
Digital Signatures for Flows and Multicasts�Chung Kei Wong Simon S. LamDepartment of Computer SciencesUniversity of Texas at AustinAustin, TX 78712-1188fckwong,lamg@cs.utexas.eduTR-98-15 May 31, 1998AbstractOur concerns are data authenticity and integrity for delay-sensitive packet
ows. For anindividual message (packet), these concerns can be addressed by one of several popular digitalsignature schemes. However, these schemes are not fast enough for signing/verifying packetsindividually for delay-sensitive
ows, such as packet video. Furthermore, for a multicasted
ow, the intended receivers generally get di�erent subsequences of packets in the
ow. Existingtechniques that depend upon reliable
ow delivery cannot be used.In this paper, we �rst present and compare chaining techniques for signing/verifying mul-tiple packets using a single signing/veri�cation operation. We then present
ow signing andveri�cation procedures based upon a tree chaining technique. Since a single signing/veri�cationoperation is amortized over many packets, these procedures improve signing and veri�cationrates by 1-2 orders of magnitude compared to the approach of signing/verifying packets individ-ually. Our procedures do not depend upon reliable delivery of packets, provide delay-boundedsigning, and are thus suitable for delay-sensitive
ows and multicast applications.To further improve our procedures, we propose several extensions to the Feige-Fiat-Shamirdigital signature scheme to speed up both the signing and veri�cation operations, as well as toallow \adjustable veri�cation." The extended scheme, called eFFS, is compared to four otherdigital signature schemes (RSA, DSA, ElGamal, Rabin) on the same computing platform. Wecompare their signing and veri�cation times, as well as key and signature sizes. We observe that(i) the signing and veri�cation operations of eFFS are highly e�cient compared to the otherschemes, (ii) eFFS allows a tradeo� between memory and signing/veri�cation time, and (iii)eFFS allows adjustable and incremental veri�cation by receivers.

�Research sponsored by Texas Advanced Research Program grant no. 003658-063.0

1 IntroductionData con�dentiality, integrity, and authenticity are basic concerns of securing data delivery over aninsecure network, such as the Internet. Data con�dentiality means that only authorized receiverswill get the data; data authenticity, an authorized receiver can verify the identity of the data'ssource; data integrity, an authorized receiver can verify that received data have not been modi�ed.1Most investigations on securing data delivery over packet networks have focused on unicastdelivery of data sent as independent packets. Exceptions include recent papers on scalable securemulticasting [1, 13, 20] and a
ow-based approach to datagram security [14]. All of these papersare mainly concerned with data con�dentiality.In this paper, our concerns are data authenticity and integrity for delay-sensitive packet
ows,particularly
ows to be delivered to large groups of receivers. For an individual message (packet),these concerns can be addressed by one of many available digital signature schemes [6, 15, 17, 19].However, these schemes are not fast enough for signing/verifying packets individually for delay-sensitive
ows, such as packet video.In the Internet, multicast has been used successfully to provide an e�cient, best-e�ort deliveryservice to large groups [2]. Consider a packet
ow multicasted to a group of receivers. A consequenceof best-e�ort delivery is that many receivers will not receive all of the packets in the multicasted
ow. Furthermore, many multicast applications allow receivers to have widely varying capabilities(e.g., to receive layered video and audio transmissions) or needs (e.g., to receive di�erent stockquotes, news, etc.). Consequently, receivers get di�erent subsequences of packets from the samemulticasted
ow.1.1 Existing techniques for signing
owsConceptually, a digital signature scheme is de�ned by functions for key generation, signing, andveri�cation. The signer (sender) uses the key generation function to create a pair of keys, asigning key, ks, and a veri�cation key, kv. The signer keeps the signing key private, and makes theveri�cation key publicly known to all veri�ers (receivers).2To sign a message m using signing key ks, the signer calls the signing function which returnsthe signature of message m. The signer then sends the signed message, consisting of message mand its signature, to veri�ers. Having received the signed message, a veri�er calls the veri�cationfunction with key kv. If the veri�cation function returns true, then the veri�er concludes that thesigner did sign the message and the message has not been altered. Moreover, the signer cannotdeny having signed the message (nonrepudiation).In practice, a message digest function, such as MD5 [18], is �rst applied to the message togenerate a �xed-size message digest which is independent of message size. Signing a messagemeans signing the digest of the message. (MD5 message digests are 128 bits long.)A
ow is a sequence of packets characterized by some attribute [16, 21]. Packets in a
ow maybe obtained from segmenting the bit stream of digitized video, digitized audio, or a large �le. Orthey may be related data items, such as stock quotes, news, etc., generated by the same source.It is easy and e�cient to sign an all-or-nothing
ow, that is, a
ow whose entire content isneeded before any part of it can be used, e.g., a long �le. In this case, the signer simply generatesa message digest of the entire
ow (�le) and sign the message digest.Most applications, however, create
ows that are not all-or-nothing, i.e., a receiver needs toverify individual packets and use them before the entire
ow is received. For these
ows, a straight-1In the balance of this paper, we use \receiver" to mean \authorized receiver" unless otherwise stated.2The signing and veri�cation keys are also referred to as private and public keys, respectively.1

forward solution is to sign each packet individually and each packet is veri�ed individually byreceivers. This solution is called the sign-each approach.The sign-each approach is computationally expensive. The signing rate and veri�cation rateare at most 1=(Td(l) + Tsign) and 1=(Td(l) + Tverify) packets per second, respectively, where Td(l)is the time to compute the message digest of an l-byte packet, Tsign is signing time, and Tverifyis veri�cation time for the message digest of a packet. The signing and veri�cation rates3 of twowidely used digital signature schemes, RSA [19] and DSA [15], on a Pentium II 300 MHz machine,are given in Table 1. The signing and veri�cation rates with 100% processor time of the machineused for signing/veri�cation are in Table 1(a). If a slower machine is used, or only a fraction ofprocessor time is available for signing/veri�cation (e.g., a receiver machine has only 20% processortime for veri�cation because the other 80% is needed for receiving and processing packets), then therates should be decreased proportionally. The signing and veri�cation rates using 20% processortime of the Pentium II machine are in Table 1(b).packet size Signing rate Veri�cation rate(bytes) 512-bit RSA 512-bit DSA 512-bit RSA 512-bit DSA16 79.4 178 2550 129512 78.8 176 2180 1281024 78.7 175 1960 1272048 78.0 172 1620 126(a) 100 % processor timepacket size Signing rate Veri�cation rate(bytes) 512-bit RSA 512-bit DSA 512-bit RSA 512-bit DSA16 15.9 35.6 510 25.8512 15.8 35.2 436 25.61024 15.7 35.0 392 25.42048 15.6 34.4 324 25.2(b) 20 % processor timeTable 1: Signing and veri�cation rates (packets per second).The signing rate is not important for a non-real-time generated
ow, i.e., a
ow whose entirecontent is known in advance (such as stored video). This is because packets in the
ow can besigned in advance. For a real-time generated
ow, however, the signing rate must be higher thanthe packet generation rate of the
ow. Furthermore, for delay-sensitive
ows, real-time generated ornot, the veri�cation rate is important. From Table 1, we see that the signing and veri�cation rates ofthe sign-each approach, using either RSA or DSA, are probably inadequate for many applications.Two techniques were proposed for signing digital streams in [7] which, at �rst glance, may beused for signing packet
ows. To describe the technique in [7] for signing a non-real-time generated
ow, consider a sequence of m packets. The sender �rst computes message digest Dm of packet m(the last packet) and concatenates packet m� 1 and Dm to form augmented packet m� 1. Then,for i = 1; :::;m � 2, the sender computes message digest Dm�i of augmented packet m � i, andconcatenates packet m� i�1 and Dm�i to form augmented packet m� i�1. Message digest D1 ofaugmented packet 1 is computed and signed. In this manner, only one expensive signing/veri�cationoperation is needed for the sequence of m packets. However, a necessary condition for using the3The signing and veri�cation rates in Table 1 are rates for signing and verifying 128-bit message digests of packets(except for 16-byte packets which were signed directly). 2

above technique is the following get-all-before requirement: To verify packet i in the sequence, areceiver must have received every packet from the beginning of the sequence.For a real-time generated
ow, a similar technique is suggested in [7] with the same get-all-before requirement. For a sequence of m packets, only one expensive signing/veri�cation operationis needed, plus one inexpensive one-time signature signing/veri�cation for each packet in the se-quence. However, since one-time signatures and keys are very large, this technique has a largecommunication overhead (around 1000 bytes per packet) [9, 10].The get-all-before requirement of both techniques in [7] is too strong for practical Internetapplications. Reliable packet delivery is not used by many applications for
ows and multicasts.For example, reliable delivery is generally not used for video and audio
ows due to the extra delaysassociated with retransmissions; either losses are tolerated or forward error correction techniquesare used instead.For large-scale multicast applications, reliable delivery of multicast packets is a di�cult problem[5]. Moreover, even if reliable multicasting is available, receivers with di�erent needs/capabilitiesmay choose to get di�erent subsequences of packets in a multicasted
ow. In short, the get-all-beforerequirement is not satis�ed.1.2 Characteristics and requirementsWe have observed various characteristics in the delivery of
ows and multicasts by an unreliablepacket network, such as the Internet. They are summarized below:� Each packet in a
ow may be used as soon as it is received.� A receiver may get only a subsequence of the packets in a
ow. Di�erent receivers may getdi�erent subsequences.� Delay sensitive
ows require fast processing at a sender as well as receivers. Some
ows aregenerated in real time by their senders.� For a multicasted
ow, many receivers are limited in resources (processing capacity, memory,communication bandwidth, etc.) compared to the sender, which is typically a dedicated servermachine. In some environments, both senders and receivers may be limited in resources, e.g.,mobile computers using wireless communications.� Receivers may have widely di�erent capabilities/resources. For example, receivers may bepersonal digital assistants, notebook computers, or desktop machines. Moreover, the resourcesavailable to a receiver for verifying signatures may vary over time.Given the above characteristics, we design procedures for signing and verifying
ows in Section 2as well as a digital signature scheme in Section 3 to meet the the following requirements:� The signing procedure is e�cient and delay-bounded (for real-time generated
ows).� The veri�cation procedure is highly e�cient (since many receivers have limited resources).� Packets in a
ow are individually veri�able.� Packet signatures are small (i.e., small communication overhead).� Adjustable and incremental veri�cation: The veri�cation procedure is adjustable to theamount of resources a receiver has. It allows a receiver/veri�er to verify a message at alower security level using less resources, and later increase the security level by using moreresources (e.g., if the message is important).3

1.3 Contributions of this paperIn Section 2, we �rst describe and compare two chaining techniques (star and tree) for sign-ing/verifying multiple packets using a single signing/veri�cation operation (without the get-all-before requirement in [7]). We then present
ow signing and veri�cation procedures based uponthe tree chaining technique. Since a single signing/veri�cation operation is amortized over manypackets, these procedures improve signing and veri�cation rates by 1-2 orders of magnitude com-pared to the sign-each approach. The signing procedure also provides delay-bounded signing. Thusthe procedures can be used for delay-sensitive
ows.In Section 3, we turn our attention to improving the signing and veri�cation operations in theprocedures. Speci�cally, we present several extensions to the Feige-Fiat-Shamir digital signaturescheme to speed up both signing and veri�cation as well as to allow adjustable and incrementalveri�cation. In Section 4, the extended Feige-Fiat-Shamir (eFFS) scheme is compared to four well-known signature schemes [6, 15, 17, 19]. We compare their signing and veri�cation times, as wellas key and signature sizes. (Such a comprehensive performance comparison of digital signatureschemes on the same computing platform is not available in the literature.) We observe that (i)the signing and veri�cation operations of eFFS are highly e�cient compared to the other schemes,(ii) eFFS allows a tradeo� between memory and signing/veri�cation time, and (iii) eFFS allowsadjustable and incremental veri�cation by receivers.2 How to Sign a FlowTo digitally sign/verify delay-sensitive
ows, the sign-each approach is computationally too ex-pensive for many applications, particularly those applications that generate packet
ows in realtime.As an alternative to the sign-each approach, we present two chaining techniques (star and tree)for providing authenticity to a group of packets, called a block, using a single signing operation.The basic idea is to compute a block digest which is signed. In order to make packets individuallyveri�able, each packet needs to carry its own authentication information consisting the signed blockdigest (block signature) together with some chaining information as proof that the packet is in theblock.2.1 Star chainingConsiderm packets that constitute a block. In star chaining, the block digest is simply the messagedigest of them packet digests (listed sequentially). Let h(�) denote the message digest function beingused (e.g., MD5). Consider, for example, a block of eight packets with packet digests D1; : : : ;D8.The block digest is D1�8 = h(D1; : : : ;D8), and the block signature, sign(D1�8), is the block digestsigned with some digital signature scheme (such as RSA, DSA or eFFS).The relationship between the packet digests and the block digest can be represented by a one-level rooted tree, called an authentication star. Figure 1 illustrates an authentication star for eightpackets, with packet digests at leaf nodes, and the block digest at the root.For packets to be individually veri�able, each packet needs its own authentication information.Such authentication information, called packet signature, consists of the block signature, the packetposition in the block, and the digests of all other packets in the block. (We use the term chainingoverhead to refer to all information in a packet signature except the block signature.)Suppose the third packet in the above example is received. Its authenticity can be individuallyveri�ed as follows. The veri�er computes the digest D03 of the packet received, and then the4

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

D1-8

D1 D2 D3 D4 D5 D6 D7 D8Figure 1: Star chaining.block digest D01�8 = h(D1;D2;D03;D4; : : : ;D8), where D1;D2;D4; : : : ;D8 are carried in the packetsignature. The veri�er then calls the veri�cation operation to verifyD01�8, i.e., to determine whetherD01�8 is equal to block digest D1�8 in block signature sign(D1�8). The packet is veri�ed if theveri�cation operation returns true, i.e., D01�8 = D1�8.Suppose the third packet is the �rst in the block to arrive and its authenticity has been veri�ed.Afterwards, the veri�er knows every node in the authentication star, i.e., all nodes in the authenti-cation star are veri�ed and can be cached. With caching, when another packet in the block arriveslater, say the sixth packet, the veri�er only needs to compute the digest D06 of the packet receivedand compare it to the veri�ed node D6 in the authentication star. If they are equal, the packet isveri�ed. By caching veri�ed nodes, the veri�er saves one message digest function call for each ofthe other packets in the same block.2.2 Tree chainingTree chaining subsumes star chaining as a special case. With tree chaining, the block digest iscomputed as the root node of an authentication tree.4 Consider, for example, a block of eightpackets with packet digests D1; : : : ;D8. The packet digests are the leaf nodes of a degree two(binary) authentication tree, with other nodes of the tree computed as message digests of theirchildren, as shown in Figure 2. For example, the parent of the leaves D1 and D2 is D12 = h(D1;D2)where h(�) is the message digest function being used. The root is the block digest, with the blocksignature being the signed block digest.

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

D1 D2 D3 D4 D5 D6 D7 D8

D1-8

D5-8D1-4

D1-2 D3-4 D5-6 D7-8

Figure 2: Tree chaining technique.For a packet to be individually veri�able, each packet needs to carry its own authentication4Tree chaining was �rst presented in [11]. Any rooted tree can be used as an authentication tree with packetdigests at leaf nodes and the block digest at the root. In particular, there is no need to use a balanced tree.5

information (packet signature). In tree chaining, a packet signature consists of the block signature,the packet position in the block, and the siblings of each node in the packet's path to the root.(Again we use the term chaining overhead to denote all information in a packet signature exceptthe block signature.)To verify a packet individually, a veri�er needs to verify its path to the root. Consider, forexample, the dashed path in Figure 2 for the third packet. Each node in the path needs to beveri�ed. A veri�er computes the digest D03 of the received packet, and then each of its ancestors inthe tree. That is, D03�4 = h(D03;D4), D01�4 = h(D1�2;D03�4), and D01�8 = h(D01�4;D5�8), whereD4;D1�2 and D5�8 are carried in the packet signature. The veri�er then calls the veri�cationoperation to determine whether D01�8 is equal to block digest D1�8 in block signature sign(D1�8).The packet is veri�ed if the veri�cation operation returns true, i.e., D01�8 = D1�8.Suppose the third packet is the �rst in the block to arrive. After verifying it, the veri�erknows the following nodes5 in the authentication tree: D3;D4;D1�2;D3�4;D1�4;D5�8 and theblock digest D1�8. These are veri�ed nodes which can be cached. By caching veri�ed nodes, theveri�er only needs to compute each node in the authentication tree at most once.For example, after verifying the third packet, to verify the sixth packet which arrives later,the veri�er computes the digest of the packet received D06, its parent D05�6 = h(D5;D06), and itsgrandparent D05�8 = h(D05�6;D7�8). If D05�8 is equal to the cached node D5�8, the sixth packet isveri�ed.2.3 Performance comparison of chaining techniquesWe performed experiments on a Pentium II 300 MHz machine running Linux, and compared starand tree chaining. We used MD5 as the message digest function [18] for generating 128-bit messagedigests. Tables 2 and 3 show the MD5 computation time for di�erent input sizes. Note that theMD5 computation time is a step function in input size with a step size of 56 bytes. However, for alarge input (1024 bytes or more) the MD5 computation time can be regarded as a linear functionin input size.input size (bytes) 8 16 24 32 40 48 56 64MD5 time (ms) 0.008 0.008 0.009 0.009 0.009 0.009 0.014 0.014input size (bytes) 72 80 88 96 104 112 120 128MD5 time (ms) 0.014 0.015 0.014 0.015 0.015 0.015 0.020 0.020Table 2: MD5 computation time (ms) for small input size.input size (bytes) 128 256 512 1024 2048 4096 8192MD5 time (ms) 0.020 0.032 0.056 0.104 0.201 0.395 0.781Table 3: MD5 computation time (ms) for large input size.For each chaining technique, an authentication tree is �rst built for a block of packets,6 i.e.,each node is computed as the message digest of its children. The time to build an authenticationtree (excluding time to compute packet digests) is called the tree build time. The block signatureis then obtained by signing the block digest at the root. After that, the packet signature of eachpacket is built from the authentication tree and the block signature. The time to build a packet5Some are carried in the packet signature and the others have been computed.6We will use \tree" instead of \tree/star" since star chaining is a special case of tree chaining.6

signature is called packet signature build time. The chaining time for a block at a signer is the sumof tree build time and packet signature build time for all packets in the block (excluding signingtime of the block digest). Table 4 shows the chaining time for a block of packets at a signer.Note that the total signing time for all packets in a block is the block's chaining time plusthe signing time of the block digest, which is 12.7 ms using 512-bit RSA and 5.6 ms using 512-bitDSA. Consider a block of 16 packets. From Table 4, the chaining time is 0.214 ms for a degree twoauthentication tree. The total signing time is 0:214 + 12:7 = 12:9 ms using 512-bit RSA. Thus theaverage signing time for one packet is 12:9=16 = 0:81 ms, which is more than 15 times smaller thanone 512-bit RSA signing operation.To verify packets in a block, an authentication tree is built from packet signatures as packetsarrive. The chaining time for a block at a veri�er is the sum of tree build time and time to verifychaining information in the packet signature of every packet in the block (excluding veri�cationtime of the block signature). The chaining time for a block at a veri�er with caching of veri�ednodes is shown in Table 5. For comparison, the chaining time for a block at a veri�er withoutcaching of veri�ed nodes is shown in Table 6.The total veri�cation time for all packets in a block is the block's chaining time plus theveri�cation time of the block signature, which is 0.40 ms using 512-bit RSA and 7.6 ms using 512-bit DSA. Consider a block of 16 packets. From Table 5, the chaining time is 0.241 ms for a degreetwo authentication tree. The total veri�cation time is 0:241 + 0:40 = 0:64 ms using 512-bit RSA.Thus the average veri�cation time for one packet is 0:64=16 = 0:04 ms, which is 10 times smallerthan one 512-bit RSA veri�cation operation.block size (number of packets)2 4 8 16 32 64 128star 0.014 0.022 0.034 0.063 0.137 0.376 1.283tree degree 2 0.016 0.043 0.100 0.214 0.445 0.912 1.852tree degree 3 0.016 0.033 0.068 0.140 0.285 0.581 1.185tree degree 4 0.016 0.028 0.068 0.133 0.285 0.573 1.174tree degree 5 0.016 0.028 0.060 0.124 0.256 0.527 1.072tree degree 6 0.016 0.028 0.057 0.117 0.248 0.504 1.024tree degree 7 0.016 0.028 0.060 0.119 0.245 0.495 1.012tree degree 8 0.016 0.028 0.058 0.131 0.262 0.531 1.098Table 4: Chaining time (ms) for a block at a signer.block size (number of packets)2 4 8 16 32 64 128star 0.014 0.021 0.030 0.049 0.085 0.158 0.305tree degree 2 0.016 0.047 0.109 0.241 0.499 1.036 2.153tree degree 3 0.016 0.035 0.072 0.150 0.307 0.631 1.312tree degree 4 0.016 0.026 0.070 0.133 0.291 0.584 1.236tree degree 5 0.016 0.026 0.058 0.120 0.251 0.520 1.072tree degree 6 0.016 0.026 0.054 0.104 0.226 0.473 0.980tree degree 7 0.016 0.026 0.053 0.105 0.213 0.439 0.926tree degree 8 0.016 0.026 0.044 0.110 0.221 0.440 0.963Table 5: Chaining time (ms) for a block at a veri�er (with caching of veri�ed nodes).7

block size (number of packets)2 4 8 16 32 64 128star 0.028 0.074 0.198 0.600 1.998 7.158 26.996tree degree 2 0.026 0.100 0.298 0.789 1.958 4.690 10.914tree degree 3 0.026 0.080 0.213 0.570 1.380 3.270 7.668tree degree 4 0.026 0.076 0.250 0.594 1.576 3.530 8.634tree degree 5 0.026 0.076 0.231 0.579 1.412 3.416 7.502tree degree 6 0.026 0.076 0.205 0.569 1.282 3.276 7.368tree degree 7 0.026 0.076 0.197 0.562 1.296 3.070 7.326tree degree 8 0.026 0.076 0.212 0.655 1.542 3.354 8.586Table 6: Chaining time (ms) for a block at a veri�er (without caching of veri�ed nodes).For each chaining technique, a packet signature has two parts, the block signature and thechaining overhead. In general, if a tree is not balanced and full, the chaining overhead sizes ofdi�erent packets are di�erent. Table 7 shows the average chaining overhead size per packet. Thesize of the block signature is not included in Table 7 since it depends on which signature scheme isused (e.g., the block signature is 64 bytes for 512-bit RSA, and 40 bytes for 512-bit DSA).block size (number of packets)2 4 8 16 32 64 128star 17 49 113 241 497 1009 2033tree degree 2 18 35 52 69 86 103 120tree degree 3 18 42 63 87 107 128 151tree degree 4 18 50 78 99 130 148 180tree degree 5 18 50 90 118 147 179 197tree degree 6 18 50 94 142 159 204 232tree degree 7 18 50 102 152 183 219 264tree degree 8 18 50 114 172 204 227 290Table 7: Average chaining overhead size (bytes) per packet.From Table 4, note that for any block size smaller than or equal to 64 packets, star chainingtakes less time at a signer than tree chaining (degrees two to eight).7 However, for a larger blocksize, star chaining takes more time at a signer than tree chaining, because the chaining time for astar is O(m2) and the chaining time for a tree is O(m log(m)) where m denotes block size.Table 5 shows that star chaining takes less time at a veri�er than tree chaining for all blocksizes.From Table 7, note that the chaining overhead of star chaining is much greater than treechaining for block sizes larger than 8. If a small communication overhead is important, packetsignature sizes should be reduced. We recommend the use of degree two tree chaining whichrequires the smallest chaining overhead. (Any improvement in chaining time becomes insigni�cantif the signature scheme being used has a signing/veri�cation time much larger than the chainingtime. See Table 8 and 9 in Section 2.4.)7In Tables 4-6, the increases in chaining time from degree 7 to 8, can be explained by the fact that MD5 computationtime is a step function, and there is a step change in input size from degree 7 to 8.8

2.4 Flow signing and veri�cation proceduresA
ow is signed by partitioning it into blocks of packets, with each block signed using tree chain-ing. For a non-real-time generated
ow, blocks are of the same size m, chosen to be a power ofthe authentication tree degree d. The
ow signing procedure,
owsign(m; d), for a non-real-timegenerated
ow is shown in Figure 3.procedure
owsign(m; d)for each block of m packets, P1; : : : ; Pmcompute the digest of each packet;build a degree d authentication tree for the packets;let root be the block digest (i.e., the tree root);compute the block signature sign(root) by signing root;for each packet Pi in the block, build its packet signature:let p be its path to root;its signature consists of the block signature sign(root),siblings of each node in p, and the packet position;endendFigure 3: Flow signing procedure for non-real-time generated
ows.For a real-time generated
ow, the packet generation rate is time-varying for many applications,such as compressed video and voice-activated audio. For these applications, partitioning the
owinto �xed size blocks may lead to an unpredictable (perhaps unbounded) signing delay. Instead,the
ow is partitioned by �xed time periods, and packets generated in the same time period aregrouped into a block (see Figure 4). The
ow signing procedure,
owsignRT(T; d), for a real-timegenerated
ow, where T is the time period and d is the authentication tree degree, is shown inFigure 5.
period Tperiod T

time

m packetsm packets

chain (m) + Tsigns

1 2

schain (m) + Tsign1 2

Figure 4: Signing a real-time generated
ow.For both real-time and non-real-time generated
ows, the
ow veri�cation procedure, shown inFigure 6, is the same. For the �rst received packet in a block, i.e., the block signature carried inthe packet signature is new to a veri�er, the veri�er computes the packet digest, and every ancestorof the packet digest.8 For the computed block digest (the root of authentication tree), the veri�ercalls the veri�cation operation to verify that it is equal to the block digest in the block signature.If so veri�ed, then all computed nodes and their children are veri�ed and cached.8A node is computed as the message digest of its children which are either computed or carried in the packetsignature. 9

procedure
owsignRT(T; d)for each period Tlet P1; : : : ; Pm be the packets generatedwith digests computed in period T ;build a degree d authentication tree for the packets;let root be the block digest (i.e., the tree root);compute the block signature sign(root) by signing root;for each packet Pi in the block, build its signature as follows:let p be its path to the root;its signature consists of the block signature sign(root),siblings of each node in p, and the packet position;endend Figure 5: Flow signing procedure for real-time generated
ows.For a packet that is not the �rst received packet in a block, the veri�er computes the packetdigest. If the packet digest has been cached and the cached value is equal to the computed packetdigest, then the packet is veri�ed. Otherwise, the veri�er computes every non-cached ancestor ofthe packet digest. For the highest non-cached ancestor, the veri�er computes its parent. If thecomputed parent and its cached value are equal, then the packet is veri�ed and all computed nodesand their children are veri�ed and cached.We implemented the
ow signing and veri�cation procedures, and performed experiments on aPentium II 300 MHz machine running Linux. We used MD5 as the message digest function, andexperimented with both 512-bit RSA and 512-bit DSA as the signature scheme for block signatures.Table 8 and Table 9 show, respectively, the
ow signing and veri�cation rates for 1024-bytepackets. Note that tree and star chaining are 1-2 orders of magnitude faster than the sign-eachapproach. The
ow signing and veri�cation rates increase with block size. However, the rates varyonly slightly with the chaining technique used and with the tree degree in tree chaining. Sincedegree two tree chaining has the lowest chaining overhead (packet signature size), we recommendthe use of degree two tree chaining.Table 10 and Table 11 show, respectively, the
ow signing and veri�cation rates for packets ofsize 16, 512, 1024, or 2048 bytes.9 We used degree two tree chaining with block size sixteen. Fromthe tables, observe that the
ow signing and veri�cation rates decrease as the packet size increases.It is because more time is needed to compute the message digest of a larger packet. The decreaseis more pronounced when the block size used is large, since more time is used to compute packetdigests for a large block than a small block. Observe also that the
ow signing and veri�cationrates increase with block size and the increase is greater for a smaller packet size.2.5 Bounded delay signingConsider Figure 4. Assume that, in period T , at most m packets are generated and their packetdigests computed. The delay for signing a block of packets is bounded byDs = T+chains(m)+Tsignwhere chains(m) is the chaining time for a block of m packets at a signer, and Tsign is the signingtime of the block digest.9For 16-byte packets, we do not compute their message digests; they are used directly to build authenticationtrees. 10

procedure
owverify()for each received packetif the block signature sign(root) in the packet signature is new(i.e., the packet is the �rst received packet in a block) thencompute the packet digest;compute each ancestor of the packet digestas the message digest of its children;let root0 be the computed root (i.e., block digest);if (verify(root0; sign(root)) = false) thenthe packet is not veri�ed;elsethe packet is veri�ed;cache all computed nodes and their children as veri�ed nodes;endelsecompute the packet digest;if (packet digest has been cached) thenif (computed packet digest 6= its cached value) thenthe packet is not veri�ed;elsethe packet is veri�ed;endendcompute all non-cached ancestors of the packet digest;let node be the highest non-cached ancestor computed;compute the parent of node;if (computed parent 6= its cached value) thenthe packet is not veri�ed;elsethe packet is veri�ed;cache all computed nodes and their children as veri�ed nodes;endendendFigure 6: Flow veri�cation procedure (with caching of veri�ed nodes).
11

block size (number of packets)2 4 8 16 32 64 128sign-each 78.6star 152 302 582 1090 1920 3090 4310tree degree 2 153 304 570 1080 1890 3010 4310tree degree 4 153 301 579 1080 1900 3070 4380tree degree 8 153 302 581 1080 1900 3060 4350(a) using 512-bit RSAblock size (number of packets)2 4 8 16 32 64 128sign-each 176star 344 631 1210 2140 3430 4900 5870tree degree 2 337 650 1210 2100 3340 4740 5910tree degree 4 332 655 1190 2070 3340 4710 6000tree degree 8 332 651 1190 2070 3340 4760 6060(b) using 512-bit DSATable 8: Flow signing rate (packets/sec) for 1024-byte packets.
block size (number of packets)2 4 8 16 32 64 128sign-each 1980star 3090 4530 5870 6900 7600 7930 8180tree degree 2 3020 4320 5540 6360 6910 7210 7350tree degree 4 3000 4400 5650 6640 7230 7590 7760tree degree 8 2960 4400 5680 6660 7340 7740 7860(a) using 512-bit RSAblock size (number of packets)2 4 8 16 32 64 128sign-each 127star 243 473 899 1640 2750 4240 5590tree degree 2 243 468 885 1530 2550 3870 4960tree degree 4 240 476 886 1580 2650 4100 5360tree degree 8 243 476 904 1630 2720 4160 5490(b) using 512-bit DSATable 9: Flow veri�cation rate (packets/sec) for 1024-byte packets.

12

packet size block size (number of packets)(bytes) 2 4 8 16 32 64 12816 158 316 630 1250 2440 4720 8800512 157 310 605 1160 2130 3640 56701024 156 305 587 1090 1920 3070 44002048 153 296 552 982 1600 2330 3010(a) using 512-bit RSApacket size block size (number of packets)(bytes) 2 4 8 16 32 64 12816 349 692 1380 2690 5150 9540 16800512 341 669 1270 2310 3940 6100 83701024 336 645 1150 2070 3300 4690 59102048 325 606 1060 1720 2490 3190 3680(b) using 512-bit DSATable 10: Flow signing rate (packets/sec) for degree two tree chaining and block size sixteen.
packet size block size (number of packets)(bytes) 2 4 8 16 32 64 12816 4580 8660 14800 23900 33100 41300 46600512 3600 5630 7740 9560 10800 11600 120001024 3020 4320 5550 6400 6950 7240 73902048 2320 2980 3520 3860 4040 4140 4160(a) using 512-bit RSApacket size block size (number of packets)(bytes) 2 4 8 16 32 64 12816 253 500 1010 1970 3780 7020 12500512 246 485 939 1770 3070 4930 71701024 245 474 894 1590 2660 4010 52602048 238 453 821 1380 2060 2810 3410(b) using 512-bit DSATable 11: Flow veri�cation rate (packets/sec) for degree two tree chaining and block size sixteen.

13

Table 12 shows the delay bound for period T = 50 ms. Note that the delay bound is fairlyinsensitive to the block size since the block's chaining time is much smaller than the block digest'ssigning time.For a given application, with a speci�ed delay bound, Ds, for signing a real-time generated
owat a known packet rate, we can work backwards and derive an appropriate value for the parameterT needed for procedure
owsignRT(T; d). From Figure 4, observe that T must be larger thanTsign + chains(m), and Ds must be larger than 2(Tsign + chains(m)).number of packets generated in period T2 4 8 16 32 64 128tree degree 2 62.6 62.6 62.8 62.8 63.1 63.5 64.6tree degree 4 62.6 62.7 62.7 62.7 63.0 63.2 64.0tree degree 8 62.5 62.6 62.7 62.7 63.0 63.2 63.9(a) using 512-bit RSAnumber of packets generated in period T2 4 8 16 32 64 128tree degree 2 55.7 55.7 55.8 55.8 56.2 56.6 57.6tree degree 4 55.7 55.7 55.8 55.8 56.0 56.3 57.0tree degree 8 55.7 55.7 55.8 55.8 56.0 56.2 57.0(b) using 512-bit DSATable 12: Signing delay bound for period T = 50 ms.2.6 Selecting a digital signature schemeFor non-real-time generated
ows, signing e�ciency is not critical. Thus a signature scheme withan e�cient veri�cation operation, such as RSA, can be used in the
ow signing and veri�cationprocedures. For real-time generated
ows, however, it is critical that both signing and veri�cationare highly e�cient. Furthermore, in choosing a digital signature scheme, we must also considermachine capabilities (sender and receiver), as well as the percentage of processor time available forsigning and veri�cation.Table 13 shows the
ow signing and veri�cation rates using 512-bit RSA and 512-bit DSA for1024-byte packets, degree two tree chaining, and block size sixteen. A Pentium II 300 MHz machinewas used. Rates are shown for di�erent percentages of processor time used for signing/veri�cation.processor time percentage for signing/veri�cation100% 80% 60% 40% 20% 10%RSA signing rate 1090 872 654 436 218 109RSA veri�cation rate 6400 5120 3840 2560 1280 640DSA signing rate 2070 1660 1240 828 414 207DSA veri�cation rate 1590 1270 954 636 318 159Table 13: Flow signing and veri�cation rates (packets/sec) for 1024-byte packets, degree two treechaining, and block size sixteen.Note that using DSA, the
ow veri�cation rate is slower than the
ow signing rate. This isundesirable because receivers/veri�ers are generally less powerful than the signer/sender, e.g., the14

receivers may be personal digital assistants or low-end notebook computers. Using RSA, the
owsigning rate may not be high enough for some applications. Although we can increase the
owsigning and veri�cation rates by using a longer period or a larger block size, neither option isdesirable. A larger block size increases the chaining overhead (packet signature size). A longerperiod increases the delay for signing real-time generated
ows.To obtain a signature scheme better than RSA and DSA for signing/verifying
ows, we proposeseveral extensions to the Feige-Fiat-Shamir signature scheme. The extended scheme, called eFFS,is presented in the next section. The eFFS scheme has a very e�cient signing operation (moree�cient than those of RSA and DSA) and a veri�cation operation as e�cient as that of RSA. Aperformance comparison of eFFS with four other signature schemes (including RSA and DSA) isgiven in Section 4.3 The eFFS Signature SchemeThe eFFS signature scheme is derived from the Feige-Fiat-Shamir signature scheme [3, 4] withseveral extensions. In Section 3.1, we describe the basic Feige-Fiat-Shamir signature scheme. InSection 3.2, we describe an improvement suggested in [12], called small veri�cation key (small v-key) which reduces veri�cation time by an order of magnitude. In Section 3.3, we propose to usea speedup technique suggested by the Chinese Remainder Theorem (crt), which reduces signingtime. In Section 3.4, we propose to use a technique, called precomputation (precomp), whichreduces signing and veri�cation times by using more memory. With precomputation, the signingoperation time is reduced by a factor of two to three using only a few hundred bytes of additionalmemory. Lastly, in Section 3.5, we design an extension to provide adjustable and incrementalsignature veri�cation. With this extension, a signature can be veri�ed at di�erent security levels,i.e., a veri�er can use less resources to verify a signature at a lower security level. Moreover, theveri�cation is incremental, i.e., the veri�er can �rst verify a signature at a lower security level, andlater increase the security level by using more resources. eFFS parameter (k; t)(32; 1) (32; 2) (64; 1) (32; 4) (64; 2) (128; 1)basic FFS 3.75 7.45 6.19 14.83 12.33 11.85small v-key 3.71 7.38 6.42 14.75 12.79 12.45crt + small v-key 3.24 6.41 5.44 12.78 10.83 9.914-bit precomp + crt + small v-key 2.00 3.95 3.03 7.85 5.98 5.118-bit precomp + crt + small v-key 1.48 2.92 2.03 5.79 4.00 3.14Table 14: eFFS signing time (ms) with 512-bit modulus.eFFS parameter (k; t)(32; 1) (32; 2) (64; 1) (32; 4) (64; 2) (128; 1)basic FFS 3.12 6.28 5.94 13.51 11.29 11.14small v-key 0.29 0.58 0.39 1.14 0.71 0.614-bit precomp + small v-key 0.29 0.57 0.36 1.10 0.66 0.558-bit precomp + small v-key 0.28 0.56 0.36 1.09 0.65 0.54Table 15: eFFS veri�cation time (ms) with 512-bit modulus.We implemented the basic Feige-Fiat-Shamir (FFS) scheme and the eFFS scheme (i.e., with15

the improvements and extensions mentioned above) using the large integer arithmetic routinesfrom CryptoLib [8]. Table 14 and Table 15 show the times for signing and verifying (with 512-bit modulus) 128-bit message digests, using di�erent speedup techniques and di�erent eFFS/FFSparameters (k; t).10 The results were obtained on a Pentium II 300 MHz machine running Linux.3.1 Feige-Fiat-Shamir signature schemeIn the basic FFS signature scheme with parameter (k; t) [3, 4], each signer chooses two large primesp and q, and computes modulus n = pq. Then, the signer chooses k integers v1; : : : ; vk (or kintegers s1; : : : ; sk), and compute s1; : : : ; sk (or v1; : : : ; vk) by s2i = v�1i mod n. The signing key isfs1; : : : ; sk; ng and the veri�cation key is fv1; : : : ; vk; ng.To sign message m, the signer does the following steps: (1) choose t random integers, r1; : : : ; rt,between 1 and n, and compute xi = r2i mod n for i = 1; : : : ; t; (2) calculate the message digesth(m;x1; : : : ; xt) where the message digest function h(�) is public knowledge and the message digestis at least k � t bits long; let fbijg be the �rst k � t bits of the message digest where i = 1; : : : ; t,and j = 1; : : : ; k; (3) compute yi = ri � (sbi11 � : : : � sbikk) mod n for i = 1; : : : ; t. The signature ofmessage m consists of fyig for i = 1; : : : ; t and fbijg for i = 1; : : : ; t and j = 1; : : : ; k.To verify the signature of message m, a veri�er computes zi = y2i � (vbi11 � : : :� vbikk) mod n fori = 1; : : : ; t. The signature is valid if and only if the �rst k � t bits of h(m; z1; : : : ; zt) are equal tothe fbijg received.Assuming jvij = jnj and jsij = jnj, where jxj denotes the size of x in bits, both the signingkey and veri�cation key sizes are (k + 1) � jnj bits, and the signature size is t � jnj + k � t bits.The signing/veri�cation key size is independent of t, but the signature size is proportional to t.Table 16 shows the signing/veri�cation key size and signature size of FFS with 512-bit modulus.For example, with (k; t) = (128; 1), the signing/veri�cation key size is 8256 bytes, and the signaturesize is 80 bytes. t = 1 t = 2 t = 4key signature key signature key signaturekt = 64 4160 72 2112 136 1088 264kt = 128 8256 80 4160 144 2112 272Table 16: eFFS signing/veri�cation key size (bytes) and signature size (bytes) with 512-bit modulus.The security level of FFS(k; t) depends on the following: (1) the size of modulus n, (i.e., thesize of the primes p and q), and (2) the value of product kt. A system with a longer modulus ismore secure, and a system with a larger kt product is more secure. If two systems with the samemodulus and same kt product (but di�erent k and t values), then their security levels are about thesame. For a �xed kt product, we can reduce the signature size by using a smaller t (and a largerk). For t = 1, the signature size is minimized, but the signing/veri�cation key size is maximized.Moreover, for a �xed kt product, the signing/veri�cation time is smaller when t is smaller (seeTable 14 and Table 15). Therefore, we recommend to use t = 1 except when adjustable veri�cationis needed.1110Note that the product kt determines the security level of eFFS/FFS for the same modulus. We discuss moreabout parameters (k; t) later in Section 3.1.11Our extension to provide adjustable and incremental signature veri�cation, which is described in Section 3.5,requires t > 1. 16

3.2 Small Veri�cation Key ComponentsIn FFS, the sizes of signing key components fsig a�ect the signing time, and the sizes of veri�cationkey components fvig a�ect the veri�cation time. An improvement idea suggested in [12] is touse small prime numbers as the veri�cation key components fvig and compute the signing keycomponents fsig by s2i = v�1i mod n.12 This improvement (labeled as \small v-key" in Table 14and Table 15) has two advantages. First, the veri�cation time is an order of magnitude smallerthan without this improvement (and the signing time is not a�ected).Second, the veri�cation key size becomes smaller. In practice, for k up to 128, the veri�cationkey components fvig are always less than 216, and each veri�cation key component vi can be storedin 16 bits. Thus, the veri�cation key size becomes jnj + 16 � k bits, and the signing key size isunchanged and remains (k + 1)jnj bits, where jnj is the size of modulus n. For a 512-bit modulusand k = 128, the signing key size is 8256 bytes, and the veri�cation key size is 320 bytes. Since asigning key is private to a signer, the relatively large signing key size does not pose a problem.3.3 Chinese Remainder Theorem SpeedupWe propose to use the following improvement (labeled as \crt" in Table 14), which is based onthe Chinese Remainder Theorem, to speed up signing operation. In FFS, the signing operationinvolves the computing of yi = ri � (sbi11 � : : : � sbikk) mod n where fsig do not change and onlyfrig and fbijg change from message to message. Let f(ri; fbijg; s1; : : : ; sk) denote the arithmeticfunction ri � (sbi11 � : : : � sbikk). Basically, the function f(�) computes the product of some largeintegers, and yi is the integer f(�) mod n. Since only yi is needed (and the actual value of f(�) isnot needed), the multiplication operations in f(�) can be done in mod n for e�ciency.Moreover, as n = pq, by using Chinese Remainder Theorem, yi (= f(�) mod n) can be com-puted from two smaller integers ai = f(�) mod p, and bi = f(�) mod q. In particular, the ChineseRemainder Theorem says that yi = (ai � q � p�1q + bi � p � p�1q) mod n where p�1q = p�1 mod qand q�1p = q�1 mod p. Therefore, instead of computing yi directly by one f(�) function call withmultiplication operations in mod n, a signer �rst computes ai and bi by two f(�) function calls,one with multiplication operations in mod p, and the other in mod q. Then, the signer computesyi from ai and bi by Chinese Remainder Theorem. Since there are many multiplication operationsin f(�) and multiplication operations in mod p and mod q are more e�cient than in mod n, thesigning time is decreased.This Chinese Remainder Theorem improvement can only be used by a signer because knowledgeof the factors of modulus n is required. It reduces the signing time by 12% to 20% (see Table 14).The amount of additional memory needed is only a few hundred bytes for storing a few largeintegers (with 512-bit modulus).3.4 Precomputation: Memory-Time Tradeo�One important feature of FFS is that a signer/veri�er can trade memory for signing/veri�cationtime. We propose to use the following improvement (labeled \precomp" in Table 14 and Table 15)to speed up signing/veri�cation operation by using more memory at signer/veri�er.To illustrate the basic idea of this improvement, consider the signing operation with k = 4.To sign a message, a signer computes yi = ri � (sbi11 � : : : � sbi44) mod n, for i = 1; : : : ; t. Sinces1; : : : ; s4 do not change from message to message, and bi1; : : : ; bi4 are either one or zero, the signer12Actually, [12] suggests using the �rst k prime numbers as the veri�cation key components fvig. However, sincenot every prime number p satis�es the condition that there exists an integer s such that s2 = p�1 mod n, we use the�rst k prime numbers that satisfy the condition as the veri�cation key components.17

can precompute and store the product (mod n) of every non-empty subset of fs1; : : : ; s4g. LetSb1:::b4 denote the precomputed product sb11 � : : :� sb44 mod n. Then, to sign a message, the signercan compute yi by ri � Sbi1:::bi4 mod n.For large k, it is not practical to precompute the product (mod n) of every non-empty subsetof fs1; : : : ; skg. Instead, the signer partitions fs1; : : : ; skg into smaller sets and precomputes eachof them. If each smaller set contains four si, then it is a 4-bit precomputation. Similarly, if eachsmaller set contains eight si, then it is an 8-bit precomputation.Compared to the basic FFS (with small v-key), 4-bit precomputation plus crt speedup reducesthe signing time by 45% to 55%, and 8-bit precomputation plus crt speedup reduces the signing timeby 60% to 70% (see Table 14). For 4-bit precomputation with k = 128 and 512-bit modulus, a signerneeds to store 128=4�(24�1) = 480 products (mod n), and 480�512 bits or 31 kilobytes additionalmemory is required. The additional memory required by 8-bit, 12-bit, and 16-bit precomputationare 261 kilobytes, 2.88 megabytes, and 33.6 megabytes, respectively. Given that a low-end desktopPC or a notebook computer has at least 16 or 32 megabytes of memory, the additional memoryrequired by 8-bit precomputation does not pose a problem. In the remaining experiments, we usesigning with 8-bit precomputation plus crt speedup.Although similar precomputation can be used in veri�cation operations, it is not e�ective withthe small v-key extension. This is because with the small v-key extension, small primes are usedas public key components, and their products can be computed very e�ciently. For example, withthe small v-key extension, 8-bit precomputation in veri�cation operations reduces the veri�cationtime by less than 10% (see Table 15). In the remaining experiments, we use veri�cation with smallv-key and no precomputation.3.5 Adjustable and incremental veri�cationIn multicast or group communications, receivers typically have di�erent amounts of resources, andthe resources available to a receiver for veri�cation vary over time. It is thus desirable to havean adjustable and incremental signature veri�cation operation. An adjustable veri�cation allowsa receiver/veri�er to verify a message at a lower security level using less processor time. Anincremental veri�cation allows a receiver/veri�er to verify a message at a lower security level �rst,and later increase the security level by using more processor time (e.g., if the message is important).Since the security level of a signature scheme depends on its parameters, e.g., the modulussize, an obvious approach to provide adjustable and incremental veri�cation is to use multiple keys(with di�erent modulus sizes) to generate multiple signatures for di�erent security levels. To verifyat a lower security level, the veri�cation key with a shorter modulus size is used to verify thecorresponding signature. This approach is simple but very ine�cient. In the following, we designan extension to FFS that provides adjustable and incremental veri�cation e�ciently.The security level of FFS(k; t) depends on the product kt as well as the modulus size. Generallyspeaking, if two systems have the same modulus and same kt product, then their security levels areabout the same. Our extension to provide adjustable and incremental veri�cation is to use t greaterthan one, and to include fxig for i = 2; : : : ; t in signatures. This is called a t-level signature.13This extension is as secure as the original scheme because xi = y2i � (vbi11 � : : : � vbikk) mod n fori = 2; : : : ; t can be computed easily from the original signature, which consists of fbijg and fyig,and the veri�cation key fv1; : : : ; vk; ng of the signer.To verify a t-level signature of message m at security level l of t (where l � t), a veri�er doesthe following: (1) compute zi = y2i � (vbi11 � : : : � vbikk) mod n for i = 1; : : : ; l, and (2) verify that13Note that the original (1-level) signature does not provide adjustable and incremental veri�cation.18

z2; : : : ; zl are equal to x2; : : : ; xl respectively, and the �rst k� t bits of h(m; z1; x2; : : : ; xt) are equalto the fbijg received.To increase the veri�cation security level from l1 to l2, a veri�er does the following: (1) computezi = y2i � (vbi11 � : : : � vbikk) mod n for i = l1 + 1; : : : ; l2, and (2) verify that zl1+1; : : : ; zl2 are equalto xl1+1; : : : ; xl2 respectively.The size of a t-level signature is kt + (2t � 1) � jnj bits. For a 512-bit modulus and productkt = 128, a 1-level signature is 80 bytes and a 2-level signature is 208 bytes.kt productkt = 32 kt = 64 kt = 1281-level signature 1.58 2.06 3.192-level signature 3.02 4.084-level signature 5.89Table 17: eFFS t-level signature signing time (ms).security kt productlevel kt = 32 kt = 64 kt = 128level 1 of 1 0.302 0.388 0.598level 1 of 2 0.321 0.401level 2 of 2 0.603 0.752level 1 of 4 0.336level 2 of 4 0.612level 4 of 4 1.164Table 18: eFFS veri�cation times (ms) at di�erent security levels.(a) 2-level signatureTo level 1 level 2From level 0 0.401 0.752From level 1 0.368 (b) 4-level signatureTo level 1 level 2 level 3 level 4From level 0 0.336 0.612 0.884 1.164From level 1 0.288 0.564 0.841From level 2 0.287 0.567From level 3 0.291Table 19: eFFS incremental veri�cation time (ms) for kt = 128.Table 17 shows di�erent t-level signature signing times. For the same kt product, the signingtime increases as the t value increases. However, the signing time is still smaller than using multiplekeys for di�erent security levels. For example, the 2-level signature signing time, which is 4.08 msfor kt = 128, is smaller than the time to sign two (original 1-level) signatures, one for (k; t) = (64; 1)and the other for (k; t) = (128; 1), which is 2:06 + 3:19 = 5:25 ms.Table 18 shows the (adjustable) veri�cation times at di�erent veri�cation security levels. Ta-ble 19 shows the (incremental) veri�cation times from one level to a higher level. For kt = 128 anda 2-level signature, a veri�er can �rst verify a message at level 1 of 2 using 0.401 ms processor time,and later increase to level 2 (of 2) by using 0.368 ms additional processor time.
19

4 Comparison with other Signature SchemesIn this section, we compare eFFS(64,1) and eFFS(128,1) (with small v-key and 8-bit precomp ex-tensions) to four other signature schemes available from CryptoLib [8], namely: DSA [15], ElGamal[6], RSA [19], and Rabin [17]. We compare their key and signature sizes, and signing and veri-�cation times. Then, we compare their signing and veri�cation rates for 1024-byte packets wheneach is used as the signature scheme in our
ow signing and veri�cation procedures presented inSection 2. Experiments were performed on a Pentium II 300 MHz machine running Linux. Fourdi�erent modulus sizes, 384, 512, 768, and 1024 bits, were used in the comparison. (Note that itis di�cult to compare the security levels of di�erent signature schemes even if they use the samemodulus size.)4.1 Key and signature sizes modulus size (bits)384 512 768 1024RSA signing key 96 128 192 256(e=3) veri�cation key 48 64 96 128signature 48 64 96 128Rabin signing key 96 128 192 256veri�cation key 48 64 96 128signature 48 64 96 128DSA signing key 136 168 232 296veri�cation key 164 212 308 404signature 40 40 40 40ElGamal signing key 144 192 288 384veri�cation key 144 192 288 384signature 96 128 192 256eFFS signing key 3120 4160 6240 8320(64,1) veri�cation key 176 192 224 256signature 56 72 104 136eFFS signing key 6192 8256 12384 16512(128,1) veri�cation key 304 320 352 384signature 64 80 112 144Table 20: Signing key, veri�cation key, and signature sizes (bytes) of di�erent signature schemes.Table 20 shows the signing/veri�cation key and signature sizes. The signing keys are from 96to 384 bytes in all schemes except eFFS whose signing keys are much larger, from 3,120 to 16,512bytes. Note that a signing key is private to a signer. We do not expect the relatively large eFFSsigning keys to pose a problem for sources/signers of packet
ows.14In RSA and Rabin, veri�cation keys are from 48 to 128 bytes. In DSA, ElGamal, and eFFS,veri�cation keys are slightly larger, from 144 to 404 bytes. Since one pair of signing and veri�cationkeys can be used to sign/verify many packets, a veri�cation key does not have to be changedfrequently, and a veri�cation key as large as 400 bytes would not pose a problem.14Such signing keys are indeed too large for small devices, such as smartcards, but it is unlikely that these deviceswould generate packet
ows. 20

The signature of DSA is the smallest and is 40 bytes for all modulus sizes. For all of the otherschemes, the signatures are larger and about the same size, 48 to 256 bytes. In particular, thesignature sizes of eFFS and the popular RSA are about the same.4.2 Signing and veri�cation times modulus size (bits)384 512 768 1024RSA sign 6.2 12.7 36.2 79.4(e=3) verify 0.26 0.40 0.70 1.14Rabin sign 11.3 19.5 47.5 95.9verify 0.14 0.20 0.38 0.56DSA sign 3.9 5.6 10.2 16.3verify 5.1 7.6 14.7 24.2ElGamal sign 5.1 6.8 12.3 18.9verify 24.4 51.9 157.5 350.3eFFS sign 1.44 2.07 3.25 5.02(64,1) verify 0.31 0.39 0.55 0.80eFFS sign 2.25 3.18 5.34 8.13(128,1) verify 0.49 0.61 0.79 1.06Table 21: Signing and verifying times (ms) of di�erent signature schemes.Table 21 shows the signing and veri�cation times for a 16-byte message (digest).15 DSA andElGamal have been designed to achieve e�cient signing (e.g., for use in smartcard applications),and RSA and Rabin have been designed to achieve e�cient veri�cation. From Table 21, note thatthe signing operations of DSA and ElGamal, with times from 3.9 to 18.9 ms, are much more e�cientthan those of RSA and Rabin, with times from 6.2 to 95.9 ms. On the other hand, the veri�cationoperations of RSA and Rabin, with times from 0.14 to 1.14 ms, are much more e�cient than thoseof DSA and ElGamal, with times from 5.1 to 350.3 ms.By comparison, eFFS has a signing operation even more e�cient than those of DSA and ElGa-mal, and a veri�cation operation as e�cient as that of RSA. This combination of the most e�cientsigning and highly e�cient veri�cation makes eFFS the best choice for most applications.4.3 Flow signing and veri�cation ratesTable 22 shows the
ow signing and veri�cation rates of our
ow signing and veri�cation procedures(for 1024-byte packets, degree two tree chaining, block size sixteen, and 100% of processor time of aPentium II 300 MHz machine). Both DSA and ElGamal have low
ow veri�cation rates, renderingthem inappropriate for receivers with limited resources, such as personal digital assistants andlow-end notebook computers. Both RSA and Rabin have low
ow signing rates, rendering theminappropriate for real-time generated
ows, such as live video/audio applications. By comparison,eFFS provides high
ow signing rates suitable for real-time generated
ows while its
ow veri�cationrates are also very high.15We use e=3 in RSA to obtain its fastest veri�cation time without a�ecting its signing time.
21

modulus size (bits)384 512 768 1024RSA
ow signing 1910 1090 415 193(e=3)
ow veri�cation 6730 6360 5590 4930Rabin
ow signing 1190 743 323 165
ow veri�cation 7440 7130 6680 6170DSA
ow signing 2740 2110 1310 871
ow veri�cation 2230 1630 935 606ElGamal
ow signing 2330 1850 1140 740
ow veri�cation 602 294 99 45eFFS
ow signing 4640 3940 3020 2260(64,1)
ow veri�cation 6670 6410 6010 5440eFFS
ow signing 3750 3060 2180 1570(128,1)
ow veri�cation 6140 5930 5540 4980Table 22: Flow signing and veri�cation rates (packets/sec) for 1024-byte packets, degree two treechaining, and block size sixteen.5 ConclusionsWe investigated the problem of signing/verifying delay-sensitive packet
ows to provide data au-thenticity, integrity, and nonrepudiation for Internet applications. We have designed
ow signingand veri�cation procedures, based upon a tree chaining technique, to meet the following require-ments: (i)
ow signing is e�cient and delay-bounded (for real-time generated
ows), (ii)
owveri�cation is highly e�cient (for receivers with limited resources), (iii) packets in a
ow are indi-vidually veri�able (for best-e�ort multicast delivery), (iv) packet signatures are small (for a smallcommunication overhead), and (v) veri�cation at a receiver is adjustable to di�erent security levelsand can be carried out incrementally (for receivers with limited resources).We implemented our
ow signing and veri�cation procedures and performed experiments tocompare di�erent chaining techniques. From experimental results, we recommend the use of degreetwo (binary) tree chaining since it requires the smallest packet signature size (i.e., smallest com-munication overhead) while its signing and veri�cation rates are comparable to the rates of otherchaining techniques. Our
ow signing and veri�cation procedures are very e�cient and achieve oneto two orders of magnitude improvement compared to the sign-each approach.To further improve our procedures, we propose several extensions to the Feige-Fiat-Shamirdigital signature scheme [3, 4] to speed up both the signing and veri�cation operations, as well asto allow adjustable and incremental veri�cation. The extended scheme, called eFFS, is comparedto four other digital signature schemes, RSA [19], Rabin [17], DSA [15], and ElGamal [6], on thesame computing platform (Pentium II 300 MHz machine running Linux).The signing operation of eFFS is more e�cient than those of the other four schemes. Theveri�cation operation of eFFS is as e�cient as that of RSA (tie for a close second behind theveri�cation operation of Rabin). In addition to e�cient signing and veri�cation, we have extendedthe eFFS scheme to allow a receiver to e�ciently carry out adjustable and incremental veri�cation.Such a capability is useful for large-scale multicast applications with a variety of receivers includingsome with limited resources.
22

References[1] Tony Ballardie. Scalable Multicast Key Distribution, RFC 1949, May 1996.[2] Stephen E. Deering. Multicast Routing in Internetworks and Extended LANs. In Proceedingsof ACM SIGCOMM '88, August 1988.[3] Uriel Feige, Amos Fiat, and Adi Shamir. Zero Knowledge Proofs of Identity. In Proc. of the19th Annual ACM Symposium on Theory of Computing, 1987.[4] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identi�cation andSignature Problems. In Advances in Cryptology | CRYPTO '86, pages 186{194, 1987.[5] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia Zhang. A ReliableMulticast Framework for Light-Weight Sessions and Application Level Framing. In Proceedingsof ACM SIGCOMM '95, 1995.[6] T. El Gamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Loga-rithms. In Advances in Cryptology | CRYPTO '84. Springer-Verlag, 1985.[7] Rosario Gennaro and Pankaj Rohatgi. How to Sign Digital Streams. In Advances in Cryptology| CRYPTO '97, 1997.[8] J. B. Lacy, D. P. Mitchell, and W. M. Schell. CryptoLib: cryptography in software. InProceedings of USENIX: 4th UNIX Security Symposium, October 1993.[9] Leslie Lamport. Constructing digital signatures from a one-way function. Technical ReportCSL 98, SRI Intl., 1979.[10] Ralph C. Merkle. A Digital Signature based on a Conventional Encryption Function. InAdvances in Cryptology | CRYPTO '87, 1987.[11] Ralph C. Merkle. A Certi�ed Digital Signature. In Advances in Cryptology | CRYPTO '89,1989.[12] Silvio Micali and Adi Shamir. An Improvement on the Fiat-Shamir Identi�cation and SignatureScheme. In Advances in Cryptology | CRYPTO '88, pages 244{247, 1990.[13] Suvo Mittra. Iolus: A Framework for Scalable Secure Multicasting. In Proceedings of ACMSIGCOMM '97, 1997.[14] Suvo Mittra and Thomas Y.C. Woo. A Flow-Based Approach to Datagram Security. InProceedings of ACM SIGCOMM '97, 1997.[15] National Institute of Standards and Technology. Digital Signature Standard. NIST FIPS PUB86, U.S. Department of Commerce, May 1994.[16] C. Partridge. Using the Flow Label Field in IPv6, RFC 1809, June 1995.[17] M.O. Rabin. Digitized signatures and public-key functions as intractible as factorization.Technical Report LCS/TR-212, MIT Laboratory for Computer Science, 1979.[18] R.L. Rivest. The MD5 Message Digest Algorithm, RFC 1321, April 1992.23

[19] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and publickey cryptosystems. Communications of the ACM, 21(2):120{126, 1978.[20] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure Group Communications UsingKey Graphs. In Proceedings of ACM SIGCOMM '98, 1998.[21] L. Zhang, S.E. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A new resourceReSerVation Protocol. IEEE Network Magazine, 9(5), 1993.

24

