Emulations Between QSM, BSP and LogP:
A Framework for General-Purpose Parallel Algorithm Design®

Vijaya Ramachandrdn Brian Graysoh Michael Dahliri
November 23, 1998

UTCS Technical Report TR98-22

Abstract

We present work-preserving emulations with small slowdbe&tween LogP and two other parallel
models: BSP and QSM. In conjunction with earlier work-presg emulations between QSM and BSP
these results establish a close correspondence betwesertltinee general-purpose parallel models. Our
results also correct and improve on results reported eantieemulations between BSP and LogP. In
particular we shed new light on the relative power of stgliimd nonstalling LogP models.

The QSM is a shared-memory model with only two parametersthe number of processors, and
g, a bandwidth parameter. These features of the QSM make ihaeogent model for parallel algorithm
design, and the simple work-preserving emulations of QSMB8P and LogP show that algorithms
designed on the QSM will map well on to these other modelss phésents a strong case for the use of
QSM as the model of choice for parallel algorithm design.

We present QSM algorithms for three basic problems — prefiasssgample sort and list ranking. Us-
ing appropriate cost measures, we analyze the performditicese algorithms and describe simulation
results. These results suggest that QSM analysis will prattjorithm performance quite accurately for
problem sizes that arise in practice.

1 Introduction

There is a vast amount of literature on parallel algorithorsvarious problems. However, algorithms de-
veloped using traditional approaches on PRAM and fixed<dotmect networks do not map well to real
machines. In recent years sevegaheral-purpose parallel modelsave been proposed — BSP [24], LogP
[6], QSM and s-QSM [10]. These models attempt to capture dydfdatures of real machines while retain-
ing a reasonably high-level programming abstraction. @#models, the QSM and s-QSM models are the
simplest because each has only 2 parameters and becausedtsgyared-memory, which is generally more
convenient than message passing for developing parajjetitims.

In this paper we first provide two strong justifications foillizing the QSM models for developing
general-purpose parallel algorithms:

*This work was supported in part by an NSF CISE grant (CDA-8824, and grants from Intel, Novell, and Sun.

1”Dept. of Computer Sciences, Univ. of Texas, Austin, TX 78 Eail: vl r @s. ut exas. edu

iDept. of ECE, Univ. of Texas, Austin, TX 78712. Emaligr ayson@ce. ut exas. edu. Also supported in part by an
NSF Graduate Fellowship.

$Dept. of Computer Sciences, Univ. of Texas, Austin, TX 787&nail: dahl i n@s. ut exas. edu. Also supported in
part by NSF CAREER grant 9733842.

1. We present work-preserving emulations with only modpsty{og) slowdown between the LogP
model and the other 3 models. These results indicate thdbthremodels are more or less inter-
changeable for the purpose of algorithm design. An emuldsaovork-preserving if the processor-
time bound on the emulating machine is the same as that ondlbine being emulated, to within
a constant factor. The slowdown of the emulation is the ratithe number of processors on the
emulated machine to the number on the emulating machinecaiyp the emulating machine has a
somewhat smaller number of processors and takes propateigrionger to execute. For many situa-
tions of practical interest, both the original algorithnmdahe emulation would be mapped to an even
smaller number of physical processors and thus would ruhinvihe same time bound to within a
constant factor.

The only mis-match we have is between the ‘stalling’ and Staling’ LogP models. Here we show
that an earlier result claimed in [4] is erroneous by givingoanterexample to their claim. Work-
preserving emulations between BSP, QSM and s-QSM werergegsearlier in [10, 20].

2. The emulations of s-QSM and QSM on the other models are gimtple. Conversely, the reverse em-
ulations — of BSP and LogP on shared-memory — are more indolUbe difference is mainly due to
the ‘message-passing’ versus ‘shared-memory’ modes efaitigy memory. Although message pass-
ing can easily emulate shared memory, the known work-preggemulations for the reverse require
sorting as well as ‘multiple compaction.” Hence, althoughlsemulations are efficient since they are
work-preserving with only logarithmic slowdown, the algbbms thus derived are fairly complicated.

Since both message-passing and shared-memory are wiskdyhu practice, we suggest that a high-
level general-purpose model should be one that maps on toilet simple and efficient way. The QSM
and s-QSM have this feature. Additionally, these two motielse a smaller number of parameters than
LogP or BSP, and they do not have to keep track of the disatbaotemory layout.

To facilitate using QSM or s-QSM for designing general-fusg parallel algorithms, we develop a
suitable cost metric for such algorithms and evaluate s¢aégorithms both analytically and experimentally
against this metric. The metric asks algorithms to (1) mim@work, (2) minimize the number of ‘phases’
(defined in the next section), and (3) maximize parallelisohject to the above requirements. In the rest
of the paper we present QSM algorithms for prefix sums, sasgie and list ranking, and we analyze
them under this cost metric. We also describe simulationlte$or these algorithms that indicate that the
difference between the BSP and QSM cost metrics is smallhese algorithms for reasonable problem
sizes.

Several of the algorithms we present are randomized. Wesayllthat an algorithmuns in timet whp
in n if the probability that the time exceedss less thari/n¢, for some constant > 0.

The rest of this paper is organized as follows. Section 2igesvbackground on the models examined
in this paper and Section 3 presents our emulation resuéistidd 4 presents a cost metric for QSM and
describes some basic algorithms under this metric. Seé6tidascribes experimental results for the three
algorithms and Section 6 summarizes our conclusions.

2 General-purpose Parallel Models

In this section, we briefly review the BSP, LogP, and QSM madalsummary of earlier emulation results
can be found in the appendix.

BSP Model. The Bulk-Synchronous Parallel (BSP) model [24] consistp pfocessor/memory compo-
nents that communicate by sending point-to-point messages interconnection network supporting this

2

communication is characterized by a bandwidth paramed@d a latency parametér A BSP computation
consists of a sequence of “supersteps” separated by butkgymizations. In each superstep the processors
can perform local computations and send and receive a seésgages. Messages are sent in a pipelined
fashion, and messages sent in one superstep will arrivetprtbe start of the next superstep. Itis assumed
that in each superstep messages are sent by a processoohatestate at the start of the superstep. The
time charged for a superstep is calculated as follows. «;dbe the amount of local work performed by
processot in a given superstep and lef (r;) be the number of messages sent (received) in the superstep
by processoi. Let hy = max}_; s;, hy = max;_; r;, andw = max,_; w;. Leth = max(hs, h,); b is the
maximum number of messages sent or received by any prodessw superstep, and the BSP is said to
route anh-relation in this superstep. Theost T', of the superstep is defined to Be= max(w, g - h, L).

The time taken by a BSP algorithm is the sum of the costs ofrtlieidual supersteps in the algorithm.

LogP Model. The LogP model [6] consists gf processor/memory components communicating with
point-to-point messages. It has the following parameters.

Latencyl: Time taken by network to transmit a message from one procégssanother is at mogt

Gapg: A processor can send or receive a message no faster thaewergg units of time.

Capacity constraintA receiving processor can have no more tfigfy | messages in transit to it.

Overheadv: To send or receive a message, a processor spamuits of time to transfer the message
to or from the network interface; during this period of tinte tprocessor cannot perform any other
operation.

If the number of messages in transit to a destination process [//g], then a processor that needs to
send a message tostallsand does not perform any operation until it can the message.

QSM and s-QSM models. The Queuing Shared Memory (QSM) model [10] consists of a rermabiden-
tical processors, each with its own private memory, thatroomicate by reading and writing shared mem-
ory. Processors execute a sequence of synchronized pkasésconsisting of an arbitrary interleaving of
shared memory reads, shared memory writes, and local catiggut QSM implements bulk-synchronous
programming abstraction in that (i) each processor canutgeseveral instructions within a phase but the
values returned by shared-memory reads issued in a phasetdaused in the same phase and (ii) the
same shared-memory location cannot be both read and wirittee same phase.

Concurrent reads or writes (but not both) to the same shamrdery location are permitted in a phase.
In the case of multiple writers to a locatian an arbitrary write ta: succeeds.

The maximum contentioof a QSM phase is the maximum, over all locatiansof the number of
processors reading or the number of processors writing A phase with no reads or writes is defined to
have maximum contention one.

Consider a QSM phase with maximum contentioriet m,, be the maximum number of local opera-
tions performed by any processor in this phase, anthjgt be the maximum number of read and write re-
quests to shared memory issued by any processor. Thémiheostor the phase isnax(mop, g - My, k).
Thetime of a QSM algorithm is the sum of the time costs for its phasd®e Work of a QSM algorithm is
its processor-time product.

The s-QSM Symmetric QS)Ms a QSM in which the time cost for a phaseiiax(mep, g - Myrw, g - K),

i.e., the gap parameter is applied to the accesses at mesamglleas to memory requests issued at proces-
sors.

| Slowdown of Work-Preserving Emulations(sublogarithmic factors have been rounded up for ease pfadis |

Emulated Model Emulating Model

(p processors) BSP | LogP (stalling) | s-QSM] QSM
BSP O(log*p + (I/g)log”p) O([E2]) | O(T=ELE))
LogP (nonstalling) 1 (det.) O([£182]) | | | O([£1%&2])
s-QSM O((L/g) + logp) O(log*p + (I/g)1og” p) 1 (det.)
QSM O((L/g) +glogp) | |O(log" p+ (I/g)log’p+g-logp) | | O(g) (det)

Table 1: All results are randomized and hold whp except those markedet., which are deterministic
emulations. Results in which the LogP model is either thelaed or the emulating machine are new
results that appear boxed in the table and are reported is tlziper. (For exact expressions, including sub-
logarithmic terms, please see the text of the paper.) Thairéng results are in [10, 20].

1This result is presented in [4] but it is stated there errosBothat it holds for stalling LogP programs. We provide amerexample.

The particular instance of the QSM model in which the gap mpatar,g, equals 1 is the Queue-Read
Queue-Write (QRQW) PRAM model defined in [7].

3 Emulation Results

The results on work-preserving emulations between modelshulated in Table 1 with new results printed
within boxes. In this section we focus on three aspects detlgnulations. First, we develop new, work-
preserving emulations of QSM or BSP on LogP; previously km@mnulations [4] required sorting and
increased both time and work by a logarithmic factor. Seceraprovide new analysis of the known em-
ulation of LogP on BSP [4]; we provide a counter-example ® ¢kaim that this emulation holds for the
stalling LogP model, and we observe that the original nonkvpreserving emulation may be trivially ex-
tended to be work-preserving. Third, we discuss the fadtkhawn emulations of message passing on
shared memory require sorting and multiple-compactiompizating emulations of BSP or LogP algo-
rithms on shared memory.

We focus onwork-preservingemulations. An emulation is work-preserving if the proocedsme bound
on the emulating machine is the same as that on the maching bsiulated, to within a constant factor.
The ratio of the running time on the emulating machine to theing time on the emulated machine is
the slowdownof the emulation. Typically, the emulating machine has allemaumber of processors and
takes proportionately longer to execute. For instancesiden the entry in Table 1 for the emulation of
s-QSM on BSP. It states that there is a randomized work-priegeemulation of s-QSM on BSP with a
slowdown ofO(L/g + logp). This means that, given@processor s-QSM algorithm that runs in time
(and hence with workw = p - t), the emulation algorithm will map theprocessor s-QSM algorithm on to
ap'-processor BSP, for any < p/((L/g) + logp), to run on the BSP in timé& = O(t - (p/p’)) whp in
p. Note that if sufficient parallelism exists, for a machinghwyi physical processors, one would typically
design the BSP algorithm aB((L/g) + log p) - p) or more processors, and then emulate the processors in
this BSP algorithm on thg physical processors. In such a case, the performance ofSReaRjorithm o
processors and the performance of the QSM emulatigncessors would be within a constant factor of
each other. Since large problems are often the ones wordtigdering, we expect this situation to be quite
common in practice.

3.1 Work-Preserving Emulations of QSM and BSP on LogP

We now sketch our results for emulating BSP, QSM and s-QSMagPLOur emulation is randomized, and
is work-preserving with polylog slowdown. In the next sutigen, we describe a slightly more complex
randomized emulation that uses sorting (with sampling) whith reduces the slowdown by slightly less
than a logarithmic factor.

Fact 3.1 [17] The following two problems can be computed in ti(ﬂ@[%‘g"&%}) on p processors under
the LogP model.

1. Barrier synchronization on the LogP processors.

2. The sum of values, stored one per processor.

We will denote the above time to compute barrier synchrdimnaand the sum op values on thep-
processor LogP by (p).

Theorem 3.1 Suppose we are given an algorithm to routefarelation on ap-processor LogP while sat-
isfying the capacity constraint in tim@(g - (h + H(p)) + [), when the value ok is known in advance.
Then,

1. There is a work-preserving emulation gi-g@rocessor QSM on LogP with slowdowtg - log p+log? p+

(H(p) + B(p)) - pepks) whp inp.
2. There is a work-preserving emulation gi-@rocessor s-QSM and BSP on LogP with slowdéWhvg? p+

(H(p) + B(p)) - perks) whp inp.

Proof: We first describe the emulation algorithm, and then proveitlas the stated performance.

Algorithm for Emulation on LogP:

I. For the QSM emulation we map the QSM (or s-QSM) processofsmmly among the LogP proces-
sors, and we hash the QSM (or s-QSM) memory on the LogP prasess that each shared-memory
location is equally likely to be assigned to any of the Logkponents. For the BSP emulation we
map the BSP processors uniformly among the LogP processdrsha associated portions of the
distributed memory to the LogP processors.

II. We route the messages to destination LogP processors formpbase or superstep while satisfying
the capacity constraint as follows:

1. Determine a good upper bound on the valug.of
2. Route the: relation while satisfying the capacity constraintOdig - (h + H(p)) + 1) time.
3. Execute a barrier synchronization on the LogP process@p$B(p)) time.

To complete the description of the algorithm, we provideiguFe 1 a method for performing step Il.1 in
the above algorithm. To estimatethe maximum number of messages sent or received by anygsarcéhe
algorithm must estimate the maximum number of messageweedey any processor, since the maximum
sent (naxsend) is known. The algorithm does this by selecting a small ramdabset of the messages to
be sent and determining their destinations. The size oftltiset is gradually increased until either a good
upper bound on the maximum number of messages to be recsivat/lprocessor is obtained or this value
is determined to be less thamxsend.

Claim 3.1 The algorithm for Step I1.1 runs in tim@(g log? p + (H(p) + B(p)) - (log p)/ log log p) whp,
and whp it returns a value fok that is(7) an upper bound on the correct valuefgfand (i:) within a factor
of 2 of the correct value df.

mazsend := maximum number of messages to be sent by any LogP processor
m := total number of messages to be sent by all LogP processors
g:=1/m

pi=1
repeat
pfor each processato
q:=gq-logp;
Select each message with probabiljtand send selected messages to
destination withh = p - log p;
w1 := max. number of messages received by any processor;
rofp
until ¢ > (2log p)/maxsend or p > logp
h = max(2u/q, mazsend)

Figure 1: Algorithm for Step Il.1 of the algorithm for emutat on LogP.

Proof: The correctness of the algorithm follows from the followialgservations, which can be derived
using Chernoff bounds:

1. If 4 > logp after some iteration of theepeat loop, then whp, the LogP processor that receines
messages in that iteration has at lga&t2q) messages being sent to it in that phase/superstep, and o Log
processor has more thap/q messages sent to it in that phase/superstep.

2. If p < logp at the end of an iteration in which> (21log p)/maxzsend then whp the maximum number

of messages received by any LogP processor in this phasegsep is less thamaxsend.

3. In each iteration, whp the total number of messages sex# dot exceed the value used foin that
iteration, hence the number of messages sent or receivexylyyracessor in that iteration does not exceed
the value used fok.

For the time taken by the algorithm we note thaéxzsend > m/p, hence thevhile loop is executed
O(log p/ loglog p) times. Each iteration takes tind&g(x - log p + H(p)) +) whp to route the:-relation,
and timeO(B(p)) to computex and perform a barrier synchronization. Hence each iteratées time
O(g-(plogp+ H(p)+ B(p))) sincel < B(p). Since thewhile loop terminates whep > log p, the overall
time taken by the algorithm i©(glog?p + g - (log p/ loglog p)(H (p) + B(p))). O

Finally, to complete the proof of Theorem 3.1 we need to shioast the emulation algorithm is work-
preserving for each of the three models. ket log® p + (H(p) + B(p)) - (logp)/ log log p.

If p’ < p/7 then the time taken by the emulation algorithm to executesstel and 1.3 isO(g - 7),
and hence the work performed in executing these two stepédgs 7 - p’) = O(g - p). Since any phase or
superstep of the emulated machine must perform otk p, steps 1.1 and I1.3 of the emulation algorithm
are executed in a work-preserving manner on a LogP wlidr fewer processors.

For step 1.2, we consider each emulated model in turn. F@B8P we note that if we map the
BSP processors evenly amopgLogP processors, whegé < p/r, then a BSP superstep that takes time
¢+ gh + L will be emulated in timeO((p/p’) - (¢ + gh) + 1) on a LogP withp' processors and hence is
work-preserving. (We assume that. L sinceL includes the cost of synchronization.)

Next consider a phase onpaprocessor s-QSM in which is the maximum of the maximum number
of reads/writes by a processor and the maximum queue-letgiimemory location. If we hash the shared
memory of the QSM on the distributed memory of’gorocessor LogP and map thes-QSM processors
evenly among the' LogP processors, then by the probabilistic analysis in,[fl§ number of messages
sent or received by any of the LogP processors i©(h - (p/p')) whp inp, if p’ < p/logp. Hence the
memory accesses can be performed in tifme O(g-h-(p/p’)) whp inp, once the value of is determined.

Computes := maximum number of messages to be sent by any processor.
q:=1/(logp)
pfor each processato select each message with probabiljtyofp
Sort the selected messages by destination processar @ di- s + [log p) time).
Compute the number of samplesdestined for théth LogP processor, for each
by computing prefix sums on the sorted array (in tiﬁ(é[rlgo(%))-
6. pfor each processardo
compute an upper bound on the number of messages to be kesive= (n; + 1) - logp
rofp
7. h:= max(log® p, s, max; r;)

arwdE

Figure 2: Faster algorithm for Step 1.1 of algorithm for dation on LogP.

This is work-preserving sinc€ - p' = O(g - h - p).

Similarly, we can obtain the desired result for QSM by usimg tesult in [10] that the mapping of QSM
on a distributed memory machine results in the number of agesssent or received by any of ihid_ogP
processors bein@(h - (p/p’)) whpinp, if p’ < p/glogp. O

Corollary 3.1 (to Theorem 3.1)

1. There is a work-preserving emulation gi-g@rocessor QSM on LogP with slowdowtg - log p+log?* p+
l/ log2 i

(i) " Toglorp) WP inp.

2. There is a work-preserving emulation gf-@rocessor s-QSM and BSP on LogP with S|0Wd6Wh>g4 j
l/ log2 i

1Og(lg/g) Togioep) WP inp.

Proof: The corollary follows from Theorem 3.1 using the algorithm{17] for barrier synchronization on

p-processor LogP that runs in tin@(l[&%ﬁ}), and the algorithm in [1] for routing ah-relation on a

p-processor LogP i®(g(h + log® p - loglogp) + [) whp inp. O

3.1.1 A Faster Emulation of BSP and QSM on LogP

For completeness, we describe a faster method for Stepf itht @mulation algorithm given in the previous
section. Since the algorithm given in this section usesraprit is not quite as simple to implement as the
algorithm for Step 11.1 given in Figure 1, although it is silgipto describe and analyze.

Claim 3.2 The algorithm given in Figure 2 for Step II.1 determines apembound on the value éfwhp in
time O(gh +1logp). If h > log? p then the algorithm determines the correct valué o6 within a constant
factor whp.

Proof: The result follows from th&®((gr +1) log p) running time of the AKS sorting algorithm on the LogP
[3, 4], whenr - p keys in the rangél..p] are distributed evenly across therocessors. (If the keys are not
evenly distributed across the processors, they can bébdigtd evenly at an additional cost 6fgh + 1)
time, whereh is the maximum number of keys at any processor.)

The number of elements selected in step @ jslog p whp, wherem is the total number of messages to
be sent. Hence the number of elements to be sortéa i$p log p)) - p, which isO((s/logp) - p). Hence
the time needed to execute step 4i§ - s + [log p) whp. The remaining steps can be performed within
this time bound in a straightforward manner.

Let m; be the number of messages to be received by procéssdm step 3 of the algorithm in Figure
2, for each processd®; for whichm; = Q(log? p), 8(m;/ log p) messages are selected whp (by a Chernoff

7

bound). Hence (again by a Chernoff bound) it follows thatupper bound computed in step 6 for processor
P; is equal tam; to within a constant factor, and hence the overall upper 8@amputed in step 7 is correct
to within a constant factor. If no processor is the destimatif more thariog? p messages, then clearly the
upper bound computed in step 7 is correct (although it mayadight). O

Theorem 3.2 1. There is a work-preserving emulation ofpgorocessor QSM on LogP with slowdown

O(log’ p - loglogp + (g + (I/9)) - log p) whp inp.
2. There is a work-preserving emulationgeprocessor s-QSM and BSP on LogP with slowd@Wivg® p -

loglogp + (1/g) log p) whp inP.

3.2 Emulation of LogP on BSP

If a LogP program ision-stallingthen it can be emulated in a work-preserving manner on BSPskotv-
down O(L/1) by dividing the LogP computation into blocks of computaticof lengthl, and emulating
each block in two BSP supersteps of titheach. This emulation is presented in [4] as an emulation&vher
both the time and work increases by a factotZgi. We observe that this emulation can be made work-
preserving by using a BSP with a smaller number of processwismappingl /! LogP processors onto
each BSP processor.

The analysis in [4] erroneously states that i@ performance bound holds for stalling LogP computa-
tions. We now show a simple example of a stalling LogP contmtavhose execution time squares when
emulated in the above manner on the BSP.

The LogP computation is shown in Figure 3. The following @lahows that this computation cannot
be mapped on to the BSP with constant slowdown.

Claim 3.3 The LogP computation shown in Figure 3 takes tihe - [+ g - ¢). When mapped on to the
BSP this computation takes tirfr - (L + g - q)).

Proof: We note the following about the computation in Figure 3:

(i) Attime (¢ — 1) - + g, all processors in thih group send a message to proced3ol < ¢ < r. This
is a stalling send i§ > [/g. Processo; then receives all messages at tiiné + g - ¢.

(i) The computation terminates at time [+ g - ¢ when P, receives all messages sent to it.

On a BSP we note that the computation in Figure 3 must be ee@@ut phases (or supersteps) since a
processor in groups 2 tocan send its message(s) only after it has received a message forocessor in
group (i — 1). In a BSP computation any send based on a message receivedadartent phase cannot be
executed in the same phase. Hence the computation reguitesses. In each phase there @araessages
received by some processor (by proced3an phase). Hence this computation takes tif¥%r-(L+g-q)),
whichisQ(r-L+r-g-q) time.

Hence the slowdown of this emulation(- Li’;flq)

If » is any non-constant function with- [= o(g - ¢) andl < L, then the slowdown of this emulation is
©(r) and is not dependent on the rafigl. Example values that satisfy the above constraints aréog p,

L =log?p, g = 1, r = n'/3, andg = n?/3, wherep is the number of processors and> p is the size of
the input. In this case the slowdown of the emulatiof2{s!/?).

Note that the parameterdoes not appear in the cost of the LogP computation since ikero local
computation in this progrant.

The above claim leads to the following theorem.

Configuration. LogP withp = r - (¢ + 1) processors, grouped into
r groups ofg processors, and one grouproprocessors.
For1l <3 < r, thejth processor in théth group is denoted by; ;.
The processors in the group wittprocessors are labeldg}, 1 < j < r.
[l initial step:
pfor 1 < 5 < r processop:,; executes the following two steps in sequence:
a. send a message to processfy
b. send a message to procesBor
rofp
pfor2 <i<r
pfor 1 < j < gdo
if processop;,; receives a message from procegs@r,) ; then it executes the
following two steps in sequence:
a. sends a message to procesggyy),; (if i # r)
b. sends a message to procesBor
rofp
rofp

Figure 3: A stalling LogP computation whose execution tirae increase by more thdry! when emulated
on a BSP with same number of processors.

Theorem 3.3 Consider the deterministic emulation of LogP on BSP.
1. A nonstalling LogP program can be emulated determiratifian a work-preserving manner with slow-
downL/l.
2. If the LogP program is allowed to be stalling then
a. Any deterministic step-by-step emulation of LogP on BSFhave arbitrarily large slowdown.
b. There is no deterministic step-by-step emulation ofistalLogP on BSP that is work-preserving.

Proof: We have already shown 1 and 2a so we only need to show 2b. Sufipee is a work-preserving
emulation of stalling LogP on BSP with slowdown Then consider the emulation on BSP of the LogP
computation in Figure 3 withr = w(7) and withr - I = o(g - ¢) andl < L. Then the work performed
by the LogP computation i®(g - ¢ - p) while the work performed by the emulating BSP computation is
O(r-g-q-p/7), whichisw(g - ¢ - p). Hence the emulation is not work-preserving.

3.3 Emulation of LogP on QSM

In this section we consider the emulation of LogP on QSM. Rixr émulation we assume that the input is
distributed across the local memories of the QSM processansler to conform to the input distribution for
the LogP computation. Alternatively one can add the tegyp to the time bound for the QSM algorithm
to take into account the time needed to distribute the inpcated in global memory across the private
memories of the QSM processors. We prefer the former metsiade it is meaningful to evaluate the
computation time on a QSM in which the input is distributedoas the local processors of the QSM — as,
for instance, in an intermediate stage of the large comipataivhere values already reside within the local
memories of the QSM, and where the output of a program exg@autéhese values will be used locally by
these processors later in the computation.

As in the case of the emulations seen earlier we map the Loggegsors uniformly among the QSM
processors in the emulating machine, and we assign to thérdmemory of each QSM processor the input
values that were assigned to the LogP processors emulatiedWig can then emulate LogP on a QSM or
s-QSM with slowdowr()([f”—"ﬁﬂ}) whp as follows:

I. Divide the LogP computation into blocks of size

[I. Emulate each block iﬂ)([%g—ﬂ) time in two QSM phases as follows, using the shared memory of
the QSM (or s-QSM) only to realize therelation routing performed by the LogP in each block of
computation.

Each QSM (or s-QSM) processor copies into its private mertteeymessages that were sent in the
current superstep to the local memory of the LogP processapped to it using the method of [10]
to emulate BSP on QSM, which we summarize below.

1. ComputeM, the total number of messages to be sent by all processotssirphase. Use
the shared memory to estimate the number of messages beintpseach group ofog® M
destination processors as follows:

Sample the messages with probabilitylog® M, sortthe sample, thereby obtaining the counts
of the number of sample elements being sent to each grolyg®/ destination processors;
then estimate an upper bound on the number being sentiththeoup ag-max(k;, 1)-log> M),
wherek; is the number of sample elements being sent tosithegyroup, andc is a suitable
constant.

2. Processors that need to send a message to a processowvanagggup use gueue-reado
determine the estimate on the number of messages beingostr@ith group and then place
their messages in an array of this size usimgudtiple compactioralgorithm.

3. Perform a stable sort (by destination processor ID) oreliments being sent to a given group,
thereby grouping together the elements being sent to eacegsor.

4. Finally each processor reads the elements being senfrtritthe grouping performed in the
above step.

Theorem 3.4 A non-stalling LogP computation can be emulated on the QS$4Q@EM in a work-preserving
manner whp with slowdow® ([%1), assuming that the input to the LogP computation is distatwni-
formly among the local memories of the QSM processors.

3.4 Discussion

We have presented work-preserving emulations between haodRhe other three models — QSM, s-QSM
and BSP. The one mis-match we have is between stalling andtatiimg LogP, and here we show that
there is no deterministic step-by-step emulation of stglliogP on BSP that is work-preserving. This is in
contrast to the inference made in [4] that LogP is essentjlivalent to BSP.

The algorithms for emulating a distributed memory modelgRmr BSP, on shared-memory are rather
involved due to the use of sorting and multiple compaction.tli® other hand the shared-memory models,
QSM and s-QSM, have simple emulations on BSP and LogP.

The reason for the complications in the BSP/LogP emulatiost@ared-memory is the need to map a
message-passing interface on to a shared-memory envimnrBence both message-passing and shared-
memory are widely-used in practice, we suggest that a ldgakgeneral-purpose model should be one that
maps on to both in a simple way. QSM and s-QSM give us this featdditionally, they have a smaller
number of parameters, and do not have to keep track of thetajalata across shared memory.

For the rest of this paper we will use the QSM and s-QSM as osicbaodels, and we analyze the
algorithms using the s-QSM cost metric. We do this since jmensetry between processor requests and
memory accesses in the s-QSM model leads to simpler anabsgslso helps achieve a clean separation

10

between the cost for local computation and cost for comnatioic. Since any s-QSM algorithm runs within
the same time and work bounds on the QSM, our upper boundsalgeon both models. In fact, for the
algorithms we present in the rest of the paper, the upperdsowe derive are tight on both models.

4 Basic QSM Algorithms

To support using QSM or s-QSM for designing general-purgazsallel algorithms, we develop a suitable
cost metric for such algorithms. We then present simple Q&jdrithms for prefix sums, sample sort
and list ranking; all three algorithms are adaptations of-lwgown PRAM algorithms suitably modified
to optimize for our cost measure. In the next section we pteseme experimental analysis and data on
simulations performed using parallel code we wrote foretagorithms.

4.1 Cost Measures for a QSM Computation
Our cost metric for a QSM algorithm seeks to
1. minimize the work performed by the algorithm,
2. minimize the number of phases in the algorithm, and
3. maximize parallelism, subject to the requirements (&) @).

Thework w(n) of a parallel algorithm for a given problem is the procedsoe product for inputs of
sizen. There are two general lower bounds for the work performed @EM algorithm: First, the work is
at least as large as the best sequential running time of gaoyithim for the problem; and second, if the input
is in shared-memory and the output is to be written into shanemory, the work is at leagt- n, wheren
is the size of the input [10].

The maximum parallelisnof an algorithm performinguv(n) work is the smallest running tim&n)
achievable by the algorithm while performing(n) work. This is a meaningful measure for a QSM or
s-QSM algorithm, as for a PRAM algorithm, since these athars can always be slowed down (by using a
smaller number of processors) while performing the same jidy].

The motivation for the second metric on minimizing numbeplafses (which is the new one) is the fol-
lowing. One major simplification made by the QSM models i¢ thdoes not incorporate an explicit charge
for latency or the synchronization cost at the end of eacls@h@he total time spent on synchronizations
is proportional to the number of phases in the QSM algorithl@ance minimizing the number of phases in
an s-QSM algorithm minimizes the hidden overhead due tolspmization. In particular it is desirable to
obtain an algorithm for which the number of phases is inddpehof the input size. asn becomes large.
All of the algorithms we present have this feature.

Related work on minimizing the number of phases (or supes$tesing the notion abundsis reported
in [12] for sorting and in [5] for graph problems. Several Embounds for the number of rounds needed for
basic problems on the QSM and BSP are presented in [19].

A ‘round’ is a phase or superstep that performs linear warg(/p) time on s-QSM, an@(gn/p +
L) time on BSP). Any linear-work algorithm must compute in rdsinhence this is a useful measure for
lower bounds on the number of phases (or supersteps) needadgyiven problem. On the other hand, a
computation that proceeds in rounds need not lead to a limed¢ algorithm if the number of rounds in
the algorithm is non-constant. In fact, all of the algorithpresented in [5] perform superlinear work. The
algorithm in [12] performs superlinear communication wiiem number of processors is large.

In contrast to the cost metric that uses the notion of roumdthis paper we ask for algorithms that
perform optimal work and communication and additionallyngaite in a small number of phases.

11

Input. Array A[1..n] to ap-processor QSM.
I/ Preprocess to reduce sizepto
pfor 1 < i <pdo
processop; reads th&th block ofn/p elements from array
A, computes local prefix sums, and stores the sud{[if.
rofp
// Main loop

— nlog(n/p)
plogn
k:=p
repeat
pfor 1 <: < [k/r] do
processog reads theéth block of [r] elements from arrays,
computes local prefix sums, and stores the sud{i
k:=[k/r]
rofp
until £ =1
The processors perform a corresponding sequence of ‘expasgeps in which the correct
prefix sum value is computed for each position once the cboféset is supplied to it.

Figure 4. Prefix sums algorithm.

By placing the maximization of parallelism as a considerasecondary to minimizing work and num-
ber of phases, we are emphasizing our desire for practigatitims; thus providing good performance for
tiny problem sizes is not a primary consideration in our me®ur emphasis is on simple algorithms that
can be used in practice, hence we are mainly interested amithigns for the case when the input size is,
say, at least quadratic in the number of processors, simcaplut sizes for which we would use a paral-
lel machine for the problems we study would normally be astles large, if not larger. The pay-off we
get for considering this moderate level of parallelism &ttbur algorithms are quite simple. Some of our
algorithms achieve a higher level of parallelism, but oualgn developing them was to obtain effective
algorithms for moderate levels of parallelism. Discussbisimulation results in the next section support
our belief that we can simplify QSM algorithms without hagiperformance for practical problems.

As noted in the section describing our emulation of LogP oQiBis meaningful to consider compu-
tations in which the input and output remain distributedfamily across the local memories of the QSM
processors. This would correspond, for instance, to atetuahere the computation under consideration is
part of a more complex computation. In such a case a QSM wocesuld not need to write back the com-
puted values into shared-memory if these values will be esdd by this processor in later computations.
Our simple prefix sums algorithm (given in Figure 5) has anrowed performance under this assumption
of distributed input and output. In the other algorithms wesgnt, the savings gained by this representation
is no more than a constant factor. However, we will come badkis point in the next section where we
present experimental results. There we pin down the conftators for the running time, based on the
distributed input environment that we used to run our athors.

4.2 Prefix Sums Algorithm
The prefix sums algorithm is given in Figure 4.

Theorem 4.1 The algorithm in Figure 4 computes the prefix sums of auéy..n|, and runs inO(gn/p)

time (and henc®(gn) work) andO(loé‘E%) phases whep < n/logn on QSM and s-QSM.

12

Input. Array A[1..n] to ap-processor QSMp < /n.

pfor1 <i<pdo
processop; reads th&th block ofn/p elements from array
A, computes local prefix sums, and stores the sum in locations
Sli,jl, i+1<j<p

rofp

pfor1 <i<pdo
processop; reads all entries in subarraf1..i — 1, i], computes
the sum of the elements in the subarray, adds this offset to it
local prefix sums, and stores the computed prefix sums initocat
(1 — 1) - (n/p) + 1 throughi - n/p in output arrayB

rofp

Figure 5: Simple prefix sums algorithm fpr< \/n.

Proof: Lett be the number of iterations of thepeatloop. Thert = O(log p/ log), i.e.,t = O(logp/log(n/p)).
The algorithm performs each iteration of ttepeat loop in one phase, hence the number of phases in the
algorithm is2¢ + 1, which isO(log p/ log(n/p)).

For the algorithm to terminate we need> 1, and the time taken by each iteration of ttepeat
loop is O(g -), hence the overall running time of thepeat loop is O(t - gr), which is O((gn/p) -
(logn/log(n/p)) = O(gn/p). The firstpfor loop takesO(gn/p) time, and hence the overall running time
of the algorithm isO(gn/p), and the work performed by the algorithm@gn). Whenr = O(1), the time
taken by the algorithm i©®(g log n), hence the algorithm perfornd¥(g-n) work as long ag = O(n/ logn).

O

This result is optimal for s-QSM since there is a correspagdibwer bound for the work [10], time [19]
and the number of phases [19]. Note that this algorithm ro@sdonstant number of roundspit= O(n°),
for some constant < 1.

Broadcasting. We note that the above algorithm can be run in reverse to basaé value tp processors
to obtain the same bounds@f(gn/p) time is allowed per phase.

Finally we note that the QSM algorithm for prefix sums is extedy simple whem < \/n, which is the
situation that typically arises in practice. This alganitlis shown in Figure 5. It is straightforward to see
that this algorithm computes the resultG{{g - n/p) time and two phases. The process of writing and then
reading locations in the array[i, j] is a simple method of broadcastipgalues to all processors.

Theorem 4.2 The simple prefix sums algorithm runs@ign/p) time and in two phases when< /n.
If the input and output are to be distributed uniformly amaing local memories of the processors, then
the simple prefix sums algorithm runsGi{g - p) time wherp < /n.

4.3 Sample Sort Algorithm

Figure 6 shows the QSM sample sort algorithm. We assumepthat, /@; in other words, there is a
significant amount of work for each processor to do.

This algorithm is based on the standard sample sort algotitiat uses ‘over-sampling’ and then picks
pivots evenly from the chosen samples arranged in sortest 18, 22, 23, 11, 9]. In recent related work,
we have investigated a modified sample sort algorithm witlightty different pivot selection method, and
we have shown it to have superior performance. Details efrttethod can be found in [21].

13

Input. Array A[1..n] to ap-processor QSMy < 4/n/logn.
1. pfor1<i<pdo
a. Theith processop; reads thé&th block ofn/p elements from the input array;
b. p; selectsclog n random elements from its block of elements and writespies
of these selected elements in locaticfis..c - plog n, i
rofp
2. pfor 1 < i < p processop; performs the following steps
a. Processop; reads the values of the samples from locatiSfis j - clogn + 4],
0<j<(-1)
b. p; sorts thecplog n samples, and picks eveejog nth element as a pivot;
c. p; groups its locah/p elements from the input array into groups depending on the
bucket into which they fall with respect to the pivots.
d. For1<j;j<p
write back the elements in thgh bucket into a block in an array meant for
all elements in thgth bucket. (This requires a global prefix sums calculation
to determine the location of the block within the array in g¥hto write the
elements in bucket from theith processor.
The same computation gives the locations needed for thesiritstep 3.)
rofp
3. pfor1 <i<pdo
Processop; reads the elements in thith bucket, sorts them
and writes the sorted values in the corresponding positiotie output array.
rofp

Figure 6: Sample sort algorithm.

Theorem 4.3 The algorithm in Figure 6 sorts the input array while perfong optimal work O(g - n +
nlogn)), optimal communicationd(g - n)), in O(1) phases whp when the number of procesgors
O(,/+%).

logn

Proof: The algorithm selectgp log n random samples in step 1. In step 2 these samples are readtby ea
processor, then sorted, apd- 1 evenly-spaced samples are chosen as the ‘pivots’. Thespilveile the
input values int@ bucketswhere theth bucket consists of elements whose values lie betweefi thé)st
pivot and theith pivot in sorted order (assuming the Oth pivot has valae and thepth pivot has valuec.
The elements in théh bucket are locally sorted by the procesgpand then written in sorted order in the
output array. Hence the algorithm correctly sorts the irgutdy.

We now analyze the running time of the algorithm witlprocessorsp < /n/logn. Steps la and
2d takeO(gn/p) time, and steps 1b and 2a take tifiégp log(n/p)) = O(gn/p), sincep < y/n/logn.
Step 2b takes tim@(p log nlog(plogn)) = O((n/p)log(n/p)), and step 2c takes tin@((n/p) - log p) if
binary search on the pivots is used to assign each elemestttodket. Step 3 takes tind® B log B + ¢B),
whereB is the size of the largest bucket.

We now obtain a bound on the size of the largest buéket

Consider the input elements arranged in sorted order in @eseqS. Consider an interval of size
s = an/p on S, for a suitable constant > 1. In the following we obtain a high probability bound on the
number of samples in any interval of size
LetY;;, 1 <i <clogn,1 <j <p, bearandom variable that is 1 if ti sample of thgth processor lies
in I, and is zero otherwise.

PrY; j = 1] = s;-p/n, for1 <i < clogn, wheres; is the number of elements iinthat are from processor
p;'s block of n/p elements.

LetY = Y718 S°F_, ¥; ;. Note thatY” is the number of samples i

14

Input. Successor arra§[1..n] to ap-processor QSMy < /n/ log n.
1. Each processor reads a blockmfp of the input successor array.
2. for clog p iterationsdo
pfor1 <:<pdo
a. Processop; generates a random bit for each element in its local sublist.
b. p; ‘eliminates’ each local active element for which its randbitn
is a 0 and its successor random bit is a 1.
C. p; compacts its local sublist by removing the eliminated eletmiesing
an ‘indirection’ array.
rofp
rof
3. All processors send their current sublist to processor @;hwh
then ranks the current elements sequentially.
4. All processors perform a sequence of ‘expansion’ stepgspanding to step 2 in which
the correct list rank is computed for each element once thecoffset is supplied to it.

Figure 7: List ranking algorithm.

E[Y]= clognzgzl sj-(p/n)=(s-c-p-logn)/n
HenceE[Y] = aclogn.

By Hoeffding's inequality,Pr]Y < k] < Pr[X < k|, for k < aclogn, whereX is the sum of
pclogn 0-1 independent random variables, with probability of sscequal te/n for all of these random
variables.

E[X] = calogn.
c(@a=1)%Inn

By a Chernoff boundPr(X < clogn) < e~ zamz = p—¢(@-1)?/(2aln2)
i.e.,Pr(Y <clogn) < n—cl@—1)?/(2aln2)

Let a; be the position of thei log nth sample in the sorted sequengel < ¢ < p — 2. Let B; be the
interval of sizean/p on sequencé starting ata;, 1 < ¢ < p — 2. Let By be the interval of sizexn/p
starting at the first element &f and letB,,_; be the interval of sizexn/p ending at the last element 5t
The probability that any of the interval3;, 0 < i < p — 1 has less thanlog n samples is no more than
p-n-c@~?/(2aIn2) \which isO(1/n"),r > 0, for a suitable choice of andc. Hence whp every bucket
has no more thaan/p elements.

Thus whp, step 3 takes tim@((n/p) log n + gn/p), and thus the overall running time of the algorithm
isO(g - (n/p) + (nlogn)/p), which is optimal.

There are 6 phases in the algorithm — one each for steps 12a,12¢d, 3, and 40

4.4 List Ranking Algorithm

Figure 7 summarizes the list ranking algorithm.

Theorem 4.4 The List Ranking algorithm runs with optimal work and optirmammunication Q(gn/p)
for both), and inO(log p) phases whp when the number of procesgots O(n/ log n).

Proof: We first consider the case when= o(n*). Consider a given iteration of theor loop.

Let r be the number of elements in a given proces3pand letr = r. + r,, wherer, denotes the number
of elements at even distance, anddenotes the number at odd distance from the end of the cuimkad
list.

15

Let X, be a random variable denoting the number of elements at @semde from the end of the list
in processorP that are eliminated in this iteration of thpdor loop. Let X, be the corresponding random
variable for elements at odd distance from the end of thestifist. The random variable¥, and X, are
binomially distributed r.v.s withE[X,| = r./4 andE[X,] = r,/4.

By a Chernoff bound,

Pr(X.<(1=8)-re/4) < e P re/®andPr(X, < (1 —) -r,/4) < e B*ro/8

Hence, since either, or r, is at leastr /2, with exponentially high probability im, at least(1 — 3)/8
of the elements i are eliminated in this iteration.

If p = o(n€), for anye > 0, thenn/p? = Q(n?), for some constarit > 0. Hence, in every iteration of
thepfor loop, either at leadtl — 3)/8 of the elements are eliminated at each processor with exgiatig
high probability, or the number of elements remaining at phecessor is(n/p). Hence, afterclogp
iterations, the number of elements remaining in the linkstdd < (1 — 8)/4)¢1°8P . n, with exponentially
high probability. With a suitable choice ofthis number of elements remaining can be made/p.

By the above analysis the number of elements eliminatedyagaen processor is geometrically de-
creasing from iteration to iteration. Hence the total tirmedtep 2 (and hence for step 4)(8gn/p). At
the end of step 2 the number of elements is reduced(tg/p) (with exponentially high probability), hence
the time for step 3 i®(gn/p). Hence the overall running time of the algorithmOégn /p). The number of
phases i®)(log p), since there is a constant number of phases in each iteidtsiap 2.

If p = Q(n°), we can use a standard analysis of randomized list rankirsfpdav that all elements at
a processor are eliminated @(logn) = O(logp) time whp. In this case, for a suitable choicecpthe
length of the list is reduced to 1 at the end of step 2, and stem@t required (although one might still use
step 3 for improved performancell

5 Experimental Results

We investigated the performance of the prefix sums, sampleard list ranking algorithms oArmadillo
[13], which is a simulated architecture with parameterieamnfigurations and cycle-by-cycle profiling and
accuracy. The simulator was set to parameters for a stateeadrt machine. A detailed description of this
experimental work can be found in [14].

The experiments in [14] were performed on a simulator in otdevaluate the effect of varying param-
eters of the parallel machine (such as latency and overtaatijhe effectiveness of the QSM model and
the BSP model in predicting performance of algorithms. is Hection we concentrate on presenting the
analyses that led to the graphs in the basic experimentrpeetbin [14]. These plots from [14] are attached
to the end of this paper. For details of the other experimamtsconclusions derived from them, see [14].

The results of the experiments indicate that the QSM priedistcome close to the observed values for
fairly small problem sizes and that they become more acewatproblem sizes increase. We also found
that the looseness of bounds obtained using standard ¢eiof algorithm analysis for nonoblivious
algorithms and variations introduced by randomizationadien larger than the errors introduced by QSM’s
simplified network model. This was certainly the case fohlssmple sort and list ranking.

The architecture of the Armadillo simulator is describedhia appendix. In the following subsections,
we describe our analysis on bounding the constant factdaleiperformance bounds of the code we imple-
mented for the three algorithms, and we discuss the expetaheesults we obtained. The pseudo-code for
the experiments is included in the appendix.

16

5.1 General Comments

Each of our graphs shows the measured results of running fathe ¢three algorithms, and compares the
measured communication time to the communication timeigiedi by QSM and by the more detailed BSP
model. Our analysis focuses on communication performamsehiding CPU time — for two reasons. First,
all models examined here model CPU performance in the samesawvaomparisons of predictions of CPU
performance are not interesting. Second, exact CPU tinoelledilbns depend on low level parameters that
are beyond the scope of the QSM and BSP models. However, fopleteness the graphs also show the
total measured time taken by the computation.

The architecture we simulated was that of a distributed-orgrmultiprocessor, and thus the input and
the output was distributed uniformly across the procesddesce in analyzing the algorithms we excluded
the initial cost of reading the input from shared-memory tire final cost of writing the output into shared-
memory. As discussed earlier such an analysis is meaniimgtioé context of a shared-memory model since
it would correspond, for instance, to a situation where thragutation under consideration is part of a more
complex computation, and the input/output is availabldatibcal memories of the appropriate processors.
The algorithms were simulated on 4, 8 and 16 processors.

We plotted several computed and measured costs as listed:bel

1. ‘Communication’ is the measured cost of the communioatierformed by the algorithm, measured
in cycles.

2. '‘QSM best-case’ represents the ideal performance of ebitte randomized algorithms. It uses the
QSM analysis but assumes no skew in the performance of thlemaned steps.

3. '‘QSM WHP bound’ represents the performance of each ofdhdomized algorithms that we can
guarantee with probability at least 0.9.

4. The ‘QSM estimate’ line is a plot of the measured maximurmmiper of communication steps at
any processor multiplied by the gap parameter. (Since nbtteealgorithms we implemented had
queue contention at memory locations, this correctly messthe communication cost as modeled
by QSM.) For the prefix sums algorithm the ‘QSM estimate’ laigo gives ‘QSM best case’ since
the algorithm is deterministic and oblivious. For the ramited algorithms, this line plots the QSM
prediction without the inaccuracy that is incurred whenkimg with loose analytical bounds on the
amount of communication.

5. The ‘BSP estimate’ line is similar to ‘QSM estimate’, egtthat there is an additional term to account
for the latency parameter.

6. ‘Total running time’ is the measured cost of the total ingntime of the algorithm, measured in
cycles. We include this for completeness.

For all three algorithms, we found that ‘QSM estimate’ tsacommunication performance well when
the input size is reasonable large. The input sizes for wivickimulated the algorithms are fairly small due
to the CPU-intensive computation of the step-by-step st performed by Armadillo. Modern parallel
architectures typically give each processor many megalofteiemory, so problems of practical interest are
likely to be even larger than presented here.

We now describe in some detail the computations that lede@dimputed plots in the various graphs.

17

5.2 Description of the Graphs

In this section we describe the equations we used to plotdimguated curves for QSM for each of the three
algorithms.

5.2.1 Prefix Sums

We implemented the simple prefix sums algorithm shown in feigu Since the&th block of n/p input
elements was distributed to th processor ahead of the computation and the output locatidhe prefix
sums for these elements was designated to be amptteeessor (the natural distribution), the communication
cost for this algorithm ig(p — 1), and the total running time i8(gp + n/p).

5.2.2 Sample Sort

We implemented the sample sort algorithm given in Figure 6.
The ‘QSM ideal’ plot shows the computed communication tireguaning that each bucket is of size no
more than[n/p]|. The algorithm chosép log n samples, hence the equation plotted is

T7%(n) = 4(p — 1)glogn +3(p — 1)g + (gn/p) - (p — 1)/p

Here the first term is for the broadcast performed in stepsdl@a of the sample sort algorithm, the second
term is for step 2d, and the third term is for the read in steph& factor(p — 1) /p in the third term accounts
for the fact that in the ideal casg)/p of the elements in each bucket will be local to the procedsatrrieeds
to sort that bucket and hence will not participate in the letickdistribution step. Since we assume ideal
behavior by the algorithm, the write in step 3 has cost 0,esthe elements in each bucket will be in their
final position after the local sort in step 3.

The ‘QSM whp’ plot shows the computed communication timet thaguaranteed with probability
greater than .9. The running time here is

Tohy(n) = 4(p — 1)glogn + 3(p — 1)g + gBr + gB,

whereB is the size of the largest bucket, angs a bound on the fraction of elements in any bucket that are
outside the processor that will sort that bucket. Here tha B represents the time to perform the read
in step 3 to copy the elements in each bucket into the appttepprocessor, and the teg® represents the
time to write back the sorted elements into their final lamati

To obtain a bound o we use the analysis in Section 4.3. We solve for a value thfat is guaranteed
by Chernoff bound to give a bucket size no larger tiian- an/p with probability at least — ¢ (whereg
was set to 0.05). For this we solve forin the following equation:

(a—1)2)logw(l/Q) + logiop
a

> ((n2)/2) B0

Solving fora, we obtaine = (—b++v/b% — 4)/2, whereb = —(2+4((In2)/2)-(log(1/q)+logp)/ log n).

To solve forr we use Chernoff bounds again. LRtbe a processor whose bucket size is maximum, and
let X be the number of elements in that bucket that are local toegsmrP before step 3 of the algorithm
in Figure 6. ThenB[X] < an/p?, andPr(z < (1 —) - B/p) < e #*B/(p),

We solve forg in the equationp/2) - e #°B/(20) < ¢, where we set/ = .05, and the factor of
p/2 comes from the (generous) observation that no moregh2wf the processors can have the maximum
bucket size whp.

Thus,3 = /(2p/B) -In(p/(2¢")) and hence = (p — 1 + 3)/p.

Since we set each gfandq’ to 0.05, the overall success probability is at ledst

18

5.2.3 List Ranking

We implemented the list ranking algorithm given in Figure 7.
The equation for the time taken by the communication grpaocessor computation is

clogp
TH(n) = ng- (A-e1/2) + (B-c2)/4) 3. @)+ Cgz
=1

where the various parameters are the following:

¢ = 4 since we implemented step 2 of the list ranking algorithrmutofor 4 log n iterations.

x; IS a bound on the maximum number of elements at any procassbeidth iteration of thefor loop
in step 2 of the list ranking algorithm.

A = 1is the number of communication steps performed by elembatslipped a one bit in an iteration
of thefor loop in step 2 of the list ranking algorithm, amrdis a correction factor to compute a bound on
the maximum number of elements that flipped a one bit at anyesswr in the th iteration agc; /2) - ;.

B = 7 is the number of communication steps performed for elentbatsare eliminated in an iteration
of thefor loop in step 2 of the list ranking algorithm, anglis a correction factor to compute a bound on the
maximum number of elements that eliminated themselvesygpi@tessor in théth iteration agcy /4) - ;.

z is the total number of elements remaining after step 2.

C = 4 is the number of communication steps involves thee&ements.

w is a bound on the fraction of elements that flipped a bit whoseessors/predecessors are not at the
same processor, and is a bound on the fraction of the elements remaining aftqy &t¢éhat are not in
processotr;.

For the ‘QSM ideal’ plot, we assume there is no skew in thequerénce of the randomized steps.
Hence we obtained the following values for the parameters:
2= (nfp) - (3/4)11, z=n-(3/94¥P, =y =1, m=7"=(p—1)/p,
wheren is the size of the input. By approximating the summation leysthm of the infinite geometric series,
we obtained the following equation for the ‘QSM ideal’ plot:

TFR(n) = ((p—1)/p) - 2.25g - 4 - (n/p) + 4gn - (3/4)*18P

The ‘QSM whp’ plot gives the bound on communication that we gaarantee with probability at least
.9. This bound was obtained using Chernoff bound as describ&ection 4.4 and is rather weak, since
many approximations were made in the analysis. We descelmvithe values we used for the various
parameters.

We obtained a bound an;; using Chernoff bounds, first to obtain a lower boundanthe number
of elements in any processor at each of odd and even positiorike linked list, and then to obtain a
lower bound on the number of these elements that are eliedniat theith iteration. To compute this
we first computed a bound arf that is guaranteed at any processor with probability att [eas g» as
z; = (1—a)-z;/2, wherea = \/(4/z;) - In((2pclog p)/g2).

We then computed a bound a¥),; that is guaranteed at any processor with probability at [easq;
aseipy = i - (3/4+ B'/4), whereg' = /(2/a}) - In((2pelog p) /q1)

We obtained an upper bound enthat is guaranteed at any processor with probability at leasq, as
c1 =1+, wherey = /(6/z;) - In((pclog p)/q4).

We decided to set; = c; to simplify the analysis, since it appeared that the benéfidined from
computing an upper bound @s was out-weighed by the fact that we needed to devote somalpitity to
this computation.

19

We computed a bound arthat is guaranteed with probability at leggtusing Chernoff bounds to bound
the total number of elements remaining at each iteratiohefor loop, and hence obtained a bound fas
the bound on the number of elements remaining after thetéstion of thefor loop. For this we set = n
initially, and in theith iteration we updatedtor = r - (3/4 + 8/4), where = /(8/r) - In((clog p)/qs)-

We setr = n’ = 1 to simplify the analysis.

We setg; = .04 andgs = ¢q3 = g4 = .02 to obtain an overall probability of success of at le@st

5.3 Discussion

The graphs for the three algorithms are given at the end gfaber.

As expected the communication cost for the prefix sums dlguaris negligible compared to the total
computation cost as becomes large. Hence we have only shown the plots for 16 ggore QSM (and to
a lesser extent BSP) both underestimate the communicatiirbyg a large amount, but since the communi-
cation cost is very small anyway, this does not appear to lign#isant factor. The possible cause for this
discrepancy between the predicted and measured comnianicasts is discussed in [14].

As expected, for both sample sort and list rank the lines@8M best-case’ and ‘QSM WHP bound’
envelope the line for actual measured communication exoephy problem sizes (when latency dominates
the computation cost). For both algorithms the ‘QSM estahite is quite close to the ‘communication’
line, indicating that QSM models communication quite dffedy when an accurate bound is available
for the number of memory accesses performed by the proesBor instance with 16 processors, ‘QSM
estimate’ is within 10% of ‘communication’ for sample sorth@n the input size is larger than 125,000, and
is within 15% of ‘communication’ for list rank when input sis larger than 40,000. The ‘BSP estimate’
lines are very close to the ‘QSM estimate’ lines for both athms.

For both sample sort and list rank the ‘QSM WHP' line gives gywmnservative bound, and lies signifi-
cantly above the line for ‘communication.” This is to be esfeel, since the ‘communication’ line represents
the average of ten runs while the ‘QSM WHP’ line guaranteedtiund for at least 90% of the runs. Further,
as seen from the equations that led to the ‘QSM WHP bounds Ifoe both algorithms, the bounds com-
puted are not tight. It should be noted that the fairly largp getween the ‘communication’ and the ‘QSM
WHP bound’ lines is mainly due to the looseness of the bounel®btained on the number of memory
accesses performed by the randomized algorithms, and ediodnaccuracy in the QSM communication
model. As noted above, the ‘QSM estimate’ line which gives @EM prediction based on the measured
number of memory accesses is quite close to the ‘commuaicdine.

Overall these graphs show that QSM models communicatice gtfiectively for these algorithms, for
the range of input sizes that one would expect to see in peactiVe also note that the additional level of
detail in the BSP model has little impact on the ability togice communication costs for the algorithms we
studied, as compared to the QSM.

6 Conclusions

This paper has examined the use of QSM as a general-purpatad fooparallel algorithm design. QSM is
especially suited to be such a model because of the follawing

1. Itis shared-memory, which makes it convenient for thewtlgm designer to use.
2. It has a small number of parameters (namglyhe number of processors, anthe gap parameter).

3. We have presented simple work-preserving emulationsSi@n other popular models for parallel
computation. Thus an algorithm designed on the QSM will nrapoahese other models effectively.

20

To facilitate using QSM for designing general-purpose lparalgorithms, we have developed a suitable
cost metric for such algorithms and we have evaluated dlgos for some fundamental problems both
analytically and experimentally against this metric. Téhessults indicate that the QSM metric is quite
accurate for problem sizes that arise in practice.

References

[1] M. Adler, J. Byer, R. M. Karp, Scheduling parallel comniecation: The h-relation problem. In
Proc. MFCS 1995.

[2] M. Adler, W. Dittrich, B. Juurlink, M. Kutylowski, I. Ri@ing. Communication-optimal parallel
minimum spanning tree algorithms. In Proc. ACM SPAA, pp.25-1998.

[3] M. Ajtai, J. Komlos, E. Szemeredi, A@(n logn) sorting network. IrProc. ACM STOCpp. 1-9,
1983.

[4] G.Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, Bifkis. BSP vs LogP. IRroc. ACM SPAA
pp. 25-32, 1996.

[5] E. Caceres, F. Dehne, A. Ferreira, P. Flocchini, I. RigpiA. Roncato, N. Santoro, and S. W. Song.
Efficient parallel graph algorithms for coarse grained mafnputers and BSP. IRroc. ICALP,
LNCS 1256, pp. 390-400, 1997.

[6] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. SchauEeiSantos, R. Subramonian, and T. von
Eicken. LogP: Towards a realistic model of parallel compata In Proc. 4th ACM SIGPLAN
Symp. on Principles and Practices of Parallel Programmipgges 1-12, May 1993.

[7] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Quemd Queue-Write PRAM model:
Accounting for contention in parallel algorithm&IAM Journal on Computingl997. To appear.
Preliminary version appears Froc. 5th ACM-SIAM SOD/pages 638-648, January 1994.

[8] P.B. Gibbons, Y. Matias, and V. Ramachandran. Efficiemt-tontention parallel algorithmgour-
nal of Computer and System Sciencg3(3):417-442, 1996. Special issue devoted to selected
papers fronl1994 ACM SPAA

[9] P.B. Gibbons, Y. Matias, and V. Ramachandran. The quead-queue-write asynchronous PRAM
model. Theoretical Computer Scienceol. 196, 1998, pp. 3-29.

[10] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can aegharemory model serve as a bridging
model for parallel computation? Froc. 9th ACM SPAAJune 1997, pp. 72-83. To appear.

[11] A.V. Gerbessiotis and L.G. Valiant. Direct bulk-symohous algorithms]. Parallel and Distributed
Computing 22:251-267, 1994.

[12] M. Goodrich. Communication-efficient parallel soginin Proc. ACM STOCpp. 247-256, 1996.

[13] B. Grayson. Armadillo: A High-Performance Processondator. Masters thesis, ECE, UT-Austin,
1996.

[14] B. Grayson, M. Dahlin, V. Ramachandran, Experimentall@ation of QSM: A simple shared-
memory model. TR98-21, Dept. of Computer Science, UT-Aw141998.

21

[15] J.S. Huang and Y.C. Chow. Parallel sorting and datatjmeming by samplingProc. 7th IEEE Intl.
Computer Software and Applications Conferemue 627-631, 1983.

[16] R. M. Karp and V. Ramachandran. Parallel algorithmsdieared-memory machines. In J. van
Leeuwen, editorHandbook of Theoretical Computer Science, Volumpayes 869-941. Elsevier
Science Publishers B.V., Amsterdam, The Netherlands,.1990

[17] R. Karp, A. Sahay, E. Santos, and K.E. Schauser, Optimegdcast and summation in the LogP
model, InProc. 5th ACM SPAAL42-153, June-July 1993.

[18] K. Kennedy. A research agenda for high performance cdimg software. IrDeveloping a Com-
puter Science Agenda for High-Performance Computiages 106—109. ACM Press, 1994.

[19] P. D. MacKenzie and V. Ramachandran. Computationahtsuor fundamental problems on
general-purpose parallel models.Rroc. 10th ACM SPAAJune-July 1998, pp. 152-163.

[20] V. Ramachandran. A general purpose shared-memory Inimdparallel computation. In Algo-
rithms for Parallel Processing, Volume 105, IMA Volumes iratilematics and its Applications,
Springer-Verlag, to appear.

[21] V. Ramachandran, B. Grayson, M. Dahlin. An improved pensort algorithm. Manuscript under
preparation.

[22] R. Reischuk. Probabilistic parallel algorithms fortszg and selectionSIAM Jour. Computing
14:396-409, 1985.

[23] H. Shiand J. Schaeffer. Parallel sorting by regular@arg. J. Parallel and Distributed Computing
14:382-372, 1992.

[24] L. G. Valiant. A bridging model for parallel computatiocCommunications of the ACN33(8):103—
111, 1990.

22

Parameter | Setting |

Functional Units 4 int/4 FPU/2 load-store
Functional Unit Latency 1/1/1 cycle
Architectural Registers 32

Rename Registers unlimited

Instruction Issue Window 64

Max. Instructions Issued per Cycle4

L1 Cache Size 8KB 2-way

L1 Hit Time 1 cycle

L2 Cache Size 256KB 8-way

L2 Hit Time 3 cycles

L2 Miss Time 3+ 7cycles

Branch Prediction Table 64K entries, 8-bit history
Subroutine Link Register Stack | unlimited

Clock frequency 400 Mhz

Table 2: Architectural parameters for each node in multipssor.

APPENDIX

A Description of the Experimental Set-up

The Armadillo multiprocessor simulator [13] was used far #imulation of a distributed memory multipro-
cessor. The primary advantage of using a simulator is traloivs us to easily vary hardware parameters
such as network latency and overhead. The core of the sionigathe processor module, which models a
modern superscalar processor with dynamic branch predjatename registers, a large instruction window,
and out-of-order execution and retirement. For this sexpéements, the processor and memory configura-
tion parameters are set for an advanced processor in 1998ramot modified further. Table 2 summarizes
these settings.

The simulator supports a message-passing multiprocessodelmThe simulator does not include net-
work contention, but it does include a configurable netwatkricy parameter. In addition, the overhead of
sending and receiving messages is included in the simalagince the application must interact with the
network interface device’s buffers. Also, the simulatasypdes a hardware gap parameter to limit network
bandwidth and a per-message network controller overheargder.

We implemented our algorithms using a library that providetared memory interface in which access
to remote memory is accomplished with expligit () andput () library calls. The library implements
these operations using a bulk-synchronous style in wheth() andput () calls merely enqueue requests
on the local node. Communication among nodes happens whdibthry’'s sync() function is called.
During async() , the system first builds and distributes a communicatioas gtat indicates how many
get s andput s will occur between each pair of nodes. Based on this platesiexchange data in an order
designed to reduce contention and avoid deadlock. Therilouns on top of Armadillo’s high-performance
message-passing libraryi(brmvppl us).

Our system allows us to set the network’s bandwidth, lateaogl per-message overhead. Table 3
summarizes the default settings for these hardware pagasreet well as the observed performance when we
access the network hardware through our shared memoryiboftware. Note that the bulk-synchronous
software interface does not allow us to measure the softwane! values directly. The hardware primitives’

23

Parameter Hardware Observed Performance
Setting (HW + SW)
Gapyg (Bandwidth) 3 cycles/byte (133 MB/s] 35 cycles/byte (put), 287 cycles/byte (get)
Per-message Overhead | 400 cycles (1us) N/A
Latencyl 1600 cycles (4:s) N/A
Synchronization Barrief, | N/A 25500 cycles (16-processors) (64)

Table 3: Raw hardware performance and measured networrpenhce (including hardware and software)
for simulated system.

performance correspond to values that could be achievedhetwark of workstations (NOW) using a high-
performance communications interface such as ‘Active ligss’ and high-performance network hardware
such as ‘Myrinet’. Note that the software overheads areifsigntly higher because our implementation
copies data through buffers and because significant nurobbyges sent over the network represent control
information in addition to data payload.

B Summary of Earlier Results on Work-Preserving Emulations

QSM and s-QSM

Since any phase of an s-QSM can be performed with the sametist@r less on the QSM, it follows
that the s-QSM can be emulated on the QSM in a work-presenmviagner with no slowdown. For the
reverse emulation we obtain a work-preserving emulatigh slbwdowng by mappingg QSM processors
onto each s-QSM processor and then have each s-QSM proessatate the computation of each of the
QSM processors mapped to it.
Observation:[20] There is a deterministic work-preserving emulationd8M on s-QSM with slowdown

g-

Emulation of QSM and s-QSM on BSP
Theorem[10]
There is a randomized work-preserving emulation pfaocessor QSM on BSP with slowdow{ L/ g+
g log p) whp in the size of the input.
There is a randomized work-preserving emulation gf-processor s-QSM on BSP with slowdown
O(L/g + log p) whp in the size of the input.
The emulation algorithm that leads to the above theoremrissimple, and is described below.

e Hash the QSM (or s-QSM) memory onto the BSP components.
e Map the QSM processors uniformly on to the BSP components.

e Have each BSP component emulate the (or s-QSM) QSM prosasspped to it.

A probabilistic analysis [10, 20] shows that the emulatias performance stated in theorem.

Emulation of BSP on QSM and s-QSM
Theorem.[10] A p-component BSP can be emulated in a work-preserving mamar@SM or s-QSM
with slowdownO([(g/L) - log p]) whp inp.

This emulation uses the shared memory of the QSM (or s-QSM)torrealize theh-relation routing
performed by the BSP in each step. The following is a sket¢the&mulation algorithm from [10].

24

Map the BSP processors uniformly among the QSM (or s-QSM)gzsors. In each phase, each QSM (or
s-QSM) processor emulates the local computation for theentisuperstep of the BSP processors assigned

to it.

Each QSM (or s-QSM) processor copies into its private menttogymessages that were sent in the
current superstep to the local memory of the BSP processapped to it as follows. Here is the number
of BSP processors.

1.

Compute the total number of messagés.to be sent by all processors@g log n) time andO (M +
gn) work.

. Construct a sampl€ of the messages to be sent by choosing each message indahendd prob-

ability 1/log® M. The size of the sample will b@ (M / log® M) whp.

. Sort the sample deterministically according to destmatising a standard sorting algorithm, e.g.,

Cole’s merge-sort; this take3(g log M) time andO(g - M/ log? M) work.

. Group the destinations into groups of slag® M and determine the number of messages destined

for each group. This can be computed by a prefix sums compntttat takes) (g log M) time and
O(gM) work.

. Letk; be the number of elements in the sample destined foitthgroup. Obtain a high probability

bound on the total number of messages to each group-a)(max(k;, 1) - log® M). Makelog® M
copies of eachr;, and place the duplicate values of then an arrayR[1..n] such thatR[:] contains
the bound for the group that contains destinatioh < i < n. This step can be performed in
O(g(1 + loglog M/ log g)) time andO(ng) work using a broadcasting algorithm for eagh

. In parallel, for eachi, all processors with a message to a destinaticgad the value of this bound

from R[:]; this takes time< gh andO(gM) work.

. Use an algorithm for multiple compaction to get the messaig each group into a linear-sized array

for that group; this take®(glog M) time andO(gM) work by the adaptation of the randomized
QRQW algorithm for multiple compaction given in [8].

. Perform a stable sort within each group according to t&idual destination; this can be performed

in O(glog M) time andO(gM) work deterministically using an EREW radix-sort algorithwithin
each group.

. Move the messages into an output atRayf size M sorted according to destination@gh) time and

O(M) work. Create an arra# of sizen that contains the number of messages to each destinatidn, an
the starting point in the output array for messages to thstirggion; this can be done by computing
prefix sums on an appropriafe -array and take®)(g log M) time andO(gM) work. Processof
reads this value fronB[i] and then reads the messages destined for it from the outayt iartime
O(gh) and workO(gM).

25

C Pseudo-codes

We describe the algorithms for prefix sums, sample sort anddinking, as they were implemented on the
simulator. For all algorithms the input and output was disted uniformly across th& processors.

parallelprefix (array A, sizen)

Step 1: Calculate local prefix sumgach processor calculates a prefix sum on its
local portion of the array.

Step 2: Exchange sums between proces$tash processor broadcasts a copy of its last
sum to every other processor.

BARRIER SYNCHRONIZATION

Step 3: Final modificationEach processor adds up the sums from its preceding prosessor
and adds this offset to each of its previously-calculatefipsums.

samplesor{array S, sizen)

Major step 1: Pivot selection
Allocate and “register” temporary structures.
BARRIER SYNCHRONIZATION(to ensure the shared-memory “registrations” have coragjet
Each processor selecttog n of its elements randomly (with replacement),
and broadcasts its samples to all other processors.
BARRIER SYNCHRONIZATION
Each processor quicksorts alP log n samples, and selects every
clog nth element as a pivot (for a total &f — 1 pivots, orP “buckets”).
Major step 2: Redistribution
Assign each local element to one of of tRebuckets, based on the chosen pivots,
and reorder the elements locally so that all elements foitthlucket are contiguous.
Forl < i < P, every processor sends its count of elements for bugleddng
with a pointer to the location of these elements, to progesso
BARRIER SYNCHRONIZATION
Each processor now fetches the other processors’ contnitsub its bucket.
Each processor also participates in a parallel prefix ofdted humber of elements in each bucket.
BARRIER SYNCHRONIZATION
Major Step 3: Local Sort
for1 <i < Pin parallel
processoi sorts the elements in th#h bucket.
Major Step 4: Redistribution
Each processor writes the sorted elements of its buckethietappropriate locations
(calculated using the results of a prefix sums computatioajriay.sS.
BARRIER SYNCHRONIZATION

26

listrank (array .S, array P, array R, sizen)

Arrays: successor array, predecessor array; returned-ranks arrai;

Local variables: indirection arraly flip array F', successor’s flip arra§ F', removed element arrdy/V, and temporary
new ranksV R.

Isize is the current number of elements, afjél points to theth element in the current linked list.

Initialization:
Initialize R to be all ones.
Initialize I[¢7] = i, to set up the initial indirection.
Allocate and register temporary structures.
Major step 1: Each processor repeatedly removes some etsrftem its list,
until the list size is fairly small as follows.
for ¢ - log P iterations do
each active elemeritgenerates a flip (random bit), and stores iFiff [¢]].
BARRIER SYNCHRONIZATION(to ensure shared-memory registrations have completed in
the first loop, and to ensure that the updates from the prevamp have completed).
if 7is not the head element, antias a successor, add[:]] is 1
(i.e., flipped a 1), then fetch its successor’s flip irft@’[I[4]].
BARRIER SYNCHRONIZATION
if F[I[i]] =1andSF[I[{]] =0 (¢ flipped 1, and’s successor’s flip was 0),
then: removes itself from the linked list by performing a doubilyked list-remove
usingS andP. Geti’s predecessor’s rank.
if this is the last iteration of the loop, send our count of aéming elements to
node 0 (doing this step now saves AaRRIER SYNCHRONIZATION).
BARRIER SYNCHRONIZATION
for each elementremoved in the previous phase, look at the received ranks of it
predecessor, and increment its predecessor’s Raijloy i's current rank.
(Barrier synchronization is not needed, as this can be doparallel with the
flip generation of the next iteration, or in parallel with tiirst phase of the step below.)
Major step 2: Processor 0 finishes the list reduction locally
Node 0 uses the counts of remaining elements send by thepthessors to perform
a local prefix sum, and sets up temporary arrays to hold ali@fémaining elements.
Node 0 tells each processor the offset to use for sendingrtgining elements.
BARRIER SYNCHRONIZATION
All processors send the data for their currently-activenglets (the predecessor pointers,
the current ranks, and an appropriate indirection arrapyeeessor 0.
BARRIER SYNCHRONIZATION
Processor 0 performs a local list-rank on the remainingeeiements and puts the final
ranks for these remaining active elements in their desgghlaications.
BARRIER SYNCHRONIZATION
Major step 3:Perform Major step 1 in reverse, inserting elements backthm list
and patching things up.

27

