
E�cient Matrix Inversionvia Gauss-Jordan Eliminationand its ParallelizationEnrique S. Quintana� Gregorio Quintanay Xiaobai SunzRobert van de GeijnxSeptember, 1998Abstract. We present a new parallel matrix inversion algorithm and report its implementationon parallel computers with distributed memory. The algorithm features natural load balance, simpleprogramming and easy performance optimization, while maintaining the same arithmetic cost andnumerical properties of the conventional inversion algorithm. Our analysis and experiments on acray t3e report near-peak performance for the new approach.1 IntroductionDespite the inexpedience of matrix inverse, as Higham summarizes in [12], \thereare situations in which a matrix inverse must be computed." Examples arise in statis-tics [4, x7.5], [15, x2.3], [16, pp. 342], [3], in numerical integrations in superconduc-tivity computations [11], and in stable subspace computation in control theory [18].The recent years have seen increasing interest in parallel solutions of large-scale ap-plications [2,3,7,14,10]. Inversion algorithms for general full nonsingular matrices aremostly based on the availability of a complete LU factorization. The algorithm usedby Linpack xgedi [8], and Lapack xgetri [1] proceeds as follows.�Departamento de Inform�atica, Universidad Jaime I, 12071 Castell�on, Spain,quintana@inf.uji.es.ySame address as second author, gquintan@inf.uji.es.zDepartment of Computer Science, Duke University, D107, Levine Science Research Center,Durham, NC 27708-0129, xiaobai@cs.duke.edu.xDepartment of Computer Science, The University of Texas, Taylor Hall 2.124, Austin, TX 78712,rdvg@cs.utexas.edu. 1

(1) LU factorization with partial pivoting, PA = LU , where P is a permutationmatrix, and U; L 2 IRn�n are upper triangular and unit lower triangularmatrices, respectively.(2) Triangular inversion of U (forward substitution).(3) Triangular (system) solve for X: XL = U�1 (backward substitution).(4) Back permutation of columns, A�1 = XPt.The algorithm allows the inverse to be computed in-place, that is, the computedinverse overwrites the input matrix to be inverted. It sweeps three times across thearray that houses the involved matrices for LU factorization, triangular inversion, andtriangular solve. The algorithm is e�ective on uni-processor computers and sharedmemory parallel computers. A parallel version of the algorithm is implemented inScaLAPACK [6]. We present in this paper our study of inversion algorithms viaGauss-Jordan elimination (GJE). Speci�cally, we show that a one-sweep inversionalgorithm via GJE is more suitable on parallel computers with physically distributedmemory.Matrix inversion using GJE is known to have about the same arithmetic cost asmatrix inversion methods using Gaussian elimination (LU factorization) and have aconnection with those methods. Many classic references to inversion methods can befound in [12, 13]. Nevertheless, computation arrangements for matrix inversion viaGJE (instead of a system solve with multiple right hands) are rarely presented in theliterature. An in-place procedure for inversion of positive de�nite matrices is given byBauer and Reinsch [5]. In Figure 1 we describe inMatlab language a Level-2 blas,% Input : A 2 IRn�n nonsingular.% Output : A�1 2 IRn�n overwritten onto A.for k = 1 : npivot = A(k; k);A(:; k) = � [A(1 :k�1; k); 0;A(k+1:n; k)] = pivot; % column scalingA = A+ A(:; k) � A(k; :); % rank-1 updateA(k; :) = [A(k; 1:k�1); 1; A(k; k+1:n)] = pivot; % row scalingendFigure 1: The merged algorithm for matrix inversion (without pivoting)in-place inversion algorithm via GJE for a general square matrix with all of its leading2

submatrices nonsingular. Evidently, it is a one-sweep approach as opposed to theconventional three-sweep approach. In other words, the sweeps over the intermediatetriangular matrices L and U are computationally eluded. Avoiding the intermediatesteps which involve non-square (non-rectangular) matrices has multiple advantages inparallel computations as we will describe in Section 5.3.The rest of the paper is organized as follows. In Section 2 we present a one-sweepinversion algorithm via GJE with partial pivoting. In Section 3 we describe the con-nection and di�erences between matrix inversion with GJE and Gaussian eliminationin numerical computation. In Section 4, we present an error analysis framework forvarious inversion methods that can be connected to the LU factorization. This uni�-cation in error analysis for inversion algorithms is new to the best knowledge of theauthors. In Section 5 we provide several variants of the inversion algorithms via GJEfor di�erent computing environments and discuss parallel algorithm development is-sues. In Sections 6 and 7 we present respectively the performance model and theexperimental results from our parallel implementation of the algorithm.We provide algorithm prototypes in Matlab, with occasional minor changes innotation to avoid unnecessary details. We denote by ej the the j-th column of theidentity matrix of order n, In. We denote by Ejj and Ejj the �rst j columns of E andthe last j columns of a matrix E, respectively.2 An Inversion Algorithm via GJE with Partial PivotingWe describe in this section an inversion algorithm via GJE with partial pivoting(igjep). We �rst review the Gauss-Jordan elimination process. Denote by J(k; vk; �k),or simply, Jk, a nonsingular matrix having the structureJ(k; vk; �k) = D�1k (In � vketk) = D�1k � vketk ; etk vk = 0;Dk = diag(Ik�1; �k; In�k); �k 6= 0: (1)In other words, Jk is an elementary Gauss-Jordan reduction matrix of index k (see [13,19]) scaled by ��1k in row k. For convenience, we call Jk a scaled Jordan matrix andthe combined vector gk = ��1k ek � vk the Jordan vector associated with Jk. Given avector u = (�1; : : : ; �n)t 2 IRn, u 6� 0; for k = 1:n, there exist a permutation matrixPk of order n and a scaled Jordan matrix Jk such that Jk(Pku) = ek. Here, Pk can bea permutation matrix swapping �k and ��k such that ��k 6= 0, and Jk is determined byvk = (Pku)=��k � ek and �k = ��k: (2)3

% Input : A 2 IRn�n nonsingular.% Output : A�1 2 IRn�n overwritten onto A.ipiv = [1 : n];for k = 1 : n% pivoting[abspivot; �k] = max([zeros(k�1; 1); abs(A(k :n; k))]);pivot = A(�k; k);[A(k; :); A(�k; :)] = swap(A(k; :); A(�k; :));[ipiv(k); ipiv(�k)] = swap(ipiv(k); ipiv(�k));% Jordan transformationA(:; k) = �[A(1 :k�1; k); 0;A(k+1:n; k)] = pivot;A = A + A(:; k) � A(k; :);A(k; :) = [A(k; 1:k�1); 1; A(k; k+1:n)] = pivot;endA(:; ipiv) = A; % backward permutationFigure 2: The merged algorithm for matrix inversion with pivoting (mamip)We now describe and verify algorithm igjep. Let A(0) = A, B(0) = In, �0 = In,and G0 = [] (an empty matrix). At the beginning of step k of igjep, k = 1:n, A(k�1)and B(k�1) are mathematically related byA(k�1) = B(k�1)A;and the matrices A(k�1) and B(k�1) have the following structure,A(k�1) = [Ik�1j; A(k�1)jn�k+1];B(k�1) = [Gk�1; Ijn�k+1] �k�1; (3)where �k�1 is a permutation matrix. Let ak = A(k�1)ek = (�1; : : : ; �n)t. Since Ais nonsingular, ��k 6= 0, for some �k, k � �k � n. Determine Pk that swaps �k and��k, and Jk such that Jk(Pkak) = ek. Let A(k) = JkPkA(k�1), B(k) = JkPkB(k�1), and�k = Pk�k�1. Then,A(k) = B(k)A = [Ikj; A(k)jn�k]; andB(k) = JkPk [Gk�1; Ijn�k+1] �k�1 = Jk [PkGk�1; Ijn�k+1] �k = [Gk; Ijn�k] �k;4

where Gk = [JkPkGk�1; gk], and gk is the Jordan vector. Note that B(k) is thereforethe product of the �rst k scaled Jordan elimination matrices with pivoting, that is,B(k) = (JkPk) � � � (J2P2)(J1P1):We may call B(k) the aggregated (blocked) Jordan transformation. At the end of stepn, A(n) = In = B(n)A, and �nally A�1 = B(n) = Gn�n.For a �xed k, the permuted Jordan matrices, PiJkPti , i > k, have the same struc-ture as Jk except that the Jordan vector is permuted. Each column of Gn representsa permuted Jordan matrix.The merged algorithm for matrix inversion with partial pivoting (mamip) in Fig-ure 2 is a one-sweep implementation of matrix inversion via GJE. It merges the storagefor Gk and A(k)jn�k and streamlines the computation sequence for successive transformsof both A(k) and B(k). The key feature of mamip lies in that it admits easy algorithmtransforms to achieve better performance in di�erent computing environments (seesections 5 and 7).3 Jordan and GaussIn this section we explain the mathematical and numerical connections betweenthe approach using Gaussian elimination with partial pivoting and the approach usingJordan elimination with partial pivoting. We note �rst thatJk = D�1k (In � vketk) = D�1k U�1k L�1k = D�1k L�1k U�1k ; k = 1 : n;where Uk = (In + uketk); Lk = (In + lketk); vk = uk + lk;eti uk = 0; i � k; eti lk = 0; i � k:That is, (In � vketk) is factored into two unit elementary triangular matrices, Lk andUk. Notice that Ln = U1 = In. Since LiDjUj = DjUjLi for i � j, the followingequation holds mathematically and numerically,Jk � � �J2J1 = D�1k U�1k � � �D�11 U�11 L�1k � � �L�11 ; k = 1; 2; � � � ; n; (4)as long as the aggregation order is from the right to the left. This equivalent reorderingreveals the implicit triangular factorization in the inverse method via GJE. Let L(k) =L1L2 � � �Lk, and U (k) = U1D1U2D2 � � �UkDk. Then, L = L(n) is unit lower triangularand U = U (n) is upper triangular. Computationally, the factors L and U are computed5

as in the matrix inversion method via Gaussian elimination though the factors aresaved and inversed in a di�erent way.Speci�cally, let A PA, where P is the accumulated permutation matrix resultedfrom pivoting. Apply algorithm mamip to A, and consider A(k) the matrix generatedafter step k. Partition A as A = A11 A12A21 A22 ! ;where the leading square block A11 is of order k, and apply the same partition to A(k),L̂(k) = (L(k))�1, and Û (k) = (U (k))�1. At step k of mamip not only Lk is generatedas by Gaussian elimination, but the elementary factors Uk and Dk are also generatedsimultaneously (see the column scaling statement in mamip). As soon as generated,they are applied to the n� n array which now containsA(k) = Û (k)11 L̂(k)11 Û (k)11 L̂(k)11 A11L̂(k)21 L̂(k)11 A12 + A11 ! = A�111 A�111 A11A21A�111 A22 � A21A�111 A12 ! :Note that the leading k � k block contains the inverse of A11 and the (n� k)� (n�k) trailing block contains A22 � A21A�111 A12, the Schur complement of A11 in A, asgenerated after k steps of Gaussian elimination (with partial pivoting).4 Error AnalysisAn error analysis for the inversion method via GJE is given in [12], treating theinversion as the solution of a system of linear equations with multiple right handsides. We provide an error analysis in uni�cation with the error analysis for otherinversion methods that are explicitly or implicitly connected to the LU factorizationand triangular solves.We note that if A(0) is equal to a (unit) lower triangular matrix L, mamip isnumerically equivalent to computing a right inverse of L by forward substitution, cf.Method 1 for inverting a triangular matrix in [12]. Similarly, if A(0) = U is (unit) uppertriangular, mamip computes the left inverse of U by forward substitution, cf. [17].Otherwise, in case A(0) is a full matrix, computing the inverse of A(0) can be veri�edto be equivalent to the following four steps (in comparison to the conventional inversionmethod as described in Section 1),(1) LU factorization : A(0) = LU ,(2) Triangular inversion : LX = In (forward substitution),6

(3) Triangular solve: UY = X (forward substitution),(4) (A(0))�1 = Y .This connection allows us to apply the error analysis for LU factorization and trian-gular solves. Since the identi�cation of Step 2 and Step 3 is not presented explictly inthe literature, we introduce an error analysis of the two steps, assuming L and U aregiven. We denote by ~B the computed result of a mathematical quantity B. From theerror analysis of a lower triangular solve by forward substitution, we have(L+�Lj) ~Xej = ej; j�Ljj � cnujLj; j = 1 : n;where u is the machine precision and cn is a constant of O(n), see [12, 21]. For anupper triangular solve by forward substitution, according to Peter and Wilkinson [17],we haveeti ~Y ej = eti (U +�Uij)�1 ~Xej; j�Uijj � cnujU j; i = 1 : n; j = 1 : n:Let Rx = L ~X � In. Then, ~X = L�1(In +Rx) and jRxj � cnujLjj ~Xj.Many inversion methods have connections to LU factorization. An inverse pro-cess treats L (L�1) and U (U�1) as products of elementary triangular matrices. Thedi�erence lies in the computation ordering to aggregate the elementary triangular ma-trices. For example, the aggregation ordering of mamip is equivalent to the four stepsdescribed above.A general approach for an error analysis of such an inversion method is (1) toidentify the ordering of the triangular inverse (L or U , left inverse or right inverse)and the following triangular solve (left division or right division) and (2) to (provideand) apply the error analysis for the underlying triangular solve. If the triangular solveis based on forward or backward substitution, the composition of the absolute matricesin a forward error bound depends on the composition of the triangular factors in thecomputed inverse. Thus, many inversion methods have connections to LU factorizationand can be analyzed in the same framework.5 Variants of MAMIPWe describe in this section several variants of mamip for better performance indi�erent computing environments. 7

% Input : A 2 IRn�p, n � p, with full column rank.% Output : Aggregated Jordan transformations overwritten onto A.ipiv = [1 : n];for k = 1 : p% updating the pivot columnA(:; k) = A(ipiv; k);A(:; k) = A(:; 1:k�1) � A(1 :k�1; k) + [zeros(k�1; 1);A(k:n; k)];% pivoting[abspivot; �k] = max([zeros(k�1; 1); abs(A(k:n; k))]);pivot = A(�k; k);[A(k; 1:k); A(�k; 1:k)] = swap(A(k; 1:k); A(�k; 1:k));[ipiv(k); ipiv(�k)] = swap(ipiv(k); ipiv(�k));% Jordan transformationA(:; k) = �[A(1 :k�1; k); 0; A(k+1:n; k)] = pivot;A(:; 1:k�1) = A(:; 1:k�1) + A(:; k) � A(k; 1:k�1);A(k; 1:k) = [A(k; 1:k�1); 1] = pivot;endA(:; ipiv) = A; % backward permutationFigure 3: Incremental version of mamip5.1 An Incremental Inverse AlgorithmRecall that at the end of step k�1 of mamip, 1 < k � n, we have[Gk�1 jA(k�1)jn�k+1] and �k�1;where (Gk�1; Ijn�k+1)�k�1 = B(k�1) is the product of the �rst k�1 scaled Jordantransformations with partial pivoting, and A(k�1)jn�k+1 consists of the last n�k+1 columnsof the original matrix A transformed by B(k�1). In the algorithm listed in Figure 3the k-th column of the original matrix is not updated until step k, 1 � k � n. Thesame idea is previously applied in the left-looking version of the LU factorization [9].8

% Input : A 2 IRn�n nonsingular and nb the block size.% Output : A�1 2 IRn�n overwritten onto A.ipiv = [1 : n];for k = 1 : nb : nkb = min(nb; n� k + 1);in = [k : k + kb� 1]; out = [1 :k�1; k+kb :n];[A(:; in); ibpiv] = mamip inc2(k; A(:; in));A(:; out) = A(ibpiv; out);A(out; out) = A(out; out) + A(out; in) � A(in; out);A(in; out) = A(in; in) � A(in; out);ipiv = ipiv(ibpiv);endA(:; ipiv) = A; % backward permutationFigure 4: A blocked variant of mamip5.2 Blocked AlgorithmsWe note that the incremental algorithm can be applied to a subset of the columns.In fact, we use it in the blocked algorithm listed in Figure 4 to construct a block-wise Gauss-Jordan transform. For each block of kb columns, we use the incrementalalgorithm to form the product of kb Jordan transformations with partial pivoting inthe compact form of kb columns and a permutation matrix, which is represented bya vector ibpiv. The subroutine mamip inc2 is based on the incremental algorithmwith an o�set, k, to the indexing in the partial pivoting. The rest of the matrix isthen permuted in rows accordingly and updated by the aggregated Jordan transfor-mation in Level-3 blas operations. As for the algorithmic block size, it is desirableto choose the block size big enough to reduce data migration between hierarchicalmemory levels in uni-processors. In multiprocessors with distributed memory, the dis-tribution block size plays an analogous role. On the other hand, the block size shouldbe kept small enough to keep the numerical accuracy close to that of the non-blockedalgorithm. The tradeo� or compromise between speed performance and numericalproperties varies with applications requirements.9

5.3 Parallel Implementation IssuesThe blocked algorithm can be implemented in di�erent ways for parallel computa-tion, depending on the underlying system(s) and the programming environment. Wediscuss in the following several common issues on parallel implementation and perfor-mance optimization on parallel computers with distributed memory. The advantagesof mamip are due to the fact that mamip circumvents the use of the intermediatetriangular matrices from LU factorizations.{ mamip admits a non-square mesh of nodes without complicating the program-ming. This renders an additional freedom in mesh con�guration for performanceenhancement.{ mamip allows the decoupling between algorithmic block size and the physicalpanel size for distributed data layout. Such property makes mamip free of theconstraints on data alignment or panel size posed by a software library for parallelcomputing.{ mamip can be easily implemented with variant algorithmic block size and variantpanel size, for example, for better job balancing on a cluster of heterogeneousmultiple processors.{ The communication pattern for mamip is simple. In a message-passing pro-gramming environment, the communication channels and the message lengths(except for partial pivoting) can be set up once for all, since they remain thesame throughout the algorithm.6 Performance modelTo study the theoretical performance of our parallel algorithm, we consider an n�nmatrix A distributed among a p = r � c grid of nodes, using a 2-D block scattered(BS) decomposition (see, e.g., [6]) with square block size equal to nb�nb. For thesake of simplicity, we also assume the following:� The time of a oating-point arithmetic operation is � .� The time time of transfering m oating-point numbers between any two nodesis � + �m. Here, � is the communication latency and � is the inverse of thebandwith (�� �). 10

� The time of transfering a message ofm oating-point numbers toQ nodes (broad-cast) is log(Q)(� + �m), with log(Q) = log2(Q).� r, c, and nb divide n.Our parallel algorithm is based on a block-partitioned version of mamip. In thisblocked version, matrix A is processed by blocks of nb columns. At stage k, �rstthe k-th column block of A is processed by means of mamip inc2; then, the rowpermutations required by k-th column block are further applied to blocks 1 : k�1 andk + 1 : n= nb, and these blocks are processed by means of two rank-nb updates. Theapproximate time of the stages in iteration k are the following (the lower order termsare neglected):1. Apply mamip inc2 to the columns of the current column block, A(:; k : k +nb�1):(a) Determine the pivot row: T1 = � log(r).(b) Swap the pivot row and the current row: T2 = �+ � nb.(c) Broadcast the pivot row to the rest of nodes: T3 = (� + � nb) log(r)(d) Update the local column block: T4 = 2� nb n=r.2. Apply transformations to the rest of the matrix.(a) Broadcast pivot information of k-th column block: T5 = (� + � nb) log(c).(b) Swap the corresponding rows: T6 = � + (n� nb)=c�.(c) Broadcast information for the rank-nb update: T7 = (� + n=r nb �) log(c)(broadcast k-th block) and T8 = (�+(n�nb)=c nb �) log(r) (broadcast k-thblock row).(d) Rank-nb update of the rest of the matrix: T9 = 2� nb n(n� nb)=p.The previous procedure is repeated for k = 1:n= nb. If no overlapping betweencommunication and computation is assumed we obtain the following timeCr�c = (T1 + T2 + � � �+ T4)n+ (T5 + T6 + � � �+ T9)n= nb;which is an upper bound of the global time of the parallel algorithm. The speed-up,or acceleration of the algorithm in r � c nodes, is thenSr�c = 2�n3=Cr�c;which shows the asymptotic convergence of Sr�c to p.11

7 Experimental ResultsWe present results for three implementations of matrix inversion:SL IGEP is part of ScaLAPACK [6] and implements the \traditional" inversionalgorithm via Gaussian elimination;SL IGJEP was coded using ScaLAPACK parallel BLAS kernels (PBLAS). It imple-ments the parallel algorithm analysed in the previous section. This implemen-tation assumes that the algorithmic block size equals the distribution block size,that all operations required to invert the current diagonal block are performedon a single node, and that the current column block exists and is updated withina single column of nodes; andPLA IGJEP was coded using PLAPACK [20]. This code has some additional features:The current column block is redistributed so that all nodes participate whenmamip inc2 is applied. This allows for better load balance during this stage ofthe algorithm. It also simpli�es the coding when the algorithmic block size is tobe larger than the distribution block size and simpli�es the addition of multiplelevels of blocking to mamip inc2 while it is being applied to the current columnblock.Performance results are given for the Cray T3E-600 (300 MHz), with all computa-tions performed in 64-bit arithmetic. Version information is given as follows:UNICOS/mk 2.0.3.10C compiler 6.0.0.0F90 compiler 3.0.2.0Assembler 2.3.0.0Cray Libs 3.0.0.0CrayTools 3.0.0.0Options -O3Streams onWe used ScaLAPACK available from netlib (version 1.5 + update (version 1.6)),with the MPIBLACS compiled for Cray T3E using Cray's MPI. The PLAPACKversion, to be released shortly as Version R.1.2, also uses MPI. We report performancemeasuring MFLOPS/sec. (millions of oating point operations per second) using anoperation count of 2n3 for matrix inversion for all versions.12

In Fig. 5, we report performance as a function of the matrix size for various num-bers of nodes. Very respectable performance is attained by all implementations: thehighly optimized massively parallel LINPACK benchmark on the Cray T3E-600 attainsaround 440 MFLOPS/node on 32 nodes, for a much larger problem (21120�21120)than we used in our measurements. In these measurements, algorithmic and distribu-tion block size of 48 was used for both SL IGEP and SL IGJEP. As expected, SL IGJEPperforms better than SL IGEP since it incurs less communication and exhibits betterload balance. For the more exible implementation PLA IGJEP we used a distributionblock size of 24 and an algorithmic block size of 96. Since an algorithmic block sizeof 96 allows local matrix-matrix multiplication to attain higher performance, asymp-totically PLA IGJEP attains better performance than either SL IGEP or SL IGJEP. Forsmaller problems, the additional cost of redistributing the current column block resultsin a modest reduction in performance.In Fig. 6(a){(c) we report performance as a function of the number of nodes, keep-ing local memory utilization constant. In this �gure, the label local NxN indicatesthat local memory use is equal to that required to locally store an NxN matrix. No-tice that as more nodes are employed, performance per node remains approximatelyconstant, indicating excellent scalability.In Fig. 6(d), we demonstrate how performance is a�ected by the distribution blocksize, nb. For the SL IGEP and SL IGJEP, smaller nb means better load balance, but alsoslower performance of the local matrix-matrix multiplication. Thus, nb = 48 turns outto be a good compromise. For PLA IGJEP, the distribution block size does not dictatethe algorithmic block size, and thus a smaller nb does not a�ect the performanceof the local matrix-matrix multiplication. Thus, for this implementation, a smallerdistribution block size yields better load-balance and better overall performance.We conclude by indicating that for the ScaLAPACK based implementations wecould have instead used the ScaLAPACK version provided by the Cray Scienti�clibrary. This version uses the shmem library, which greatly reduces communicationoverhead. In order to provide a fair comparison between PLA IGJEP and SL IGJEP,we chose to use the MPI based version of ScaLAPACK instead. Asymptotically, theperformance of either ScaLAPACK version is similar, but for small matrices, thereis a de�nitive advantage to using the shmem based version.8 Concluding RemarksWe have related the matrix inversion via Gauss-Jordan elimination with the tradi-tional matrix inversion by means of Gaussian elimination. The Gauss-Jordan approach13

