as receivers. Some flows are
generated in real time by their senders.

e For a multicasted flow, many receivers are limited in resources (processing capacity, memory,
communication bandwidth, etc.) compared to the sender, which is typically a dedicated server
machine. In some environments, both senders and receivers may be limited in resources, e.g.,
mobile computers using wireless communications.

e Receivers may have widely different capabilities/resources. For example, receivers may be
personal digital assistants, notebook computers, or desktop machines. Moreover, the resources
available to a receiver for verifying signatures may vary over time.

Given the above characteristics, we design procedures for signing and verifying flows in Section 2
as well as a digital signature scheme in Section 3 to meet the the following requirements:

e The signing procedure is efficient and delay-bounded (for real-time generated flows).

e The verification procedure is highly efficient (since many receivers have limited resources).
e Packets in a flow are individually verifiable.

e Packet signatures are small (i.e., small communication overhead).

o Adjustable and incremental verification: The verification procedure is adjustable to the
amount of resources a receiver has. It allows a receiver/verifier to verify a message at a
lower security level using less resources, and later increase the security level by using more
resources (e.g., if the message is important).



1.3 Contributions of this paper

In Section 2, we first describe and compare two chaining techniques (star and tree) for sign-
ing/verifying multiple packets using a single signing/verification operation (without the get-all-
before requirement in [7]). We then present flow signing and verification procedures based upon
the tree chaining technique. Since a single signing/verification operation is amortized over many
packets, these procedures improve signing and verification rates by 1-2 orders of magnitude com-
pared to the sign-each approach. The signing procedure also provides delay-bounded signing. Thus
the procedures can be used for delay-sensitive flows.

In Section 3, we turn our attention to improving the signing and verification operations in the
procedures. Specifically, we present several extensions to the Feige-Fiat-Shamir digital signature
scheme to speed up both signing and verification as well as to allow adjustable and incremental
verification. In Section 4, the extended Feige-Fiat-Shamir (eFFS) scheme is compared to four well-
known signature schemes [6, 15, 17, 19]. We compare their signing and verification times, as well
as key and signature sizes. (Such a comprehensive performance comparison of digital signature
schemes on the same computing platform is not available in the literature.) We observe that (i)
the signing and verification operations of eFF'S are highly efficient compared to the other schemes,
(ii) eFFS allows a tradeoff between memory and signing/verification time, and (iii) eFF'S allows
adjustable and incremental verification by receivers.

2 How to Sign a Flow

To digitally sign/verify delay-sensitive flows, the sign-each approach is computationally too ex-
pensive for many applications, particularly those applications that generate packet flows in real
time.

As an alternative to the sign-each approach, we present two chaining techniques (star and tree)
for providing authenticity to a group of packets, called a block, using a single signing operation.
The basic idea is to compute a block digest which is signed. In order to make packets individually
verifiable, each packet needs to carry its own authentication information consisting the signed block
digest (block signature) together with some chaining information as proof that the packet is in the
block.

2.1 Star chaining

Consider m packets that constitute a block. In star chaining, the block digest is simply the message
digest of the m packet digests (listed sequentially). Let h(-) denote the message digest function being
used (e.g., MD5). Consider, for example, a block of eight packets with packet digests Dy, ..., Dsg.
The block digest is D1_g = h(D1, ..., Dg), and the block signature, sign(Dj_s), is the block digest
signed with some digital signature scheme (such as RSA, DSA or eFFS).

The relationship between the packet digests and the block digest can be represented by a one-
level rooted tree, called an authentication star. Figure 1 illustrates an authentication star for eight
packets, with packet digests at leaf nodes, and the block digest at the root.

For packets to be individually verifiable, each packet needs its own authentication information.
Such authentication information, called packet signature, consists of the block signature, the packet
position in the block, and the digests of all other packets in the block. (We use the term chaining
overhead to refer to all information in a packet signature except the block signature.)

Suppose the third packet in the above example is received. Its authenticity can be individually
verified as follows. The verifier computes the digest Dj of the packet received, and then the
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Figure 1: Star chaining.

block digest D]_g = h(D1, D2, D§, Dy, ..., Dg), where Dy, Dy, Dy, ..., Dg are carried in the packet
signature. The verifier then calls the verification operation to verify D] g, i.e., to determine whether
D! _g is equal to block digest D;_g in block signature sign(D;_s). The packet is verified if the
verification operation returns true, i.e., D]_g = Di_g.

Suppose the third packet is the first in the block to arrive and its authenticity has been verified.
Afterwards, the verifier knows every node in the authentication star, i.e., all nodes in the authenti-
cation star are verified and can be cached. With caching, when another packet in the block arrives
later, say the sixth packet, the verifier only needs to compute the digest D of the packet received
and compare it to the verified node Dg in the authentication star. If they are equal, the packet is
verified. By caching verified nodes, the verifier saves one message digest function call for each of
the other packets in the same block.

2.2 Tree chaining

Tree chaining subsumes star chaining as a special case. With tree chaining, the block digest is
computed as the root node of an authentication tree.* Consider, for example, a block of eight
packets with packet digests Dj,...,Dg. The packet digests are the leaf nodes of a degree two
(binary) authentication tree, with other nodes of the tree computed as message digests of their
children, as shown in Figure 2. For example, the parent of the leaves Dy and Dj is D12 = h(D1, D2)
where h(-) is the message digest function being used. The root is the block digest, with the block
signature being the signed block digest.

@ D1-2 O D3-4 %DS 6 %
D2 D7
Figure 2: Tree chaining technique.

For a packet to be individually verifiable, each packet needs to carry its own authentication

“Tree chaining was first presented in [11]. Any rooted tree can be used as an authentication tree with packet
digests at leaf nodes and the block digest at the root. In particular, there is no need to use a balanced tree.



information (packet signature). In tree chaining, a packet signature consists of the block signature,
the packet position in the block, and the siblings of each node in the packet’s path to the root.
(Again we use the term chaining overhead to denote all information in a packet signature except
the block signature.)

To verify a packet individually, a verifier needs to verify its path to the root. Counsider, for
example, the dashed path in Figure 2 for the third packet. Each node in the path needs to be
verified. A verifier computes the digest Dj of the received packet, and then each of its ancestors in
the tree. That is, D 4 = h(Dj,Dy), D} 4 = h(D1-2,D% ), and D} ¢ = h(D]_4, D5_g), where
Dy,D; o and Ds_g are carried in the packet signature. The verifier then calls the verification
operation to determine whether D] g is equal to block digest D;_g in block signature sign(D1_s).
The packet is verified if the verification operation returns true, i.e., D]_g = D1_g.

Suppose the third packet is the first in the block to arrive. After verifying it, the verifier
knows the following nodes® in the authentication tree: Ds, D4, Di_s, D3_4, D1_4,D5_g and the
block digest D;_g. These are verified nodes which can be cached. By caching verified nodes, the
verifier only needs to compute each node in the authentication tree at most once.

For example, after verifying the third packet, to verify the sixth packet which arrives later,
the verifier computes the digest of the packet received Dy, its parent D o = h(Ds, Df), and its
grandparent Df_¢ = h(D{_g,D7_g). If D{_g is equal to the cached node Dj_g, the sixth packet is
verified.

2.3 Performance comparison of chaining techniques

We performed experiments on a Pentium II 300 MHz machine running Linux, and compared star
and tree chaining. We used MD5 as the message digest function [18] for generating 128-bit message
digests. Tables 2 and 3 show the MD5 computation time for different input sizes. Note that the
MD5 computation time is a step function in input size with a step size of 56 bytes. However, for a
large input (1024 bytes or more) the MD5 computation time can be regarded as a linear function
in input size.

input size (bytes) 8 16 24 32 40 48 56 64
MD5 time (ms) 0.008 | 0.008 | 0.009 | 0.009 | 0.009 | 0.009 | 0.014 | 0.014
input size (bytes) 72 80 88 9 | 104 | 112 | 120 | 128
MD5 time (ms) 0.014 | 0.015 | 0.014 | 0.015 | 0.015 | 0.015 | 0.020 | 0.020

Table 2: MD5 computation time (ms) for small input size.

input size (bytes) 128 256 512 | 1024 | 2048 | 4096 | 8192
MD5 time (ms) 0.020 | 0.032 | 0.056 | 0.104 | 0.201 | 0.395 | 0.781

Table 3: MD5 computation time (ms) for large input size.

For each chaining technique, an authentication tree is first built for a block of packets,’ i.e.,
each node is computed as the message digest of its children. The time to build an authentication
tree (excluding time to compute packet digests) is called the tree build time. The block signature
is then obtained by signing the block digest at the root. After that, the packet signature of each
packet is built from the authentication tree and the block signature. The time to build a packet

®Some are carried in the packet signature and the others have been computed.
SWe will use “tree” instead of “tree/star” since star chaining is a special case of tree chaining.



signature is called packet signature build time. The chaining time for a block at a signer is the sum
of tree build time and packet signature build time for all packets in the block (excluding signing
time of the block digest). Table 4 shows the chaining time for a block of packets at a signer.

Note that the total signing time for all packets in a block is the block’s chaining time plus
the signing time of the block digest, which is 12.7 ms using 512-bit RSA and 5.6 ms using 512-bit
DSA. Consider a block of 16 packets. From Table 4, the chaining time is 0.214 ms for a degree two
authentication tree. The total signing time is 0.214 + 12.7 = 12.9 ms using 512-bit RSA. Thus the
average signing time for one packet is 12.9/16 = 0.81 ms, which is more than 15 times smaller than
one 512-bit RSA signing operation.

To verify packets in a block, an authentication tree is built from packet signatures as packets
arrive. The chaining time for a block at a verifier is the sum of tree build time and time to verify
chaining information in the packet signature of every packet in the block (excluding verification
time of the block signature). The chaining time for a block at a verifier with caching of verified
nodes is shown in Table 5. For comparison, the chaining time for a block at a verifier without
caching of verified nodes is shown in Table 6.

The total verification time for all packets in a block is the block’s chaining time plus the
verification time of the block signature, which is 0.40 ms using 512-bit RSA and 7.6 ms using 512-
bit DSA. Consider a block of 16 packets. From Table 5, the chaining time is 0.241 ms for a degree
two authentication tree. The total verification time is 0.241 + 0.40 = 0.64 ms using 512-bit RSA.
Thus the average verification time for one packet is 0.64/16 = 0.04 ms, which is 10 times smaller
than one 512-bit RSA verification operation.

block size (number of packets)
2 4 8 16 32 64 128
star 0.014 | 0.022 | 0.034 | 0.063 | 0.137 | 0.376 | 1.283
tree degree 2 | 0.016 | 0.043 | 0.100 | 0.214 | 0.445 | 0.912 | 1.852
tree degree 3 | 0.016 | 0.033 | 0.068 | 0.140 | 0.285 | 0.581 | 1.185
tree degree 4 | 0.016 | 0.028 | 0.068 | 0.133 | 0.285 | 0.573 | 1.174
tree degree 5 | 0.016 | 0.028 | 0.060 | 0.124 | 0.256 | 0.527 | 1.072
tree degree 6 | 0.016 | 0.028 | 0.057 | 0.117 | 0.248 | 0.504 | 1.024
tree degree 7 | 0.016 | 0.028 | 0.060 | 0.119 | 0.245 | 0.495 | 1.012
tree degree 8 | 0.016 | 0.028 | 0.058 | 0.131 | 0.262 | 0.531 | 1.098

Table 4: Chaining time (ms) for a block at a signer.

block size (number of packets)
2 4 8 16 32 64 128
star 0.014 | 0.021 | 0.030 | 0.049 | 0.085 | 0.158 | 0.305
tree degree 2 | 0.016 | 0.047 | 0.109 | 0.241 | 0.499 | 1.036 | 2.153
tree degree 3 | 0.016 | 0.035 | 0.072 | 0.150 | 0.307 | 0.631 | 1.312
tree degree 4 | 0.016 | 0.026 | 0.070 | 0.133 | 0.291 | 0.584 | 1.236
tree degree 5 | 0.016 | 0.026 | 0.058 | 0.120 | 0.251 | 0.520 | 1.072
tree degree 6 | 0.016 | 0.026 | 0.054 | 0.104 | 0.226 | 0.473 | 0.980
tree degree 7 | 0.016 | 0.026 | 0.053 | 0.105 | 0.213 | 0.439 | 0.926
tree degree 8 | 0.016 | 0.026 | 0.044 | 0.110 | 0.221 | 0.440 | 0.963

Table 5: Chaining time (ms) for a block at a verifier (with caching of verified nodes).



block size (number of packets)
2 4 8 16 32 64 128
star 0.028 | 0.074 | 0.198 | 0.600 | 1.998 | 7.158 | 26.996
tree degree 2 | 0.026 | 0.100 | 0.298 | 0.789 | 1.958 | 4.690 | 10.914
tree degree 3 | 0.026 | 0.080 | 0.213 | 0.570 | 1.380 | 3.270 | 7.668
tree degree 4 | 0.026 | 0.076 | 0.250 | 0.594 | 1.576 | 3.530 | 8.634
tree degree 5 | 0.026 | 0.076 | 0.231 | 0.579 | 1.412 | 3.416 | 7.502
tree degree 6 | 0.026 | 0.076 | 0.205 | 0.569 | 1.282 | 3.276 | 7.368
tree degree 7 | 0.026 | 0.076 | 0.197 | 0.562 | 1.296 | 3.070 | 7.326
tree degree 8 | 0.026 | 0.076 | 0.212 | 0.655 | 1.542 | 3.354 | 8.586

Table 6: Chaining time (ms) for a block at a verifier (without caching of verified nodes).

For each chaining technique, a packet signature has two parts, the block signature and the
chaining overhead. In general if a tree is not balanced and full, the chaining overhead sizes of
different packets are different. Table 7 shows the average chaining overhead size per packet. The
size of the block signature is not included in Table 7 since it depends on which signature scheme is
used (e.g., the block signature is 64 bytes for 512-bit RSA, and 40 bytes for 512-bit DSA).

block size (number of packets)

2 4 8 16 32 64 128
star 17 49 113 241 497 | 1009 | 2033
tree degree 2 18 35 52 69 86 103 120
tree degree 3 18 42 63 87 107 128 151
tree degree 4 18 50 78 99 130 148 180
tree degree 5 18 50 90 118 147 179 197
tree degree 6 18 50 94 142 159 204 232
tree degree 7 18 50 102 152 183 219 264
tree degree 8 18 50 114 172 204 227 290

Table 7: Average chaining overhead size (bytes) per packet.

From Table 4, note that for any block size smaller than or equal to 64 packets, star chaining
takes less time at a signer than tree chaining (degrees two to eight).” However, for a larger block
size, star chaining takes more time at a signer than tree chaining, because the chaining time for a
star is O(m?) and the chaining time for a tree is O(m log(m)) where m denotes block size.

Table 5 shows that star chaining takes less time at a verifier than tree chaining for all block
sizes.

From Table 7, note that the chaining overhead of star chaining is much greater than tree
chaining for block sizes larger than 8. If a small communication overhead is important, packet
signature sizes should be reduced. We recommend the use of degree two tree chaining which
requires the smallest chaining overhead. (Any improvement in chaining time becomes insignificant
if the signature scheme being used has a signing/verification time much larger than the chaining
time. See Table 8 and 9 in Section 2.4.)

"In Tables 4-6, the increases in chaining time from degree 7 to 8, can be explained by the fact that MD5 computation
time is a step function, and there is a step change in input size from degree 7 to 8.



2.4 Flow signing and verification procedures

A flow is signed by partitioning it into blocks of packets, with each block signed using tree chain-
ing. For a non-real-time generated flow, blocks are of the same size m, chosen to be a power of
the authentication tree degree d. The flow signing procedure, flowsign(m, d), for a non-real-time
generated flow is shown in Figure 3.

procedure flowsign(m, d)
for each block of m packets, Pi,..., Py,
compute the digest of each packet;
build a degree d authentication tree for the packets;
let root be the block digest (i.e., the tree root);
compute the block signature sign(root) by signing root;
for each packet P; in the block, build its packet signature:
let p be its path to root;
its signature consists of the block signature sign(root),
siblings of each node in p, and the packet position;
end
end

Figure 3: Flow signing procedure for non-real-time generated flows.

For a real-time generated flow, the packet generation rate is time-varying for many applications,
such as compressed video and voice-activated audio. For these applications, partitioning the flow
into fixed size blocks may lead to an unpredictable (perhaps unbounded) signing delay. Instead,
the flow is partitioned by fixed time periods, and packets generated in the same time period are
grouped into a block (see Figure 4). The flow signing procedure, flowsignRT(7T', d), for a real-time
generated flow, where T is the time period and d is the authentication tree degree, is shown in
Figure 5.

chaingmy ) + Tsign chaingm, ) + Tsign

—_— - period T——— > ——— period T ——

> time

m4 packets m-, packets
Figure 4: Signing a real-time generated flow.

For both real-time and non-real-time generated flows, the flow verification procedure, shown in
Figure 6, is the same. For the first received packet in a block, i.e., the block signature carried in
the packet signature is new to a verifier, the verifier computes the packet digest, and every ancestor
of the packet digest.® For the computed block digest (the root of authentication tree), the verifier
calls the verification operation to verify that it is equal to the block digest in the block signature.
If so verified, then all computed nodes and their children are verified and cached.

8A node is computed as the message digest of its children which are either computed or carried in the packet
signature.



procedure flowsignRT(T', d)
for each period T
let Pi,..., P, be the packets generated
with digests computed in period T’
build a degree d authentication tree for the packets;
let root be the block digest (i.e., the tree root);
compute the block signature sign(root) by signing root;
for each packet P; in the block, build its signature as follows:
let p be its path to the root;
its signature consists of the block signature sign(root),
siblings of each node in p, and the packet position;
end
end

Figure 5: Flow signing procedure for real-time generated flows.

For a packet that is not the first received packet in a block, the verifier computes the packet
digest. If the packet digest has been cached and the cached value is equal to the computed packet
digest, then the packet is verified. Otherwise, the verifier computes every non-cached ancestor of
the packet digest. For the highest non-cached ancestor, the verifier computes its parent. If the
computed parent and its cached value are equal, then the packet is verified and all computed nodes
and their children are verified and cached.

We implemented the flow signing and verification procedures, and performed experiments on a
Pentium II 300 MHz machine running Linux. We used MD5 as the message digest function, and
experimented with both 512-bit RSA and 512-bit DSA as the signature scheme for block signatures.

Table 8 and Table 9 show, respectively, the flow signing and verification rates for 1024-byte
packets. Note that tree and star chaining are 1-2 orders of magnitude faster than the sign-each
approach. The flow signing and verification rates increase with block size. However, the rates vary
only slightly with the chaining technique used and with the tree degree in tree chaining. Since
degree two tree chaining has the lowest chaining overhead (packet signature size), we recommend
the use of degree two tree chaining.

Table 10 and Table 11 show, respectively, the flow signing and verification rates for packets of
size 16, 512, 1024, or 2048 bytes.” We used degree two tree chaining with block size sixteen. From
the tables, observe that the flow signing and verification rates decrease as the packet size increases.
It is because more time is needed to compute the message digest of a larger packet. The decrease
is more pronounced when the block size used is large, since more time is used to compute packet
digests for a large block than a small block. Observe also that the flow signing and verification
rates increase with block size and the increase is greater for a smaller packet size.

2.5 Bounded delay signing

Consider Figure 4. Assume that, in period 7', at most m packets are generated and their packet
digests computed. The delay for signing a block of packets is bounded by D, = T'+chains(m)+Tsign
where chaing(m) is the chaining time for a block of m packets at a signer, and Ty;qp, is the signing
time of the block digest.

°For 16-byte packets, we do not compute their message digests; they are used directly to build authentication
trees.
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procedure flowverify()
for each received packet
if the block signature sign(root) in the packet signature is new
(i.e., the packet is the first received packet in a block) then
compute the packet digest;
compute each ancestor of the packet digest
as the message digest of its children;
let root’ be the computed root (i.e., block digest);
if (verify(root', sign(root)) = false) then
the packet is not verified;
else
the packet is verified;
cache all computed nodes and their children as verified nodes;
end
else
compute the packet digest;
if (packet digest has been cached) then
if (computed packet digest # its cached value) then
the packet is not verified;
else
the packet is verified;
end
end
compute all non-cached ancestors of the packet digest;
let node be the highest non-cached ancestor computed;
compute the parent of node;
if (computed parent # its cached value) then
the packet is not verified;
else
the packet is verified;
cache all computed nodes and their children as verified nodes;
end
end
end

Figure 6: Flow verification procedure (with caching of verified nodes).
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block size (number of packets)

2| 4| 8| 16| 32| 64| 128
sign-each 78.6

star 152 | 302 | 582 | 1090 | 1920 | 3090 | 4310
tree degree 2 | 153 | 304 | 570 | 1080 | 1890 | 3010 | 4310
tree degree 4 | 153 | 301 | 579 | 1080 | 1900 | 3070 | 4380
tree degree 8 | 153 | 302 | 581 | 1080 | 1900 | 3060 | 4350
(a) using 512-bit RSA

block size (number of packets)

2| 4| 8| 16| 32| 64| 128
sign-each 176

star 344 | 631 | 1210 | 2140 | 3430 | 4900 | 5870
tree degree 2 | 337 | 650 | 1210 | 2100 | 3340 | 4740 | 5910
tree degree 4 | 332 | 655 | 1190 | 2070 | 3340 | 4710 | 6000
tree degree 8 | 332 | 651 | 1190 | 2070 | 3340 | 4760 | 6060
(b) using 512-bit DSA

Table 8: Flow signing rate (packets/sec) for 1024-byte packets.

block size (number of packets)

2| 4| 8| 16| 32| 64| 128
sign-each 1980

star 3090 | 4530 | 5870 | 6900 | 7600 | 7930 | 8180
tree degree 2 | 3020 | 4320 | 5540 | 6360 | 6910 | 7210 | 7350
tree degree 4 | 3000 | 4400 | 5650 | 6640 | 7230 | 7590 | 7760
tree degree 8 | 2960 | 4400 | 5680 | 6660 | 7340 | 7740 | 7860
(a) using 512-bit RSA

block size (number of packets)

2| 4| 8| 16| 32| 64| 128
sign-each 127

star 243 | 473 | 899 | 1640 | 2750 | 4240 | 5590
tree degree 2 | 243 | 468 | 885 | 1530 | 2550 | 3870 | 4960
tree degree 4 | 240 | 476 | 886 | 1580 | 2650 | 4100 | 5360
tree degree 8 | 243 | 476 | 904 | 1630 | 2720 | 4160 | 5490
(b) using 512-bit DSA

Table 9: Flow verification rate (packets/sec) for 1024-byte packets.
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packet size block size (number of packets)
(bytes) | 2| 4| 8| 16| 32| 64| 128
16 | 158 | 316 | 630 | 1250 | 2440 | 4720 | 8800
512 | 157 | 310 | 605 | 1160 | 2130 | 3640 | 5670
1024 | 156 | 305 | 587 | 1090 | 1920 | 3070 | 4400
2048 | 153 | 296 | 552 | 982 | 1600 | 2330 | 3010
(a) using 512-bit RSA

packet size block size (number of packets)
(bytes) | 2| 4 8| 16| 32| 64| 128
16 | 349 | 692 | 1380 | 2690 | 5150 | 9540 | 16800
512 | 341 | 669 | 1270 | 2310 | 3940 | 6100 | 8370
1024 | 336 | 645 | 1150 | 2070 | 3300 | 4690 | 5910
2048 | 325 | 606 | 1060 | 1720 | 2490 | 3190 | 3680
(b) using 512-bit DSA

Table 10: Flow signing rate (packets/sec) for degree two tree chaining and block size sixteen.

packet size block size (number of packets)
(bytes) 2 4 8 16 32 64 | 128
16 | 4580 | 8660 | 14800 | 23900 | 33100 | 41300 | 46600
512 | 3600 | 5630 | 7740 | 9560 | 10800 | 11600 | 12000
1024 | 3020 | 4320 | 5550 | 6400 | 6950 | 7240 | 7390
2048 | 2320 | 2980 | 3520 | 3860 | 4040 | 4140 | 4160
(a) using 512-bit RSA

packet size block size (number of packets)
(bytes) | 2| 4 s| 16| 32| 64| 128
16 | 253 | 500 | 1010 | 1970 | 3780 | 7020 | 12500
512 | 246 | 485 939 | 1770 | 3070 | 4930 | 7170
1024 | 245 | 474 894 | 1590 | 2660 | 4010 | 5260
2048 | 238 | 453 821 1380 | 2060 | 2810 | 3410
(b) using 512-bit DSA

Table 11: Flow verification rate (packets/sec) for degree two tree chaining and block size sixteen.
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Table 12 shows the delay bound for period 7' = 50 ms. Note that the delay bound is fairly
insensitive to the block size since the block’s chaining time is much smaller than the block digest’s
signing time.

For a given application, with a specified delay bound, Dy, for signing a real-time generated flow
at a known packet rate, we can work backwards and derive an appropriate value for the parameter
T needed for procedure flowsignRT(7,d). From Figure 4, observe that 7" must be larger than
Tsign + chaing(m), and D, must be larger than 2(Tyign + chaing(m)).

number of packets generated in period T’

2 4 8 16 32 64 128
tree degree 2 | 62.6 62.6 62.8 62.8 63.1 63.5 64.6
tree degree 4 | 62.6 62.7 62.7 62.7 63.0 63.2 64.0
tree degree 8 | 62.5 62.6 62.7 62.7 63.0 63.2 63.9
(a) using 512-bit RSA

number of packets generated in period T’

2 4 8 16 32 64 128
tree degree 2 | 55.7 55.7 b55.8 558 56.2 56.6 b57.6
tree degree 4 | 55.7 55.7 55.8 55.8 56.0 56.3 57.0
tree degree 8 | 55.7 55.7 b55.8 558 56.0 56.2 57.0
(b) using 512-bit DSA

Table 12: Signing delay bound for period 7" = 50 ms.

2.6 Selecting a digital signature scheme

For non-real-time generated flows, signing efficiency is not critical. Thus a signature scheme with
an efficient verification operation, such as RSA, can be used in the flow signing and verification
procedures. For real-time generated flows, however, it is critical that both signing and verification
are highly efficient. Furthermore, in choosing a digital signature scheme, we must also consider
machine capabilities (sender and receiver), as well as the percentage of processor time available for
signing and verification.

Table 13 shows the flow signing and verification rates using 512-bit RSA and 512-bit DSA for
1024-byte packets, degree two tree chaining, and block size sixteen. A Pentium IT 300 MHz machine
was used. Rates are shown for different percentages of processor time used for signing/verification.

processor time percentage for signing/verification
100% 80% 60% 40% 20% 10%
RSA signing rate 1090 872 654 436 218 109
RSA verification rate 6400 5120 3840 2560 1280 640
DSA signing rate 2070 1660 1240 828 414 207
DSA verification rate 1590 1270 954 636 318 159

Table 13: Flow signing and verification rates (packets/sec) for 1024-byte packets, degree two tree
chaining, and block size sixteen.

Note that using DSA, the flow verification rate is slower than the flow signing rate. This is
undesirable because receivers/verifiers are generally less powerful than the signer/sender, e.g., the
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receivers may be personal digital assistants or low-end notebook computers. Using RSA, the flow
signing rate may not be high enough for some applications. Although we can increase the flow
signing and verification rates by using a longer period or a larger block size, neither option is
desirable. A larger block size increases the chaining overhead (packet signature size). A longer
period increases the delay for signing real-time generated flows.

To obtain a signature scheme better than RSA and DSA for signing/verifying flows, we propose
several extensions to the Feige-Fiat-Shamir signature scheme. The extended scheme, called eFF'S,
is presented in the next section. The eFFS scheme has a very efficient signing operation (more
efficient than those of RSA and DSA) and a verification operation as efficient as that of RSA. A
performance comparison of eFFS with four other signature schemes (including RSA and DSA) is
given in Section 4.

3 The eFFS Signature Scheme

The eFFS signature scheme is derived from the Feige-Fiat-Shamir signature scheme [3, 4] with
several extensions. In Section 3.1, we describe the basic Feige-Fiat-Shamir signature scheme. In
Section 3.2, we describe an improvement suggested in [12], called small verification key (small v-
key) which reduces verification time by an order of magnitude. In Section 3.3, we propose to use
a speedup technique suggested by the Chinese Remainder Theorem (crt), which reduces signing
time. In Section 3.4, we propose to use a technique, called precomputation (precomp), which
reduces signing and verification times by using more memory. With precomputation, the signing
operation time is reduced by a factor of two to three using only a few hundred bytes of additional
memory. Lastly, in Section 3.5, we design an extension to provide adjustable and incremental
signature verification. With this extension, a signature can be verified at different security levels,
i.e., a verifier can use less resources to verify a signature at a lower security level. Moreover, the
verification is incremental, i.e., the verifier can first verify a signature at a lower security level, and
later increase the security level by using more resources.

eFFS parameter (k,t)
(32,1) | (32,2) (64,1) | (32,4) (64,2) (128,1)
basic FFS 3.75 7.45 6.19 | 14.83 12.33 11.85
small v-key 3.71 7.38 6.42 | 14.75 12.79 12.45
crt + small v-key 3.24 6.41 5.44 | 12.78 10.83 9.91
4-bit precomp + crt + small v-key 2.00 3.95 3.03 7.85 5.98 5.11
8-bit precomp + crt + small v-key 1.48 2.92 2.03 5.79 4.00 3.14

Table 14: eFFS signing time (ms) with 512-bit modulus.

eFFS parameter (k,t)
(32,1) | (32,2) (64,1) | (32,4) (64,2) (128,1)
basic FFS 3.12 6.28 594 | 13.51 11.29 11.14
small v-key 0.29 0.58 0.39 1.14 0.71 0.61
4-bit precomp + small v-key 0.29 0.57 0.36 1.10 0.66 0.55
8-bit precomp + small v-key 0.28 0.56 0.36 1.09 0.65 0.54

Table 15: eFFS verification time (ms) with 512-bit modulus.

We implemented the basic Feige-Fiat-Shamir (FFS) scheme and the eFFS scheme (i.e., with
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the improvements and extensions mentioned above) using the large integer arithmetic routines
from CryptoLib [8]. Table 14 and Table 15 show the times for signing and verifying (with 512-
bit modulus) 128-bit message digests, using different speedup techniques and different eFFS/FFS
parameters (k,t).!% The results were obtained on a Pentium IT 300 MHz machine running Linux.

3.1 Feige-Fiat-Shamir signature scheme

In the basic FFS signature scheme with parameter (k,t) [3, 4], each signer chooses two large primes
p and ¢, and computes modulus n = pg. Then, the signer chooses k integers vq,...,v; (or k

integers si,...,s;), and compute si,...,s; (or vi,...,v;) by §2 = v;l mod n. The signing key is
{s1,..., 8k, n} and the verification key is {v1,...,vg, n}.

To sign message m, the signer does the following steps: (1) choose ¢t random integers, r1,..., 7,
between 1 and n, and compute z; = r1~2 mod n for i = 1,...,t; (2) calculate the message digest
h(m,x1,...,z;) where the message digest function A(-) is public knowledge and the message digest
is at least k x t bits long; let {b;;} be the first £ x ¢ bits of the message digest where i = 1,...,t,
and j = 1,...,k; (3) compute y; = r; X (sl{"1 X ... X SZ“”‘) mod n for i = 1,...,t. The signature of
message m consists of {y;} fori =1,...,t and {b;;} fori=1,...,tand j=1,... k.

To verify the signature of message m, a verifier computes z; = y? b

7 x (vt XX vZ’k) mod n for
i =1,...,t. The signature is valid if and only if the first & x ¢ bits of h(m, z1,...,2) are equal to
the {b;;} received.

Assuming |v;| = |n| and |s;| = |n|, where |z| denotes the size of z in bits, both the signing
key and verification key sizes are (k + 1) x |n| bits, and the signature size is ¢ X |n| + k X ¢ bits.
The signing/verification key size is independent of ¢, but the signature size is proportional to t.
Table 16 shows the signing/verification key size and signature size of FFS with 512-bit modulus.
For example, with (k,t) = (128, 1), the signing/verification key size is 8256 bytes, and the signature
size is 80 bytes.

t=1 t=2 t=4
key signature | key signature | key signature
kt =64 | 4160 72 2112 136 1088 264
kt =128 | 8256 80 4160 144 2112 272

Table 16: eFFS signing/verification key size (bytes) and signature size (bytes) with 512-bit modulus.

The security level of FFS(k,t) depends on the following: (1) the size of modulus n, (i.e., the
size of the primes p and ¢), and (2) the value of product kt. A system with a longer modulus is
more secure, and a system with a larger kt product is more secure. If two systems with the same
modulus and same kt product (but different k£ and ¢ values), then their security levels are about the
same. For a fixed kt product, we can reduce the signature size by using a smaller ¢ (and a larger
k). For t = 1, the signature size is minimized, but the signing/verification key size is maximized.
Moreover, for a fixed kt product, the signing/verification time is smaller when ¢ is smaller (see
Table 14 and Table 15). Therefore, we recommend to use t = 1 except when adjustable verification
is needed.!!

"Note that the product kt determines the security level of eFFS/FFS for the same modulus. We discuss more
about parameters (k,t) later in Section 3.1.

1 Our extension to provide adjustable and incremental signature verification, which is described in Section 3.5,
requires t > 1.
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3.2 Small Verification Key Components

In FFS, the sizes of signing key components {s;} affect the signing time, and the sizes of verification
key components {v;} affect the verification time. An improvement idea suggested in [12] is to
use small prime numbers as the verification key components {v;} and compute the signing key
components {s;} by s? = v; ' mod n.}? This improvement (labeled as “small v-key” in Table 14
and Table 15) has two advantages. First, the verification time is an order of magnitude smaller
than without this improvement (and the signing time is not affected).

Second, the verification key size becomes smaller. In practice, for k up to 128, the verification
key components {v;} are always less than 2'®  and each verification key component v; can be stored
in 16 bits. Thus, the verification key size becomes |n| + 16 x k bits, and the signing key size is
unchanged and remains (k + 1)|n| bits, where |n| is the size of modulus n. For a 512-bit modulus
and k = 128, the signing key size is 8256 bytes, and the verification key size is 320 bytes. Since a
signing key is private to a signer, the relatively large signing key size does not pose a problem.

3.3 Chinese Remainder Theorem Speedup

We propose to use the following improvement (labeled as “crt” in Table 14), which is based on
the Chinese Remainder Theorem, to speed up signing operation. In FFS, the signing operation
involves the computing of y; = r; x (5 x ... x 82"") mod n where {s;} do not change and only
{r;} and {b;;} change from message to message. Let f(r;, {bi;},s1,...,5%) denote the arithmetic
function r; X (sl'll’i1 X ... X sZ"k). Basically, the function f(-) computes the product of some large
integers, and y; is the integer f(-) mod n. Since only y; is needed (and the actual value of f(-) is
not needed), the multiplication operations in f(-) can be done in mod n for efficiency.

Moreover, as n = pq, by using Chinese Remainder Theorem, y; (= f(-) mod n) can be com-
puted from two smaller integers a; = f(-) mod p, and b; = f(-) mod ¢. In particular, the Chinese
Remainder Theorem says that y; = (a; X ¢ x pq_1 +b; X p X pq_l) mod n where pq_1 =p~ ! modgq
and g, ! = ¢! mod p. Therefore, instead of computing y; directly by one f(-) function call with
multiplication operations in mod n, a signer first computes a; and b; by two f(-) function calls,
one with multiplication operations in mod p, and the other in mod ¢g. Then, the signer computes
y; from a; and b; by Chinese Remainder Theorem. Since there are many multiplication operations
in f(-) and multiplication operations in mod p and mod ¢ are more efficient than in mod n, the
signing time is decreased.

This Chinese Remainder Theorem improvement can only be used by a signer because knowledge
of the factors of modulus n is required. It reduces the signing time by 12% to 20% (see Table 14).
The amount of additional memory needed is only a few hundred bytes for storing a few large
integers (with 512-bit modulus).

3.4 Precomputation: Memory-Time Tradeoff

One important feature of FFS is that a signer/verifier can trade memory for signing/verification
time. We propose to use the following improvement (labeled “precomp” in Table 14 and Table 15)
to speed up signing/verification operation by using more memory at signer/verifier.

To illustrate the basic idea of this improvement, consider the signing operation with k = 4.
bi1

To sign a message, a signer computes y; = r; X (78 X ... X si“) mod n, for ¢ = 1,...,t. Since
$1,...,84 do not change from message to message, and b;1, ..., bj4 are either one or zero, the signer

12 Actually, [12] suggests using the first k prime numbers as the verification key components {v;}. However, since
not every prime number p satisfies the condition that there exists an integer s such that s*> = p~! mod n, we use the
first k prime numbers that satisfy the condition as the verification key components.
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can precompute and store the product (mod n) of every non-empty subset of {s1,...,s4}. Let
Sh,..b, denote the precomputed product 51{1 X ... X 534 mod n. Then, to sign a message, the signer
can compute y; by r; X Sp,, 5, mod n.

For large k, it is not practical to precompute the product (mod n) of every non-empty subset
of {s1,...,sr}. Instead, the signer partitions {si,..., s} into smaller sets and precomputes each
of them. If each smaller set contains four s;, then it is a 4-bit precomputation. Similarly, if each
smaller set contains eight s;, then it is an 8-bit precomputation.

Compared to the basic FFS (with small v-key), 4-bit precomputation plus crt speedup reduces
the signing time by 45% to 55%, and 8-bit precomputation plus crt speedup reduces the signing time
by 60% to 70% (see Table 14). For 4-bit precomputation with k& = 128 and 512-bit modulus, a signer
needs to store 128/4 x (24 —1) = 480 products (mod n), and 480 x 512 bits or 31 kilobytes additional
memory is required. The additional memory required by 8-bit, 12-bit, and 16-bit precomputation
are 261 kilobytes, 2.88 megabytes, and 33.6 megabytes, respectively. Given that a low-end desktop
PC or a notebook computer has at least 16 or 32 megabytes of memory, the additional memory
required by 8-bit precomputation does not pose a problem. In the remaining experiments, we use
signing with 8-bit precomputation plus crt speedup.

Although similar precomputation can be used in verification operations, it is not effective with
the small v-key extension. This is because with the small v-key extension, small primes are used
as public key components, and their products can be computed very efficiently. For example, with
the small v-key extension, 8-bit precomputation in verification operations reduces the verification
time by less than 10% (see Table 15). In the remaining experiments, we use verification with small
v-key and no precomputation.

3.5 Adjustable and incremental verification

In multicast or group communications, receivers typically have different amounts of resources, and
the resources available to a receiver for verification vary over time. It is thus desirable to have
an adjustable and incremental signature verification operation. An adjustable verification allows
a receiver/verifier to verify a message at a lower security level using less processor time. An
incremental verification allows a receiver/verifier to verify a message at a lower security level first,
and later increase the security level by using more processor time (e.g., if the message is important).

Since the security level of a signature scheme depends on its parameters, e.g., the modulus
size, an obvious approach to provide adjustable and incremental verification is to use multiple keys
(with different modulus sizes) to generate multiple signatures for different security levels. To verify
at a lower security level, the verification key with a shorter modulus size is used to verify the
corresponding signature. This approach is simple but very inefficient. In the following, we design
an extension to FFS that provides adjustable and incremental verification efficiently.

The security level of FFS(k, t) depends on the product kt as well as the modulus size. Generally
speaking, if two systems have the same modulus and same kt product, then their security levels are
about the same. Our extension to provide adjustable and incremental verification is to use ¢ greater

than one, and to include {z;} for i = 2,...,t in signatures. This is called a t-level signature.!3
This extension is as secure as the original scheme because x; = y? x (vlf“ X .o X vzi’“) mod n for
i =2,...,t can be computed easily from the original signature, which consists of {b;;} and {y;},
and the verification key {vi,...,vg, n} of the signer.

To verify a t-level signature of message m at security level [ of ¢ (where [ < t), a verifier does
the following: (1) compute z; = y? x (vll)“ X ... X vzi’“) mod n for i = 1,...,1, and (2) verify that

13Note that the original (1-level) signature does not provide adjustable and incremental verification.
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Zo,...,2 are equal to xg, ..., x; respectively, and the first k£ x ¢ bits of h(m, z1, x3, ..., z;) are equal
to the {b;;} received.

To increase the verification security level from [; to I3, a verifier does the following: (1) compute
z = y2 x (vll’“ X ... X vzik) mod n for i =1; + 1,...,l2, and (2) verify that z;, 41,..., 2, are equal
to xy, 41,..., 2, respectively.

The size of a t-level signature is kt + (2t — 1) x |n| bits. For a 512-bit modulus and product

kt = 128, a 1-level signature is 80 bytes and a 2-level signature is 208 bytes.

kt product
kt=32 kt=64 kt=128
1-level signature 1.58 2.06 3.19
2-level signature 3.02 4.08
4-level signature 5.89

Table 17: eFFS t-level signature signing time (ms).

security kt product

level kt=32 kt=64 kt=128
level 1 of 1 0.302 0.388 0.598
level 1 of 2 0.321 0.401
level 2 of 2 0.603 0.752
level 1 of 4 0.336
level 2 of 4 0.612
level 4 of 4 1.164

Table 18: eFFS verification times (ms) at different security levels.

(a) 2-level signature (b) 4-level signature
To | level 1 level 2 To | level 1 level 2 level 3 level 4
From level 0 | 0.401  0.752 || From level 0 | 0.336 0.612 0.884 1.164
From level 1 0.368 || From level 1 0.288 0.564  0.841
From level 2 0.287  0.567
From level 3 0.291

Table 19: eFFS incremental verification time (ms) for kt = 128.

Table 17 shows different t¢-level signature signing times. For the same kt product, the signing
time increases as the ¢ value increases. However, the signing time is still smaller than using multiple
keys for different security levels. For example, the 2-level signature signing time, which is 4.08 ms
for kt = 128, is smaller than the time to sign two (original 1-level) signatures, one for (k,t) = (64,1)
and the other for (k,t) = (128, 1), which is 2.06 + 3.19 = 5.25 ms.

Table 18 shows the (adjustable) verification times at different verification security levels. Ta-
ble 19 shows the (incremental) verification times from one level to a higher level. For kt = 128 and
a 2-level signature, a verifier can first verify a message at level 1 of 2 using 0.401 ms processor time,
and later increase to level 2 (of 2) by using 0.368 ms additional processor time.
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4 Comparison with other Signature Schemes

In this section, we compare eFFS(64,1) and eFFS(128,1) (with small v-key and 8-bit precomp ex-
tensions) to four other signature schemes available from CryptoLib [8], namely: DSA [15], ElGamal
[6], RSA [19], and Rabin [17]. We compare their key and signature sizes, and signing and veri-
fication times. Then, we compare their signing and verification rates for 1024-byte packets when
each is used as the signature scheme in our flow signing and verification procedures presented in
Section 2. Experiments were performed on a Pentium II 300 MHz machine running Linux. Four
different modulus sizes, 384, 512, 768, and 1024 bits, were used in the comparison. (Note that it
is difficult to compare the security levels of different signature schemes even if they use the same
modulus size.)

4.1 Key and signature sizes

modulus size (bits)
384 512 768 1024
RSA signing key 96 128 192 256
(e=3) verification key 48 64 96 128
signature 48 64 96 128
Rabin signing key 96 128 192 256
verification key 48 64 96 128
signature 48 64 96 128
DSA signing key 136 168 232 296
verification key | 164 212 308 404
signature 40 40 40 40
ElGamal signing key 144 192 288 384
verification key | 144 192 288 384
signature 96 128 192 256
eFFS  signing key 3120 4160 6240 8320
(64,1) verification key | 176 192 224 256
signature 56 72 104 136
eFFS  signing key 6192 8256 12384 16512
(128,1) verification key | 304 320 352 384
signature 64 80 112 144

Table 20: Signing key, verification key, and signature sizes (bytes) of different signature schemes.

Table 20 shows the signing/verification key and signature sizes. The signing keys are from 96
to 384 bytes in all schemes except eFFS whose signing keys are much larger, from 3,120 to 16,512
bytes. Note that a signing key is private to a signer. We do not expect the relatively large eFFS
signing keys to pose a problem for sources/signers of packet flows.

In RSA and Rabin, verification keys are from 48 to 128 bytes. In DSA, ElGamal, and eFFS,
verification keys are slightly larger, from 144 to 404 bytes. Since one pair of signing and verification
keys can be used to sign/verify many packets, a verification key does not have to be changed
frequently, and a verification key as large as 400 bytes would not pose a problem.

Such signing keys are indeed too large for small devices, such as smartcards, but it is unlikely that these devices
would generate packet flows.
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The signature of DSA is the smallest and is 40 bytes for all modulus sizes. For all of the other
schemes, the signatures are larger and about the same size, 48 to 256 bytes. In particular, the
signature sizes of eFFS and the popular RSA are about the same.

4.2 Signing and verification times

modulus size (bits)
384 512 768 1024
RSA sign 6.2 12.7 36.2 794
(e=3) wverify | 0.26 0.40 0.70 1.14
Rabin sign | 11.3 19.5 475 959
verify | 0.14 0.20 0.38  0.56
DSA sign 39 56 102 16.3
verify | 5.1 7.6 147  24.2
ElGamal sign 51 6.8 123 189
verify | 24.4 51.9 157.5 350.3
eFFS  sign 144 207 3.25 5.02
(64,1) wverify | 0.31 0.39 0.55 0.80
eFFS sign | 225 3.18 534 8.13
(128,1) wverify | 0.49 0.61 0.79 1.06

Table 21: Signing and verifying times (ms) of different signature schemes.

Table 21 shows the signing and verification times for a 16-byte message (digest).!®> DSA and
ElGamal have been designed to achieve efficient signing (e.g., for use in smartcard applications),
and RSA and Rabin have been designed to achieve efficient verification. From Table 21, note that
the signing operations of DSA and ElGamal, with times from 3.9 to 18.9 ms, are much more efficient
than those of RSA and Rabin, with times from 6.2 to 95.9 ms. On the other hand, the verification
operations of RSA and Rabin, with times from 0.14 to 1.14 ms, are much more efficient than those
of DSA and ElGamal, with times from 5.1 to 350.3 ms.

By comparison, eFFS has a signing operation even more efficient than those of DSA and ElGa-
mal, and a verification operation as efficient as that of RSA. This combination of the most efficient
signing and highly efficient verification makes eFFS the best choice for most applications.

4.3 Flow signing and verification rates

Table 22 shows the flow signing and verification rates of our flow signing and verification procedures
(for 1024-byte packets, degree two tree chaining, block size sixteen, and 100% of processor time of a
Pentium IT 300 MHz machine). Both DSA and ElGamal have low flow verification rates, rendering
them inappropriate for receivers with limited resources, such as personal digital assistants and
low-end notebook computers. Both RSA and Rabin have low flow signing rates, rendering them
inappropriate for real-time generated flows, such as live video/audio applications. By comparison,
eFF'S provides high flow signing rates suitable for real-time generated flows while its flow verification
rates are also very high.

15We use e=3 in RSA to obtain its fastest verification time without affecting its signing time.
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modulus size (bits)
384 512 768 1024
RSA flow signing 1910 1090 415 193
(e=3) flow verification | 6730 6360 5590 4930
Rabin flow signing 1190 743 323 165
flow verification | 7440 7130 6680 6170
DSA flow signing 2740 2110 1310 871
flow verification | 2230 1630 935 606
ElGamal flow signing 2330 1850 1140 740
flow verification | 602 294 99 45
eFFS flow signing 4640 3940 3020 2260
(64,1) flow verification | 6670 6410 6010 5440
eFFS flow signing 3750 3060 2180 1570
(128,1) flow verification | 6140 5930 5540 4980

Table 22: Flow signing and verification rates (packets/sec) for 1024-byte packets, degree two tree
chaining, and block size sixteen.

5 Conclusions

We investigated the problem of signing/verifying delay-sensitive packet flows to provide data au-
thenticity, integrity, and nonrepudiation for Internet applications. We have designed flow signing
and verification procedures, based upon a tree chaining technique, to meet the following require-
ments: (i) flow signing is efficient and delay-bounded (for real-time generated flows), (ii) flow
verification is highly efficient (for receivers with limited resources), (iii) packets in a flow are indi-
vidually verifiable (for best-effort multicast delivery), (iv) packet signatures are small (for a small
communication overhead), and (v) verification at a receiver is adjustable to different security levels
and can be carried out incrementally (for receivers with limited resources).

We implemented our flow signing and verification procedures and performed experiments to
compare different chaining techniques. From experimental results, we recommend the use of degree
two (binary) tree chaining since it requires the smallest packet signature size (i.e., smallest com-
munication overhead) while its signing and verification rates are comparable to the rates of other
chaining techniques. Our flow signing and verification procedures are very efficient and achieve one
to two orders of magnitude improvement compared to the sign-each approach.

To further improve our procedures, we propose several extensions to the Feige-Fiat-Shamir
digital signature scheme [3, 4] to speed up both the signing and verification operations, as well as
to allow adjustable and incremental verification. The extended scheme, called eFFS, is compared
to four other digital signature schemes, RSA [19], Rabin [17], DSA [15], and ElGamal [6], on the
same computing platform (Pentium II 300 MHz machine running Linux).

The signing operation of eFFS is more efficient than those of the other four schemes. The
verification operation of eFFS is as efficient as that of RSA (tie for a close second behind the
verification operation of Rabin). In addition to efficient signing and verification, we have extended
the eFFS scheme to allow a receiver to efficiently carry out adjustable and incremental verification.
Such a capability is useful for large-scale multicast applications with a variety of receivers including
some with limited resources.
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