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An attractive approach to specifying programs is to represent a computa-tion as a set of constraints upon the state variables that de�ne the solution and tochoose an appropriate subset of the state variables as the input set. But, there hasbeen little success in attaining e�cient execution of parallel programs derived fromconstraint representations. There are, however, both motivations for continuing re-search in this direction and reasons for optimism concerning success. Constraintsystems have attractive properties for compilation to parallel computation struc-tures. A constraint system gives a control ow-free and dataow-free speci�cationof a computation, thereby o�ering the compiler freedom of choice in deriving controlstructures. All types of parallelism (AND, OR, task, data) can be derived. Eithere�ective or complete programs can be derived from constraint systems on demand.Programs for di�erent computations can be derived from the same constraint spec-i�cation through di�erent choices of the input set of variables.ii



This dissertation reports on the compilation of constraint systems into tasklevel parallel programs in a procedural language. This is the only research, of whichwe are aware, which attempts to generate e�cient parallel programs for numericalcomputations from constraint systems. Computations are expressed as constraintsystems. A dependence graph is derived from the constraint system and a set ofinput variables. The dependence graph, which exploits the parallelism in the con-straints, is mapped to the target language CODE, which represents parallel com-putation structures as generalized dependence graphs. Finally, parallel C programsare generated. To extract parallel programs of appropriate granularity, the followingfeatures have been included. (i) modularity, (ii) operations over structured types asprimitives, (iii) de�nition of atomic functions.A prototype compiler has been implemented. The execution environmentor software architecture is speci�ed separately from the constraint system. Thedomain of matrix computations has been targeted for applications. Performanceresults for example programs are very encouraging. The feasibility of extractinge�cient and portable parallel programs from domain-speci�c constraint systemshas been established.
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Chapter 1
Introduction

1.1 Problem Statement and ApproachThe last decade has seen a rapid development in parallel hardware technology. Apartfrom supercomputers, parallelism has pervaded workstations, personal computers,and networks. Multiple processors inside a computer and across a network can betargeted by an application program for performance. Both scienti�c and commer-cial applications drive the need for exploiting parallelism in programs. Despite theadvancement in parallel hardware technology, development in parallel software envi-ronments has lagged far behind. But, interest in parallel programming has sparkedenthusiasm for alternative representations for expressing computations.An ideal representation (parallel programming language) is one that wouldeasily be applied to many problem domains and would be compilable for e�cientexecution in a variety of execution environments. A great deal of e�ort has goneinto attempts to compile e�cient parallel programs directly from existing sequentiallanguages [EB91, HKT91]. Many extensions to add communication and synchro-nization to existing sequential languages have been proposed [CK92, And91]. Newlanguages of many types have been proposed [CM89, And91]. But, there does not1



yet appear to be any widely accepted approach to parallel programming.In this research we suggest that constraint languages can potentially meetmany of the requirements for a broadly useful representation for parallel programs.This dissertation de�nes and describes a constraint language for representing matrix-based numerical computations for parallel execution across a variety of architectures.This dissertation reports on the design and implementation of a compiler whichproduces e�cient parallel procedural programs from the constraint system repre-sentations of computations. Finally, this dissertation reports successful parallel ex-ecution of non-trivial matrix computations expressed in the constraint speci�cationlanguage.Our constraint speci�cation language consists of a type system and a setof operators over the type system. A speci�cation for a computation (a program)consists of a constraint system speci�ed in the language, an initialization (an inputset consisting of a subset of the names which appear in the constraint system),and a separate speci�cation of the target execution environment. The type systemincludes hierarchical matrices as primitive types. (A hierarchical matrix is one whoseelements may be matrices.) Before reading the next section, readers unfamiliarwith constraint systems may wish to read Chapter 2, which de�nes and describesconstraint systems in general and the constraint speci�cation language for matrixcomputations de�ned in this project.1.2 Constraint Systems as Representations of Compu-tations for Parallel ExecutionThe design and evaluation of representations for parallel programs should be basedon a requirements speci�cation. Since it would be di�cult to obtain consensus onthe \requirements" for a parallel programming language we take the weaker posture2



of posing a list of desirable properties for parallel programming languages. Therefollows a list of desirable properties for a parallel programming system togetherwith an evaluation of constraint systems with respect to each property. The list issubjective and reects our vision of parallel programming. We assume, for example,that most parallel programs will be written by discipline-area experts interested insolving problems in their discipline area. Other considerations may be importantto di�erent interest groups. For example, it will be important to programmerswith large libraries of FORTRAN programs that they be able to use their existingprograms in parallel execution environments.Property 1.1 Naturalness of ExpressionThe representation should be natural to the application domain and should notrequire the scientist or engineer to reason in representations from other disciplines.This property is desirable for all representations of computations regardlessof the execution environment which is targeted.Constraints are declarative relationships among entities in the applicationdomain. Constraint speci�cations require no knowledge of programming. Constraintsystems thus have the \Naturalness of Expression" property.Property 1.2 Full ParallelizationThe representation should not impede realization in the executable programof any of the parallelism, which is implicit in the computation, on any reasonableparallel execution environment and should impose no intrinsic barrier to scaling ofthe program to apply to arbitrarily large computations.Constraint speci�cations do not specify control ow. The only restriction onthe parallel computation structure which is derived by compilation are those implicitin the granularity of the typed entities over which the constraints are expressed.Therefore, constraint speci�cations have the \Full Parallelization" property.3



Property 1.3 Speci�cation of Execution PropertiesThe representation should allow the user to express desirable properties forthe executable program in application terms. For instance, the representation shouldenable control over the granularity of operations in application terms.The granularity of the entities in a constraint speci�cation, matrix compu-tations in our example domain, are readily parameterized. Therefore constraintsystems have the \Speci�cation of Execution Properties" property.Property 1.4 Reuse of ComponentsThe representation should enable easy use of commonly available componentsand libraries.Constraint speci�cations actually require the use of components implement-ing operations over structured types since they do not specify the procedural al-gorithms for operations on structured types. The compiler must select an alreadyexisting implementation of the operation over the structured type. The domainchosen for this research, matrix computations, has many well-known libraries ofcomponents which can be incorporated into the compiled program by the compila-tion process. Furthermore, constraint speci�cations do not restrict the algorithmswhich are used to implement the elementary operations over the structured datatypes in the representation so that the compilation process is free to chose fromamong the available libraries. Thus, constraint speci�cation possess the \Reuse ofComponents" propertyProperty 1.5 Adaptation of Program to Execution Environment: The rep-resentation should allow the compiler to select algorithms and implementations whichare appropriate for a given component of the computation on a given architecture.Constraint speci�cations do not impose any particular technique for the im-plementation of the operations in the system. This gives the compiler the freedom4



to choose algorithms and implementations that are suitable for a particular archi-tecture.Property 1.6 Portability with E�ciencyThe representation should not include assumptions concerning the executionenvironment so that the program can be compiled to execute with comparable e�-ciency across a spectrum of parallel execution environments.Constraint speci�cations do not specify mechanisms for synchronization orcommunication so that the compilation process can choose mechanisms and imple-mentations of synchronization and communication which are e�cient on the tar-get parallel execution environment without restriction. Properties of the executionenvironment are explicitly separated from the representation of the computation.Therefore constraint systems possess the \Portability with E�ciency" property.We will revisit this evaluation at the end of Chapter 2 after giving an in-troduction to constraints. On the basis of the preceding analysis we believe thatconstraint systems are a very promising representation of computations where paral-lel execution is to be targeted. But, realizing this promise depends on implementinga compilation process which utilizes the opportunities o�ered by constraint spec-i�cation representations. The development of this compilation process is a majorconceptual and implementation challenge. This dissertation is the �rst attempt tomeet this challenge.
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Chapter 2
Background: Constraints

A program in an imperative programming language such as C++ or C is a step-by-step procedure to solve a problem. In contrast, programming using constraints is adeclarative task requiring only speci�cation of the desired relationships among theentities of the problem.A constraint speci�es a relationship between a set of variables. For exam-ple, C == (F � 32) � 5=9 is a constraint relating temperatures in Centigrade andFahrenheit. Note that the \==" denotes equality as opposed to assignment. Aconstraint speci�cation enumerates the relationships that must be established ormaintained by some constraint satisfaction mechanism if a solution to a set of vari-ables is to be found. The constraint translation mechanism, which transforms theconstraint speci�cation to a program, determines the speci�c method used to satisfythe constraints.In the von Neumann memory model the state of a computing system isspeci�ed by a store which is a vector V of n variables and a valuation assigning avalue to each variable in V [Dij76]. An n-dimensional state space for the system isthe product of all possible values for the variables in V , and a store is a point inthis n-dimensional space. In imperative languages a speci�ed algorithm takes the6



state of the system from one store (satisfying some pre-condition) to another store(satisfying a post-condition). In contrast, the store in a constraint system is de�nedas a constraint which de�nes a set of points or valuations in the n-dimensional spacefor that system [Sar89]. Evaluation of a constraint system leads to determinationof the speci�c points in the state space where all the constraints in the system aresatis�ed. A new constraint can be added to a constraint system if the resultantstore is consistent, that is, it permits at least one valuation [Sar89]. The resultantstore is de�ned by the intersection of the sets of valuations corresponding to the oldstore and the added constraint. Hence, it is not possible to change the value of anyvariable in a constraint system. However, it is possible to re�ne the set of values avariable can assume by pruning some earlier allowed values.Another aspect of a constraint system is its ability to encapsulate di�erentimperative programs in a single representation. The constraint C == (F � 32) �5=9 constitutes a constraint speci�cation for a temperature conversion problem.Encapsulated within the constraint are two di�erent imperative programs: C =(F�32)�5=9 and F = 32+(9=5)�C. ( Note the use of the assignment operator \="instead of the equality operator \==". ) Given F or C, the other can be computedby extracting the appropriate program. Constraint programming has been attractivein many application areas such as user interfaces [San94], modeling, and design[Med95, MM89, Ste93] due to its ability to encapsulate many di�erent problems(view any of the variables as unknown) within a single constraint speci�cation.Logic languages [CM84] are speci�c instances of constraint languages in thatthe constraints in logic languages are expressed using predicate calculus. In gen-eral, the constraints in constraint languages are expressed in a logic de�ned for theapplication area, not necessarily predicate calculus.
7



2.1 De�nitionsWe now present some basic de�nitions upon which we will base the de�nition of ourconstraint speci�cation language.De�nition 2.1 A type system is a triple < �; �; � >, where � is the set of m entities(types) in the system, � is a set f �ij1 � i � m g with �i being the set (possiblyin�nite) of values the ith entity can assume, and � is a set f �ij1 � i � m g with �ibeing the set of operators de�ned on instances of the ith entity. An element Op of�i is a mapping Op : � ! � (In addition to de�ning the evaluation of applying anoperator, the type of the evaluated value is also de�ned.).De�nition 2.2 A variable is an instance of a particular type.De�nition 2.3 A constant is a literal value.De�nition 2.4 An expression has an associated type and can be a variable, a con-stant, a function invocation, or an application of an operator on expressions involv-ing a set of variables and constants.Linear expressions involve only linear functions and terms and non-linearexpressions involve atleast one non-linear function or term.De�nition 2.5 A constraint is a condition on the values of a set of variables ex-pressed using some speci�ed notation on expressions involving the set of variables.Constraints involving only linear expressions are linear constraints, and thoseinvolving at least one non-linear expression are non-linear constraints.De�nition 2.6 A constraint system is a triple < �;V; � >, where � is a type system,V is a set of variables which are instances of the types in � , and � is a set ofconstraints on variables in V. 8



� is referred to as the constraint speci�cation for the system.De�nition 2.7 The evaluation of a constraint system < �;V; � > determines amapping " : V ! � where � de�nes the set of allowed points under the set of con-straints � in the state space de�ned for the variables in V under the type system� .2.2 Constraint TypesThis section briey discusses the common constraint types that arise in constraintsystems. Our system handles multi-way (Section 2.2.2), linear and non-linear (withsome restrictions) constraints. Other types of constraints can be easily included asfuture extensions.2.2.1 Linear and Non-linear ConstraintsLinear and non-linear constraints have been distinguished in Section 2.1. Whilemany of the earlier constraint systems dealt with linear constraints, a number ofcurrent systems such as CAL [SA89] and CLP(BNR) [OB93], and architectures[MR95, Rue95, Ste93] handle non-linear constraints. Interesting areas of relatedresearch are linear and non-linear programming.2.2.2 One-way and Multi-way ConstraintsOne-way constraints compute a function and assign the result to a variable. Forexample, a == b + c (treated as a one-way constraint) evaluates b + c and assignsit to a. Multi-way constraints allow any variables in a constraint to be altered tosatisfy the constraint. In the preceding example (a == b + c is is now treatedas a multi-way constraint), if a changes then either b or c can be altered. Theconstraint satisfaction mechanism can treat any constraint as either one-way or9



multi-way. Multi-way constraints are more powerful than one-way constraints butare less e�cient because the satisfaction mechanism has to decide which variable tochange as well as solve for that variable. The process of selecting the variable tobe changed is referred to in AI as planning and is typically done at runtime. Weexecute this process during the compilation phase in our system.2.2.3 Hierarchical ConstraintsA set of constraints without a solution is over-constrained. On encountering an over-constrained set, the constraint-satisfaction mechanism can either abort its operationor attempt to satisfy a subset of the constraints. It can be aided in the latter processby a constraint hierarchy [BDFB+87] which speci�es an ordering on the use of theconstraints according to their desired priorities.2.2.4 Higher-Order ConstraintsHigher-order constraints specify constraints on other constraints. An example isif z 6= 0 then z == x+ yThis if/then constraint takes a predicate and a �rst-order constraint as ar-guments to make a second-order constraint. Such constraints can be treated asBoolean combinations of �rst-order constraints and then solved.2.2.5 Meta-ConstraintsMeta-constraints specify constraints on the constraint-satisfaction mechanism, i.e.,constraints on how other constraints are to be satis�ed. They may be used, forexample, to specify the accuracy to be achieved by an iterative process to solve theconstraints. They may also be used to specify the di�erent conditions under whicha variety of approaches to constraint satisfaction are to be used.10



2.2.6 Temporal ConstraintsMany real world problems involve constraints between time and other objects. Ananimation is a good example where the position of an object is a function of time.Time is an independent variable whose value is given by a \clock" outside theconstraint system. Time may also be incorporated in a constraint system as asequence of values for instances of types.2.3 Constraint GraphsA set of constraints can be represented as a constraint graph [Lel88] which is com-monly used in many constraint systems as a representation for further processingduring the constraint satisfaction phase. Figure 2.1 shows the constraint graphcorresponding to the constraint F == 32 + 1:8� C.
X

32.0

F

C

+1.8

Figure 2.1: Constraint Graph for Temperature Conversion ProgramVariables are represented as square nodes and operators as round nodes. Theoperands to an operator are connected on its left side and the result of applying theoperator is connected on its right side. Hence, the \equal to" operator (==) isimplicitly represented in the graph. Constants such as 32.0 are operators with nooperands. We use a modi�ed form of this representation in our system.11



2.4 Constraint Satisfaction TechniquesIn this section we review some of the techniques commonly used to evaluate aconstraint system. The relationship between these techniques and ours will be givenin Section 2.5.2.4.1 Local PropagationLocal propagation [SS79], a simple and popular constraint-satisfaction mechanism,propagates known values along the arcs of the constraint graph. An operator orvariable node can �re upon receiving su�cient information from the arcs connectingto it. It then calculates values for arcs that do not contain any and propagates thesevalues out. Thus local propagation uses local information at each node. Figures 2.2and 2.3 show the values propagated along the arcs when C is assigned a value of 30and F is assigned a value of 100, respectively.
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32.0Figure 2.2: Computing the Fahrenheit value of 30 degrees Celsius using Local Prop-agationLocal-propagation techniques cannot solve constraint graphs with cycles [Lel88].
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Figure 2.3: Computing the Celsius value of 100 degrees Fahrenheit using LocalPropagation2.4.2 RelaxationRelaxation [Sut63] solves constraint graphs with cycles by making an initial guess atthe values of unknown variables and estimating the error arising out of the guessedvalues. New guesses are made and the process is repeated until the error is su�-ciently small. This technique can be used for overconstrained problems. However,it tends to be slow.A combination of local propagation and relaxation can be used to solve fora large class of constraints, i.e., sets of constraints with no cycles and sets of con-straints with cycles that converge using relaxation. We employ a variation of localpropagation and relaxation at compile time to solve for this class of constraints.2.4.3 Propagating Degrees of FreedomPropagating Degrees of Freedom [Lel88] is used when only parts of the constraintgraph (containing cycles) need to be relaxed and the rest (without cycles) can besolved by local propagation. The branches connected to cycles are temporarilypruned from the constraint graph. Relaxation is performed on the variables in thecycles to determine their values which are then propagated out to the branches.13



Pruning of branches involves searching for an object with few enough constraints(enough degrees of freedom) so that its value can be changed to satisfy the con-straints and removing it along with all the applicable constraints. Typically, heuris-tic methods are used to �nd objects with enough degrees of freedom.2.4.4 Graph TransformationGraph Transformation [Lel88] uses rewrite rules to transform subgraphs of the con-straint graph into other graphs which may be simpler to solve. For example, Fig-ure 2.4(a) illustrates how an expression Y + Y creates a cycle. The rewrite ruleX + X ) 2 � X eliminates the cycle as shown in Figure 2.4(b). While localpropagation is restricted to checking a single node and the associated arcs, graphtransformation can look at more of a constraint graph. However, it is still limitedto looking at locally connected subgraphs. Most cycles formed by simultaneousequations cannot be solved by graph transformation.
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(a)   Y + Y (b)  2 * YFigure 2.4: (a) Cycle in a Constraint Graph (b) Using a Rewrite Rule to break theCycle
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2.4.5 Miscellaneous TechniquesEquation Solving techniques in symbolic-algebra systems [Mat83] are used to solveconstraint programs with cycles. In practice, these are di�cult to implement andare slow.Other techniques that can be used for special forms of constraint systemsare related to linear programming, truth maintenance systems [Doy77], theorem-proving methods such as resolution, and arti�cial intelligence techniques such assearching [NS63].2.5 Our ApproachMost of the techniques described in Section 2.4 are applied at runtime because theyare used in conjunction with local propagation which propagates values of variables.Consequently, execution tends to be slow and these techniques fall short of compet-ing with computation expressed in procedural languages. Performance being oneof the crucial issues in parallel systems, conventional constraint satisfaction tech-niques are unsuitable for forming the basis of a constraint satisfaction mechanismfor parallel execution. This thesis focuses on compilation of constraints to parallelprocedural code [JJ96].We de�ne a constraint program to be a constraint system (the triple <�;V; � > presented in De�nition 2.6 in Section 2.1) and an input set I, where I � V.A generalized dependence graph [Bro90] is compiled from the constraint programwhich computes values for the variables in V � I and satis�es the constraints in �.A generalized dependence graph is a parallel computation structure where nodes areatomic units of computation consisting of a mapping from inputs to outputs and a�ring rule or guard which is a speci�cation of the states from which execution ofthe unit of computation can begin [Bro90, WBS+91]. Arcs in the dependence graph15



specify dependency relations which are the structuring elements used to composeunits of computation into parallel computation structures. A simple example of adependence graph is shown in Figure 4.15 where the nodes labeled start and stopinitiate and terminate computation, respectively. The conditions on the two arcsfrom the start node (N < 10 and M < 20) specify �ring rules determining the con-ditions under which the destination nodes can �re for execution. The computationsfor : : : x[i] = f(i) and for : : : y[i] = g(i) are performed if the corresponding nodesare executed.
start

stop

x[i]=f(i)

M<20N<10

for i=1 to N do
y[i]=g(i)

for i=1 to M do

Figure 2.5: A Simple Dependence GraphThe compilation process for the constraint system < �;V; � > and input set Iextracts conditionals (�ring rules) and computations for the variables in V �I fromthe constraints in � and generates an ordering relation on them to construct a gen-eralized dependence graph which is mapped to the target language CODE [NB92],which expresses parallel structure over sequential units of computation declarativelyas a generalized dependence graph. E�ectively, the applied technique creates a com-piled version of local propagation. Relaxation is used for resolution of dependencegraphs with cycles.The software architecture or execution environment to which CODE is tocompile is separately speci�ed (SMP, DSM, NOW, etc). Sequential and parallel C16



programs for shared memory machines such as the CRAY J90, SPARCcenter 2000,and the distributed memory PVM [GBD+94] system can be generated. An MPI[Fos95] backend for CODE is also available.The granularity of the derived dependence graphs and the family of com-putations which can be expressed depend upon the types directly represented asprimitives in the constraint representation. The introduction of structured typesand operations on structured types as primitives in the constraint representationgive natural units of computation at a granularity appropriate for task level paral-lelism and avoids the problem of name ambiguity in the derivation of dependencegraphs from loops over scalar representation of arrays. It also supports implemen-tation of data parallelism. Additionally, the operations over instances of structuredtypes are often available as modules in libraries. The general requirements for aconstraint representation which can be compiled to execute e�ciently, include (i)modularity for reusable modules, (ii) de�nition of atomic functions, and (iii) a richtype set. The importance of modularity will be discussed in a later section whilethe need for (ii) and (iii) follows from the preceding discussion.It is not at all surprising that a constraint speci�cation of a computation canbe compiled to a parallel program. It is obvious that a set of constraints de�ned overa set of typed instances of data structures and the choice of an appropriate subsetof type instances as an input set de�nes a dependence graph. Indeed all compilationprocesses for text string representations of computations, procedural or declarative,whether targeting sequential or parallel execution, derive some form of dependencegraph which is then mapped upon the target execution architecture. And there areseveral compilers for constraint systems to sequential programs [FB89, IWC+88].What is surprising is that the advantages for parallel compilation of a speci�cationwhich is free of control structure has not been previously recognized. The process ofcompiling a computation expressed as a constraint system to a parallel program is17



actually the derivation of a parallel algorithm expressing the computation in termsof the type system of the constraint language.We show how compilation of a computation expressed as a constraint systemallows extraction of all the parallelism which is intrinsic to the computation. Thetype system of the constraint representation is critical to the e�ectiveness of thecompilation process. The constraint representation used in the system (describedherein) is based on a hierarchical type system [CB95] where matrix semantics arelayered upon a hierarchical array type.2.5.1 Types of Constraints Resolved through Our SystemOur basic compilation algorithm can be applied to both linear and non-linear con-straints without cycles. Cyclic constraints such as simultaneous systems of equationscannot be resolved by the basic compilation algorithm. The extended compilationprocess described in Chapter 5 generates programs which resolve cyclic systemsthrough iterative solution algorithms.The implemented compiler handles all types of linear and non-linear con-straints where the initialization results in all non-linear terms being known at run-time. A detailed discussion is given in Chapter 4. This restriction could be allevi-ated by an extension to the compiler to incorporate higher order solvers for unknownnon-linear terms into the compiled program.All invoked functions must have de�ned inverses, otherwise compilation isonly successful for cases where all parameters of the functions are known at runtime.Constraint systems involving inequalities must be cast by the compilationprocess to conditional expressions where all of the variables are evaluatable at run-time.
18



2.6 Constraint Systems as Representations of ParallelComputations2.6.1 Conformance to Desired Property SetLet us now analyze the properties of constraint systems in terms of the desirableproperties given in Section 1.2.� Property 1.1 (Naturalness of Expression) (assuming an appropriate set oftypes are present in the representation) obtains because constraint speci�cations aremathematical relations familiar to all scientists and engineers.� Property 1.2 (Full Parallelization) obtains because constraint systems donot directly specify any control ow model at all. Therefore any mode of parallelexecution is equally realizable. The granularity of the operations is determined bythe operations de�ned in the type system.� Property 1.3 (Speci�cation of Execution Properties) follows if the typesystem is su�ciently rich and expressive. The type system is critical to the repre-sentation and merits a separate discussion.� Property 1.4 (Reuse of Components) follows because the constraint spec-i�cation does not specify how a relation involving operators is to realize the oper-ations de�ned in the type system leaving the compilation process free to de�ne animplementation which can be realized with components from libraries of standardcomponents.� Property 1.5 (Adaptation of Program to Execution Environment) followsbecause properties 1.2 (Full Parallelization) and 1.4 (Reuse of Components) areproperties of constraint representations as de�ned herein.19



� Property 1.6 (Portability with E�ciency) follows because properties 1.2(Full Parallelization) and 1.4 (Reuse of Components) are properties of constraintsystems as de�ned herein.2.6.2 The Role of the Type SystemRealization of all of the desirable properties depends upon the type system overwhich the constraint relations may be speci�ed.� The type system must support compact and natural expression of theoperations of the application domain if property 1.1 (Naturalness of Expression) isto be obtained.� The operations on instances must generally be invertible to support trans-formation of constraints to equations de�ning computations.� The granularity of instances of structured types must be parameterizableif property 1.3 (Speci�cation of Execution Properties) is to be obtained.� Parallel algorithms for implementing certain operations on structured typesmay be necessary.The domain we have chosen for this demonstration of the feasibility of com-piling e�cient procedural programs from constraint speci�cations is numerical com-putations in general and computations over matrices in particular. This is a domainwhich, while compact enough for all of the requirements on the type system listedabove to be met, is also the basis for a large fraction of the computations of engi-neering and science.One principle innovation in this constraint language system is the intro-duction of a hierarchical matrix type [CB95] as a primitive type in the constraint20



language. A hierarchical matrix type may include a speci�cation of a structure forthe matrix (say triangular), a composition rule for the block structure of the matrixand a speci�cation for the structure of the composing blocks. The constraint rela-tions must be expressed directly in the primitive types provided by the speci�cationlanguage or as invocations of modules. Details of the type system are provided inChapter 3.Hierarchical matrices are necessary to provide an adequate direct represen-tation of matrix computations because(a) Many interesting computations are de�ned in terms of block structuredmatrices where the matrix arising from the discretization of a partial di�erentialequation is composed of blocks of sub-matrices, each block of which may have aspeci�c structure.(b) There are often e�cient parallel algorithms for operations on matrices ofspecial structure such as triangular or banded matrices.We have not yet implemented the full feature set for hierarchical matrixtypes but only a feature set su�cient for a feasibility demonstration spanning areasonable set of algorithms. We still �nd it necessary and useful to express somematrix computations in terms of operations at the scalar level as well. Both modesof representation will be illustrated.2.6.3 Modular StructureBoth the need to implement new operations and practical software engineering re-quires that the constraint system have a modular structure. The compilation al-gorithm is in principle np-hard so that modularity may ultimately be necessary inorder to enable compilation of very large programs.
21



Chapter 3
The Constraint Language

This chapter describes the components of our programming system. It explicatesthe type system, the rules for expressing constraints, and the structure of a completeprogram in the system. The chapter concludes with the constraint speci�cations fora few sample programs. The notations used are similar to those in the C program-ming language.3.1 Type SystemOur approach relies on a rich hierarchical type system where types at higher levelsare constructed from those at lower levels in the hierarchy. The schematic for thelayout of the type system is shown in Figure 3.1. The lowest level of the type hier-archy contains integers, reals, and characters. At the next level of the hierarchy arearrays to which we give semantic structure to construct the base matrix types, whichde�ne matrices of scalar elements. In addition to dense matrices, the base matrixtype currently supports specialized matrix types such as lower and upper triangularenabling the exibility to invoke specialized algorithms based on the structure ofthe matrix for the operations de�ned on the matrix subtypes. Other specialized22



types can also be easily incorporated. At the highest level of the type system arehierarchical matrices, whose individual elements are matrices.
Base Matrices

Hierarchical

Integers, Reals, 
  Characters

Arrays

  Matrices

Figure 3.1: The Type System LayoutWith respect to De�nition 2.1 introduced in Section 2.1, the entities in thetype system are integers, reals, characters, arrays, base matrices and hierarchicalmatrices. The operators of addition, subtraction, multiplication, and division arede�ned on integers and reals. The operator sets for characters and arrays are empty.The base matrix type has associated operators of addition, subtraction, scalar mul-tiplication, matrix multiplication and inverse de�ned for matrices over integers andreals. The operator set for hierarchical matrices is empty since operations are onlyde�ned on the blocks which compose it.
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3.2 ExpressionsExpressions can be formed by applying de�ned operators on instances of types inthe type system and through calls to library and user-de�ned functions. Functionsmust have de�ned inverses, otherwise only a limited form of compilation can bedone. Examples of library functions are mathematical functions such as sqrt andsqr. In addition to de�ned applications of operators, expressions of the followingform using indexed operators are allowed.< op > FOR (< index > < b1 > < b2 >) f X gAn indexed operator applies a binary operator op to an expression X through arange of values b1 : : : b2 for an integer variable index. The values of b1 and b2 haveto be bounded at compile-time. An indexed operator allows for the compact repre-sentation of expressions and is useful in large systems. For example, the construct+ FOR (i 1 3) f + FOR (j 1 i) f A[i][j] ggexpresses the sum of the lower partitions of a 3� 3 matrix A:A[1][1]+A[2][1] +A[2][2]+A[3][1] +A[3][2] +A[3][3]The \+" operator refers to scalar addition or matrix addition depending onwhether A is a base matrix or a hierarchical matrix, respectively.3.3 ConstraintsRules which govern the speci�cation of constraints are enumerated in this section.In designing these rules we have the motivation of capturing the entire set of con-24



straints a programmer would wish to impose upon a system. Rule 1 allows for theexpression of simple conditions, using relational operators, on expressions involvingtype instances. Rule 2 allows propositional connectives AND/OR/NOT to be ap-plied on constraints to express conditions using compositions of constraints. Rule 3is a generalization of Rule 2 through which large compositions of constraints usingAND/OR operators can be compactly represented. Rule 4 introduces modularityto enable large bodies of constraints to be replaced by calls to reusable modules.Rule 1: (i) X1 R X2, is a constraint,where R 2 f <, <=, >, >=, == , ! = g,X1, X2 are expressions over instances of scalar types.(ii) M1 ==M2 is a constraint,where M1;M2 are expressions involving matrices and matrix operators.Rule 1(ii) allows a mix of scalars and matrices. Although we do not cur-rently allow relations of the form M1 < M2, these could be easily de�ned to extendexpressibility.Rule 2: (i) A AND/OR B(ii) NOT Aare constraints, where A and B are constraints.Rule 3: Constraints over indexed sets have the form:AND/OR FOR (<index> <b1> <b2>) f A1; A2; : : : ; An g25



An indexed set groups a set of constraints f A1; A2; : : : ; An g to be connected byan AND/OR connective through a range of values b1 : : : b2 for an integer variableindex. The values of b1 and b2 have to be bounded at compile-time. This conditionwill be relaxed in later versions of the compiler. Indexed sets allow for the compactrepresentation of large constraint systems.An application of Rule 3 isAND FOR (i 1 2) f A[i] == A[i� 1], B[i+ 1] == A[i] g.This concise construct represents the constraintA[1] == A[0] AND A[2] == A[1] AND B[2] == A[1] AND B[3] == A[2].Another application of Rule 3 isOR FOR (i 1 2) f A[i] == 0, B[i+ 1] == A[i] g.This construct succinctly captures the constraintA[1] == 0 OR A[2] == 0 OR B[2] == A[1] OR B[3] == A[2].Rule 4: Calls to user-de�ned constraint modules are constraints. They have theform: < ModuleName > (P1; P2; : : : ; Pn)where ModuleName is the name of a de�ned constraint module (Section3.4 describes de�nition of constraint modules), which encapsulates constraints be-tween its formal parameters, local variables, and global variables within its scope.P1; P2; : : : ; Pn are the actual parameters for the constraint module call.Constraints constructed from applications of Rule 1 are referred to as simpleconstraints, which form the building blocks for constraints constructed from appli-cations of Rules 2-4. Both linear and non-linear constraints can be expressed using26



these rules. Each rule has an analog in the procedural world - Rule 1 maps to sim-ple conditionals and simple computations such as assignments, Rule 2 to sequencingand conditional statements, Rule 3 to loops and Rule 4 to procedures.3.4 Program StructureA program in our system has the following constituents.(i) Program name.(ii) Global variable declarations.(iii) Global input variables: input set I.(iv) User-de�ned function signatures: signatures of C functions, which maybe invoked in expressions. For example, the user-de�ned function max in the con-straint max(a; b) < 5 may have the function signature int max(int x, int y). Theactual function de�nitions are provided in a separate �le which is linked with thecompiled executable for the constraint program.(v) Constraint module de�nitions: module name, formal parameters andtheir types, local variable declarations, and a constraint module body constructedfrom applications of Rules 1-4 in Section 3.3. Constraints within a module caninvolve local variables, formal parameters, and global variables. Name scoping andtype matching are similar to those implemented for procedures in C programs.(vi) Main body of the program: constraints on global variables expressedthrough applications of Rules 1-4 in Section 3.3.3.5 Sample ProgramsThis section presents four example programs written using the language constructspresented in Section 3.3. While the �rst one is a toy example, the others have beensuccessfully executed with good performance results.27



3.5.1 The Quadratic Equation SolverFigure 3.2 shows a constraint speci�cation for the non-complex roots of a quadraticequation ax2+ bx+ c == 0. sqr, sqrt, and abs are library functions. The main bodyspeci�es the conditions on values of the roots r1 and r2 when a == 0 and when a! = 0. The condition on the values of r1 and r2 when a ! = 0 is expressed by a callto a constraint module De�nedRoots. The de�nition for the module expresses therelationship between the parameters a; b; c; r1; r2 in the event that the discriminant(t) is greater than or equal to 0. The speci�cation can be enhanced for imaginaryroots. The input set could be fa; b; cg, fa; b; r1g, or fa; b; r2g. Other input setswill not lead to dependence graphs through the compilation process described inChapter 4.PROGRAM QUAD ROOTSVAR real a, b, c, r1, r2; /* Global Variables */INPUTS a, b, c; /* Input Variables *//* Constraint Module */De�nedRoots(a: real; b:real; c:real; r1:real; r2:real)real t; /* Local Variable *//* Constraint Module Body */t == sqr(b)� 4 � a � c AND t >= 0 AND2 � a � r1 == (�b+ sqrt(abs(t))) AND 2 � a � r2 == �(b+ sqrt(abs(t)))/* Main Body */a == 0 AND b! = 0 AND r1 == r2 AND b � r1 + c == 0ORa! = 0 AND De�nedRoots(a, b, c, r1, r2)Figure 3.2: Constraint Speci�cation for the Quadratic Equation Solver28



3.5.2 The Block Triangular Solver(BTS)The example chosen is the solution of the AX == B linear algebra problem fora known lower triangular matrix A and vector B. The matrix and vectors can bedivided into blocks as shown in Figure 3.3. S0 : : : S3 represent lower triangular sub-matrices along the diagonal of A andM10;M20; : : : M32 represent dense sub-matriceswithin A.
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  A BXFigure 3.3: BTS: Partitioned Lower Triangular Matrix A, Vectors X and BA constraint speci�cation (excluding declarations) for a problem instancesplit into 4 blocks is shown in Figure 3.4. The input set can be chosen asf S0; : : : ; S3;M10;M20; : : : ;M32; B0; : : : B3 g. The constraint speci�cation closelyimitates the mathematical representation of the partitioned version of the problemAX == B. PROGRAM BTS 1( S0 �X0 == B0 ANDM10 �X0 + S1 �X1 == B1 ANDM20 �X0 +M21 �X1 + S2 �X2 == B2 ANDM30 �X0 +M31 �X1 +M32 �X2 + S3 �X3 == B3 )Figure 3.4: Constraint Speci�cation for the BTS System29



Using an indexed set of constraints and an indexed operator, an alternatecompact program is shown in Figure 3.6 using partitions on A as shown in Figure 3.5.The input set can be chosen as f A;B g to yield the solution for X. Alternatively,f A;X g can be chosen as the input set to yield a solution for B. Other input setswill not yield solutions through the compilation process described in Chapter 4.
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A[3,2] A[3,3]Figure 3.5: BTS: Partitioned Lower Triangular Matrix A
PROGRAM BTS 2AND FOR (i 0 3) f + FOR (j 0 i) f A[i][j] �X[j] g == B[i] gFigure 3.6: Alternate Notation for the Constraint Speci�cation for the BTS System3.5.3 The Block Odd-Even Reduction Algorithm(BOER)This is an example deliberately chosen by us to demonstrate that constructing theconstraint speci�cation by inspecting a given algorithm and processing it throughthe compiler extracts the original algorithm if an appropriate input set is chosen(shown later in the thesis). Consider a linear tridiagonal system Ax == d where
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A = 26666666666664
B C 0 0 : : : 0 0 0C B C 0 : : : 0 0 00 C B C : : : 0 0 0... ... ... ... ... ... ... ...0 0 0 0 : : : C B C0 0 0 0 : : : 0 C B

37777777777775is a block tridiagonal matrix and B and C are square matrices of order n � 2.It is assumed that there are M such blocks along the principal diagonal of A, andM = 2k � 1, for some k � 2. Thus, N =Mn denotes the order of A. It is assumedthat the vectors x and d are likewise partitioned, that is, x = (x1; x2; : : : ; xM )t,d = (d1; d2; : : : ; dM )t, xi = (xi1; xi2; : : : ; xin)t, and di = (di1; di2; : : : ; din)t, for i =1; 2; : : : ;M . It is further assumed that the blocks B and C are symmetric andcommute (B � C == C �B).A version of the parallel algorithm ([LD90]), shown in Figure 3.7, has areduction phase in which the system is split into two subsystems: one for odd-indexed (reduced system) and another for even-indexed (eliminated system) terms.The reduction process is repeatedly applied to the reduced system. After k � 1iterations the reduced system contains the solution for a single term. The rest ofthe terms can be obtained by back-substitution.The constraint speci�cation (excluding declarations) for the problem is shownin Figure 3.8. The variable names BP;CP , and dP correspond to the indexed termsB;C, and d in [LD90] and are examples of the hierarchical data type in our system(elements of BP;CP and dP are matrices). The inputs to the system are BP [0],CP [0] and dP [i][0], 1 � i � M . pow is a C function implementing the arithmeticpower function. Note that the constraints have been constructed by mapping as-signments (=) in the algorithm to equality (==) in the constraint speci�cation andfor loops to indexed sets. The INITIALIZATION phase corresponds to providingBP [0], CP [0] and dP [i][0] as inputs. Also, the three constraints corresponding to31



B(0) = B; C(0) = C; di(0) = di; /* INITIALIZATION */FOR j=1 TO k-1 STEP 1 DO IN PARALLEL /* REDUCTION PHASE */B(j) = 2 * C2(j � 1) - B2(j � 1)C(j) = C2(j � 1)di(j) = C(j)[di�h(j � 1) + di+h(j � 1)]�B(j � 1)di(j � 1),where h = 2j�1; i = 2j ; 2� 2j ; 3� 2j ; (2k�j � 1)2jSolve for x2k�1 in B(k � 1)x2k�1 = d2k�1(k � 1) /* SINGLE-SOLUTION PHASE */FOR j=k-1 TO 1 STEP -1 DO IN PARALLEL /*BACK-SUBSTITUTION PHASE*/Solve E(j)w(j) = y(j), whereE(j) = 2666664 B(j � 1) 0 0 : : : 0 00 B(j � 1) 0 : : : 0 0... ... ... ... ... ...0 0 0 : : : B(j � 1) 00 0 0 : : : 0 B(j � 1)
3777775,

w(j) = 2666666664 xt�sx2t�s...xit�s...x2k�j t� s
3777777775,

y(j) = 2666666664 dt�s(j � 1)� C(j � 1)xtd2t�s(j � 1)� C(j � 1)[x2t + xt]...dit�s(j � 1)� C(j � 1)[xit + x(i�1)t]...d2k�jt�s(j � 1)� C(j � 1)x(2k�j�1)t
3777777775where t = 2s = 2j .Figure 3.7: Parallel Algorithm for the Cyclic Block Tridiagonal System32



PROGRAM BOER/* SINGLE-SOLUTION PHASE */BP[k-1] * x[pow(2,k-1)] == dP[pow(2,k-1)][k-1]AND/* REDUCTION PHASE */AND FOR (j 1 k-1) f2 * CP[j-1] * CP[j-1] == BP[j] + BP[j-1] * BP[j-1] ,CP[j] - CP[j-1] * CP[j-1] == 0 ,AND FOR (i 0 pow(2,k-j)-2) fCP[j-1] * ( dP[i*pow(2,j) + pow(2,j-1)][j-1] +dP[i*pow(2,j) - pow(2,j-1)][j-1] ) ==dP[i*pow(2,j)][j] + BP[j-1] * dP[i*pow(2,j)][j-1] ggAND/* BACK-SUBSTITUTION PHASE */AND FOR (j k-1 1) fAND FOR (i 0 pow(2,k-j)-1) fCP[j-1] * ( x[(i+1)*pow(2,j)] + x[i*pow(2,j)] ) ==dP[(i+1)*pow(2,j)-pow(2,j-1)][j-1] -BP[j-1] * x[(i+1)*pow(2,j)-pow(2,j-1)] ggFigure 3.8: Constraint Speci�cation for the BOER System
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the reduction, single-solution, and back-substitution phases have been reordered todemonstrate the independence of a constraint speci�cation on the expressed orderof the constraints.3.5.4 The Laplace EquationConsider the Laplace equation for a 4-point stencil on an N � N grid indexed by(0 : : : N�1)(0 : : : N�1) as shown in Figure 3.9 for N = 10. The boundary elements(shaded) are inputs to the problem. Every element not on the boundary is theaverage of its four neighbors. Since there are (N � 2) � (N � 2) non-boundaryelements, there are (N � 2)� (N � 2) constraints to satisfy.
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Figure 3.9: The Laplace Equation GridA constraint speci�cation (excluding declarations) for the problem is shownin Figure 3.10. x is an array of dimensions ranging in (0..N�1, 0..N�1). The simpleconstraint 4 * x[i][j] - x[i-1][j] - x[i+1][j] == x[i][j-1] + x[i][j+1] in the speci�cationcan be expressed in many equivalent representations including 4 * x[i][j] == x[i-1][j]+ x[i+1][j] + x[i][j-1] + x[i][j+1]. The speci�ed set of constraints in Figure 3.10forms a set of cyclic constraints. This program is an example of constraints overscalar elements of a structured type. 34



PROGRAM LAPLACEAND FOR (i 2 N-2) fAND FOR (j 2 N-2) f4 * x[i][j] - x[i-1][j] - x[i+1][j] == x[i][j-1] + x[i][j+1] g gFigure 3.10: Constraint Speci�cation for the Laplace Equation System
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Chapter 4
The Basic CompilationAlgorithm

The constraint compiler transforms a textual program given in the format outlinedin Section 3.4 to a sequential or parallel C program for a selected architecture suchas a Sparc, Cray, PVM, or MPI con�guration. This chapter discusses the basiccompilation algorithm [JB96a] which handles constraint systems without cycles (seeChapter 2). We discuss an enhancement to the basic algorithm for constraint sys-tems with cycles in Chapter 5. The compilation algorithm consists of the followingphases.Phase 1. The textually expressed constraint speci�cation is transformed to anundirected graph representation as for example given by Leler [Lel88].Phase 2. A depth-�rst traversal algorithm transforms the undirected graph to adirected graph.Phase 3. With a set of input variables I, the directed graph is traversed in a depth-�rst manner to map the constraints in the constraint speci�cation to conditionalsand computations for nodes of a generalized dependence graph.Phase 4. Speci�cations of the execution environment are used to optimally select36



the communication and synchronization mechanisms to be used by CODE [NB92].Phase 5. The dependence graph is mapped to the CODE parallel programmingenvironment to produce sequential and parallel programs in C as executable fordi�erent parallel architectures.Phases 1-5 are described in detail in the rest of this chapter. Phases 1-3 willbe illustrated through the quadratic equation solver introduced in Figure 3.2 andwhose constraint speci�cation (without declarations) has been repeated in Figure4.1 for convenience.PROGRAM QUAD ROOTS/* Constraint module */De�nedRoots(a, b, c, r1, r2)t == sqr(b)� 4 � a � c AND t >= 0 AND2 � a � r1 == (�b+ sqrt(abs(t))) AND 2 � a � r2 == �(b+ sqrt(abs(t)))/* Main */a == 0 AND b! = 0 AND r1 == r2 AND b � r1 + c == 0ORa! = 0 AND De�nedRoots(a, b, c, r1, r2)Figure 4.1: Constraint Speci�cation for the Quadratic Equation Solver4.1 Phase 1: Generation of Constraint GraphsA parser transforms the textual source program to a source graph for the compiler.Starting from an empty graph, for each application of Rules 1-4 in Section 3.3 anundirected constraint graph can be constructed by adding appropriate nodes andedges to the existing graph. For each instance of a simple constraint (Rule 1) a node37



is created with the constraint attached to it as shown in Figure 4.2(a). For eachapplication of Rule 2 (A AND/OR B, NOT A) the graph is expanded as shown inFigures 4.2(b),(c). Figure 4.3(a) illustrates the expansion of the constraint graph foreach application of Rule 3 (AND/OR FOR (<index><b1><b2>) f A1; A2; : : : ; Ang). For each application of Rule 4 (< ModuleName > (P1; P2; : : : ; Pn)) a node iscreated with the constraint module call and the actual parameters attached to it asshown in Figure 4.3(b).
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Figure 4.2: Constraint Graphs for (a) Rule 1 (b),(c) Rule 2The di�erent kinds of nodes in the constraint graph are (i) simple constraintnodes (1 in Figure 4.2(a)) (ii) operator nodes corresponding to AND/OR/NOTconnectives (2 in Figures 4.2(b),(c)), (iii) for nodes corresponding to indexed sets(3 in Figures 4.3(a)), and (iv) call nodes corresponding to Constraint Module Calls(4 in Figure 4.3(b)). The index and its range information for an indexed set areattached to the corresponding for node.A constraint graph is constructed for the main body and for each of theconstraint module bodies giving rise to a set of constraint graphs. Each graph isconstructed in a hierarchical fashion. Simple constraint and call nodes occur at lowerlevels, and operator and for nodes connect one or more subgraphs at higher levels.38



(a) (b)

3

4

1

Graph

Graph

n-1

Graph
for A

for A

for A n

FOR,Index,bounds

AND/
OR

AND/
OR

<ModuleName>(P  ...  P  )1 n

Figure 4.3: Constraint Graphs for (a) Rule 3 (b) Rule 4There will be a single node at the highest level. The constraint graph obtained for aparticular constraint speci�cation is unique. The constraint graphs for the quadraticequation solver are shown in Figure 4.4.

DefinedRoots(a,b,c,r1,r2)

AND

AND

AND

t==b*b-4*a*c

2*a*r1==-b+sqrt(abs(t))

t>=0

2*a*r2==-(b+sqrt(abs(t)))

a!=0 DefinedRoots
(a,b,c,r1,r2)

OR

ANDAND

AND

MAIN

AND

b1*r1 + c==0

a==0

b!=0

r1==r2Figure 4.4: Constraint Graphs for the Quadratic Equation Solver
39



4.2 Phase 2: Translation of Constraint Graphs to Di-rected GraphsA depth-�rst traversal of each graph in the set of constraint graphs obtained fromthe main body and the constraint module bodies constructs a set of directed graphswhich are trees. The tree corresponding to the main body is referred to as the maintree. The traversal assigns constraints connected by AND operators in a constraintgraph to the same node in the corresponding tree and constraints connected by ORoperators in a constraint graph to nodes on diverging paths in the correspondingtree. Figure 4.5 illustrates phase 2 for four base cases, where a, b, c, and d aresimple constraints. There is a potential for combinatorial explosion in case 4 whichcorresponds to the applying the distributive law: (a OR b) AND (c OR d) � (aAND c) OR (a AND d) OR (b AND c) OR (b AND d).
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The resulting trees in this phase do not contain any AND/OR nodes. Instead,a node in a tree may contain a list of simple constraints, indexed sets, or constraintmodule calls. However, AND/OR nodes are implicitly represented in a tree sinceall constraints along a path are connected by the AND operator and constraintson di�erent paths are connected by the OR operator. The satisfaction of all theconstraints along a path from the root to a leaf in a tree represents a satisfactionof the constraint system represented by the tree. Di�erent paths, being implicitlyconnected by the OR operator, represent di�erent ways of satisfying the constraintsystem.The algorithm dft is a generalization of Figure 4.5. Let v1 be the uniquenode at the highest level of the input constraint graph G. Each output tree G� isinitialized to a root v�1. Each node inG� can hold a list of constraints. An indexed setof constraints within a node in G� has an associated tree obtained from the depth-�rst traversal of the constraint graph corresponding to constraints in the indexedset. vc and v�c are the nodes currently being visited in G and G�, respectively. dftis initially invoked with the call dft( v1, v�1 ).The case of the operator node NOT has been omitted from the descriptionof dft. However, it is implemented in the system as follows. A NOT operatornode operates on a single constraint subgraph. It is moved down all the levels ofthe subgraph by changing nodes - AND to OR and OR to AND - traversed in itspath until it reaches a simple constraint or another NOT node. If it reaches a simpleconstraint, the NOT node is removed by negating the simple constraint. If it reachesanother NOT node, both NOT nodes are removed from the graph.
41



ALGORITHM dft ( vc, v�c )begin visited[vc] = true;Case type(vc) ofOR : for each unvisited neighbor u of vc doif type(u) == OR dft( u, v�c )else create node u� in G� as child of v�c ;dft( u, u� );AND : if there is an unvisited OR neighbor u1 of vclet u2 be the other neighbor of vc;let u11 and u12 be the two unvisited neighbors of u1;/*(u11 OR u12) AND u2 � (u11 AND u2) OR (u12 AND u2)*/visited[vc] = false;change type of vc to OR, remove u1, u2 as neighbors of vc;create two unvisited AND neighbors and1 & and2 for vc;make u2 and u11 the neighbors of and1;make u2 and u12 the neighbors of and2;dft(vc, v�c );else for each unvisited neighbor u of vc do dft( u, v�c );Simple constraint : attach constraint to v�c ;Call Node : attach constraint module call to v�c ;For Node : attach indexed set with index and bounds to vc�create new root vi� for tree corresponding to indexed set;let vi be node at highest level of constraint graph in indexed set;dft(vi, vi�);end; 42



The trees obtained for the quadratic equation solver through phase 2 areshown in Figure 4.6.
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Figure 4.6: Trees from Phase 2 for the Quadratic Equation Solver4.3 Phase 3: Generation of Dependence GraphsUsing the input set I, a depth-�rst traversal of the main tree Tmain from phase 2attempts to generate a dependence graph. The generated dependence graph is adirected graph in which nodes are computational elements and arcs between nodesexpress data dependency. It has a unique start node which has no arcs directedinto it and whose inputs are in I. Hence, the start node can be executed exactlyonce at the initiation of the computation. A path from the start node in the graphis a computation path. A node in the dependence graph has the form: �ring rule,computation, routing rule (see Figure 4.7). A �ring rule is a condition that musthold before the node can be enabled for execution. The computation at a node isperformed when the node is executed. A routing rule is a condition that must holdfor the node to send data on its outgoing paths.At the initiation of phase 3, a dependence graph G is constructed which issimilar in structure to Tmain, i.e., there is a 1-1 mapping between nodes and arcs in43
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Figure 4.7: Generalized Dependence Graph NodeTmain and the nodes and arcs in G, respectively. The node in G corresponding tothe root of Tmain is designated as the start node. The structure of G may changelater as detailed in Sections 4.3.2 and 4.3.3. The nodes in G are initially empty.A known set is associated with each node in the dependence graph G. Thevariables in the known set at a node are knowns at that node. (The values of thesevariables are known at runtime at that node.) All variables not in the known setat a node are unknowns at that node. The input set is cast as the known set forthe start node. A child node in the dependence graph inherits the known set of itsparent when the node in Tmain corresponding to the child node is visited during thedepth-�rst traversal.When a node in Tmain is visited, constraints at that node may be resolvedthrough processes detailed in Sections 4.3.1, 4.3.2, and 4.3.3 into computations orconditionals (�ring/routing rules) of the corresponding node in G. Any constraintwhich cannot be resolved is retained in an unresolved set of constraints which ispropagated down Tmain to other nodes through the depth-�rst traversal in the hopethat it may get resolved later. A number of passes may be made through eachconstraint at a node and the propagated unresolved set of constraints for resolutionof these constraints. A new pass is initiated if at least one constraint was resolved in44



the previous pass; otherwise the depth-�rst traversal proceeds to visit the next node.Treatment of constraints remaining unresolved at the leaves of Tmain is described inSection 4.3.8.4.3.1 Resolution of Simple ConstraintsEach node v in the tree from phase 2 may have a set of simple constraints attachedto it. Additionally, the depth-�rst traversal may have a list of unresolved constraintspropagated down from v's parent. Each simple constraint at v or in the unresolvedset of constraints can be resolved as one of the following for the corresponding nodev� in the dependence graph.(i) Firing Rule: To be so classi�ed a constraint must have no unknowns at v� beforethe �rst pass through the list of constraints at v and the unresolved set of constraints.(ii) Computation: To fall into this category a constraint must involve an equalityand have a single unknown at v�. The constraint is cast as a computation at v� forthe unknown which is added to the known set for v�.(iii) Routing Rule: To be a routing rule all unknown variables in the constraint mustbecome knowns through computations at v�.Constraints involving inequalities must be resolved as �ring/routing rules.When a constraint is classi�ed as a computation it is mapped to an equation. Allterms involving the single unknown in the computation are moved to the left-handside of the equation. If the unknown occurs in an actual parameter of a function, theinverse of the function may be applied to extract a computation for the unknown.Currently, our system solves equations in linear unknown terms. Thus non-linearconstraints can be currently resolved if the unknown terms are linear. In the futurewe plan to incorporate solvers for scalar types that will solve for higher powers ofthe unknown. If the variables in the computation are matrices, the computationis replaced by calls to specialized matrix routines written in C. For example, the45



statement A�x+b1 == b2 with x as the unknown is �rst transformed into A�x ==b2� b1 and then a routine is invoked to solve for x. If A is lower (upper) triangular,then forward (backward) substitution is used to solve for x. Otherwise x is solvedthrough an LU decomposition of A.4.3.2 Resolution of Indexed SetsAn indexed set AND/OR FOR (<index> <b1> <b2>) fA1; A2; : : : ; Ang is re-solved if every constraint Ai, 1 � i � n, is resolved for all values of index in b1 : : : b2.Resolved indexed sets are compiled to loops which iterate over values of index inb1 : : : b2. If every constraint in a set S1 � fA1; A2; : : : ; Ang is resolved as a computa-tion, every constraint in a set S2 � fA1; A2; : : : ; Ang is resolved as a �ring/routingrule and every constraint in a set S3 � fA1; A2; : : : ; Ang remains unresolved, theindexed set is split into the following three indexed sets.(1) An indexed set AND/OR FOR (index <b1> <b2>) S1 resolved as a computa-tion(2) An indexed set AND/OR FOR (index <b1> <b2>) S2 resolved as a �r-ing/routing rule(3) An unresolved indexed set AND/OR FOR (index <b1> <b2>) S3Note that S1 [ S2 [ S3 == fA1; A2; : : : ; Ang andSi \ Sj == � (null set) where 1 � i; j � 3 and i 6= j.The restrictions for a constraint Ai; 1 � i � n, in an indexed set structureto be compiled successfully in our system are as follows. For all values of index inb1 : : : b2 (a) Ai has to have the same classi�cation (computation/�ring rule/routingrule), (b) if Ai is a simple constraint and is classi�ed as a computation, a uniqueterm in the constraint has to be the unknown (a term can be a simple variable xor an indexed term such as X[< list of indices >], where X is a structured datatype). An example of a construct that will be compiled successfully is46



X[0] == 0 AND ( AND FOR (i 1 5) f X[i� 1] == X[i] + Y [i] g )with Y known and X unknown.It will be compiled to the computationsX[0] = 0;for i=1 to 5 doX[i] = X[i� 1]� Y [i];Note that the indexed set is compiled to a loop which computes the value ofX[i] in successive iterations.An example of a construct that will not be compiled successfully isAND FOR (i 1 5) f X[1] == X[i] + Y [i] gwith X unknown and Y known. This is because in the �rst iteration both theterms X[1] and X[i] are unknown whereas subsequent iterations have only X[i] asan unknown (violates (b)).Resolution of AND Indexed Sets
C1 , C2 ,  ...  < Indexed Set>, ... Cp

TFigure 4.8: Indexed Set at a Node in a Tree from Phase 2Let an AND indexed set AND FOR (i <b1> <b2>) fA1; A2; : : : ; Ang occuramong constraints C1; C2; : : : ; Cp at a node in a tree as shown in Figure 4.8. Evaluateconstraints A1; A2; : : : ; An for classi�cation as �ring/routing rules or computationsfor i = b1 : : : b2. Let k(1) : : : k(n) be a reordering of the subscripts 1 : : : n. Let fAk(1),47



Ak(2), ... Ak(m1)g be the constraints which evaluate to �ring rules for all i = b1 : : : b2.Let fAk(m1+1) ... Ak(m2)g be the constraints which evaluate to computation for alli = b1 : : : b2. Let fAk(m2+1) ... Ak(m3)g be the constraints which evaluate to routingrules for all i = b1 : : : b2. Let fAk(m3+1) ... Ak(n)g be the constraints which remainunresolved.Similarly, evaluate constraints C1; C2; : : : ; Cp. Let r(1) : : : r(p) be a reorder-ing of the subscripts 1 : : : p. Let fCr(1), Cr(2), ... Cr(l1)g, fCr(l1+1) ... Cr(l2)g, andfCr(l2+1) ... Cr(l3)g be the constraints which evaluate to �ring rules, computations,and routing rules, respectively and fCr(l3+1) ... Cr(p)g be the unresolved constraints.The generated dependence graph is shown in Figure 4.9. The unresolved constraintsare propagated down T .
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Figure 4.9: Generated Dependence Graph for an AND Indexed SetThe �ring rule corresponding to Ak(1), Ak(2), ... Ak(m1) is Ak(1) AND Ak(2)AND ... AND Ak(m1) for all i = b1 : : : b2. A similar construct is set up for therouting rule corresponding to Ak(m2+1) ... Ak(m3). The computations for Ak(m1+1)... Ak(m2) are expressed asfor i = b1 to b2 doComputation corresponding to Ak(m1+1);Computation corresponding to Ak(m1+2);48



...Computation corresponding to Ak(m2);Resolution of OR Indexed SetsLet an OR indexed set OR FOR (i <b1> <b2>) fA1; A2; : : : ; Ang occur amongconstraints C1; C2; : : : ; Cp at a node in a tree from phase 2 as shown in Figure4.8. Evaluate constraints A1; A2; : : : ; An for classi�cation as �ring/routing rulesor computation for i = b1 : : : b2. Let k(1) : : : k(n) be a reordering of the subscripts1 : : : n. Let fAk(1), Ak(2), ... Ak(m1)g be the constraints which evaluate to �ring rulesfor all i = b1 : : : b2. Let fAk(m1+1) ... Ak(m2)g be the constraints which evaluateto computations for all i = b1 : : : b2. Let fAk(m2+1) ... Ak(m3)g be the constraintswhich evaluate to routing rules for all i = b1 : : : b2. Let Ak(m3+1) ... Ak(n)g be theconstraints which remain unresolved.Similarly, evaluate constraints C1; C2; : : : ; Cp. Let r(1) : : : r(p) be a reorder-ing of the subscripts 1 : : : p. Let fCr(1), Cr(2), ... Cr(l1)g, fCr(l1+1) ... Cr(l2)g, andfCr(l2+1) ... Cr(l3)g be the constraints which evaluate to �ring rules, computations,and routing rules, respectively and fCr(l3+1) ... Cr(p)g be the unresolved constraints.The generated dependence graph is shown in Figure 4.10. The unresolved constraintsare propagated down T .The \Call Node" invokes the dependence graph corresponding to T shownin Figure 4.8. i : b1; b2 shows that the associated arc and its destination node arereplicated for values of i from b1 : : : b2. The �ring rule for Ak(1), Ak(2), ... Ak(m1) isAk(1) OR Ak(2) OR ... Ak(m) for any i=b1 ... b2. A similar construct is set up forthe routing rule for Ak(m2+1) ... Ak(m3).
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Figure 4.10: Generated Dependence Graph for an OR Indexed Set4.3.3 Resolution of Constraint Module CallsA constraint module call has the form ModuleName(e1; e2; : : : ; en) where ei, 1 �i � n, is an actual parameter. Actual parameters may be expressions. Let theformal parameters corresponding to e1; e2; : : : ; en be f1; f2; : : : ; fn, respectively. LetK be the known set at that node in G (dependence graph) which corresponds tothe node in T (tree from phase 2) where the constraint module is invoked. If all thevariables in e1; : : : ; en and all the global variables occuring in the constraint modulebody are in K and no local variable occurs in the constraint module body, the callto the constraint module is cast as a �ring/routing rule which tests whether thebody of the constraint module is satis�ed or not.If the constraint module call cannot be cast as a �ring/routing rule, an at-tempt is made to generate a dependence graph from the constraint module de�nition.A new dependence graph Gmod is created which is similar in structure to the treeTmod from phase 2 for the constraint module, i.e., there is a 1-1 mapping betweennodes and arcs in Gmod and nodes and arcs in Tmod, respectively. Tmod is traversedwith a new known set Kmodule which is initialized to f fi j fall variables in eig �50



K, 1 � i � ng [ f x j x 2 K and x is a global variable in the scope of the module g.The unknowns are considered to be all formal parameters not in Kmodule, the localvariables in the constraint module, and all the global variables not in K but in thescope of the module.The resolution of constraints in the constraint module is similar to that forthe main module with one di�erence. The dependence graph Gmod is retained withonly the set of paths with the maximal output set for formal parameters and globalvariables. For example, let there be 5 paths numbered 1 through 5 with the followingcomputed formal parameters and global variables, respectively. 1: f a; b g, 2: f a g,3: f a; b; c g, 4: f a; b g, 5: f a; b; c g. Paths 3 and 5 have the maximal output set fa; b; c g and are the only ones retained in the dependence graph; paths 1, 2, and 4are deleted. If there is more than one distinct maximal set, any one maximal set ischosen at random. This technique of deleting paths not having the maximal outputset is not implemented in the dependence graph generation of the main modulewhere all paths need not have the same set of computed variables. The reason forimposing this condition in a constraint module is that the actual parameters arebound to the formal parameters at the point of call. If di�erent sets of variables arecomputed in di�erent paths of the dependence graph corresponding to a constraintmodule it is not possible to determine statically the actual parameters and globalvariables computed in the constraint module call, which have to be added to K.If the dependence graph generation is successful, a new set of constraints isgenerated as follows.ek1 == Z1, ek2 == Z2, : : :, ekp == Zp, where Zi, 1 � i � p, are new variablesgenerated by the compiler and ek1 : : : ekp are the actual parameters correspondingto the set of computed formal parameters in the maximal output set. An attemptis made to resolve this set of constraints with Z1 : : : Zp in the known set K. If theconstraints in this set are resolved as computation for all the unknowns in ek1 : : : ekp,51



a call node which invokes the dependence graph for the constraint module call Gmodis generated as shown in Figure 4.11. A child node of the call node receives valuescomputed for the formal parameters by the call node and binds them to Z1 : : : Zpand performs the computation generated from the new set of constraints.
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is invoked
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Dependence Graph where Module

G

Dependence Graph for Module Call

Figure 4.11: Dependence Graphs for a Constraint Module CallIf the dependence graph generation is not successful, the constraint modulecall is considered to be unresolved.For a constraint module with n parameters there are 2n possible input pa-rameter sets and consequently, there are 2n potential translations for a particularconstraint module. Of course, not all translations might be successful. Constraintmodule invocations, with the same set of formal parameters and global variables asinputs, reuse the same dependence graph.4.3.4 The Quadratic Equation Solver through Phase 3The dependence graphs for the quadratic equation solver with the input set f a; b; cg are shown in Figure 4.12 where computations for r1 and r2 are extracted.The dependence graphs for the quadratic equation solver with a di�erent52
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a==0 a!= 0
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DefinedRoots(a,b,c,r1,r2)r1=-c/b
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Figure 4.12: Dependence Graphs for the Quadratic Equation Solver with I = fa,b, cginput set f a; b; r1 g are shown in Figure 4.13. The dependence graphs computevalues for variables c and r2. The inverses of the functions sqrt and abs have beenapplied to derive the computations for t. The compiler can be optimized to detectthat the path starting from the node computing t = �sqr(2 � a � r1 + b) can neverbe traversed to completion.
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Figure 4.13: Dependence Graphs for the Quadratic Equation Solver with I = fa,b, r1g 53



Figures 4.12 and 4.13 show that the same constraint program speci�cationcan be reused to derive the dependence graphs for di�erent input sets. However, notall input sets can lead to dependence graphs where no constraints remain unresolved.For example, no dependence graph can be generated with the input set f a; r1g because the simple constraint b � r1 + c == 0 and the constraint module callDefinedRoots remain unresolved in the main tree (The module call DefinedRootsremains unresolved because all the constraints in the tree for the module remainunresolved.). Note that phases 1 and 2 need not be repeated when a new input setis supplied for a constraint speci�cation.Part of the appeal of a constraint programming language is its multi-directionalnature - the facility to extract values for di�erent sets of variables depending on thecomposition of the input set. While this is a secondary aspect for parallel program-ming concerns as compared to the ease of use aspect, this is still important in manyapplication domains.4.3.5 Single Assignment Variable ProgramsThe compilation process generates dependence graphs with single assignment vari-ables. This occurs because a child node in the dependence graph G inherits theknown set of its parent as its initial known set and no deletions are made to theknown set of a node. Hence, once a variable is added to the known set of a nodeit is retained in the known sets of all nodes in the subgraph rooted at that node.If a path in G contains nodes in the order v1� : : : vn�, where v1� is the start node,vn� is the leaf and n is the length of the path, exactly one node vi�, 1 � i � n, cancontain a computation for a variable x. There will be no occurrence of x in anycomputation or �ring/routing rule for nodes in v1� : : : vi�1� or in any �ring rule forvi�. While single assignment variables are appropriate for parallel programs, theycan lead to excessive use of memory in some circumstances. Chapter 5 details our54



approach to introduction of mutable variables where they are necessary.4.3.6 Generation of either E�ective or Complete ProgramsThe presence of the OR operator in a constraint system results in the possibility thatthere exists more than one assignment of values to the variables which will result insatisfaction of the constraint system. (A given input set for a program with an ORoperator may or may not allow multiple assignments which satisfy the constraintsystem.) A program which is e�ective generates exactly one set of assignmentsof values to variables which satis�es the constraint system. A program which iscomplete generates all of the sets of assignments of values to variables which willsatisfy the constraint system. The compilation process can be directed to generatethe executable either for exactly one \OR branch" of the dependence graph or togenerate the executable for all paths which lead to valid assignments. Thus, thecompilation process can produce programs which are either e�ective or complete. Aprogram which is complete realizes OR parallelism, as will be further discussed inSection 4.3.7. Non-determinism arises if the compiler randomly chooses a path forexecution in e�ective programs.4.3.7 Extraction of parallelismOur constraint representation maps to a dependence graph which is a parallel com-putation structure because all nodes that are enabled for execution may be executedin parallel. The constraint representation allows the targeting all types of parallelism(AND/OR, task and data parallelism) through a single representation. AND/ORparallelism refers to parallelism in computations extracted from terms connectedby AND and OR operators, respectively. Task parallelism refers to parallelism incomputations for di�erent data. Data parallelism refers to parallelism in computa-tions for di�erent parts of a structured data item. In our system data parallelism55



arises from the hierarchical representation of our type system. For example, matri-ces can be represented as blocks of sub-matrices and constraints over sub-matricesare translated to data-parallel conditionals/computations.The di�erent sources of parallelism and their respective types in the repre-sentation were detailed in [JB96b] and are enumerated as follows. While 1-4 areextracted by the current compiler, 5 has not yet been implemented.1. OR, Task: OR parallelism corresponds to executing the di�erent pathsin the dependence graph in parallel. These paths have resulted from the extractionof computation from constraints connected by OR operators.2. AND, Task: The computational statements that are assigned to a nodehave the potential for parallel execution. For instance, the assignments r1 = (�b+r)=2�a and r2 = �(b+r)=2�a in Figure 4.12 can be done in parallel. Parallelism isexploited by keeping in mind that the compiler generates a single-assignment systemand the lone write to a variable will appear before any reads to it. A particular nodemay be split into several nodes to exploit the parallelism in the computations at thenode. The granularity of such a scheme depends on the complexity of the functionsand the operators invoked in the statements.We illustrate AND-OR parallelism in 1 and 2 through a simple example.Consider the constraint speci�cation in Figure 4.14 for a program involving variablesf a,b,c,x,y g. a<b AND b==x AND y==cORa<c AND x==c AND b==yFigure 4.14: Constraint Speci�cation for a Simple ExampleThe dependence graph for the input set f a,b,c g and output set f x,y gfor the speci�cation in Figure 4.14 is shown in Figure 4.15. Since a; b; c are inputs,56



a < b and a < c are classi�ed as conditionals. The constraints involving equalities (b == x, y == c, x == c, and b == y) are classi�ed as computations for the singleunknown in them. OR parallelism comes into play in the parallel execution of thetwo paths branching out from the start node in the event that a < b and a < c. Thisalso implies that this program can be compiled to be either complete or e�ective,as discussed in Section 4.3.6. AND parallelism is extracted from the computationsfor x and y.
x=b

a<b a<c
start

OR

AND AND
y=c
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Figure 4.15: Dependence Graph showing AND-OR Parallelism3. Task: We have further exploited the complexity of matrix operations bysplitting up the speci�cations, performing computations in parallel, and composingthem. For example, if x = m�y+m�z, where x,m, y, z, and b are matrices, m�y andm�z can be done in parallel. This leads to signi�cant speedup since multiplication ofmatrices is an O(N3) operation (m; y; z being order N�N). In a later version of thecompiler, provision will be made for user speci�cation of parallelism for operationsover structures.4. Data (Parallelism in AND indexed sets): The computations withinthe compiled loop structures corresponding to AND indexed sets have the potentialfor parallel execution. We �rst discuss the case of loops with a single computation.The discussion is then generalized to the case of loops with multiple computations.57



Throughout this discussion the case of array accesses will be detailed. The case ofscalar accesses in loops will follow trivially since they do not involve indexed terms.(i) If the array corresponding to the computed term is not accessed anywherein the computation, all iterations of the loop can be executed in parallel. Thecompiled parallel structure for such a loop is shown in Figure 4.16(a). The nodeperforming the computation and the arc connecting the parent to it are replicatedN times, where N is the range of the loop index. The results of the computationperformed by the parallel nodes are merged (not shown in �gure).(ii) If the array corresponding to the computed term is accessed in the com-putation and the set of accessed indices of the array are disjoint from the set ofcomputed indices of the array, all iterations of the loop can be executed in parallel.The compiled structure is again as shown in Figure 4.16(a).(iii) If cases (i) and (ii) do not hold, the loop iterations are inter-dependentand are executed sequentially. The compiled structure for this case is shown inFigure 4.16(b). The node performing the computation is invoked repeatedly insuccession.
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(b)Figure 4.16: (a) Parallel Execution of Loop (b) Sequential Execution of LoopA similar analysis is done for the loop structure compiled from an indexedset with more than one constraint. In such a case there is more than one com-58



putation within the loop and interdependencies between di�erent computations forall the iterations have to be checked in addition to dependencies between iterationsof the same computation. If there are no dependencies between the iterations ofa computation (cases (i) and (ii)) and no iteration of the computation is depen-dent on an iteration of another computation, then all iterations of the computationare executed in parallel; otherwise, the iterations of the computation are executedsequentially. In general, the loop structure will be a combination of parallel andsequential loop executions as shown in Figure 4.17.
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ComputationFigure 4.17: Generalized Compiled Loop Structure5. Data: Finally, primitive operations in the base types like matrix-matrixmultiply can be executed in parallel by invoking appropriate parallel algorithms.4.3.8 Unresolved ConstraintsAny path P from the root to a leaf in the tree T from phase 2 consists of nodes,each containing a set of constraints. P represents one way of satisfying the con-straint system since constraints on di�erent paths are implicitly connected by theOR operator. Every constraint on P must be resolved to either a computation orto a conditional (�ring/routing rule) for P to satisfy the constraint system. Thedepth-�rst traversal described in Section 4.3 collects any unresolved constraint on59



P at its leaf. An unresolved constraint can be of the following types.(i) A simple constraint involving an equality and at least two unknowns.(ii) A simple constraint involving a relational operator other than an equalityand at least one unknown.(iii) An unresolved call to a constraint module. This would imply that thereis more than one unknown in the set of actual parameters, local variables, and globalvariables in the body of the constraint module. (Unknowns in an actual parameterimply that the corresponding formal parameter is unknown.)(iv) An unresolved indexed set of constraints AND/OR FOR (<index><b1> <b2>) fA1; A2; : : : ; Ang where each Ai, 1 � i � n, is unresolved due toone of the following reasons.(a) Ai may be an unresolved indexed set.(b) If Ai is a simple constraint or a constraint module call, there is no uniqueunknown term for all values of i in b1 : : : b2 (See Section 4.3.2).(c) During the resolution process Ai is classi�ed as a computation for somevalues of i in b1 : : : b2 and as a conditional (�ring/routing rule) for other values of iin b1 : : : b2.In case (c) we may be able to split the indexed set into several resolvedindexed sets with di�erent index bounds. Assume thatS1 � fA1; A2; : : : ; Ang is resolved as computations and conditionals in the rangesBs1(1); Bs1(2); : : : ; Bs1(p1),S2 � fA1; A2; : : : ; Ang is resolved as computations and conditionals in the rangesBs2(1); Bs2(2); : : : ; Bs2(p2),...and Sq � fA1; A2; : : : ; Ang is resolved as computations and conditionals in the rangesBsq(1); Bsq(2); : : : ; Bsq(pq),where Bi, sj(1) � i � sj(pj), 1 � j � q, is a subrange in b1 : : : b2,60



Si \ Sj == the null set, �, 1 � i; j � q, i 6= j, andS1 [ S2 [ : : : [ Sq == fA1; A2; : : : ; Ang.The indexed set can be split into the following resolved indexed sets.AND/OR FOR (i < Bs1(1) >) S1AND/OR FOR (i < Bs1(2) >) S1...AND/OR FOR (i < Bs1(p1) >) S1AND/OR FOR (i < Bs2(1) >) S2AND/OR FOR (i < Bs2(2) >) S2...AND/OR FOR (i < Bs2(p2) >) S2...AND/OR FOR (i < Bsq(pq) >) SqThere are several options available for resolution of each type of unresolvedconstraint. We shall enumerate some of these.1. Since there is a 1-1 mapping between nodes in T and the dependencegraph G, there is a unique leaf in G corresponding to the leaf in P containing theunresolved constraints. In Figure 4.18 the two corresponding leaves in T and G areshaded. The shaded leaf in G can be deleted. This virtually removes P from T andcorresponds to not attempting to satisfy the constraint system through the path P .If deletion of the leaf in G results in its parent becoming a leaf, the parent mustbe deleted too. This must be continued in a recursive fashion until the deletion ofa leaf does not result in its parent becoming a leaf. Then a new path descendingT is chosen and pursued to see if a usable G can be obtained. This approach canbe applied to unresolved constraints of any type ((i)-(iv)). Of course, there is thedanger of getting an empty dependence graph if all leaves in T contain unresolvedconstraints. 61
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Figure 4.18: Deletion of a Path with Unresolved Constraints2. The user may have incorrectly speci�ed the initial input set by overlookingthe inclusion of some variables or including the wrong variables and may be helpedin the choice of a new input set through display of the unresolved constraints andthe unknowns in them. The depth-�rst traversal in phase 3 can be performed againwith the new input set. This can be done repeatedly until all constraints in thesystem are resolved. While selection of unknowns to be added to the initial inputset may be easy for constraints of types (i), (ii) and (iii), it may be quite di�cultto do for constraints of type (iv) since unknowns could typically be of the formA[fn1(i1; : : : ; ik)] : : : [fnl(i1; : : : ; ik)] where i1 : : : ik are indices for nested indexedsets containing the unresolved constraints, fn1 : : : fnl are arithmetic functions overthe indices, and A is any structured data type. Some parts of A may be known andother parts of A may be unknown forcing the user to identify the regions that theterm A[fn1(i1; : : : ; ik)] : : : [fnl(i1; : : : ; ik)] refers to and denote them as known.3. Commercial solvers such as MATLAB can be invoked to solve the unre-solved constraints by providing a wrapper around the invocation to the MATLABsolver in the form of a constraint module call. This technique can be most bene�cialfor the resolution of constraints of types (i) and (ii).4. Iterative solutions can be attempted for unresolved constraints of types(i), (iii) and (iv) through several relaxation methods. This process is described in62



detail in Chapter 5.4.4 Phases 4 and 5: Speci�cation of Execution Environ-ment and Mapping to CodeApart from the textual constraint program the programmer is encouraged to specifyan execution environment speci�cation which is used by the compiler to optimallyselect certain execution environment characteristics used by CODE [NB92] to gener-ate programs. The execution environment speci�cation merits a separate discussionand is described in Chapter 6.Our target for executable for constraint programs is the CODE parallel pro-gramming environment. CODE takes a dependence graph as its input. The formof a node in a CODE dependence graph is given in Figure 4.7. It is seen that thereis a natural match between the nodes of the dependence graph developed by theconstraint compilation algorithm and the nodes in the CODE graph (see AppendixA for a description of CODE). The arcs in the dependence graph in CODE are usedto bind names from one node to another. This is exactly the role played by arcsin the dependence graph generated by our translation algorithm. CODE producessequential and parallel C programs for a variety of architectures.The control ow for the entire compiler is shown in Figure 4.19.4.5 Procedural Parallel Programs for the BTS and BOERSystemsIn this section we show how all of the parallelism in the BTS (Figure 3.4) and BOER(Figure 3.8) examples can be extracted by the compiler.
63



Yes No

Unresolved constraints  ?

CODE data structures 

Mapping to CODE

Yes
No

Iterative
Solution

Dependence graph

Dependence graph

Yes

No

Delete paths 
with unresolved
  constraints

START

Dependence graph

?

Change input set ?

Phase 3Phase 1 Phase 2
Constraint specification

Input Set

Generate sequential/parallel programs

ProgramFigure 4.19: Control Flow for the Constraint Compiler4.5.1 The BTS SystemConsider the speci�cation for the BTS system being compiled with the input set fS0; : : : ; S3;M10;M20; : : : ;M32; B0; : : : B3 g. The speci�cation has been repeated inFigure 4.20 with certain terms ( fX0;X1;X2;X3g ) in bold-faced to indicate termsthat are chosen as outputs by the compiler.By applying technique 3 in Section 4.3.7 the compiler splits up the speci�-cations to perform the multiplications in series such as M10 � X0, M20 � X0, andM30 � X0 in parallel. Thus the vector multiplications for all Ms within a columnmay be done in parallel. Figure 4.21 shows the form of the extracted dataowand exactly corresponds to the parallel algorithm in [DS86]. Data parallelism couldbe used on the block level operations and captured in our representation with an64



PROGRAM BTS 1( S0 �X0 == B0 ANDM10 �X0 + S1 �X1 == B1 ANDM20 �X0 +M21 �X1 + S2 �X2 == B2 ANDM30 �X0 +M31 �X1 +M32 �X2 + S3 �X3 == B3 )Figure 4.20: Constraint Speci�cation for the BTS System with Computed Terms inboldappropriate type structure, if desired.4.5.2 The BOER SystemThe constraint speci�cation for the BOER system has been repeated in Figure 4.22with certain terms in bold-faced to indicate computed terms. Each indexed set iscompiled to a loop iterating over values of the index. Each simple constraint iscompiled to a computation for a term (bold in Figure 4.22).Analysis of the computations extracted shows that, in the reduction phase,the computations for BP [j]; CP [j], and dP [i � pow(2; j)][j] can be executed in par-allel. However, di�erent iterations of the loop enclosing these computations (forindex j) cannot be done in parallel due to interdependencies between the threecomputations. The di�erent iterations of the nested loop for index i enclosing thecomputation for dP [i � pow(2; j)][j] can be performed in parallel. The nested loopfor index i in the back-substitution phase enclosing the computation for x[: : :] canbe performed in parallel. However, the iterations for the outer loop for index jenclosing the computation for x[: : :] cannot be parallelized. Our compiler detects allthe dependencies for this analysis and correctly extracts all the existing parallelismin the speci�cation. 65
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stopFigure 4.21: Dependence Graph for the BTS ProgramThe resulting dependence graph is shown in Figure 4.23 and exactly corre-sponds to the dataow in the algorithm in [LD90]. The START and STOP nodesinitiate and terminate the program, respectively. A FOR node initiates the di�er-ent iterations of a loop. The two such nodes in the �gure correspond to the twoouter indexed sets for index j in the reduction and back-substitution phases in theconstraint speci�cation. The annotation \Replicated" on the arcs specify that theannotated arc and the destination node (shaded in Figure 4.23) are dynamicallyreplicated for parallel execution. The two such annotated arcs correspond to thetwo nested indexed sets (for index i) in the constraint speci�cation and are instancesof data parallelism. The nodes annotated by BP, CP, dP, and x compute valuesfor parts of the corresponding variable. The parallel execution of the computationsfor BP, CP, and dP is an instance of task parallelism. The nodes annotated by\Merge" collect computed results from parallel executions. It is to be noted thatour compiler automatically detects the parallelism in the for loops in the reduction66



and back-substitution phases. Furthermore, it is capable of extracting the paral-lelism within the expression 2 � CP [j � 1] � CP [j � 1] � BP [j � 1] � BP [j � 1] inthe computation for BP [j] by computing the products 2 � CP [j � 1] � CP [j � 1]and BP [j � 1] � BP [j � 1] in parallel. By incorporating calls to BLAS routines(technique 5 in Section 4.3.7) which invoke parallel algorithms, incorporating dataparallelism, for matrix-matrix multiply the compiler would have extracted all theexistent parallelism in the example.
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PROGRAM BOERBP[k-1] * x[pow(2,k-1)] == dP[pow(2,k-1)][k-1] ANDAND FOR (j 1 k-1) f2 * CP[j-1] * CP[j-1] == BP[j] + BP[j-1] * BP[j-1] ,CP[j] - CP[j-1] * CP[j-1] == 0 ,AND FOR (i 0 pow(2,k-j)-2) fCP[j-1] * ( dP[i*pow(2,j) + pow(2,j-1)][j-1] +dP[i*pow(2,j) - pow(2,j-1)][j-1] ) ==dP[i*pow(2,j)][j] + BP[j-1] * dP[i*pow(2,j)][j-1] gg ANDAND FOR (j k-1 1) fAND FOR (i 0 pow(2,k-j)-1) fCP[j-1] * ( x[(i+1)*pow(2,j)] + x[i*pow(2,j)] ) ==dP[(i+1)*pow(2,j)-pow(2,j-1)][j-1] -BP[j-1] * x[(i+1)*pow(2,j)-pow(2,j-1)] ggFigure 4.22: Constraint Speci�cation of the BOER System with Computed Termsin bold
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Chapter 5
Iterative Solutions forConstraint Systems with Cycles

Chapter 4 detailed the basic compilation algorithm for translating a constraint spec-i�cation along with an input set to a dependence graph. The basic compilationalgorithm cannot resolve constraint speci�cations with input sets that give rise todependencies with cycles.To illustrate dependencies with cycles, consider the constraint program shownin Figure 5.1. Phase 2 of the compiler collects constraints connected by AND op-erators at the same node and since there is only a single AND operator in thespeci�cation in Figure 5.1, phase 2 will generate a single node with the two simpleconstraints: a + b == x and x + b == y (shown in Figure 5.2). When this nodeis traversed in phase 3 with the input set f a; y g both simple constraints remainunresolved because there are two unknowns b and x in each of them (simple con-straints are resolved as conditionals if they have no unknowns and as computationsif they involve an equality and only one unknown; otherwise they are unresolved).The term cyclic is used to refer to this situation because a cycle exists in the low-level constraint graph representation (introduced in Section 2.3) for this constraint70



program as shown in Figure 5.3. Note that the arcs connected to the input variablesa and y have directions on them to denote that the values for these variables areavailable. The non-input variables x and b are in a cycle and neither of the two\+" operator nodes can \�re" for computed values to be propagated along the arcsuntil either x or b is given a value. The constraints involved in such a situation aresometimes referred to as cyclic constraints. In fact, cyclic constraints give rise tocyclic dependencies. PROGRAM CYCLIC DEP1VAR int a, b, x, y;INPUTS a, y;a+ b == x AND x+ b == yFigure 5.1: Constraint Speci�cation and Input Set with a Cyclic Dependency
a + b == x

x + b == yFigure 5.2: Tree from Phase 2 for Constraint Speci�cation in Figure 5.1This chapter discusses the augmentation [JB97] to the basic compiler forhandling constraints with cyclic dependencies. We opt to use the technique ofrelaxation whereby iterative solutions to cyclic constraints are sought. Relaxationattempts to satisfy all the constraints in the system within a certain degree ofaccuracy by making an initial assignment of values to the unknowns, computingthe value of one unknown in each constraint and then estimating the error in thecurrent value. Further iterations of computing the value of the unknown variablesare initiated if the errors are not su�ciently small. In each iteration, the values71



+ +

xa y

bFigure 5.3: A Constraint Graph with a Cyclecomputed in previous or current iterations are used to recompute the values of theunknowns in an attempt to achieve convergence where the di�erence in computedvalues in two consecutive iterations is reasonably small. The solutions extracted forthe unknowns in the system are often approximate.The class of numerical applications which can be solved through iterativemethods is quite large. Many such applications are also quite amenable to paral-lelization. Relaxation is not, however, a universally satisfactory solution. Iterativemethods may su�er from numerical stability problems. Systems using these methodsmight fail to terminate. Even for systems guaranteed to converge, these methodsmay be very slow.A number of issues arise with respect to implementation of relaxation as analgorithm for resolution of cyclic dependencies: (i) Since there will be more thanone unknown term in an unresolved constraint, how is the term to be computedselected from among all the unknown terms ? (ii) How does the compiler deal withthe memory requirement for single assignment variables (Section 4.3.5) in iterativesolutions ? (iii) How is the choice between the di�erent kinds of relaxation methods(Jacobi, Gauss-Seidel etc.) made ? In the following sections in this chapter we tracethe design of the compiler for iterative solutions to cyclic constraint systems.72



5.1 Selection of Term to be ComputedConstraints that remain unresolved through the basic constraint compiler are col-lected at the leaves of the tree from phase 2 and will involve more than one unknownterm (except in the case of simple constraints not involving an equality). The com-piler chooses one of the unknown terms in an unresolved constraint as the term tobe computed and either assigns default initial values to other unknown terms oraccepts such values as inputs from the user. Unresolved constraints can be of threetypes: a simple constraint, a constraint module call, or an indexed set of constraints(See Section 4.3.8 for a detailed description of the causes for these constraints beingunresolved). The following subsections detail the selection of the computed termfor the three types of unresolved constraints.5.1.1 Unresolved Simple ConstraintsRelaxation can be attempted only for simple constraints involving an equality sinceother types of simple constraints must be resolved as �ring/routing rules. An unre-solved simple constraint involving an equality has more than one unknown variableand any such variable is randomly chosen as the term to be computed. For example,consider the unresolved constraints in Figure 5.2. There are two unknowns b andx in both the constraints. b can be chosen as the term to be computed in the �rstconstraint a + b == x. Subsequently, second constraint x + b == y has just oneunknown x, which is chosen as the term to be computed.5.1.2 Unresolved Constraint Module CallsAn unresolved constraint module call has more than one unknown in its set ofactual parameters, local variables and global variables in the body of the constraintmodule. An unknown in an actual parameter implies than the corresponding formalparameter is unknown. A constraint module call could be unresolved for either of73



the two following reasons.(a) The tree from phase 2 for the constraint module call has unresolved con-straints at the leaf of at least one path. This situation is shown in Figure 5.4(a) wherethe unresolved constraint C contains unknown variables f f1 : : : fp; l1; : : : lq; g1 : : : grg, where fi, 1 � i � p, is a formal parameter for the constraint module, li, 1 � i � q,is a local variable for the constraint module, and gi, 1 � i � r, is a global variablein the body of the constraint module. Depending on the structure of C (simpleconstraint/constraint module call/indexed set) an unknown variable will be chosenfor computation and other unknown variables will be given initial values.(b) Some subset of the set of constraints ek1 == Z1, ek2 == Z2, : : :,ekp == Zp (See Section 4.3.3 for a description of the terms and notation) to beresolved as computations for the child node of the call node in the dependencegraph which invokes the constraint module remain unresolved (see Figure 5.4(b)).Again, depending on the structure of each unresolved constraint a computed variableis chosen and other unknown variables are initialized.
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5.1.3 Unresolved Indexed SetsRelaxation cannot be used when an indexed set AND/OR FOR (i <b1> <b2>)fA1; A2; : : : ; Ang is unresolved for the following reason (See (c) in Section 4.18).� During the resolution process a constraint Ai, 1 � i � n, is resolved asa computation for some values of i in b1 : : : b2 and as a conditional (�ring/routingrule) for other values of i in b1 : : : b2.We showed in Section 4.3.8 how the compiler can generate a closed formsolution in the preceding situation. If this case does not arise, the failure to resolvean indexed set of constraints can be recursively traced to \culprit" (unresolved)simple constraints and constraint module calls nested in it (Ai, 1 � i � n).Consider any unresolved (simple constraint/constraint module call) constraintC nested within an unresolved indexed set. A term in C is typically of the formA[fn1(i1; : : : ; ik)] : : : [fnl(i1; : : : ; ik)] where i1 : : : ik are indices for nested indexedsets containing C, fn1 : : : fnl are functions over the indices, and A is any struc-tured data type. Some parts of A may be known and other parts may be unknowndepending on the initial input set and the preceding computations in the currentpath in the dependence graph. The compiler evaluates each term in C to determinethe term that accesses the largest unknown region in the structured data type. Toillustrate this, consider an example constraint speci�cation involving a 1�N arrayx in Figure 5.5. The end elements of A (shaded in Figure 5.6) are the inputs to thesystem. The values for the index i in the indexed set are in the range 2 : : : N � 1.The constraint x[i � 1] == x[i] � x[i + 1] remains unresolved because there is nounique unknown term for all values of i in 2 : : : N � 1 (Reason (b) in Section 4.18).The term x[i � 1] accesses the region between indices 1 : : : N � 2 in the array x,the term x[i] accesses the region between indices 2 : : : N � 1 in the array x, andthe term x[i + 1] accesses the region between indices 3 : : : N in the array x (seeFigure 5.6). Hence, the term x[i] accesses the largest unknown region in x, i.e.,75



x[2]; x[3]; : : : ; x[N � 1] and is selected as the term to be computed in the iterationprocess while other terms have to be given initial values for the �rst iteration.PROGRAM CYCLIC DEP2VAR x;INPUTS x[1], x[N];AND FOR (i 2 N-1) fx[i-1] == x[i] - x[i+1] gFigure 5.5: Example of an Unresolved Constraint Speci�cation
1 2 3 N-1 NN-2

x[i-1]

x[i]

x[i+1]Figure 5.6: Regions of Access by Terms in Figure 5.5The motivation behind using the heuristic of selecting the term accessing thelargest unknown region as the computed term is due to the following reasons.� Since the selected (computed) term accesses the largest unknown region,the largest number of values will be computed in each iteration of the relaxationprocess.� Since the other terms access smaller unknown regions, fewer initializationswill have to be done.If the selected term does not access the entire unknown region in the data,the iterative process will not converge because certain locations in the data will notbe computed. The compiler can abort the process after a �xed number of iterations,76



which can be a parameter in the system. Also, if the selected term accesses a locationthat is an initial input to the system, convergence may not be reached because thatlocation will be overwritten in the �rst iteration.5.2 Mapping single assignment variables to mutable vari-ablesTo satisfy a constraint within some degree of accuracy, the values for the selectedunknown terms have to be computed over some number of iterations t. Since thebasic compilation process generates single assignment variables, iterative computa-tions would require t memory locations for each computed term. Such a memoryrequirement can be quite prohibitive when the values of large data structures arebeing computed iteratively.To overcome the large memory requirement for computing iterative solutionswith single assignment variables, a procedure for local introduction of mutable vari-ables is required. For each variable x being computed iteratively, the compiler maykeep two locations: x and old x. Any computed value is stored in the locationx. Accessed values may come from either x or old x, depending on the relaxationscheme being used. This will be detailed in Section 5.3. At the end of each iteration,a check is done to see if the di�erence between values in x and old x is greater thanthe speci�ed degree of accuracy for solution of the constraints. If it is, x is copied toold x and further iterations are initiated. The parallel functional language SISALemploys a variant of this technique [Szy91]. In our system, the user may choose tosupply a value for the degree of accuracy or accept the default value assigned by thesystem.Using only single assignment variables, any computed variable with N mem-ory locations would require t�N memory locations for t iterations. By transforming77



single assignment variables to be mutable variables, the memory requirement is re-duced to 2�N .5.3 Relaxation MethodsRelaxation methods such as Jacobi and Gauss-Seidel [FJL+88] can be used foriterative solutions to constraints. The Jacobi method is a stationary, iterative,method typically used for solving a partial di�erential equation on a numerical grid.The update of each grid point depends only on the values at neighboring grid points(de�ned by a stencil) from the previous iteration. In the Gauss-Seidel method themost recent grid values are used in performing updates. To generalize these twotechniques to an iterative system, the Jacobi method can be implemented by usingvalues from the previous iteration and the Gauss-Seidel method can be implementedby using the most recent values (some possibly from the current iteration). TheJacobi method yields more parallelism since all computations in a current iterationare independent. However, convergence is typically slower than the Gauss-Seidelmethod.The user should be able to choose the method of relaxation to be used by theconstraint compiler. As mentioned in Section 5.2, two locations for each computedvariable x are kept: x and old x. If the chosen method of relaxation is Jacobi,the compiler restricts all accessed values of the variable x to be retrieved fromthe location old x, which stores the values of variable x computed in the previousiteration. If the chosen method of relaxation is Gauss-Seidel, the compiler restrictsall accessed values of variable x to be retrieved from location x which stores themost recently computed value. The compiler currently implements only the Jacobirelaxation technique.
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5.4 The Laplace Equation ExampleConsider the Laplace equation for a 4-point stencil on an N � N grid indexed by(0 : : : N � 1)(0 : : : N � 1) as shown in Figure 3.9. A constraint speci�cation for theproblem was presented in Figure 3.10.The Laplace equation speci�cation with the input set (boundary elements)constitutes a cyclic dependency. Applying the technique described in Section 5.1,x[i] will be chosen as the term to be computed since it accesses the largest un-known region, i.e., all interior elements in the grid x. The two indexed sets inthe speci�cation are compiled to loops and the simple constraint 4 � x[i][j] � x[i �1][j] � x[i + 1][j] == x[i][j � 1] + x[i][j + 1] is compiled to a computation forx[i] : x[i][j] = (x[i� 1][j] + x[i+ 1][j] + x[i][j � 1] + x[i][j + 1])=4.If the Jacobi method of relaxation is chosen by the user, the constraint spec-i�cation can be compiled to the procedural code shown in Figure 5.7. If the Gauss-Seidel method of relaxation is chosen by the user, the constraint speci�cation can becompiled to the procedural code shown in Figure 5.8. The user may supply initialvalues for the interior (non-shaded) points of the grid or choose to accept the defaultinitial values assigned by the compiler. Variable x is initialized to the initial valuesand the input boundary values. Variable old x is initialized such that at least onepoint di�ers in value from its corresponding point in x by more than the degree ofaccuracy so that the �rst iteration can be initiated. The function check accuracy(x,old x) returns 1 if the di�erence between any value in x and old x is greater than thedegree of accuracy; otherwise it returns 0. The function copy values(old x,x) copiesvalues from locations in x to corresponding locations in old x.5.4.1 The Dependence Graph for the Laplace EquationCompilation of cyclic dependencies for an iterative solution has been implementedin the constraint compiler for the Jacobi method of relaxation. The Gauss-Seidel79



while (check accuracy(x,old x)) fcopy values(old x,x);for (i 2 N-2) ffor (j 2 N-2) fx[i][j] = (old x[i-1][j] + old x[i+1][j] + old x[i][j-1] + old x[i][j+1])/4g g g Figure 5.7: Jacobi Relaxation for the Laplace Equationwhile (check accuracy(x,old x)) fcopy values(old x,x);for (i 2 N-2) ffor (j 2 N-2) fx[i][j] = (x[i-1][j] + x[i+1][j] + x[i][j-1] + x[i][j+1])/4g g gFigure 5.8: Gauss-Seidel Relaxation for the Laplace Equationmethod has not yet been implemented.In the Jacobi method of relaxation, both loops (for i and j) surrounding thecomputation can be executed in parallel. A naive parallelization of the loops willlead to (N � 2)2 computation nodes, each executing an instance of the computationx[i][j] = (old x[i� 1][j] + old x[i+ 1][j] + old x[i][j � 1] + old x[i][j + 1])=4. This ishighly undesirable since the computations are too �ne-grained. To overcome this,the compiler detects instances of computation extracted from constraints speci�edat the scalar level. Simple data partitioning techniques are applied to partition thedata involved in the computation over a speci�ed number of computation nodes P .The data partitioning techniques will be detailed in a later chapter. In the Laplaceequation, the grid x is partitioned in a row-wise manner across P nodes in theextracted dependence graph. Each partitioned slice in a computation node containslocations that the node computes through each iteration and any overlapping regions80



with other computation nodes that it accesses. For computations speci�ed at thescalar level, as in this case, the region of overlap between computation nodes isdetermined by examining the terms in the computation. In the Laplace equation,the accessed terms are x[i� 1][j]; x[i + 1][j]; x[i][j � 1]; and x[i][j + 1]. The indicesfor the accessed terms specify a maximum displacement of 1 in the four directionsof north, south, east, and west. Since x has been partitioned in a row-wise manner,the overlap is 1 row in the north and south directions. The row-wise partitioning ofa 10 � 10 matrix across 4 nodes numbered 0 : : : 3 is illustrated in Figure 5.9. Eachnode i, 0 � i � 3, gets rows in the range 2 � i : : : 2 � (i+ 1) + 1.
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Figure 5.9: Data Partitioning for the Laplace EquationIn Figure 5.10 we show the dependence graph extracted by the compilerfor a Laplace equation system executing on P nodes. The super node S initiatesnew iterations. The computation nodes numbered 0 : : : P � 1 each have a slice ofapproximate size NP �P + 2 (overlap between slices) of the matrix x. In each iterationthe code in Figure 5.7 is executed by each computation node on its local slice. Atthe end of each iteration overlapping regions are exchanged between computationnodes and the super node is informed by each computation node whether the degreeof accuracy has been reached for the values in the local slice. Computation isterminated when all the nodes achieve convergence on individual slices.81
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0 1 P-1Figure 5.10: Dependence Graph for the Laplace Equation
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Chapter 6
Execution EnvironmentSpeci�cation

The advantage of using a program speci�cation that is independent of the executionmachine is portability - the ability to create executables for di�erent architectureswithout changing the program speci�cation. The constraint program speci�cationsin our system are translated to an intermediate architecture-independent depen-dence graph which can be mapped to many di�erent parallel machines. However,there are many architectural mechanisms which can be exploited by an executableprogram if it is directed to do so. This usually leads to an improvement in perfor-mance. Without violating the \sanctity" of our architecture-independent programspeci�cation, we propose an execution environment speci�cation, separate from theconstraint program, that allows the user to provide useful hints to the compilerabout the underlying execution machine. The compiler can use these hints to pro-duce programs that may be more optimized for performance.This chapter discusses the design of the execution environment speci�cationfor our compiler. Several features are discussed in individual sections. While someof them have been implemented in our system, there are several others which could83



be added in the future.6.1 Shared VariablesIn shared memory architectures such as the Sparc and Cray J90, a vast improvementin performance can be obtained if some variables are declared as shared because itavoids the copying of large data across computation nodes. This is demonstratedthrough the BTS example in a later chapter where performance results for a versionof the program not using shared variables and another using shared variables arepresented. The program using shared variables shows a dramatic improvement inperformance over the one not using shared variables.The user has to be cautious when declaring shared variables in a programcontaining constraints connected by OR operators. OR operators translate to mul-tiple paths in the dependence graph and hence, give rise to the potential for multiplesolutions. In a program not using shared variables, each path can compute a solu-tion independent of other paths. However, a path in the dependence graph for aprogram using shared variables may overwrite the value computed for a variable inanother path. To illustrate this, consider the dependence graph in Figure 6.1 whereboth paths emanating from the start node will be executed if c > 0. If a and b areshared variables instead of being local to each node, only one solution for a and bwill be �nally retained and it could be one of fa = 10; b = 20g, fa = 10; b = 0g,fa = 5; b = 20g, and fa = 5; b = 0g depending on the interleaving of computations ina parallel environment. However, since nodes in CODE lock shared variables whenexecution is started and the locks are released only after the entire computation iscompleted, only one of the two solutions - fa = 10; b = 20g and fa = 5; b = 0g- ispossible in our system.Hence, the user should not declare variables as shared if there is the poten-tial for multiple solutions for them, which can be determined from the constraint84
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Figure 6.1: A Dependence Graph with Multiple Solutionsspeci�cation by inspection.6.2 Number of Available ProcessorsThis piece of information can be used to determine the number of nodes to be createdwhen spawning o� a computation to be executed in parallel. For example, the Niterations in a loop structure can be partitioned across P processors such that eachprocessor gets approximately NP iterations to execute or the data computed withina loop structure can be partitioned equally across P processors. Since CODE allowsthe dynamic creation of nodes, the number of processors can determine the numberof computation nodes at runtime.6.3 Data Partitioning with Overlap SectionsIt has been amply demonstrated by many parallel programming experiments thatdata partitioning techniques play a signi�cant role in improving performance. While,currently, we have only implemented simple mechanisms for data partitioning, weshow in this section that other sophisticated mechanisms can be speci�ed too.In many applications such as the Laplace equation, the computations are85



speci�ed at a very �ne granularity, say, at the scalar level. When the compiler detectsthat the operations involved in the computations are over scalar types or over small-sized data (the threshold size is �xed by a parameter to the system), it partitionsthe variables involved over a number of nodes. This is especially important if thecomputation is nested within loops because the computation is executed repeatedlyand the overhead in executing scalar operations repeatedly can severely degradeperformance.The form of the partition depends on the data accesses in the computation.For any matrix, if the accesses are only in the north and south directions the datais partitioned column-wise. If the accesses are only in the east and west directionsthe data is partitioned row-wise. If there are accesses in mixed directions, say northand east, the data is partitioned such that there is minimum overlap between thepartitioned slices. This scheme minimizes the overhead in the synchronizations nec-essary when data is shared across computation nodes. Each node gets approximatelyN�MP + overlap, where the matrix being partitioned is of size N �M and P is thenumber of nodes. The amount of overlap between partitioned slices must be deter-mined by the user or by the compiler by inspecting the terms in the computation.The mechanism of partitioning data involved in scalar computations has been usedfor the Laplace equation.The user may specify the partitioning mechanism, instead of allowing thecompiler to select it, by indicating the actual regions in the data type to be dis-tributed across the nodes. (The user must specify the actual overlap between thepartitions to determine the regions to be synchronized.)6.4 Option of not Parallelizing a ModuleA constraint module may have very �ne-grained operations in the constraints forthe constraint module body. Parallelizing such a module may lead to degradation in86



performance due to the overheads involved. For this reason, a user can denote thatthe dependence graph for a particular module call should be mapped to a sequentialprocedure rather than a parallel one. This feature has not yet been implemented inour compiler. However, since CODE allows the generation of sequential programs,this would be simple to incorporate.6.5 Selecting Operations to be Executed in ParallelOperations over structured data types are primitives in the type system. But parallelexecution can be selected for these primitive operations. The complexity of someof these operations may be larger than others. An example is the matrix-matrixmultiplication operation. In the interests of performance, it would be bene�cial toextract such operations out of a computation to execute in parallel. For example, ifthere is a computation (d14d2)5(d34d2), where4 and5 are primitive operations,to be executed and the operation 4 is very computation-intensive, the speci�cationcan be split into two computations to be executed in parallel: (d14d2) and (d34d2).The results can then be merged and operator 5 can be applied on them. We usethis technique in the BTS example where multiple matrix-matrix multiply operatorsin a computation are executed in parallel.The execution environment speci�cation provides a platform for the user toindicate that some operations be selected for extraction from a computation forsubsequent parallel execution.6.6 Choices among Parallel Algorithms to execute someof the OperationsA variety of choices exist among parallel algorithms to execute operations on datainstances under a type system. The user should be able to select one among a87



number of implemented algorithms in the system to execute an operation. We havenot yet implemented this feature in our system.
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Chapter 7
Performance Results

A prototype of the constraint compiler has been implemented in C++ using object-oriented techniques. A number of examples have also been programmed and ex-ecuted on the Cray J90, SPARCcenter 2000, Enterprise 5000, Sequent Symmetrymachine [Ost89], and the PVM system. The sections in this chapter present theperformance results obtained for some of the examples programmed in our system.Overall, the results have been extremely satisfactory.The execution times reported in this chapter are wall clock times. Wheneverpossible, timings have been taken for executions during either dedicated CPU accessor when the loads on the machines were low.7.0.1 The Block Triangular Solver (BTS)The extracted dependence graph corresponds to the parallel algorithm in [DS86].The parallelism yields an asymptotic (in the number of blocks) speedup of N2=(3N�2), where N is the number of blocks. Asymptotic speedup assumes zero communi-cation and synchronization times.Figure 7.1 gives the speedups for a 1200 � 1200 matrix on a 14-processorshared memory Sequent machine. A hand-coded parallel program was written by89


