
Experimental Evaluation of QSM,
a Simple Shared-Memory Model�

Brian Grayson, Michael Dahlin, and Vijaya Ramachandran
University of Texas at Austin

bgrayson@ece.utexas.edu, dahlin@cs.utexas.edu, vlr@cs.utexas.edu
UTCS Technical Report TR98-21

November 22, 1998

Abstract

Parallel programming models should attempt to satisfy two conflicting goals. On one hand, they
should hide architectural details so that algorithm designers can write simple, portable programs. On
the other hand, models must expose architectural details sothat designers can evaluate and optimize the
performance of their algorithms. Using both microbenchmarks and several representative algorithms,
we experimentally examine the trade-offs made by a simple shared-memory model, QSM, to address
this dilemma. The results indicate that analysis under the QSM model yields quite accurate results
for reasonable input sizes and that algorithms developed under QSM achieve performance close to that
obtainable through more complex models, such as BSP and LogP.

1 Introduction

A key goal of parallel language, compiler, and architecturedesigners is to support a programming model
in which programmers and algorithm designers write high level descriptions of their algorithms that are
then compiled into code optimized for different architectures. Designing a programming model to support
that goal is challenging. On one hand, if the model is too abstract, it may hide important aspects of par-
allel architectures and cause algorithm designers to make poor design decisions. On the other hand, if the
model is too detailed, it may complicate the programmer’s task, and it may drive the programmer to write
unportable code that optimizes performance on one architecture while making it hard for the compiler to
optimize performance on other architectures. One step in resolving this dilemma is to develop a contract
between programmers and compilers that specifies which architectural details should be explicitly handled
in the high-level, architecture-neutral specification of an algorithm and which should be handled by its low-
level architecture-specific implementation. This paper examines the trade-offs made by the Queuing Shared
Memory (QSM) model [11]. Earlier theoretical analyses havesuggested that despite the model’s simplic-
ity, it provides a good basis for designing high-performance algorithms. This paper takes an experimental
approach to understanding under what conditions this modelwill yield good results.�This work was supported in part by an NSF CISE grant (CDA-9624082) and grants from Intel, Novell, and Sun. Dahlin was
also supported by an NSF CAREER grant (9733842). Grayson wasalso supported in part by an NSF Graduate Fellowship.

1



The QSM model provides a simple shared memory abstraction that attempts to reveal the most important
aspects of parallel architectures to algorithm designers while hiding architectural details that have secondary
performance impact and that interfere with portability. QSM provides a shared memory abstraction to
simplify algorithm description and analysis, it models local memory and limited remote memory bandwidth
to encourage locality, and it uses a bulk synchronous style to give the compiler1 freedom to reorder, pipeline,
and group messages to hide latency and per-message overhead. On the one hand, the QSM can be considered
a more realistic version of the PRAM [9], since (1) it is shared-memory, (2) it models bandwidth limitations,
and (3) it supports bulk-synchrony, thus avoiding excessive synchronizations. On the other hand, the QSM
can be viewed as a simplification of more detailed distributed memory models such as BSP [21] and LogP
[7] since it does not deal with the details of data layout, andit has a smaller number of parameters than these
models. The theoretical results in [11] suggest that algorithms designed on the QSM should perform just as
well on the BSP (to within a small constant factor) provided the input size is sufficiently large.

In this paper we use both simulation and measurements of actual parallel hardware to examine how well
QSM tracks machine behavior in practice. In particular, we experimentally examine several ways in which
QSM simplifies actual architectures to see if these simplifications are as benign as theory suggests. We
examine QSM’s decision to omit latency (l) and overhead (o) parameters by examining the behavior of
several representative programs and find that, as predictedby theory,programs written in a bulk-synchronous
style are insensitive to network latency and overheadas long as input sizes are large enough to permit
sufficient pipelining and batching of messages. For the architectures and programs we examine, experiments
suggest that this condition is achieved for essentially anyproblem size worth parallelizing. Finally, by
examining microbenchmarks on an SMP (a Sun Enterprise 5000), a network of workstations (a cluster of
Sun Ultra-1 workstations), and an MPP (a Cray T3E), we evaluate QSM’s strategy of using randomization
to avoid memory bank conflicts. We find that compared to a perfect memory layout with no contention, the
random layout assumed by QSM does exhibit noticeable contention, but the contention appears tolerable
even for these memory-intensive workloads, and randomization avoids the worst-case contention behavior
when performance is much worse than the ideal layout.

The next section of this paper provides more details of the QSM model and discusses the contract it implies
between programmer and compiler. Section 3 examines the performance of several representative algo-
rithms running on a simulator that lets us vary network performance to determine the impact of omitting
network latency and overhead parameters from QSM. Section 4uses a synthetic benchmark on several ac-
tual machines to quantify the impact of omitting memory bankcontention from the model. Section 5 surveys
related work, and Section 6 summarizes our conclusions.

2 QSM Model

The Queuing Shared Memory (QSM) model [11] provides a simpleshared memory abstraction that attempts
to reveal the most important aspects of parallel architectures to algorithm designers while hiding architec-
tural details that have secondary performance impact and that interfere with portability. A QSM consists of
a number of identical processors, each with its own private memory, that communicate by reading and writ-
ing shared memory. Processors execute a sequence of synchronized phases, each consisting of an arbitrary
interleaving of shared memory reads, shared memory writes,and local computation. QSM implements a1In this paper, we use the termcompiler in a broad sense to refer to the entity that translates an architecture-neutral program
description into an optimized, architecture-specific implementation. This entity may be a human, library, or a program. In any case,
the goal of our model is to make this translation a simple, mechanical process.

2



Architectural/Algorithmic Parameter Implementation contract
Explicitly Modeled Factorsp (number of processors) QSM Parameterg (gap) QSM Parameter� (memory object contention) Algorithm designer shouldmop (# of local operations) minimize max(mop; g � mrw; �)mrw (# of remote operations)

Secondary Factorsl (latency),L (barrier time) Hide latency by pipeliningo (overhead of sending messages) Use bulk synchronous style
Minimize overhead
by batching messageshr (memory bank contention) Minimize contention by
randomizing data layoutc (network congestion) Use bulk synchronous style
Limit contention by limiting
network send rate

Table 1: QSM partitions architectural and algorithmic considerations into two categories: those that should
be explicitly considered by the algorithm designer and those that should be handled by the low-level imple-
mentation.

bulk-synchronousprogramming abstraction in that (i) each processor can execute several instructions within
a phase but the values returned by shared-memory reads issued in a phase cannot be used in the same phase
and (ii) the same shared-memory location cannot be both readand written in the same phase. This bulk
synchronous model simplifies the analysis of algorithms as well as the translation of QSM descriptions into
efficient architecture-specific implementations.

Table 1 summarizes a set of parameters that may affect the performance of parallel programs and indicates
how a QSM programmer would account for those parameters. QSMessentially divides these parameters
into two groups. First, the QSM performance model explicitly accounts forp, g, �, mop, andmrw. These
parameters represent fundamental characteristics of an algorithm on nearly any parallel architecture —p,
the number of processors, represents the algorithm’s concurrency,mrw, the number of remote memory
accesses, represents its locality (or lack thereof), andmop, the number of local operations, represents its
local computation time. The parameter� represents the contention to any one remote memory object, which
is fundamental to an algorithm because such contention cannot be hidden by, for instance, clever layout
of data across banks. The key architectural parameter modeled by QSM is the gap,g, between the local
instruction rate and the remote communication rate. This parameter reflects the limited communication
bandwidth of most parallel architectures and thus encourages algorithms to exploit locality. If during a
phase, the maximum number of local operations performed by any processor ismop, the maximum number
of remote reads or remote writes by any processor ismrw, and the maximum number of readsor writes
to any remote memory location during a phase is�, QSM charges a time cost for that phase of max(mop,g �mrw, �). A related model, the s-QSM (symmetric QSM) charges a time cost of max (mop, g �mrw, g ��).

QSM considers the second group of parameters in Table 1 —l, o, hr, andc — to be secondary factors
in algorithm design and contends that algorithm descriptions and analysis may generally be simplified by
ignoring these factors. In practice, parallel programs reduce the impact of these factors using standard

3



techniques: pipelining to hide latency, batching requeststo reduce overhead, and randomization to avoid
bank conflicts. Rather than complicate high-level, architecture-independent algorithm descriptions with
these routine details, QSM assumes a contract in which the compiler is responsible for using such techniques
when appropriate. In particular:� When designing a QSM algorithm, a designer may ignore network latency (l) because she may assume

that the low-level implementation will hide latency by pipelining requests. QSM’s bulk-synchronous
model facilitates this simplification by creating batches of requests that may be sent during a phase but
that will not be used until the next phase. The QSM model thus predicts thatl will not affect running
time as long as the problem is relatively large. For instance, this condition holds if(l=g) �� << W=p,
whereW is the amount of communication done by the algorithm,p is the number of processors in the
target machine, and� is the number of phases in the QSM algorithm [19]. It also holds true if a QSM
algorithm designed forp processors is mapped onto ap0 processor machine where(l=g) � p0 << p
[11]. In our experiments, we find that in practice data sets large enough to be worth parallelizing
easily meet these criteria for the algorithms and architectures we examine. Synchronization time,L,
also increases with increasing latency (under the LogP model [7], synchronization takesl=g log plog l=g ), and
QSM expects synchronization time to become insignificant under similar conditions.� When designing a QSM algorithm, a designer does not explicitly account foro, the overhead of
sending and receiving a message. Instead, the designer assumes that the compiler will take advantage
of bulk synchrony to batch requests and thereby minimize overhead. By includingg but noto in the
network performance model, QSM tells algorithm designers to focus on limiting the amount of data
sent by an algorithm, not on how many messages are used to sendthat data.� When designing a QSM algorithm, a designer does not account for the contention of remote memory
accesses to banks (hr) except when there are many accesses to a specific remote object (�). Instead,
the designer assumes that the compiler will limit the performance impact of bank conflicts by random-
izing data layout, for example by hashing remote memory addresses in hardware or software [11].
Three aspects of this model should be noted. First, randomization will not reduce conflicts when the
conflicting accesses are to a single memory address, so QSM explicitly accounts for such hot-spot
object conflicts with its� parameter. Second, this aspect of the implementation contract should not
be construed as indicating that QSM does not account for careful memory layout that improves local-
ity; QSM’s g parameter encourages algorithms to move data to their localmemories when possible.
Finally, the natural description of many algorithms provides a balanced or randomized data layout
without requiring randomization from the implementation layer; in such cases, as a performance opti-
mization the algorithm description should inform the compiler that it may safely omit randomization.� When designing a QSM algorithm, a designer does not explicitly account forc, the network con-
gestion. Brewer and Kuszmal [4] found that network congestion could significantly limit the perfor-
mance of parallel machines. QSM expects compilers to address congestion in two ways, both based
on Brewer and Kuszmal’s techniques. First, the periodic synchronizations associated with a bulk-
synchronous programming style can reduce congestion. Second, QSM expects compilers to limit the
rate at which nodes send data so that they do not overrun receiving nodes and cause congestion in the
network.

4



2.1 Comparison with other parallel architecture models

It is worthwhile to compare the QSM model to other popular models for parallel algorithm design. The
traditional model is the PRAM [15] which is a synchronous shared-memory model with unit-time com-
munication to shared-memory; different variants of this model restrict memory accesses to beexclusiveor
unit-time concurrent. While the PRAM is a simple model that aids in exposing high-level parallelism in
algorithms, its cost measure has a significant mismatch to real machines in that it ignores issues of latency,
bandwidth limitation, and memory granularity in parallel machines. As in the QSM, the latency mismatch
can be addressed by pipelining if sufficient parallel slackness is present, but the synchronous nature of the
PRAM model typically results in a larger number of phases in aPRAM algorithm for a given problem than
in a QSM algorithm, and thus results in larger latency and synchronization costs than in the QSM. Also, the
PRAM has no parameter to model bandwidth limitation, and hence the model does not encourage locality of
reference. As in the QSM, the memory granularity issue can beaddressed by hashing, provided theexclu-
sive(e.g., EREW) and not concurrent (e.g., CRCW) memory access rule is used, but the exclusive memory
access rule is more restrictive than the queuing memory access used in the QSM.

The BSP (Bulk Synchronous Parallel) [21] and the LogP [7] models each model a parallel machine asa
collection of processor-memory units with no global sharedmemory. The processors are interconnected by
a network whose performance is characterized by a gap parameter g and a latency parameterl (in LogP) or
synchronization parameterL (in BSP). The LogP model also models the per-message overhead o for sending
and receiving messages, and it limits network congestion byrequiring that no more thanl=g messages be
in transit to a given destination processor in any interval of length l. There have been several algorithms
designed and analyzed on the BSP and LogP models and their extensions (see,e.g., [1, 3, 10, 14, 16,
23]). These algorithms tend to have rather complicated performance analyses, because of the number of
parameters in the model as well as the need to keep track of theexact memory partition across the processors
at each step.

In contrast to the BSP and LogP models, the QSM has only two architectural parameters—p andg—and
it is a shared-memory model. This latter point is of importance since shared-memory has been a widely-
supported abstraction in parallel programming [17], and additionally, the architectures of many parallel
machines are either intrinsically shared-memory or support it using suitable hardware or software. Further,
as indicated earlier, the shared-memory of the QSM can be hashed onto the distributed memory, and this
strategy gives provably good performance on the BSP [11]. Itis interesting to note that there are BSP
algorithms for irregular problems that achieve good performance by randomly distributing elements across
processors (see,e.g., [3] for the multi-search problem).

In some special cases the QSM abstraction may not reveal the full power of a specific parallel architecture.
In particular, algorithms that make use of fine-grained synchronization are not a good match with QSM’s
bulk synchronous programming style. Also, all QSM communication takes place through shared memory
and all synchronization occurs at the end of phases, which isa simpler but less powerful mechanism than
communication to activate computation on remote nodes (e.g., Active Messages [22]).

3 Impact of omitting l and o
The QSM model predicts that network latencyl and per-message overheado will not impact running time
for bulk synchronous programs assuming that (1) the compiler or run time system pipelines and batches

5



messages and (2) the problem is sufficiently large to provideenough parallelism for these techniques to be
effective. In this section, we test these hypotheses by running several representative parallel programs on a
detailed simulator that lets us vary network performance.

3.1 Methodology

3.1.1 Workloads

We evaluate the performance of QSM algorithms for three fundamental problems:prefix sums(a basic
primitive for most parallel algorithms, with an algorithm that displays parallelism with very little commu-
nication),sample sort(an important algorithm with some communication), andlist ranking (the canonical
problem for evaluating performance of parallel algorithmswith large amount of irregular communication).
As suggested by the QSM model, we optimized these algorithmsto minimize computation and commu-
nication time, while keeping the number of phases small [19]. Note that we focus on providing simple
algorithms that will be effective for practical problem andmachine sizes, so our algorithms often place a
minimum size on the problem size per processor. The running times are presented for the s-QSM, which
assumes that the same gap parameter is encountered at processors and at memory.

This section summarizes the algorithms. More detailed descriptions of these algorithms can be found in the
appendix.

Prefix Sums.Thep-processor QSM prefix sums algorithm runs inO(gn=p) time with just one synchroniza-
tion whenp � pn. Each node calculates the sum of its local elements, and broadcasts it to the remaining
processors. Each processor then computes the offset for itselements, and follows that up with a computa-
tion of the correct prefix sums for the positions corresponding to its local elements. If the input is initially
distributed evenly across the processors, the running timeisO(np + gp).
Sample Sort.Thep-processor QSM sample sort algorithm is a simple one that runs in timeO(gp log n+ gnp )
and5 phases with high probability (whp) whenp � pn= log n. The algorithm uses over-sampling: it picksc log n random samples per processor for some constantc, sorts thecp logn samples and then picks a total
of p pivots by using every (c log n)th element in the sorted list of samples. Theith processor then sorts the
elements in theith ‘bucket.’

List Ranking. The list-ranking algorithm we implemented is a randomized one that, on ap-processor QSM,
runs in timeO(gn=p) time withO(log p) phaseswhp. This algorithm assigns each processor a random block
of n=p elements, and in each phase the algorithm assigns each element a random bit. During a phase each
processor eliminates those elements assigned to it whose random bit is 0 and whose successor’s random bit
is a 1. When the number of remaining elements is reduced toO(n=p) all of the elements are sent to processor
0, which then completes the forward computation using a sequential list-ranking algorithm in timeO(n=p).
A corresponding expansion phase then computes the list ranks of the eliminated elements within the same
time bounds.

For all experiments, we ran each experiment 10 times and report the average. The standard deviation is less
than 11% of the average for all of the sample sort runs, and less than 2% for all but the smallest problems
sizes for the parallel prefix and list rank runs.

6



Parameter Setting

Functional Units 4 int/4 FPU/2 load-store
Functional Unit Latency 1/1/1 cycle
Architectural Registers 32
Rename Registers unlimited
Instruction Issue Window 64
Max. Instructions Issued per Cycle4
L1 Cache Size 8KB 2-way
L1 Hit Time 1 cycle
L2 Cache Size 256KB 8-way
L2 Hit Time 3 cycles
L2 Miss Time 3 + 7 cycles
Branch Prediction Table 64K entries, 8-bit history
Subroutine Link Register Stack unlimited
Clock frequency 400 Mhz

Table 2: Architectural parameters for each node in multiprocessor.

3.1.2 Architecture

The Armadillo multiprocessor simulator [12] was used for the simulation of a distributed memory multipro-
cessor. The primary advantage of using a simulator is that itallows us to easily vary hardware parameters
such as network latency and overhead. The core of the simulator is the processor module, which models a
modern superscalar processor with dynamic branch prediction, rename registers, a large instruction window,
and out-of-order execution and retirement. For this set of experiments, the processor and memory configura-
tion parameters are set for an advanced processor in 1998, and are not modified further. Table 2 summarizes
these settings.

The simulator supports a message-passing multiprocessor model. The simulator does not include network
contention, but it does include a configurable network latency parameter. In addition, the overhead of
sending and receiving messages is included in the simulation, since the application must interact with the
network interface device’s buffers. Also, the simulator provides a hardware gap parameter to limit network
bandwidth and a per-message network controller overhead parameter.

We implemented our algorithms using a library that providesa shared memory interface in which access
to remote memory is accomplished with explicitget() andput() library calls. The library implements
these operations using a bulk-synchronous style in whichget() andput() calls merely enqueue requests
on the local node. Communication among nodes happens when the library’s sync() function is called.
During async(), the system first builds and distributes a communications plan that indicates how many
gets andputs will occur between each pair of nodes. Based on this plan, nodes exchange data in an order
designed to reduce contention and avoid deadlock. This library runs on top of Armadillo’s high-performance
message-passing library (libmvpplus).

Our system allows us to set the network’s bandwidth, latency, and per-message overhead. Table 3 sum-
marizes the default settings for these hardware parametersas well as the observed performance when we
access the network hardware through our shared memory library software. Note that the bulk-synchronous
software interface does not allow us to measure the softwareo and l values directly. The hardware primi-
tives’ performance correspond to values that could be achieved on a network of workstations (NOW) using

7



Parameter Hardware Observed Performance
Setting (HW + SW)

Gapg (Bandwidth) 3 cycles/byte (133 MB/s) 35 cycles/byte (put), 287 cycles/byte (get)
Per-message Overheado 400 cycles (1�s) N/A
Latencyl 1600 cycles (4�s) N/A
Synchronization BarrierL N/A 25500 cycles (16-processors) (64�s)

Table 3: Raw hardware performance and measured network performance (including hardware and software)
for simulated system.

a high-performance communications interface such as Active Messages [22] and high-performance network
hardware such as Myrinet [18]. Note that the software overheads are significantly higher because our im-
plementation copies data through buffers and because significant numbers of bytes sent over the network
represent control information in addition to data payload.In Section 3.3 we will describe our experiments
that vary these hardware parameters to examine the algorithms’ sensitivity to them.

3.2 Results

Theory suggests that the bulk synchronous model will allow QSM analysis to safely ignore latency as long
as there is sufficient parallelism to hide it by pipelining requests. In particular, it suggests that latency will
be dominated by other factors when(l=g) � � << W=p whereW is the amount of communication,p is the
number of processors in the target machine, and� is the number of phases in the QSM algorithm. For our
default system,l is 1600,g is 3, andp is 16. For the algorithms we examine,� ranges from 1 for prefix
sum to 4 for sample sort to (4 + 16 logp) (which is about 68 for our default 16-node machine) for list
ranking, and for the algorithms we examineW is linear withn. Thus, we would expectl to be hidden and
QSM to predict performance for problem sizes wherenp is larger than some constant times 37,000 for this
system. Assuming that the constant hidden by theO() notation is small, this analysis suggests thatl will not
significantly impact performance for problem sizes large enough to be worth parallelizing. Similarly, QSM
analysis does not account for per-message overhead becauseit assumes that overhead will be amortized by
batching requests.

Figures 1, 2, and 3 summarize the results of a set of experiments designed to test this hypothesis. In
each figure we show the measured results of running one of the algorithms and compare the measured
communication time to the communication time predicted by QSM and the more detailed BSP model. For
all of these experiments, we find that QSM predicts communication performance well whenn is reasonably
large.

We focus on predicting communication performance rather than total running time for two reasons. First,
all of the models abstract local computation in the same way,so comparisons of how the algorithms predict
local computation will not be interesting. Second, for all of the models calculating appropriate constants for
an algorithm on a particular architecture is nontrivial; imprecision at this step might overshadow the effects
we wish to examine.

Prefix. Figure 1 shows the predicted and actual performance of the parallel prefix algorithm. A QSM
analysis of the parallel prefix algorithm we implemented predicts that communication will take timeg(p�1).

8


