Compilation of Constraint Systems to Parallel

Procedural Programs

by

Ajita John, B.Sc., B.E., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 1997

Compilation of Constraint Systems to Parallel

Procedural Programs

Publication No.

Ajita John, Ph.D.
The University of Texas at Austin, 1997

Supervisor: J. C. Browne

An attractive approach to specifying programs is to represent a computa-
tion as a set of constraints upon the state variables that define the solution and to
choose an appropriate subset of the state variables as the input set. But, there has
been little success in attaining efficient execution of parallel programs derived from
constraint representations. There are, however, both motivations for continuing re-
search in this direction and reasons for optimism concerning success. Constraint
systems have attractive properties for compilation to parallel computation struc-
tures. A constraint system gives a control flow-free and dataflow-free specification
of a computation, thereby offering the compiler freedom of choice in deriving control
structures. All types of parallelism (AND, OR, task, data) can be derived. Either
effective or complete programs can be derived from constraint systems on demand.
Programs for different computations can be derived from the same constraint spec-

ification through different choices of the input set of variables.

ii

This dissertation reports on the compilation of constraint systems into task
level parallel programs in a procedural language. This is the only research, of which
we are aware, which attempts to generate efficient parallel programs for numerical
computations from constraint systems. Computations are expressed as constraint
systems. A dependence graph is derived from the constraint system and a set of
input variables. The dependence graph, which exploits the parallelism in the con-
straints, is mapped to the target language CODE, which represents parallel com-
putation structures as generalized dependence graphs. Finally, parallel C programs
are generated. To extract parallel programs of appropriate granularity, the following
features have been included. (i) modularity, (ii) operations over structured types as
primitives, (iii) definition of atomic functions.

A prototype compiler has been implemented. The execution environment
or software architecture is specified separately from the constraint system. The
domain of matrix computations has been targeted for applications. Performance
results for example programs are very encouraging. The feasibility of extracting
efficient and portable parallel programs from domain-specific constraint systems

has been established.

iii

Abstract

Contents

List of Figures

Chapter 1 Introduction

1.1 Problem Statement and Approach

1.2 Constraint Systems as Representations of Computations for Parallel

Execution

Chapter 2 Background: Constraints

2.1 Definitions e

2.2 Constraint Types e

2.3
2.4

221
222
2.2.3
224
225
2.2.6

Linear and Non-linear Constraints
One-way and Multi-way Constraints
Hierarchical Constraints
Higher-Order Constraints
Meta-Constraints

Temporal Constraints

Constraint Graphs o oL

Constraint Satisfaction Techniques

241

Local Propagation

v

xii

© © © o O

2.5

2.6

242 Relaxation o
2.4.3 Propagating Degrees of Freedom
2.4.4 Graph Transformation
2.4.5 Miscellaneous Techniques
Our Approach
2.,5.1 Types of Constraints Resolved through Our System
Constraint Systems as Representations of Parallel Computations

2.6.1 Conformance to Desired Property Set
2.6.2 The Role of the Type System
2.6.3 Modular Structureo

Chapter 3 The Constraint Language

3.1
3.2
3.3
3.4
3.5

Type System L
Expressions e e
Constraints
Program Structure L L
Sample Programs oo
3.5.1 The Quadratic Equation Solver
3.5.2 The Block Triangular Solver(BTS)
3.5.3 The Block Odd-Even Reduction Algorithm(BOER)
3.5.4 The Laplace Equation

Chapter 4 The Basic Compilation Algorithm

4.1
4.2
4.3

Phase 1: Generation of Constraint Graphs
Phase 2: Translation of Constraint Graphs to Directed Graphs

Phase 3: Generation of Dependence Graphs
4.3.1 Resolution of Simple Constraints

4.3.2 Resolution of Indexed Sets.

22
22
24
24
27
27
28
29
30
34

4.4

4.5

4.3.3 Resolution of Constraint Module Calls
4.3.4 The Quadratic Equation Solver through Phase 3
4.3.5 Single Assignment Variable Programs
4.3.6 Generation of either Effective or Complete Programs
4.3.7 Extraction of parallelism
4.3.8 Unresolved Constraints
Phases 4 and 5: Specification of Execution Environment and Mapping
toCode L
Procedural Parallel Programs for the BT'S and BOER Systems

45.1 The BTS System
4.5.2 The BOER System

Chapter 5 Iterative Solutions for Constraint Systems with Cycles

5.1

5.2
5.3
5.4

Selection of Term to be Computed
5.1.1 Unresolved Simple Constraints
5.1.2 Unresolved Constraint Module Calls
5.1.3 Unresolved Indexed Sets
Mapping single assignment variables to mutable variables
Relaxation Methods,
The Laplace Equation Example
5.4.1 The Dependence Graph for the Laplace Equation

Chapter 6 Execution Environment Specification

6.1
6.2
6.3
6.4
6.5

Shared Variables
Number of Available Processors
Data Partitioning with Overlap Sections
Option of not Parallelizing a Module

Selecting Operations to be Executed in Parallel

vi

6.6 Choices among Parallel Algorithms to execute some of the Operations 87

Chapter 7 Performance Results 89
7.0.1 The Block Triangular Solver (BTS). 89

7.0.2 The Block Odd-Even Reduction Algorithm(BOER) 92

7.0.3 The Laplace Equation 93
Chapter 8 Related Work 97
8.1 Constraint Programming 98
811 Comsul. 98

8.1.2 Thinglab oL 98

8.1.3 Kaleidoscope 98

8.1.4 Concurrent Constraint Programming 99

8.2 Parallel Programming 99
8.2.1 Automatic Parallelization of Sequential Programs 99

8.2.2 Extension of Procedural Languages with Directives for Paral-

lelism 100

8.2.3 Parallel Logic Programming 100

8.2.4 Parallel Functional Programming 100

8.2.5 Equational Systems 101

8.2.6 Miscellaneous Systems 101
Chapter 9 Conclusions 103
9.1 Contributions 104
Chapter 10 Future Work 105
10.1 Extraction of Algorithms 105
10.2 Writing “Good” Specifications 106
10.3 Choosing a Path in Effective Programs 106

vil

10.4 Exploring New Application Areas 106

10.5 Extensions to Current Work 107
Appendix A CODE 108
Al Nodes e 108
A2 Arcs . . . e 109
A.3 Firing rules and Routing rules 110
A .4 Formal specification of CODE model 111
A5 A CODE Implementation Overview 113
Bibliography 117

viii

List of Figures

2.1 Constraint Graph for Temperature Conversion Program 11
2.2 Computing the Fahrenheit value of 30 degrees Celsius using Local

Propagation 12
2.3 Computing the Celsius value of 100 degrees Fahrenheit using Local

Propagationo o 13
2.4 (a) Cycle in a Constraint Graph (b) Using a Rewrite Rule to break

the Cycle o . o 14
2.5 A Simple Dependence Graph 16
3.1 The Type System Layout 23
3.2 Constraint Specification for the Quadratic Equation Solver 28
3.3 BTS: Partitioned Lower Triangular Matrix A, Vectors X and B . . . 29
3.4 Constraint Specification for the BTS System 29
3.5 BTS: Partitioned Lower Triangular Matrix A 30
3.6 Alternate Notation for the Constraint Specification for the BTS System 30
3.7 Parallel Algorithm for the Cyclic Block Tridiagonal System 32
3.8 Constraint Specification for the BOER System 33
3.9 The Laplace Equation Grid 34
3.10 Constraint Specification for the Laplace Equation System 35

X

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13

4.14
4.15
4.16
4.17
4.18
4.19
4.20

4.21
4.22

4.23

Constraint Specification for the Quadratic Equation Solver
Constraint Graphs for (a) Rule 1 (b),(c) Rule2
Constraint Graphs for (a) Rule 3 (b) Rule4
Constraint Graphs for the Quadratic Equation Solver
Phase 2 for four basecases
Trees from Phase 2 for the Quadratic Equation Solver
Generalized Dependence Graph Node
Indexed Set at a Node in a Tree from Phase 2
Generated Dependence Graph for an AND Indexed Set
Generated Dependence Graph for an OR Indexed Set
Dependence Graphs for a Constraint Module Call
Dependence Graphs for the Quadratic Equation Solver with Z = {a,

b, rl}
Constraint Specification for a Simple Example.
Dependence Graph showing AND-OR Parallelism
(a) Parallel Execution of Loop (b) Sequential Execution of Loop

Generalized Compiled Loop Structure
Deletion of a Path with Unresolved Constraints
Control Flow for the Constraint Compiler
Constraint Specification for the BTS System with Computed Terms
inbold
Dependence Graph for the BTS Program
Constraint Specification of the BOER System with Computed Terms

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6.1

7.1
7.2
7.3
74
7.5
7.6

Constraint Specification and Input Set with a Cyclic Dependency . .
Tree from Phase 2 for Constraint Specification in Figure 5.1
A Constraint Graph witha Cycle
An Unresolved Constraint Module Call
Example of an Unresolved Constraint Specification
Regions of Access by Terms in Figure 5.5
Jacobi Relaxation for the Laplace Equation
Gauss-Seidel Relaxation for the Laplace Equation
Data Partitioning for the Laplace Equation
Dependence Graph for the Laplace Equation

A Dependence Graph with Multiple Solutions

Performance Results for BT'S Program on a Sequent
Performance Results for BT'S Program on a SPARCcenter 2000 . . .

Dependence Graph for BOER Program annotated with complexity .

Performance Results for BOER Program on a SparcCenter 2000

Performance Results for Laplace Equation Program on a CRAYJ90 .

Performance Results for Laplace Equation Program on an Enterprise

x1

71
71
72
74
76
76
80
80
81
82

85

90

91

94
95

Chapter 1

Introduction

1.1 Problem Statement and Approach

The last decade has seen a rapid development in parallel hardware technology. Apart
from supercomputers, parallelism has pervaded workstations, personal computers,
and networks. Multiple processors inside a computer and across a network can be
targeted by an application program for performance. Both scientific and commer-
cial applications drive the need for exploiting parallelism in programs. Despite the
advancement in parallel hardware technology, development in parallel software envi-
ronments has lagged far behind. But, interest in parallel programming has sparked
enthusiasm for alternative representations for expressing computations.

An ideal representation (parallel programming language) is one that would
easily be applied to many problem domains and would be compilable for efficient
execution in a variety of execution environments. A great deal of effort has gone
into attempts to compile efficient parallel programs directly from existing sequential
languages [EB91, HKT91]. Many extensions to add communication and synchro-
nization to existing sequential languages have been proposed [CK92, And91]. New

languages of many types have been proposed [CM89, And91]. But, there does not

yet appear to be any widely accepted approach to parallel programming.

In this research we suggest that constraint languages can potentially meet
many of the requirements for a broadly useful representation for parallel programs.
This dissertation defines and describes a constraint language for representing matrix-
based numerical computations for parallel execution across a variety of architectures.
This dissertation reports on the design and implementation of a compiler which
produces efficient parallel procedural programs from the constraint system repre-
sentations of computations. Finally, this dissertation reports successful parallel ex-
ecution of non-trivial matrix computations expressed in the constraint specification
language.

Our constraint specification language consists of a type system and a set
of operators over the type system. A specification for a computation (a program)
consists of a constraint system specified in the language, an initialization (an input
set consisting of a subset of the names which appear in the constraint system),
and a separate specification of the target execution environment. The type system
includes hierarchical matrices as primitive types. (A hierarchical matrix is one whose
elements may be matrices.) Before reading the next section, readers unfamiliar
with constraint systems may wish to read Chapter 2, which defines and describes
constraint systems in general and the constraint specification language for matrix

computations defined in this project.

1.2 Constraint Systems as Representations of Compu-
tations for Parallel Execution
The design and evaluation of representations for parallel programs should be based

on a requirements specification. Since it would be difficult to obtain consensus on

the “requirements” for a parallel programming language we take the weaker posture

of posing a list of desirable properties for parallel programming languages. There
follows a list of desirable properties for a parallel programming system together
with an evaluation of constraint systems with respect to each property. The list is
subjective and reflects our vision of parallel programming. We assume, for example,
that most parallel programs will be written by discipline-area experts interested in
solving problems in their discipline area. Other considerations may be important
to different interest groups. For example, it will be important to programmers
with large libraries of FORTRAN programs that they be able to use their existing

programs in parallel execution environments.

Property 1.1 Naturalness of Expression
The representation should be natural to the application domain and should not

require the scientist or engineer to reason in representations from other disciplines.

This property is desirable for all representations of computations regardless
of the execution environment which is targeted.

Constraints are declarative relationships among entities in the application
domain. Constraint specifications require no knowledge of programming. Constraint

systems thus have the “Naturalness of Expression” property.

Property 1.2 Full Parallelization

The representation should not impede realization in the executable program
of any of the parallelism, which is tmplicit in the computation, on any reasonable
parallel execution environment and should impose no intrinsic barrier to scaling of

the program to apply to arbitrarily large computations.

Constraint specifications do not specify control flow. The only restriction on
the parallel computation structure which is derived by compilation are those implicit
in the granularity of the typed entities over which the constraints are expressed.

Therefore, constraint specifications have the “Full Parallelization” property.

Property 1.3 Specification of Execution Properties
The representation should allow the user to express desirable properties for
the executable program in application terms. For instance, the representation should

enable control over the granularity of operations in application terms.

The granularity of the entities in a constraint specification, matrix compu-
tations in our example domain, are readily parameterized. Therefore constraint

systems have the “Specification of Execution Properties” property.

Property 1.4 Reuse of Components
The representation should enable easy use of commonly available components

and libraries.

Constraint specifications actually require the use of components implement-
ing operations over structured types since they do not specify the procedural al-
gorithms for operations on structured types. The compiler must select an already
existing implementation of the operation over the structured type. The domain
chosen for this research, matrix computations, has many well-known libraries of
components which can be incorporated into the compiled program by the compila-
tion process. Furthermore, constraint specifications do not restrict the algorithms
which are used to implement the elementary operations over the structured data
types in the representation so that the compilation process is free to chose from
among the available libraries. Thus, constraint specification possess the “Reuse of

Components” property

Property 1.5 Adaptation of Program to Execution Environment: The rep-
resentation should allow the compiler to select algorithms and implementations which

are appropriate for a given component of the computation on a given architecture.

Constraint specifications do not impose any particular technique for the im-

plementation of the operations in the system. This gives the compiler the freedom

to choose algorithms and implementations that are suitable for a particular archi-

tecture.

Property 1.6 Portability with Efficiency
The representation should not include assumptions concerning the execution
environment so that the program can be compiled to execute with comparable effi-

ciency across a spectrum of parallel execution environments.

Constraint specifications do not specify mechanisms for synchronization or
communication so that the compilation process can choose mechanisms and imple-
mentations of synchronization and communication which are efficient on the tar-
get parallel execution environment without restriction. Properties of the execution
environment are explicitly separated from the representation of the computation.
Therefore constraint systems possess the “Portability with Efficiency” property.

We will revisit this evaluation at the end of Chapter 2 after giving an in-
troduction to constraints. On the basis of the preceding analysis we believe that
constraint systems are a very promising representation of computations where paral-
lel execution is to be targeted. But, realizing this promise depends on implementing
a compilation process which utilizes the opportunities offered by constraint spec-
ification representations. The development of this compilation process is a major
conceptual and implementation challenge. This dissertation is the first attempt to

meet this challenge.

Chapter 2

Background: Constraints

A program in an imperative programming language such as C++ or C is a step-by-
step procedure to solve a problem. In contrast, programming using constraints is a
declarative task requiring only specification of the desired relationships among the
entities of the problem.

A constraint specifies a relationship between a set of variables. For exam-
ple, C == (F — 32) x 5/9 is a constraint relating temperatures in Centigrade and
Fahrenheit. Note that the “==” denotes equality as opposed to assignment. A
constraint specification enumerates the relationships that must be established or
maintained by some constraint satisfaction mechanism if a solution to a set of vari-
ables is to be found. The constraint translation mechanism, which transforms the
constraint specification to a program, determines the specific method used to satisfy
the constraints.

In the von Neumann memory model the state of a computing system is
specified by a store which is a vector V' of n variables and a valuation assigning a
value to each variable in V' [Dij76]. An n-dimensional state space for the system is
the product of all possible values for the variables in V', and a store is a point in

this n-dimensional space. In imperative languages a specified algorithm takes the

state of the system from one store (satisfying some pre-condition) to another store
(satisfying a post-condition). In contrast, the store in a constraint system is defined
as a constraint which defines a set of points or valuations in the n-dimensional space
for that system [Sar89]. Ewaluation of a constraint system leads to determination
of the specific points in the state space where all the constraints in the system are
satisfied. A new constraint can be added to a constraint system if the resultant
store is consistent, that is, it permits at least one valuation [Sar89]. The resultant
store is defined by the intersection of the sets of valuations corresponding to the old
store and the added constraint. Hence, it is not possible to change the value of any
variable in a constraint system. However, it is possible to refine the set of values a
variable can assume by pruning some earlier allowed values.

Another aspect of a constraint system is its ability to encapsulate different
imperative programs in a single representation. The constraint C == (F — 32) x
5/9 constitutes a constraint specification for a temperature conversion problem.
Encapsulated within the constraint are two different imperative programs: C =
(F—32)x5/9 and F = 324(9/5) xC. (Note the use of the assignment operator “="
instead of the equality operator “==".) Given F or C, the other can be computed
by extracting the appropriate program. Constraint programming has been attractive
in many application areas such as user interfaces [San94|, modeling, and design
[Med95, MM89, Ste93] due to its ability to encapsulate many different problems
(view any of the variables as unknown) within a single constraint specification.

Logic languages [CM84] are specific instances of constraint languages in that
the constraints in logic languages are expressed using predicate calculus. In gen-
eral, the constraints in constraint languages are expressed in a logic defined for the

application area, not necessarily predicate calculus.

2.1 Definitions

We now present some basic definitions upon which we will base the definition of our

constraint specification language.

Definition 2.1 A type system is a triple < (,v,0 >, where (is the set of m entities
(types) in the system, v is a set { v;|1 < i < m } with v; being the set (possibly
infinite) of values the ith entity can assume, and 0 is a set { 6;|]1 <i < m } with 0;
being the set of operators defined on instances of the ith entity. An element Op of
0; is a mapping Op : { — ¢ (In addition to defining the evaluation of applying an
operator, the type of the evaluated value is also defined.).

Definition 2.2 A wvariable is an instance of a particular type.
Definition 2.3 A constant is a literal value.

Definition 2.4 An expression has an associated type and can be a variable, a con-
stant, a function invocation, or an application of an operator on expressions involv-

ing a set of variables and constants.

Linear expressions involve only linear functions and terms and non-linear

expressions involve atleast one non-linear function or term.

Definition 2.5 A constraint is a condition on the values of a set of vartables ex-

pressed using some specified notation on expressions involving the set of variables.

Constraints involving only linear expressions are linear constraints, and those

involving at least one non-linear expression are non-linear constraints.

Definition 2.6 A constraint system is a triple < 7,V, ¢ >, where T is a type system,
V is a set of variables which are instances of the types in T, and ¢ is a set of

constraints on variables in V.

¢ is referred to as the constraint specification for the system.

Definition 2.7 The evaluation of a constraint system < T,V,¢ > determines a
mapping € : V — & where £ defines the set of allowed points under the set of con-
straints ¢ in the state space defined for the variables in V under the type system

T.

2.2 Constraint Types

This section briefly discusses the common constraint types that arise in constraint
systems. Our system handles multi-way (Section 2.2.2), linear and non-linear (with
some restrictions) constraints. Other types of constraints can be easily included as

future extensions.

2.2.1 Linear and Non-linear Constraints

Linear and non-linear constraints have been distinguished in Section 2.1. While
many of the earlier constraint systems dealt with linear constraints, a number of
current systems such as CAL [SA89] and CLP(BNR) [OB93], and architectures
[MR95, Rue95, Ste93] handle non-linear constraints. Interesting areas of related

research are linear and non-linear programming.

2.2.2 One-way and Multi-way Constraints

One-way constraints compute a function and assign the result to a variable. For
example, a == b + ¢ (treated as a one-way constraint) evaluates b + ¢ and assigns
it to a. Multi-way constraints allow any variables in a constraint to be altered to
satisfy the constraint. In the preceding example (a == b + ¢ is is now treated
as a multi-way constraint), if a changes then either b or ¢ can be altered. The

constraint satisfaction mechanism can treat any constraint as either one-way or

multi-way. Multi-way constraints are more powerful than one-way constraints but
are less efficient because the satisfaction mechanism has to decide which variable to
change as well as solve for that variable. The process of selecting the variable to
be changed is referred to in AI as planning and is typically done at runtime. We

execute this process during the compilation phase in our system.

2.2.3 Hierarchical Constraints

A set of constraints without a solution is over-constrained. On encountering an over-
constrained set, the constraint-satisfaction mechanism can either abort its operation
or attempt to satisfy a subset of the constraints. It can be aided in the latter process
by a constraint hierarchy [BDFBT87] which specifies an ordering on the use of the

constraints according to their desired priorities.

2.2.4 Higher-Order Constraints

Higher-order constraints specify constraints on other constraints. An example is
ifz#0thenz==2+y

This if/then constraint takes a predicate and a first-order constraint as ar-
guments to make a second-order constraint. Such constraints can be treated as

Boolean combinations of first-order constraints and then solved.

2.2.5 Meta-Constraints

Meta-constraints specify constraints on the constraint-satisfaction mechanism, i.e.,
constraints on how other constraints are to be satisfied. They may be used, for
example, to specify the accuracy to be achieved by an iterative process to solve the
constraints. They may also be used to specify the different conditions under which

a variety of approaches to constraint satisfaction are to be used.

10

2.2.6 Temporal Constraints

Many real world problems involve constraints between time and other objects. An
animation is a good example where the position of an object is a function of time.
Time is an independent variable whose value is given by a “clock” outside the
constraint system. Time may also be incorporated in a constraint system as a

sequence of values for instances of types.

2.3 Constraint Graphs

A set of constraints can be represented as a constraint graph [Lel88] which is com-
monly used in many constraint systems as a representation for further processing
during the constraint satisfaction phase. Figure 2.1 shows the constraint graph

corresponding to the constraint FF == 32+ 1.8 x C.

C

c L

Figure 2.1: Constraint Graph for Temperature Conversion Program

Variables are represented as square nodes and operators as round nodes. The
operands to an operator are connected on its left side and the result of applying the
operator is connected on its right side. Hence, the “equal to” operator (==) is
implicitly represented in the graph. Constants such as 32.0 are operators with no

operands. We use a modified form of this representation in our system.

11

2.4 Constraint Satisfaction Techniques

In this section we review some of the techniques commonly used to evaluate a
constraint system. The relationship between these techniques and ours will be given

in Section 2.5.

2.4.1 Local Propagation

Local propagation [SS79], a simple and popular constraint-satisfaction mechanism,
propagates known values along the arcs of the constraint graph. An operator or
variable node can fire upon receiving sufficient information from the arcs connecting
to it. It then calculates values for arcs that do not contain any and propagates these
values out. Thus local propagation uses local information at each node. Figures 2.2
and 2.3 show the values propagated along the arcs when C' is assigned a value of 30

and F' is assigned a value of 100, respectively.

C 30

1.8

86.0 .
32.0

Figure 2.2: Computing the Fahrenheit value of 30 degrees Celsius using Local Prop-
agation

Local-propagation techniques cannot solve constraint graphs with cycles [Lel88].

C 37.78

68.0
1.8

100 .
% 32.0

Figure 2.3: Computing the Celsius value of 100 degrees Fahrenheit using Local
Propagation

2.4.2 Relaxation

Relaxation [Sut63] solves constraint graphs with cycles by making an initial guess at
the values of unknown variables and estimating the error arising out of the guessed
values. New guesses are made and the process is repeated until the error is suffi-
ciently small. This technique can be used for overconstrained problems. However,
it tends to be slow.

A combination of local propagation and relaxation can be used to solve for
a large class of constraints, i.e., sets of constraints with no cycles and sets of con-
straints with cycles that converge using relaxation. We employ a variation of local

propagation and relaxation at compile time to solve for this class of constraints.

2.4.3 Propagating Degrees of Freedom

Propagating Degrees of Freedom [Lel88] is used when only parts of the constraint
graph (containing cycles) need to be relaxed and the rest (without cycles) can be
solved by local propagation. The branches connected to cycles are temporarily
pruned from the constraint graph. Relaxation is performed on the variables in the

cycles to determine their values which are then propagated out to the branches.

13

Pruning of branches involves searching for an object with few enough constraints
(enough degrees of freedom) so that its value can be changed to satisfy the con-
straints and removing it along with all the applicable constraints. Typically, heuris-

tic methods are used to find objects with enough degrees of freedom.

2.4.4 Graph Transformation

Graph Transformation [Lel88] uses rewrite rules to transform subgraphs of the con-
straint graph into other graphs which may be simpler to solve. For example, Fig-
ure 2.4(a) illustrates how an expression Y + Y creates a cycle. The rewrite rule
X + X = 2 x X eliminates the cycle as shown in Figure 2.4(b). While local
propagation is restricted to checking a single node and the associated arcs, graph
transformation can look at more of a constraint graph. However, it is still limited
to looking at locally connected subgraphs. Most cycles formed by simultaneous

equations cannot be solved by graph transformation.

1O

(@ Y+Y (b) 2*Y

Figure 2.4: (a) Cycle in a Constraint Graph (b) Using a Rewrite Rule to break the
Cycle

14

2.4.5 Miscellaneous Techniques

Equation Solving techniques in symbolic-algebra systems [Mat83] are used to solve
constraint programs with cycles. In practice, these are difficult to implement and
are slow.

Other techniques that can be used for special forms of constraint systems
are related to linear programming, truth maintenance systems [Doy77], theorem-
proving methods such as resolution, and artificial intelligence techniques such as

searching [NS63].

2.5 Our Approach

Most of the techniques described in Section 2.4 are applied at runtime because they
are used in conjunction with local propagation which propagates values of variables.
Consequently, execution tends to be slow and these techniques fall short of compet-
ing with computation expressed in procedural languages. Performance being one
of the crucial issues in parallel systems, conventional constraint satisfaction tech-
niques are unsuitable for forming the basis of a constraint satisfaction mechanism
for parallel execution. This thesis focuses on compilation of constraints to parallel
procedural code [JJ96].

We define a constraint program to be a constraint system (the triple <
7,V, ¢ > presented in Definition 2.6 in Section 2.1) and an input set Z, where Z C V.
A generalized dependence graph [Bro90] is compiled from the constraint program
which computes values for the variables in V — Z and satisfies the constraints in ¢.
A generalized dependence graph is a parallel computation structure where nodes are
atomic units of computation consisting of a mapping from inputs to outputs and a
firing rule or guard which is a specification of the states from which execution of

the unit of computation can begin [Bro90, WBS*91]. Arcs in the dependence graph

15

specify dependency relations which are the structuring elements used to compose
units of computation into parallel computation structures. A simple example of a
dependence graph is shown in Figure 4.15 where the nodes labeled start and stop
initiate and terminate computation, respectively. The conditions on the two arcs
from the start node (N < 10 and M < 20) specify firing rules determining the con-
ditions under which the destination nodes can fire for execution. The computations
for ... z[i] = f(i) and for ... y[i] = g(i) are performed if the corresponding nodes

are executed.

fori=1toM do

x[i]=f(i) ylil=g(i)

Figure 2.5: A Simple Dependence Graph

The compilation process for the constraint system < 7,), ¢ > and input set Z
extracts conditionals (firing rules) and computations for the variables in V —Z from
the constraints in ¢ and generates an ordering relation on them to construct a gen-
eralized dependence graph which is mapped to the target language CODE [NB92],
which expresses parallel structure over sequential units of computation declaratively
as a generalized dependence graph. Effectively, the applied technique creates a com-
piled version of local propagation. Relaxation is used for resolution of dependence
graphs with cycles.

The software architecture or execution environment to which CODE is to

compile is separately specified (SMP, DSM, NOW, etc). Sequential and parallel C

16

programs for shared memory machines such as the CRAY J90, SPARCcenter 2000,
and the distributed memory PVM [GBD194] system can be generated. An MPI
[Fos95] backend for CODE is also available.

The granularity of the derived dependence graphs and the family of com-
putations which can be expressed depend upon the types directly represented as
primitives in the constraint representation. The introduction of structured types
and operations on structured types as primitives in the constraint representation
give natural units of computation at a granularity appropriate for task level paral-
lelism and avoids the problem of name ambiguity in the derivation of dependence
graphs from loops over scalar representation of arrays. It also supports implemen-
tation of data parallelism. Additionally, the operations over instances of structured
types are often available as modules in libraries. The general requirements for a
constraint representation which can be compiled to execute efficiently, include (i)
modularity for reusable modules, (ii) definition of atomic functions, and (iii) a rich
type set. The importance of modularity will be discussed in a later section while
the need for (ii) and (iii) follows from the preceding discussion.

It is not at all surprising that a constraint specification of a computation can
be compiled to a parallel program. It is obvious that a set of constraints defined over
a set of typed instances of data structures and the choice of an appropriate subset
of type instances as an input set defines a dependence graph. Indeed all compilation
processes for text string representations of computations, procedural or declarative,
whether targeting sequential or parallel execution, derive some form of dependence
graph which is then mapped upon the target execution architecture. And there are
several compilers for constraint systems to sequential programs [FB89, IWC™88].
What is surprising is that the advantages for parallel compilation of a specification
which is free of control structure has not been previously recognized. The process of

compiling a computation expressed as a constraint system to a parallel program is

17

actually the derivation of a parallel algorithm expressing the computation in terms
of the type system of the constraint language.

We show how compilation of a computation expressed as a constraint system
allows extraction of all the parallelism which is intrinsic to the computation. The
type system of the constraint representation is critical to the effectiveness of the
compilation process. The constraint representation used in the system (described
herein) is based on a hierarchical type system [CB95] where matrix semantics are

layered upon a hierarchical array type.

2.5.1 Types of Constraints Resolved through Our System

Our basic compilation algorithm can be applied to both linear and non-linear con-
straints without cycles. Cyclic constraints such as simultaneous systems of equations
cannot be resolved by the basic compilation algorithm. The extended compilation
process described in Chapter 5 generates programs which resolve cyclic systems
through iterative solution algorithms.

The implemented compiler handles all types of linear and non-linear con-
straints where the initialization results in all non-linear terms being known at run-
time. A detailed discussion is given in Chapter 4. This restriction could be allevi-
ated by an extension to the compiler to incorporate higher order solvers for unknown
non-linear terms into the compiled program.

All invoked functions must have defined inverses, otherwise compilation is
only successful for cases where all parameters of the functions are known at runtime.

Constraint systems involving inequalities must be cast by the compilation
process to conditional expressions where all of the variables are evaluatable at run-

time.

18

2.6 Constraint Systems as Representations of Parallel

Computations

2.6.1 Conformance to Desired Property Set

Let us now analyze the properties of constraint systems in terms of the desirable

properties given in Section 1.2.

e Property 1.1 (Naturalness of Expression) (assuming an appropriate set of
types are present in the representation) obtains because constraint specifications are

mathematical relations familiar to all scientists and engineers.

e Property 1.2 (Full Parallelization) obtains because constraint systems do
not directly specify any control flow model at all. Therefore any mode of parallel
execution is equally realizable. The granularity of the operations is determined by

the operations defined in the type system.

e Property 1.3 (Specification of Execution Properties) follows if the type
system is sufficiently rich and expressive. The type system is critical to the repre-

sentation and merits a separate discussion.

e Property 1.4 (Reuse of Components) follows because the constraint spec-
ification does not specify how a relation involving operators is to realize the oper-
ations defined in the type system leaving the compilation process free to define an
implementation which can be realized with components from libraries of standard

components.

e Property 1.5 (Adaptation of Program to Execution Environment) follows
because properties 1.2 (Full Parallelization) and 1.4 (Reuse of Components) are

properties of constraint representations as defined herein.

19

e Property 1.6 (Portability with Efficiency) follows because properties 1.2
(Full Parallelization) and 1.4 (Reuse of Components) are properties of constraint

systems as defined herein.

2.6.2 The Role of the Type System

Realization of all of the desirable properties depends upon the type system over

which the constraint relations may be specified.

e The type system must support compact and natural expression of the
operations of the application domain if property 1.1 (Naturalness of Expression) is

to be obtained.

e The operations on instances must generally be invertible to support trans-

formation of constraints to equations defining computations.

e The granularity of instances of structured types must be parameterizable

if property 1.3 (Specification of Execution Properties) is to be obtained.

o Parallel algorithms for implementing certain operations on structured types

may be necessary.

The domain we have chosen for this demonstration of the feasibility of com-
piling efficient procedural programs from constraint specifications is numerical com-
putations in general and computations over matrices in particular. This is a domain
which, while compact enough for all of the requirements on the type system listed
above to be met, is also the basis for a large fraction of the computations of engi-
neering and science.

One principle innovation in this constraint language system is the intro-

duction of a hierarchical matrix type [CB95] as a primitive type in the constraint

20

language. A hierarchical matrix type may include a specification of a structure for
the matrix (say triangular), a composition rule for the block structure of the matrix
and a specification for the structure of the composing blocks. The constraint rela-
tions must be expressed directly in the primitive types provided by the specification
language or as invocations of modules. Details of the type system are provided in
Chapter 3.

Hierarchical matrices are necessary to provide an adequate direct represen-
tation of matrix computations because

(a) Many interesting computations are defined in terms of block structured
matrices where the matrix arising from the discretization of a partial differential
equation is composed of blocks of sub-matrices, each block of which may have a
specific structure.

(b) There are often efficient parallel algorithms for operations on matrices of
special structure such as triangular or banded matrices.

We have not yet implemented the full feature set for hierarchical matrix
types but only a feature set sufficient for a feasibility demonstration spanning a
reasonable set of algorithms. We still find it necessary and useful to express some
matrix computations in terms of operations at the scalar level as well. Both modes

of representation will be illustrated.

2.6.3 Modular Structure

Both the need to implement new operations and practical software engineering re-
quires that the constraint system have a modular structure. The compilation al-
gorithm is in principle np-hard so that modularity may ultimately be necessary in

order to enable compilation of very large programs.

21

Chapter 3

The Constraint Language

This chapter describes the components of our programming system. It explicates
the type system, the rules for expressing constraints, and the structure of a complete
program in the system. The chapter concludes with the constraint specifications for
a few sample programs. The notations used are similar to those in the C program-

ming language.

3.1 Type System

Our approach relies on a rich hierarchical type system where types at higher levels
are constructed from those at lower levels in the hierarchy. The schematic for the
layout of the type system is shown in Figure 3.1. The lowest level of the type hier-
archy contains integers, reals, and characters. At the next level of the hierarchy are
arrays to which we give semantic structure to construct the base matrix types, which
define matrices of scalar elements. In addition to dense matrices, the base matrix
type currently supports specialized matrix types such as lower and upper triangular
enabling the flexibility to invoke specialized algorithms based on the structure of

the matrix for the operations defined on the matrix subtypes. Other specialized

22

types can also be easily incorporated. At the highest level of the type system are

hierarchical matrices, whose individual elements are matrices.

Hierarchica
Matrices

Base Matrices

Arrays

Integers, Redls,
Characters

Figure 3.1: The Type System Layout

With respect to Definition 2.1 introduced in Section 2.1, the entities in the
type system are integers, reals, characters, arrays, base matrices and hierarchical
matrices. The operators of addition, subtraction, multiplication, and division are
defined on integers and reals. The operator sets for characters and arrays are empty.
The base matrix type has associated operators of addition, subtraction, scalar mul-
tiplication, matrix multiplication and inverse defined for matrices over integers and
reals. The operator set for hierarchical matrices is empty since operations are only

defined on the blocks which compose it.

23

3.2 Expressions

Expressions can be formed by applying defined operators on instances of types in
the type system and through calls to library and user-defined functions. Functions
must have defined inverses, otherwise only a limited form of compilation can be
done. Examples of library functions are mathematical functions such as sqrt and
sqr.

In addition to defined applications of operators, expressions of the following

form using ndezed operators are allowed.

<op> FOR (<inder > < bl > <b2>) { X }

An indexed operator applies a binary operator op to an expression X through a
range of values bl ... b2 for an integer variable index. The values of b1 and b2 have
to be bounded at compile-time. An indexed operator allows for the compact repre-

sentation of expressions and is useful in large systems. For example, the construct

+ FOR (i 13) { + FOR (5 14) { A[{]l5] }}

expresses the sum of the lower partitions of a 3 X 3 matrix A:

[+
[21[1] + A[2][2]+
[31[1] + A[3][2] + A[3][3]

The “+” operator refers to scalar addition or matrix addition depending on

A
A
A
whether A is a base matrix or a hierarchical matrix, respectively.

3.3 Constraints

Rules which govern the specification of constraints are enumerated in this section.

In designing these rules we have the motivation of capturing the entire set of con-

24

straints a programmer would wish to impose upon a system. Rule 1 allows for the
expression of simple conditions, using relational operators, on expressions involving
type instances. Rule 2 allows propositional connectives AND/OR/NOT to be ap-
plied on constraints to express conditions using compositions of constraints. Rule 3
is a generalization of Rule 2 through which large compositions of constraints using
AND/OR operators can be compactly represented. Rule 4 introduces modularity

to enable large bodies of constraints to be replaced by calls to reusable modules.

Rule 1:

(i) X1 R Xa, is a constraint,
where R € { <, <=, >, >=, == 1=}

X1, X are expressions over instances of scalar types.
(ii) My == M is a constraint,
where M, M> are expressions involving matrices and matrix operators.

Rule 1(ii) allows a mix of scalars and matrices. Although we do not cur-
rently allow relations of the form M; < Ms, these could be easily defined to extend

expressibility.

Rule 2:

(i) A AND/OR B
(ii) NOT 4

are constraints, where A and B are constraints.

Rule 3: Constraints over indezed sets have the form:

AND/OR FOR (<index> <bl> <b2>) { A1, A42,...,4n }

25

An indexed set groups a set of constraints { A;, As,..., A, } to be connected by
an AND/OR connective through a range of values bl ... b2 for an integer variable
index. The values of bl and b2 have to be bounded at compile-time. This condition
will be relaxed in later versions of the compiler. Indexed sets allow for the compact
representation of large constraint systems.

An application of Rule 3 is
AND FOR (i1 2) { A[i] == A[i — 1], B[i + 1] == A[{] }.
This concise construct represents the constraint
A[l] == A[0] AND A[2] == A[1] AND BJ[2] == A[1] AND BJ[3] == A[2].
Another application of Rule 3 is
OR FOR (i1 2){ A[¢{] ==0, B[i + 1] == A[i] }.
This construct succinctly captures the constraint

A[1] == 0 OR A[2] == 0 OR B[2] == A[1] OR B[3] == A[2)].

Rule 4: Calls to user-defined constraint modules are constraints. They have the

form:

< ModuleName > (Py, Ps, ..., Py,)

where ModuleName is the name of a defined constraint module (Section
3.4 describes definition of constraint modules), which encapsulates constraints be-
tween its formal parameters, local variables, and global variables within its scope.
P, P, ..., P, are the actual parameters for the constraint module call.

Constraints constructed from applications of Rule 1 are referred to as simple
constraints, which form the building blocks for constraints constructed from appli-

cations of Rules 2-4. Both linear and non-linear constraints can be expressed using

26

these rules. Each rule has an analog in the procedural world - Rule 1 maps to sim-
ple conditionals and simple computations such as assignments, Rule 2 to sequencing

and conditional statements, Rule 3 to loops and Rule 4 to procedures.

3.4 Program Structure

A program in our system has the following constituents.

(i) Program name.

(ii) Global variable declarations.

(iii) Global input variables: input set Z.

(iv) User-defined function signatures: signatures of C functions, which may
be invoked in expressions. For example, the user-defined function maz in the con-
straint maz(a,b) < 5 may have the function signature int maxz(int x, int y). The
actual function definitions are provided in a separate file which is linked with the
compiled executable for the constraint program.

(v) Constraint module definitions: module name, formal parameters and
their types, local variable declarations, and a constraint module body constructed
from applications of Rules 1-4 in Section 3.3. Constraints within a module can
involve local variables, formal parameters, and global variables. Name scoping and
type matching are similar to those implemented for procedures in C programs.

(vi) Main body of the program: constraints on global variables expressed

through applications of Rules 1-4 in Section 3.3.

3.5 Sample Programs

This section presents four example programs written using the language constructs
presented in Section 3.3. While the first one is a toy example, the others have been

successfully executed with good performance results.

27

3.5.1 The Quadratic Equation Solver

Figure 3.2 shows a constraint specification for the non-complex roots of a quadratic
equation az? + bz +c == 0. sqr, sqrt, and abs are library functions. The main body
specifies the conditions on values of the roots r1 and r2 when a == 0 and when a
! = 0. The condition on the values of r1 and r2 when a ! = 0 is expressed by a call
to a constraint module DefinedRoots. The definition for the module expresses the
relationship between the parameters a, b, c,r1,r2 in the event that the discriminant
(t) is greater than or equal to 0. The specification can be enhanced for imaginary
roots. The input set could be {a,b,c}, {a,b,r1}, or {a,b,r2}. Other input sets
will not lead to dependence graphs through the compilation process described in

Chapter 4.

PROGRAM QUAD_ROOTS

VAR real a, b, ¢, r1, r2; /* Global Variables */
INPUTS a, b, ¢; /* Input Variables */

/* Constraint Module */
DefinedRoots(a: real; b:real; c:real; r1:real; r2:real)
real t; /* Local Variable */

/* Constraint Module Body */
t==sqr(b) —4*xaxc ANDt>=0 AND
2xaxrl == (—b+ sqrt(abs(t))) AND 2 xa xr2 == —(b+ sqrt(abs(t)))

/* Main Body */

a==0AND b =0 ANDr1l==7r2 AND bxrl+c==
OR

a! =0 AND DefinedRoots(a, b, ¢, 1, v2)

Figure 3.2: Constraint Specification for the Quadratic Equation Solver

28

3.5.2 The Block Triangular Solver(BTS)

The example chosen is the solution of the AX == B linear algebra problem for
a known lower triangular matrix A and vector B. The matrix and vectors can be
divided into blocks as shown in Figure 3.3. Sp...S3 represent lower triangular sub-

matrices along the diagonal of A and Mg, May, . . . M35 represent dense sub-matrices

within A.
© X0 BO
M0 o X1 B1
M20 |M2L | X2 B2
M30 |M3L |\M32 | X3 B3
A X B

Figure 3.3: BTS: Partitioned Lower Triangular Matrix A, Vectors X and B

A constraint specification (excluding declarations) for a problem instance
split into 4 blocks is shown in Figure 3.4. The input set can be chosen as
{ So,...,Ss, M1g, Msg,...,Msa2,By,...B3s }. The constraint specification closely
imitates the mathematical representation of the partitioned version of the problem

AX == B.

PROGRAM BTS_1

(S(]*XU == B() AND

My * Xog + S1 %Xy == By AND
Mgo*X0+M21*X1+Sz*X2==B2 AND

M3y % Xo + M3y x X1 + M3zo x Xo + S5 % X3 ::Bg)

Figure 3.4: Constraint Specification for the BTS System

29

Using an indexed set of constraints and an indexed operator, an alternate
compact program is shown in Figure 3.6 using partitions on A as shown in Figure 3.5.
The input set can be chosen as { A4, B } to yield the solution for X. Alternatively,
{ A, X } can be chosen as the input set to yield a solution for B. Other input sets

will not yield solutions through the compilation process described in Chapter 4.

A[00

AlLO] AL

Al2,0] Al21] |A[2)

AIBO] | A[BL |AB2 A3

Figure 3.5: BTS: Partitioned Lower Triangular Matrix A

PROGRAM BTS_2

AND FOR (i 03) { + FOR (j 0 i) { A[i][j] X[j] } == B[i] }

Figure 3.6: Alternate Notation for the Constraint Specification for the BTS System

3.5.3 The Block Odd-Even Reduction Algorithm(BOER)

This is an example deliberately chosen by us to demonstrate that constructing the
constraint specification by inspecting a given algorithm and processing it through
the compiler extracts the original algorithm if an appropriate input set is chosen

(shown later in the thesis). Consider a linear tridiagonal system Az == d where

30

(B ¢ 0 o0 000}
C B C 0 0 0 0
0O C B C 0 0 0
A=

0O 00 0 ..C B C
_0000...OC’BJ

is a block tridiagonal matrix and B and C' are square matrices of order n > 2.
It is assumed that there are M such blocks along the principal diagonal of A, and
M = 2% — 1, for some k > 2. Thus, N = Mn denotes the order of A. It is assumed
that the vectors = and d are likewise partitioned, that is, z = (z1,s,...,7)?,
d = (di,ds,...,dy)t i = (231, iz, ..., zin)b, and d; = (di1, di2, . .., din)?, for i =
1,2,...,M. It is further assumed that the blocks B and C are symmetric and
commute (B x C == C x B).

A version of the parallel algorithm ([LD90]), shown in Figure 3.7, has a
reduction phase in which the system is split into two subsystems: one for odd-
indexed (reduced system) and another for even-indexed (eliminated system) terms.
The reduction process is repeatedly applied to the reduced system. After k — 1
iterations the reduced system contains the solution for a single term. The rest of
the terms can be obtained by back-substitution.

The constraint specification (excluding declarations) for the problem is shown
in Figure 3.8. The variable names BP, C P, and dP correspond to the indexed terms
B, (C, and d in [LD90] and are examples of the hierarchical data type in our system
(elements of BP,CP and dP are matrices). The inputs to the system are BP|0],
CP[0] and dP[i][0], 1 <i < M. pow is a C function implementing the arithmetic
power function. Note that the constraints have been constructed by mapping as-
signments (=) in the algorithm to equality (==) in the constraint specification and
for loops to indexed sets. The INITIALIZATION phase corresponds to providing
BPI0], CP[0] and dP[i][0] as inputs. Also, the three constraints corresponding to

31

B(0) = B; C(0) = C; d;(0) = d;; /* INITIALIZATION */

FOR j=1 TO k-1 STEP 1 DO IN PARALLEL /* REDUCTION PHASE */
B(j) =2*C*(j—1)-B*(j—1)
C(j) =C*(j —1)
di(j) = C(Ndi—n(j — 1) + ditn(j — 1)] = B(j — 1)di(j — 1),

where h = 2771 § =202 x 27 3 x 27 (2k=7 —1)27
Solve for xan-1 in B(k — 1)zgr-—1 = dor-1(k — 1) /* SINGLE-SOLUTION PHASE */

FOR j=k-1 TO 1 STEP -1 DO IN PARALLFEL /*BACK-SUBSTITUTION PHASE */

Solve E(j)w(j) = y(j), where

[B(j—1) 0 0 ... 0 0
0 B(j—1) 0 0 0
EG)=| 2 |
0 0 0 ... B(j—1) 0
0 0 0 ... 0 B(j —1)
- _ -
L2t—s
wi) = | |
| Tor—it — s |
[AU -D-CG =D]

dot—s(j —1) = C(J — 1)[z2r + 7]

y(j) = dip_s(j —1) — C(j'— D[zs + 2(i—1)]

| dzk—jt7§(j -].) - C(j -].)93(21c—j,1)t J
where t = 2s = 27.

Figure 3.7: Parallel Algorithm for the Cyclic Block Tridiagonal System

32

PROGRAM BOER

/* SINGLE-SOLUTION PHASE */
BP[k-1] * z[pow(2,k-1)] == dP[pow(2,k-1)][k-1]

AND

/* REDUCTION PHASE */
AND FOR (j 1 k-1) {

2 * CP[j-1] * CPJj-1] == BP[j] + BP[j-1] * BP[j-1]
CPJj] - CP[j-1] * CP[j-1] == 0,
AND FOR (i 0 pow(2,k-j)-2) {
CP[j-1] * (dP[i*pow(2,j) + pow(2,5-1)][j-1] +
dP[1*pow(2,5) - pow(2,5-1)][j-1]) ==
dP[i*pow(2,5)][j] + BP[j-1] * dP[i*pow(2,5)][j-1] }}
AND

/* BACK-SUBSTITUTION PHASE */
AND FOR (j k-1 1) {

AND FOR (i 0 pow(2,k-j)-1) {
CP[j-1] * (z[(i+1)*pow(2,j)] + z[i*pow(2,j)]) ==

dP[(i+1) *pow(2,5)-pow(2,5-1)][j-1] -
BP[j-1] * z[(i+1)*pow(2,5)-pow(2,j-1)] }}

Figure 3.8: Constraint Specification for the BOER System

33

the reduction, single-solution, and back-substitution phases have been reordered to
demonstrate the independence of a constraint specification on the expressed order

of the constraints.

3.5.4 The Laplace Equation

Consider the Laplace equation for a 4-point stencil on an N x N grid indexed by
(0...N—1)(0...N —1) as shown in Figure 3.9 for N = 10. The boundary elements
(shaded) are inputs to the problem. Every element not on the boundary is the
average of its four neighbors. Since there are (N — 2) x (N — 2) non-boundary
elements, there are (IV — 2) x (N — 2) constraints to satisfy.

012 3 4567 829

© 00N U~ WNPEL O
)
J

Figure 3.9: The Laplace Equation Grid

A constraint specification (excluding declarations) for the problem is shown
in Figure 3.10. z is an array of dimensions ranging in (0..N —1, 0..N —1). The simple
constraint 4 * x[i][j] - x[i-1][j] - x[i+1][j] == x[i][j-1] + x[i][j+1] in the specification
can be expressed in many equivalent representations including 4 * x[i|[j] == x[i-1][j]
+ x[i+1][j] + x[i][j-1] + x[i][j+1]. The specified set of constraints in Figure 3.10
forms a set of cyclic constraints. This program is an example of constraints over

scalar elements of a structured type.

34

PROGRAM LAPLACE

AND FOR (i 2 N-2) {
AND FOR (j 2 N-2) {

4 *alifl] - xfi-1][j] - wi+1][] == z[i][j-1] + zfij[j+1] } }

Figure 3.10: Constraint Specification for the Laplace Equation System

35

Chapter 4

The Basic Compilation
Algorithm

The constraint compiler transforms a textual program given in the format outlined
in Section 3.4 to a sequential or parallel C program for a selected architecture such
as a Sparc, Cray, PVM, or MPI configuration. This chapter discusses the basic
compilation algorithm [JB96a] which handles constraint systems without cycles (see
Chapter 2). We discuss an enhancement to the basic algorithm for constraint sys-
tems with cycles in Chapter 5. The compilation algorithm consists of the following
phases.

Phase 1. The textually expressed constraint specification is transformed to an
undirected graph representation as for example given by Leler [Lel88].

Phase 2. A depth-first traversal algorithm transforms the undirected graph to a
directed graph.

Phase 3. With a set of input variables Z, the directed graph is traversed in a depth-
first manner to map the constraints in the constraint specification to conditionals
and computations for nodes of a generalized dependence graph.

Phase 4. Specifications of the execution environment are used to optimally select

36

the communication and synchronization mechanisms to be used by CODE [NB92].
Phase 5. The dependence graph is mapped to the CODE parallel programming
environment to produce sequential and parallel programs in C as executable for
different parallel architectures.

Phases 1-5 are described in detail in the rest of this chapter. Phases 1-3 will
be illustrated through the quadratic equation solver introduced in Figure 3.2 and
whose constraint specification (without declarations) has been repeated in Figure

4.1 for convenience.

PROGRAM QUAD_ROOTS

/* Constraint module */
DefinedRoots(a, b, ¢, 71, r2)
t ==sqr(b) —4*xaxc ANDt >=0 AND

2xaxrl == (—b+ sqrt(abs(t))) AND 2% a*r2 == —(b+ sqrt(abs(t)))
/* Main */

a==0AND bV =0 ANDrl==r2 ANDb*xrl+c==0

OR

a! =0 AND DefinedRoots(a, b, ¢, 1, v2)

Figure 4.1: Constraint Specification for the Quadratic Equation Solver

4.1 Phase 1: Generation of Constraint Graphs

A parser transforms the textual source program to a source graph for the compiler.
Starting from an empty graph, for each application of Rules 1-4 in Section 3.3 an
undirected constraint graph can be constructed by adding appropriate nodes and

edges to the existing graph. For each instance of a simple constraint (Rule 1) a node

37

is created with the constraint attached to it as shown in Figure 4.2(a). For each
application of Rule 2 (A AND/OR B, NOT A) the graph is expanded as shown in
Figures 4.2(b),(c). Figure 4.3(a) illustrates the expansion of the constraint graph for
each application of Rule 3 (AND/OR FOR (<index> <bl> <b2>) { A1, A4s,..., A,
}). For each application of Rule 4 (< ModuleName > (P1,P,,...,P,)) a node is
created with the constraint module call and the actual parameters attached to it as

shown in Figure 4.3(Db).

2 2
AND/ NOT
R S
1
Grap Grap Graph
. : for A for B for A
Simple Congtraint

@ (b) ()

Figure 4.2: Constraint Graphs for (a) Rule 1 (b),(c) Rule 2

The different kinds of nodes in the constraint graph are (i) simple constraint
nodes (1 in Figure 4.2(a)) (ii) operator nodes corresponding to AND/OR/NOT
connectives (2 in Figures 4.2(b),(c)), (iii) for nodes corresponding to indexed sets
(3 in Figures 4.3(a)), and (iv) call nodes corresponding to Constraint Module Calls
(4 in Figure 4.3(b)). The index and its range information for an indexed set are
attached to the corresponding for node.

A constraint graph is constructed for the main body and for each of the
constraint module bodies giving rise to a set of constraint graphs. Each graph is
constructed in a hierarchical fashion. Simple constraint and call nodes occur at lower

levels, and operator and for nodes connect one or more subgraphs at higher levels.

38

3
FORIndex,bounds

AND/
OR 4

[
®
e AND/ ’
() or

Grap <ModuleName>(P, ... P,)
for A4 n
Grapl Grapl
for Ap,. for A
@ (b)

Figure 4.3: Constraint Graphs for (a) Rule 3 (b) Rule 4

There will be a single node at the highest level. The constraint graph obtained for a
particular constraint specification is unique. The constraint graphs for the quadratic
equation solver are shown in Figure 4.4.
OOR O{
/

ND AND O AND
t==b*b-4*a*c
AND ND
a=0 a=0 DefinedRoots t>=0
(ab,c,r1,r2)
AND O
b!'=0 2*a*rl==-b+sgrt(abs(t)) 2*a*r2==-(b+sgrt(al
O O DefinedRoots(a,b,c,r 1,r2)

r1==r2 bl*rl+c==

MAIN

Figure 4.4: Constraint Graphs for the Quadratic Equation Solver

39

4.2 Phase 2: Translation of Constraint Graphs to Di-

rected Graphs

A depth-first traversal of each graph in the set of constraint graphs obtained from
the main body and the constraint module bodies constructs a set of directed graphs
which are trees. The tree corresponding to the main body is referred to as the main
tree. The traversal assigns constraints connected by AND operators in a constraint
graph to the same node in the corresponding tree and constraints connected by OR
operators in a constraint graph to nodes on diverging paths in the corresponding
tree.

Figure 4.5 illustrates phase 2 for four base cases, where a, b, ¢, and d are
simple constraints. There is a potential for combinatorial explosion in case 4 which
corresponds to the applying the distributive law: (a OR b) AND (c OR d) = (a
AND ¢) OR (a AND d) OR (b AND ¢) OR (b AND d).

(3) (2 ©) (4)
OR OR AND AND

OR OR AND AND AND AND OR OR

s8]
(=x
o
o
QO
(=n
o
o
js5)
o
o
o
[«5)
(=x
o
o

{abc,d}

{g { {d {d {ab} {cd} fact {bc} {ad} {bd}

Figure 4.5: Phase 2 for four base cases

40

The resulting trees in this phase do not contain any AND/OR nodes. Instead,
a node in a tree may contain a list of simple constraints, indexed sets, or constraint
module calls. However, AND/OR nodes are implicitly represented in a tree since
all constraints along a path are connected by the AND operator and constraints
on different paths are connected by the OR operator. The satisfaction of all the
constraints along a path from the root to a leaf in a tree represents a satisfaction
of the constraint system represented by the tree. Different paths, being implicitly
connected by the OR operator, represent different ways of satisfying the constraint
system.

The algorithm dft is a generalization of Figure 4.5. Let v; be the unique
node at the highest level of the input constraint graph G. Each output tree G* is
initialized to a root v]. Each node in G* can hold a list of constraints. An indexed set
of constraints within a node in G* has an associated tree obtained from the depth-
first traversal of the constraint graph corresponding to constraints in the indexed
set. v, and v} are the nodes currently being visited in G and G*, respectively. dft
is initially invoked with the call dft(vy, v}).

The case of the operator node NOT has been omitted from the description
of dft. However, it is implemented in the system as follows. A NOT operator
node operates on a single constraint subgraph. It is moved down all the levels of
the subgraph by changing nodes - AND to OR and OR to AND - traversed in its
path until it reaches a simple constraint or another NOT node. If it reaches a simple
constraint, the NOT node is removed by negating the simple constraint. If it reaches

another NOT node, both NOT nodes are removed from the graph.

41

ALGORITHM dft (v, v})
begin
visited[v.] = true;
Case type(v.) of
OR : for each unvisited neighbor u of v. do
if type(u) == OR dft(u, v})
else create node u* in G* as child of v};
dft(uw, u*);
AND : if there is an unvisited OR neighbor u; of v,
let u2 be the other neighbor of v;
let w17 and wye be the two unvisited neighbors of u;;
/*(u11 OR wi12) AND uy = (u;; AND ug) OR (uj2 AND ug)*/
visited[v.] = false;
change type of v, to OR, remove u;, uz as neighbors of v,;
create two unvisited AND neighbors and; & ands for v,;
make us and w11 the neighbors of ands;
make ug and u;2 the neighbors of ands;
dft(ve, v});

else for each unvisited neighbor u of v, do dft(u, v});
Simple_constraint : attach constraint to v};
Call Node : attach constraint module call to v};

For Node : attach indexed set with index and bounds to v.*
create new root v;* for tree corresponding to indexed set;
let v; be node at highest level of constraint graph in indexed set;
dft(vi, v;*);

end;

42

The trees obtained for the quadratic equation solver through phase 2 are

shown in Figure 4.6.

==b*b-4*a*c
t>=0
2* a*rl1==(-b+sgrt(abs(t)))
2* a*r2==-(b+sgrt(abs(t)))

a==0 a=0
b!'=0 DefinedRoots(a,b,c,rl1,r2)
r1==r2
b*rl+c==
MAIN DefinedRoots(a,b,c,r1,r2)

Figure 4.6: Trees from Phase 2 for the Quadratic Equation Solver

4.3 Phase 3: Generation of Dependence Graphs

Using the input set Z, a depth-first traversal of the main tree Tj,q4, from phase 2
attempts to generate a dependence graph. The generated dependence graph is a
directed graph in which nodes are computational elements and arcs between nodes
express data dependency. It has a unique start node which has no arcs directed
into it and whose inputs are in Z. Hence, the start node can be executed exactly
once at the initiation of the computation. A path from the start node in the graph
is a computation path. A node in the dependence graph has the form: firing rule,
computation, routing rule (see Figure 4.7). A firing rule is a condition that must
hold before the node can be enabled for execution. The computation at a node is
performed when the node is executed. A routing rule is a condition that must hold
for the node to send data on its outgoing paths.

At the initiation of phase 3, a dependence graph G is constructed which is

similar in structure to T,4ip, i.€., there is a 1-1 mapping between nodes and arcs in

43

INPUTS

Firing Rules

Computation

Routing Rules

OUTPUTS

Figure 4.7: Generalized Dependence Graph Node

Trnain and the nodes and arcs in G, respectively. The node in G corresponding to
the root of T},4in is designated as the start node. The structure of G may change
later as detailed in Sections 4.3.2 and 4.3.3. The nodes in G are initially empty.

A Eknown set is associated with each node in the dependence graph G. The
variables in the known set at a node are knowns at that node. (The values of these
variables are known at runtime at that node.) All variables not in the known set
at a node are unknowns at that node. The input set is cast as the known set for
the start node. A child node in the dependence graph inherits the known set of its
parent when the node in 7}, corresponding to the child node is visited during the
depth-first traversal.

When a node in T4, is visited, constraints at that node may be resolved
through processes detailed in Sections 4.3.1, 4.3.2, and 4.3.3 into computations or
conditionals (firing/routing rules) of the corresponding node in G. Any constraint
which cannot be resolved is retained in an unresolved set of constraints which is
propagated down T,4in to other nodes through the depth-first traversal in the hope
that it may get resolved later. A number of passes may be made through each
constraint at a node and the propagated unresolved set of constraints for resolution

of these constraints. A new pass is initiated if at least one constraint was resolved in

44

the previous pass; otherwise the depth-first traversal proceeds to visit the next node.
Treatment of constraints remaining unresolved at the leaves of T},,4iy is described in

Section 4.3.8.

4.3.1 Resolution of Simple Constraints

Each node v in the tree from phase 2 may have a set of simple constraints attached
to it. Additionally, the depth-first traversal may have a list of unresolved constraints
propagated down from v’s parent. Each simple constraint at v or in the unresolved
set of constraints can be resolved as one of the following for the corresponding node
v* in the dependence graph.
(i) Firing Rule: To be so classified a constraint must have no unknowns at v* before
the first pass through the list of constraints at v and the unresolved set of constraints.
(ii) Computation: To fall into this category a constraint must involve an equality
and have a single unknown at v*. The constraint is cast as a computation at v* for
the unknown which is added to the known set for v*.
(iii) Routing Rule: To be a routing rule all unknown variables in the constraint must
become knowns through computations at v*.

Constraints involving inequalities must be resolved as firing/routing rules.
When a constraint is classified as a computation it is mapped to an equation. All
terms involving the single unknown in the computation are moved to the left-hand
side of the equation. If the unknown occurs in an actual parameter of a function, the
inverse of the function may be applied to extract a computation for the unknown.
Currently, our system solves equations in linear unknown terms. Thus non-linear
constraints can be currently resolved if the unknown terms are linear. In the future
we plan to incorporate solvers for scalar types that will solve for higher powers of
the unknown. If the variables in the computation are matrices, the computation

is replaced by calls to specialized matrix routines written in C. For example, the

45

statement A *x+ bl == b2 with = as the unknown is first transformed into Axz ==
b2 — bl and then a routine is invoked to solve for z. If A is lower (upper) triangular,
then forward (backward) substitution is used to solve for z. Otherwise z is solved

through an LU decomposition of A.

4.3.2 Resolution of Indexed Sets

An indexed set AND/OR FOR (<index> <bl> <b2>) {A;, As,...,An} is re-
solved if every constraint A;, 1 < i < n, is resolved for all values of index in b1. .. b2.

Resolved indexed sets are compiled to loops which iterate over values of index in

bl...b2. If every constraint in a set S; C {41, A, ..., A, } is resolved as a computa-
tion, every constraint in a set So C {A;, Ag,..., Ay} is resolved as a firing/routing
rule and every constraint in a set S3 C {4, As,...,A,} remains unresolved, the

indexed set is split into the following three indexed sets.

(1) An indexed set AND/OR FOR (index <bl> <b2>) S; resolved as a computa-
tion

(2) An indexed set AND/OR FOR (inder <bl> <b2>) Sy resolved as a fir-
ing/routing rule

(3) An unresolved indexed set AND/OR FOR (index <bl> <b2>) S3

Note that S; US2 U S3 == {A;, As,...,A,} and

SiNS; == ¢ (null set) where 1 <i,j <3 and i # j.

The restrictions for a constraint A;,1 < ¢ < n, in an indexed set structure
to be compiled successfully in our system are as follows. For all values of index in
bl...b2 (a) A; has to have the same classification (computation/firing rule/routing
rule), (b) if A; is a simple constraint and is classified as a computation, a unique
term in the constraint has to be the unknown (a term can be a simple variable
or an indexed term such as X[< list of indices >|, where X is a structured data

type). An example of a construct that will be compiled successfully is

46

X[0] == 0 AND (AND FOR (i15) { X[i — 1] == X[{] + Y[i] })

with Y known and X unknown.
It will be compiled to the computations
X[0] = 0;
for i=1 to 5 do
X[i] = X[i — 1] = Yi];
Note that the indexed set is compiled to a loop which computes the value of
X|[?] in successive iterations.

An example of a construct that will not be compiled successfully is
AND FOR (i15) { X[1] == X[i] +Y]{] }

with X unknown and Y known. This is because in the first iteration both the
terms X[1] and X[i] are unknown whereas subsequent iterations have only X[i] as

an unknown (violates (b)).

Resolution of AND Indexed Sets

C1,C2, ... <Indexed Set>, ... Cp

Figure 4.8: Indexed Set at a Node in a Tree from Phase 2

Let an AND indexed set AND FOR (i <bl> <b2>) {A;, As,..., Ap} occur
among constraints C1, Cy, ..., Cp at a node in a tree as shown in Figure 4.8. Evaluate
constraints Aj, Ag, ..., A, for classification as firing/routing rules or computations

fori=b1...b2. Let k(1) ...k(n) be a reordering of the subscripts 1...n. Let {Axq),

47

Ag(2), - Ag(m1)} be the constraints which evaluate to firing rules for all s = b1 ... b2.
Let {Ag(mi+1) - Ak(m2)} be the constraints which evaluate to computation for all
t=>5bl...b2. Let {Ak(m2+1) Ak(m3)} be the constraints which evaluate to routing
rules for all 4 = b1...b2. Let {Ag(m3y1) - Ag(n)} be the constraints which remain
unresolved.

Similarly, evaluate constraints Ci,Ca,...,Cp. Let r(1)...r(p) be a reorder-
ing of the subscripts 1...p. Let {Cy(1), Cp2), - Cran)}, {Cray1) - Craz)}, and
{Cri241) - Cr(3)} be the constraints which evaluate to firing rules, computations,
and routing rules, respectively and {Cr(l:), F1) - CT(p)} be the unresolved constraints.
The generated dependence graph is shown in Figure 4.9. The unresolved constraints

are propagated down 7.

Firing Rules from Ak(1) ... Ak(m1) and Cr(1) ... Cr(I1)
O Computations from Ak(m1+1) ... Ak(m2) and Cr(I11+1) ... Cr(12)
Routing Rules from Ak(m2+1) ... Ak(m3) and Cr(12+1) ... Cr(I3)

Dependence Graph
for T

Figure 4.9: Generated Dependence Graph for an AND Indexed Set

The firing rule corresponding to A1), Ag2), - Ak(m1) 15 Ara) AND Ay
AND ... AND Ay for all ¢ = bl...b2. A similar construct is set up for the
routing rule corresponding to Ag(ma41) - Ag(ms)- The computations for Ay(y,141)
.. Ap(m2) are expressed as
for i = bl to b2 do
Computation corresponding to Ap(mii1);

Computation corresponding to Ay(m142);

48

Computation corresponding to Ay (m2);

Resolution of OR Indexed Sets

Let an OR indexed set OR FOR (i <bl> <b2>) {A;, A4s,...,Ap} occur among
constraints C1,Ca,...,Cp at a node in a tree from phase 2 as shown in Figure
4.8. Evaluate constraints Aj, Ag,..., A, for classification as firing/routing rules
or computation for ¢ = bl...b2. Let k(1)...k(n) be a reordering of the subscripts
1...n. Let {Ag(1), Ar(2), - Ak(m1)} be the constraints which evaluate to firing rules
for all 7 = bl...b2. Let {Ag(miy1) -+ Ak(m2)} be the constraints which evaluate
to computations for all 4 = b1...02. Let {Ay(na41) - Ak(m3)} be the constraints
which evaluate to routing rules for all 4 = bl...b2. Let Agmai1) - Ag(n)} be the
constraints which remain unresolved.

Similarly, evaluate constraints Ci,Ca,...,Cp. Let (1)...r(p) be a reorder-
ing of the subscripts 1...p. Let {Cy(1), Cp2), - Crany}, {Cray1) - Craz)}, and
{Cri241) - Cr(3)} be the constraints which evaluate to firing rules, computations,
and routing rules, respectively and {Cr(l:), F1) - CT(p)} be the unresolved constraints.
The generated dependence graph is shown in Figure 4.10. The unresolved constraints
are propagated down 7.

The “Call Node” invokes the dependence graph corresponding to 7' shown
in Figure 4.8. ¢ : b1,b2 shows that the associated arc and its destination node are
replicated for values of 7 from bl ...b2. The firing rule for A1), Ag(2), - Ak(m) 18
Ar) OR Ag) OR ... Ay for any 1=b1 ... b2. A similar construct is set up for

the routing rule for Agmai1) - Ag(m3)-

49

Firing Rules from Cr(1) ... Cr(11)

Firing Rulesfrom
AK(D) ... Ak(I1

Computations Computations
from Ak(11+1) and from Ak(12and
Cr(I11+1) ... Cr(12) Cr(I11+1) ... Cr(12)

Computations from

Computations f
@ Cr(11+1) ... Cr(12)

Cr(11+1) ... Cr(12)

Routing Rulesfrom
Cr(12+1) ... Cr(18) Cr(12+1) ... Cr(13)

Call Node Call Node Call Node Call Node

Routing Rules from Routing Rules fromRouting Rules from
Cr(12+1) ... Cr(13) Ak(m2+1) ... Ak(m3) and

Cr(12+1) ... Cr(13)

Figure 4.10: Generated Dependence Graph for an OR Indexed Set

4.3.3 Resolution of Constraint Module Calls

A constraint module call has the form ModuleName(ey,es,...,e,) where e;, 1 <
t < n, is an actual parameter. Actual parameters may be expressions. Let the
formal parameters corresponding to ey, es, ..., e, be f1, fo,..., fn, respectively. Let
K be the known set at that node in G (dependence graph) which corresponds to
the node in T (tree from phase 2) where the constraint module is invoked. If all the
variables in ey, ..., e, and all the global variables occuring in the constraint module
body are in K and no local variable occurs in the constraint module body, the call
to the constraint module is cast as a firing/routing rule which tests whether the
body of the constraint module is satisfied or not.

If the constraint module call cannot be cast as a firing/routing rule, an at-
tempt is made to generate a dependence graph from the constraint module definition.
A new dependence graph G,,,q is created which is similar in structure to the tree
Tmod from phase 2 for the constraint module, i.e., there is a 1-1 mapping between
nodes and arcs in G,0q and nodes and arcs in Tj,0q, respectively. Th,oq is traversed

with a new known set Koquie Which is initialized to { f; | {all variables in e;} C

50

K,1<i<n}U{z|zec K and z is a global variable in the scope of the module }.
The unknowns are considered to be all formal parameters not in K,,,quie, the local
variables in the constraint module, and all the global variables not in K but in the
scope of the module.

The resolution of constraints in the constraint module is similar to that for
the main module with one difference. The dependence graph G4 is retained with
only the set of paths with the maximal output set for formal parameters and global
variables. For example, let there be 5 paths numbered 1 through 5 with the following
computed formal parameters and global variables, respectively. 1: { a,b }, 2: { a },
3: {abc} 4 {ab},5 {ab,c}. Paths3 and 5 have the maximal output set {
a,b,c } and are the only ones retained in the dependence graph; paths 1, 2, and 4
are deleted. If there is more than one distinct maximal set, any one maximal set is
chosen at random. This technique of deleting paths not having the maximal output
set is not implemented in the dependence graph generation of the main module
where all paths need not have the same set of computed variables. The reason for
imposing this condition in a constraint module is that the actual parameters are
bound to the formal parameters at the point of call. If different sets of variables are
computed in different paths of the dependence graph corresponding to a constraint
module it is not possible to determine statically the actual parameters and global
variables computed in the constraint module call, which have to be added to K.

If the dependence graph generation is successful, a new set of constraints is
generated as follows.
eyl == Z1, eyy == Zo, ..., €y == Zp, where Z;, 1 < 1 < p, are new variables
generated by the compiler and ey ...eg, are the actual parameters corresponding
to the set of computed formal parameters in the maximal output set. An attempt
is made to resolve this set of constraints with Z; ... Z, in the known set K. If the

constraints in this set are resolved as computation for all the unknowns in ey . . . egp,

51

a call node which invokes the dependence graph for the constraint module call G,0q
is generated as shown in Figure 4.11. A child node of the call node receives values
computed for the formal parameters by the call node and binds them to Z;...Z,

and performs the computation generated from the new set of constraints.

G Gmod
0 0
PR T RN SN

Computations for
. &1==Z7Z1..ekp==Zp Dependence Graph for Module Call

Dependence Graph where Module
isinvoked

Figure 4.11: Dependence Graphs for a Constraint Module Call

If the dependence graph generation is not successful, the constraint module
call is considered to be unresolved.

For a constraint module with n parameters there are 2" possible input pa-
rameter sets and consequently, there are 2" potential translations for a particular
constraint module. Of course, not all translations might be successful. Constraint
module invocations, with the same set of formal parameters and global variables as

inputs, reuse the same dependence graph.

4.3.4 The Quadratic Equation Solver through Phase 3

The dependence graphs for the quadratic equation solver with the input set { a, b, c
} are shown in Figure 4.12 where computations for 1 and r2 are extracted.

The dependence graphs for the quadratic equation solver with a different

52

t=sgr(b)-4*a*c

t>=0
rl=-c/lb DefinedRoots(a,b,c,r1,r2) r1=(-b+sgrt(abs(t)))/(2*)
r2=rl r2=-(b+sqrt(abs(t)))/(2* &)
MAIN DefinedRoots(a,b,c,r1,r2)

Figure 4.12: Dependence Graphs for the Quadratic Equation Solver with Z = {a,
b, c}

input set { a,b,r1 } are shown in Figure 4.13. The dependence graphs compute
values for variables ¢ and r2. The inverses of the functions sqrt and abs have been
applied to derive the computations for ¢. The compiler can be optimized to detect
that the path starting from the node computing ¢ = —sqr(2 * a * 71 + b) can never

be traversed to completion.

t=sgr(2*atrl+ =-gr(2*a
t>=
r2=rl DefinedRoots(a,b,r1, ¢,r2)
b1 Q @
r2=(sqrt /(2*q) r2=(-b-sort(abs(t))’
c=(sqr(b)-t)/4*a c=(sqr(b)-t)/4*a
MAIN DefinedRootga,b,r1, ¢,r2)

Figure 4.13: Dependence Graphs for the Quadratic Equation Solver with Z = {a,
b, r1}

53

Figures 4.12 and 4.13 show that the same constraint program specification
can be reused to derive the dependence graphs for different input sets. However, not
all input sets can lead to dependence graphs where no constraints remain unresolved.
For example, no dependence graph can be generated with the input set { a,rl
} because the simple constraint b * rl + ¢ == 0 and the constraint module call
DefinedRoots remain unresolved in the main tree (The module call DefinedRoots
remains unresolved because all the constraints in the tree for the module remain
unresolved.). Note that phases 1 and 2 need not be repeated when a new input set
is supplied for a constraint specification.

Part of the appeal of a constraint programming language is its multi-directional
nature - the facility to extract values for different sets of variables depending on the
composition of the input set. While this is a secondary aspect for parallel program-
ming concerns as compared to the ease of use aspect, this is still important in many

application domains.

4.3.5 Single Assignment Variable Programs

The compilation process generates dependence graphs with single assignment vari-
ables. This occurs because a child node in the dependence graph G inherits the
known set of its parent as its initial known set and no deletions are made to the
known set of a node. Hence, once a variable is added to the known set of a node
it is retained in the known sets of all nodes in the subgraph rooted at that node.
If a path in G contains nodes in the order v1*...v,*, where v1* is the start node,
vp* 1is the leaf and n is the length of the path, exactly one node v;*, 1 < ¢ < n, can
contain a computation for a variable #. There will be no occurrence of z in any
computation or firing/routing rule for nodes in v;*...v;_1* or in any firing rule for
v;*. While single assignment variables are appropriate for parallel programs, they

can lead to excessive use of memory in some circumstances. Chapter 5 details our

54

approach to introduction of mutable variables where they are necessary.

4.3.6 Generation of either Effective or Complete Programs

The presence of the OR operator in a constraint system results in the possibility that
there exists more than one assignment of values to the variables which will result in
satisfaction of the constraint system. (A given input set for a program with an OR
operator may or may not allow multiple assignments which satisfy the constraint
system.) A program which is effective generates exactly one set of assignments
of values to variables which satisfies the constraint system. A program which is
complete generates all of the sets of assignments of values to variables which will
satisfy the constraint system. The compilation process can be directed to generate
the executable either for exactly one “OR branch” of the dependence graph or to
generate the executable for all paths which lead to valid assignments. Thus, the
compilation process can produce programs which are either effective or complete. A
program which is complete realizes OR parallelism, as will be further discussed in
Section 4.3.7. Non-determinism arises if the compiler randomly chooses a path for

execution in effective programs.

4.3.7 Extraction of parallelism

Our constraint representation maps to a dependence graph which is a parallel com-
putation structure because all nodes that are enabled for execution may be executed
in parallel. The constraint representation allows the targeting all types of parallelism
(AND/OR, task and data parallelism) through a single representation. AND/OR
parallelism refers to parallelism in computations extracted from terms connected
by AND and OR operators, respectively. Task parallelism refers to parallelism in
computations for different data. Data parallelism refers to parallelism in computa-

tions for different parts of a structured data item. In our system data parallelism

55

arises from the hierarchical representation of our type system. For example, matri-
ces can be represented as blocks of sub-matrices and constraints over sub-matrices
are translated to data-parallel conditionals/computations.

The different sources of parallelism and their respective types in the repre-
sentation were detailed in [JB96b]| and are enumerated as follows. While 1-4 are
extracted by the current compiler, 5 has not yet been implemented.

1. OR, Task: OR parallelism corresponds to executing the different paths
in the dependence graph in parallel. These paths have resulted from the extraction
of computation from constraints connected by OR operators.

2. AND, Task: The computational statements that are assigned to a node
have the potential for parallel execution. For instance, the assignments r1 = (—b+
r)/2xa and r2 = —(b+7)/2 xa in Figure 4.12 can be done in parallel. Parallelism is
exploited by keeping in mind that the compiler generates a single-assignment system
and the lone write to a variable will appear before any reads to it. A particular node
may be split into several nodes to exploit the parallelism in the computations at the
node. The granularity of such a scheme depends on the complexity of the functions
and the operators invoked in the statements.

We illustrate AND-OR parallelism in 1 and 2 through a simple example.

Consider the constraint specification in Figure 4.14 for a program involving variables

{ a"7b?c7x’y }'

a<b AND b==x AND y==c
OR
a<c AND z==c AND b==y

Figure 4.14: Constraint Specification for a Simple Example

The dependence graph for the input set { a,b,c } and output set { x,y }

for the specification in Figure 4.14 is shown in Figure 4.15. Since a, b, ¢ are inputs,

56

a < band a < c are classified as conditionals. The constraints involving equalities (
b==u, y==c, ¢ == ¢, and b == y) are classified as computations for the single
unknown in them. OR parallelism comes into play in the parallel execution of the
two paths branching out from the start node in the event that a < b and a < ¢. This
also implies that this program can be compiled to be either complete or effective,
as discussed in Section 4.3.6. AND parallelism is extracted from the computations

for z and y.

Figure 4.15: Dependence Graph showing AND-OR Parallelism

3. Task: We have further exploited the complexity of matrix operations by
splitting up the specifications, performing computations in parallel, and composing
them. For example, if £ = m*y+mx*z, where x, m, y, z, and b are matrices, m*y and
m#z can be done in parallel. This leads to significant speedup since multiplication of
matrices is an O(NN3) operation (m, y, z being order N x N). In a later version of the
compiler, provision will be made for user specification of parallelism for operations
over structures.

4. Data (Parallelism in AND indexed sets): The computations within
the compiled loop structures corresponding to AND indexed sets have the potential
for parallel execution. We first discuss the case of loops with a single computation.

The discussion is then generalized to the case of loops with multiple computations.

57

Throughout this discussion the case of array accesses will be detailed. The case of
scalar accesses in loops will follow trivially since they do not involve indexed terms.

(i) If the array corresponding to the computed term is not accessed anywhere
in the computation, all iterations of the loop can be executed in parallel. The
compiled parallel structure for such a loop is shown in Figure 4.16(a). The node
performing the computation and the arc connecting the parent to it are replicated
N times, where N is the range of the loop index. The results of the computation
performed by the parallel nodes are merged (not shown in figure).

(ii) If the array corresponding to the computed term is accessed in the com-
putation and the set of accessed indices of the array are disjoint from the set of
computed indices of the array, all iterations of the loop can be executed in parallel.
The compiled structure is again as shown in Figure 4.16(a).

(iii) If cases (i) and (ii) do not hold, the loop iterations are inter-dependent
and are executed sequentially. The compiled structure for this case is shown in
Figure 4.16(b). The node performing the computation is invoked repeatedly in

succession.

(i N)

Computation Computation
@ (b)
Figure 4.16: (a) Parallel Execution of Loop (b) Sequential Execution of Loop

A similar analysis is done for the loop structure compiled from an indexed

set with more than one constraint. In such a case there is more than one com-

58

putation within the loop and interdependencies between different computations for
all the iterations have to be checked in addition to dependencies between iterations
of the same computation. If there are no dependencies between the iterations of
a computation (cases (i) and (ii)) and no iteration of the computation is depen-
dent on an iteration of another computation, then all iterations of the computation
are executed in parallel; otherwise, the iterations of the computation are executed
sequentially. In general, the loop structure will be a combination of parallel and

sequential loop executions as shown in Figure 4.17.

Computation ~ Computation

Figure 4.17: Generalized Compiled Loop Structure

5. Data: Finally, primitive operations in the base types like matrix-matrix

multiply can be executed in parallel by invoking appropriate parallel algorithms.

4.3.8 Unresolved Constraints

Any path P from the root to a leaf in the tree T from phase 2 consists of nodes,
each containing a set of constraints. P represents one way of satisfying the con-
straint system since constraints on different paths are implicitly connected by the
OR operator. Every constraint on P must be resolved to either a computation or
to a conditional (firing/routing rule) for P to satisfy the constraint system. The

depth-first traversal described in Section 4.3 collects any unresolved constraint on

59

P at its leaf. An unresolved constraint can be of the following types.

(i) A simple constraint involving an equality and at least two unknowns.

(ii) A simple constraint involving a relational operator other than an equality
and at least one unknown.

(iii) An unresolved call to a constraint module. This would imply that there
is more than one unknown in the set of actual parameters, local variables, and global
variables in the body of the constraint module. (Unknowns in an actual parameter
imply that the corresponding formal parameter is unknown.)

(iv) An unresolved indexed set of constraints AND/OR FOR (<index>
<bl> <b2>) {A;1, As,...,Ap} where each A;, 1 < i < n, is unresolved due to
one of the following reasons.

(a) A; may be an unresolved indexed set.

(b) If A; is a simple constraint or a constraint module call, there is no unique
unknown term for all values of ¢ in b1 ...b2 (See Section 4.3.2).

(c) During the resolution process A; is classified as a computation for some
values of ¢ in bl ...b2 and as a conditional (firing/routing rule) for other values of ¢
in bl...b2.

In case (c) we may be able to split the indexed set into several resolved
indexed sets with different index bounds. Assume that
S1 C{A4;,A4,,...,A,} is resolved as computations and conditionals in the ranges
Bs 1), Bsy(2)5 -+ Bsy(m)>

S2 C {A1,As,..., Ay} is resolved as computations and conditionals in the ranges

By, (1), Bsy(2) -+ » Bsa(pa)
and Sy C {A1, Ay, ..., A} isresolved as computations and conditionals in the ranges

Biy(1)) Bsq(2)r -+ Bsy(pa)»
where B;, s;(1) <i <sj(p;), 1 <j < g, is asubrange in bl... b2,

60

S; N S; == the null set, ¢, 1 <i,5 < g, ¢ # j, and

S1US2U...US; == {41,42,...,A,}.

The indexed set can be split into the following resolved indexed sets.
AND/OR FOR (i < By (1) >) 51

AND/OR FOR (i < By (2) >) S1

AND/OR FOR (i < By,(py) >) Si
AND/OR FOR (i < B,,1) >) Ss
AND/OR FOR (Z < Bsz(2) >) So

AND/OR FOR (i < By, (,) >) S2

AND/OR FOR (i < By (p,) >) Sq

There are several options available for resolution of each type of unresolved
constraint. We shall enumerate some of these.

1. Since there is a 1-1 mapping between nodes in T and the dependence
graph G, there is a unique leaf in G corresponding to the leaf in P containing the
unresolved constraints. In Figure 4.18 the two corresponding leaves in 7" and G are
shaded. The shaded leaf in G can be deleted. This virtually removes P from 7' and
corresponds to not attempting to satisfy the constraint system through the path P.
If deletion of the leaf in G results in its parent becoming a leaf, the parent must
be deleted too. This must be continued in a recursive fashion until the deletion of
a leaf does not result in its parent becoming a leaf. Then a new path descending
T is chosen and pursued to see if a usable G can be obtained. This approach can
be applied to unresolved constraints of any type ((i)-(iv)). Of course, there is the
danger of getting an empty dependence graph if all leaves in 7' contain unresolved

constraints.

61

/ L] []

L] ! * L] hd
;I ® ° ° °
Y L]
P’r) - o e °
/
'/ ’
O 0% b 6 & \Q
unresolved
constraints delete

Figure 4.18: Deletion of a Path with Unresolved Constraints

2. The user may have incorrectly specified the initial input set by overlooking
the inclusion of some variables or including the wrong variables and may be helped
in the choice of a new input set through display of the unresolved constraints and
the unknowns in them. The depth-first traversal in phase 3 can be performed again
with the new input set. This can be done repeatedly until all constraints in the
system are resolved. While selection of unknowns to be added to the initial input
set may be easy for constraints of types (i), (ii) and (iii), it may be quite difficult
to do for constraints of type (iv) since unknowns could typically be of the form
Alfni(i1,...)] ... [fru(is,...,ik)] where i;...4; are indices for nested indexed
sets containing the unresolved constraints, fn; ... fn; are arithmetic functions over
the indices, and A is any structured data type. Some parts of A may be known and
other parts of A may be unknown forcing the user to identify the regions that the
term A[fnq(i1,...,i)]...[fru(i1,. ..,)] refers to and denote them as known.

3. Commercial solvers such as MATLAB can be invoked to solve the unre-
solved constraints by providing a wrapper around the invocation to the MATLAB
solver in the form of a constraint module call. This technique can be most beneficial
for the resolution of constraints of types (i) and (ii).

4. Tterative solutions can be attempted for unresolved constraints of types

(i), (iii) and (iv) through several relaxation methods. This process is described in

62

detail in Chapter 5.

4.4 Phases 4 and 5: Specification of Execution Environ-

ment and Mapping to Code

Apart from the textual constraint program the programmer is encouraged to specify
an execution environment specification which is used by the compiler to optimally
select certain execution environment characteristics used by CODE [NB92] to gener-
ate programs. The execution environment specification merits a separate discussion
and is described in Chapter 6.

Our target for executable for constraint programs is the CODE parallel pro-
gramming environment. CODE takes a dependence graph as its input. The form
of a node in a CODE dependence graph is given in Figure 4.7. It is seen that there
is a natural match between the nodes of the dependence graph developed by the
constraint compilation algorithm and the nodes in the CODE graph (see Appendix
A for a description of CODE). The arcs in the dependence graph in CODE are used
to bind names from one node to another. This is exactly the role played by arcs
in the dependence graph generated by our translation algorithm. CODE produces
sequential and parallel C programs for a variety of architectures.

The control flow for the entire compiler is shown in Figure 4.19.

4.5 Procedural Parallel Programs for the BTS and BOER

Systems

In this section we show how all of the parallelism in the BTS (Figure 3.4) and BOER

(Figure 3.8) examples can be extracted by the compiler.

63

Phasel Phase2 Phase3

START constraint specification
O Input Set @ .T‘

Unresolved constraints ?
Yes No
I_Dﬁl ete patlhs;ed
with unresolv
constraint® Yes
No
Change input set Dependence graph
Yes No
Iterative Dependence graph
Solution
Dependence graph Mapping to CODE
CODE data structures

? Generate sequential/parallel programs
Pr

ogram

Figure 4.19: Control Flow for the Constraint Compiler

4.5.1 The BTS System

Consider the specification for the BTS system being compiled with the input set {
Soy .-, S3, M1g, Mag,...,Ms2,By,...Bs }. The specification has been repeated in
Figure 4.20 with certain terms ({Xo, X1, X2, X3}) in bold-faced to indicate terms
that are chosen as outputs by the compiler.

By applying technique 3 in Section 4.3.7 the compiler splits up the specifi-
cations to perform the multiplications in series such as My * X, Moy * Xy, and
M3 * X¢ in parallel. Thus the vector multiplications for all Ms within a column
may be done in parallel. Figure 4.21 shows the form of the extracted dataflow
and exactly corresponds to the parallel algorithm in [DS86]. Data parallelism could

be used on the block level operations and captured in our representation with an

64

PROGRAM BTS_1

(S()*XO == B() AND

My * Xog +S1 Xy == By AND
M20*X0+M21*X1+52*X2 ==Bz AND
M30*X0+M31*X1+M32*X2+S3*X3==B3)

Figure 4.20: Constraint Specification for the BTS System with Computed Terms in
bold

appropriate type structure, if desired.

4.5.2 The BOER System

The constraint specification for the BOER system has been repeated in Figure 4.22
with certain terms in bold-faced to indicate computed terms. Each indexed set is
compiled to a loop iterating over values of the index. Each simple constraint is
compiled to a computation for a term (bold in Figure 4.22).

Analysis of the computations extracted shows that, in the reduction phase,
the computations for BP[j|, CP[j], and dP[i x pow(2, j)][j] can be executed in par-
allel. However, different iterations of the loop enclosing these computations (for
index j) cannot be done in parallel due to interdependencies between the three
computations. The different iterations of the nested loop for index i enclosing the
computation for dP[i x pow(2, j)][j] can be performed in parallel. The nested loop
for index ¢ in the back-substitution phase enclosing the computation for z[...] can
be performed in parallel. However, the iterations for the outer loop for index j
enclosing the computation for z[...] cannot be parallelized. Our compiler detects all
the dependencies for this analysis and correctly extracts all the existing parallelism

in the specification.

65

Figure 4.21: Dependence Graph for the BTS Program

The resulting dependence graph is shown in Figure 4.23 and exactly corre-
sponds to the dataflow in the algorithm in [LD90]. The START and STOP nodes
initiate and terminate the program, respectively. A FOR node initiates the differ-
ent iterations of a loop. The two such nodes in the figure correspond to the two
outer indexed sets for index j in the reduction and back-substitution phases in the
constraint specification. The annotation “Replicated” on the arcs specify that the
annotated arc and the destination node (shaded in Figure 4.23) are dynamically
replicated for parallel execution. The two such annotated arcs correspond to the
two nested indexed sets (for index 7) in the constraint specification and are instances
of data parallelism. The nodes annotated by BP, CP, dP, and z compute values
for parts of the corresponding variable. The parallel execution of the computations
for BP, CP, and dP is an instance of task parallelism. The nodes annotated by
“Merge” collect computed results from parallel executions. It is to be noted that

our compiler automatically detects the parallelism in the for loops in the reduction

66

and back-substitution phases. Furthermore, it is capable of extracting the paral-
lelism within the expression 2 * CP[j — 1] x CP[j — 1] — BP[j — 1] *x BP[j — 1] in
the computation for BP[j] by computing the products 2 x CP[j — 1] * CP[j — 1]
and BP[j — 1] * BP[j — 1] in parallel. By incorporating calls to BLAS routines
(technique 5 in Section 4.3.7) which invoke parallel algorithms, incorporating data
parallelism, for matrix-matrix multiply the compiler would have extracted all the

existent parallelism in the example.

67

PROGRAM BOER

BP[k-1] * x[pow(2,k-1)] == dP[pow(2,k-1)][k-1] AND

AND FOR (j 1 k-1) {
2 * CP[j-1] * CP[j-1] == BPJ[j] + BP[j-1] * BP[j-1] ,
CP[j] - CP[j-1] * CP[j-1] == 0 ,
AND FOR (i 0 pow(2,k-j)-2) {
CP[j-1] * (dP[i*pow(2,j) + pow(2,5-1)][j-1] +

dP[i*pow(2,5) - pow(2,-1)][j-1]) ==
dP[i*pow(2,))][J] + BP[j-1] * dP[i*pow(2,)]fj-1] }} AND

AND FOR (j k-1 1) {
AND FOR (i 0 pow(2,k-j)-1) {
CP[j-1] * (z[(i+1)*pow(2,j)] + z[i*pow(2,5)]) ==

dP[(i+1) *pow(2,5)-pow(2,5-1)][j-1] -
BP[j-1] * x[(i+1)*pow(2,j)-pow(2,j-1)] }}

Figure 4.22: Constraint Specification of the BOER System with Computed Terms
in bold

68

Reduction PII?e]pgﬂcated for parallel execution

Sngle-Solution x[*]
FOR
Replicated
Back-Substitution x[*] Replicated for parallel execution
MERGE
STOP

Figure 4.23: Dependence Graph for the BOER Program

69

Chapter 5

Iterative Solutions for

Constraint Systems with Cycles

Chapter 4 detailed the basic compilation algorithm for translating a constraint spec-
ification along with an input set to a dependence graph. The basic compilation
algorithm cannot resolve constraint specifications with input sets that give rise to
dependencies with cycles.

To illustrate dependencies with cycles, consider the constraint program shown
in Figure 5.1. Phase 2 of the compiler collects constraints connected by AND op-
erators at the same node and since there is only a single AND operator in the
specification in Figure 5.1, phase 2 will generate a single node with the two simple
constraints: a + b == z and ¢ + b == y (shown in Figure 5.2). When this node
is traversed in phase 3 with the input set { a,y } both simple constraints remain
unresolved because there are two unknowns b and x in each of them (simple con-
straints are resolved as conditionals if they have no unknowns and as computations
if they involve an equality and only one unknown; otherwise they are unresolved).
The term cyclic is used to refer to this situation because a cycle exists in the low-

level constraint graph representation (introduced in Section 2.3) for this constraint

70

program as shown in Figure 5.3. Note that the arcs connected to the input variables
a and y have directions on them to denote that the values for these variables are
available. The non-input variables x and b are in a cycle and neither of the two
“4+” operator nodes can “fire” for computed values to be propagated along the arcs
until either « or b is given a value. The constraints involved in such a situation are
sometimes referred to as cyclic constraints. In fact, cyclic constraints give rise to

cyclic dependencies.

PROGRAM CYCLIC_DEPI1

VAR int a, b, z, y;
INPUTS a, y;

a+b==x ANDxz+b==y

Figure 5.1: Constraint Specification and Input Set with a Cyclic Dependency

. at+h==

X+p== y
Figure 5.2: Tree from Phase 2 for Constraint Specification in Figure 5.1

This chapter discusses the augmentation [JB97] to the basic compiler for
handling constraints with cyclic dependencies. We opt to use the technique of
relaxation whereby iterative solutions to cyclic constraints are sought. Relaxation
attempts to satisfy all the constraints in the system within a certain degree of
accuracy by making an initial assignment of values to the unknowns, computing
the value of one unknown in each constraint and then estimating the error in the
current value. Further iterations of computing the value of the unknown variables

are initiated if the errors are not sufficiently small. In each iteration, the values

71

Figure 5.3: A Constraint Graph with a Cycle

computed in previous or current iterations are used to recompute the values of the
unknowns in an attempt to achieve convergence where the difference in computed
values in two consecutive iterations is reasonably small. The solutions extracted for
the unknowns in the system are often approximate.

The class of numerical applications which can be solved through iterative
methods is quite large. Many such applications are also quite amenable to paral-
lelization. Relaxation is not, however, a universally satisfactory solution. Iterative
methods may suffer from numerical stability problems. Systems using these methods
might fail to terminate. Even for systems guaranteed to converge, these methods
may be very slow.

A number of issues arise with respect to implementation of relaxation as an
algorithm for resolution of cyclic dependencies: (i) Since there will be more than
one unknown term in an unresolved constraint, how is the term to be computed
selected from among all the unknown terms 7 (ii) How does the compiler deal with
the memory requirement for single assignment variables (Section 4.3.5) in iterative
solutions 7 (iii) How is the choice between the different kinds of relaxation methods
(Jacobi, Gauss-Seidel etc.) made ? In the following sections in this chapter we trace

the design of the compiler for iterative solutions to cyclic constraint systems.

72

5.1 Selection of Term to be Computed

Constraints that remain unresolved through the basic constraint compiler are col-
lected at the leaves of the tree from phase 2 and will involve more than one unknown
term (except in the case of simple constraints not involving an equality). The com-
piler chooses one of the unknown terms in an unresolved constraint as the term to
be computed and either assigns default initial values to other unknown terms or
accepts such values as inputs from the user. Unresolved constraints can be of three
types: a simple constraint, a constraint module call, or an indexed set of constraints
(See Section 4.3.8 for a detailed description of the causes for these constraints being
unresolved). The following subsections detail the selection of the computed term

for the three types of unresolved constraints.

5.1.1 Unresolved Simple Constraints

Relaxation can be attempted only for simple constraints involving an equality since
other types of simple constraints must be resolved as firing/routing rules. An unre-
solved simple constraint involving an equality has more than one unknown variable
and any such variable is randomly chosen as the term to be computed. For example,
consider the unresolved constraints in Figure 5.2. There are two unknowns b and
x in both the constraints. b can be chosen as the term to be computed in the first
constraint a + b == z. Subsequently, second constraint © + b == y has just one

unknown «, which is chosen as the term to be computed.

5.1.2 Unresolved Constraint Module Calls

An unresolved constraint module call has more than one unknown in its set of
actual parameters, local variables and global variables in the body of the constraint
module. An unknown in an actual parameter implies than the corresponding formal

parameter is unknown. A constraint module call could be unresolved for either of

73

the two following reasons.

(a) The tree from phase 2 for the constraint module call has unresolved con-
straints at the leaf of at least one path. This situation is shown in Figure 5.4(a) where
the unresolved constraint C' contains unknown variables { fi... fp,l1,... 13,91 ... gr
}, where f;, 1 <i < p, is a formal parameter for the constraint module, [;, 1 < i < g,
is a local variable for the constraint module, and g;, 1 < ¢ < r, is a global variable
in the body of the constraint module. Depending on the structure of C (simple
constraint/constraint module call/indexed set) an unknown variable will be chosen
for computation and other unknown variables will be given initial values.

(b) Some subset of the set of constraints ex; == Z1, ey == Zo, ...,
exp == Zp (See Section 4.3.3 for a description of the terms and notation) to be
resolved as computations for the child node of the call node in the dependence
graph which invokes the constraint module remain unresolved (see Figure 5.4(b)).
Again, depending on the structure of each unresolved constraint a computed variable

is chosen and other unknown variables are initialized.

T o G
AT R
. : : / . CalINgde é)

O~

O Receives

Computed Values
Computations for
ekl==271..ekp==2Zp

unresolved constraint
C

Tree from phase 2 for Module Call Dependence Graph where Module
isinvoked

€Y (b)

Figure 5.4: An Unresolved Constraint Module Call

74

5.1.3 Unresolved Indexed Sets

Relaxation cannot be used when an indexed set AND/OR FOR (i <bl> <b2>)
{Ai1,As,...,A,} is unresolved for the following reason (See (c) in Section 4.18).

e During the resolution process a constraint A;, 1 < ¢ < n, is resolved as
a computation for some values of ¢ in bl...b2 and as a conditional (firing/routing
rule) for other values of 7 in b1... b2.

We showed in Section 4.3.8 how the compiler can generate a closed form
solution in the preceding situation. If this case does not arise, the failure to resolve
an indexed set of constraints can be recursively traced to “culprit” (unresolved)
simple constraints and constraint module calls nested in it (4;, 1 <i < n).

Consider any unresolved (simple constraint/constraint module call) constraint
C nested within an unresolved indexed set. A term in C is typically of the form
Alfni(i1,...)] ... [fru(i1,...,ik)] where i;...4; are indices for nested indexed
sets containing C, fny...fn; are functions over the indices, and A is any struc-
tured data type. Some parts of A may be known and other parts may be unknown
depending on the initial input set and the preceding computations in the current
path in the dependence graph. The compiler evaluates each term in C to determine
the term that accesses the largest unknown region in the structured data type. To
illustrate this, consider an example constraint specification involving a 1 X N array
z in Figure 5.5. The end elements of A (shaded in Figure 5.6) are the inputs to the
system. The values for the index ¢ in the indexed set are in the range 2... N — 1.
The constraint z[i — 1] == [i] — «[¢ + 1] remains unresolved because there is no
unique unknown term for all values of i in 2... N — 1 (Reason (b) in Section 4.18).
The term z[i — 1] accesses the region between indices 1...N — 2 in the array z,
the term z[i] accesses the region between indices 2... N — 1 in the array =, and
the term x[i + 1] accesses the region between indices 3... N in the array x (see

Figure 5.6). Hence, the term z[i] accesses the largest unknown region in z, i.e.,

75

z[2],z[3],...,z[N — 1] and is selected as the term to be computed in the iteration

process while other terms have to be given initial values for the first iteration.

PROGRAM CYCLIC_DEP2

VAR x;
INPUTS x[1], x[NJ;

AND FOR (i 2 N-1) {
x[i-1] == x[i] - x[i+1] }

Figure 5.5: Example of an Unresolved Constraint Specification

1 2 3 eoo N2NI1 N

N
i]

Xi+1]

Figure 5.6: Regions of Access by Terms in Figure 5.5

The motivation behind using the heuristic of selecting the term accessing the
largest unknown region as the computed term is due to the following reasons.

e Since the selected (computed) term accesses the largest unknown region,
the largest number of values will be computed in each iteration of the relaxation
process.

e Since the other terms access smaller unknown regions, fewer initializations
will have to be done.

If the selected term does not access the entire unknown region in the data,
the iterative process will not converge because certain locations in the data will not

be computed. The compiler can abort the process after a fixed number of iterations,

76

which can be a parameter in the system. Also, if the selected term accesses a location
that is an initial input to the system, convergence may not be reached because that

location will be overwritten in the first iteration.

5.2 Mapping single assignment variables to mutable vari-

ables

To satisfy a constraint within some degree of accuracy, the values for the selected
unknown terms have to be computed over some number of iterations ¢. Since the
basic compilation process generates single assignment variables, iterative computa-
tions would require ¢ memory locations for each computed term. Such a memory
requirement can be quite prohibitive when the values of large data structures are
being computed iteratively.

To overcome the large memory requirement for computing iterative solutions
with single assignment variables, a procedure for local introduction of mutable vari-
ables is required. For each variable z being computed iteratively, the compiler may
keep two locations: x and old_x. Any computed value is stored in the location
x. Accessed values may come from either x or old_z, depending on the relaxation
scheme being used. This will be detailed in Section 5.3. At the end of each iteration,
a check is done to see if the difference between values in z and old_z is greater than
the specified degree of accuracy for solution of the constraints. If it is, = is copied to
old_x and further iterations are initiated. The parallel functional language SISAL
employs a variant of this technique [Szy91]. In our system, the user may choose to
supply a value for the degree of accuracy or accept the default value assigned by the
system.

Using only single assignment variables, any computed variable with N mem-

ory locations would require ¢t Xx N memory locations for ¢ iterations. By transforming

77

single assignment variables to be mutable variables, the memory requirement is re-

duced to 2 x N.

5.3 Relaxation Methods

Relaxation methods such as Jacobi and Gauss-Seidel [FJL188] can be used for
iterative solutions to constraints. The Jacobi method is a stationary, iterative,
method typically used for solving a partial differential equation on a numerical grid.
The update of each grid point depends only on the values at neighboring grid points
(defined by a stencil) from the previous iteration. In the Gauss-Seidel method the
most recent grid values are used in performing updates. To generalize these two
techniques to an iterative system, the Jacobi method can be implemented by using
values from the previous iteration and the Gauss-Seidel method can be implemented
by using the most recent values (some possibly from the current iteration). The
Jacobi method yields more parallelism since all computations in a current iteration
are independent. However, convergence is typically slower than the Gauss-Seidel
method.

The user should be able to choose the method of relaxation to be used by the
constraint compiler. As mentioned in Section 5.2, two locations for each computed
variable z are kept: = and old_z. If the chosen method of relaxation is Jacobi,
the compiler restricts all accessed values of the variable z to be retrieved from
the location old_z, which stores the values of variable x computed in the previous
iteration. If the chosen method of relaxation is Gauss-Seidel, the compiler restricts
all accessed values of variable x to be retrieved from location x which stores the
most recently computed value. The compiler currently implements only the Jacobi

relaxation technique.

78

5.4 The Laplace Equation Example

Consider the Laplace equation for a 4-point stencil on an N x N grid indexed by
(0...N —1)(0...N —1) as shown in Figure 3.9. A constraint specification for the
problem was presented in Figure 3.10.

The Laplace equation specification with the input set (boundary elements)
constitutes a cyclic dependency. Applying the technique described in Section 5.1,
x[i] will be chosen as the term to be computed since it accesses the largest un-
known region, i.e., all interior elements in the grid . The two indexed sets in
the specification are compiled to loops and the simple constraint 4 x z[i][j] — z[i —
1)[7] — =[¢ + 1][j] == =[i][j — 1] + z[i][j + 1] is compiled to a computation for
i) : 2fi][j] = (ali — L] + afi + L[] + <fillj — 1] + fi]lj + 1))/4.

If the Jacobi method of relaxation is chosen by the user, the constraint spec-
ification can be compiled to the procedural code shown in Figure 5.7. If the Gauss-
Seidel method of relaxation is chosen by the user, the constraint specification can be
compiled to the procedural code shown in Figure 5.8. The user may supply initial
values for the interior (non-shaded) points of the grid or choose to accept the default
initial values assigned by the compiler. Variable z is initialized to the initial values
and the input boundary values. Variable old_x is initialized such that at least one
point differs in value from its corresponding point in & by more than the degree of
accuracy so that the first iteration can be initiated. The function check_accuracy(z,
old_z) returns 1 if the difference between any value in z and old_z is greater than the
degree of accuracy; otherwise it returns 0. The function copy_values(old_z,z) copies

values from locations in & to corresponding locations in old_x.

5.4.1 The Dependence Graph for the Laplace Equation

Compilation of cyclic dependencies for an iterative solution has been implemented

in the constraint compiler for the Jacobi method of relaxation. The Gauss-Seidel

79

while (check_accuracy(z,old_z)) {
copy_values(old_z,z);
for (i 2 N-2) {
for (j 2 N-2) {
. zfilf[j] = (old-z[i-1][j] + old_z[i+1][j] + old_z[i][j-1] + old_z[i][j+1])/4

Figure 5.7: Jacobi Relaxation for the Laplace Equation

while (check_accuracy(z,old_z)) {
copy-values(old_z,z);
for (1 2 N-2) {
for (2 N-2) {
)y =] sl o1 o)

Figure 5.8: Gauss-Seidel Relaxation for the Laplace Equation

method has not yet been implemented.

In the Jacobi method of relaxation, both loops (for i and j) surrounding the
computation can be executed in parallel. A naive parallelization of the loops will
lead to (N — 2)2 computation nodes, each executing an instance of the computation
z[i][j] = (old_z[i — 1][j] + old_z[i + 1][j] + old_z[i][j — 1] + old_z[i][j + 1])/4. This is
highly undesirable since the computations are too fine-grained. To overcome this,
the compiler detects instances of computation extracted from constraints specified
at the scalar level. Simple data partitioning techniques are applied to partition the
data involved in the computation over a specified number of computation nodes P.
The data partitioning techniques will be detailed in a later chapter. In the Laplace
equation, the grid x is partitioned in a row-wise manner across P nodes in the
extracted dependence graph. Each partitioned slice in a computation node contains

locations that the node computes through each iteration and any overlapping regions

80

with other computation nodes that it accesses. For computations specified at the
scalar level, as in this case, the region of overlap between computation nodes is
determined by examining the terms in the computation. In the Laplace equation,
the accessed terms are z[i — 1|[j], z[¢ + 1][j], z[{][j — 1], and z[¢][j + 1]. The indices
for the accessed terms specify a maximum displacement of 1 in the four directions
of north, south, east, and west. Since x has been partitioned in a row-wise manner,
the overlap is 1 row in the north and south directions. The row-wise partitioning of
a 10 x 10 matrix across 4 nodes numbered 0. .. 3 is illustrated in Figure 5.9. Each
node i, 0 < ¢ < 3, gets rows in the range 2 %4...2 (1 + 1) + 1.

0 0123456789

N
g MW NP O

Figure 5.9: Data Partitioning for the Laplace Equation

In Figure 5.10 we show the dependence graph extracted by the compiler
for a Laplace equation system executing on P nodes. The super node S initiates
new iterations. The computation nodes numbered 0... P — 1 each have a slice of
approximate size % x P + 2 (overlap between slices) of the matrix z. In each iteration
the code in Figure 5.7 is executed by each computation node on its local slice. At
the end of each iteration overlapping regions are exchanged between computation
nodes and the super node is informed by each computation node whether the degree
of accuracy has been reached for the values in the local slice. Computation is

terminated when all the nodes achieve convergence on individual slices.

81

Figure 5.10: Dependence Graph for the Laplace Equation

82

Chapter 6

Execution Environment

Specification

The advantage of using a program specification that is independent of the execution
machine is portability - the ability to create executables for different architectures
without changing the program specification. The constraint program specifications
in our system are translated to an intermediate architecture-independent depen-
dence graph which can be mapped to many different parallel machines. However,
there are many architectural mechanisms which can be exploited by an executable
program if it is directed to do so. This usually leads to an improvement in perfor-
mance. Without violating the “sanctity” of our architecture-independent program
specification, we propose an execution environment specification, separate from the
constraint program, that allows the user to provide useful hints to the compiler
about the underlying execution machine. The compiler can use these hints to pro-
duce programs that may be more optimized for performance.

This chapter discusses the design of the execution environment specification
for our compiler. Several features are discussed in individual sections. While some

of them have been implemented in our system, there are several others which could

83

be added in the future.

6.1 Shared Variables

In shared memory architectures such as the Sparc and Cray J90, a vast improvement
in performance can be obtained if some variables are declared as shared because it
avoids the copying of large data across computation nodes. This is demonstrated
through the BTS example in a later chapter where performance results for a version
of the program not using shared variables and another using shared variables are
presented. The program using shared variables shows a dramatic improvement in
performance over the one not using shared variables.

The user has to be cautious when declaring shared variables in a program
containing constraints connected by OR operators. OR operators translate to mul-
tiple paths in the dependence graph and hence, give rise to the potential for multiple
solutions. In a program not using shared variables, each path can compute a solu-
tion independent of other paths. However, a path in the dependence graph for a
program using shared variables may overwrite the value computed for a variable in
another path. To illustrate this, consider the dependence graph in Figure 6.1 where
both paths emanating from the start node will be executed if ¢ > 0. If a and b are
shared variables instead of being local to each node, only one solution for a and b
will be finally retained and it could be one of {a = 10,b = 20}, {a = 10,b = 0},
{a =5,b =20}, and {a = 5,b = 0} depending on the interleaving of computations in
a parallel environment. However, since nodes in CODE lock shared variables when
execution is started and the locks are released only after the entire computation is
completed, only one of the two solutions - {a = 10,b = 20} and {a = 5,b = 0}- is
possible in our system.

Hence, the user should not declare variables as shared if there is the poten-

tial for multiple solutions for them, which can be determined from the constraint

84

@ stop

Figure 6.1: A Dependence Graph with Multiple Solutions

specification by inspection.

6.2 Number of Available Processors

This piece of information can be used to determine the number of nodes to be created
when spawning off a computation to be executed in parallel. For example, the NV
iterations in a loop structure can be partitioned across P processors such that each
processor gets approximately % iterations to execute or the data computed within
a loop structure can be partitioned equally across P processors. Since CODE allows
the dynamic creation of nodes, the number of processors can determine the number

of computation nodes at runtime.

6.3 Data Partitioning with Overlap Sections

It has been amply demonstrated by many parallel programming experiments that
data partitioning techniques play a significant role in improving performance. While,
currently, we have only implemented simple mechanisms for data partitioning, we
show in this section that other sophisticated mechanisms can be specified too.

In many applications such as the Laplace equation, the computations are

85

specified at a very fine granularity, say, at the scalar level. When the compiler detects
that the operations involved in the computations are over scalar types or over small-
sized data (the threshold size is fixed by a parameter to the system), it partitions
the variables involved over a number of nodes. This is especially important if the
computation is nested within loops because the computation is executed repeatedly
and the overhead in executing scalar operations repeatedly can severely degrade
performance.

The form of the partition depends on the data accesses in the computation.
For any matrix, if the accesses are only in the north and south directions the data
is partitioned column-wise. If the accesses are only in the east and west directions
the data is partitioned row-wise. If there are accesses in mixed directions, say north
and east, the data is partitioned such that there is minimum overlap between the
partitioned slices. This scheme minimizes the overhead in the synchronizations nec-

essary when data is shared across computation nodes. Each node gets approximately

NxM
P

+ overlap, where the matrix being partitioned is of size N x M and P is the
number of nodes. The amount of overlap between partitioned slices must be deter-
mined by the user or by the compiler by inspecting the terms in the computation.
The mechanism of partitioning data involved in scalar computations has been used
for the Laplace equation.

The user may specify the partitioning mechanism, instead of allowing the
compiler to select it, by indicating the actual regions in the data type to be dis-
tributed across the nodes. (The user must specify the actual overlap between the

partitions to determine the regions to be synchronized.)

6.4 Option of not Parallelizing a Module

A constraint module may have very fine-grained operations in the constraints for

the constraint module body. Parallelizing such a module may lead to degradation in

86

performance due to the overheads involved. For this reason, a user can denote that
the dependence graph for a particular module call should be mapped to a sequential
procedure rather than a parallel one. This feature has not yet been implemented in
our compiler. However, since CODE allows the generation of sequential programs,

this would be simple to incorporate.

6.5 Selecting Operations to be Executed in Parallel

Operations over structured data types are primitives in the type system. But parallel
execution can be selected for these primitive operations. The complexity of some
of these operations may be larger than others. An example is the matrix-matrix
multiplication operation. In the interests of performance, it would be beneficial to
extract such operations out of a computation to execute in parallel. For example, if
there is a computation (dy Adz)v/(d3Ads), where A and 57 are primitive operations,
to be executed and the operation A is very computation-intensive, the specification
can be split into two computations to be executed in parallel: (d; Ady) and (d3 Ads).
The results can then be merged and operator sy can be applied on them. We use
this technique in the BTS example where multiple matrix-matrix multiply operators
in a computation are executed in parallel.

The execution environment specification provides a platform for the user to
indicate that some operations be selected for extraction from a computation for

subsequent parallel execution.

6.6 Choices among Parallel Algorithms to execute some

of the Operations

A variety of choices exist among parallel algorithms to execute operations on data

instances under a type system. The user should be able to select one among a

87

number of implemented algorithms in the system to execute an operation. We have

not yet implemented this feature in our system.

88

Chapter 7

Performance Results

A prototype of the constraint compiler has been implemented in C++ using object-
oriented techniques. A number of examples have also been programmed and ex-
ecuted on the Cray J90, SPARCcenter 2000, Enterprise 5000, Sequent Symmetry
machine [Ost89], and the PVM system. The sections in this chapter present the
performance results obtained for some of the examples programmed in our system.
Overall, the results have been extremely satisfactory.

The execution times reported in this chapter are wall clock times. Whenever
possible, timings have been taken for executions during either dedicated CPU access

or when the loads on the machines were low.

7.0.1 The Block Triangular Solver (BTS)

The extracted dependence graph corresponds to the parallel algorithm in [DS86].
The parallelism yields an asymptotic (in the number of blocks) speedup of N2 /(3N —
2), where N is the number of blocks. Asymptotic speedup assumes zero communi-
cation and synchronization times.

Figure 7.1 gives the speedups for a 1200 x 1200 matrix on a 14-processor

shared memory Sequent machine. A hand-coded parallel program was written by

89

