
Interpreting Stale Load Information �Michael DahlinDepartment of Computer SciencesUniversity of Texas at Austindahlin@cs.utexas.eduUTCS Technical Report TR98-20
AbstractIn this paper we examine the problem of balancing load in a large-scale distributedsystem when information about server loads may be stale. It is well known that sendingeach request to the machine with the apparent lowest load can behave badly in suchsystems, yet this technique is common in practice. Other systems use round-robin orrandom selection algorithms that entirely ignore load information or that only use asmall subset of the load information. Rather than risk extremely bad performance onone hand or ignore the chance to use load information to improve performance on theother, we develop strategies that interpret load information based on its age. Throughsimulation, we examine several simple algorithms that use such load interpretationstrategies under a range of workloads. Our experiments suggest that by properlyinterpreting load information, systems can (1) match the performance of the mostaggressive algorithms when load information is fresh, (2) outperform current algorithmsby as much as 60% when information is moderately old, (3) signi�cantly outperformrandom load distribution when information is older still, and (4) avoid pathologicalbehavior even when information is extremely old.1 IntroductionWhen balancing load in a distributed system, it is well known that the strategy of sendingeach request to the least-loaded machine can behave badly if load information is old [11,18, 21]. In such systems a \herd e�ect" often develops, and machines that appear to beunderutilized quickly become overloaded because everyone sends their requests to thosemachines until new load information is propagated. To combat this problem, some systems�This work was supported in part by an NSF CISE grant (CDA-9624082) and grants Novell and Sun.Dahlin was also supported by an NSF CAREER grant (9733842).1

adopt randomized strategies that ignore load information or that only use a small subset ofload information, but these systems may give up the opportunity to avoid heavily loadedmachines.Load balancing with stale information is becoming an increasingly important problem fordistributed operating systems. Many recent experimental operating systems have includedprocess migration facilities [2, 6, 9, 16, 17, 23, 24, 25, 26, 30] and it is now common for work-station clusters to include production load sharing programs such as LSF [31] or DQS [10].In addition, many network DNS servers, routers, and switches include the ability to mul-tiplex incoming requests among equivalent servers [1, 5, 8], and several run-time systemsfor distributed parallel computing on clusters or metacomputers include modules to balancerequests among nodes [12, 14]. Server load may also be combined with locality informationfor wide area network (WAN) information systems such as selecting an HTTP server orcache [13, 22, 28]. As such systems include larger numbers of nodes or the distance betweennodes increases, it becomes more expensive to distribute up-to-date load information. Thus,it is important for such systems to make the best use of old information.This paper attempts to systematically develop algorithms for using old information. Thecore idea is to use not only each server's last reported load information (Li), but also to usethe age of that information (T) and an estimate of the rate at which new jobs arrive to changethat information (�). For example, under a periodic update model of load information [21]that updates server load information every T seconds, clients using our algorithm calculatethe fraction of requests they should send to each server in order to equalize the load acrossservers by the end of the epoch. Then, for each new request during an epoch, clients randomlychoose a server according to these probabilities.In this paper, we devise load interpretation (LI) algorithms by analyzing the relevant queuingsystems. We then evaluate these algorithms via simulation under a range of load informationmodels and workloads. For our LI algorithms, if load information is fresh (e.g., T or � or bothare small), then the algorithms tend to send requests to machines that recently reported lowload, and the algorithms match the performance of aggressive algorithms while exceedingthe performance of algorithms that use random subsets of load information or pure randomalgorithms that use no load information at all. Conversely, if load information is stale,the LI algorithms tend to distribute jobs uniformly across servers and thus perform as wellas randomized algorithms and dramatically better than algorithms that naively use loadinformation. Finally, for load information of modest age, the LI algorithms outperformcurrent alternatives by as much 60%.Other algorithms that attempt to cope with stale load information, such as those proposedby Mitzenmacher [21], have the added bene�t that by restricting the amount of load infor-mation that clients may consider when dispatching jobs, they may reduce the amount ofload information that must be sent across the network. We examine variations of the LIalgorithms that base their decisions on similarly reduced information. We conclude thateven with severely restricted information, the algorithms that use LI can outperform thosethat do not. Furthermore, modest amounts of load information allow the LI algorithms to2

achieve nearly their full performance. Thus, LI decouples the question of how much loadinformation should be used from the question of how to interpret that information.The primary disadvantage of our approach is that it requires clients to estimate or be toldthe job arrival rate (�) and the age of load information (T). If this information is not avail-able, or if clients misestimate these values, our algorithms can have poor performance. Wenote, however, that although other algorithms that make use of stale load information donot explicitly track these factors, those algorithm do implicitly assume that these parame-ters fall within the range of values for which load information can be considered \fresh;" ifthe parameters fall outside of this range, those algorithms can perform quite badly. Con-versely, because our algorithms explicitly include these parameters, they gracefully degradeas information becomes relatively more stale.The rest of this paper proceeds as follows. Section 2 describes related work with a particularemphasis on Mitzenmacher's recent study [21], on which we base much of our methodol-ogy and several of our system models. Section 3 introduces our models of old informationand Section 4 describes the load interpretation algorithms we use. Section 5 contains ourexperimental evaluation of the algorithms, and Section 6 summarizes our conclusions.2 Related workAwerbuch et. al [3] examined load balancing with very limited information. However, theirmodel di�ers considerably from ours. In particular, they focus on the task of selecting agood server for a job when other jobs are placed by an adversary. In our model, jobs areplaced by entities that act in their own best interest but that do not seek to interfere withone another. This di�erence allows us to more aggressively use past information to predictthe future.A number of theoretical studies [4, 7, 15, 20, 27] have suggested that load balancing algo-rithms can often be quite e�ective even if the amount of information examined is severelyrestricted. We explore how to combine this idea with LI in Section 5.6.Several studies have examined the behavior of load balancing with old or limited informationin queuing studies. Eager et. al [11] found that simple strategies using limited informationworked well. Mirchandaney et. al [18, 19] found that as delay increases, random assignmentperforms as well as strategies that use load information.Several system have used the heuristic of weighing recent information more heavily thanold information. For example, the Smart Clients prototype [29] distributed network requestsacross a group of servers using such a heuristic. Additionally, a common technique in processmigration facilities is to use an exponentially decaying average for to estimate load on amachine (e.g., Loadnew = Loadold � k + Loadcurrent � (1� k) for some k < 1). Unfortunately,the algorithms used by these systems are somewhat ad hoc and it is not clear under whatcircumstances to use these algorithms or how to set their constants. A goal of our study is3

to construct a systematic framework for using old load information.Our study most closely resembles Mitzenmacher's work [21]. Mitzenmacher examined asystem in which arriving jobs are sent to one of several servers based on stale informationabout the servers' loads. The goal in such a system is to minimize average response time.He examined a family of algorithms that make each server choice from small random subsetsof the servers to avoid the \herd e�ect" that can cause systems to exhibit poor behaviorwhen clients chase the apparently least loaded server. Under Mitzenmacher's algorithm, ifthere are n servers, instead of sending a request to the least loaded of the n servers, a clientrandomly selects a subset of size k of the servers, and sends its request to the least loadedserver from that subset. Note that when k = 1, this algorithm is equivalent to uniformrandom selection without load information and that when k = n it is equivalent to sendingeach request to the apparently least loaded server. In addition to the formulating thesek-subset algorithms as a solution to this problem, Mitzenmacher uses a uid limit approachto develop analytic models for these systems for the case when (n ! 1); however, theprimary results in the study come from simulating the queuing systems, and we follow asimilar simulation methodology here.Mitzenmacher concludes that the k = 2 version of the algorithm is a good choice in mostsituations. He �nds that it seldom performs signi�cantly worse and generally performssigni�cantly better than the more aggressive algorithms (e.g., k = n or even the modestlyaggressive k = 3 algorithm) and that k = 2 outperforms the uniform random (k = 1)algorithm for a wide range of update frequencies.We believe, however, that this approach still has drawbacks. In particular, we note that asT|the update frequency of load information|changes, the optimal value of k also changes.For example, under Mitzenmacher's periodic update model and one sample workload heexamines, k = 100 outperforms k = 2 by more than 70% when T < 0:1, but k = 2 quicklybecomes much better than k = 100 for larger values of T . Similarly, although k = 2outperforms k = 1 when T < 36 for such a workload, the reverse is true for larger values ofT . For example, when T = 100, the k = 1 algorithm is a factor of 2 better than the k = 2variation.We also note that under Mitzenmacher's algorithms, the resulting arrival rate at a serverdepends only on the server's rank in the sorted list of server loads, not on the magnitude ofdi�erence in the queue lengths between servers. Furthermore, the k � 1 least loaded serversreceive no requests at all during a phase. More generally, if servers are ordered by load, withs0 having lowest load and sn�1 the highest, a given request will be sent to server si if andonly if (1) servers s0 through si�1 are not chosen as part of the random subset of k serversand (2) server si is chosen as part of that subset. Because the probability that any server sjis chosen as part of the k-server subset is kn , the probability that conditions (1) and (2) holdis
4

