Efficient Matrix Inversion
via Gauss-Jordan Elimination
and its Parallelization

Enrique S. Quintana® Gregorio Quintanal Xiaobai Sun?
Robert van de Geijn?

September, 1998

Abstract. We present a new parallel matrix inversion algorithm and report its implementation
on parallel computers with distributed memory. The algorithm features natural load balance, simple
programming and easy performance optimization, while maintaining the same arithmetic cost and
numerical properties of the conventional inversion algorithm. Our analysis and experiments on a
CRAY T3E report near-peak performance for the new approach.

1 Introduction

Despite the inexpedience of matrix inverse, as Higham summarizes in [12], “there
are situations in which a matrix inverse must be computed.” Examples arise in statis-
tics [4, §7.5], [15, §2.3], [16, pp. 342], [3], in numerical integrations in superconduc-
tivity computations [11], and in stable subspace computation in control theory [18].
The recent years have seen increasing interest in parallel solutions of large-scale ap-
plications [2,3,7,14,10]. Inversion algorithms for general full nonsingular matrices are
mostly based on the availability of a complete LU factorization. The algorithm used
by LINPACK XGEDI (8], and LAPACK XGETRI [1] proceeds as follows.

*Departamento de Informadtica, Universidad Jaime I, 12071 Castellén, Spain,
quintana@inf.uji.es.

tSame address as second author, gquintan@inf.uji.es.

IDepartment of Computer Science, Duke University, D107, Levine Science Research Center,
Durham, NC 27708-0129, xiaobai@cs.duke.edu.

§Department of Computer Science, The University of Texas, Taylor Hall 2.124, Austin, TX 78712,
rdvg@cs.utexas.edu.

(1) LU factorization with partial pivoting, PA = LU, where P is a permutation
matrix, and U, L € IR™ " are upper triangular and unit lower triangular
matrices, respectively.

(2) Triangular inversion of U (forward substitution).
(3) Triangular (system) solve for X: XL = U~! (backward substitution).
(4) Back permutation of columns, A~' = X PT,

The algorithm allows the inverse to be computed in-place, that is, the computed
inverse overwrites the input matrix to be inverted. It sweeps three times across the
array that houses the involved matrices for LU factorization, triangular inversion, and
triangular solve. The algorithm is effective on uni-processor computers and shared
memory parallel computers. A parallel version of the algorithm is implemented in
SCALAPACK [6]. We present in this paper our study of inversion algorithms via
Gauss-Jordan elimination (GJE). Specifically, we show that a one-sweep inversion
algorithm via GJE is more suitable on parallel computers with physically distributed
memory.

Matrix inversion using GJE is known to have about the same arithmetic cost as
matrix inversion methods using Gaussian elimination (LU factorization) and have a
connection with those methods. Many classic references to inversion methods can be
found in [12, 13]. Nevertheless, computation arrangements for matrix inversion via
GJE (instead of a system solve with multiple right hands) are rarely presented in the
literature. An in-place procedure for inversion of positive definite matrices is given by
Bauer and Reinsch [5]. In Figure 1 we describe in MATLAB language a LEVEL-2 BLAS,

% Input : A € IR™" nonsingular.
% Output : A~! € IR™™ overwritten onto A.
fork=1:n
pivot = A(k,k);
A(k) = —[A(1:k—1,k);0; A(k+1:n,k)] / pivot; % column scaling
A = A+ A(, k) x Ak, :); % rank-1 update
A(k,:) =[A(k,1:k—1),1, A(k,k+1:n)] / pivot; % row scaling
end

Figure 1: The merged algorithm for matrix inversion (without pivoting)

in-place inversion algorithm via GJE for a general square matrix with all of its leading

submatrices nonsingular. Evidently, it is a one-sweep approach as opposed to the
conventional three-sweep approach. In other words, the sweeps over the intermediate
triangular matrices L and U are computationally eluded. Avoiding the intermediate
steps which involve non-square (non-rectangular) matrices has multiple advantages in
parallel computations as we will describe in Section 5.3.

The rest of the paper is organized as follows. In Section 2 we present a one-sweep
inversion algorithm via GJE with partial pivoting. In Section 3 we describe the con-
nection and differences between matrix inversion with GJE and Gaussian elimination
in numerical computation. In Section 4, we present an error analysis framework for
various inversion methods that can be connected to the LU factorization. This unifi-
cation in error analysis for inversion algorithms is new to the best knowledge of the
authors. In Section 5 we provide several variants of the inversion algorithms via GJE
for different computing environments and discuss parallel algorithm development is-
sues. In Sections 6 and 7 we present respectively the performance model and the
experimental results from our parallel implementation of the algorithm.

We provide algorithm prototypes in MATLAB, with occasional minor changes in
notation to avoid unnecessary details. We denote by e; the the j-th column of the
identity matrix of order n, I,. We denote by F; and E); the first j columns of E and
the last j columns of a matrix E, respectively.

2 An Inversion Algorithm via GJE with Partial Pivoting

We describe in this section an inversion algorithm via GJE with partial pivoting
(IGJEP). We first review the Gauss-Jordan elimination process. Denote by J(k, v, 0,),
or simply, Ji, a nonsingular matrix having the structure

J(k, v, 0) = D,:l(fn — vkekT) = D,;l — vke,;r, ekTvk =0, (1)
Dy, = diag(ly—1, 6, In—k), O # 0.

In other words, Jj, is an elementary Gauss-Jordan reduction matrix of index & (see [13,
19]) scaled by 6, ' in row k. For convenience, we call J; a scaled Jordan matriz and
the combined vector g, = 5]:16k — v the Jordan vector associated with Ji. Given a
vector u = (p1,...,un) " € IR", u # 0; for k = 1:n, there exist a permutation matrix
Py, of order n and a scaled Jordan matrix Jy such that Ji(Pyu) = eg. Here, Py can be
a permutation matrix swapping p and uj such that uz # 0, and Ji is determined by

v = (Pyu)/pg —ex and 0 = pg. (2)

3

% Input : A € IR™ " nonsingular.
% Output : A~! € IR™ ™ overwritten onto A.
ipiv = [1 : nJ;
fork=1:n
% pivoting
[abspivot, k| = max([zeros(k—1,1); abs(A(k:n,k))]);
pivot = A(k, k);
[A(k,:), A(k,:) | = swap(A(k,:), A(,:));
[ipiv(k),ipiv(k)] = swap(ipiv(k),ipiv(k));
% Jordan transformation
A(: k) = —[A(1:k—1,k);0; A(k+1:n,k)]| / pivot;

A = A+ A(; k)« Ak,);

A(k,:) =[A(k,1:k—1),1,A(k,k+1:n)] / pivot;
end
A(:,ipiv) = A; % backward permutation

Figure 2: The merged algorithm for matrix inversion with pivoting (MAMIP)

We now describe and verify algorithm 1GJep. Let A® = A BO =1, TI, = I,,
and Gy = [] (an empty matrix). At the beginning of step k of 1GJEP, k = 1:n, Ak—1)
and B%*~1 are mathematically related by

A(kfl) — B(kfl)A,
and the matrices A*~1) and B*~Y have the following structure,

Alk=1) []k_l"A(kfl) 1,

|[n—k+1 (3)
Bk-1) = [Gro1, Ipppy1] Oiq,
where II;_; is a permutation matrix. Let a;, = A¥# Ve, = (aq,...,a,)". Since A

is nonsingular, az # 0, for some k, k¥ < k < n. Determine P, that swaps oy and
ag, and J;, such that Ji(Praz) = e Let A®) = J,P,A®-V B®) = j P, B*=1) and
Hk = Pka,I. Then,

A®) = Bk A = [Ik\aA\(r]j)fk]’ and
BY = JoP[City Dot [Wiy = T [PG, Tnisn | The = [Gy T] 1L,

4

where Gy, = [JiPiGj_1, gx], and g, is the Jordan vector. Note that B®*) is therefore
the product of the first k scaled Jordan elimination matrices with pivoting, that is,

B®) = (JyB) - - - (L Py)(JLP)).

We may call B(*) the aggregated (blocked) Jordan transformation. At the end of step
n, A" =1, = B™MA and finally A~' = B™ = G,II,.

For a fixed k, the permuted Jordan matrices, P,-JkPiT, t > k, have the same struc-
ture as Jj except that the Jordan vector is permuted. Each column of G,, represents
a permuted Jordan matrix.

The merged algorithm for matrix inversion with partial pivoting (MAMIP) in Fig-
ure 2 is a one-sweep implementation of matrix inversion via GJE. It merges the storage
for G}, and A\(:)—k and streamlines the computation sequence for successive transforms
of both A®) and B®). The key feature of MAMIP lies in that it admits easy algorithm
transforms to achieve better performance in different computing environments (see
sections 5 and 7).

3 Jordan and Gauss

In this section we explain the mathematical and numerical connections between
the approach using Gaussian elimination with partial pivoting and the approach using
Jordan elimination with partial pivoting. We note first that

Jy = DI, — weed) = DU LY = DL U, k=10,

where

U, = (In + uke,?), L, = (In + lke,?), Vp = Ug + lk,

efup =0, i>k, elly=0 i<k,
That is, (I, — vrel) is factored into two unit elementary triangular matrices, Lj and
Ug. Notice that L, = Uy, = I,. Since L;D;U; = D;U;L; for ¢ > j, the following
equation holds mathematically and numerically,

Jy-o-Jody = DU - DUYUCMLY - LTY, R =1,2,-- 0, (4)

as long as the aggregation order is from the right to the left. This equivalent reordering
reveals the implicit triangular factorization in the inverse method via GJE. Let L(F) =
LyLs--- Ly, and U®) = U, D,UyDy - - - Uy, Dy Then, L = L™ is unit lower triangular
and U = U™ is upper triangular. Computationally, the factors L and U are computed

as in the matrix inversion method via Gaussian elimination though the factors are
saved and inversed in a different way.

Specifically, let A < PA, where P is the accumulated permutation matrix resulted
from pivoting. Apply algorithm MAMIP to A, and consider A%) the matrix generated

after step k. Partition A as
A A
A= ,
< Ay Agp

where the leading square block A;; is of order k, and apply the same partition to A®)
LW = (L®)=1 and U® = (UK)~1. At step k of MAMIP not only Ly is generated
as by Gaussian elimination, but the elementary factors U and Dy are also generated
simultaneously (see the column scaling statement in MAMIP). As soon as generated,
they are applied to the n X n array which now contains

(k) 7 (k (k) 7 (k _ _
A(k) — l(l)Lgl) AUl(l)Lgl)All _ A111) A111A11) '
Lg’i) Lg’;)Au + A AnAyy Az — AnArg Are

Note that the leading k£ x k block contains the inverse of A;; and the (n — k) x (n —
k) trailing block contains Ajy — Ay At Ao, the Schur complement of Ay in A, as
generated after k steps of Gaussian elimination (with partial pivoting).

4 Error Analysis

An error analysis for the inversion method via GJE is given in [12], treating the
inversion as the solution of a system of linear equations with multiple right hand
sides. We provide an error analysis in unification with the error analysis for other
inversion methods that are explicitly or implicitly connected to the LU factorization
and triangular solves.

We note that if A is equal to a (unit) lower triangular matrix L, MAMIP is
numerically equivalent to computing a right inverse of L by forward substitution, cf.
Method 1 for inverting a triangular matrix in [12]. Similarly, if A(®) = U is (unit) upper
triangular, MAMIP computes the left inverse of U by forward substitution, cf. [17].
Otherwise, in case A is a full matrix, computing the inverse of A(®) can be verified
to be equivalent to the following four steps (in comparison to the conventional inversion
method as described in Section 1),

(1) LU factorization : A©®) = LU,
(2) Triangular inversion : LX = I, (forward substitution),

6

(3) Triangular solve: UY = X (forward substitution),
() (A0)1 =,

This connection allows us to apply the error analysis for LU factorization and trian-
gular solves. Since the identification of Step 2 and Step 3 is not presented explictly in
the literature, we introduce an error analysis of the two steps, assuming L and U are
given. We denote by B the computed result of a mathematical quantity B. From the
error analysis of a lower triangular solve by forward substitution, we have

(L+ALj)Xe; =e;, |ALj| <cuulL|, j=1:n,

where u is the machine precision and ¢, is a constant of O(n), see [12,21]. For an
upper triangular solve by forward substitution, according to Peter and Wilkinson [17],
we have

efYe; = el (U+ AU;) ' Xej, |AUG| <culU|, i=1:n, j=1:n.

Let R, = LX — I,,. Then, X = L™'(I, + R,) and |R,| < c,u|L||X]|.

Many inversion methods have connections to LU factorization. An inverse pro-
cess treats L (L) and U (U™!') as products of elementary triangular matrices. The
difference lies in the computation ordering to aggregate the elementary triangular ma-
trices. For example, the aggregation ordering of MAMIP is equivalent to the four steps
described above.

A general approach for an error analysis of such an inversion method is (1) to
identify the ordering of the triangular inverse (L or U, left inverse or right inverse)
and the following triangular solve (left division or right division) and (2) to (provide
and) apply the error analysis for the underlying triangular solve. If the triangular solve
is based on forward or backward substitution, the composition of the absolute matrices
in a forward error bound depends on the composition of the triangular factors in the
computed inverse. Thus, many inversion methods have connections to LU factorization
and can be analyzed in the same framework.

5 Variants of MAMIP

We describe in this section several variants of MAMIP for better performance in
different computing environments.

% Input : A € IR"P n > p, with full column rank.
% Output : Aggregated Jordan transformations overwritten onto A.
ipiv = [1 : nJ;
fork=1:p
% updating the pivot column
A(:, k) = A(ipiv, k);
A(k) =A(,1:k—1) « A(1:k—1,k) + [zeros(k—1,1); A(kn, k) |;
% pivoting
[abspivot, k| = max([zeros(k—1,1); abs(A(kn, k))]);
pivot = A(k, k);
[A(k, Lk), A(k, 1:k)] = swap(A(k, 1:k), A(k, 1:k));
[ipiv(k),ipiv(k)] = swap(ipiv(k), ipiv(k));
% Jordan transformation

A(: k) =—[A(1:k—1,k); 0; A(k+1:n,k)] / pivot;
A 1ik—1) = A, L:E—1) 4+ A, k) « A(k, L k—1);
A(k,1:k) = [A(k,1:k—1),1] / pivot;

end

A(:,ipiv) = A; % backward permutation

Figure 3: Incremental version of MAMIP

5.1 An Incremental Inverse Algorithm

Recall that at the end of step k—1 of MmAMIP, 1 < k < n, we have
[Gra | Al] and Ty,

where (Gi—1, ljn—p41)Ilk—1 = = B®*-1 s the product of the first £ —1 scaled Jordan
transformations with partial pivoting, and A k +1 consists of the last n—k+1 columns

of the original matrix A transformed by B(k). In the algorithm listed in Figure 3
the k-th column of the original matrix is not updated until step £, 1 < k& < n. The
same idea is previously applied in the left-looking version of the LU factorization [9].

8

% Input : A € IR™" nonsingular and nb the block size.
% Output : A~ € IR™™ overwritten onto A.
ipiv = [1 : nj;
fork=1:nb:n
kb = min(nb,n — k + 1);
in=1[k:k+kb—1]; out=[1:k—1,k+kb:nl;
[A(:,in),ibpiv | = MAMIP_INC2(k, A(:,in));
A(:,out) = A(ibpiv, out);
A(out, out) = A(out, out) + A(out, in) * A(in, out);
A(in, out) = A(in,in) * A(in, out);
ipiv = ipiv(ibpiv);
end
A(:,ipiv) = A; % backward permutation

Figure 4: A blocked variant of MAMIP

5.2 Blocked Algorithms

We note that the incremental algorithm can be applied to a subset of the columns.
In fact, we use it in the blocked algorithm listed in Figure 4 to construct a block-
wise Gauss-Jordan transform. For each block of kb columns, we use the incremental
algorithm to form the product of kb Jordan transformations with partial pivoting in
the compact form of kb columns and a permutation matrix, which is represented by
a vector ibpiv. The subroutine MAMIP_INC2 is based on the incremental algorithm
with an offset, k, to the indexing in the partial pivoting. The rest of the matrix is
then permuted in rows accordingly and updated by the aggregated Jordan transfor-
mation in Level-3 BLAS operations. As for the algorithmic block size, it is desirable
to choose the block size big enough to reduce data migration between hierarchical
memory levels in uni-processors. In multiprocessors with distributed memory, the dis-
tribution block size plays an analogous role. On the other hand, the block size should
be kept small enough to keep the numerical accuracy close to that of the non-blocked
algorithm. The tradeoff or compromise between speed performance and numerical
properties varies with applications requirements.

5.3 Parallel Implementation Issues

The blocked algorithm can be implemented in different ways for parallel computa-
tion, depending on the underlying system(s) and the programming environment. We
discuss in the following several common issues on parallel implementation and perfor-
mance optimization on parallel computers with distributed memory. The advantages
of MAMIP are due to the fact that MAMIP circumvents the use of the intermediate
triangular matrices from LU factorizations.

— MAMIP admits a non-square mesh of nodes without complicating the program-
ming. This renders an additional freedom in mesh configuration for performance
enhancement.

— MAMIP allows the decoupling between algorithmic block size and the physical
panel size for distributed data layout. Such property makes MAMIP free of the
constraints on data alignment or panel size posed by a software library for parallel
computing.

— MAMIP can be easily implemented with variant algorithmic block size and variant
panel size, for example, for better job balancing on a cluster of heterogeneous
multiple processors.

— The communication pattern for MAMIP is simple. In a message-passing pro-
gramming environment, the communication channels and the message lengths
(except for partial pivoting) can be set up once for all, since they remain the
same throughout the algorithm.

6 Performance model

To study the theoretical performance of our parallel algorithm, we consider an n xn
matrix A distributed among a p = r x ¢ grid of nodes, using a 2-D block scattered
(BS) decomposition (see, e.g., [6]) with square block size equal to ny x ny. For the
sake of simplicity, we also assume the following:

e The time of a floating-point arithmetic operation is 7.

e The time time of transfering m floating-point numbers between any two nodes
is a + fm. Here, a is the communication latency and [is the inverse of the
bandwith (a > ().

10

e The time of transfering a message of m floating-point numbers to @) nodes (broad-
cast) is log(Q)(« + Bm), with log(Q) = log,(Q).

e r, ¢, and n, divide n.

Our parallel algorithm is based on a block-partitioned version of MAMIP. In this

blocked version, matrix A is processed by blocks of m, columns. At stage k, first
the k-th column block of A is processed by means of MAMIP_INC2; then, the row
permutations required by k-th column block are further applied to blocks 1 : £k —1 and
k +1:n/ny, and these blocks are processed by means of two rank-n, updates. The
approximate time of the stages in iteration k are the following (the lower order terms
are neglected):

1. Apply MAMIP_INC2 to the columns of the current column block, A(:,k : k +
ny—1):
(a
(b
(c
(d

Determine the pivot row: T} = alog(r).
Swap the pivot row and the current row: T = a + 3 np.

Broadcast the pivot row to the rest of nodes: T3 = (a + 5 np) log(r)

~— N N~

Update the local column block: Ty = 27 n,n/r.
2. Apply transformations to the rest of the matrix.

(a) Broadcast pivot information of k-th column block: T5 = (a + 8 ny) log(c).
(b) Swap the corresponding rows: Tg = o + (n — nyp) /5.

(c) Broadcast information for the rank-n, update: Tr = (a + n/rny 3) log(c)
(broadcast k-th block) and Tg = (a+ (n —ny)/cny §) log(r) (broadcast k-th
block row).

(d) Rank-n, update of the rest of the matrix: Ty = 27 nyn(n — np)/p.

The previous procedure is repeated for k = 1:n/mn,. If no overlapping between

communication and computation is assumed we obtain the following time

Crxc:(Tl+T2+"'+T4)n+(T5—|—T6—|—"'+Tg)n/nb,

which is an upper bound of the global time of the parallel algorithm. The speed-up,
or acceleration of the algorithm in r X ¢ nodes, is then

Srxe = 2/7—"’1’3/C’T'><ca

which shows the asymptotic convergence of S, . to p.

11

7 Experimental Results

We present results for three implementations of matrix inversion:

SL_IGEP is part of SCALAPACK [6] and implements the “traditional” inversion
algorithm via Gaussian elimination;

SL_IGJEP was coded using SCALAPACK parallel BLAS kernels (PBLAS). It imple-
ments the parallel algorithm analysed in the previous section. This implemen-
tation assumes that the algorithmic block size equals the distribution block size,
that all operations required to invert the current diagonal block are performed
on a single node, and that the current column block exists and is updated within
a single column of nodes; and

PLA_IGJEP was coded using PLAPACK [20]. This code has some additional features:
The current column block is redistributed so that all nodes participate when
MAMIP_INC2 is applied. This allows for better load balance during this stage of
the algorithm. It also simplifies the coding when the algorithmic block size is to
be larger than the distribution block size and simplifies the addition of multiple
levels of blocking to MAMIP_INC2 while it is being applied to the current column
block.

Performance results are given for the Cray T3E-600 (300 MHz), with all computa-
tions performed in 64-bit arithmetic. Version information is given as follows:

UNICOS/mk 2.0.3.10
C compiler 6.0.0.0
F90 compiler 3.0.2.0

Assembler 2.3.0.0
Cray Libs 3.0.0.0
CrayTools 3.0.0.0
Options -03
Streams on

We used SCALAPACK available from netlib (version 1.5 + update (version 1.6)),
with the MPIBLACS compiled for Cray T3E using Cray’s MPI. The PLAPACK
version, to be released shortly as Version R.1.2, also uses MPI. We report performance
measuring MFLOPS/sec. (millions of floating point operations per second) using an
operation count of 2n3 for matrix inversion for all versions.

12

In Fig. 5, we report performance as a function of the matrix size for various num-
bers of nodes. Very respectable performance is attained by all implementations: the
highly optimized massively parallel LINPACK benchmark on the Cray T3E-600 attains
around 440 MFLOPS/node on 32 nodes, for a much larger problem (21120x21120)
than we used in our measurements. In these measurements, algorithmic and distribu-
tion block size of 48 was used for both SL_IGEP and SL_IGJEP. As expected, SL_IGJEP
performs better than SL_IGEP since it incurs less communication and exhibits better
load balance. For the more flexible implementation PLA_IGJEP we used a distribution
block size of 24 and an algorithmic block size of 96. Since an algorithmic block size
of 96 allows local matrix-matrix multiplication to attain higher performance, asymp-
totically PLA_IGJEP attains better performance than either SL_IGEP or SL_IGJEP. For
smaller problems, the additional cost of redistributing the current column block results
in a modest reduction in performance.

In Fig. 6(a)—(c) we report performance as a function of the number of nodes, keep-
ing local memory utilization constant. In this figure, the label local NxN indicates
that local memory use is equal to that required to locally store an NxN matrix. No-
tice that as more nodes are employed, performance per node remains approximately
constant, indicating excellent scalability.

In Fig. 6(d), we demonstrate how performance is affected by the distribution block
size, ny. For the SL_IGEP and SL_IGJEP, smaller n; means better load balance, but also
slower performance of the local matrix-matrix multiplication. Thus, n, = 48 turns out
to be a good compromise. For PLA_IGJEP, the distribution block size does not dictate
the algorithmic block size, and thus a smaller n, does not affect the performance
of the local matrix-matrix multiplication. Thus, for this implementation, a smaller
distribution block size yields better load-balance and better overall performance.

We conclude by indicating that for the SCALAPACK based implementations we
could have instead used the SCALAPACK version provided by the Cray Scientific
library. This version uses the shmem library, which greatly reduces communication
overhead. In order to provide a fair comparison between PLA_IGJEP and SL_IGJEP,
we chose to use the MPI based version of SCALAPACK instead. Asymptotically, the
performance of either SCALAPACK version is similar, but for small matrices, there
is a definitive advantage to using the shmem based version.

8 Concluding Remarks

We have related the matrix inversion via Gauss-Jordan elimination with the tradi-
tional matrix inversion by means of Gaussian elimination. The Gauss-Jordan approach

13

