1

When balancing load in a distributed system, it is well known that the strategy of sending
each request to the least-loaded machine can behave badly if load information is old [11,
18, 21]. In such systems a “herd effect” often develops, and machines that appear to be
underutilized quickly become overloaded because everyone sends their requests to those
machines until new load information is propagated. To combat this problem, some systems

Interpreting Stale Load Information *

Michael Dahlin
Department of Computer Sciences
University of Texas at Austin
dahlin@cs.utexas.edu

UTCS Technical Report TR98-20

Abstract

In this paper we examine the problem of balancing load in a large-scale distributed
system when information about server loads may be stale. It is well known that sending
each request to the machine with the apparent lowest load can behave badly in such
systems, yet this technique is common in practice. Other systems use round-robin or
random selection algorithms that entirely ignore load information or that only use a
small subset of the load information. Rather than risk extremely bad performance on
one hand or ignore the chance to use load information to improve performance on the
other, we develop strategies that interpret load information based on its age. Through
simulation, we examine several simple algorithms that use such load interpretation
strategies under a range of workloads. Owur experiments suggest that by properly
interpreting load information, systems can (1) match the performance of the most
aggressive algorithms when load information is fresh, (2) outperform current algorithms
by as much as 60% when information is moderately old, (3) significantly outperform
random load distribution when information is older still, and (4) avoid pathological
behavior even when information is extremely old.

Introduction

*This work was supported in part by an NSF CISE grant (CDA-9624082) and grants Novell and Sun.

Dahlin was also supported by an NSF CAREER grant (9733842).



adopt randomized strategies that ignore load information or that only use a small subset of
load information, but these systems may give up the opportunity to avoid heavily loaded
machines.

Load balancing with stale information is becoming an increasingly important problem for
distributed operating systems. Many recent experimental operating systems have included
process migration facilities [2, 6, 9, 16, 17, 23, 24, 25, 26, 30| and it is now common for work-
station clusters to include production load sharing programs such as LSF [31] or DQS [10].
In addition, many network DNS servers, routers, and switches include the ability to mul-
tiplex incoming requests among equivalent servers [1, 5, 8|, and several run-time systems
for distributed parallel computing on clusters or metacomputers include modules to balance
requests among nodes [12, 14]. Server load may also be combined with locality information
for wide area network (WAN) information systems such as selecting an HTTP server or
cache [13, 22, 28]. As such systems include larger numbers of nodes or the distance between
nodes increases, it becomes more expensive to distribute up-to-date load information. Thus,
it is important for such systems to make the best use of old information.

This paper attempts to systematically develop algorithms for using old information. The
core idea is to use not only each server’s last reported load information (L;), but also to use
the age of that information (7') and an estimate of the rate at which new jobs arrive to change
that information (\). For example, under a periodic update model of load information [21]
that updates server load information every 7' seconds, clients using our algorithm calculate
the fraction of requests they should send to each server in order to equalize the load across
servers by the end of the epoch. Then, for each new request during an epoch, clients randomly
choose a server according to these probabilities.

In this paper, we devise load interpretation (LI) algorithms by analyzing the relevant queuing
systems. We then evaluate these algorithms via simulation under a range of load information
models and workloads. For our LI algorithms, if load information is fresh (e.g., T or A or both
are small), then the algorithms tend to send requests to machines that recently reported low
load, and the algorithms match the performance of aggressive algorithms while exceeding
the performance of algorithms that use random subsets of load information or pure random
algorithms that use no load information at all. Conversely, if load information is stale,
the LI algorithms tend to distribute jobs uniformly across servers and thus perform as well
as randomized algorithms and dramatically better than algorithms that naively use load
information. Finally, for load information of modest age, the LI algorithms outperform
current alternatives by as much 60%.

Other algorithms that attempt to cope with stale load information, such as those proposed
by Mitzenmacher [21], have the added benefit that by restricting the amount of load infor-
mation that clients may consider when dispatching jobs, they may reduce the amount of
load information that must be sent across the network. We examine variations of the LI
algorithms that base their decisions on similarly reduced information. We conclude that
even with severely restricted information, the algorithms that use LI can outperform those
that do not. Furthermore, modest amounts of load information allow the LI algorithms to



achieve nearly their full performance. Thus, LI decouples the question of how much load
information should be used from the question of how to interpret that information.

The primary disadvantage of our approach is that it requires clients to estimate or be told
the job arrival rate (A) and the age of load information (7). If this information is not avail-
able, or if clients misestimate these values, our algorithms can have poor performance. We
note, however, that although other algorithms that make use of stale load information do
not explicitly track these factors, those algorithm do implicitly assume that these parame-
ters fall within the range of values for which load information can be considered “fresh;” if
the parameters fall outside of this range, those algorithms can perform quite badly. Con-
versely, because our algorithms explicitly include these parameters, they gracefully degrade
as information becomes relatively more stale.

The rest of this paper proceeds as follows. Section 2 describes related work with a particular
emphasis on Mitzenmacher’s recent study [21], on which we base much of our methodol-
ogy and several of our system models. Section 3 introduces our models of old information
and Section 4 describes the load interpretation algorithms we use. Section 5 contains our
experimental evaluation of the algorithms, and Section 6 summarizes our conclusions.

2 Related work

Awerbuch et. al [3] examined load balancing with very limited information. However, their
model differs considerably from ours. In particular, they focus on the task of selecting a
good server for a job when other jobs are placed by an adversary. In our model, jobs are
placed by entities that act in their own best interest but that do not seek to interfere with
one another. This difference allows us to more aggressively use past information to predict
the future.

A number of theoretical studies [4, 7, 15, 20, 27| have suggested that load balancing algo-
rithms can often be quite effective even if the amount of information examined is severely
restricted. We explore how to combine this idea with LI in Section 5.6.

Several studies have examined the behavior of load balancing with old or limited information
in queuing studies. Eager et. al [11] found that simple strategies using limited information
worked well. Mirchandaney et. al [18, 19] found that as delay increases, random assignment
performs as well as strategies that use load information.

Several system have used the heuristic of weighing recent information more heavily than
old information. For example, the Smart Clients prototype [29] distributed network requests
across a group of servers using such a heuristic. Additionally, a common technique in process
migration facilities is to use an exponentially decaying average for to estimate load on a
machine (e.g., Loadpe, = Loadyqg * k + Loadeyrrent * (1 — k) for some k < 1). Unfortunately,
the algorithms used by these systems are somewhat ad hoc and it is not clear under what
circumstances to use these algorithms or how to set their constants. A goal of our study is



to construct a systematic framework for using old load information.

Our study most closely resembles Mitzenmacher’s work [21]. Mitzenmacher examined a
system in which arriving jobs are sent to one of several servers based on stale information
about the servers’ loads. The goal in such a system is to minimize average response time.
He examined a family of algorithms that make each server choice from small random subsets
of the servers to avoid the “herd effect” that can cause systems to exhibit poor behavior
when clients chase the apparently least loaded server. Under Mitzenmacher’s algorithm, if
there are n servers, instead of sending a request to the least loaded of the n servers, a client
randomly selects a subset of size k of the servers, and sends its request to the least loaded
server from that subset. Note that when £ = 1, this algorithm is equivalent to uniform
random selection without load information and that when k£ = n it is equivalent to sending
each request to the apparently least loaded server. In addition to the formulating these
k-subset algorithms as a solution to this problem, Mitzenmacher uses a fluid limit approach
to develop analytic models for these systems for the case when (n — o00); however, the
primary results in the study come from simulating the queuing systems, and we follow a
similar simulation methodology here.

Mitzenmacher concludes that the k = 2 version of the algorithm is a good choice in most
situations. He finds that it seldom performs significantly worse and generally performs
significantly better than the more aggressive algorithms (e.g., & = n or even the modestly
aggressive k = 3 algorithm) and that & = 2 outperforms the uniform random (k = 1)
algorithm for a wide range of update frequencies.

We believe, however, that this approach still has drawbacks. In particular, we note that as
T—the update frequency of load information—changes, the optimal value of k£ also changes.
For example, under Mitzenmacher’s periodic update model and one sample workload he
examines, k = 100 outperforms k& = 2 by more than 70% when T < 0.1, but £ = 2 quickly
becomes much better than & = 100 for larger values of 7'. Similarly, although £ = 2
outperforms £ = 1 when 7" < 36 for such a workload, the reverse is true for larger values of
T. For example, when 7" = 100, the £ = 1 algorithm is a factor of 2 better than the k = 2
variation.

We also note that under Mitzenmacher’s algorithms, the resulting arrival rate at a server
depends only on the server’s rank in the sorted list of server loads, not on the magnitude of
difference in the queue lengths between servers. Furthermore, the k — 1 least loaded servers
receive no requests at all during a phase. More generally, if servers are ordered by load, with
sp having lowest load and s,_; the highest, a given request will be sent to server s; if and
only if (1) servers sg through s; ; are not chosen as part of the random subset of k servers
and (2) server s; is chosen as part of that subset. Because the probability that any server s;
is chosen as part of the k-server subset is £, the probability that conditions (1) and (2) hold
is



