
Emulations Between QSM, BSP and LogP:
A Framework for General-Purpose Parallel Algorithm Design�

Vijaya Ramachandrany Brian Graysonz Michael Dahlinx
November 23, 1998

UTCS Technical Report TR98-22

Abstract

We present work-preserving emulations with small slowdownbetween LogP and two other parallel
models: BSP and QSM. In conjunction with earlier work-preserving emulations between QSM and BSP
these results establish a close correspondence between these three general-purpose parallel models. Our
results also correct and improve on results reported earlier on emulations between BSP and LogP. In
particular we shed new light on the relative power of stalling and nonstalling LogP models.

The QSM is a shared-memory model with only two parameters –p, the number of processors, andg, a bandwidth parameter. These features of the QSM make it a convenient model for parallel algorithm
design, and the simple work-preserving emulations of QSM onBSP and LogP show that algorithms
designed on the QSM will map well on to these other models. This presents a strong case for the use of
QSM as the model of choice for parallel algorithm design.

We present QSM algorithms for three basic problems – prefix sums, sample sort and list ranking. Us-
ing appropriate cost measures, we analyze the performance of these algorithms and describe simulation
results. These results suggest that QSM analysis will predict algorithm performance quite accurately for
problem sizes that arise in practice.

1 Introduction

There is a vast amount of literature on parallel algorithms for various problems. However, algorithms de-
veloped using traditional approaches on PRAM and fixed-interconnect networks do not map well to real
machines. In recent years severalgeneral-purpose parallel modelshave been proposed – BSP [24], LogP
[6], QSM and s-QSM [10]. These models attempt to capture the key features of real machines while retain-
ing a reasonably high-level programming abstraction. Of these models, the QSM and s-QSM models are the
simplest because each has only 2 parameters and because theyare shared-memory, which is generally more
convenient than message passing for developing parallel algorithms.

In this paper we first provide two strong justifications for utilizing the QSM models for developing
general-purpose parallel algorithms:�This work was supported in part by an NSF CISE grant (CDA-9624082), and grants from Intel, Novell, and Sun.yDept. of Computer Sciences, Univ. of Texas, Austin, TX 78712. Email:vlr@cs.utexas.eduzDept. of ECE, Univ. of Texas, Austin, TX 78712. Email:bgrayson@ece.utexas.edu. Also supported in part by an
NSF Graduate Fellowship.xDept. of Computer Sciences, Univ. of Texas, Austin, TX 78712. Email: dahlin@cs.utexas.edu. Also supported in
part by NSF CAREER grant 9733842.

1

1. We present work-preserving emulations with only modest (polylog) slowdown between the LogP
model and the other 3 models. These results indicate that thefour models are more or less inter-
changeable for the purpose of algorithm design. An emulation is work-preserving if the processor-
time bound on the emulating machine is the same as that on the machine being emulated, to within
a constant factor. The slowdown of the emulation is the ratioof the number of processors on the
emulated machine to the number on the emulating machine. Typically, the emulating machine has a
somewhat smaller number of processors and takes proportionately longer to execute. For many situa-
tions of practical interest, both the original algorithm and the emulation would be mapped to an even
smaller number of physical processors and thus would run within the same time bound to within a
constant factor.

The only mis-match we have is between the ‘stalling’ and ‘nonstalling’ LogP models. Here we show
that an earlier result claimed in [4] is erroneous by giving acounterexample to their claim. Work-
preserving emulations between BSP, QSM and s-QSM were presented earlier in [10, 20].

2. The emulations of s-QSM and QSM on the other models are quite simple. Conversely, the reverse em-
ulations – of BSP and LogP on shared-memory – are more involved. The difference is mainly due to
the ‘message-passing’ versus ‘shared-memory’ modes of accessing memory. Although message pass-
ing can easily emulate shared memory, the known work-preserving emulations for the reverse require
sorting as well as ‘multiple compaction.’ Hence, although such emulations are efficient since they are
work-preserving with only logarithmic slowdown, the algorithms thus derived are fairly complicated.

Since both message-passing and shared-memory are widely-used in practice, we suggest that a high-
level general-purpose model should be one that maps on to both in a simple and efficient way. The QSM
and s-QSM have this feature. Additionally, these two modelshave a smaller number of parameters than
LogP or BSP, and they do not have to keep track of the distributed memory layout.

To facilitate using QSM or s-QSM for designing general-purpose parallel algorithms, we develop a
suitable cost metric for such algorithms and evaluate several algorithms both analytically and experimentally
against this metric. The metric asks algorithms to (1) minimize work, (2) minimize the number of ‘phases’
(defined in the next section), and (3) maximize parallelism,subject to the above requirements. In the rest
of the paper we present QSM algorithms for prefix sums, samplesort, and list ranking, and we analyze
them under this cost metric. We also describe simulation results for these algorithms that indicate that the
difference between the BSP and QSM cost metrics is small for these algorithms for reasonable problem
sizes.

Several of the algorithms we present are randomized. We willsay that an algorithmruns in timet whp
in n if the probability that the time exceedst is less than1=nc, for some constantc > 0.

The rest of this paper is organized as follows. Section 2 provides background on the models examined
in this paper and Section 3 presents our emulation results. Section 4 presents a cost metric for QSM and
describes some basic algorithms under this metric. Section5 describes experimental results for the three
algorithms and Section 6 summarizes our conclusions.

2 General-purpose Parallel Models

In this section, we briefly review the BSP, LogP, and QSM models. A summary of earlier emulation results
can be found in the appendix.

BSP Model. The Bulk-Synchronous Parallel (BSP) model [24] consists ofp processor/memory compo-
nents that communicate by sending point-to-point messages. The interconnection network supporting this

2

communication is characterized by a bandwidth parameterg and a latency parameterL. A BSP computation
consists of a sequence of “supersteps” separated by bulk synchronizations. In each superstep the processors
can perform local computations and send and receive a set of messages. Messages are sent in a pipelined
fashion, and messages sent in one superstep will arrive prior to the start of the next superstep. It is assumed
that in each superstep messages are sent by a processor basedon its state at the start of the superstep. The
time charged for a superstep is calculated as follows. Letwi be the amount of local work performed by
processori in a given superstep and letsi (ri) be the number of messages sent (received) in the superstep
by processori. Let hs = maxpi=1 si, hr = maxpi=1 ri, andw = maxpi=1 wi. Let h = max(hs; hr); h is the
maximum number of messages sent or received by any processorin the superstep, and the BSP is said to
route anh-relation in this superstep. Thecost, T , of the superstep is defined to beT = max(w; g � h; L).
The time taken by a BSP algorithm is the sum of the costs of the individual supersteps in the algorithm.

LogP Model. The LogP model [6] consists ofp processor/memory components communicating with
point-to-point messages. It has the following parameters.� Latencyl: Time taken by network to transmit a message from one processor to another is at mostl.� Gapg: A processor can send or receive a message no faster than onceeveryg units of time.� Capacity constraint:A receiving processor can have no more thandl=ge messages in transit to it.� Overheado: To send or receive a message, a processor spendso units of time to transfer the message

to or from the network interface; during this period of time the processor cannot perform any other
operation.

If the number of messages in transit to a destination processor � is dl=ge, then a processor that needs to
send a message to� stallsand does not perform any operation until it can the message.

QSM and s-QSM models. The Queuing Shared Memory (QSM) model [10] consists of a number of iden-
tical processors, each with its own private memory, that communicate by reading and writing shared mem-
ory. Processors execute a sequence of synchronized phases,each consisting of an arbitrary interleaving of
shared memory reads, shared memory writes, and local computation. QSM implements abulk-synchronous
programming abstraction in that (i) each processor can execute several instructions within a phase but the
values returned by shared-memory reads issued in a phase cannot be used in the same phase and (ii) the
same shared-memory location cannot be both read and writtenin the same phase.

Concurrent reads or writes (but not both) to the same shared-memory location are permitted in a phase.
In the case of multiple writers to a locationx, an arbitrary write tox succeeds.

The maximum contentionof a QSM phase is the maximum, over all locationsx, of the number of
processors readingx or the number of processors writingx. A phase with no reads or writes is defined to
have maximum contention one.

Consider a QSM phase with maximum contention�. Letmop be the maximum number of local opera-
tions performed by any processor in this phase, and letmrw be the maximum number of read and write re-
quests to shared memory issued by any processor. Then thetime costfor the phase ismax(mop; g �mrw; �).
The timeof a QSM algorithm is the sum of the time costs for its phases. Thework of a QSM algorithm is
its processor-time product.

The s-QSM (Symmetric QSM) is a QSM in which the time cost for a phase ismax(mop; g �mrw; g � �),
i.e., the gap parameter is applied to the accesses at memory as well as to memory requests issued at proces-
sors.

3

Slowdown of Work-Preserving Emulations(sublogarithmic factors have been rounded up for ease of display)

Emulated Model Emulating Model
(p processors) BSP LogP (stalling) s-QSM QSM

BSP O(log4 p + (l=g) log2 p) O(d g log pL e) O(d g log pL e)
LogP (nonstalling) O(L=l) (det:)y 1 (det.) O(d g log pl e) O(d g log pl e)
s-QSM O((L=g) + log p) O(log4 p + (l=g) log2 p) 1 (det.)

QSM O((L=g) + g log p) O(log4 p+ (l=g) log2 p+ g � log p) O(g) (det.)

Table 1: All results are randomized and hold whp except those marked as ‘det.’, which are deterministic
emulations. Results in which the LogP model is either the emulated or the emulating machine are new
results that appear boxed in the table and are reported in this paper. (For exact expressions, including sub-
logarithmic terms, please see the text of the paper.) The remaining results are in [10, 20].1This result is presented in [4] but it is stated there erroneously that it holds for stalling LogP programs. We provide a counterexample.

The particular instance of the QSM model in which the gap parameter,g, equals 1 is the Queue-Read
Queue-Write (QRQW) PRAM model defined in [7].

3 Emulation Results

The results on work-preserving emulations between models are tabulated in Table 1 with new results printed
within boxes. In this section we focus on three aspects of these emulations. First, we develop new, work-
preserving emulations of QSM or BSP on LogP; previously known emulations [4] required sorting and
increased both time and work by a logarithmic factor. Second, we provide new analysis of the known em-
ulation of LogP on BSP [4]; we provide a counter-example to the claim that this emulation holds for the
stalling LogP model, and we observe that the original non-work-preserving emulation may be trivially ex-
tended to be work-preserving. Third, we discuss the fact that known emulations of message passing on
shared memory require sorting and multiple-compaction, complicating emulations of BSP or LogP algo-
rithms on shared memory.

We focus onwork-preservingemulations. An emulation is work-preserving if the processor-time bound
on the emulating machine is the same as that on the machine being emulated, to within a constant factor.
The ratio of the running time on the emulating machine to the running time on the emulated machine is
theslowdownof the emulation. Typically, the emulating machine has a smaller number of processors and
takes proportionately longer to execute. For instance, consider the entry in Table 1 for the emulation of
s-QSM on BSP. It states that there is a randomized work-preserving emulation of s-QSM on BSP with a
slowdown ofO(L=g + log p). This means that, given ap-processor s-QSM algorithm that runs in timet
(and hence with workw = p � t), the emulation algorithm will map thep-processor s-QSM algorithm on to
a p0-processor BSP, for anyp0 � p=((L=g) + log p), to run on the BSP in timet0 = O(t � (p=p0)) whp inp. Note that if sufficient parallelism exists, for a machine with p physical processors, one would typically
design the BSP algorithm on�((L=g) + log p) � p) or more processors, and then emulate the processors in
this BSP algorithm on thep physical processors. In such a case, the performance of the BSP algorithm onp
processors and the performance of the QSM emulation onp processors would be within a constant factor of
each other. Since large problems are often the ones worth parallelizing, we expect this situation to be quite
common in practice.

4

3.1 Work-Preserving Emulations of QSM and BSP on LogP

We now sketch our results for emulating BSP, QSM and s-QSM on LogP. Our emulation is randomized, and
is work-preserving with polylog slowdown. In the next subsection, we describe a slightly more complex
randomized emulation that uses sorting (with sampling) andwhich reduces the slowdown by slightly less
than a logarithmic factor.

Fact 3.1 [17] The following two problems can be computed in timeO(ld log plog(l=g)e) on p processors under
the LogP model.
1. Barrier synchronization on thep LogP processors.
2. The sum ofp values, stored one per processor.

We will denote the above time to compute barrier synchronization and the sum ofp values on thep-
processor LogP byB(p).
Theorem 3.1 Suppose we are given an algorithm to route anh-relation on ap-processor LogP while sat-
isfying the capacity constraint in timeO(g � (h + H(p)) + l), when the value ofh is known in advance.
Then,
1. There is a work-preserving emulation of ap-processor QSM on LogP with slowdownO(g �log p+log2 p+(H(p) +B(p)) � log plog log p) whp inp.

2. There is a work-preserving emulation of ap-processor s-QSM and BSP on LogP with slowdownO(log2 p+(H(p) +B(p)) � log plog log p) whp inp.

Proof: We first describe the emulation algorithm, and then prove that it has the stated performance.

Algorithm for Emulation on LogP:

I. For the QSM emulation we map the QSM (or s-QSM) processors uniformly among the LogP proces-
sors, and we hash the QSM (or s-QSM) memory on the LogP processors so that each shared-memory
location is equally likely to be assigned to any of the LogP components. For the BSP emulation we
map the BSP processors uniformly among the LogP processors and the associated portions of the
distributed memory to the LogP processors.

II. We route the messages to destination LogP processors for each phase or superstep while satisfying
the capacity constraint as follows:

1. Determine a good upper bound on the value ofh.

2. Route theh relation while satisfying the capacity constraint inO(g � (h+H(p)) + l) time.

3. Execute a barrier synchronization on the LogP processorsin O(B(p)) time.

To complete the description of the algorithm, we provide in Figure 1 a method for performing step II.1 in
the above algorithm. To estimateh, the maximum number of messages sent or received by any processor, the
algorithm must estimate the maximum number of messages received by any processor, since the maximum
sent (maxsend) is known. The algorithm does this by selecting a small random subset of the messages to
be sent and determining their destinations. The size of thissubset is gradually increased until either a good
upper bound on the maximum number of messages to be received by any processor is obtained or this value
is determined to be less thanmaxsend.

Claim 3.1 The algorithm for Step II.1 runs in timeO(g log2 p + (H(p) + B(p)) � (log p)= log log p) whp,
and whp it returns a value forh that is(i) an upper bound on the correct value ofh, and(ii) within a factor
of 2 of the correct value ofh.

5

maxsend := maximum number of messages to be sent by any LogP processorm := total number of messages to be sent by all LogP processorsq := 1=m� := 1
repeat

pfor each processordoq := q � log p;
Select each message with probabilityq and send selected messages to
destination withh = � � log p;� := max. number of messages received by any processor;

rofp
until q � (2 log p)=maxsend or � � log ph := max(2�=q;maxsend)

Figure 1: Algorithm for Step II.1 of the algorithm for emulation on LogP.

Proof: The correctness of the algorithm follows from the followingobservations, which can be derived
using Chernoff bounds:
1. If � � log p after some iteration of therepeat loop, then whp, the LogP processor that receives�
messages in that iteration has at least�=(2q) messages being sent to it in that phase/superstep, and no LogP
processor has more than2�=q messages sent to it in that phase/superstep.
2. If � < log p at the end of an iteration in whichq � (2 log p)=maxsend then whp the maximum number
of messages received by any LogP processor in this phase/superstep is less thanmaxsend.
3. In each iteration, whp the total number of messages sent does not exceed the value used forh in that
iteration, hence the number of messages sent or received by any processor in that iteration does not exceed
the value used forh.

For the time taken by the algorithm we note thatmaxsend � m=p, hence thewhile loop is executedO(log p= log log p) times. Each iteration takes timeO(g(� � log p+H(p)) + l) whp to route theh-relation,
and timeO(B(p)) to compute� and perform a barrier synchronization. Hence each iteration takes timeO(g �(� log p+H(p)+B(p))) sincel < B(p). Since thewhile loop terminates when� � log p, the overall
time taken by the algorithm isO(g log2 p+ g � (log p= log log p)(H(p) +B(p))). 2
Finally, to complete the proof of Theorem 3.1 we need to show that the emulation algorithm is work-
preserving for each of the three models. Let� = log2 p+ (H(p) +B(p)) � (log p)= log log p.

If p0 � p=� then the time taken by the emulation algorithm to execute steps II.1 and II.3 isO(g � �),
and hence the work performed in executing these two steps isO(g � � � p0) = O(g � p). Since any phase or
superstep of the emulated machine must perform work� g � p, steps II.1 and II.3 of the emulation algorithm
are executed in a work-preserving manner on a LogP withp0 or fewer processors.

For step II.2, we consider each emulated model in turn. For the BSP we note that if we map thep
BSP processors evenly amongp0 LogP processors, wherep0 � p=� , then a BSP superstep that takes timec + gh + L will be emulated in timeO((p=p0) � (c + gh) + l) on a LogP withp0 processors and hence is
work-preserving. (We assume thatl � L sinceL includes the cost of synchronization.)

Next consider a phase on ap processor s-QSM in whichh is the maximum of the maximum number
of reads/writes by a processor and the maximum queue-lengthat a memory location. If we hash the shared
memory of the QSM on the distributed memory of ap0-processor LogP and map thep s-QSM processors
evenly among thep0 LogP processors, then by the probabilistic analysis in [10], the number of messages
sent or received by any of thep0 LogP processors isO(h � (p=p0)) whp in p, if p0 � p= log p. Hence the
memory accesses can be performed in timeT = O(g �h �(p=p0)) whp inp, once the value ofh is determined.

6

1. Computes := maximum number of messages to be sent by any processor.
2. q := 1=(log p)
3. pfor each processordo select each message with probabilityq rofp
4. Sort the selected messages by destination processor ID (inO(g � s+ l log p) time).
5. Compute the number of samplesni destined for theith LogP processor, for eachi,

by computing prefix sums on the sorted array (in timeO(ld log plog(l=g)e)):
6. pfor each processori do

compute an upper bound on the number of messages to be received asri := (ni + 1) � log p
rofp

7. h := max(log2 p; s;maxi ri)
Figure 2: Faster algorithm for Step II.1 of algorithm for emulation on LogP.

This is work-preserving sinceT � p0 = O(g � h � p).
Similarly, we can obtain the desired result for QSM by using the result in [10] that the mapping of QSM

on a distributed memory machine results in the number of messages sent or received by any of thep0 LogP
processors beingO(h � (p=p0)) whp inp, if p0 � p=g log p. 2
Corollary 3.1 (to Theorem 3.1)
1. There is a work-preserving emulation of ap-processor QSM on LogP with slowdownO(g �log p+log4 p+l=glog(l=g) � log2 plog log p) whp inp.

2. There is a work-preserving emulation of ap-processor s-QSM and BSP on LogP with slowdownO(log4 p+l=glog(l=g) � log2 plog log p) whp inp.

Proof: The corollary follows from Theorem 3.1 using the algorithm in [17] for barrier synchronization onp-processor LogP that runs in timeO(ld log plog(l=g)e), and the algorithm in [1] for routing anh-relation on ap-processor LogP inO(g(h + log3 p � log log p) + l) whp inp. 2
3.1.1 A Faster Emulation of BSP and QSM on LogP

For completeness, we describe a faster method for Step II.1 of the emulation algorithm given in the previous
section. Since the algorithm given in this section uses sorting, it is not quite as simple to implement as the
algorithm for Step II.1 given in Figure 1, although it is simpler to describe and analyze.

Claim 3.2 The algorithm given in Figure 2 for Step II.1 determines an upper bound on the value ofhwhp in
timeO(gh+ l log p). If h � log2 p then the algorithm determines the correct value ofh to within a constant
factor whp.

Proof: The result follows from theO((gr+ l) log p) running time of the AKS sorting algorithm on the LogP
[3, 4], whenr � p keys in the range[1::p] are distributed evenly across thep processors. (If the keys are not
evenly distributed across the processors, they can be distributed evenly at an additional cost ofO(gh + l)
time, whereh is the maximum number of keys at any processor.)

The number of elements selected in step 3 ism= log p whp, wherem is the total number of messages to
be sent. Hence the number of elements to be sorted is(m=(p log p)) � p, which isO((s= log p) � p). Hence
the time needed to execute step 4 isO(g � s + l log p) whp. The remaining steps can be performed within
this time bound in a straightforward manner.

Let mi be the number of messages to be received by processorPi. In step 3 of the algorithm in Figure
2, for each processorPi for whichmi =
(log2 p), �(mi= log p) messages are selected whp (by a Chernoff

7

bound). Hence (again by a Chernoff bound) it follows that theupper bound computed in step 6 for processorPi is equal tomi to within a constant factor, and hence the overall upper bound computed in step 7 is correct
to within a constant factor. If no processor is the destination of more thanlog2 p messages, then clearly the
upper bound computed in step 7 is correct (although it may notbe tight).2
Theorem 3.2 1. There is a work-preserving emulation of ap-processor QSM on LogP with slowdownO(log3 p � log log p+ (g + (l=g)) � log p) whp inp.
2. There is a work-preserving emulation ofp-processor s-QSM and BSP on LogP with slowdownO(log3 p �log log p+ (l=g) log p) whp inP .

3.2 Emulation of LogP on BSP

If a LogP program isnon-stallingthen it can be emulated in a work-preserving manner on BSP with slow-
downO(L=l) by dividing the LogP computation into blocks of computations of lengthl, and emulating
each block in two BSP supersteps of timeL each. This emulation is presented in [4] as an emulation where
both the time and work increases by a factor ofL=l. We observe that this emulation can be made work-
preserving by using a BSP with a smaller number of processorsand mappingL=l LogP processors onto
each BSP processor.

The analysis in [4] erroneously states that theL=l performance bound holds for stalling LogP computa-
tions. We now show a simple example of a stalling LogP computation whose execution time squares when
emulated in the above manner on the BSP.

The LogP computation is shown in Figure 3. The following Claim shows that this computation cannot
be mapped on to the BSP with constant slowdown.

Claim 3.3 The LogP computation shown in Figure 3 takes timeO(r � l + g � q). When mapped on to the
BSP this computation takes time
(r � (L+ g � q)).
Proof: We note the following about the computation in Figure 3:

(i) At time (i� 1) � l+ g, all processors in theith group send a message to processorPi, 1 � i � r. This
is a stalling send ifq > l=g. ProcessorPi then receives all messages at timei � l + g � q.

(ii) The computation terminates at timer � l + g � q whenPr receives all messages sent to it.

On a BSP we note that the computation in Figure 3 must be executed inr phases (or supersteps) since a
processor in groups 2 tor can send its message(s) only after it has received a message from a processor in
group(i � 1). In a BSP computation any send based on a message received in the current phase cannot be
executed in the same phase. Hence the computation requiresr phases. In each phase there areq messages
received by some processor (by processorPi in phasei). Hence this computation takes time
(r �(L+g �q)),
which is
(r � L+ r � g � q) time.

Hence the slowdown of this emulation is
(r�L+r�g�qr�l+g�q).
If r is any non-constant function withr � l = o(g � q) andl � L, then the slowdown of this emulation is�(r) and is not dependent on the ratioL=l. Example values that satisfy the above constraints arel = log p,L = log2 p, g = 1, r = n1=3, andq = n2=3, wherep is the number of processors andn > p is the size of

the input. In this case the slowdown of the emulation is
(n1=3).
Note that the parametero does not appear in the cost of the LogP computation since there is no local

computation in this program.2
The above claim leads to the following theorem.

8

Configuration. LogP withp = r � (q + 1) processors, grouped intor groups ofq processors, and one group ofr processors.
For1 � i � r, thejth processor in theith group is denoted bypi;j .
The processors in the group withr processors are labeledPj , 1 � j � r.

// initial step:
pfor 1 � j � r processorp1;j executes the following two steps in sequence:

a. send a message to processorp2;j
b. send a message to processorP1.

rofp
pfor 2 � i � r

pfor 1 � j � q do
if processorpi;j receives a message from processorp(i�1);j then it executes the

following two steps in sequence:
a. sends a message to processorp(i+1);j (if i 6= r)
b. sends a message to processorPi.

rofp
rofp

Figure 3: A stalling LogP computation whose execution time can increase by more thanL=l when emulated
on a BSP with same number of processors.

Theorem 3.3 Consider the deterministic emulation of LogP on BSP.
1. A nonstalling LogP program can be emulated deterministically in a work-preserving manner with slow-
downL=l.
2. If the LogP program is allowed to be stalling then
a. Any deterministic step-by-step emulation of LogP on BSP can have arbitrarily large slowdown.
b. There is no deterministic step-by-step emulation of stalling LogP on BSP that is work-preserving.

Proof: We have already shown 1 and 2a so we only need to show 2b. Suppose there is a work-preserving
emulation of stalling LogP on BSP with slowdown� . Then consider the emulation on BSP of the LogP
computation in Figure 3 withr = !(�) and withr � l = o(g � q) and l � L. Then the work performed
by the LogP computation is�(g � q � p) while the work performed by the emulating BSP computation is�(r � g � q � p=�), which is!(g � q � p). Hence the emulation is not work-preserving.2
3.3 Emulation of LogP on QSM

In this section we consider the emulation of LogP on QSM. For this emulation we assume that the input is
distributed across the local memories of the QSM processorsin order to conform to the input distribution for
the LogP computation. Alternatively one can add the termng=p to the time bound for the QSM algorithm
to take into account the time needed to distribute the input located in global memory across the private
memories of the QSM processors. We prefer the former method,since it is meaningful to evaluate the
computation time on a QSM in which the input is distributed across the local processors of the QSM – as,
for instance, in an intermediate stage of the large computation, where values already reside within the local
memories of the QSM, and where the output of a program executed on these values will be used locally by
these processors later in the computation.

As in the case of the emulations seen earlier we map the LogP processors uniformly among the QSM
processors in the emulating machine, and we assign to the local memory of each QSM processor the input
values that were assigned to the LogP processors emulated byit. We can then emulate LogP on a QSM or
s-QSM with slowdownO(dg log pl e) whp as follows:

9

I. Divide the LogP computation into blocks of sizel
II. Emulate each block inO(dg log pl e) time in two QSM phases as follows, using the shared memory of

the QSM (or s-QSM) only to realize theh-relation routing performed by the LogP in each block of
computation.

Each QSM (or s-QSM) processor copies into its private memorythe messages that were sent in the
current superstep to the local memory of the LogP processorsmapped to it using the method of [10]
to emulate BSP on QSM, which we summarize below.

1. ComputeM , the total number of messages to be sent by all processors in this phase. Use
the shared memory to estimate the number of messages being sent to each group oflog3M
destination processors as follows:

Sample the messages with probability1= log3M , sort the sample, thereby obtaining the counts
of the number of sample elements being sent to each group oflog3M destination processors;
then estimate an upper bound on the number being sent to theith group asc�max(ki; 1)�log3M),
whereki is the number of sample elements being sent to theith group, andc is a suitable
constant.

2. Processors that need to send a message to a processor in a given group use aqueue-readto
determine the estimate on the number of messages being sent to theith group and then place
their messages in an array of this size using amultiple compactionalgorithm.

3. Perform a stable sort (by destination processor ID) on theelements being sent to a given group,
thereby grouping together the elements being sent to each processor.

4. Finally each processor reads the elements being sent to itfrom the grouping performed in the
above step.

Theorem 3.4 A non-stalling LogP computation can be emulated on the QSM ors-QSM in a work-preserving
manner whp with slowdownO(dg log pl e), assuming that the input to the LogP computation is distributed uni-
formly among the local memories of the QSM processors.

3.4 Discussion

We have presented work-preserving emulations between LogPand the other three models — QSM, s-QSM
and BSP. The one mis-match we have is between stalling and non-stalling LogP, and here we show that
there is no deterministic step-by-step emulation of stalling LogP on BSP that is work-preserving. This is in
contrast to the inference made in [4] that LogP is essentially equivalent to BSP.

The algorithms for emulating a distributed memory model, LogP or BSP, on shared-memory are rather
involved due to the use of sorting and multiple compaction. On the other hand the shared-memory models,
QSM and s-QSM, have simple emulations on BSP and LogP.

The reason for the complications in the BSP/LogP emulation on shared-memory is the need to map a
message-passing interface on to a shared-memory environment. Since both message-passing and shared-
memory are widely-used in practice, we suggest that a high-level general-purpose model should be one that
maps on to both in a simple way. QSM and s-QSM give us this feature. Additionally, they have a smaller
number of parameters, and do not have to keep track of the layout of data across shared memory.

For the rest of this paper we will use the QSM and s-QSM as our basic models, and we analyze the
algorithms using the s-QSM cost metric. We do this since the symmetry between processor requests and
memory accesses in the s-QSM model leads to simpler analyses, and also helps achieve a clean separation

10

between the cost for local computation and cost for communication. Since any s-QSM algorithm runs within
the same time and work bounds on the QSM, our upper bounds are valid on both models. In fact, for the
algorithms we present in the rest of the paper, the upper bounds we derive are tight on both models.

4 Basic QSM Algorithms

To support using QSM or s-QSM for designing general-purposeparallel algorithms, we develop a suitable
cost metric for such algorithms. We then present simple QSM algorithms for prefix sums, sample sort
and list ranking; all three algorithms are adaptations of well-known PRAM algorithms suitably modified
to optimize for our cost measure. In the next section we present some experimental analysis and data on
simulations performed using parallel code we wrote for these algorithms.

4.1 Cost Measures for a QSM Computation

Our cost metric for a QSM algorithm seeks to

1. minimize the work performed by the algorithm,

2. minimize the number of phases in the algorithm, and

3. maximize parallelism, subject to the requirements (1) and (2).

Theworkw(n) of a parallel algorithm for a given problem is the processor-time product for inputs of
sizen. There are two general lower bounds for the work performed bya QSM algorithm: First, the work is
at least as large as the best sequential running time of any algorithm for the problem; and second, if the input
is in shared-memory and the output is to be written into shared-memory, the work is at leastg � n, wheren
is the size of the input [10].

The maximum parallelismof an algorithm performingw(n) work is the smallest running timet(n)
achievable by the algorithm while performingw(n) work. This is a meaningful measure for a QSM or
s-QSM algorithm, as for a PRAM algorithm, since these algorithms can always be slowed down (by using a
smaller number of processors) while performing the same work [10].

The motivation for the second metric on minimizing number ofphases (which is the new one) is the fol-
lowing. One major simplification made by the QSM models is that it does not incorporate an explicit charge
for latency or the synchronization cost at the end of each phase. The total time spent on synchronizations
is proportional to the number of phases in the QSM algorithm.Hence minimizing the number of phases in
an s-QSM algorithm minimizes the hidden overhead due to synchronization. In particular it is desirable to
obtain an algorithm for which the number of phases is independent of the input sizen asn becomes large.
All of the algorithms we present have this feature.

Related work on minimizing the number of phases (or supersteps) using the notion ofroundsis reported
in [12] for sorting and in [5] for graph problems. Several lower bounds for the number of rounds needed for
basic problems on the QSM and BSP are presented in [19].

A ‘round’ is a phase or superstep that performs linear work (O(gn=p) time on s-QSM, andO(gn=p +L) time on BSP). Any linear-work algorithm must compute in rounds, hence this is a useful measure for
lower bounds on the number of phases (or supersteps) needed for a given problem. On the other hand, a
computation that proceeds in rounds need not lead to a linearwork algorithm if the number of rounds in
the algorithm is non-constant. In fact, all of the algorithms presented in [5] perform superlinear work. The
algorithm in [12] performs superlinear communication whenthe number of processors is large.

In contrast to the cost metric that uses the notion of rounds,in this paper we ask for algorithms that
perform optimal work and communication and additionally compute in a small number of phases.

11

Input. ArrayA[1::n] to ap-processor QSM.
// Preprocess to reduce size top:
pfor 1 � i � p do

processorpi reads theith block ofn=p elements from arrayA, computes local prefix sums, and stores the sum inB[i].
rofp
// Main loopr := n log(n=p)p log nk := p
repeat

pfor 1 � i � dk=re do
processori reads theith block ofdre elements from arrayB,
computes local prefix sums, and stores the sum inB[i]k := dk=re

rofp
until k = 1
The processors perform a corresponding sequence of ‘expansion’ steps in which the correct

prefix sum value is computed for each position once the correct offset is supplied to it.

Figure 4: Prefix sums algorithm.

By placing the maximization of parallelism as a consideration secondary to minimizing work and num-
ber of phases, we are emphasizing our desire for practical algorithms; thus providing good performance for
tiny problem sizes is not a primary consideration in our metric. Our emphasis is on simple algorithms that
can be used in practice, hence we are mainly interested in algorithms for the case when the input size is,
say, at least quadratic in the number of processors, since the input sizes for which we would use a paral-
lel machine for the problems we study would normally be at least as large, if not larger. The pay-off we
get for considering this moderate level of parallelism is that our algorithms are quite simple. Some of our
algorithms achieve a higher level of parallelism, but our goal in developing them was to obtain effective
algorithms for moderate levels of parallelism. Discussionof simulation results in the next section support
our belief that we can simplify QSM algorithms without hurting performance for practical problems.

As noted in the section describing our emulation of LogP on QSM, it is meaningful to consider compu-
tations in which the input and output remain distributed uniformly across the local memories of the QSM
processors. This would correspond, for instance, to a situation where the computation under consideration is
part of a more complex computation. In such a case a QSM processor would not need to write back the com-
puted values into shared-memory if these values will be usedonly by this processor in later computations.
Our simple prefix sums algorithm (given in Figure 5) has an improved performance under this assumption
of distributed input and output. In the other algorithms we present, the savings gained by this representation
is no more than a constant factor. However, we will come back to this point in the next section where we
present experimental results. There we pin down the constant factors for the running time, based on the
distributed input environment that we used to run our algorithms.

4.2 Prefix Sums Algorithm

The prefix sums algorithm is given in Figure 4.

Theorem 4.1 The algorithm in Figure 4 computes the prefix sums of arrayA[1::n], and runs inO(gn=p)
time (and henceO(gn) work) andO(log plog(n=p)) phases whenp � n= log n on QSM and s-QSM.

12

Input. ArrayA[1::n] to ap-processor QSM,p � pn.
pfor 1 � i � p do

processorpi reads theith block ofn=p elements from arrayA, computes local prefix sums, and stores the sum in locationsS[i; j]; i + 1 � j � p
rofp
pfor 1 � i � p do

processorpi reads all entries in subarrayS[1::i � 1; i], computes
the sum of the elements in the subarray, adds this offset to its
local prefix sums, and stores the computed prefix sums in locations(i� 1) � (n=p) + 1 throughi � n=p in output arrayB

rofp

Figure 5: Simple prefix sums algorithm forp � pn.

Proof: Let t be the number of iterations of therepeat loop. Thent = O(log p= log r), i.e.,t = O(log p= log(n=p)).
The algorithm performs each iteration of therepeat loop in one phase, hence the number of phases in the
algorithm is2t+ 1, which isO(log p= log(n=p)).

For the algorithm to terminate we needr > 1, and the time taken by each iteration of therepeat
loop is O(g � r), hence the overall running time of therepeat loop is O(t � gr), which isO((gn=p) �(log n= log(n=p)) = O(gn=p). The firstpfor loop takesO(gn=p) time, and hence the overall running time
of the algorithm isO(gn=p), and the work performed by the algorithm isO(gn). Whenr = O(1), the time
taken by the algorithm isO(g logn), hence the algorithm performsO(g�n)work as long asp = O(n= log n).2

This result is optimal for s-QSM since there is a corresponding lower bound for the work [10], time [19]
and the number of phases [19]. Note that this algorithm runs in a constant number of rounds ifp = O(nc),
for some constantc < 1.
Broadcasting. We note that the above algorithm can be run in reverse to broadcast a value top processors
to obtain the same bounds ifO(gn=p) time is allowed per phase.

Finally we note that the QSM algorithm for prefix sums is extremely simple whenp � pn, which is the
situation that typically arises in practice. This algorithm is shown in Figure 5. It is straightforward to see
that this algorithm computes the result inO(g � n=p) time and two phases. The process of writing and then
reading locations in the arrayS[i; j] is a simple method of broadcastingp values to all processors.

Theorem 4.2 The simple prefix sums algorithm runs inO(gn=p) time and in two phases whenp � pn.
If the input and output are to be distributed uniformly amongthe local memories of the processors, then

the simple prefix sums algorithm runs inO(g � p) time whenp � pn.

4.3 Sample Sort Algorithm

Figure 6 shows the QSM sample sort algorithm. We assume thatp � q nlog n ; in other words, there is a

significant amount of work for each processor to do.
This algorithm is based on the standard sample sort algorithm that uses ‘over-sampling’ and then picks

pivots evenly from the chosen samples arranged in sorted order [15, 22, 23, 11, 9]. In recent related work,
we have investigated a modified sample sort algorithm with a slightly different pivot selection method, and
we have shown it to have superior performance. Details of this method can be found in [21].

13

Input. ArrayA[1::n] to ap-processor QSM,p �pn= log n.
1. pfor 1 � i � p do

a. Theith processorpi reads theith block ofn=p elements from the input array;
b. pi selectsc log n random elements from its block of elements and writesp copies

of these selected elements in locationsS[1::c � p log n; i]
rofp

2. pfor 1 � i � p processorpi performs the following steps
a. Processorpi reads the values of the samples from locationsS[i; j � c log n+ i],0 � j � (p� 1)
b. pi sorts thecp log n samples, and picks everyc log nth element as a pivot;
c. pi groups its localn=p elements from the input array into groups depending on the

bucket into which they fall with respect to the pivots.
d. For1 � j � p

write back the elements in thejth bucket into a block in an array meant for
all elements in thejth bucket. (This requires a global prefix sums calculation
to determine the location of the block within the array in which to write the
elements in bucketj from theith processor.
The same computation gives the locations needed for the writes in step 3.)

rofp
3. pfor 1 � i � p do

Processorpi reads the elements in theith bucket, sorts them
and writes the sorted values in the corresponding positionsin the output array.

rofp

Figure 6: Sample sort algorithm.

Theorem 4.3 The algorithm in Figure 6 sorts the input array while performing optimal work (O(g � n +n logn)), optimal communication (O(g � n)), in O(1) phases whp when the number of processorsp =O(q nlog n).
Proof: The algorithm selectscp log n random samples in step 1. In step 2 these samples are read by each
processor, then sorted, andp � 1 evenly-spaced samples are chosen as the ‘pivots’. The pivots divide the
input values intop buckets, where theith bucket consists of elements whose values lie between the(i� 1)st
pivot and theith pivot in sorted order (assuming the 0th pivot has value�1 and thepth pivot has value1.
The elements in theith bucket are locally sorted by the processorpi and then written in sorted order in the
output array. Hence the algorithm correctly sorts the inputarray.

We now analyze the running time of the algorithm withp processors,p � pn= log n. Steps 1a and
2d takeO(gn=p) time, and steps 1b and 2a take timeO(gp log(n=p)) = O(gn=p), sincep � pn= log n.
Step 2b takes timeO(p log n log(p log n)) = O((n=p) log(n=p)), and step 2c takes timeO((n=p) � log p) if
binary search on the pivots is used to assign each element to its bucket. Step 3 takes timeO(B logB+ gB),
whereB is the size of the largest bucket.

We now obtain a bound on the size of the largest bucketB.
Consider the input elements arranged in sorted order in a sequenceS. Consider an intervalI of sizes = �n=p onS, for a suitable constant� > 1. In the following we obtain a high probability bound on the

number of samples in any interval of sizes.
Let Yi;j, 1 � i � c log n; 1 � j � p, be a random variable that is 1 if theith sample of thejth processor lies
in I, and is zero otherwise.Pr[Yi;j = 1] = sj �p=n, for 1 � i � c log n, wheresj is the number of elements inI that are from processorpj ’s block ofn=p elements.
Let Y =Pc log ni=1 Ppj=1 Yi;j. Note thatY is the number of samples inI.

14

Input. Successor arrayS[1::n] to ap-processor QSM,p �pn= log n.
1. Each processor reads a block ofn=p of the input successor array.
2. for c log p iterationsdo

pfor 1 � i � p do
a. Processorpi generates a random bit for each element in its local sublist.
b. pi ‘eliminates’ each local active element for which its randombit

is a 0 and its successor random bit is a 1.
c. pi compacts its local sublist by removing the eliminated elements using

an ‘indirection’ array.
rofp

rof
3. All processors send their current sublist to processor 0, which

then ranks the current elements sequentially.
4. All processors perform a sequence of ‘expansion’ steps corresponding to step 2 in which

the correct list rank is computed for each element once the correct offset is supplied to it.

Figure 7: List ranking algorithm.E[Y] = c log nPpj=1 sj � (p=n) = (s � c � p � logn)=n
HenceE[Y] = �c log n.

By Hoeffding’s inequality,Pr[Y � k] � Pr[X � k], for k < �c log n, whereX is the sum ofpc log n 0-1 independent random variables, with probability of success equal tos=n for all of these random
variables.E[X] = c� log n.

By a Chernoff bound,Pr(X � c log n) � e� c�(��1)2 lnn2� ln 2 = n�c(��1)2=(2� ln 2),
i.e.,Pr(Y � c log n) � n�c(��1)2=(2� ln 2).

Let ai be the position of theci log nth sample in the sorted sequenceS, 1 � i � p � 2. LetBi be the
interval of size�n=p on sequenceS starting atai, 1 � i � p � 2. Let B0 be the interval of size�n=p
starting at the first element ofS and letBp�1 be the interval of size�n=p ending at the last element ofS.
The probability that any of the intervalsBi; 0 � i � p� 1 has less thanc log n samples is no more thanp � n�c(��1)2=(2� ln 2), which isO(1=nr); r > 0, for a suitable choice of� andc. Hence whp every bucket
has no more than�n=p elements.

Thus whp, step 3 takes timeO((n=p) log n+ gn=p), and thus the overall running time of the algorithm
isO(g � (n=p) + (n log n)=p), which is optimal.

There are 6 phases in the algorithm – one each for steps 1a, 1b,2a, 2d, 3, and 4.2
4.4 List Ranking Algorithm

Figure 7 summarizes the list ranking algorithm.

Theorem 4.4 The List Ranking algorithm runs with optimal work and optimal communication (O(gn=p)
for both), and inO(log p) phases whp when the number of processorsp = O(n= log n).
Proof: We first consider the case whenp = o(n�). Consider a given iteration of thepfor loop.
Let r be the number of elements in a given processorP , and letr = re + ro, wherere denotes the number
of elements at even distance, andro denotes the number at odd distance from the end of the currentlinked
list.

15

Let Xe be a random variable denoting the number of elements at even distance from the end of the list
in processorP that are eliminated in this iteration of thepfor loop. LetXo be the corresponding random
variable for elements at odd distance from the end of the linked list. The random variablesXe andXo are
binomially distributed r.v.’s withE[Xe] = re=4 andE[Xo] = ro=4.

By a Chernoff bound,Pr(Xe � (1� �) � re=4) � e��2�re=8 andPr(Xo � (1� �) � ro=4) � e��2�ro=8
Hence, since eitherre or ro is at leastr=2, with exponentially high probability inr, at least(1 � �)=8

of the elements inP are eliminated in this iteration.
If p = o(n�), for any� > 0, thenn=p2 =
(nb), for some constantb > 0. Hence, in every iteration of

thepfor loop, either at least(1� �)=8 of the elements are eliminated at each processor with exponentially
high probability, or the number of elements remaining at theprocessor iso(n=p). Hence, afterc log p
iterations, the number of elements remaining in the linked list is� (1 � �)=4)c log p � n with exponentially
high probability. With a suitable choice ofc this number of elements remaining can be made� n=p.

By the above analysis the number of elements eliminated at any given processor is geometrically de-
creasing from iteration to iteration. Hence the total time for step 2 (and hence for step 4) isO(gn=p). At
the end of step 2 the number of elements is reduced toO(n=p) (with exponentially high probability), hence
the time for step 3 isO(gn=p). Hence the overall running time of the algorithm isO(gn=p). The number of
phases isO(log p), since there is a constant number of phases in each iterationof step 2.

If p =
(n�), we can use a standard analysis of randomized list ranking toshow that all elements at
a processor are eliminated inO(log n) = O(log p) time whp. In this case, for a suitable choice ofc, the
length of the list is reduced to 1 at the end of step 2, and step 3is not required (although one might still use
step 3 for improved performance).2
5 Experimental Results

We investigated the performance of the prefix sums, sample sort and list ranking algorithms onArmadillo
[13], which is a simulated architecture with parameterizable configurations and cycle-by-cycle profiling and
accuracy. The simulator was set to parameters for a state-of-the-art machine. A detailed description of this
experimental work can be found in [14].

The experiments in [14] were performed on a simulator in order to evaluate the effect of varying param-
eters of the parallel machine (such as latency and overhead)and the effectiveness of the QSM model and
the BSP model in predicting performance of algorithms. In this section we concentrate on presenting the
analyses that led to the graphs in the basic experiment performed in [14]. These plots from [14] are attached
to the end of this paper. For details of the other experimentsand conclusions derived from them, see [14].

The results of the experiments indicate that the QSM predictions come close to the observed values for
fairly small problem sizes and that they become more accurate as problem sizes increase. We also found
that the looseness of bounds obtained using standard techniques of algorithm analysis for nonoblivious
algorithms and variations introduced by randomization areoften larger than the errors introduced by QSM’s
simplified network model. This was certainly the case for both sample sort and list ranking.

The architecture of the Armadillo simulator is described inthe appendix. In the following subsections,
we describe our analysis on bounding the constant factors inthe performance bounds of the code we imple-
mented for the three algorithms, and we discuss the experimental results we obtained. The pseudo-code for
the experiments is included in the appendix.

16

5.1 General Comments

Each of our graphs shows the measured results of running one of the three algorithms, and compares the
measured communication time to the communication time predicted by QSM and by the more detailed BSP
model. Our analysis focuses on communication performance –excluding CPU time – for two reasons. First,
all models examined here model CPU performance in the same way, so comparisons of predictions of CPU
performance are not interesting. Second, exact CPU time calculations depend on low level parameters that
are beyond the scope of the QSM and BSP models. However, for completeness the graphs also show the
total measured time taken by the computation.

The architecture we simulated was that of a distributed-memory multiprocessor, and thus the input and
the output was distributed uniformly across the processors. Hence in analyzing the algorithms we excluded
the initial cost of reading the input from shared-memory, and the final cost of writing the output into shared-
memory. As discussed earlier such an analysis is meaningfulin the context of a shared-memory model since
it would correspond, for instance, to a situation where the computation under consideration is part of a more
complex computation, and the input/output is available at the local memories of the appropriate processors.
The algorithms were simulated on 4, 8 and 16 processors.

We plotted several computed and measured costs as listed below:

1. ‘Communication’ is the measured cost of the communication performed by the algorithm, measured
in cycles.

2. ‘QSM best-case’ represents the ideal performance of eachof the randomized algorithms. It uses the
QSM analysis but assumes no skew in the performance of the randomized steps.

3. ‘QSM WHP bound’ represents the performance of each of the randomized algorithms that we can
guarantee with probability at least 0.9.

4. The ‘QSM estimate’ line is a plot of the measured maximum number of communication steps at
any processor multiplied by the gap parameter. (Since none of the algorithms we implemented had
queue contention at memory locations, this correctly measures the communication cost as modeled
by QSM.) For the prefix sums algorithm the ‘QSM estimate’ linealso gives ‘QSM best case’ since
the algorithm is deterministic and oblivious. For the randomized algorithms, this line plots the QSM
prediction without the inaccuracy that is incurred when working with loose analytical bounds on the
amount of communication.

5. The ‘BSP estimate’ line is similar to ‘QSM estimate’, except that there is an additional term to account
for the latency parameter.

6. ‘Total running time’ is the measured cost of the total running time of the algorithm, measured in
cycles. We include this for completeness.

For all three algorithms, we found that ‘QSM estimate’ tracks communication performance well when
the input size is reasonable large. The input sizes for whichwe simulated the algorithms are fairly small due
to the CPU-intensive computation of the step-by-step simulation performed by Armadillo. Modern parallel
architectures typically give each processor many megabytes of memory, so problems of practical interest are
likely to be even larger than presented here.

We now describe in some detail the computations that led to the computed plots in the various graphs.

17

5.2 Description of the Graphs

In this section we describe the equations we used to plot the computed curves for QSM for each of the three
algorithms.

5.2.1 Prefix Sums

We implemented the simple prefix sums algorithm shown in Figure 5. Since theith block of n=p input
elements was distributed to theith processor ahead of the computation and the output location for the prefix
sums for these elements was designated to be on thei processor (the natural distribution), the communication
cost for this algorithm isg(p� 1), and the total running time isO(gp+ n=p).
5.2.2 Sample Sort

We implemented the sample sort algorithm given in Figure 6.
The ‘QSM ideal’ plot shows the computed communication time assuming that each bucket is of size no

more thandn=pe. The algorithm chose4p log n samples, hence the equation plotted isT SSI (n) = 4(p� 1)g log n+ 3(p� 1)g + (gn=p) � (p� 1)=p
Here the first term is for the broadcast performed in steps 1c and 2a of the sample sort algorithm, the second
term is for step 2d, and the third term is for the read in step 3.The factor(p�1)=p in the third term accounts
for the fact that in the ideal case,1=p of the elements in each bucket will be local to the processor that needs
to sort that bucket and hence will not participate in the bucket redistribution step. Since we assume ideal
behavior by the algorithm, the write in step 3 has cost 0, since the elements in each bucket will be in their
final position after the local sort in step 3.

The ‘QSM whp’ plot shows the computed communication time that is guaranteed with probability
greater than .9. The running time here isT SSwhp(n) = 4(p� 1)g log n+ 3(p� 1)g + gBr + gB;
whereB is the size of the largest bucket, andr is a bound on the fraction of elements in any bucket that are
outside the processor that will sort that bucket. Here the term gBr represents the time to perform the read
in step 3 to copy the elements in each bucket into the appropriate processor, and the termgB represents the
time to write back the sorted elements into their final location.

To obtain a bound onB we use the analysis in Section 4.3. We solve for a value of� that is guaranteed
by Chernoff bound to give a bucket size no larger thanB = �n=p with probability at least1 � q (whereq
was set to 0.05). For this we solve for� in the following equation:(�� 1)2� � ((ln 2)=2) log10(1=q) + log10 plog10 n

Solving for�, we obtain� = (�b+pb2 � 4)=2, whereb = �(2+((ln 2)=2)�(log(1=q)+log p)= log n).
To solve forr we use Chernoff bounds again. LetP be a processor whose bucket size is maximum, and

let X be the number of elements in that bucket that are local to processorP before step 3 of the algorithm
in Figure 6. ThenE[X] � �n=p2, andPr(x � (1� �) �B=p) � e��2B=(2p).

We solve for� in the equation(p=2) � e��2B=(2p) � q0, where we setq0 = :05, and the factor ofp=2 comes from the (generous) observation that no more thanp=2 of the processors can have the maximum
bucket size whp.

Thus,� = p(2p=B) � ln(p=(2q0)) and hencer = (p� 1 + �)=p.
Since we set each ofq andq0 to 0:05, the overall success probability is at least:9.

18

5.2.3 List Ranking

We implemented the list ranking algorithm given in Figure 7.
The equation for the time taken by the communication on ap-processor computation isTLR(n) = �g � ((A � c1=2) + (B � c2)=4) c log pXi=1 xi) + �0 � Cgz

where the various parameters are the following:c = 4 since we implemented step 2 of the list ranking algorithm to run for4 log n iterations.xi is a bound on the maximum number of elements at any processor in theith iteration of thefor loop
in step 2 of the list ranking algorithm.A = 1 is the number of communication steps performed by elements that flipped a one bit in an iteration
of the for loop in step 2 of the list ranking algorithm, andc1 is a correction factor to compute a bound on
the maximum number of elements that flipped a one bit at any processor in thei th iteration as(c1=2) � xi.B = 7 is the number of communication steps performed for elementsthat are eliminated in an iteration
of thefor loop in step 2 of the list ranking algorithm, andc2 is a correction factor to compute a bound on the
maximum number of elements that eliminated themselves at any processor in theith iteration as(c2=4) � xi.z is the total number of elements remaining after step 2.C = 4 is the number of communication steps involves thesez elements.� is a bound on the fraction of elements that flipped a bit whose successors/predecessors are not at the
same processor, and�0 is a bound on the fraction of the elements remaining after step 2 that are not in
processorP0.

For the ‘QSM ideal’ plot, we assume there is no skew in the performance of the randomized steps.
Hence we obtained the following values for the parameters:xi = (n=p) � (3=4)i�1, z = n � (3=4)4 log p, c1 = c2 = 1, � = �0 = (p� 1)=p,
wheren is the size of the input. By approximating the summation by the sum of the infinite geometric series,
we obtained the following equation for the ‘QSM ideal’ plot:TLRI (n) = ((p� 1)=p) � 2:25g � 4 � (n=p) + 4gn � (3=4)4 log p

The ‘QSM whp’ plot gives the bound on communication that we can guarantee with probability at least:9. This bound was obtained using Chernoff bound as described in Section 4.4 and is rather weak, since
many approximations were made in the analysis. We describe below the values we used for the various
parameters.

We obtained a bound onxi+1 using Chernoff bounds, first to obtain a lower bound onx0i, the number
of elements in any processor at each of odd and even positionson the linked list, and then to obtain a
lower bound on the number of these elements that are eliminated in theith iteration. To compute this
we first computed a bound onx0i that is guaranteed at any processor with probability at least 1 � q2 asx0i = (1� �) � xi=2, where� = p(4=xi) � ln((2pc log p)=q2).

We then computed a bound onxi+1 that is guaranteed at any processor with probability at least 1 � q1
asxi+1 = xi � (3=4 + �0=4), where�0 = q(2=x0i) � ln((2pc log p)=q1)

We obtained an upper bound onc1 that is guaranteed at any processor with probability at least 1� q4 asc1 = 1 +
, where
 = p(6=xi) � ln((pc log p)=q4).
We decided to setc2 = c1 to simplify the analysis, since it appeared that the benefit obtained from

computing an upper bound onc2 was out-weighed by the fact that we needed to devote some probability to
this computation.

19

We computed a bound onz that is guaranteed with probability at leastq3 using Chernoff bounds to bound
the total number of elements remaining at each iteration of thefor loop, and hence obtained a bound forz as
the bound on the number of elements remaining after the last iteration of thefor loop. For this we setr = n
initially, and in theith iteration we updatedr to r = r � (3=4 + �=4), where� = p(8=r) � ln((c log p)=q3).

We set� = �0 = 1 to simplify the analysis.
We setq1 = :04 andq2 = q3 = q4 = :02 to obtain an overall probability of success of at least:9.

5.3 Discussion

The graphs for the three algorithms are given at the end of thepaper.
As expected the communication cost for the prefix sums algorithm is negligible compared to the total

computation cost asn becomes large. Hence we have only shown the plots for 16 processors. QSM (and to
a lesser extent BSP) both underestimate the communication cost by a large amount, but since the communi-
cation cost is very small anyway, this does not appear to be a significant factor. The possible cause for this
discrepancy between the predicted and measured communication costs is discussed in [14].

As expected, for both sample sort and list rank the lines for ‘QSM best-case’ and ‘QSM WHP bound’
envelope the line for actual measured communication exceptfor tiny problem sizes (when latency dominates
the computation cost). For both algorithms the ‘QSM estimate’ line is quite close to the ‘communication’
line, indicating that QSM models communication quite effectively when an accurate bound is available
for the number of memory accesses performed by the processors. For instance with 16 processors, ‘QSM
estimate’ is within 10% of ‘communication’ for sample sort when the input size is larger than 125,000, and
is within 15% of ‘communication’ for list rank when input size is larger than 40,000. The ‘BSP estimate’
lines are very close to the ‘QSM estimate’ lines for both algorithms.

For both sample sort and list rank the ‘QSM WHP’ line gives a very conservative bound, and lies signifi-
cantly above the line for ‘communication.’ This is to be expected, since the ‘communication’ line represents
the average of ten runs while the ‘QSM WHP’ line guarantees the bound for at least 90% of the runs. Further,
as seen from the equations that led to the ‘QSM WHP bound’ lines for both algorithms, the bounds com-
puted are not tight. It should be noted that the fairly large gap between the ‘communication’ and the ‘QSM
WHP bound’ lines is mainly due to the looseness of the bounds we obtained on the number of memory
accesses performed by the randomized algorithms, and not due to inaccuracy in the QSM communication
model. As noted above, the ‘QSM estimate’ line which gives the QSM prediction based on the measured
number of memory accesses is quite close to the ‘communication’ line.

Overall these graphs show that QSM models communication quite effectively for these algorithms, for
the range of input sizes that one would expect to see in practice. We also note that the additional level of
detail in the BSP model has little impact on the ability to predict communication costs for the algorithms we
studied, as compared to the QSM.

6 Conclusions

This paper has examined the use of QSM as a general-purpose model for parallel algorithm design. QSM is
especially suited to be such a model because of the following.

1. It is shared-memory, which makes it convenient for the algorithm designer to use.

2. It has a small number of parameters (namely,p, the number of processors, andg the gap parameter).

3. We have presented simple work-preserving emulations of QSM on other popular models for parallel
computation. Thus an algorithm designed on the QSM will map on to these other models effectively.

20

To facilitate using QSM for designing general-purpose parallel algorithms, we have developed a suitable
cost metric for such algorithms and we have evaluated algorithms for some fundamental problems both
analytically and experimentally against this metric. These results indicate that the QSM metric is quite
accurate for problem sizes that arise in practice.

References

[1] M. Adler, J. Byer, R. M. Karp, Scheduling parallel communication: The h-relation problem. In
Proc. MFCS, 1995.

[2] M. Adler, W. Dittrich, B. Juurlink, M. Kutylowski, I. Rieping. Communication-optimal parallel
minimum spanning tree algorithms. In Proc. ACM SPAA, pp. 27–36, 1998.

[3] M. Ajtai, J. Komlos, E. Szemeredi, AnO(n logn) sorting network. InProc. ACM STOC, pp. 1–9,
1983.

[4] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, P. Spirakis. BSP vs LogP. InProc. ACM SPAA,
pp. 25–32, 1996.

[5] E. Caceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping, A. Roncato, N. Santoro, and S. W. Song.
Efficient parallel graph algorithms for coarse grained multicomputers and BSP. InProc. ICALP,
LNCS 1256, pp. 390-400, 1997.

[6] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a realistic model of parallel computation. In Proc. 4th ACM SIGPLAN
Symp. on Principles and Practices of Parallel Programming, pages 1–12, May 1993.

[7] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write PRAM model:
Accounting for contention in parallel algorithms.SIAM Journal on Computing, 1997. To appear.
Preliminary version appears inProc. 5th ACM-SIAM SODA, pages 638-648, January 1994.

[8] P. B. Gibbons, Y. Matias, and V. Ramachandran. Efficient low-contention parallel algorithms.Jour-
nal of Computer and System Sciences, 53(3):417–442, 1996. Special issue devoted to selected
papers from1994 ACM SPAA.

[9] P.B. Gibbons, Y. Matias, and V. Ramachandran. The queue-read queue-write asynchronous PRAM
model.Theoretical Computer Science, vol. 196, 1998, pp. 3-29.

[10] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model serve as a bridging
model for parallel computation? InProc. 9th ACM SPAA, June 1997, pp. 72-83. To appear.

[11] A.V. Gerbessiotis and L.G. Valiant. Direct bulk-synchronous algorithms.J. Parallel and Distributed
Computing, 22:251-267, 1994.

[12] M. Goodrich. Communication-efficient parallel sorting. In Proc. ACM STOC, pp. 247–256, 1996.

[13] B. Grayson. Armadillo: A High-Performance Processor Simulator. Masters thesis, ECE, UT-Austin,
1996.

[14] B. Grayson, M. Dahlin, V. Ramachandran, Experimental evaluation of QSM: A simple shared-
memory model. TR98-21, Dept. of Computer Science, UT-Austin, 1998.

21

[15] J.S. Huang and Y.C. Chow. Parallel sorting and data partitioning by sampling.Proc. 7th IEEE Intl.
Computer Software and Applications Conference, pp. 627-631, 1983.

[16] R. M. Karp and V. Ramachandran. Parallel algorithms forshared-memory machines. In J. van
Leeuwen, editor,Handbook of Theoretical Computer Science, Volume A, pages 869–941. Elsevier
Science Publishers B.V., Amsterdam, The Netherlands, 1990.

[17] R. Karp, A. Sahay, E. Santos, and K.E. Schauser, Optimalbroadcast and summation in the LogP
model, InProc. 5th ACM SPAA, 142–153, June-July 1993.

[18] K. Kennedy. A research agenda for high performance computing software. InDeveloping a Com-
puter Science Agenda for High-Performance Computing, pages 106–109. ACM Press, 1994.

[19] P. D. MacKenzie and V. Ramachandran. Computational bounds for fundamental problems on
general-purpose parallel models. InProc. 10th ACM SPAA, June-July 1998, pp. 152-163.

[20] V. Ramachandran. A general purpose shared-memory model for parallel computation. In Algo-
rithms for Parallel Processing, Volume 105, IMA Volumes in Mathematics and its Applications,
Springer-Verlag, to appear.

[21] V. Ramachandran, B. Grayson, M. Dahlin. An improved sample sort algorithm. Manuscript under
preparation.

[22] R. Reischuk. Probabilistic parallel algorithms for sorting and selection.SIAM Jour. Computing,
14:396-409, 1985.

[23] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. J. Parallel and Distributed Computing,
14:382-372, 1992.

[24] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–
111, 1990.

22

Parameter Setting

Functional Units 4 int/4 FPU/2 load-store
Functional Unit Latency 1/1/1 cycle
Architectural Registers 32
Rename Registers unlimited
Instruction Issue Window 64
Max. Instructions Issued per Cycle4
L1 Cache Size 8KB 2-way
L1 Hit Time 1 cycle
L2 Cache Size 256KB 8-way
L2 Hit Time 3 cycles
L2 Miss Time 3 + 7 cycles
Branch Prediction Table 64K entries, 8-bit history
Subroutine Link Register Stack unlimited
Clock frequency 400 Mhz

Table 2: Architectural parameters for each node in multiprocessor.

APPENDIX

A Description of the Experimental Set-up

The Armadillo multiprocessor simulator [13] was used for the simulation of a distributed memory multipro-
cessor. The primary advantage of using a simulator is that itallows us to easily vary hardware parameters
such as network latency and overhead. The core of the simulator is the processor module, which models a
modern superscalar processor with dynamic branch prediction, rename registers, a large instruction window,
and out-of-order execution and retirement. For this set of experiments, the processor and memory configura-
tion parameters are set for an advanced processor in 1998, and are not modified further. Table 2 summarizes
these settings.

The simulator supports a message-passing multiprocessor model. The simulator does not include net-
work contention, but it does include a configurable network latency parameter. In addition, the overhead of
sending and receiving messages is included in the simulation, since the application must interact with the
network interface device’s buffers. Also, the simulator provides a hardware gap parameter to limit network
bandwidth and a per-message network controller overhead parameter.

We implemented our algorithms using a library that providesa shared memory interface in which access
to remote memory is accomplished with explicitget() andput() library calls. The library implements
these operations using a bulk-synchronous style in whichget() andput() calls merely enqueue requests
on the local node. Communication among nodes happens when the library’s sync() function is called.
During async(), the system first builds and distributes a communications plan that indicates how many
gets andputs will occur between each pair of nodes. Based on this plan, nodes exchange data in an order
designed to reduce contention and avoid deadlock. This library runs on top of Armadillo’s high-performance
message-passing library (libmvpplus).

Our system allows us to set the network’s bandwidth, latency, and per-message overhead. Table 3
summarizes the default settings for these hardware parameters as well as the observed performance when we
access the network hardware through our shared memory library software. Note that the bulk-synchronous
software interface does not allow us to measure the softwareo andl values directly. The hardware primitives’

23

Parameter Hardware Observed Performance
Setting (HW + SW)

Gapg (Bandwidth) 3 cycles/byte (133 MB/s) 35 cycles/byte (put), 287 cycles/byte (get)
Per-message Overheado 400 cycles (1�s) N/A
Latencyl 1600 cycles (4�s) N/A
Synchronization BarrierL N/A 25500 cycles (16-processors) (64�s)

Table 3: Raw hardware performance and measured network performance (including hardware and software)
for simulated system.

performance correspond to values that could be achieved on anetwork of workstations (NOW) using a high-
performance communications interface such as ‘Active Messages’ and high-performance network hardware
such as ‘Myrinet’. Note that the software overheads are significantly higher because our implementation
copies data through buffers and because significant numbersof bytes sent over the network represent control
information in addition to data payload.

B Summary of Earlier Results on Work-Preserving Emulations

QSM and s-QSM
Since any phase of an s-QSM can be performed with the same timecost or less on the QSM, it follows

that the s-QSM can be emulated on the QSM in a work-preservingmanner with no slowdown. For the
reverse emulation we obtain a work-preserving emulation with slowdowng by mappingg QSM processors
onto each s-QSM processor and then have each s-QSM processoremulate the computation of each of the
QSM processors mapped to it.
Observation:[20] There is a deterministic work-preserving emulation ofQSM on s-QSM with slowdowng.

Emulation of QSM and s-QSM on BSP
Theorem: [10]

There is a randomized work-preserving emulation of ap-processor QSM on BSP with slowdownO(L=g+g log p) whp in the size of the input.
There is a randomized work-preserving emulation of ap-processor s-QSM on BSP with slowdownO(L=g + log p) whp in the size of the input.
The emulation algorithm that leads to the above theorem is very simple, and is described below.� Hash the QSM (or s-QSM) memory onto the BSP components.� Map the QSM processors uniformly on to the BSP components.� Have each BSP component emulate the (or s-QSM) QSM processors mapped to it.

A probabilistic analysis [10, 20] shows that the emulation has performance stated in theorem.

Emulation of BSP on QSM and s-QSM
Theorem. [10] A p-component BSP can be emulated in a work-preserving manner on a QSM or s-QSM
with slowdownO(d(g=L) � log pe) whp inp.

This emulation uses the shared memory of the QSM (or s-QSM) only to realize theh-relation routing
performed by the BSP in each step. The following is a sketch ofthe emulation algorithm from [10].

24

Map the BSP processors uniformly among the QSM (or s-QSM) processors. In each phase, each QSM (or
s-QSM) processor emulates the local computation for the current superstep of the BSP processors assigned
to it.

Each QSM (or s-QSM) processor copies into its private memorythe messages that were sent in the
current superstep to the local memory of the BSP processors mapped to it as follows. Heren is the number
of BSP processors.

1. Compute the total number of messages,M , to be sent by all processors inO(g logn) time andO(M+gn) work.

2. Construct a sampleS of the messages to be sent by choosing each message independently with prob-
ability 1= log3M . The size of the sample will beO(M= log3M) whp.

3. Sort the sample deterministically according to destination using a standard sorting algorithm, e.g.,
Cole’s merge-sort; this takesO(g logM) time andO(g �M= log2M) work.

4. Group the destinations into groups of sizelog3M and determine the number of messages destined
for each group. This can be computed by a prefix sums computation that takesO(g logM) time andO(gM) work.

5. Letki be the number of elements in the sample destined for theith group. Obtain a high probability
bound on the total number of messages to each group asri = O(max(ki; 1) � log3M). Makelog3M
copies of eachri, and place the duplicate values of theri in an arrayR[1::n] such thatR[i] contains
the bound for the group that contains destinationi; 1 � i � n. This step can be performed inO(g(1 + log logM= log g)) time andO(ng) work using a broadcasting algorithm for eachri.

6. In parallel, for eachi, all processors with a message to a destinationi read the value of this bound
fromR[i]; this takes time� gh andO(gM) work.

7. Use an algorithm for multiple compaction to get the messages in each group into a linear-sized array
for that group; this takesO(g logM) time andO(gM) work by the adaptation of the randomized
QRQW algorithm for multiple compaction given in [8].

8. Perform a stable sort within each group according to the individual destination; this can be performed
in O(g logM) time andO(gM) work deterministically using an EREW radix-sort algorithmwithin
each group.

9. Move the messages into an output arrayR of sizeM sorted according to destination inO(gh) time andO(M) work. Create an arrayB of sizen that contains the number of messages to each destination, and
the starting point in the output array for messages to that destination; this can be done by computing
prefix sums on an appropriateM -array and takesO(g logM) time andO(gM) work. Processori
reads this value fromB[i] and then reads the messages destined for it from the output array in timeO(gh) and workO(gM).

25

C Pseudo-codes

We describe the algorithms for prefix sums, sample sort and list ranking, as they were implemented on the
simulator. For all algorithms the input and output was distributed uniformly across theP processors.

parallelprefix (arrayA, sizen)

Step 1: Calculate local prefix sums.Each processor calculates a prefix sum on its
local portion of the array.

Step 2: Exchange sums between processors.Each processor broadcasts a copy of its last
sum to every other processor.

BARRIER SYNCHRONIZATION

Step 3: Final modification.Each processor adds up the sums from its preceding processors,
and adds this offset to each of its previously-calculated prefix sums.

samplesort(arrayS, sizen)

Major step 1: Pivot selection
Allocate and “register” temporary structures.
BARRIER SYNCHRONIZATION(to ensure the shared-memory “registrations” have completed)
Each processor selectsc logn of its elements randomly (with replacement),

and broadcasts its samples to all other processors.
BARRIER SYNCHRONIZATION

Each processor quicksorts allcP logn samples, and selects everyc lognth element as a pivot (for a total ofP � 1 pivots, orP “buckets”).
Major step 2: Redistribution

Assign each local element to one of of theP buckets, based on the chosen pivots,
and reorder the elements locally so that all elements for theith bucket are contiguous.

For1 � i � P , every processor sends its count of elements for bucketi, along
with a pointer to the location of these elements, to processor i.

BARRIER SYNCHRONIZATION

Each processor now fetches the other processors’ contributions to its bucket.
Each processor also participates in a parallel prefix of the total number of elements in each bucket.
BARRIER SYNCHRONIZATION

Major Step 3: Local Sort
for 1 � i � P in parallel

processori sorts the elements in theith bucket.
Major Step 4: Redistribution

Each processor writes the sorted elements of its bucket intothe appropriate locations
(calculated using the results of a prefix sums computation) in arrayS.

BARRIER SYNCHRONIZATION

26

listrank (arrayS, arrayP , arrayR, sizen)

Arrays: successor arrayS; predecessor arrayP ; returned-ranks arrayR;
Local variables: indirection arrayI , flip arrayF , successor’s flip arraySF , removed element arrayRN , and temporary
new ranksNR.Isize is the current number of elements, andI [i] points to theith element in the current linked list.

Initialization:
InitializeR to be all ones.
Initialize I [i] = i, to set up the initial indirection.
Allocate and register temporary structures.

Major step 1: Each processor repeatedly removes some elements from its list,
until the list size is fairly small as follows.
for c � logP iterations do

each active elementi generates a flip (random bit), and stores it inF [I [i]].
BARRIER SYNCHRONIZATION(to ensure shared-memory registrations have completed in

the first loop, and to ensure that the updates from the previous loop have completed).
if i is not the head element, andi has a successor, andF [I [i]] is 1

(i.e.,i flipped a 1), then fetch its successor’s flip intoSF [I [i]].
BARRIER SYNCHRONIZATION

if F [I [i]] = 1 andSF [I [i]] = 0 (i flipped 1, andi’s successor’s flip was 0),
theni removes itself from the linked list by performing a doubly-linked list-remove
usingS andP . Geti’s predecessor’s rank.

if this is the last iteration of the loop, send our count of remaining elements to
node 0 (doing this step now saves a BARRIER SYNCHRONIZATION).

BARRIER SYNCHRONIZATION

for each elementi removed in the previous phase, look at the received rank of its
predecessor, and increment its predecessor’s rankR[i] by i’s current rank.
(Barrier synchronization is not needed, as this can be done in parallel with the
flip generation of the next iteration, or in parallel with thefirst phase of the step below.)

Major step 2: Processor 0 finishes the list reduction locally.
Node 0 uses the counts of remaining elements send by the otherprocessors to perform

a local prefix sum, and sets up temporary arrays to hold all of the remaining elements.
Node 0 tells each processor the offset to use for sending its remaining elements.
BARRIER SYNCHRONIZATION

All processors send the data for their currently-active elements (the predecessor pointers,
the current ranks, and an appropriate indirection array) toprocessor 0.

BARRIER SYNCHRONIZATION

Processor 0 performs a local list-rank on the remaining active elements and puts the final
ranks for these remaining active elements in their designated locations.

BARRIER SYNCHRONIZATION

Major step 3:Perform Major step 1 in reverse, inserting elements back into the list
and patching things up.

27

