Experimental Evaluation of QSM,
a Simple Shared-Memory Model

Brian Grayson, Michael Dahlin, and Vijaya Ramachandran
University of Texas at Austin
bgrayson@ce. ut exas. edu, dahli n@s. ut exas. edu, vlr@s. utexas. edu
UTCS Technical Report TR98-21

November 22, 1998

Abstract

Parallel programming models should attempt to satisfy tewoflicting goals. On one hand, they
should hide architectural details so that algorithm desigitan write simple, portable programs. On
the other hand, models must expose architectural detailsasalesigners can evaluate and optimize the
performance of their algorithms. Using both microbenchwmand several representative algorithms,
we experimentally examine the trade-offs made by a simpdeeshmemory model, QSM, to address
this dilemma. The results indicate that analysis under tB&IQ@nodel yields quite accurate results
for reasonable input sizes and that algorithms developddn@SM achieve performance close to that
obtainable through more complex models, such as BSP and LogP

1 Introduction

A key goal of parallel language, compiler, and architectlgsigners is to support a programming model
in which programmers and algorithm designers write higlell@escriptions of their algorithms that are
then compiled into code optimized for different architeets Designing a programming model to support
that goal is challenging. On one hand, if the model is toorabstit may hide important aspects of par-
allel architectures and cause algorithm designers to ma&e gesign decisions. On the other hand, if the
model is too detailed, it may complicate the programmes&,tand it may drive the programmer to write
unportable code that optimizes performance on one arthitegvhile making it hard for the compiler to
optimize performance on other architectures. One stepsiolvimg this dilemma is to develop a contract
between programmers and compilers that specifies whiclitectiral details should be explicitly handled
in the high-level, architecture-neutral specification midgorithm and which should be handled by its low-
level architecture-specific implementation. This papemexes the trade-offs made by the Queuing Shared
Memory (QSM) model [11]. Earlier theoretical analyses hauvggested that despite the model’s simplic-
ity, it provides a good basis for designing high-performeaatgorithms. This paper takes an experimental
approach to understanding under what conditions this maitlglield good results.

*This work was supported in part by an NSF CISE grant (CDA-9823 and grants from Intel, Novell, and Sun. Dahlin was
also supported by an NSF CAREER grant (9733842). Graysoralsasupported in part by an NSF Graduate Fellowship.

The QSM model provides a simple shared memory abstractanattempts to reveal the most important
aspects of parallel architectures to algorithm designéikeviding architectural details that have secondary
performance impact and that interfere with portability. MD$rovides a shared memory abstraction to
simplify algorithm description and analysis, it modelsdbmemory and limited remote memory bandwidth
to encourage locality, and it uses a bulk synchronous stydéve the compilér freedom to reorder, pipeline,
and group messages to hide latency and per-message ovetiretd one hand, the QSM can be considered
a more realistic version of the PRAM [9], since (1) it is sltkreemory, (2) it models bandwidth limitations,
and (3) it supports bulk-synchrony, thus avoiding excessiinchronizations. On the other hand, the QSM
can be viewed as a simplification of more detailed distrithuteemory models such as BSP [21] and LogP
[7] since it does not deal with the details of data layout, iahds a smaller number of parameters than these
models. The theoretical results in [11] suggest that dlgors designed on the QSM should perform just as
well on the BSP (to within a small constant factor) provided input size is sufficiently large.

In this paper we use both simulation and measurements ddlguamallel hardware to examine how well
QSM tracks machine behavior in practice. In particular, wgegimentally examine several ways in which
QSM simplifies actual architectures to see if these simplifins are as benign as theory suggests. We
examine QSM'’s decision to omit latencl) @nd overheado parameters by examining the behavior of
several representative programs and find that, as predigtiéetory,programs written in a bulk-synchronous
style are insensitive to network latency and overhaadong as input sizes are large enough to permit
sufficient pipelining and batching of messages. For theiatures and programs we examine, experiments
suggest that this condition is achieved for essentially mmpblem size worth parallelizing. Finally, by
examining microbenchmarks on an SMP (a Sun Enterprise 5@00¢twork of workstations (a cluster of
Sun Ultra-1 workstations), and an MPP (a Cray T3E), we eval@5M'’s strategy of using randomization
to avoid memory bank conflicts. We find that compared to a perfeemory layout with no contention, the
random layout assumed by QSM does exhibit noticeable ctoterbut the contention appears tolerable
even for these memory-intensive workloads, and randoroizatvoids the worst-case contention behavior
when performance is much worse than the ideal layout.

The next section of this paper provides more details of th@®®del and discusses the contract it implies
between programmer and compiler. Section 3 examines tHerp@mce of several representative algo-
rithms running on a simulator that lets us vary network penfance to determine the impact of omitting
network latency and overhead parameters from QSM. Sectimed a synthetic benchmark on several ac-
tual machines to quantify the impact of omitting memory beoktention from the model. Section 5 surveys
related work, and Section 6 summarizes our conclusions.

2 QSM Model

The Queuing Shared Memory (QSM) model [11] provides a sirspé@ed memory abstraction that attempts
to reveal the most important aspects of parallel architestto algorithm designers while hiding architec-
tural details that have secondary performance impact atdrtterfere with portability. A QSM consists of
a number of identical processors, each with its own privagenary, that communicate by reading and writ-
ing shared memory. Processors execute a sequence of syizelsrphases, each consisting of an arbitrary
interleaving of shared memory reads, shared memory witas,local computation. QSM implements a

In this paper, we use the teroompilerin a broad sense to refer to the entity that translates artectire-neutral program
description into an optimized, architecture-specific iempéntation. This entity may be a human, library, or a progiamany case,
the goal of our model is to make this translation a simple,lmaatcal process.

| Architectural/Algorithmic Parameter | Implementation contract
Explicitly Modeled Factors

p (number of processors) QSM Parameter
g (gap) QSM Parameter
x (memory object contention) Algorithm designer should
mp (# Of local operations) minimize max{rep, g - My, K)

mpy (# Of remote operations)
Secondary Factors
[(latency),L (barrier time) Hide latency by pipelining
o (overhead of sending messages)| Use bulk synchronous style
Minimize overhead
by batching messages

h,- (memory bank contention) Minimize contention by
randomizing data layout
¢ (network congestion) Use bulk synchronous style

Limit contention by limiting
network send rate

Table 1: QSM partitions architectural and algorithmic ddagations into two categories: those that should
be explicitly considered by the algorithm designer andéhbst should be handled by the low-level imple-
mentation.

bulk-synchronougprogramming abstraction in that (i) each processor canuaeeveral instructions within

a phase but the values returned by shared-memory readd issa@hase cannot be used in the same phase
and (ii) the same shared-memory location cannot be bothaeddwritten in the same phase. This bulk
synchronous model simplifies the analysis of algorithms eltag the translation of QSM descriptions into
efficient architecture-specific implementations.

Table 1 summarizes a set of parameters that may affect tfempance of parallel programs and indicates
how a QSM programmer would account for those parameters. @&dntially divides these parameters
into two groups. First, the QSM performance model expliciitcounts fop, g, k, mep, andm,,,. These
parameters represent fundamental characteristics ofganithim on nearly any parallel architecture p+-
the number of processors, represents the algorithm’s caray, m..,, the number of remote memory
accesses, represents its locality (or lack thereof),7apg the number of local operations, represents its
local computation time. The parameterepresents the contention to any one remote memory objaathw
is fundamental to an algorithm because such contentionotdren hidden by, for instance, clever layout
of data across banks. The key architectural parameter eddsi QSM is the gapy, between the local
instruction rate and the remote communication rate. Thrarpater reflects the limited communication
bandwidth of most parallel architectures and thus encesradgorithms to exploit locality. If during a
phase, the maximum number of local operations performedpyeocessor isn,,, the maximum number
of remote reads or remote writes by any processen,ig, and the maximum number of reads writes

to any remote memory location during a phase,iQSM charges a time cost for that phase of mag,

g - My, k). Arelated model, the s-QSM (symmetric QSM) charges a tiose of max (nop, g - Mrw, 9 - K).

QSM considers the second group of parameters in Table [l e+h,, andc — to be secondary factors
in algorithm design and contends that algorithm descmgtiand analysis may generally be simplified by
ignoring these factors. In practice, parallel programaicedthe impact of these factors using standard

techniques: pipelining to hide latency, batching requéesteduce overhead, and randomization to avoid
bank conflicts. Rather than complicate high-level, architee-independent algorithm descriptions with
these routine details, QSM assumes a contract in which tin@iger is responsible for using such techniques
when appropriate. In particular:

¢ When designing a QSM algorithm, a designer may ignore nétlatency () because she may assume
that the low-level implementation will hide latency by plipeng requests. QSM'’s bulk-synchronous
model facilitates this simplification by creating batchésegjuests that may be sent during a phase but
that will not be used until the next phase. The QSM model tliadipts thai will not affect running
time as long as the problem is relatively large. For instatige condition holds ifl/g) -7 << W/p,
wherelV is the amount of communication done by the algoritlpris the number of processors in the
target machine, and is the number of phases in the QSM algorithm [19]. It also bidtde if a QSM
algorithm designed fop processors is mapped ont@'aprocessor machine whe(é/g) - p’ << p
[11]. In our experiments, we find that in practice data setgele&enough to be worth parallelizing
easily meet these criteria for the algorithms and architestwe examine. Synchronization tinie,
also increases with increasing latency (under the LogP hjéfeynchronization takeé{(f‘g%'/ggp), and
QSM expects synchronization time to become insignificadieusimilar conditions.

e When designing a QSM algorithm, a designer does not expliaitcount foro, the overhead of
sending and receiving a message. Instead, the designenesthat the compiler will take advantage
of bulk synchrony to batch requests and thereby minimizeheaa. By includingy but noto in the
network performance model, QSM tells algorithm designer®tus on limiting the amount of data
sent by an algorithm, not on how many messages are used torseruhta.

¢ When designing a QSM algorithm, a designer does not accoutité contention of remote memory
accesses to banka,() except when there are many accesses to a specific remott @)jelnstead,
the designer assumes that the compiler will limit the panfonce impact of bank conflicts by random-
izing data layout, for example by hashing remote memory estays in hardware or software [11].
Three aspects of this model should be noted. First, randdimizwill not reduce conflicts when the
conflicting accesses are to a single memory address, so Qi accounts for such hot-spot
object conflicts with itsx parameter. Second, this aspect of the implementation amirghould not
be construed as indicating that QSM does not account fofudanemory layout that improves local-
ity; QSM’s g parameter encourages algorithms to move data to their foealories when possible.
Finally, the natural description of many algorithms pr@sda balanced or randomized data layout
without requiring randomization from the implementatiagér; in such cases, as a performance opti-
mization the algorithm description should inform the colmpihat it may safely omit randomization.

¢ When designing a QSM algorithm, a designer does not eXpliaitcount fore, the network con-
gestion. Brewer and Kuszmal [4] found that network congestiould significantly limit the perfor-
mance of parallel machines. QSM expects compilers to asldi@sgestion in two ways, both based
on Brewer and Kuszmal's techniques. First, the periodichyanizations associated with a bulk-
synchronous programming style can reduce congestion.n8eQ5M expects compilers to limit the
rate at which nodes send data so that they do not overrurviegeiodes and cause congestion in the
network.

2.1 Comparison with other parallel architecture models

It is worthwhile to compare the QSM model to other popular glsdor parallel algorithm design. The
traditional model is the PRAM [15] which is a synchronousrskdamemory model with unit-time com-
munication to shared-memory; different variants of thisdelaestrict memory accesses todelusiveor
unit-time concurrent While the PRAM is a simple model that aids in exposing hig¥el parallelism in
algorithms, its cost measure has a significant mismatchalamachines in that it ignores issues of latency,
bandwidth limitation, and memory granularity in parallehchines. As in the QSM, the latency mismatch
can be addressed by pipelining if sufficient parallel slasksnis present, but the synchronous nature of the
PRAM model typically results in a larger number of phases RR&AM algorithm for a given problem than

in a QSM algorithm, and thus results in larger latency analsgonization costs than in the QSM. Also, the
PRAM has no parameter to model bandwidth limitation, anccheéhe model does not encourage locality of
reference. As in the QSM, the memory granularity issue caadoleessed by hashing, provided thelu-
sive(e.g, EREW) and not concurrené(g, CRCW) memory access rule is used, but the exclusive memory
access rule is more restrictive than the queuing memorysaacged in the QSM.

The BSP Bulk Synchronous Paralle[21] and the LogP [7] models each model a parallel machina as
collection of processor-memory units with no global shareimory. The processors are interconnected by
a network whose performance is characterized by a gap ptaagnend a latency parametéfin LogP) or
synchronization parametér(in BSP). The LogP model also models the per-message ovkstiensending
and receiving messages, and it limits network congestioreyiring that no more thalyg messages be

in transit to a given destination processor in any interddengthl. There have been several algorithms
designed and analyzed on the BSP and LogP models and theirsets (seee.g, [1, 3, 10, 14, 16,
23]). These algorithms tend to have rather complicatedopmdnce analyses, because of the number of
parameters in the model as well as the need to keep track ektoe memory partition across the processors
at each step.

In contrast to the BSP and LogP models, the QSM has only twtaotural parametersg-and g—and

it is a shared-memory model. This latter point is of impoc&since shared-memory has been a widely-
supported abstraction in parallel programming [17], anditaahally, the architectures of many parallel
machines are either intrinsically shared-memory or sugpasing suitable hardware or software. Further,
as indicated earlier, the shared-memory of the QSM can beelagnto the distributed memory, and this
strategy gives provably good performance on the BSP [11]s imteresting to note that there are BSP
algorithms for irregular problems that achieve good penmce by randomly distributing elements across
processors (see,g, [3] for the multi-search problem).

In some special cases the QSM abstraction may not reveallti@ofver of a specific parallel architecture.

In particular, algorithms that make use of fine-grained byogization are not a good match with QSM’s

bulk synchronous programming style. Also, all QSM commatién takes place through shared memory
and all synchronization occurs at the end of phases, whiahsimpler but less powerful mechanism than
communication to activate computation on remote nodeg, @Active Messages [22]).

3 Impact of omitting [and o

The QSM model predicts that network latericgnd per-message overheadvill not impact running time
for bulk synchronous programs assuming that (1) the compileéun time system pipelines and batches

messages and (2) the problem is sufficiently large to prostarigh parallelism for these techniques to be
effective. In this section, we test these hypotheses byimgrseveral representative parallel programs on a
detailed simulator that lets us vary network performance.

3.1 Methodology
3.1.1 Workloads

We evaluate the performance of QSM algorithms for three domehtal problemsprefix sumga basic
primitive for most parallel algorithms, with an algorithinat displays parallelism with very little commu-
nication),sample sor{an important algorithm with some communication), distiranking (the canonical
problem for evaluating performance of parallel algorithm#h large amount of irregular communication).
As suggested by the QSM model, we optimized these algoritionmsinimize computation and commu-
nication time, while keeping the number of phases small.[19bte that we focus on providing simple
algorithms that will be effective for practical problem amdchine sizes, so our algorithms often place a
minimum size on the problem size per processor. The runiingstare presented for the s-QSM, which
assumes that the same gap parameter is encountered asprecasd at memory.

This section summarizes the algorithms. More detailedrgesgms of these algorithms can be found in the
appendix.

Prefix Sums.Thep-processor QSM prefix sums algorithm rungityn/p) time with just one synchroniza-
tion whenp < /n. Each node calculates the sum of its local elements, anditasts it to the remaining
processors. Each processor then computes the offset feeitsents, and follows that up with a computa-
tion of the correct prefix sums for the positions correspogdo its local elements. If the input is initially
distributed evenly across the processors, the runningiﬁr@é% + gp).

Sample Sort. Thep-processor QSM sample sort algorithm is a simple one thatinameO(gp log n—l—%)

and5 phases with high probabilityshp) whenp < y/n/logn. The algorithm uses over-sampling: it picks
clogn random samples per processor for some congtastrts thecp log n samples and then picks a total
of p pivots by using everydlog n)th element in the sorted list of samples. Tikie processor then sorts the
elements in théth ‘bucket.’

List Ranking. The list-ranking algorithm we implemented is a randomized that, on a-processor QSM,
runs in timeO(gn/p) time with O(log p) phasesvhp. This algorithm assigns each processor a random block
of n/p elements, and in each phase the algorithm assigns eachntlamendom bit. During a phase each
processor eliminates those elements assigned to it whodemabit is 0 and whose successor’s random bit
isa 1. When the number of remaining elements is reducédtgp) all of the elements are sent to processor
0, which then completes the forward computation using aesatipl list-ranking algorithm in timé&(n/p).

A corresponding expansion phase then computes the liss afrtke eliminated elements within the same
time bounds.

For all experiments, we ran each experiment 10 times andtrdpoaverage. The standard deviation is less
than 11% of the average for all of the sample sort runs, argithes 2% for all but the smallest problems
sizes for the parallel prefix and list rank runs.

Parameter | Setting |

Functional Units 4 int/4 FPU/2 load-store
Functional Unit Latency 1/1/1 cycle
Architectural Registers 32

Rename Registers unlimited

Instruction Issue Window 64

Max. Instructions Issued per Cycle4

L1 Cache Size 8KB 2-way

L1 Hit Time 1 cycle

L2 Cache Size 256KB 8-way

L2 Hit Time 3 cycles

L2 Miss Time 3+ 7cycles

Branch Prediction Table 64K entries, 8-bit history
Subroutine Link Register Stack | unlimited

Clock frequency 400 Mhz

Table 2: Architectural parameters for each node in multipssor.

3.1.2 Architecture

The Armadillo multiprocessor simulator [12] was used far #imulation of a distributed memory multipro-
cessor. The primary advantage of using a simulator is thaboitvs us to easily vary hardware parameters
such as network latency and overhead. The core of the sionigathe processor module, which models a
modern superscalar processor with dynamic branch predjattname registers, a large instruction window,
and out-of-order execution and retirement. For this sexpéements, the processor and memory configura-
tion parameters are set for an advanced processor in 1998ramot modified further. Table 2 summarizes
these settings.

The simulator supports a message-passing multiprocessaelmThe simulator does not include network
contention, but it does include a configurable network legeparameter. In addition, the overhead of
sending and receiving messages is included in the simalagince the application must interact with the
network interface device’s buffers. Also, the simulatasypdes a hardware gap parameter to limit network
bandwidth and a per-message network controller overheargder.

We implemented our algorithms using a library that provideshared memory interface in which access
to remote memory is accomplished with expligit () andput () library calls. The library implements
these operations using a bulk-synchronous style in wheth() andput () calls merely enqueue requests
on the local node. Communication among nodes happens whdibthry’s sync() function is called.
During async() , the system first builds and distributes a communicatioas ftat indicates how many
get s andput s will occur between each pair of nodes. Based on this platesiexchange data in an order
designed to reduce contention and avoid deadlock. Tharitbuns on top of Armadillo’s high-performance
message-passing libraryi(bmvppl us).

Our system allows us to set the network’s bandwidth, lateanog per-message overhead. Table 3 sum-
marizes the default settings for these hardware paramasersll as the observed performance when we
access the network hardware through our shared memoryyiboftware. Note that the bulk-synchronous
software interface does not allow us to measure the softwarel! values directly. The hardware primi-
tives’ performance correspond to values that could be aetlien a network of workstations (NOW) using

Parameter Hardware Observed Performance
Setting (HW + SW)
Gapyg (Bandwidth) 3 cycles/byte (133 MB/s] 35 cycles/byte (put), 287 cycles/byte (get)
Per-message Overhead | 400 cycles (1us) N/A
Latencyl 1600 cycles (4:s) N/A
Synchronization Barrief, | N/A 25500 cycles (16-processors) (64)

Table 3: Raw hardware performance and measured networrpenhce (including hardware and software)
for simulated system.

a high-performance communications interface such as Abdfigssages [22] and high-performance network
hardware such as Myrinet [18]. Note that the software owatheare significantly higher because our im-
plementation copies data through buffers and becausdisagrii numbers of bytes sent over the network
represent control information in addition to data paylobdSection 3.3 we will describe our experiments
that vary these hardware parameters to examine the alg@ritensitivity to them.

3.2 Results

Theory suggests that the bulk synchronous model will alld@Manalysis to safely ignore latency as long
as there is sufficient parallelism to hide it by pipelininguests. In particular, it suggests that latency will
be dominated by other factors whéliig) - 7 << W/p whereW is the amount of communicatiop,is the
number of processors in the target machine, afglthe number of phases in the QSM algorithm. For our
default system/ is 1600,g is 3, andp is 16. For the algorithms we examine,ranges from 1 for prefix
sum to 4 for sample sort to (4 + 16 lgg (which is about 68 for our default 16-node machine) for list
ranking, and for the algorithms we examiré is linear withn. Thus, we would expedtto be hidden and
QSM to predict performance for problem sizes whéris larger than some constant times 37,000 for this
system. Assuming that the constant hidden by@ignotation is small, this analysis suggests thaill not
significantly impact performance for problem sizes largeugih to be worth parallelizing. Similarly, QSM
analysis does not account for per-message overhead betassemes that overhead will be amortized by
batching requests.

Figures 1, 2, and 3 summarize the results of a set of expetardasigned to test this hypothesis. In
each figure we show the measured results of running one oflgoeitams and compare the measured
communication time to the communication time predicted I8Mand the more detailed BSP model. For
all of these experiments, we find that QSM predicts commtioicgerformance well when is reasonably
large.

We focus on predicting communication performance rathan tiotal running time for two reasons. First,
all of the models abstract local computation in the same s@gomparisons of how the algorithms predict
local computation will not be interesting. Second, for dlilee models calculating appropriate constants for
an algorithm on a particular architecture is nontrivialpimecision at this step might overshadow the effects
we wish to examine.

Prefix. Figure 1 shows the predicted and actual performance of tralglaprefix algorithm. A QSM
analysis of the parallel prefix algorithm we implementedprts that communication will take timgp—1).

8

