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AbstractCaches improve the speed of programs by reducing the number of accesses to the slowly main memory.Unfortunately, most programs which work with arrays su�er from cache conicts. Cache conicts slow downthe programs and counteract the advantages of the cache. The speed of a�ected programs can be improved byavoiding cache conicts. This thesis concentrates on the question how to avoid cache conicts with softwaremethods. I describe� the state of the art software methods� how to pad for tiling� a new padding algorithm (Odd-Padding)� a new technique to avoid cache conicts (Tetris)� experiments which compare these techniquesFurthermore, I prove the odd-padding algorithm correct.
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1 INTRODUCTION 21 IntroductionOne of my supervisors told me I should write here:� caches are good� cache conicts are bad� this thesis tells you how you can avoid cache conicts with softwaremethods Calvin LinHe has probably not thought of the possibility that I could cite him. Nev-ertheless, these few lines get really to the point, but let me explain them inmore detail. tiles
your array

Data stored in the cache can be accessed much faster than data storedin memory. Therefore it is possible to speed up programs which deal withlarge arrays by tiling, also known as blocking. The idea of tiling is to workonly on small blocks or tiles which do �t into the cache even if the wholearray itself does not. The loops in a program are changed to work on thesesmall tiles instead of the whole array. When the tile �ts into the cache, thedata once read from memory can be reused without accesses to the slowermain memory. 3-way cache
main memory= one cache line= set of three cachelines= cache mapping func-tion

An example for tiling found in Lam et al. [3] is matrix multiplication.Figure 1 shows two versions of that algorithm, one (a) without tiling andone (b) with tiling. The tiled version can reuse a fraction of a line of the Zarray at the k loop and a whole block of Y at the i loop no matter how bigthe matrix is. For the non-tiled version, in contrast, the cache must holdat least a line of Z to be able to reuse it and a whole array to reuse Y.Tiling is reasonably easy to implement and, therefore, often realized.Unfortunately it is not simply a matter of choosing the tile small enoughto �t into the cache. The problem is the way the cache maps memoryaddresses to cache lines. One may think the cache replaces the content ofthat cache line that was unused for the longest time. Wrong! Multi-waycaches do this only for sets with a very small number of cache lines. Directmapped caches do not do it at all. Instead caches choose the cache line byapplying the modulo function. For memory address adr and cache size CSthe number of the cache line used is (adr mod CS). your arraytiletile lines do overlaptile lines lie on each other
cachetile lines do not overlapFor tiling this means that whether a tile can be completely stored inthe cache or not is left to chance. See the �gure on the right for what mayhappen. Therefore, tiling must be accompanied by a method which makessure that the whole tile is stored in the cache. This accompanying methodavoids cache conicts. Please, have a look at box 3 on page 5. It explainssome words and phrases which are used in this text.This paper describes methods for avoiding cache conicts in the context of tiling. The aim of this thesisis to teach you how to avoid cache conicts. The rest of this text is organized as follows:Section 2 discusses the papers that I believe are most important in this area.Section 3 describes padding in more detail | one of the most powerful methods for avoiding cache conicts.This part of the text is written in a \programmer's guide" style to keep it most readable. A newalgorithm (Odd-Padding) to calculate the amount of pad needed is presented, as well.Section 4 proves the Odd-Padding algorithm correct.



1 INTRODUCTION 3Box 1: What is new?Which contributions do I make to this area of Computer Science? The following list tries to give a verydetailed answer.� I describe in box 6 the Brute-Force-Padding algorithm. I have not seen this algorithm in anotherpaper but it is likely that it is known because it is so simple.� Section 3 is a Programmer's Guide for Padding. While other researchers do discus padding |namely Panda, Nakamura, Dutt and Nicolau [5] and Rivera and Tseng [7] and others | they donot go into such a level of detail and do not put all the pieces together. In particular, the discussionof the access rules (sections 3.3 and 3.7), the discussion of odd base addresses and odd tile sizes(sections 3.4 and 3.5) and the discussion of padding for hierarchical caches (section 3.9) appear herefor the �rst time. Moreover, Rivera and Tseng [7] can not guarantee reuse when the arrays becomelarger than the cache, whereas I discuss only that case in section 3.10.� The Odd-Padding algorithm (see box 8) is new. This includes the proofs of the algorithm (seesection 4) as well as it's average and worst case behavior (see box 7).� Everything about Tetris (see section 5) is completely new.Box 2: Variable namesadr = memory address CS = cache size TL, TH = tile length, heightAadr = base address of A CLS = cache line size Tx, Ty = tile coordinatesBadr = base address of B AL = array length UTL = user tile lengthUBadr = user base adr. of B UAL = user array length B. . . = second cache . . .The unit of the values is usually the cache line length, that is, the values in the formulas are multiplesof CLS unless explicitly mentioned otherwise. All �gures, formulas and programs in this paper assumerow-major order memory layout of multidimensional arrays | the way C stores arrays in memory.Section 5 describes Tetris | a new method for avoiding cache conicts. Tetris can handle situations wherepadding fails.Section 6 shows some experiments which compare the di�erent methods.Box 1 tells you in detail which contributions I make in this thesis. Box 2 explains some variables which Iuse throughout the text.
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= access to a line for the �rst time= access to an area for the �rst time= reuse of a line= reuse of an area

Z X Yjkijkijjkk

(a)

(b) for kk := 1 to N by B dofor jj := 1 to N by B dofor i := 1 to N dofor k := kk to min (kk +B�1 ,N ) dofor j := jj to min (jj +B�1 ,N ) doZ [i ,j ] += X [i ,k ] � Y [k ,j ]

for i := 1 to N dofor k := 1 to N dofor j := 1 to N doZ [i ,j ] += X [i ,k ] � Y [k ,j ]
= �= �= �
= �
= �= �
= �
= �

Figure 1: The original (a) and the tiled version (b) of matrix multiplication from [3]. The original must read2N3 +N2 words from memory when the arrays are so big that not even a line can be stored in the cache(worst case). The tiled program accesses only a small tile of size B in the inner loops. If B is small enoughthe cache can hold this data and the program need only 2N3=B +N2 direct memory accesses.
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Box 3: Glossaryarray layout see memory layoutcache A small but very fast memory bu�er used to store data which hasbeen read from or should be written to the main memory. The hopeis that the cache speeds up programs because accesses to it are muchfaster than accesses to the main memory. See section 1.cache conicts see cache interferencecache interference When accessing some data, other useful data isthrown out of the cache. The name self-interference means thatdata loaded into the cache throws useful data from the same variableout of the cache; in contrast, cross-interference occur when usefuldata from another variable is kicked out.

cache
cachearrayself-interference

cross-interference BAcache line When the cache reads or writes data from or to the mainmemory it always reads or writes a whole block | even if only oneelement of that block is accessed by the processor. These blocks arecalled cache lines and usually between 4 and 64 bytes long. Eachcache use one certain size.cache misses Accessed data is not in the cache and must be fetched fromthe main memory. Capacity misses or compulsory misses are causedintentionally, for example when moving from one tile to the next one.Conict miss means that data is not in the cache which should bein the cache. The source of Conict misses is cache interference.cache thrashing The worst case cache interference is called cachethrashing. Cache thrashing happens when the processor consecu-tively access di�erent memory locations which are mapped to thesame cache line in the cache. This causes the cache to non-stop loada cache line from one location and throw it out immediately to re-place it by a cache line from another location. Loops a�ected fromcache thrashing are often a order of magnitude slower than una�ectedloops.data layout see memory layoutmemory layout The way data | usually arrays | are stored in mem-ory. Arrays commonly stored either in row-major order (C) orcolumn-major order (FORTRAN). See �gure at the right. The Tetrismemory layout is described in section 5.1.
main memoryrow-major orderarraycolumn-major orderping pong see cache thrashingreuse Data which is accessed is in the cache. A cache line is four timesreused if it is accessed four times while the cache line is in the cache(after it had once been loaded).stencil operation A certain way to access arrays. See �gure 6 for anexample.



2 THE STATE OF THE ART 62 The State of the ArtHere I discuss papers from other researchers which I believe are the major contributions to this area. Almostall papers describe an idea to avoid cache interferences. I will try to point out the strong and the weak sidesof these suggestions.2.1 A historically interesting paperOne of the �rst ideas to avoid cache interferences selects the tile size in such a way that there are no self-interferences. Lam, Rothberg and Wolf present an iterative algorithm in their paper [3]. Given the lengthof an array their algorithm tries to �nd the largest square tile that does not cause self-interferences. Theadvantage of this method is that it is not necessary to change the way the array is stored in memory (memorylayout).The disadvantage is an often very small tile so that a large part of the cache remains unused. In theworst case when the array length is a multiple of the cache size, as described in box 4, the tile size becomesone element i. e. the programmer must accept that very bad performance. Therefore, it is not surprising thatLam, Rothberg and Wolf �nally came to the conclusion that the best results were obtained by copying thedata which should be reused into a continuous bu�er.2.2 Finding the optimal tile sizeThe method of Lam et al. [3] often fails to utilize large parts of the cache because it searches only for squaretiles. Coleman and McKinley present an iterative algorithm [2] which searches for the biggest rectangulartile. Figures 2, 3 and 4 show how the length of an array inuences the tile size. Rectangular tiles can usemost or all of the cache without changing the way the data is stored in memory.A program employing this algorithm must accept any given tile shape, which may be very small andlong, or very at. Moreover, as with the algorithm from Lam et al., Coleman and McKinley's method failsto handle the worst case where the array length is a multiple of the cache size.2.3 Copying the data into a continuous bu�erTemam, Granston and Jalby [8] suggest a way to copy the data as proposedearlier by Lam et al. [3]. The idea is to copy those data which are oftenaccessed (reused) into a bu�er. Since the bu�er is continuous and not biggerthan the cache, there is no cache interference possible when accessing it.Moreover, this bu�er can store any data even from di�erent variables. Thisway, virtually all cache interference can be avoided. cachecopy bu�erarray C array A
array B

Note, however, that the copy operation itself may cause cache conicts(interferences). Furthermore, data which is read in a loop must be copiedbefore the loop. Data that is written or changed must be copied back afterthe loop. All of this slows down the program. Therefore, Temam, Granstonand Jalby's algorithm analyzes the cost of copying very carefully and decideswhether it is worth doing it or not in each given situation.2.4 Changing the way the data is stored in memory: PaddingInstead of simply accepting the way the data is stored in memory padding changes the data layout by addingunused dummy elements. There are two kinds of padding:intra-variable padding makes the lines of an array longer by adding acertain amount of dummy elements to the end of each line. Done cor-rectly, intra-variable padding avoids self-interference and can guarantee
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AL = 1:25 � CStile size = 0:25 � CS � 43rd line2nd line1st linemapping of the 4th linemapping of the 3rd linemapping of the 2nd linemapping of the 1st line of the arraycache1st line of tile2nd line of tilepart of the 2nd line ofaround the cachetilearraythe array which wraps 4th line
Figure 2: An array with row-major memory layout | which is the way C stores arrays | is mapped intothe cache. A line of the array which reaches the end of the cache wraps around and continuous from thebeginning of the cache. To distinguish between the end of one line and the beginning of the next one, there isa small vertical gap between the individual lines in the �gure. A program which accesses only the white tilepart of the array uses the whole cache without causing any cache interferences. Note: the maximal length ofa tile TL is (AL mod CS) but a shorter tile length is often preferable. For example if (AL mod CS) is greaterthan CS=2 the tile with maximal TL would consist of only one single line.

tile = 0:25 � CS � 4AL = 2:25 � CS tile = 0:125 � CS � 8AL = 1:125 � CS AL = 1:5 � CStile = 0:5 � CS � 2 tile = 1:0 � CS � 1AL = 1:0 � CSFigure 3: The length of the array inuences the length of a tile. Note how the array length | the numberwritten below the arrays | results in di�erent tile sizes. Compare this picture also to �gure 2. Di�erentmethods to avoid self-interferences have been suggested. Methods which do not change the data layoutlike those from Lam et al. [3] and Coleman and McKinley [2] may return very small and degenerate tiles.Methods which do change the length of the array like padding from Panda et al. [5] can make any intendedtile | no matter what length and height | �t into the cache, provided the cache is large enough to hold atile of that size.



2 THE STATE OF THE ART 8Box 4: The worst case data layoutHow much a program actually su�ers from the layout of its data depends on many factors.Among these factors are the way the program accesses the data, the size of the arraysinvolved, the size of the tiles if it uses tiling, the start address of one array in relation toother arrays and hardware features like stream bu�ers. But experience has shown thattwo situations heavily slow down almost all programs. These situations are: cachearraycacheAB
� The length of a line of an array is an exact multiple of the cache size | assuming row-major order | that is, AL = i �CS where i 2 N. This causes heavy self-interferencebecause all elements of a column of that array are mapped to the very same cacheline | or small set of cache lines if the cache is a multi-way cache.� The distance between the base address of two similar arrays is an exact multipleof the cache size i. e. jAadr � Badrj = i � CS where i 2 N. This can cause heavycross-interference because elements of arrays A and B with the same coordinates aremapped to the same cache line | or small set of cache lines if the cache is a multi-waycache.These situations can be considered to be the worst case because they can slow downprograms by an order of magnitude compared with programs which su�er only from a\usual" amount of cache interferences. Therefore this bad cases should, wherever possible,be avoided. Methods to avoid them are copying [8] and padding [6]. Here padding usesonly a very small pad; just enough to avoid the worst case without a guarantee for reuseof speci�c data.

AL= 1:75 � CStile size = 0:25 � CS � 4
array

cache

Figure 4: Here is an example where the chosen tile length is di�erent from the maximal possible tile length.The maximal possible length TL would be (AL mod CS) = 0:75 �CS. The �st line of this tile would use 75%of the cache, so that there wont be enough space in the cache to store a complete second line. The resultwould be a degenerated tile which consists of only one line and uses only three-fourth of the cache. Thechosen tile length is TL = 0:25 � CS and the tile height TH is four lines. Therefore this shorter tile uses thewhole cache.For convenience, the arrays in my �gures start at the beginning of the cache. This is, of course, unlikelyto happen in practise. The start or base address of the array may fall into any position of the cache. A tileline may even be cut o� at the end of the cache and wrap around to continue at the beginning of it, so thata part of the tile line is at the end of the cache and another part at the beginning of it. However, the arraybase address is irrelevant for self-interference as long as it starts at a cache line border.



2 THE STATE OF THE ART 9reusability of data. That is: data which can be reused will not beaccidentally thrown out of the cache.inter-variable padding changes the base or start address of a variable byadding dummy elements before that variable. Inter-variable paddingchanges the distance between several variables or arrays in memory and,therefore, can avoid or reduce cross-interference if done in the right way. array A
array B

intra-variable padinter-variable pad
Despite its obvious disadvantage | wasted memory | padding is one of themost powerful techniques to avoid cache interference. Rivera and Tseng [6]present a padding technique which only avoids the worst cases, as describedin box 4. Their method needs only very little \wasted memory" for paddingbecause they do not intend to guarantee the reuseability of any data i. e. theydo not care whether or not a whole tile can be stored in the cache withoutcausing cache interference.A much more powerful method has been presented by Panda, Nakamura, Dutt and Nicolau [5]. Theiralgorithm searches iteratively for the smallest intra-variable pad, so that a given tile can be accessed withoutself-interference. They also describe (very shortly) how to extend their method to access several arrays inthe same loop by using inter-variable padding. These arrays must have the same size and must be accessedin a fairly similar way. This is a clear shortcomming of padding. Furthermore, this method uses much morememory than Rivera and Tseng's technique. Section 3 discusses padding in more detail.2.5 Changing the way the data is stored in memory: TetrisObserve that an array which is small enough to �t completely into the cachedoes not cause self-interference. Therefore, the main idea is to split a bigarray into many small pieces. Tetris distributes the small pieces in memoryin such a way that several arrays can be accessed in the same loop withoutcausing cross-interference. This is done by dividing the memory in cache sizechunks. The small pieces are then distributed into these chunks so that eachchunk has a piece from each array, and the pieces always occupy the samepart of the chunks. See �gure 5 for an example.The advantage is that Tetris allows accessing di�erent arrays with di�erent sizes, di�erent tile sizes anddi�erent access patterns. The drawback is the relative di�culty in implementing Tetris. I recommend usingpadding before Tetris. Another shortcomming is its wasted memory, similar to that of padding. Tetris isdescribed in section 5.2.6 Changing the way the data is stored in memory for stencil operationsStrictly speaking, the idea described here is padding again, with an emphasis on changing the base addressof the involved arrays (inter-variable padding). The di�erence is the way the data is accessed and reused.With tiling, a tile is selected and all data read once from memory are stored in the cache until the next tile isprocessed. In a stencil operation a certain access pattern (the stencil) sweeps over the whole array as shownin �gure 6. The intention is to load an element of the array into the cache when the stencil �rst hits it andto hold it in the cache until the stencil has been moved entirely over that element.Rivera and Tseng [7] | in an extension of their earlier work [6] | presenta method which arranges several arrays in such a way that there will be asfew conicts as possible. These arrays must be accessed by stencil operations.The basic idea is to change the base addresses of the arrays in such a waythat the accesses to one array are mapped into the cache without fallingbetween accesses of some other array. Their method does not use too much cachecachecacheA A AB B BB B B BB B B BBdummy memory because they do intra-variable padding only for the worstcase. Moreover, they fail to guarantee reuse when the length of the arrays



2 THE STATE OF THE ART 10array A array B array C
cache size CS cache size CScache size CS main memoryFigure 5: The idea of Tetris is to split the arrays into small pieces and to uniformly distribute the piecesinto memory chunks which are exactly as large as the cache.gets large. Stencil operations can be combined with tiling and padding.Hence I describe them in more detail in section 3.2.7 Other ideasThere are many other ideas which change loops or the way the data is stored in memory (data layout). Theyusually neither guarantee that data once read is stored in the cache for future access (reuse) nor that therewill be fewer cache conicts. Instead, these ideas are based more on the believe that, in the general case,they will improve performance somewhat.To represent them all I picked the paper by Cierniak and Li [1]. Theiridea is to bring data that is accessed in one iteration of the inner loop as closetogether as possible. They change both the way the data is stored in memoryand the loop interations to achieve this goal. To store an array they choosebetween row-major order or column-major order. Their method can handle main memoryrow-major orderarraycolumn-major orderseveral loops and arrays. Moreover, they show an example where changingthe loops and the data layout together does give better results than eitherof these alone. However, they do not consider whether this leads to reuse ornot.2.8 An analysis of real programsMcKinley and Temam [4] analysed the cache e�ciency of the Perfect Benchmarks. Here are some of theirresults:� The prevalent kind of reuse in the entire program is accessing the same element of a cache line severaltimes. In contrast the commonly held assumption says: \The reuse of other elements of a cache line isdominant."� Loops have a more balanced reuse than whole programs. They usually access the same element again,as well as other elements of a once loaded cache line.� When a loop causes the processor to wait for a memory access, the cause is usually a cache interference.This is in opposition to the common assumption that a loop spends most of the time waiting for capacitymisses.



2 THE STATE OF THE ART 11array Aarray B A[i,j]B[i-1,j]B[i,j-1]B[i,j+1]B[i+1,j]
A[i,j] B[i+1,j]cachemoving directionfor i := 2 to N�1 dofor j := 2 to N�1 doA [i�1 ,j ]:=(B [i�1 ,j ]+B [i +1 ,j ]+B [i ,j�1 ]+B [i ,j +1 ])/4

B[i-1,j] B[i,j+1]B[i,j-1]Figure 6: This is a stencil operation as discussed by Rivera and Tseng in [7]. The access to array B is thestencil which is moved over the whole array. The trick is to choose the base addresses of the arrays in sucha way that the A-access does not fall between the B-accesses. This way, the data once loaded from memoryby B[i+1,j] can be reused three times without reading it from memory again.Note that the array A must have the same length as B although the frame of A remains unused. Ifthis would not be the case then the relative position of the A-access in the cache would change (minus twoelements) when moving to the next line of the arrays.� Waiting on capacity misses, occurs mainly when the processor proceeds from one loop to the next.� The largest number of successful accesses to the cache | that is: the cache holds already the data |happens within loops.� The cache fails most often when the execution moves from one loop to the next.� In many cases only one word is accessed from a cache line and the rest remains unused. This causesbad cache utilization.� Most accesses to memory have a very regular pattern.Moreover, they found that the tile size chosen by tile size selection algorithms, e. g. Lam et al. [3], is toosmall to make tiling e�ective.



3 THE PADDING FOR TILING GUIDE 123 The Padding for Tiling GuideTiling or blocking is a well known technique to increase the speed of programs which work with arrays. Tiledalgorithms make better use of the cache and thereby decrease the time a program needs to access its data.But tiling alone is not enough. It must be accompanied by a method which ensures that the data actuallystay in the cache.Here, I explain how you pad your arrays so that your tiled loops do not cause cache interference. Idescribe what can be done with padding and where padding fails. This section is written as a programmer'sguide. I assume you have a program which works on arrays and you want to speed up this program bymaking better use of your cache. I further assume you have already tiled your loops or you are going to doso. This is not a guide for tiling! You need to know how to tile a program (see �gure 1 for a tiling example).3.1 How do you start: things you should knowWhy do it? to make most e�cient use of your timeWhat to do? know some tricks and tips

$LL00031:ldt f0, (r2)ldt f16, (r1)subq r3, 1, r3
addq r1, 8, r1
mult/d f2, f16, f1
addt/d f0, f1, f0
stt f0, (r2)addq r2, 8, r2

bgt r3, $LL00031
�

��This is a list of general hints. These hints help you to speed up and to debug your program. They are notdirectly related to padding but you should consider them before you do padding.� Analyze your program before you start to optimize it. The critical point here is to really use an analysistool. These tools tell you how much time your program spends in each statement. If you do not usesuch a tool you will �nd yourself spending much time to optimize code which does not account formuch execution time.� It is always a good idea to keep the elements of an array accessed in a loop as close together as possible.This way it is more likely that data is still or already in the cache when you access it.� If you can combine several loops to a single one and the loops access the same arrays, do so. Thismakes it more likely that data is already in the cache when accessed. This is often as e�ective aspadding and tiling.� When you can replace an array by a smaller one or, even, by a simple variable, do so. You reduce thenumber of memory accesses and avoid spoiling the cache. This is often more e�ective than paddingand tiling.� Be sceptical about optimizations done by your compiler. Loop optimization and tiling are believedto be very well understood and, consequently, implemented in most compilers. For some reason oranother compilers tend to \optimize" those loops you have already tiled and optimized by hand. Thisoften degenerates performance.Let your compiler generate an assembler listing and print it on paper. No, I do not want you tounderstand details! Just draw an arrow from each jump or branch instruction to its destination label.This way, you should fast �nd the loops produced by your compiler.� Know your hardware. When you start to optimize for your cache, you made a decision to optimizefor your hardware. So know the game pieces you are playing with. It is not enough just to know howlarge your cache is.� If your hardware can read and write without going through the cache, use that facility for data whichis not accessed again. If you do so, you avoid spoiling the cache with data which can not be reused.� When you optimize for a cache, optimize for the smallest top-level cache, �rst. It is the fastest andgives you the best speed.



3 THE PADDING FOR TILING GUIDE 13Box 5: The process of paddingPadding avoids cache conicts by making your array longer and change it's base address. First, there aretwo things you need to know (see also box 8 on page 20):� UAL: the user array length | the minimum length of your array.� UTL: the user tile length | the minimum length of a tile.Then padding tells you:� AL: the real array length | that is UAL plus the required intra-variable pad.� TL and TH : the real tile length and height | TL is UTL plus zero or more unused elements.� Aadr and Badr: the base addresses of you arrays.Figures 2, 3 and 4 may create the impression that your chosen array length UAL implies a tile size TL.The algorithms from Lam, Rothberg and Wolf [3] and Coleman and McKinley [2] actually go this waybut the resulting tile size is often very degenerated.Padding works exactly the other way around: once you have chosen your user tile length UTL it tellsyou which array length AL you should use (where AL � UAL). That is: padding chooses you array lengthso that you get your intended tile size.Depending on which padding algorithm you use, the real tile length TL is subjected to some restrictions.Therefore, you may need to change your intended tile length UTL to TL so that TL meeds the restrictions.In the text, for didactic reasons I �rst tell you how to calculate the array length AL given TL in section 3.2.Later, I describe how you �nd TL given UTL (sections 3.4 and 3.5). You need to change the base addressof your arrays only if you work with several arrays. This is described in section 3.6.� You do not need to pad arrays which are so small that they �t completely into the cache.� Think in cache lines. Your cache works with whole cache lines not with single array elements.� Note that reads and writes slow down your program. Most people think only about read accesses whenoptimizing but write accesses can cause as much trouble as read accesses.� It is exceedingly hard to debug cache behavior because you cannot see into your cache. If you do notuse an analyze program you will most likely not even recognize when your program's speed is hurt bybad cache usage. A trick is to convert the addresses of the memory accesses into cache line numbers(adr mod CS) and to print them.In the rest of this section I assume you have a direct mapped cache. If you have a multi-way cache, divideits size by the number of ways and use that value as cache size CS ; e. g. a 3-way cache with 1536 cache linesgives CS = 512. If you have several caches use the size of the smallest one. If not stated di�erently I assumeall lengths are in cache lines | that is: the size of the cache and the length of an array or tile is given incache lines. If your computer uses cache lines with di�erent lengths, use the longest one. Heights are givenin lines and never in cache lines.I have no experience with virtual mapped caches. Therefore, the methods presented in this paper may ormay not work for virtual mapped caches. You need to take care of what ever is necessary to make paddingwork with that kind of caches; consider especially the virtual page length and the table look aside bu�er.3.2 How do you pad a single two-dimensional array?Why do it? to avoid self-interference



3 THE PADDING FOR TILING GUIDE 14What to do? align your array base address at a cache line border and extend the line length of the arrayThere are two things you need to do:1. make your array start at a cache line border2. extend the length of all lines of your arrayIn sections 3.4 and 3.5 you learn why you need to align the array at a cache line border. It is not alwaysnecessary to start an array at a cache line border (see box 6 for a counter example). On the other hand,aligning an array at a cache line border costs you only a few byte and it does not do any harm if you do itunnecessarily. Therefore, it is wise to start all arrays at a cache line border.If a cache line holds CLS elements of your array and the base address foryour array is adr (in array elements) then you can calculate the next higheraddress which is aligned at a cache line border, using this function: base address= array elementsmain memorymain memorycache linesAadr(adr; CLS) = adr + (CLS � (adr mod CLS)) mod CLSNote: the outer modulo-function is not surplus (consider the case where(adr mod CLS) is 0). You need to allocate CS � 1 elements more for yourarray, to have enough space for the alignment.Now, you must extend the length of the lines of your array to avoid self-interference (see �gure 7). Iassume row-major memory layout, if your array is stored in column-major order then you need to extendthe height of the columns. This kind of padding is called intra-variable padding. At the moment, there aretwo algorithms to select a pad length. One is described in Panda et al. [5], and the other is my invention:Odd-Padding. Here I describe the Odd-Padding algorithm.You need to ful�ll the following requirements1:� The size of your cache2 is a power of two i. e. CS 2 f1; 2; 4; 8; 16; 32; 64; : : :g.� Your cache line size is a power of two i. e. CLS 2 f1; 2; 4; 8; 16; 32; 64; : : :g.� You have chosen a tile length TL which is also a power of two and is given in multiples of cache lines.� You know that your array must be at least UAL cache lines long.Then the height of your tile | in lines | is: TH = CSTLYou do not need to use all lines. TH is just the upper maximum. The length of your array must be anodd multiple of the tile length i. e. AL = iTL where i 2 f1; 3; 5; 7; 9; 11; 13; : : :g. That AL must be an oddmultiple of TL is the core of the Odd-Padding algorithm and based on a property of the modulo-function(see section 4.1 for a proof). You can use this formula to calculate such a length for your array:AL(UAL; TL) = UAL + (2TL � ((UAL + TL) mod (2TL))) mod (2TL)The new array length AL may be up to 2TLCLS � 1 elements longer than the initial array length UAL.(Recall: TL is the tile size in cache lines, CLS is the cache line size in elements. Therefore, TLCLS is thetile size in elements.) Confused? How about an example?1If the �rst two requirements do not meet your situation, you need to look at the theorem of section 4.2 to �gure out howto handle your case. Requirement three is weakened in sections 3.4 and 3.5.2I assume a direct mapped cache. See the end of section 3.1 for how to calculate CS if you have a multi-way cache.
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tile
array length AL = 3.2TLcache size CS = 8TLtile height TH = 8 linesunpadded array

cacheconict unused

cache
padpadded array array length AL = 5TLcache size CS = 8TLtile height TH = 8 linespad = 1.8TLFigure 7: Here is an example of the e�ect of intra-variable padding. In the top �gure, the array is notpadded. Only two of its eight tile lines are mapped into the cache without causing cache interference. Alarge part of the cache remains unused.In the bottom �gure, the same array has been padded to the next odd multiple of the tile size. All tilelines are mapped into the cache without any interference and the whole cache is used.Example 1: Padding for a two dimensional arrayAssume the following situation:� Your cache line size CLS is 8 elements.� Your cache size CS is 128 cache lines (that is 1024 elements).� You tile length TL is 4 cache lines.� You want to use an array with a length of UAL = 32 cache lines and a height of 256 lines.The padded length of your array must be an odd multiple of the tile length:AL(32; 4) = 32 + (8� ((32 + 4) mod 8)) mod 8 = 36You need to create an array with 256 lines, each line has 36 cache lines, that is 288 elements per line. Notethat AL=TL = 36=4 = 9 is odd as required.It remains to allocate that array and to align its base address at a cache line border. The array has256ALCLS = 73728 elements but you need to add CLS � 1 = 7 elements for the aligning purpose, so thatyou allocate 73735 elements.



3 THE PADDING FOR TILING GUIDE 16adr = alloc( 73735 )(Note: I assume here that the alloc-function returns a physical address. If the virtual page length is amultiple of the cache size then the virtual address can be used, too.) Assume the operating system returnsyou address adr = 12345. You need to use the start of the next cache line as the base address of your array:Aadr(12345; 8) = 12345+ (8� (12345 mod 8)) mod 8 = 12352Aadr = 12352 is the base address for your array. The size of your array is 256 lines with 288 elements. Thetile length is TLCLS = 4 � 8 = 32 elements and your tile height is CS=TL = 128=4 = 32 lines.This array, for example, could be the Y array of the tiled matrix multiplication from �gure 1 if the tilesize B is 32. Note: the cross-interference with arrays X and Z would not be avoided, only the self-interferenceof array Y would be removed.For padding you must change these parts of your program: the allocation of your array as described above,all accesses to that array to take into account the new array length and the new array base address, and theloops | where possible | so that they work on your array in tiles which are TLCLS elements long and THlines high.From the text of this section you may have correctly concluded that you can save memory by choosingthe tile length TL small. Note however that your hardware may bene�t from long tiles, especially if you havestream bu�ers. My experience shows that short tile length degenerate program speed on computers withstream bu�ers.3.3 How can you access that array?Why do it? to get the optimum out of padding and tilingWhat to do? know the rules about accessing your arrayLet me �rst de�ne what the tile base coordinate is. It is simple: the tilebase coordinate (Tx, Ty) is the coordinate of the leftmost and topmost arrayelement in a tile. arraytile base coordinate (Tx, Ty)tileThe basics of tiling are easy: once you access an element of a tile, the cache line which holds that elementis loaded into the cache. That cache line stays in the cache until the tile is moved to some other place of thearray. Therefore, you should access a once loaded cache line as often as you can before you move the tile toanother position. This also implies the converse: if you access cache lines just once, tiling and padding willnot improve the speed of your program.An example for good tiling is the access to the Y array in the tiled version of the matrix multiplicationalgorithm from �gure 1. In the i loop, all elements of the same tile of the Y array are accessed over and overagain. Once for each di�erent value of i. The elements of a tile are loaded from memory when �rst accessedand afterwards are always read directly from the much faster cache.Unfortunately, things are not always so easy. Here are some rules whichyou need to pay attention to:� All your memory accesses must go to that tile and must stay in theboundary of it. When you access another memory location, a cache linebelonging to the tile is kicked out of the cache and must be reloadedfrom the slowly main memory when accessed later, no matter whetheryou access the same array which you have tiled, another array or even anon-array variable. In section 3.6 I tell you how to access several arrayswithout causing interferences. cache lines
cache lines sharedby two tile lines cache

tile with three lineswhich do not startat a cache line borderarray
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Box 6: Brute-Force-PaddingBrute-Force-Padding is another method for intra-variable padding. The disadvantage of Brute-Force-Padding is that you need to use a pad up to the length of your cache minus two times the tile length. Thisis too much pad for Brute-Force-Padding being useful in practise. But it still may be used for theoreticalconsiderations or in very rare programming situations.The advantage of Brute-Force-Padding is that it can deal with odd situations. Cache size, arraylength and tile size must not even be multiples of a cache line size. Brute-Force-Padding chooses the arraylength to be either AL = iCS + TL where i 2 N or AL = iCS � TL where i 2 N n f0g. Consider thisall-odd-example: array user tile length UTL= 1.75CLSarray size AL = 11.75CLSreal tile length TL= 2.75CLSpossible tile base coordinates =any coordinate/no restrictionscache size CS = 9CLScache lines cache

The length of this array is a multiple of the cache size plus the length of the tile i. e. AL = CS + TL =9CLS + 2:75CLS. The e�ect is that tile line 1 is mapped precisely behind tile line 0. Tile line 2 behindtile line 1 and so on. . .Furthermore, the real tile length of the example array is the user tile length plus a cache line size i. e.TL = UTL + CLS = 1:75CLS + 1CLS. Therefore, there will always be a cache line border between theend of one line of the tile and the next one. This allows the tile base x-coordinate to start at any arbitaryposition and it permits the array to start at any arbitary position in a cache line.Of course, you can create such a tile length and array length with padding. Here is how it works: (LetUAL be the array length you want and UTL the desired tile length, all values are given in array elements)Consider these questions:1. Does your array start at a cache line border?2. Is your desired array length UAL a multiple of the cache line size CLS?3. Is your desired tile length UTL a multiple of the cache line size?4. Do you want to move the tile base x-coordinate only to multiples of the cache line size?If you can answer all of the above questions with \yes" then your tile size is TL = UTL. If youanswer some questions with \no", or if you are unsure, your must use tile size TL = UTL+CLS .The maximal height of the tile is TH = bCS=TLc: The length of your array must be:AL = if t < UAL mod CS then UAL � (UAL mod CS) + t+ CSelse UAL � (UAL mod CS) + twhere t = if TL < UAL mod CS � CS � TL then CS � TL else TLNote: theorem (42) is an instance of this formula and is proven in section 4.5.The draw back of Brute-Force-Padding is your need to add up to the length of your cache minus twotimes the tile length and minus one element to every array line AL � UAL � CS � 2TL � 1.



3 THE PADDING FOR TILING GUIDE 18Box 7: How expensive is padding?For padding, you pay mainly with storage space. Here is how much memory you lose in the worst case(all variables are given in elements):cache line alignment all methods CLS � 1inter-variable padding all methods CS � 1Brute-Force-Padding (CS � 2TL)� 1intra-variable padding Odd-Padding 2TL � 1panda et al.'s DAT (CS � 2TL)� 1Panda et al. [5] do not write how much pad their DAT algorithm uses in the worstcase. From experiments I know that it uses much more pad in the worst casethan the Odd-Padding algorithm (see also section 3.11). Since the Brute-Force-Padding algorithm would always �nd a solution for the parameters used in the DATalgorithm, the DAT algorithm will at least �nd the same solution. Therefore, Iuse the worst case of the Brute-Force-Padding algorithm as the worst case of theDAT algorithm.
?

Another important question is: how much faster will your program be? Unfortunately it is exceedinglyhard to answer that question. It mainly depends on howmuch your program su�ers from cache interferencebefore you do padding, how your hardware works and how good your implementation of padding is |debugging cache problems is very di�cult.It would be helpful to know how much other programs win in average but padding is relatively newand I do not know any reliable data, yet. My best guess is that a padded loop will make at least 5% inmost cases where padding makes sense and over 50% in very rare cases.� The positions where you can move the tile base coordinate to are re-stricted. To be precise: you can move the tile y-coordinate Ty to anyline you want | as long as it stays in the array, of course. If you move Tyto a far away corner of the universe, these nasty space-time-anomalieswill occur and you and your computer may be swallowed by black hole.The problem is the Tx coordinate of your tile. It can only be moved toa cache line border. Since you have aligned the array base address at acache line border | now you see why you need to do so | Tx must bea multiple of CLS. If the base x-coordinate of a tile does not fall on acache line border, the start of one tile line and the end of another onewill fall into the same cache line and give rise to cache-interference. Insections 3.4 and 3.5 I describe how to get rid of this restriction.Note: the frequent case where the tile is moved horizontally in such a way arrayarray
remain in the cacheelementsold tilenew tilethat the new tile starts where the old one ends is allowed because the tilelength is a multiple of the cache line size.When you move the tile base coordinate to a new position, so that theold tile overlaps partly the new one, the elements in the overlapping regionwill stay in the cache and do not need to be reloaded.3.4 How do you pad for tiles with odd base coordinates?Why do it? to use tiles which are not aligned at cache line borders



3 THE PADDING FOR TILING GUIDE 19What to do? enlarge the tile by adding unused elementsWhat if you need to move the tile base coordinate to di�erent positions which tileadditional elementsUTL CLSare not aligned at a cache line border? Assume you wish to use a tile lengthUTL which is a multiple of the cache line size CLS and not necessarily apower-of-two. The case where your intended tile length is not even a multipleof CLS is handled in section 3.5.You need to make the real tile length TL some elements longer than UTLbefore you calculate the array length, using the method given in section 3.2.That is: you pad the tile length with dummy elements which you do not reallyuse. You must make TL at least one cache line longer than your intendedtile length. That is, if UTL and TL are given in multiples of CLS : Odd-padding does not make bestuse of the cache when UTL is nota power of two. Assume:UTL = 5; CS = 32odd-padding:TL = 8; TH = 4brute force padding (see box 6):TL = 5; TH = 6Brute force padding can utilizetwo tile lines more in this case.TL = UTL + 1You may add more than one multiple of CLS . This is especially helpful whenyou use the Odd-Padding algorithm and you need to make TL a power oftwo. Note, however, that the Odd-Padding algorithm may not necessarilyutilize the cache best when you do so (see the counter example on the right).You calculate the array length AL with this new, longer TL using the formulaof section 3.2.
cache lines

cache
tile with three lineswhich do not startat a cache line borderarrayone cache line padunused elements avoidcache interferenceIt is important to understand that you are not allowed to use | that is toaccess | these additional elements. These unused elements make sure thatthere is a cache line border between any tile line. Moreover, if you extendUTL by at least one cache line size, you do not need to align your array ata cache line border because your tile base coordinates may then start at anyarbitrary position.3.5 How do you pad for tiles with odd sizes?Why do it? to use tiles which are not a multiple of the cache line sizeWhat to do? enlarge the tile by adding unused elementsMy reason for including this section is to prevent people from making a simple mistake. When you have auser tile length UTL which is not a multiple of the cache line size CLS you cannot always choose the nextmultiple of the cache line size as your tile length TL. Here, you can learn why you cannot do it and how youcan �nd a good tile length.In general what you need to do is: extend your intended tile length UTL to the next multiple of CLSand add another CLS as pad. For example let UTL be 22 elements and CLS = 8 elements. Extending UTLto the next multiple of CLS gives 24 and further adding one CLS on it results in a real tile length of TL = 4cache lines or 32 elements. As formula this is (UTL and CLS are given in elements and TL is given in cachelines): TL(UTL; CLS) = (UTL + (CLS � (UTL mod CLS)) mod CLS))=CLS + 1As in section 3.4 you are not allowed to access these additional elements and you can add more multiples ofCLS to TL if you want to. You can move the tile to any arbitrary base coordinate and, hence, do not needto align the array at a cache line border.There is a special case where you do not need to add the additional cache line size. This case occurswhen gcd(UTL mod CLS ; CLS) = (UTL mod CLS)and you do not move the tile base coordinate to any other position than:(i(UTL mod CLS); j) where i; j 2 N



3 THE PADDING FOR TILING GUIDE 20Box 8: Padding | a quick overviewUTL, UAL you know your array length and your tile lengthTL, TH from your intended tile length you calculate the necessary real tile length TLand the tile height (sections 3.4 and 3.5)AL knowing TL and UAL you calculate the padded array length (section 3.2)Aadr, Badr you allocate your arrays and align the �rst at a cache line border (section 3.2)(if necessary) and then calculate the base address of all further arrays (if any)relative to the address of the �rst one (section 3.6)Note that your array must also start at such a position. If this case meets your situation, you can use thisformula to calculate your tile size:TL(UTL; CLS) = (UTL + (CLS � (UTL mod CLS)) mod CLS))=CLSLet me �rst explain this formulae and then why a smaller tile size is enough.Example 2: When can you use smaller tiles?Write UTL as fraction | the way children do it | if there is a one on top of the fraction, after shortening,then you can use the later formula for TL. Here are some examples:UALpossible baseas fractionx-coordinate 814 iCLS14 CLS 518 iCLS18 CLS 33 CLS 78 CLS 238 CLS4 5There must be a one312 iCLS12 CLS3.5CLS 8.25CLS 5.125CLS 3.75CLS 5.875CLS2.375CLS
Now, let me explain why you can use a shorter tile in some cases. A tileline with odd length uses one or two cache lines only partially, the leftmostor the rightmost or both of them. Tiles with lines which use always only onecache line partially can use shorter real tile length. Tiles which use sometimesboth the leftmost and the rightmost cache line partially need a cache linemore (see the example at the right). The possible x-coordinates play also arole. If the UTL = 3:5CLS tile could be moved in 0:25CLS steps, it wouldalso sometimes use both cache lines at its border partially and, therefore,would need a real tile size of (TL = 5)3.

) TL = 4CLSUTL = 3 12CLS
UTL = 2 34CLS) TL = 4CLS

= tile linecache linesNote that I did not prove any of my claims of sections 3.4 and 3.5.3.6 How do you pad for several arrays?Why do it? to avoid cross-interference when accessing several arrays in the same loop3For usage with the Odd-Padding algorithm you would need to use TL = 8 because TL must be a power of two.
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array B
cache

array A

single array

Figure 8: Here, I explain the relationship between padding for one array and padding for several arrays. Allarrays in this �gure are �ve times as long as a tile line. The cache is eight tile lines long. The padded arrayin �gure 7 has the same relation between array length and cache size.The tile of a single array (top) has eight lines. When using two arrays (bottom), these eight tile linesare distributed between these two arrays, so that each array has exactly four lines. Array A uses the topfour tile lines of the single array and array B uses the bottom four lines. Distributing the tile lines this wayavoids cross-interference between the two arrays. The trick is to �nd the rigth base address for array B.What to do? pad the base address of the arrays (inter-variable padding)The basic idea here is to distribute the available tile lines among several arrays by arranging their baseaddress appropiately. This is done by inter-variable padding | through addition of unused elements at thebegin of the array. There is a strong relation to the one-array case (see �gure 8).Assume you want to access n arrays. Let these arrays have numbers 0 (the �rst one) to n � 1 (the lastone). Each array must have the same length AL and use the same tile length TL and tile height TH . Hereis how you do it:1. First, �nd the appropiate tile length TL by refering to sections 3.4 and 3.5. If you want to use thealgorithm of Panda et al. [5], a tile length which is a multiple of the cache line size CLS will do it. Ifyou want to use the Odd-Padding algorithm from section 3.2 you need a tile length which is a powerof two.2. Since you use n arrays, the height of a tile is:TH = � CSnTL�All arrays must use the same TL and TH .
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= memory used by other applications= inter-variable pad= elements of the arrays which are not in tiles= tile lines (di�erent patterns)
CS

CS
main memoryarray A array B

2nd tile line of B1st tile line of Bmoved by 2CS3rd tile line has beenreal address of theoreticalpadded base adr. of B (Badr)inter-variable pad for Bby alloc()-function (UBadr)start address of B returned
theoretical position of the2nd tile line of A1st tile line of Aat a cache line borderpad to align array Aby alloc()-function (adr)start address of A returned

cache3rd tile line of A

Figure 9: Inter-variable padding works by moving the base addresses of the arrays around. The arrays arethree times as long as a tile and the cache is four times as long as a tile line. The long vertical lines inthe main memory show where a cache mapping starts/ends. Note that the distance between the start of acache mapping and a tile line is exactly the distance which determines where the tile line is mapped into thecache. For example the second tile line of array A starts exactly at a cache mapping begin in main memory.Consequently, it is mapped at the beginning of the cache.The dark gray parts are inter-variable padding. For simplicisity intra-variable padding is not shown inthis �gure. The base address of array A has been padded to align the array at a cache line border. Thebase address of array B has been padded to the start of this theoretical 3rd tile line. Note that array B isautomatically aligned at a cache line border because this 3rd tile line starts always at whatever array A isaligned to.3. With the new tile length, calculate the array length AL, using the Odd-Padding algorithm from section3.2 or the method from panda et al. [5]. It is important that all arrays have the same length.4. Allocate the �rst array (A) and align its base address Aadr at a cache line border:Aadr(adr; CLS) = adr + (CLS � (adr mod CLS)) mod CLSadr is the address | in array elements | which the alloc()-function of the operating system returns,when you allocate the array. You need to allocate CS � 1 elements more for your array, because thealignment leaves so much elements unused. See section 3.2 for an example. There is an exception tothis rule: if you have chosen TL appropriately and section 3.4 or 3.5 waive the requirement to alignthe array at a cache line border then you do not need to do it.5. Now, you allocate the remaining arrays 1 to n� 1. You calculate the base address using this formula:Badr(Aadr; UBadr; o) = if (o+Aadr) mod CS < UBadr mod CSthen UBadr � UBadr mod CS + (o+Aadr) mod CS + CSelse UBadr � UBadr mod CS + (o+Aadr) mod CS



3 THE PADDING FOR TILING GUIDE 23where o = (THALv) mod CSYou must allocate CSCLS � 1 elements more per array because so much inter-variable pad may beneeded. UBadr is the address the alloc()-function returns to you. v is the number of the array youare allocating (1 to n� 1). Aadr is the padded address of the �rst array.Clearly, the trick is to �nd the right pad for the arrays 1 to n � 1. How does it work? The above Badrfunction will result in something like Aadr + iCS + o. iCS does not matter for the cache mapping and canbe ignored. Assume the case where n is 4 and the tile height TH is 8. The resulting addresses would be:Aadr + (0 � 8AL) mod CS for array 0Aadr + (1 � 8AL) mod CS for array 1Aadr + (2 � 8AL) mod CS for array 2Aadr + (3 � 8AL) mod CS for array 3That is: array 0 uses tile lines 0{7 of a single array. Array 1 starts exactly where the 8th tile line of a singlearray would go and, therefore, uses tile lines 8{15 of that imaginary single array. Array 2 starts exactlywhere the 16th tile line of a single array would begin and uses tile lines 16{23. Array 3 uses tile lines 24-31of that theoretical single array (enjoy also �gure 9).3.7 How can you access several arrays?Why do it? to avoid cross-interference and get the maximum out of paddingWhat to do? know the rulesThe rules are the same as those stated in section 3.3. To keep this papersmall and to avoid boring the reader I do not repeat them here. There is oneadditional new rule when handling several arrays. This rule goes like this:For all arrays accessed at the same time, i. e. in the same loop, you mustuse the same base coordinate for all tiles. See �gure 10 for what happenswhen you violate this rule. This rule is a severe restriction of the usefulnessof padding. If this restriction is a problem, you my want to try one of thesemethods to avoid cache interference: copying (Temam et al. [8]) or Tetris.
array A array B

The tile base coordinate is a concept which I introduced to explain howyou must handle your arrays. It is nothing which you need to tell yourhardware or operating system about. You simply access the arrays in the de-scribed way. Your hardware will then operate correctly (. . . er . . . hopefully).3.8 How do you handle multi-dimensional arrays?Why do it? to avoid cache interference when accessing arrays with morethan two dimensionsWhat to do? chop the array into two-dimensional planesIf you need to work on arrays with more than two dimensions, simply dissectthem into a number of two dimensional planes and pad and access them asdescribed in the previous sections. Sometimes you will �nd yourself in asituation where you need to access several | but not all | planes at once.I will show you on an example how you can handle this:Assume you have a 3D-array with 6 planes but you access only three ofthem at the same time. First you access planes 0, 1 and 2. Next 1, 2, 3



3 THE PADDING FOR TILING GUIDE 24cross-interference because atile line from each array is mapped tosame location in the cache

array B
cache

array AFigure 10: The accesses to the arrays in this example do not use the same tile base coordinates for botharrays and, therefore, cause cache interference. Compare this with �gure 8.Box 9: The Odd-Padding algorithm | a quick overview� your tile length and your cache size is a power of two� your array and your tile start always at a cache line border� your tile height is the cache size divided by the tile length� your array length must be an odd multiple of your tile lengththen 2, 3, 4 �nally 3, 4, 5. How do you pad this? Assume your cache canhold 16 tile lines, then for three arrays each tile has a height of 5 lines andone line remains unused. Further I assume you have padded the array lengthappropriately.You pad the �rst three planes (0, 1, 2) as if you had only these threearrays using the method described in section 3.6. You pad plane 3 using theBadr-function with the same o you used for array 0. Then you pad plane 4with the o you used for array 1 and �nally you pad array 5 with the o ofplane 2. The result is this:
tile lines0{45{910{14 plane 3, 4, 5
plane 0, 1, 2012 312342 345

access patternsplane # padded using o of array tile lines reserved0 0 0{41 1 5{92 2 10{143 0 0{44 1 5{95 2 10{14This way, there will be no interference with any access combination men-tioned above. For example when you access planes 2, 3, 4 then tile lines10{14, 0{4 and 5{9 are used respectively. There are no overlapping tile lines.



3 THE PADDING FOR TILING GUIDE 253.9 How do you pad for hierarchical caches?Why do it? to make best use of all caches you haveWhat to do? sorry, man, there is (almost) no way . . .First of all, let me clarify: in this section I discuss only padding for hierar- processorsmall cachebigcachemain memorydatareadchical tiling for caches. Hierarchical tiling can be used for other stu� butthen it uses totally di�erent mapping functions and, therefore, the methodsdescribed in this text do not apply. tile accessed �rst isaccessed latter againLet me assume you have two caches: a small and fast one and one whichis bigger and slower but still faster than your memory. The idea behindhierarchical tiling is: to use not only the small cache but also the big one tospeed up your program. You need to have or create an access pattern likethis: �rst you access one tile, then you change the tile base coordinates andaccess some other tiles, later you will come back and re-access the �rst tile.Hierarchical tiling tries to hold the data of the �rst tile in the big cache, sothat it need not to be read from memory when the tile is accessed the secondtime.For hierarchical tiling to make sense your big cache must be� much faster than the memory� much bigger than the �rst cache (McKinley and Temam [4] found that the cache size must be mademuch bigger to gain a signi�cant win.)But this is a combination you usually do not �nd in real computers. The \big" cache is either small and fastor large and slow.Nevertheless, I know possibilities to combine padding with hierarchical tiling but there is only one whichmakes sense to me and it is a very restricted case. I explain you that case here but my advise is to avoidhierarchical tiling as long as you have no reason to believe that it will be a great advantage in your case.Most likely you will �nd yourself spending much time and gaining only a small win. If you still believehierarchical tiling is an advantage for you, consider reading about Tetris because Tetris has more powerfulmeans to utilize several caches.Here is how you pad for two caches: the smaller/faster cache has size CS , and tile size TH , TL with tilebase coordinates Tx, Ty. The bigger cache has size BCS and tile size BTH , BTL and tile base coordinatesBTx, BTy.� The size of the big cache, BCS , must be a power of two.� The tile in the big cache must have the same length as the tile in the small cache, i. e. BTL = TL.(I told you: it is a restricted case!)� The parameters of the small cache must meet all requirements of the Odd-Padding algorithm, that is:{ The size of your small cache is a power of two i. e. CS 2 f1; 2; 4; 8; 16; 32; 64; : : :g.{ Your cache line size is a power of two i. e. CLS 2 f1; 2; 4; 8; 16; 32; 64; : : :g.{ You have chosen a tile length TL which is also a power of two and is given in multiples of cachelines.{ You know that your array must be at least UAL cache lines long.� You pad the length and the start address of your array using the parameters of the small cache. Youmust use the Odd-Padding algorithm, as described in section 3.2 or section 3.6 if you deal with severalarrays.
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array B array A
array B array Afor i := 2 to N�1 dofor j := 2 to N�1 doA [i�1 ,j ]:=(B [i�1 ,j ]+B [i +1 ,j ]+B [i ,j�1 ]+B [i ,j +1 ])/4for jj := 1 to N�1 by Tl dofor i := 2 to N�1 dofor j := max (jj ,2 ) tomin (jj +Tl�1 ,N�1 ) doA [i�1 ,j ] :=(B [i�1 ,j ]+B [i +1 ,j ]+B [i ,j�1 ]+B [i ,j +1 ])/4Figure 11: The top �gure shows how the untiled stencil operation processes the array. The bottom �gureshows the tiled one, using tile size Tl. Note that the arrays are three times TL long but the tiled loop leavesout one element of the left and right column. Letting a tile start one element from the left is not legalbecause a tile must start at a cache line border.That is all you need to do. The small and the big tile have the same length but not the same height:TH = CSTL BTH = BCSBTL = BCSTL = TH(BCS)CS

array
small tilebig tileYou can access each tile using the rules of section 3.3 or section 3.7 if youuse several arrays (in that case you need to divide TH and BTH by n). Butyou need to follow this additional rule: The small tile must always be insidethe big tile, especially Tx = BTx. When you access a cache line for the �rsttime, the cache line is loaded into the big and the small cache. It will remainin the small cache until you change the base coordinates of the small tile. Itwill remain in the big cache until you change the base coordinates for the bigtile, no matter how often you change the base coordinates of the small tile.3.10 How do you pad for stencil operations?Why do it? to avoid cache-interference when doing stencil operationsWhat to do? apply the methods of the former sectionsI do not want to discuss stencil operations in general. See the paper of Rivera and Tseng [7] for a more generaldiscussion. Instead I concentrate upon the relation between stencil operations and padding. Furthermore, Idiscuss only the example shown in �gure 6 on page 11. Please, have a look on that �gure.If the arrays are small enough, you do not need to use tiling. For the example from �gure 6, if the cacheholds a little bit more than two complete lines of the arrays then tiling would be unnecessary. I assume thatthe arrays are greater than that, so that you must tile the loop as shown in �gure 11.How to choose TL? Assume you have a cache with 128 cache lines. Iadvise you to split your cache in four tile lines, each 32 cache lines long, asshown in the �gure at the right. Then the access to A and each access to a cache= area reserved andprotected for BA B B BBline of B get an own tile line. That is a bit generous because the accessesto B require only to protect the gray area from any other use but the Odd-Padding algorithm can only pad the arrays for a power of two number of



3 THE PADDING FOR TILING GUIDE 27tile lines and that is four here. You could use the remaining white space foraccess to other arrays if you have such possibilities.Note: the access to A is a write. In contrast to read-accesses writes maybe delayed by the write back bu�er of your CPU. That is: they may happenlater than they appear in the program. Therefore, you need to reserve two toeight cache lines behind a write access to avoid conicts with the next cacheoperation. CPU writepoint wherewrite shouldoccurpoint wherewrite actuallyoccurscacheline cachedelayTile your loop in such a way that it will use only 31 cache lines, that is:leave one cache line unaccessed. In �gure 11 Tl should be (TL�1)CLS. Thereason is that the accesses to array elements B[i,j-1] and B[i,j+1] willhave a look into the neighbor tile. If you leave one cache line unused, thiscache line is used for that glimpse and no useful data is thrown out of thecache. Tl array B\visit" of neighbor tileYou need to pad the whole thing as described in section 3.6. To be moreprecise: you �rst pad the length of both arrays. They will need to have thesame length but not the same height. You do not need the �rst and last\frame" line of array A. The situation is exactly as shown in �gure 6. cacheTLA B B BBThe array A is the one with number 0 and is aligned at a cache lineborder as described in section 3.2. Then array B is allocated (with CSCLS�1elements more for padding) and its base address is calculated using the Badr-function from section 3.6. Here is an important di�erence to that section:your arrays use di�erent tile heights therefore you use o = TL for this Badrcalculation (see the picture at the right). Technical speaking you can chooseany o between 1 and 2TL� 2 or so. This would just move the gray area withthe accesses to B around in the cache. With such o's you could also placeother array accesses appropriately in the cache.The distance between the B-accesses is de�ned by the array length and| since you have padded the array length | by tile length TL. Note: I donot prove anything from this section.3.11 How do you choose a padding algorithm?For intra-variable padding you can choose between several algorithms. This is interesting because it is thekind of padding where you most likely spent most memory for. Choosing the right algorithm for intra-variable padding can save you much memory. (For inter-variable padding and cache line alignment there isonly one possible method, so you do not have a choice.) You do not want to use the following techniques forpadding:Lam, Rothberg and Wolf's method [3] often utilizes only a small part of the cache. Moreover, it is nota padding technique because it tells you your tile size after you choose your array length. But most ofall: you can not choose your tile size, it tells you what size you must use.Coleman and McKinley's algorithm [2] is also not a padding technique. As Lam, Rothberg and Wolf'smethod [3] it tells you a tile size after you choose your array length. This tile size is rectangular anduses most of the cache but again: you can not choose your tile size or shape. You must accept whatevertile size this algorithm returns. It may be a very degenerate tile.Rivera and Tseng's method [6] does only worst case padding. That is: they only avoid cases which aredescribed in box 4. This technique does not guarantee you that there will be no cache interference.Consequently, you do not know which size your tile may have.Rivera and Tseng's method [7] does only worst case padding and inter-variable padding. It is speciallydesigned to handle stencil operations.
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DAT 100%DAT 90%DAT 80%DAT 70%DAT 60%DAT 50%Odd-PaddingAverage Pad Depending on Array Length

length of the array in elements2200200018001600140012001000

4UT l3:5UT l3UT l2:5UT l2UT l1:5UT l1UT l0:5UT l0UT lFigure 12: This plot shows the average pad required for di�erent user array length UAL. I assume a cachewith 1024 elements and a cache line length of 8 elements. Other values of CS and CLS will give very similarcurves. For each user array length between 1024 and 2048 | I measure one point all 8 elements | I calculatethe average pad length. That is: I calculate the pad for all tile sizes between 8 elements and 256 elementsin steps of 8 elements, dividing each single pad by the tile length and use the average as the value for thatpoint. The meaning of the di�erent percentage numbers for Panda et al.'s DAT algorithm are described inbox 12.
DAT 100%DAT 90%DAT 80%DAT 70%DAT 60%DAT 50%Odd-PaddingAverage Pad Depending on Tile Size

length of the tile in elements300250200150100500

500450400350300250200150100500Figure 13: This plot shows the average pad for di�erent tile length. I assume a cache with 1024 elementsand a cache line length of 8 elements. Other values of CS and CLS will give very similar curves. For eachuser tile length UTL between 8 and 256 I calculate the average pad length. For each given tile length theaverage pad is produced by calculating the required pads for all array lengths from 1024 to 2048 in steps of 8elements. The meaning of the di�erent percentage numbers for Panda et al.'s DAT algorithm are describedin box 12.
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Box 10: Which one is better: Odd-Padding or DAT?Which algorithm is better: Odd-Padding or DAT? Panda et al.'s DAT [5] algorithm is better than theOdd-Padding algorithm if you ignore the worst case behavior of DAT. Odd-Padding has been designed tohandle power-of-two tile lengths when you want to utilize the whole cache. For this case the Odd-Paddingalgorithm �nds the shortest possible pad. But the DAT algorithm �nds the same pad in that case. In allother cases the Odd-Padding algorithm will perform poorly:The tile length is not a power of two. In this case you must extent the tile length by adding unusedelements to it as described in sections 3.4 and 3.5. For example for a user tile length of 17 cachelines you would need to add 15 unused cache lines to get the real tile length of 32 cache lines. About50% of your cache would remain unused. In average over all possible multiple of a cache line longtiles, the Odd-Padding algorithm utilizes about 75% of the cache. Note: the Odd-Padding algorithmutilizes 100% of the cache for all power-of-two tile length.You do not want to use the whole cache. If you do not use the whole cache, most likely, there is ashorter pad than the one the Odd-Padding algorithm calculates. Panda et al.'s DAT algorithm will�nd this shorter pad and, therefore, is better.Furthermore, both algorithms avoid the same amount of cache interference, so that no one makes yourprogram faster than the other. Both algorithms are applicable in the same situations, so that no algorithmcan handle a case which the other can not handle. Note however, that I introduced a method to handlehierarchical tiling which requires the Odd-Padding algorithm (see section 3.9). The real problem of Pandaet al.'s DAT algorithm is that it uses much more pad than the Odd-Padding algorithm in the worst case.

Box 11: Why should you use the Odd-Padding algorithm?Box 10 explains that the DAT algorithm from Panda et al. [5] is in general the better padding algorithm.So why should you bother with the Odd-Padding algorithm? Here are some points where the Odd-Paddingalgorithm has an advantage over the DAT algorithm:� The Odd-Padding algorithm is a simple formula (see box 9): make your tile length a power-of-two,align your tile always at a cache line border and make your array length an odd multiple of the tilelength. Simple to remember, simple to apply. You do not need to look up and hack in a wholeprocedure when you just want to try something out or when wasting some memory does not matter.� In the worst case the Odd-Padding algorithm uses a pad which is shorter than two times the power-of-two tile size. Panda et al.'s algorithm uses much more pad in the worst case. Sometimes you maywant to use that fact to make sure that you do not need too much memory for the pad.� If your tile length is a power-of-two and you want to use the whole cache, there is no better solutionthan the one calculated by the Odd-Padding algorithm.� I proved the Odd-Padding algorithm correct, so you can rely on it.The most signi�cant advantage of the Odd-Padding algorithm are the facts that it is a simple formulaand has an acceptable worst case pad.



3 THE PADDING FOR TILING GUIDE 30Box 12: What does DAT 90% mean?For the algorithm from Panda et al. (DAT) I can choose how many rows my tile should have. For DATwith 100% I use all rows which �t into the cache. For DAT with 90% I used 90% of the rows which would�t into the cache. For DAT with 50% I use half of the rows which would �t into the cache. I roundthe number of rows towards zero if necessary, i. e. 70% of 11 rows gives 7 rows. For the Odd-Paddingalgorithm, I can not choose the utilization of the cache but I always need to extend the tile length towardsthe next larger power-of-two number. This results in an average cache utilization of about 75% for theOdd-Padding algorithm.Cierniak and Li's method [1] does not even intend to avoid any cache interference.Copying by Temam, Granston and Jalby [8] is a very powerful method but not a method for padding.I compare it to padding in section 6.Tetris (see section 5) is also a very powerful method but not a method for padding, too. I compare it topadding in section 6.The Brute-Force-Padding algorithm (see box 6) wastes too much memory to be useful in practise.It may be used for theoretical issues or in very strange situations.It remains Panda, Nakamura, Dutt and Nicolau's DAT algorithm [5] and the Odd-Padding algorithm (seebox 9). For the rest of this section I want to compare these two algorithms. Box 10 discusses which one isthe better one and box 11 tells you when you may want to use the Odd-Padding algorithm. I also compareDAT with the Odd-Padding algorithm in two graphs:�gure 12 shows how much pad these algorithms use depending on the array length.�gure 13 shows how much pad these algorithms use depending on the tile length.Please, have a look at these �gures. Here, I discuss �gure 12 in more detail:
?

What is the essence of �gure 12?The plot shows that the DAT algorithm needs less pad than the Odd-Padding algorithm if you utilize90% or less of the cache. The DAT 100% case shows clearly that the worst case of the DAT algorithmis much worse than the one of the Odd-Padding algorithm. Note however, that although the di�erencebetween DAT's 100% line and the Odd-Padding line is large, the Odd-Padding uses only about 75%of the cache in average (see box 10) and comes not even close to the 100% cache utilization.
?

Why has the Odd-Padding curve such a strange look?The strange look of the Odd-Padding line results from the fact that the algorithm can only handlepower-of-two tile lengths. For some array sizes the Odd-Padding algorithm needs only a very small padin average over all the di�erent tile sizes. For some other array lengths the Odd-Padding algorithmneeds very large pads in average. This produces the large jumps in the line of the Odd-Paddingalgorithm.
?

Why is the average height of the Odd-Padding curve not one UTL?The Odd-Padding algorithm has an average pad length of one power-of-two tile length TL. The averageheight of the curve in the graph is somewhat higher than one user tile length. The reason is that theuser tile length UTL is not always a power-of-two and I must divide the pad by UTL and not by TL.Since UTL is often smaller than TL the resulting curve is a bit higher than one UTL.Now, let me discuss �gure 13 in more detail:
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?

Why has the Odd-Padding curve such steps in �gure 13?In average the Odd-Padding algorithm uses a pad which is as long as one tile. This and the fact thatthe tile length must be a power-of-two causes the steps in the line of the Odd-Padding algorithm. Forexample: for all user tile sizes between 65 and 128 elements the Odd-Padding algorithm uses a real tilesize of 128 elements which gives an average pad of 128 elements over all array lengths. This is the 128elements high step which you see between tile sizes 65 and 128 in �gure 13.
?

Why is the DAT curve sometimes higher than the Odd-Padding curve?The DAT algorithm requires the most pad for 100% cache utilization and small tile length. However,it actually utilizes the cache with up to 100% where as the Odd-Padding algorithm fails to do so ifthe user tile length is not a power-of-two. For example: for a tile length of 24 elements | the tallestpeak of DAT's 100% curve | the Odd-Padding algorithm uses a real tile length of 32 elements and,therefore, utilizes the cache only about 75%.
?

Is there a relation between the DAT 100% curve and the Odd-Padding curve?Note that the 100% curve of DAT meets the curve of the Odd-Padding algorithm at all power-of-twotile length like 8, 16, 32, 64, 128 and so on. The pad calculated by the Odd-Padding algorithm is theshortest possible for power-of-two tile length if you want to use the whole cache, therefore, both curvesmust meet at this spots.
?

Why has DAT's 100% curve such tall peaks?The high peaks of DAT's 100% curve are a result of the following: If you want to use the whole cache,there is sometimes no other solution than the one described in box 6 (Brute-Force-Padding). Butthe Brute-Force-Padding algorithm has a worst case of about the cache size minus two times the tilelength. For the tile lengths where this large worst case pad is often required DAT's 100% curve has atall peak. Since longer tile lengths reduce the worst case padding length of the Brute-Force-Paddingalgorithm, the peaks of the DAT 100% curve get smaller when the tile length increase.
?

What is the essence of �gure 13?The Odd-Padding algorithm performs acceptable for small tile lengths but looses for larger ones. Withincreased tile length both algorithm need more pad.To sum it up: Panda et al.'s DAT algorithm produces a shorter pad in average | at least when you use90% or less of your cache | and is, therefore, better than the Odd-Padding algorithm. Nevertheless, theOdd-Padding algorithm may �nd some applications because it is easy to remember and to apply and has abetter worst case behavior than the DAT algorithm.



4 THE ODD-PADDING PROOFS 324 The Odd-Padding ProofsProofs are very important but I know that most people will not bother with them. Therefore, the innocentreader may skip this section.In this part of the text I prove �ve theorems:The core theorem is used in the proofs of the Odd-Padding-algorithm theorem and the multi-array-access-algorithm theorem. It is a property of the modulo function and shows that no line of a tile is mappedon another one if a tile line has length one.The Odd-Padding-algorithm theorem proves that there is no self-interference when you use the Odd-Padding-algorithm for just one array. I also show the impossibility to �nd pads which are shorter thanthe ones used by the Odd-Padding-algorithm if you want to utilize the whole cache.The Odd-Padding-formula theorem shows that the Odd-Padding-formula comes up with the correctarray length for the Odd-Padding-algorithm.The multi-array-access-algorithm theorem proves cross- and self-interference freeness, when you usethe Odd-Padding-algorithm with several arrays. This is actually a more complex version of the Odd-Padding-algorithm theorem.The multi-array-access-formula theorem ensures that this formula returns the right base address forthe padding of several arrays with the Odd-Padding-algorithm.In the proofs I will use some fact which I hope are common known or at least believable without proof. Icall them axioms and put them in box 13 on page 34.4.1 The core theoremI want to prove h; u 2 N n f0g (1)^ p; q 2 N ^ p; q < u (2)^ gcd(h; u) = 1 (3)^ (ph) mod u = (qh) mod u (4)) p = qAssume that all variables are given in multiples of the tile length TL and not in cache line size CLS . Then his the length of the array and u the size of the cache. Since the basis unit is the length of a tile, two tiles inthe cache either fall exactly on each other or not. There is no possibility for one tile line to partial overlapthe other. The theorem (4) states that tile line p is only mapped on q if p is q.Note that I am a liar. In section 3.2 I tell you h | the length of the array in tile sizes | must be oddand u | the cache size | must be a power of two. If u is a power of two, all its prime factors are 2, whereash is odd and does not contain any 2 as prime factor. Hence, the gcd(h; u) is 1. Therefore, the beast I provehere is stronger than necessary.Proof 1: The core theoremph mod u = qh mod u (1.1)= fapply the axiom for mod (6)gph� jphu ku = qh� j qhu ku (1.2)



4 THE ODD-PADDING PROOFS 33= n+ jphu ku, �qho(p� q)h = �jphu k� j qhu k�u (1.3)= fconsider the cases p = q and p 6= qgCase 1: p = q(p� q)h = �jphu k� j qhu k�u (1.4)= frewrite p = qg(q � q)h = �j qhu k� j qhu k�u (1.5)= fboth sides collapse to 0gtrue (1.6)= frewrite this with the assumption from this case which is also truegp = q (1.7)Case 2: p 6= q(p� q)h = �jphu k� j qhu k�u (1.8)= nsubstitute v for �jphu k� j qhu k�o(p� q)h = vu (1.9)= 8><>:To be an equality both sides must have the same prime factors. From gcd(h; u) = 1 (3) followsthat h and u do not share any prime factors. Therefore, v must deliver all prime factors of h,that is h divides v. Substitute v = v0h where v0 = v=h. Note: (p� q) 6= 0 ^ h > 0 from (1))(p� q)h 6= 0) vu 6= 0 because (p� q)h = vu: vu 6= 0) v 6= 0) v0 6= 0. 9>=>;(p� q)h = v0hu (1.10)= f=h This step is legal because h > 0 (1)g(p� q) = v0u (1.11)) f=)�g(p� q) � v0u (1.12)) fp � (p� q) because 0 � q from (2)gp � v0u (1.13)= fp < u from (2) and v0 6= 0gfalse (1.14)= ffrom the assumption of this case: (p = q) = falsegp = q (1.15)



4 THE ODD-PADDING PROOFS 34Box 13: The axioms used in the proofsHere are the axioms which I use without proving them. I hope these axioms are known or at leastbelieved without me proving them. Most of them can be established by using plain arithmetic andstructural induction over the de�nition of the modulo function (5) and oor function.a 2 N ^ b 2 N n f0g^ a mod b = if a < b then a else (a� b) mod b (5)a 2 N ^ b 2 N n f0g^ a mod b = a� jab k b (6)a; i 2 N ^ b 2 N n f0g^ (a+ ib) mod b = a mod b (7)a; c 2 N ^ b 2 N n f0g^ ((a mod b) + c) mod b = (a+ c) mod b (8)a; b 2 N ^ c; d 2 N n f0g ^ a < c^ (a+ bc) mod (dc) = a+ (b mod d)c (9)a; b; d 2 N ^ c 2 N n f0g^ (a+ d) mod c = (b+ d) mod c) a mod c = b mod c (10)a; b; e; f 2 N ^ c 2 N n f0g ^ a; b < c^ a+ ec = b+ fc) a = b ^ e = f (11)b1; b2 2 B ^ a; c 2 N^ if b1 then a else (if b2 then a else c) = if b1 _ b2 then a else c (12)Furthermore, I reason in the proof of the core theorem about prime factors and some times move expres-sions into if branches.) ffrom (1.7) and (1.15)gp = q (1.16)2A thanks to Prof. J. Misra here. He told us in his Spring 1998 class to replace proofs by contradictionthrough proofs by induction. In the �rst place, this was a proof by contradiction: given the facts, assumeone tile line falls on another one . . .When I tried to change the proof into an induction I found this muchnicer one.4.2 The Odd-Padding-algorithm theoremI want to prove that the Odd-Padding-algorithm does avoid self-interference. That is, no cache line in thetile will be mapped onto another one, regardless of the base address of the array adr and regardless of thebase coordinates of the tile Tx and Ty. adr; Tx; Ty; xp; yp; xq ; yq 2 N (13)^ h; TH ; TL 2 N n f0g (14)^ xp; xq < TL ^ yp; yq < TH (15)^ AL = hTL (16)



4 THE ODD-PADDING PROOFS 35^ CS = THTL (17)^ gcd(h; TH) = 1 (18)^ m(Tadr(xp; yp)) = m(Tadr(xq ; yq)) (19)) xp = xq ^ yp = yqwhere m is the cache mapping function and Tadr is the address of the cache line with coordinates x; y inmemory: m(adr) = adr mod CS (20)Tadr(x; y) = adr + TyAL + Tx + yAL + x (21)The Odd-Padding-algorithm requires that CS and TL are a power-of-two and AL is an odd multiple of TL(see box 9). Mathematically, this implies that the Odd-Padding-algorithm chooses the array length ALin such a way that its greatest common divisor with the cache size CS is TL i. e. gcd(CS ; AL) = TL )gcd(THTL; hTL) = TL ) gcd(TH ; h) = 1. Line (17) ensures that TL divides CS and line (16) ensures thatTL divides AL. This theorem says: \any two cache lines of the tile with the coordinates xp; yp and xq ; yq fallonly on each other if they are the same."Proof 2: The Odd-Padding theoremm(Tadr(xp; yp)) = m(Tadr(xq ; yq)) (2.1)= funfold de�nition of Tadr (21)gm(adr + TyAL + Tx + ypAL + xp) = m(adr + TyAL + Tx + yqAL + xq) (2.2)= funfold de�nition of m (20)g(adr + TyAL + Tx + ypAL + xp) mod CS = (adr + TyAL + Tx + yqAL + xq) mod CS (2.3)) fuse axiom (10) to remove adr, TyAL, Txg(xp + ypAL) mod CS = (xq + yqAL) mod CS (2.4)= frewrite CS = THTL from (17) and AL = hTL from (16)g(xp + yphTL) mod (THTL) = (xq + yqhTL) mod (THTL) (2.5)= faxiom (9) applies because xp; xq < TL (15)gxp + ((yph) mod TH)TL = xq + ((yqh) mod TH)TL (2.6)) faxiom (11) applies because xp; xq < TL (15)gxp = xq ^ (yph) mod TH = (yqh) mod TH (2.7)) fapply the core theorem (4) from section 4.1 because yp; yq < TH (15) and gcd(h; TH) = 1 (18)gxp = xq ^ yp = yq (2.8)2Is the Odd-Padding-algorithm the only solution which utilizes the whole cache or are there other possibilities?Solutions where the cache size CS is not a multiple of the tile length TL cannot use the whole cache, so at



4 THE ODD-PADDING PROOFS 36least a few cache lines will be unused. It remains to check for solutions where TL divides CS . The Odd-Padding-algorithm chooses gcd(h; TH) = 1 but what if h and TH share a common factor? Let this factor ben with n > 1 so that gcd(hn; THn) = n and the assumptions (15), (16), (17) rewrite to:yp; yq < THnAL = hnTLCS = THnTLI choose xp = xq = x and yp = y, yq = (y +mTH) where 1 � m < n so that yp 6= yq. Let me rewrite proofstep (2.5) with these variables:(x+ yhnTL) mod (THnTL) = (x+ (y +mTH)hnTL) mod (THnTL)= fuse axiom (9) because x < TLn (15)gx+ ((yh) mod TH)TLn = x+ ((yh+mTHh) mod TH)TLn= fremove mTHh by applying axiom (7)gx+ ((yh) mod TH)TLn = x+ ((yh) mod TH)TLnThis equality is always true despite the fact that I have chosen yp 6= yq. To express this �nding in words: if hand TH share a common factor then some tile lines are mapped on each other and cause cache interferences.This in turn implies that the Odd-Padding-algorithm uses the only possible solutions which utilize the wholecache. Note: other algorithms e. g. Panda, Nakamura, Dutt and Nicolau [5] may �nd the same amount ofpad as the Odd-Padding algorithm.4.3 The Odd-Padding-formula theoremI want to prove that the function that calculates the array length ALAL(UAL; TL) = UAL + (2TL � ((UAL + TL) mod (2TL))) mod (2TL) (22)returns the next bigger or equal array length which is an odd multiple of TL. Let the initial or user arraylength UAL be UAL = 2iTL + jTL + k where (23)k = UAL mod TL (24)j = (UAL � k) mod (2TL)TL (25)i = UAL � jTL � k2TL (26)Any address UAL can be expressed using k; j; i. The above formulas say how to calculate k; j; i from a givenUAL. Note that this implies 0 � k < TL (27)0 � j < 2 (28)I prove the theorem below. This is not the most beautiful form but provingUAL � AL(UAL; TL) < UAL+2TLand gcd(AL(UAL; TL); TL) = TL^AL(UAL; TL)=TL = 2N+1 will be two long proofs with many case splits. I



4 THE ODD-PADDING PROOFS 37believe these facts can be seen from the theorem below and stating the longer proofs will not be an advantagefor the reader. TL 2 N n f0g (29)^ UAL; i; j; k 2 N (30)^ AL(UAL; TL) = if j = 0 _ k = 0 then (2i+ 1)TLelse (2(i+ 1) + 1)TL (31). . . and here goes the proof:Proof 3: The Odd-Padding-formula theoremUAL + (2TL � ((UAL + TL) mod 2TL)) mod 2TL (3.1)= freplace UAL with 2iTL + jTL + k (23)g2iTL + jTL + k + (2TL � ((2iTL + jTL + k + TL) mod 2TL)) mod 2TL (3.2)= fsimplifyg(2i+ j)TL + k + (2TL � ((k + (2i+ j + 1)TL) mod 2TL)) mod 2TL (3.3)= fapply (9) because k < TL from (27)g(2i+ j)TL + k + (2TL � (k + ((2i+ j + 1) mod 2)TL)) mod 2TL (3.4)= fapply (7)g(2i+ j)TL + k + (2TL � k � ((j + 1) mod 2)TL) mod 2TL (3.5)= fapply de�nition of mod (5)g(2i+ j)TL + k + (2TL � k � (if j + 1 < 2 then j + 1 else (j + 1� 2) mod 2)TL) mod 2TL (3.6)= fmove TL into the ifg(2i+ j)TL + k + (2TL � k � if j < 1 then (j + 1)TL else ((j � 1) mod 2)TL) mod 2TL (3.7)= fnote j 2 f0; 1g (28)g(2i+ j)TL + k + (2TL � k � if j = 0 then TL else (0 mod 2)TL) mod 2TL (3.8)= fmove 2TL � k and mod 2TL into the ifg(2i+ j)TL + k + if j = 0 then ((2� 1)TL � k) mod 2TL else (2TL � k) mod 2TL (3.9)= fapply (5) because TL � k < 2TL from (27)g(2i+ j)TL + k + if j = 0 then TL � k else (2TL � k) mod 2TL (3.10)= fapply de�nition of mod (5)g(2i+ j)TL + k + if j = 0 then TL � kelse if 2TL � k < 2TL then 2TL � k else (2TL � k � 2TL) mod 2TL (3.11)= frewrite if with �k < 0) k > 0g(2i+ j)TL + k + if j = 0 then TL � k else if k > 0 then 2TL � k else �k mod 2TL (3.12)= fexchange if -cases k > 0 to k = 0 (recall that 0 � k < TL)g



4 THE ODD-PADDING PROOFS 38(2i+ j)TL + k + if j = 0 then TL � k else if k = 0 then 0 mod 2TL else 2TL � k (3.13)= fmove (2i+ j)TL + k into the ifsgif j = 0 then (2i+ j)TL + k + TL � kelse if k = 0 then (2i+ j)TL + k else (2i+ j)TL + k + 2TL � k (3.14)= frewrite j 2 f0; 1g (28) and k in the then and else branchesgif j = 0 then (2i+ 1)TL else if k = 0 then (2i+ 1)TL else (2(i+ 1) + 1)TL (3.15)= fcollapse ifs to one if using axiom (12)gif j = 0 _ k = 0 then (2i+ 1)TL else (2(i+ 1) + 1)TL (3.16)2What is the relation between this theorem and the Odd-Padding-algorithm theorem (19)? If you want to usethe Odd-Padding-algorithm you need to �nd an array length which ful�lls the assumptions of that theorem.For a cache size CS = 2i; i 2 N the formula (22) delivers such an array length. Assume your intended arraylength is UAL and you want to use a tile with length TL and height TH = CS=TL (all length in cache lineswith the exception of TH , of course). Since TL must divide CS evenly, you must select a power of two, thatis TL = 2j ; j 2 N; j � i. The assumptions (16), (17), (18) of the Odd-Padding-algorithm are:AL = hTLCS = THTLgcd(h; TH) = 1From CS = THTL and your choices it follows that TH = 2i�j . Then you use the Odd-Padding-formula tocalculate AL. The result is AL = (2n + 1)TL; n 2 N | as stated by theorem (31) which I just proved.Therefore, h = (2n+1), that is, h is odd and does not contain any 2 as prime factor. TH consists solely of 2sas prime factors. Hence, the requirement gcd(h; TH) = 1 of the Odd-Padding-algorithm theorem is ful�lled.To sum it up: the Odd-Padding-formula will deliver the right array length if your cache size is a power oftwo.Proving the correctness of the formula that aligns array A with initial base address adr at a cache lineborder CLS would be somewhat similar to proof 3 above.Aadr(adr; CLS) = adr + (CLS � (adr mod CLS)) mod CLS) (32)Moreover, this formula is simpler and somewhat similar to the one proved above. Therefore, I omit thatproof.4.4 The multi-array-access-algorithm theoremIn section 4.2 I proved that the Odd-Padding-algorithm avoids cache interference when used for one array.In this section I prove that there will be no interference even when you use it to access several arrays atonce.This proof and this theorem are very similar to the ones from section 4.2. Actually, if you set thenumber of arrays, n, to one, then this theorem becomes the one of section 4.2. Nevertheless, I want to giveboth theorems because the theorem of section 4.2 is confusing enough and the theorem here has even morevariables. Therefore, I hope it is helpful for the reader to be able to compare the two theorems and see wherethey di�er.



4 THE ODD-PADDING PROOFS 39Here is the theorem I want to prove:adr; r; Tx; Ty; ip; vp; xp; yp; iq; vq ; xq ; yq 2 N (33)^ h; n; T 0H ; TL 2 N n f0g (34)^ vp; vq < n ^ xp; xq < TL ^ yp; yq < T 0H (35)^ TH = nT 0H + r (36)^ AL = hTL (37)^ CS = THTL (38)^ gcd(h; TH) = 1 (39)^ m(Tadr(ip; vp; xp; yp)) = m(Tadr(iq ; vq; xq ; yq)) (40)) vp = vq ^ xp = xq ^ yp = yqLet me explain the new variables. n is the number of arrays accessed at the same time. Since there are THtile lines available in the cache, the maximum tile height per array T 0H is reduced to T 0H = bTH=nc. Theoor function may cause some tile lines to remain unused. r is the number of those unused lines. Note thatthe reduced height of the tile is expressed in yp; yq < T 0H (35).Here, the address calculation is more complex because this theorem deals with several arrays. Let thesearrays be numbered from 0 to n � 1 and let v be the number of an array. The reference address | thatis the address of array 0 | is adr. The other arrays are stored with a relative distance to that array.The multi-array-access-formula which I prove in section 4.5 will calculate such addresses. The distance isa multiple, i, of the cache size | which is irrelevant, of course | and ((T 0HALv) mod CS) where v is thenumber of the array. This gives the new address function Tadr:Tadr(i; v; x; y) = adr + iCS + (T 0HALv) mod CS + TyAL + Tx + yAL + x (41)The theorem (40) above says: \two array accesses are only mapped to the same line in the cache if theybelong to the same array and have the same coordinates in the tile."Proof 4: The multi-array-access-algorithm theoremm(Tadr(ip; vp; xp; yp)) = m(Tadr(iq ; vq ; xq ; yq)) (4.1)= funfold de�nition of Tadr (41)gm(adr + ipCS + (T 0HALvp) mod CS + TyAL + Tx + ypAL + xp) =m(adr + iqCS + (T 0HALvq) mod CS + TyAL + Tx + yqAL + xq) (4.2)= funfold de�nition of m (20)g(adr + ipCS + (T 0HALvp) mod CS + TyAL + Tx + ypAL + xp) mod CS =(adr + iqCS + (T 0HALvq) mod CS + TyAL + Tx + yqAL + xq) mod CS (4.3)= fapply axiom (7) to get rid of ipCS and iqCSg(adr + (T 0HALvp) mod CS + TyAL + Tx + ypAL + xp) mod CS =(adr + (T 0HALvq) mod CS + TyAL + Tx + yqAL + xq) mod CS (4.4)= fapply axiom (8) to remove the inner mod CSg(adr + T 0HALvp + TyAL + Tx + ypAL + xp) mod CS =(adr + T 0HALvq + TyAL + Tx + yqAL + xq) mod CS (4.5)) fuse axiom (10) to remove adr, TyAL, Txg



4 THE ODD-PADDING PROOFS 40(T 0HALvp + ypAL + xp) mod CS = (T 0HALvq + yqAL + xq) mod CS (4.6)= fsimplifyg(xp + (T 0Hvp + yp)AL) mod CS = (xq + (T 0Hvq + yq)AL) mod CS (4.7)= frewrite CS = THTL from (38) and AL = hTL from (37)g(xp + (T 0Hvp + yp)hTL) mod THTL = (xq + (T 0Hvq + yq)hTL) mod THTL (4.8)= fuse axiom (9) because xp; xq < TL (35)gxp + ((T 0Hvp + yp)h mod TH)TL = xq + ((T 0Hvq + yq)h mod TH)TL (4.9)) fuse axiom (11) because xp; xq < TL (35)gxp = xq ^ (T 0Hvp + yp)h mod TH = (T 0Hvq + yq)h mod TH (4.10)
)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Observe that T 0Hvp + yp and T 0Hvq + yq are smaller than TH :T 0Hvp + yp < TH= fTH = nT 0H + r from (36)gT 0Hvp + yp < nT 0H + r) freplace vp by n� 1 because vp < n (35)g(n� 1)T 0H + yp < nT 0H + r= fsubtract (n� 1)T 0H on both sides because n > 0 and Th0 > 0 (34)gyp < T 0H + r) fSince yp < T 0H from (35) and r � 0 from (33)gtrueThe same argument is true for T 0Hvq + yq < TH . Therefore, I can apply the core theorem (4) fromsection 4.1 because T 0Hvp + yp; T 0Hvq + yq < TH and gcd(h; TH) = 1 (39)

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;xp = xq ^ (T 0Hvp + yp) = (T 0Hvq + yq) (4.11)) fuse axiom (11) because yp; yq < T 0H (35)gvp = vq ^ xp = xq ^ yp = yq (4.12)2This theorem also holds for just one array. Then n would be 1. vp and vq must be 0 because of assumption(35). The conclusion would reduce to xp = xq ^ yp = yq. Therefore, this theorem subsumes the Odd-Padding-algorithm theorem from section 4.2.4.5 The multi-array-access-formula theoremThe multi-array-access-function Badr aligns the base address of array B relative to the base address of thearray A. The di�erence between the two base addresses modulo CS is o. To express it more concretely: UBadris the initial or �rst possible base address of array B. Aadr is the base address of array A which is | for



4 THE ODD-PADDING PROOFS 41the usage in the multi-array-access-theorem | the �rst of the n arrays. The relative distance o should be((T 0HALv) mod CS) where v is the number of the B array, AL the array length after intra-variable paddingand T 0H = bTH=nc the tile height.The function Badr calculates the next possible start address for the array B so that its relative positionto array A is o modulo CS .Badr(Aadr; UBadr; o) = if (o+Aadr) mod CS < UBadr mod CSthen UBadr � UBadr mod CS + (o+Aadr) mod CS + CSelse UBadr � UBadr mod CS + (o+Aadr) mod CS (42)I want to prove this theorem: Aadr; UBadr; o 2 N (43)^ CS 2 N n f0g (44)^ o < CS (45)^ m(Badr(Aadr; UBadr; o)�Aadr) = o (46)This theorem says: \if you calculate the base address of array B using the Badr function then the distanceof the mappings of A and B in the cache will be o."Proof 5: The multi-array-access-formula theoremm(Badr(Aadr; UBadr; o)�Aadr) (5.1)= funfold de�nition of Badr-function (42)gm0@0@ if (o+Aadr) mod CS < UBadr mod CSthen UBadr � UBadr mod CS + (o+Aadr) mod CS + CSelse UBadr � UBadr mod CS + (o+Aadr) mod CS 1A�Aadr1A (5.2)= fmove �Aadr into the ifgm0@ if (o+Aadr) mod CS < UBadr mod CSthen UBadr � UBadr mod CS + (o+Aadr) mod CS + CS �Aadrelse UBadr � UBadr mod CS + (o+Aadr) mod CS �Aadr 1A (5.3)= funfold the cache mapping function m (20)g0@ if (o+ Aadr) mod CS < UBadr mod CSthen UBadr � UBadr mod CS + (o+Aadr) mod CS + CS �Aadrelse UBadr � UBadr mod CS + (o+Aadr) mod CS �Aadr 1A mod CS (5.4)= fmove mod CS into the ifgif (o+Aadr) mod CS < UBadr mod CSthen (UBadr � UBadr mod CS + (o+Aadr) mod CS + CS �Aadr) mod CSelse (UBadr � UBadr mod CS + (o+Aadr) mod CS �Aadr) mod CS (5.5)= fapply axiom (7) to remove +CSgif (o+Aadr) mod CS < UBadr mod CSthen (UBadr � UBadr mod CS + (o+Aadr) mod CS �Aadr) mod CSelse (UBadr � UBadr mod CS + (o+Aadr) mod CS �Aadr) mod CS (5.6)= fwell, collapse both casesg



4 THE ODD-PADDING PROOFS 42(UBadr � UBadr mod CS + (o+Aadr) mod CS �Aadr) mod CS (5.7)= fRemove the inner modulo functions using axiom (8)g(UBadr � UBadr + (o+Aadr)�Aadr) mod CS (5.8)= fwithout words . . . go mod CS (5.9)= fapply the de�nition of the modulo function (5) with o < CS from (45)go (5.10)2What is the relation between this theorem and the multi-array-access-algorithm? You use this functionBadr(adr; UBadr; (T 0HALv) mod CS) to calculate the padded base address of the vth array given the baseaddress adr of the 0th array. The theorem proven above then results in:m(Badr(adr; UBadr; (T 0HALv) mod CS)� adr) = (T 0HALv) mod CS= funfold the cache mapping function m (20)g(Badr(adr; UBadr; (T 0HALv) mod CS)� adr) mod CS = (T 0HALv) mod CS= fmod CS removes some i times CS where i 2 NgBadr(adr; UBadr; (T 0HALv) mod CS)� adr � iCS = (T 0HALv) mod CS= f+adr + iCSgBadr(adr; UBadr; (T 0HALv) mod CS) = adr + iCS + (T 0HALv) mod CSThe right side of that expression is exactly the part of the array base address I assume in the de�nition ofthe Tadr function (41). To put it in simple words: if you use the formula Badr(adr; UBadr; (T 0HALv) mod CS)to calculate the base address of your arrays then your arrays will have the correct base address for themulti-array-access-algorithm.Additionally, I need to prove UBadr � Badr(Aadr; UBadr; o) < UBadr + CS . I split this into two proofsand start with UBadr � Badr(Aadr; UBadr; o).Proof 6:UBadr � Badr(Aadr; UBadr; o) (6.1)= funfold the de�nition of the Badr function (42)gUBadr � if (o+Aadr) mod CS < UBadr mod CSthen UBadr � UBadr mod CS + (o+Aadr) mod CS + CSelse UBadr � UBadr mod CS + (o+Aadr) mod CS (6.2)
= 8>>>>>>><>>>>>>>:

substitute a = (o+Aadr) mod CSb = UBadr mod CSThe modulo function returns values which are smaller than its second argument. Therefore, a < CSand b < CS .
9>>>>>>>=>>>>>>>;



4 THE ODD-PADDING PROOFS 43UBadr � if a < b then UBadr � b+ a+ CS else UBadr � b+ a (6.3)= fconsider the cases individuallygCase 1: a < bUBadr � if a < b then UBadr � b+ a+ CS else UBadr � b+ a (6.4)= fremove the if with the assumption of this casegUBadr � UBadr � b+ a+ CS (6.5)= f�UBadr + bgb � a+ CS (6.6)= fSince b < CS and a � 0gtrue (6.7)Case 2: a � bUBadr � if a < b then UBadr � b+ a+ CS else UBadr � b+ a (6.8)= fremove the if with the assumption of this casegUBadr � UBadr � b+ a (6.9)= f�UBadr + bgb � a (6.10)= fwith the assumption of this case a � b followsgtrue (6.11)= ffrom (6.7) and (6.11)gtrue (6.12)2This theorem ensures that the function Badr will return a padded base address for B which is greater orequal the initial address UBadr.Now I prove the other part Badr(Aadr; UBadr; o) < UBadr + CS .Proof 7:Badr(Aadr; UBadr; o) < UBadr + CS (7.1)= funfold the de�nition of the Badr function (42)g0@ if (o+ Aadr) mod CS < UBadr mod CSthen UBadr � UBadr mod CS + (o+Aadr) mod CS + CSelse UBadr � UBadr mod CS + (o+Aadr) mod CS 1A < UBadr + CS (7.2)
= 8>>>>>>><>>>>>>>:

substitute a = (o+Aadr) mod CSb = UBadr mod CSThe modulo function returns values which are smaller than its second argument. Therefore, a < CSand b < CS .
9>>>>>>>=>>>>>>>;



4 THE ODD-PADDING PROOFS 44(if a < b then UBadr � b+ a+ CS else UBadr � b+ a) < UBadr + CS (7.3)= fconsider the cases individuallygCase 1: a < b(if a < b then UBadr � b+ a+ CS else UBadr � b+ a) < UBadr + CS (7.4)= fremove the if with the assumption of this casegUBadr � b+ a+ CS < UBadr + CS (7.5)= f�UBadr � CS + bga < b (7.6)= fthis is the assumption of this casegtrue (7.7)Case 2: a � b(if a < b then UBadr � b+ a+ CS else UBadr � b+ a) < UBadr + CS (7.8)= fremove the if with the assumption of this casegUBadr � b+ a < UBadr + CS (7.9)= f�UBadr + bga < CS + b (7.10)= fThis is true because a < CSgtrue (7.11)= ffrom (7.7) and (7.11)gtrue (7.12)2This theorem ensures that the pad added to UBadr is really smaller than CS . That is: the function (42)returns the next possible base address for array B.



5 THE TETRIS IDEA 455 The Tetris IdeaTetris is a method which avoids cache interference by changing the way the arrays are stored in memory.Unlike padding Tetris requires a much heavier transformation of the memory layout. Tetris does avoid asmuch cache interference as padding but it is more generally applicable and can handle situations wherepadding fails (see box 14 on page 49). In fact, I invented Tetris due to the restrictions of padding.At the moment Tetris is just an idea. It does not come with an algorithm. If Tetris proves itself to beuseful, it would be necessary to develop an algorithm in the future. Nonetheless, Tetris can be implementedby hand. This section gives away the fundamental ideas behind Tetris. Whereas Tetris changes much moreheavier the way arrays are stored in memory than padding, I believe it is much more intuitive. It is moreobvious which data can be accessed without giving rise to cache interference.Tetris splits large arrays into smaller ones and distributes the small ones in the memory in such a waythat several arrays can be accessed without causing cache conicts.5.1 Tetris basicsTetris avoids both types of cache conicts: self- and cross-interference. Ituses two totally di�erent methods to get rid of each of them:self-interference by splitting large arrays into smaller onescross-interference by storing the small arrays in a very special wayAn array which is bigger than the cache may cause self-interference but anarray smaller than the cache cannot cause such a thing. Therefore, Tetrisrequires you to split your big arrays into small blocks or tiles.This takes care of self-interference but what if you need to access severalarrays? How does Tetris avoid cross-interference then? Imagine how yourcache sees your memory: it sees the memory as a lot of chunks of its ownsize. Well, we all tend to project our own failure onto others, don't we?cache main memory. . .0 1 2 3 4cache instances
I will call each such a chunk a cache instance and I will enumerate them starting with 0. Imagine a cacheline 12 cache lines from the beginning of cache instance 0. This cache line will be mapped onto the cacheline 12 of your cache. Moreover, cache line 12 of cache instance 1 will also be mapped onto cache line 12 ofyour cache and so will all the other cache lines 12 of the other cache instances.cache line 12 cache main memory. . .To avoid cross-interference Tetris uses the cache instances. It distributes the tiles of all arrays accessed inone loop among the cache instances. This must be done in such a way that� All tiles of an array use the same cache lines in all cache instances which hold a tile of that array.� Each instance contains no more than one tile from an array. Cache instances are not required to holdtiles from each array.



5 THE TETRIS IDEA 46� Each tile of an array has the same size. A tile which may consist of several lines is always a multipleof a cache line long but some elements may remain unused.� All cache instances start at a cache line border.� The distance between any two cache instances is either zero or a multiple of the cache size.� All cache instances are exactly as big as the cache. Note: not all space in a cache instance must beused. Some cache lines may just remain unused.
main memoryarrays of di�erent shape and size non-array variables unused memorytiles with di�erent shape and size are distributed among the cache instancesSee also �gure 5. You may also reserve a cache line for normal (non-array) variables which are accessed inthe loop. McKinley and Temam [4] found that such accesses happen frequently in loops. The Tetris memorylayout will avoid all cross-interference.5.2 Tetris access rulesHow can you access those arrays? The answer is: on a cache line base! The�rst thing to observe is: you can access all tiles of one cache instance at thesame time. But you can go further: since arrays do not interfere even acrossinstances, you can read a tile from array A from, lets say, instance 3 and a tileform array B from instance 5 in the same loop. But you can go even further:as long as you do not access the same cache line you can read elements ofthe same array from di�erent instances. For example, assume array B usescache lines 4 to 12. Then you could read cache line 4 from instance 0, cacheline 5 from instance 1, cache line 6 from instance 2 and so on . . . just to giveone possible example.

cache= tile of Bmain memory= one cache line of BNote: you are not forced to use such di�cult access patterns. You just can access one whole tile at onceand when you �nished working on it go to the next one. But at least you have the possibility to use morecomplex access patterns if you need to.5.3 Tetris mapping rulesThere are two mapping functions involved in Tetris (in practise you willprobably only deal with one which is the union of these two):mapping of the tiles in the cache instances This function answers thequestion: \In which cache instance and at which position inside thatinstance can I �nd tile xyz". Note: all tiles of an array use the sameposition in all cache instances which store a tile of that array. mapping of tilesinto instancesinto tileselementsmapping ofarray elementsarray tilememorymapping of array elements into tiles This function answers the ques-tion: \In which tile and in which position inside the tile do I �nd thearray element with coordinates x; y; z; : : :"



5 THE TETRIS IDEA 47How do you choose these functions? The answer is: there are no restrictions.You are on your own. Most likely you want to have a simple mapping func-tion like the \traditional" padding mapping: the leftmost, topmost block ismapped into tile 0 and that is mapped row-major into instance 0.Sometimes, you will come across situations where di�erent | perhapsmore complex | mapping functions will be an advantage. For multi-dimen-sional arrays for example you can chop them into planes as you did forpadding but it is not longer necessary. You can choose any mapping evenmulti-dimensional tiles are possible | that is: the elements of a tile come
traditionalmapping0 1 23 . . .

from a volume and not only from a plane or line. If you have a stream-bu�er,you may want to arrange the elements of a tile in such a way that the loopsaccess one cache line after the other without skipping some lines. tiled for tiled forloop 1 loop 2
array arrayAnother reason for using more complex mapping functions are di�erentaccess patterns of several loops. Imagine you have two loops, the �rst requiresnarrow and very tall tiles, the second needs wide but short tiles. For thisexample, let the second loop require tiles which are only one line tall. Howcan you handle this? Make your tiles narrow (one or two cache lines long)and as high as the �rst loop requires but rotate the lines by one for eachtile (see �gure at the right and pay special attention to the line numbers).When the second loop accesses line 2, for example, it can use the line 2 fromas many tiles as a single tile has lines. The reason is that line 2 in tile 1occupies the space of line 1 in tile 0 and line 2 in tile 2 occupies the spaceof line 0 in tile 0 and so on . . . Therefore, when loaded into the cache, thecache lines which hold data of line 2 occupy another space in the cache foreach tile (as shown in the �gure of section 5.2). tile 1 tile 2tile 0012 123 234 . . .line numbers... ... ...A note to stencil operations (see �gure 6): The problem is that theseoperations have a look at the neighboring tiles. As with padding the solutionis not to change the memory layout but to let the tiles, which the loops use,be a cache line smaller than the physical tile. The unused cache line is thenused for the glimpse into the neighbor tiles without causing loss of usefuldata. tile used by loopphysical tile arraytile length\visit" by neighbor

To sum it up: You are completely free in choosing how to map your arrayelements into tiles and which cache instance to choose for which tile but onemapping may be better in your situation than another one.5.4 Tetris and hierarchical cachesHow can you use several caches? I want to explain this with an example. Assume you have two caches andthe big cache is four times larger than the small one. That is four instances of the small cache �t into oneinstance of the big cache.
main memorysmall cacheinstances of thebig cache instance small cachebig cache

Consequently, tile line 12 of four consecutive small cache instances will be mapped onto four di�erent placesin the big cache but into the same place of the small cache.
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tile lines 12-15tile lines 8{11small cache instances 2
main memorybig cachesmall cache main memorybig cachesmall cache

= arbitrary accesses toother instances of thesmall cache data remains inthe big cache
Figure 14: In the top �gure cache lines 8 { 11 and 12 { 15 of di�erent instances 2 of the small cache areaccessed. In the bottom �gure other instances of the small cache are accessed but not cache lines 8 { 15 ofsmall cache instance 2. Despite the fact that these cache lines are kicked out of the small cache, they remainin the big cache. If the program later accesses the very same memory locations of these cache lines again,they will be in the big cache and do not need to be read from the main memory.

main memorybig cachesmall cache= tile line 12
When you read or write data from the ith small cache instance within a big cache instance it will be storedin the big cache until you read or write data from/to another ith small cache instance, even when you accesssmall cache instances which are not the ith in between. Let me make an example (see �gure 14): assumearray B occupies cache lines 8 to 15 in the small cache instances. Now, you access cache lines 8 to 11 in thesmall cache instance 2 within the big cache instance 0 and cache lines 12 to 15 in the small cache instance2 within the big cache instance 1. Then you access all cache lines in all other small cache instances withthe exception of all instances 2. Finally, you re-access small cache instance 2 within the big cache instance0 and 1 to read cache lines 8 to 11 and 12 to 15 respectively. These cache lines will still be in the big cachebut not in the small cache.5.5 Tetris and multiple loopsWhat do you need to do if your program has several loops which access arrays? Basically, there are twoproblems:1. The loops access di�erent arrays but also share some arrays. You will probably not have a problem ifthe loops do not share at least one array.2. The loops access the same array but have di�erent access requirements. That is: they have di�erentaccess patterns or need di�erent tile sizes or shapes.In section 5.3 I discuss an example which handles problem 2. The trick is to �nd a smart mapping and toreorder the loops appropriately. If this does not help, you need to have a look at section 5.6.
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Box 14: Tetris versus PaddingBoth Tetris and padding can completely avoid cache interference. The real di�erence between them isthat padding can only handle very restricted situations whereas Tetris can handle most situations.Tetris paddingintuitivealgorithm available / easy to implementchanges array layout only a bittiles with odd sizes and odd base addressmulti-dimensional arraysseveral arrays in the same loop ?di�erent array sizesdi�erent tile sizesdi�erent access patternsseveral loops ?hierarchical caches ?arrays with non-rectangular shapenon-array variableswastes memoryThe question marks say: \it is possible but very restricted." Let me briey discuss the points:intuitive That Tetris is more intuitive is my subjective opinion.algorithm available / easy to implement Section 3 presents several padding algorithms.changes array layout only a bit Padding just makes the lines of the arrays longer and moves the baseaddresses around. Tetris requires a total di�erent array layout (see section 5.1).tiles with odd sizes and odd base address For padding see sections 3.4 and 3.5. For Tetris see sec-tion 5.3.several arrays in the same loop Padding can only handle di�erent arrays if they have the same sizesand are accessed very similarly (see sections 3.6 and 3.7).di�erent array sizes Tetris can work with di�erent array sizes (see sections 5.1 and 5.3). Padding doesnot accept di�erent array sizes (see section 3.6).di�erent tile sizes Tetris can work with di�erent tile sizes (see sections 5.1 and 5.3). Padding does notaccept di�erent tile sizes (see section 3.6).di�erent access patterns Tetris accepts di�erent access patterns (see section 5.2). Padding requiresvery similar access patterns for all arrays (see section 3.7).several loops Tetris can handle multiple loops (see section 5.5). Padding can handle several loops onlyif the same arrays are accessed and the same tile size is used.hierarchical caches For Tetris see section 5.4. Hierarchical padding works only if the big tile is as longas the small tile (see section 3.9).arrays with non-rectangular shape Tetris can handle non-rectangular arrays when you can �nd anappropriate mapping function (see section 5.3). For padding arrays must be rectangular.non-array variables For Tetris see section 5.1. Padding can only pad array variables.wastes memory Which technique wastes more memory depends on your program and your paddingalgorithm and your implementation of Tetris.



5 THE TETRIS IDEA 50For the rest of this section, I will concentrate on problem 1 by giving anexample. Imagine: you have two loops: loop one accesses arrays A and B,loop two accesses arrays B, C, D and E. How can you handle this? The answeris simple: = E = D= C = B= A
loop 2 cache usageloop 1 cache usage= unused� Arrays A and B are not allowed to share any cache line.� Arrays B, C, D and E are not allowed to share any cache line.� Array A's cache lines may be used by C, D and EOne possible solution is that array A uses the same cache lines as arrays C, D but not in the same cacheinstances as shown on the right.AB E D C unusedpossible memory organization for the exampleUsually, there will be several solutions for problem 1. You may want to choose the one that ful�lls allrequirements (tile size etc.), makes best use of your cache and does not waste too much memory.5.6 Tetris Copy-Bu�erTetris gives you much possibilities to cope with most cache problems but there are still situations whereTetris fails. Such situations arise when you need to deal with too many access patterns, too many loopsor/and too many arrays so that you can not �nd a Tetris memory layout which takes care of every thing.This is the worst case of Tetris. I can think of two problems:1. You need to change the way the array is stored in memory.2. A loop accesses several arrays and at least one array uses the same cache lines as one or more otherarrays. That is, the arrays would overlap in the cache. (I assume you have stored all arrays in the\Tetris-way", that is: they are chopped in small pieces and are distributed into cache instances.)If this happens you are forced to copy data to avoid cache conicts. Tetris comes with an own copyingtechnique | I call it Copy-Bu�er4. That is, even in the worst case Tetris does not perform so bad. Let me�rst describe copying in general and afterwards the Tetris Copy-Bu�er idea. For all tiles1. copy data from arrayinto Copy-Bu�er2. run main loop on tile;access Copy-Bu�erinstead of array3. copy data from copy-bu�er back to arrayBasically, copying works like this: You have a loop which does the \real"work on the tile. I will call this loop the main loop. If the main loop readsdata from A, you copy this data into a bu�er before your enter the mainloop. Then the main loop works on the tile but instead of accessing arrayA directly it accesses its copy in the bu�er. When the main loop �nishedworking on the tile, you copy the data from the bu�er back into the originalarray A if the main loop has changed this data. See box at the right.Now, I describe the Tetris Copy-Bu�er technique. The basic idea is touse the Tetris memory layout to� avoid all cache interference� keep the cache lines of the Copy-Bu�er all the time in the cache� avoid to copy many arrays �����

�����
�����
����� instance 5instance 0

instance 11CBAcopycopy-bu�er cache
main loop canaccess: B,C and copy-bu�erThis makes Tetris Copy-Bu�er much faster than usual copying as describedby Temam et al. [8]. Usual copying either copies only some of the arraysaccessed and must accept cache interference during the execution of the main4Note: if you copy to permanently change the way the array is stored in memory then Tetris Copy-Bu�er is not applicablebut read on: you can still learn how to avoid cache interference while copying.



5 THE TETRIS IDEA 51loop or it copies all arrays but su�ers heavily from interference while copying.Usual copying must reload at least some of the cache lines of the Copy-Bu�erbecause they get kicked out due to cache interference.The trick on Tetris Copy-Bu�er is the way the location of the bu�er ischosen:
���� ����A

copy-bu�er AcopyB
copy-bu�er B� The bu�er is never moved to another location.� The cache lines of the bu�er do not cause any interference. That is, noother array whether copied or not uses the same cache lines in anothercache instance.Here are the detailed rules for Tetris Copy-Bu�er:� There must be enough space in the cache to hold the Copy-Bu�er andall other arrays and variables you want to access in the main loop. Ifthis is not the case, e. g. the Copy-Bu�er requires 50% of the cache andanother array requires 80% of the cache, consider the possibility thatyou have chosen tile sizes, that are too big. ��
��
��
��

��
��
��
��

main loop can access:arrays C, D, E andcopy-bu�er of A, B
instance 05instance 9BAC D E

copy-bu�er Bcopy-bu�er A
� The Copy-Bu�er must occupy tile lines which are not used by any arrayor variable which is accessed in the main loop or by a copy operation.That is, the main loop can access the Copy-Bu�er without causing cacheinterference and no copy operation will throw out the cache lines of aCopy-Bu�er.� The Copy-Bu�er for an array is always in the same cache instance. Evenwhen you move from one tile to the next, you must not move the bu�er.If you move the bu�er, the cache lines of the old bu�er location will bethrown out of the cache and the lines of the new bu�er will be loaded.This causes unnecessary delays.
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�never use this cache linesinstance 0instance 1instance 3instance 2

copy-bu�er cache
You may want to know how much better the Tetris Copy-Bu�er is comparedto usual copying. The answer is: it depends entirely on how much cacheinterference are caused by usual copying. The point here is that any argumentabout cache interference in general involves so many parameters that it wouldnot be scienti�c.5.7 Tetris matrix multiplication exampleThe previous sections describe the Tetris idea from an abstract point ofview. In this section I give a concrete example. I will show an implementa-tion of the matrix multiplication algorithm using the Tetris data layout. Ifurther describe how I developed this program. I present the Tetris matrixmultiplication example in C code because it involves some di�cult pointercalculations which are not easily represented in an abstract syntax. CS = 128 cache linesCLS = 8 wordsL, H = 22 wordsM = 12 wordsY-tile uses 61 cache linesX, Y-tiles use 33 cache lines eachI decided to use the very same tiled matrix multiplication algorithm5which is shown in �gure 1. For simplicity, I restricted all arrays to be squareand have the same size. These are the steps which I took to develop theprogram:1. I started with analyzing the algorithm. Especially, the parameters whichdetermine the tile size are important. I named the length of the tile for YM XZ HHL Lthe Y array L and its height H. The tile of the X array must have H asits length, that is: it must be as long as the Y-tile is heigh. The length5Mathematicians know faster ways to multiply matrices. I use this simple algorithm because I focus only on cache issues.



5 THE TETRIS IDEA 52of the tile of the Z array must be L, that is: it must be as long as theY-tile. I chose M as the height of both the X and the Z-tile. I �gured outit would be the best to choose a large and square tile for Y. The tiles ofthe X and Z arrays could be smaller. Xcachefour unused elementsone unused cache lineZY2. I decided how the arrays should be distributed into cache instances. Iassigned half of the cache to each of the other arrays and a quarter ofthe cache to the X and Z arrays. Since accesses to X do not occur in theinner loop and are relatively seldom it is unnecessary to reserve a partof the cache for it. Using a quarter of the cache will actually slow downthe Tetris program because the Y-tile is smaller than necessary but Ithought it is instructive to show that Tetris can handle this. A furtherspeed increase would be possible by reserving only one line of lengthL for the Z-tile but that would result in too much unused memory. Iwould need a whole cache instance for each line of length L to store theZ array.
Ln RAh

= tile = arrayRAl H3. Given this layout I calculated the tile size in elements. I use a Cray T3Ecomputer with DEC Alpha 21164 processors. The top level cache has1024 words and the largest cache line size is 8 words. This computerhas stream bu�ers so that I wanted to read as many consecutive cachelines as possible to make best use of them. I chose L, H = 22. This givesthe next smaller square which �ts into half of the cache. The remainingcache lines are best used by choosing M = 12.4. Then, I created the mapping functions for each array (see section 5.3). A mapping function calculatesthe address of an element from its x, y coordinates. The functions must, of course, honor the Tetrismemory layout, that is the fact that the arrays are distributed into several cache instances. The partof these functions which is multiplied by CS �CLS calculates the address of the cache instance and theright part the address of the element within the cache instance. Since the algorithm access the elementsin row-major order, I stored the elements in row-major order within the cache instances, leaving nospace between the tile lines. This way I can utilize the stream bu�ers best. XADR, YADR and ZADR arethe mapping functions for the arrays X, Y and Z respectively:#define XADR(y,x) (X + ( (y / M)*RAh + (x / H) )*(CS*CLS) + (y % M)*H + (x % H))#define YADR(y,x) (Y + ( (y / H)*RAl + (x / L) )*(CS*CLS) + (y % H)*L + (x % L))#define ZADR(y,x) (Z + ( (y / M)*RAl + (x / L) )*(CS*CLS) + (y % M)*L + (x % L))X, Y and Z are the base addresses of the arrays. CS*CLS is the size of the cache in elements and,therefore, the size of the cache instances. RAl is the length of the array in whole multiples of L. Forexample, let L be 22 then for a Y array with length 100, RAl would be 5 since 5 � 22 is the next greaterthan 100 multiple of 22. RAh is the height of the array in multiples of H.5. Next, I wrote the initialization of the program as shown in �gure 15. I tested this part very carefullyto ensure that the data was stored in the right way. The initialization of the arrays is not show. Isimply used the above mapping functions to calculate the address of each element.6. Afterwards, I wrote the �rst version of the matrix multiplication and tested its correctness. I still usedthe mapping functions to calculate the addresses of the elements in the inner loop.7. Finally, I optimized the matrix multiplication by removing the expensive address calculation from theinner loop. This resulted in the code shown in �gure 16. It is possible to remove the address calculationcompletely from the matrix multiplication by replacing it through some simple additions and a bunchof pointer variables but it will not result in signi�cant improved speed.
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#define CLS 8 /* length of a cache line in elements */#define CS 128 /* size of the cache in cache lines */#define L 22 /* length of Y and Z-tile in elements */#define H 22 /* height of Y-tile and length of X-tile */#define M 12 /* height of X and Z-tile */#define WORD (sizeof(double)) /* length of a word in bytes */#define MYMIN(n,m) ((n) < (m) ? (n) : (m)) /* minimum of n and m */#define CEIL(v,s) ((v) + ( ( (s) - ((v) % (s)) ) % (s) )) /* round v to next multiple of s */double *Mtx; /* pointer to the allocated memory */int RAl; /* real array length (in multiples of L) */int RAh; /* real array height (in multiples of H) */double *X, *Y, *Z; /* array base addresses */int jj, kk, i, k, j; /* index variables */double *YY, *YYY, *XX, *ZZ, *ZZZ; /* auxiliary pointers */double r; /* auxiliary variable to hold element of X *//* calculate real array length and height */RAl = CEIL(n,L) / L;RAh = CEIL(n,H) / H;/* how many cache instances do I need? */i = RAl * RAh; /* number of cache instances used by Y */j = RAh * CEIL(n,M) / M; /* number of cache instances used by X and Z */if(j > i) i = j; /* which one uses more cache instances? *//* allocate memory */Mtx = malloc( i*( CS * CLS + CLS -1 ) * WORD );assert( Mtx );/* calculate base addresses i. e. o�sets into the �rst cache instance */X = (double *) CEIL((long) Mtx ,CLS);Y = X + CEIL((long) (H*M), CLS);Z = Y + CEIL((long) (L*H), CLS);if( (Z + CEIL((long) (L*M), CLS)) - X > (long) CS * CLS){printf("The tiles exeed the size of your cache!\n");exit(EXIT_FAILURE);}... initialize matrices (not shown) ...Figure 15: The initialization and address calculation part of the Tetris matrix multiplication.



5 THE TETRIS IDEA 54/* matrix multiplication */for( kk = 0; kk < n; kk += H ){for( jj = 0; jj < n; jj += L ){for( i = 0; i < n; i++ ){XX = X + ( (i / M)*RAh + (kk / H) )*(CS*CLS) + (i % M)*H;YY = Y + ( (kk / H)*RAl + (jj / L) )*(CS*CLS);ZZ = Z + ( (i / M)*RAl + (jj / L) )*(CS*CLS) + (i % M)*L;for( k = kk; k < MYMIN( kk + H, n ); k++ ){YYY = YY;r = *(XX++);ZZZ = ZZ;for( j = jj; j < MYMIN( jj + L, n ); j++ ){*(ZZZ++) += r * *(YYY++);}YY += L;}}}} Figure 16: The main loops of the Tetris matrix multiplication.Besides several mistakes with the pointer calculation, I had to �ght two main problems: the Cray compiler\optimized" my loops when I run it in high optimization levels and I had to align my code by hand. That is:I had to insert some no-op instructions before the matrix multiplication loops to gain maximum performance.5.8 Tetris | towards an algorithmIn this section I discuss some of the issues which may arise if someone wants to �nd a Tetris algorithm. Mostof the readers my want to skip this section. This is not a complete list of points which must be consideredfor a Tetris algorithm; it is more a collection of some thoughts about it.Tetris was born to be used in compilers. When I saw the restrictions of padding, it was clear to methat padding is too weak to be used by compilers, so I thought of something more powerful and came upwith Tetris. Since Tetris changes the data layout heavily, it is certainly easier to use with a programminglanguage in which the array layout is unknown to the programmer.To get the best results when applying Tetris, all possibilities | like mapping functions, loop changings,tile sizes and so on | must be considered. Most likely, this requires human creativity and can not be doneby a computer. Nevertheless, it should be possible to �nd an algorithm which can handle most cases withvery good results by applying some heuristics. Here are some points which such an algorithm may need totake into consideration:� Which variables are accessed in the inner loops?� Which variables are shared by several loops?� Which restrictions/dependencies exist between loops and tile sizes?



5 THE TETRIS IDEA 55Box 15: The myth of the transparent cacheFor more than a decade scientists all over the world have been studying how to make best use of the cache| without much success. The hardware people promised a transparent cache. So far they have not kepttheir promise. Allow me to make some philosophic comments about the hardware issue.From the point of view of a hardware designer, Tetris is just a soft-ware simulation of a fully addressable fast memory bu�er. Tetris abusesthe cache to play the roll of this bu�er. Tetris is a comparatively di�-cult replacement for such a bu�er. Hardware designers seem to dream ofimproving the speed of programs with hardware which does not need anysoftware support, like caches. Should Tetris ever become wide spread used| what I do not know | this dream would have come to its worst end.Tetris represents a huge software e�ort to circumvent a fully automatedhardware feature | the cache. 21164Is there no better solution? First, we need some or several kinds of fast and small, close to the processormemory. But is a cache the only thing we can think of? I believe, the interference problem with arrays| the very one against padding and Tetris �ght | is an intrinsic cache problem, caused by the mappingfunction. I do not say that having a fully addressable fast memory bu�er is the ultimate solution to theinterference problem but I say that this problem will not be solved with a cache. I believe that too manypeople concentrate on caches instead of searching for other solutions.� How should the algorithm select a tile size?� How to tile the loops? Note: it may sometimes be necessary to tile loops di�erently than for usualtiling because Tetris permits | with some restrictions | to access tiles which are distributed amongseveral cache instances. See the stencil operation and the two-loops example discussed in section 5.3.� How should the algorithm �nd a mapping function? That is, how should the algorithm map tiles tocache instances and how to map the elements of the array into the tiles? Section 5.3 has an examplewhich shows that it is necessary to be a bit creative here; especially if the algorithm deals with severaldistinct loops.� How should the algorithm avoid wasting too much memory?� When should the algorithm copy data?� How should the algorithm handle multi-dimensional arrays?� Which non-array variables should be stored using Tetris?� When does hierarchical tiling make sense? That is: when does it improve the program speed | myhierarchical tiled matrix multiplication slows down the program | or when does hierarchical tilingresult in other advantages?� How should the algorithm support other hardware features like virtual mapped caches or streambu�ers?The best approach towards an algorithm would probably be to �rst gain experience by applying Tetris to anumber of programs by hand. Afterwards, an algorithm could be developed which ignores most of the abovequestions, for example by choosing the same tile size for all tiles, by not considering hierarchical tiling andby ignoring the Copy-Bu�er technique. Later the algorithm could be extended to handle more cases and tobe more e�cient. Well, so much for theory . . .



6 THE EXPERIMENTS 566 The ExperimentsBasically, there are three methods which are very strong in avoiding cache conicts: padding, copying andTetris. Unfortunately, it is hard to argue which one is better. Padding can not handle all situations but it iseasier to implement as copying and Tetris. In general, I can not say how much a certain technique improvesa program. It depends on the program and the hardware.In this section I try all methods on a certain program (matrix multiplication) and on a certain hardware(Cray T3E) to compare them. Box 16 describes the programs and algorithms in detail. Box 17 describesthe hardware and how I made the experiments. Box 18 explains why I have chosen matrix multiplication.Box 19 tries to answer the question which method is the fastest. Figures 17 and 18 show the results of theexperiments.6.1 Discussion of the graphsIn this section I try to explain why the curves of �gures 17 and 18 look the way they look. Note that I cannot open the cache and see what is going on there. Therefore, the explanations given here are my best guessand not a general truce.
?

Is there always no speed di�erence between copying, padding and Tetris?You do not see a big di�erence between the execution times of the copying, padding, Tetris-Copy-Bu�er and Tetris programs. The reason is that the matrix multiplication can reuse data a lot andcauses relatively few loads from main memory after the program has been tiled. If I had used thestencil operation from �gure 6 | which reuses a once loaded element just three times and accesses thememory much heavier | the di�erence between the methods would be much more signi�cant.
?

Are the tiny di�erences between copying, padding and Tetris meaningful?Yes. The di�erences are not just a measurement error. These tiny di�erences in the execution timeare actually cross-interference or overhead from copying. For example: Tetris is always faster thanTetris-Copy-Bu�er which has some overhead from copying.
?

Are the optimized programs una�ected by Stream Bu�er issues?No. When you compare the enlargements of the two graphs, you will see that all fast programs areone to four nano-seconds slower without Stream Bu�ers than with them. Moreover, I programmedthe Tetris version Stream Bu�er friendly, therefore, it looses more than padding and copying when thestream bu�ers are switched o�.
?

Why is Tetris slower than padding and copying without Stream Bu�ers?The padded program su�ers from cross-interference but there is not much interference in the matrixmultiplication. The copying program su�ers from the copying overhead but that is small because thereis much reuse in the matrix multiplication algorithm. Nevertheless, both programs should be slowerthan Tetris and Tetris-Copy-Bu�er even without Stream Bu�er support. The point here is that theTetris program use a smaller tile size which slows it down.
?

Should not the padded program be faster than the copying program?Theoretically, the answer should be yes. I have no explanation for the fact that both programs run atthe same speed.
?

Why are the copying, padding and Tetris curves not completely even?When the user array length is not an exact multiple of a tile size then some tiles are only partly used.The loop overhead is higher for partly used tiles than for full tiles. This causes the jittering. The upand down becomes smaller for larger array sizes because larger arrays have much more full tiles thanpartly used tiles.
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384320256
60ns56ns52ns48ns 1024512256128643216

100ns80ns60ns40ns20ns0ns 1024512256128643216

100ns80ns60ns40ns20ns0ns TetrisTetris-Copy-Bu�erpaddedcopyingtiledunoptimized
Matrix Multiplication with Stream Bu�ers

array length1024512256128643216

100ns80ns60ns40ns20ns0nsFigure 17: This plot shows how much time the di�erent programs spent for the matrix multiplicationdepending on the array length. The time is divided by the cubic array length. For your convenience Ienlarged the small box in the graph.
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100ns80ns60ns40ns20ns0ns 1024512256128643216

100ns80ns60ns40ns20ns0ns TetrisTetris-Copy-Bu�erpaddedcopyingtiledunoptimized
Matrix Multiplication without Stream Bu�ers

array length1024512256128643216

100ns80ns60ns40ns20ns0nsFigure 18: Since you may not have Stream Bu�ers I made the experiment from �gure 17 again but switchedo� the Stream Bu�ers. Again, I enlarged a part of the graph.
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Y array

Z arraythe unoptimized programwith array size 512
1024 elementscache witheach secondline uses thesame areain the cache

worst casecross-inter-ferencebetweenY and Z arrayaccesses a large partof the cacheremainsunusedeach secondtile line usesthe same areain the cache

the unoptimized programwith array size 256
1024 elementscache witheach fourthline uses thesame areain the cacheY array

Z array
Y array

Z arraythe tiled programwith array size 512
1024 elementscache withworst casecross-inter-ferencebetweenY and Z arrayaccesses cross- andself-interferencebetweenY and Z arrayaccessesworst case

Figure 19: Have a look at �gure 1: in the k-loop, one line of the Z-array is reused while each line of theY-array is loaded. At array length 512, exactly two lines �t into the 1024 element cache. The unoptimizedprogram uses the same cache lines for the array lines 0, 2, 4, 6, 8, . . . of the Y-array. This is not a problembut, by chance, the single line of the Z-array uses also the very same cache lines as this lines of the Y-array(left �gure). Actually, element i of the Y-array line uses the same cache line as the element i of the Z-arrayline. This causes cache thrashing | the cache lines of the Y and Z-arrays throw each other out of the cache.This slows down the program and causes the peak in the unoptimized curve at array length 512.The middle �gure shows the situation for array length 256. Four lines of the array �t into the cache butonly one causes cache thrashing. Therefore, the cache thrashing slows down the program only by half of theamount of time as it has slow down the program for array length 512. So the peak in the curve for arraylength 256 is only half as high as for 512. For array length 128 the peak is only a quarter as high as for 512because eight lines �t into the cache and only one of them causes this worst case cross-interference.For the tiled program the peak in it's curve at array length 512 is even higher. The tiled program doesnot use the Stream Bu�ers as e�ective as the unoptimized program does, instead it hopes the cache is able tohold all elements of the tile. The tiled program su�ers from the same cross-interference as the unoptimizedprogram but in addition it makes bad use of the cache (right �gure).Since every second tile line uses the same cache lines and a tile is only 32 elements long, only a tiny partof the cache gets used. When the tiled program tries to reuse the �rst tile line, the line has long been thrownout of the cache. The e�ect is not so dramatic for array length 256 and 128 due to the secondary cache. Thistwelve times larger 3-way cache with it's random replacement strategy can then hold enough cache lines ofthe tile to make reuse possible.
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Box 16: The sample programsAll programs which I use in the plots implement the matrix multiplication algorithm shown in �gure 1 onpage 4. I choose all arrays to have the same square sizes. For example, when the plot says array length128 then all arrays have a user array length of 128 elements and a height of 128 lines. All programs arewritten in C. I use the optimization -O1 of the Cray C-compiler for all programs. Furthermore, I triedto make all programs | with the exception of the Tetris program | as fast as possible by choosing thebest tile sizes, access patterns and by making the programs stream bu�er friendly if possible.unoptimized The unoptimized program is the very code shown in �gure 1 (a). This program does notimplement any optimizations like padding or copying.tiled The tiled program is the code shown in �gure 1 (b). This program does not implement any otheroptimizations like padding or copying | just simple tiling. The tile size | B in �gure 1 | is 32.The arrays have exactly the size AL �AL.copying The copying program implements the code shown in �gure 1 (b) but it copies the tile of theY-array into a continuous bu�er before entering the i-loop. The program uses a 32 � 32 elementtile for the Y-array so that the whole cache is used. Lam et al. [3] found that copying the Z-array aswell produces more overhead as bene�t.padded The padded program uses the code shown in �gure 1 (b). The length of array Y is padded toavoid self-interference. I use the Odd-Padding algorithm but note that the choice of the paddingalgorithm does not inuence the number of the remaining cache conicts and, therefore, does notinuence the speed of this program. Arrays X and Z can not cause self-interference because it is onlyone line accessed in the inner loop and there is no reuse of that line in the i and j-loops. To avoidworst case cross-interference between arrays Y and Z the base address of array Y is padded so thatthere is always a relative distance of at least 16 elements between these arrays. The tile size | B in�gure 1 | is 32. Experiments have shown that a smaller tile size slows down the program.Tetris The Tetris program code is shown in �gures 15 and 16 on page 54. I use the same parametersas described in section 5.7. Especially the Y-tile size is 22� 22 and the X and Z-tile size is 22� 12.This choice is not optimal but I wanted to show that Tetris can handle three arrays with di�erenttile sizes and access patterns. Section 5.7 explains how to improve this program.Tetris-Copy-Bu�er The Copy-Bu�er version of Tetris is basically the same program as shown in �gures15 and 16. It also uses the same parameters as the Tetris program. I deliberately changed the arraylayout so that the Y-array uses the same cache lines as the X and Z-arrays | in di�erent cacheinstances, of course. Therefore, I need to use the Copy-Bu�er technique (see section 5.6) to copythe Y-tile into a bu�er before the i-loop. The copying program and the Tetris-Copy-Bu�er programcan be compared because they copy the same amount of data during the whole execution of theprograms despite the fact that the tile sizes are di�erent. The di�erent tile sizes do not a�ect theoverhead caused by copying, instead they somewhat speed up the main work loop of the copyingprogram.I had problems with the code alignment by all programs but some programs seem to be more sensible toit than others. Bad code alignment sometimes doubled the execution time.
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Box 17: The experimental setupThe measurements for �gures 17 and 18 are made on a Cray T3E, using the programs described inbox 16. The T3E has DEC Alpha 21164 processors. The graphs show the execution time of the matrixmultiplication divided by (UAL)3. That is: I normalized the graphs using the function (UAL)3. The timeshown is the time needed by one processor for executing the matrix multiplication loops. The initializationof the programs and matrices is not measured. For array lengths between 24 and 768 elements, I tookone sample for each multiple of 8 array length. Note that the x-axis which shows the user array lengthUAL in elements has a logarithmic scale.The DEC Alpha 21164 processor has two levels of caches. The �rst cache (data cache) is a directmapped 1024 element cache with a cache line size of 4 elements. The second cache is a 3-way 12288element cache with a cache line length of 8 elements. Which cache line out of a three-cache-line-set getsreplaced is chosen randomly. One element is 8 bytes long which is the size of double.The Cray T3E has six data Stream Bu�ers which work as replacement for the third cache level.These stream bu�ers automatically detect accesses to consecutive memory locations and start prefetchingthose cache lines. For �gure 18 I switched the Stream Bu�ers o� by setting the environment variableSCACHE D STREAMS to 0.

Box 18: Why do I use matrix multiplication?Here are some points which explain why matrix multiplication is a good choice:� Matrix multiplication is simple and wide known.� It is a famous example for cache experiments.� It has much reuse which is important to show cache e�ects.� It accesses several arrays so that I can show that Tetris can handle them all.� It has di�erent access patterns so that padding can not avoid all cache interference. That is: paddingshould not be as fast as Tetris.� I can implement matrix multiplication using di�erent tile sizes which proofs that Tetris can handlethis, too.On the other hand, there are some reasons why matrix multiplication is a bad choice:� It has too much reuse and too few direct memory accesses. This is why you do not see a signi�cantdi�erence between most programs.� It has too few cross interference. Therefore, you can not see a di�erence between Tetris and padding.In the end I need to choose an example algorithm for the experiments and no matter which one I chooseit will have its advantages and disadvantages.



6 THE EXPERIMENTS 61Box 19: Which method is faster?There are several methods which avoid cache conicts. Which one is the best for your program? How muchfaster your program will be when you implement one of these techniques depends on many parameters |like your hardware, the memory access patterns of your program, the cache interference caused by yourprogram and the cache interference avoided by the method. This are too many parameters, so that I cannot tell you how much you will win when you use one of these methods. I can not even promise you thatyour program will not be slower than before. But from experience and theoretical considerations I can,at least, tell you some relations among these methods. slow

fast
??copyingTetris-Copy-Bu�er

?

??A BAA BB B is as fast as A or fasterB is most likely faster as A but in some cases slowerit is unknown which one is faster

tilingpaddingTetris

unoptimized ?

Most likely a tiled program is faster as the unoptimized original program but I saw some (badly) tiledprograms which where slower than the original; mainly because the original version could make betteruse of the Stream Bu�ers.A padded program is always faster than the tiled program because it uses the very same loops butavoids at least some cache conicts. I never saw a padded program which was slower than the originaland I do not expect to do so but theoretically it would be possible. For example: when the loop overheadcaused by tiling slows down the padded program more than it wins by avoiding cache conicts.I know that Tetris-Copy-Bu�er is faster than copying because it avoids cache conicts while it copies.Whether these both methods are faster than your original program or not depends on how much cacheconicts they can avoid, how often once copied data is reused and how high the overhead caused bycopying is. For the same reasons these methods can be faster or slower than tiling. In situations wherepadding can avoid all cache conicts a padded program is sure faster than copying and Tetris-Copy-Bu�er.If padding can not avoid all cache conicts, then it depends on the relation between the time spent forthe remaining cache conicts of padding to the time spend for the copying overhead.Tetris is faster than Tetris-Copy-Bu�er and copying because it has not to pay the overhead of copying| here, I assume that Tetris can avoid all cache conicts. Tetris is as fast as padding when paddingcan avoid all cache conicts because Tetris can avoid the same conicts as padding. In a situation whereTetris can avoid more cache conicts as padding, Tetris will be faster.
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?

Why does the unoptimized curve rise so much around 110?The secondary cache of the Alpha processor can store 12288 elements, that is: it can store one completearray (Y) of size 110. Even the unoptimized program can hold that array in the cache as long as thearray length is smaller than 110.
?

Why are most programs a bit faster for very small arrays?Because of the �rst cache which can hold 1024 elements and is faster than the second one. Mostprograms use a tile size of 32 � 32 which exactly �ts into the �rst cache. The Tetris programs use atile size of 22� 22 and must already deal with four tiles for array size 24. Therefore, their curves arehigher at these points.
?

What causes the peaks in the curve of the tiled program?The tiled program su�ers from self- and cross-interference. Depending on how long the arrays are andwhich base address they have, the amount of cache conicts raises or drops. Some array lengths areodd multiples of the tile length 32. Then the array length ful�lls the requirements of the Odd-Paddingalgorithm and there are no self-interference but there will still be cross-interference.
?

What causes the peaks in the curve of the unoptimized program?The peaks are caused by worst case cross-interference (cache thrashing) as described in box 4. Figure 19explains the details.
?

What causes the tall peak at array size 512 in the curve of the tiled program?Worst case cross- and self-interference in the cache as described in box 4. Please, see �gure 19 fordetails, again.6.2 SummaryIt is hard to predict the e�ect of a cache conict avoiding method on the speed of a given program. Formatrix multiplication copying, padding and Tetris run almost at the same speed. For other programs theout come may be totally di�erent. The smooth curves show that these methods really get rid of most cacheinterference. Furthermore, Tetris proved that it can handle di�erent tile sizes and access patterns. Even theworst case for Tetris | when it is necessary to employ the Tetris-Copy-Bu�er technique | is comparativelyfast.



7 CONCLUSION 637 ConclusionTiling can improve the speed of programs but it must be accompanied by a technique which avoids cacheconicts. Three of these techniques are reasonable strong: copying, padding and Tetris.technique advantage disadvantagepadding easy to implement can not handle all situationscopying strong and exible causes much overheadTetris strong and exible no algorithm available/hard to implementCopying is not much used because people fear the overhead but the experiments with matrix multiplicationshow that it is quite good in some cases. In the future Padding and Tetris have to prove their usefulness inpractise.A few years ago, If I would have talked about the state of the art of padding to a programmer, I mightvery well have had to face this question:\You mean that the thing is supernatural?"Sherlock Holmes in Sir Arthur Conan Doyle'sThe hound of the BaskervillesA glimpse at the \work of others" section in this paper shows clearly that this is not longer true. Paddingcan be considered to be well understood but it is new and not wide spread by now.There are several algorithms for intra-variable padding. Panda et al.'s [5] method and the two introducedin this paper: Odd-Padding and Brute-Force-Padding change the length of the array involved and havedi�erent requirements for the tile length. Whereas Panda et al.'s [5] method searches for an appropriatepad, the Odd-Padding and the Brute-Force-Padding algorithm are based on mathematical properties ofthe modulo-function. I not only showed the worst-case memory consumption of the Brute-Force-Paddingalgorithm and the Odd-Padding algorithm but even proved that the Odd-Padding algorithm is correct.padding algorithm advantage disadvantageBrute-Force-Padding simple, exible uses too much padPanda et al.'s DAT shortest average pad, exible bad worst case behaviorOdd-Padding simple, shortest worst case pad not so exible, longer average padPadding is powerful enough to handle a lot of common cases like: tiles with odd sizes and base coordinates,several or multi-dimensional arrays, stencil operations. But there are serious weaknesses which restrict theusefulness of padding: for accessing several arrays at once, all arrays and tiles must have the same size.Furthermore, the way you can access the arrays is restricted, hierarchical tiling works only in a special case,and I carefully never talked about how to pad arrays which are accessed in di�erent loops with di�erentaccess requirements. Padding fails in such prominent cases like matrix multiplication, where it can avoid allself-interference but not all cross-interference because the arrays involved have di�erent access patterns. Insuch cases copying (Temam et al. [8]) or Tetris must be employed.Tetris is a powerful method to avoid cache conicts but it does not come with an algorithm. At themoment Tetris can only be implemented by hand and some intuition is necessary to get best results. ShouldTetris prove to be useful in future then it would be necessary to develop an algorithm.
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