Trace Reduction for Virtual Memory Simulations

Scott F. Kaplan, Yannis Smaragdakis, and Paul R. Wilson

Dept. of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

{sfkaplan|smaragd|wilson}@cs.utexas.edu

Abstract

The unmanageably large size of reference traces has
spurred the development of sophisticated trace reduc-
tion techniques. In this paper we present two new
algorithms for trace reduction—Safely Allowed Drop
(SAD) and Optimal LRU Reduction (OLR). Both
achieve high reduction factors and guarantee ezact
simulations for common replacement policies and for
memories larger than a user-defined threshold. In par-
ticular, simulation on OLR-reduced traces is accurate
for the LRU replacement algorithm, while simulation
on SAD-reduced traces is accurate for the LRU and
OPT algorithms. OLR also satisfies an optimality
property: for a given trace and memory size it pro-
duces the shortest possible trace that has the same
LRU behavior as the original for a memory of at least
this size.

Our approach has multiple applications, especially
in simulating virtual memory systems; many page re-
placement algorithms are similar to LRU in that more
recently referenced pages are likely to be resident. For
several replacement algorithms in the literature, SAD-
and OLR-reduced traces yield exact simulations. For
many other algorithms, our trace reduction eliminates
information that matters little: we present extensive
measurements to show that the error for simulations of
the CLOCK and SEGQ (segmented queue) replacement
policies (the most common LRU approximations) is
under 3% for the majority of memory sizes. In nearly
all cases, the error is smaller than that incurred by the
well known stack deletion technique.

SAD and OLR have many desirable properties. In
practice, they achieve reduction factors up to several
orders of magnitude. The reduction translates to both
storage savings and simulation speedups. Both tech-
niques require little memory and perform a single for-
ward traversal of the original trace, which makes them
suitable for on-line trace reduction. Neither requires
that the simulator be modified to accept the reduced
trace.

1 Introduction

Trace driven simulation is a common approach to
studying virtual memory systems. Given a reference
trace—a sequence of the virtual memory addresses
that are accessed by an executing program—a sim-
ulator can imitate the management of a virtual mem-
ory system. Thanks to reference traces, experiments
on virtual memory management policies can be re-
produced in a controlled environment. Unfortunately,
these traces can be extremely large, easily exceed-
ing the capacities of modern storage devices even for
traced executions lasting only a few seconds. The size
of traces impedes both their storage and processing.
Trace reduction is the compression of reference traces
(either lossless or lossy) so that they can be stored and
processed efficiently.

There are many existing methods for trace reduc-
tion. However, these methods have undesirable char-
acteristics for virtual memory simulation: Some dis-
card so much reference information that the reduced
trace introduces significant error into the simulation
of common page replacement policies. Other methods
make it difficult to control how much information is
discarded, and thus what size memories can be sim-
ulated accurately. Some methods reduce the storage
costs without reducing the number of references and
thus the time required to process a trace.

We present two trace reduction methods—Safely
Allowed Drop (SAD) and Optimal LRU Reduction
(OLR)—that do not suffer from these deficiencies.
Both allow a user to control the degree of reduction
by the specification of a reduction memory size. SAD
is the simpler of the two: it removes references that are
guaranteed not to affect the LRU and OPT behavior
of a trace, provided that the simulated memory sizes
are no smaller than the reduction memory size. Un-
der the same assumption, the OLR algorithm yields
the shortest possible trace that can be used for exact
LRU simulations in place of the original trace. OLR is
useful both because it provides greater reduction than
SAD and because its output gives a lower bound for

the length of a reduced trace. Both algorithms are ef-
ficient in practice, and significantly reduce storage and
processing costs.

Guaranteeing accurate simulation for LRU and OPT
may not seem exciting at first. If the trace were used
only with these policies, the simulation could be run
only once and the results stored and re-used. Our ap-
proach is effective, however, for simulations of many
virtual memory replacement policies. Nearly all re-
placement policies used or studied with real work-
loads are either variants or approximations of LRU.
This similarity of common page replacement poli-
cies is hardly surprising—good replacement algorithms
should not evict pages that are in current use.

Variants of LRU (e.g., GLRU [FeLWT78], SEQ
[G1Ca97], FBR [RoDe90], EELRU [SKW98]) keep the
k most recently referenced pages in memory, even
though not all m pages in memory (m > k) are the
m most recently accessed (as they are in pure LRU).
Our approach to trace reduction is applicable in all
such cases for a reduction memory size of at most k.
Even small values of k (10 to 100) are enough to allow
OLR and SAD to achieve reduction factors of up to
several orders of magnitude, while guaranteeing exact
simulations.

SAD and OLR are also useful when studying ap-
prozimations of LRU. The most prominent approxi-
mations are CLOCK and SEGQ (segmented queue—also
known as hybrid FIFO-LRU [BaFe83] or segmented
FIFO [TuLe81]). These replacement policies ignore
the same high-frequency referencing information that
nearly any replacement policy will ignore, and that
SAD and OLR discard from traces. This information
is ignored not because these are LRU approximations,
but because references to recently used pages don’t af-
fect replacement decisions, and because hardware of-
ten does not allow the collection of such information.

We show that the error introduced by SAD and OLR
for both CLOCK and SEGQ replacement simulations is
small—under 2% in number of faults in most cases.
We also compare SAD and OLR to stack deletion
[Smit77], which is a commonly known technique for
removing high frequency reference information from
virtual memory traces. Given reduced traces of com-
parable size created using all three methods, SAD and
OLR introduce less error on average into CLOCK and
SEGQ simulations.

Additionally, the ability of the SAD algorithm to
produce reduced traces valid for exact OPT simula-
tions is a pleasant side-effect: it means that a single
trace can be used for all experiments in a virtual mem-
ory study. Such studies often compare a new algo-
rithm to LRU and OPT. All these experiments can be
conducted with perfect accuracy (in the case of LRU,
OPT, and LRU variants) or small error (in the case of

LRU approximations).

2 Background and Motivation

Given the importance of trace reduction, it is not sur-
prising that there has been a wealth of research work
on reduction techniques. It is impossible to exhaus-
tively reference all the approaches—instead Section
2.1 presents an overview and Section 2.2 positions our
method relative to the most closely related techniques.
A good further reference is the recent survey of trace-
driven simulation by Uhlig and Mudge [UhMu97].

2.1 Overview of Related Work

Like all data compression, trace reduction techniques
are divided into lossless and lossy approaches. In a
lossless approach, the entire trace can be reconstructed
from its reduced form, while lossy reduction does not
preserve all information in the original trace. Our tech-
nique is lossy in nature but guarantees that certain
kinds of simulations (namely LRU and OPT simula-
tions) are exact on the reduced traces.

Lossless Reduction. A straightforward approach
to lossless trace reduction is to apply standard data
compression techniques on a trace. Simple Lempel-
Ziv compression results into reduction factors of about
5 for typical traces [UhMu97]. Higher degrees of re-
duction can be achieved by combining compression al-
gorithms with differential encoding techniques. The
best known such instances are the Mache [Samp89)
and PDATS [JoHa94] systems, which explore spatial
locality in the reference trace to encode it differen-
tially. Subsequently, standard text compression tech-
niques are applied and result into further reduction of
its size.

Lossless techniques can be used to reconstruct a
trace accurately for all purposes. Nevertheless, the
compression ratios achieved are not as high as those
possible with lossy trace reduction. More importantly,
traces need to be uncompressed before simulation is
performed. Thus, the reduction gains of lossless com-
pression do not translate into simulation speedups.

Lossy Reduction. When performing trace reduc-
tion, one usually has some knowledge of the future uses
of a program trace. Lossy trace reduction techniques
attempt to exploit such knowledge so that the trace
size is reduced dramatically but enough information is
maintained for the intended uses of a trace.

The simplest lossy reduction technique is blocking.
Blocking replaces references to individual addresses
with references to memory pages. Subsequent refer-
ences to addresses within the same page can then be

reduced to a single reference. This reduction does
not affect the simulation of time-independent paging
algorithms—algorithms that do not consider the ex-
act time of each reference in making replacement de-
cisions. Such algorithms are LRU, OPT, etc., but
not, for instance, Working Set [Denn68]. Blocking is
so widely applicable that it is practically assumed in
most simulation work. For the remainder of this paper,
when we refer to an original trace, we are referring to
a blocked trace.

Recent work on trace reduction includes the tech-
nique of Agarwal and Huffman [AgHu90]. Whereas
most lossy reduction techniques concentrate on the
temporal locality of a program trace, their approach
exploits spatial locality and results in an extra signifi-
cant factor of reduction.

Other trace reduction methods include trace sam-
pling and trace stripping (e.g., see [Puza85]). Both are
better suited for high-speed cache simulations as they
introduce inaccuracy into virtual memory simulations.

The majority of lossy trace reduction methods, how-
ever, are oriented towards virtual memory simulations.
These techniques address the same concerns as our al-
gorithms and are directly comparable to them. The
next section discusses such related reduction tech-
niques in detail.

2.2 The Value of Our Techniques

Our approach fills a prominent gap in the spectrum of
trace reduction techniques. Most existing techniques
either do not guarantee accurate simulations or do not
achieve the same high reduction factors as our method.
We isolate three approaches that stand out as partic-
ularly related to ours.

e Smith’s stack deletion [Smit77] consists of only
keeping references that cause pages to be fetched
to an LRU memory of size k. Stack deletion is
directly comparable to the SAD algorithm. Both
techniques are very simple and have similar pre-
conditions: both require that the reduced trace be
used with memories no smaller than the memory
used for reduction. Nevertheless, SAD guarantees
that no error is introduced for LRU and OPT sim-
ulations, contrary to stack deletion. Smith argued
experimentally that the error of stack deletion is
small. Still, it is a significant drawback for virtual
memory experiments. For one thing, it is not clear
how large the error will be for experimental (i.e.,
not strictly LRU) replacement algorithms. For
another, the error of stack deletion is indeed small
but only if the depth of the stack (i.e., the size of
the memory used for reduction) is much smaller
than the simulated memory (typically 20% to 50%

of its size). Hence, SAD can use a much larger re-
duction memory and achieve exact results. As
we show in our experiments, the larger reduction
memory size translates into significantly more re-
duction. Additionally, we show that stack dele-
tion introduces larger error than both SAD and
OLR for cLock and SEGQ simulations (for re-
duced traces of the same size). In conclusion, SAD
and OLR are both safer (i.e., introduce less error)
and more effective (i.e., yield smaller traces useful
for comparable purposes) than stack deletion.

The technique of Coffman and Randell [CoRaT70]
can be seen as an alternative to both SAD and
OLR for LRU simulations. Their approach con-
sists of using the LRU behavior sequence (i.e., the
sequence of pages fetched and evicted) for an LRU
memory of size k to perform exact simulations of
LRU memories of size larger than k. The behav-
ior sequence is typically very short, even for small
values of k. The biggest drawback of the Coffman
and Randell approach, however, is that the prod-
uct of reduction is not itself a trace. For instance,
it is not clear how the LRU behavior sequence of
a trace can be used for OPT simulations. In the
best case, the simulator as well as any other tools
(e.g., trace browsers) will need to change to ac-
cept the new format. This is a practical burden
to the simulator implementors and makes it hard
to distribute traces in a compatible form. This is
the main reason why this simple technique has not
become more widespread. Our OLR algorithm is
complementary to the approach of Coffman and
Randell: it offers an efficient way to turn the be-
havior sequence format into the shortest possible
trace exhibiting this LRU behavior. Other advan-
tages of our algorithms exist. For instance, SAD
is also applicable to OPT simulations and we show
that both SAD and OLR introduce little error for
simulations of CLOCK and SEGQ.

Just like our techniques, the reduction method
used by Glass and Cao [GlCa97] is applicable to
exact virtual memory simulations. Like Coffman
and Randell’s method, the Glass and Cao tech-
nique suffers from needing to modify the simulator
to accept the reduced trace format. The modifi-
cations are far from trivial and it can be hard to
use the reduced trace information for simulations
of policies other than those studied in [G1Ca97]
(LRU, OPT, and SEQ—an experimental replace-
ment algorithm). Another drawback of this tech-
nique is its lack of control over the interesting
memory ranges. It is not possible to specify di-
rectly the memory sizes for which the simulation
should be exact. Instead, the trace filter intro-

duces uncontrollable factors which determine the
memory sizes for which the simulation is valid.
Also, the method seems to be less efficient than
our approach, at least for LRU simulations. We
did not have access to the traces used by Glass
and Cao in unreduced form, but were able to de-
rive the OLR-reduced form of these traces (di-
rectly from the Glass and Cao reduced traces).
This was several times shorter than the reduced
form used by Glass and Cao, both in terms of ab-
solute size and in terms of significant events. We
present these results in Appendix A.

Other applications of our algorithms are possible.
Because of its optimality properties, OLR is ideal for
the purposes of trace analysis. It provides an estimate
of the amount of reordering done inside an LRU mem-
ory. This is useful for evaluating whether a trace will
behave similarly under LRU and under LRU approxi-
mations (e.g., CLOCK or SEGQ implementations). An-
other possible application of OLR is in trace synthesis.
Given any exact sequence of fetched and evicted pages
from an LRU memory, OLR can produce a minimum
length trace that will cause the same fetches and evic-
tions. This could provide an alternative to statistical
trace synthesis techniques (e.g., [Baba81]).

Finally, we should mention that our techniques are
complementary to reduction algorithms that exploit
different principles. Since the output of our algorithms
is itself a trace, other trace reduction techniques can
be applied (e.g., [JoHa94, AgHu90]). As we will see,
simple file compression of our reduced traces with the
gzip utility yields much smaller files, further decreas-
ing storage requirements.

3 The Algorithms

3.1 Safely Allowed Drop (SAD)

Full traces commonly contain a large number of refer-
ences that are ignored by virtual memory replacement
policies. These references account for the majority of
space required to store a trace, and consume the ma-
jority of time required to perform a virtual memory
simulation. Safely Allowed Drop (SAD) removes ref-
erences from a trace that do not affect the order of
fetches into and evictions from an LRU memory of
some user-specified size.

We will show that SAD allows for exact simulations
not only of LRU, but also of OPT. We will also show,
in Section 4 that it introduces very little error into the
simulation of LRU approximations such as CLOCK and
SEGQ.

3.1.1 Finding References to Drop

For any two references to the same page in a program
trace, we can define their LRU distance as the num-
ber of distinct other pages referenced between the two
references. The idea behind SAD is simple: For any
three references to the same page in a trace, if the LRU
distance of the first and third reference is d, then re-
moving the middle reference does not affect the out-
come of LRU and OPT simulations on memories of
size greater than d. Section 3.1.3 describes why the
elimination of these middle references has no effect on
LRU and OPT.

SAD is an application of this observation. The
user specifies a reduction memory size, k. Then SAD
searches the trace from left to right, to find triples of
the above form—references to the same page, such that
the LRU distance between the first and third reference
is less than k. All middle references of such triples are
eliminated.

ABCADEA..

oo

Airs Asscond Ahird

Figure 1: Agecona can be eliminated because the LRU
distance between Agire: and Agpirq is less than the
reduction memory size of 5 pages.

The figure shows three references to page A. The
LRU distance between the first reference Ag;o and
the third reference Aipirg is 4, as there are four dis-
tinct pages (B, C, D, and E) that are referenced between
Afirst and Agpirq. If the memory size chosen for re-
duction is at least 5, then we can safely drop Asecond
without affecting the results of an LRU or OPT simu-
lation.

Nearly all programs frequently reference pages that
were recently used. Due to this temporal locality, ref-
erences eliminated by SAD constitute the vast major-
ity of references in usual program traces, even for small
reduction memories.

3.1.2 SAD Algorithm Implementation

SAD needs only to determine LRU distances between
pairs of references to the same page in order to find
middle references that can be eliminated. The search
proceeds from left to right, allowing reduction to be
performed in a single forward traversal of the original
trace.

As the trace is processed, the algorithm maintains
an LRU queue of the requested size. It also stores

some of the most recently input references from the
original trace. By keeping both the LRU queue and
a recent history of references, the algorithm can find
groups of three references to the same page where the
LRU distance between the first and third references is
less than the reduction memory size. Therefore, this
information is enough to find middle references that
can be eliminated.

Although it is necessary to store recent references
to find these triplets, the number of references can
be bounded. It is only necessary to store at most
2k + 1 of the most recent references in order to find
the LRU distance between first and third most re-
cent references to a page. Because of space limita-
tions, we will not describe how to derive this bound.
With something like a hash table to help find re-
cent references to pages, performing this reduction
is little more than an augmented LRU queue simu-
lation; it can be executed efficiently. For more de-
tails, we refer you to our implementation of SAD at
<http://www.cs.utexas.edu/users/oops/>.

3.1.3 Exact Simulation of LRU and OPT

If SAD reduces a trace using a k page memory, then
that reduced trace can be used for the exact simulation
of both LRU and OPT memories that are at least k
pages.

Recall the definition of LRU distance: Given two ref-
erences to the same page, the LRU distance between
them is the number of other distinct pages referenced
between those two references. Therefore, if the LRU
distance between two references to a page is less than
k, then that page will not be evicted from an LRU mem-
ory of at least k pages.

First, consider an LRU queue of unbounded length
and its contents for both the unreduced and the re-
duced trace. By dropping references, SAD allows
pages to drift further away from the top of the LRU
queue, as each page is referenced less often. These
pages, however, are guaranteed to be in the first £ po-
sitions of the queue; each eliminated reference is fol-
lowing by another reference to the same page that is an
LRU distance less than & from the previous reference.

Other pages are not adversely affected by removing
a reference. Their position in the LRU queue can only
be closer to the top for the reduced trace than it would
have been for the original one. The only positions in
the queue that may have different contents for reduced
traces are the ones from 1 to k. Therefore, the results
of LRU simulations for memories of size k or larger will
be identical for the reduced and the unreduced trace.

It is easy to follow the argument in the example of
Figure 1. For a memory of size 5 or larger, A will re-
main in memory between Ay;qs¢ and A¢pirq. The mid-
dle reference Asecong has no effect on LRU replacement

and if it is dropped, the reference Aipirg will ensure
that A is not incorrectly evicted.

SAD-reduced traces also yield exact simulations for
OPT memories of at least k& pages. Consider again the
three references in Figure 1. When OPT must choose
a page for eviction, it selects the resident page first
referenced furthest in the future. We can show, case
by case, how the removal of Agecong does not affect the
replacement decisions made by OPT:

e If OPT is processing references before Ay, then
the removal of Agecong Will not affect its eviction
choices, as A5 is the reference that OPT will
use to determine whether A is evicted.

o If OPT is processing references between Aygiyge
and Agpirg, then we already know that fewer than
k distinct pages are referenced between those two
references to A. Note also that the page currently
being referenced is not already in memory (since it
caused a replacement) and cannot be a candidate
for eviction, making the number of other distinct
referenced pages preceeding A¢pirg less than k—1.
Therefore, if the memory size is at least k, page
A cannot be the one first referenced furthest into
the future (because of reference Aypirg). The ab-
sence of Agecong does not affect the replacement
decision.

e If OPT is processing references that follow Agpird,
then none of these three references to page A will
affect decisions. OPT examines future references
to make its decisions, so the missing reference
Agecona Will have no effect.

3.2 Optimal LRU Reduction (OLR)

The SAD algorithm obtains significant reduction fac-
tors for actual traces. Nevertheless, SAD-reduced
traces are not necessarily the smallest for which ei-
ther LRU or OPT simulations are exact. For instance,
consider the reference sequence:
ABCBACDABD

Applying SAD with a reduction memory of 3 pages
to this trace yields no reduction. Nevertheless, the
shorter trace

ABCADB

has exactly the same LRU behavior as the original for
a memory of size 3 or larger. Recall that the LRU be-
havior of a trace for a memory of size k is the sequence
of pairs of pages fetched into and evicted from memory
when the given trace is applied. The LRU behavior of
the two above traces for a memory of size 3 is:

<A7NF>7<B7NF>7<07NF>7<D7B>7<B7C>
where the special value NF' denotes that the memory
is not full and, hence, the insertion of one element does
not cause the eviction of another.

The importance of LRU for actual virtual memory
systems motivated the design of the Optimal LRU Re-
duction algorithm (OLR). OLR takes a reference trace
as input and outputs the smallest trace that has the
same LRU behavior as the input for a memory of size
k or larger. The output of OLR is a function of the be-
havior of the input trace (and not directly of the trace
itself). Hence, the first step of OLR is to simulate the
input trace on an LRU memory of size k and derive
its behavior sequence. Then, the OLR_CORE algorithm
shown in Figure 2 is applied to produce the shortest
trace having the given behavior. Note that we use the
term block as a synonym for page.

Some explanation of the conventions followed in
the algorithm description is necessary: The input se-
quence, behavior, is represented as an array for simplic-
ity. The special value LAST signals the end of the se-
quence. OLR_CORE uses a data structure queue, which
is an LRU queue augmented with two operations:

o blocks_after(block): returns the set of blocks,
touched less recently than block, but still in the
data structure (i.e., within the last k& distinct
blocks touched). If block has the special value
NF, the returned set is empty (this is useful for
uniform treatment of the boundary case where the
structure is being filled up).

o more_recent(blocky, blocks): returns a boolean
value indicating whether block; was touched more
recently than blocks. If block; has the special
value LOWERLIMIT, or blocks has the special
value NF, FALSE is returned.

Due to space limitations we cannot present an ex-
tensive treatment and proof of correctness for the
OLR_CORE algorithm. Such analysis can be found in
[Smar98]. Here we will only note that OLR_CORE is
very efficient, so that the main component of the run-
ning time of OLR is the LRU simulation performed
on the input trace to derive its behavior sequence.
That is, OLR execution is about as fast as a sim-
ple LRU simulation on the input trace for a mem-
ory of size k. The algorithm performs just a sin-
gle forward pass with bounded look-ahead (at most k
elements) and, thus, is ideal for online applications.
Our free implementation of OLR can be found at
<http://www.cs.utexas.edu/users/oops/>.

3.3 Trace Manipulation Issues

In our discussion of SAD and OLR we used a simpli-
fied form of reference traces (only containing address
information for the page being referenced). Real trace
formats may need to contain other information, such
as the kind of reference (instruction, read, or write),
the instruction causing it, the program counter (or any

timer info), etc. Additionally, a trace may need to be
re-blocked so that experiments can be conducted for
different page sizes. Such standard trace manipulation
is perfectly compatible with both SAD and OLR. For
instance:

¢ Re-blocking: a reduced trace for a reduction
memory of size k can be re-blocked for any larger
page size and simulations will continue to be ac-
curate for memories of size k or larger (note that
the size refers to the number of pages—the actual
minimum memory size in KB for which simula-
tions are exact is larger after the re-blocking).
This is a consequence of the stack algorithm
[MGSTT70] properties of LRU and OPT.

e Maintaining Dirtiness Information: many
virtual memory studies measure the cost of writ-
ing dirty pages to a backing store upon eviction.
Such studies require traces in which each reference
is marked as a read or write operation. Both SAD
and OLR can be augmented to tag references with
the appropriate operation.

Note that both SAD and OLR guarantee that
the sequence of fetches into and evictions from
a k page LRU memory are the same as speci-
fied by the original trace. In order to maintain
the dirtiness information about each page in re-
duced traces, the reduction methods must notice
which pages would be modified by a write op-
eration while in a k page LRU memory. Since
both methods maintain such a memory during re-
duction, an implementation can record whether a
page is dirtied while in that memory as specified
by the original trace. If a page is dirtied while
in the reduction memory, then the last reference
to that page before it is evicted is marked as a
write operation. A simulation based on the re-
duced trace will mark the page as dirty before it
is evicted from a k page or larger memory.

e Maintaining Timing Information: timing in-
formation is trivial to maintain for SAD, since the
algorithm only removes references from the orig-
inal trace. For OLR, where reference reordering
may occur, it makes sense to keep time informa-
tion for references causing a page to be fetched
into memory. These are guaranteed to be exactly
the same (and, hence, in the same order) as in the
original trace.

4 Experimental Results

We applied our trace reduction methods to traces col-
lected both on Windows NT and UNIX platforms.
The nine Windows NT traces include the full set of

OLR_CORE(behavior, k)

1 lookahead < 0, current < 0, fetched_in_future < O, previous_evict < LOWERLIMIT

2 queue < O(k)
3 > (k) denotes an empty LRU stack of size k
4 while behavior[current] #LAST
5 do must_touch < queue.BLOCKS_AFTER (behavior[current].evict)
6 lookahead_done < FALSE
7 while behavior[lookahead] # LAST and —lookahead_done
8 do if behavior|[lookahead)].evict € fetched in_future
9 then lookahead_done <TRUE
10 else if queue.MORE_RECENT(previous_evict, behavior[lookahead).evict)
11 then PRODUCE_REFERENCE (behavior[lookahead).evict)
12 must_touch < must_touch \ {behavior[lookahead).evict}
13 previous_evict < behavior[lookahead).evict
14 fetched_in_future < fetched_in_future U {behavior[lookahead).fetch}
15 lookahead < lookahead + 1
16 for x € must_touch
17 do PRODUCE_REFERENCE(z)
18 PRODUCE_REFERENCE (behavior|current].fetch)
19 fetched_in_future < fetched_in_future \ {behavior|current].fetch}
20 current < current + 1

PRODUCE_REFERENCE (block)
1 queue.TOUCH(block)
2 outpuT(block)

Figure 2: OLR_CORE is the core of the OLR algorithm

the commercially distributed traces gathered using the
utility Etch [LCBAB98]. These include well-known
Windows NT applications (Acrobat Reader, Netscape,
Photoshop, Powerpoint, Word) as well as various other
programs (CC, Compress, Go, Vortex). The six UNIX
traces (Espresso, GCC, Grobner, Ghostscript, Lind-
say, P2C) were gathered using VMTrace [Kapl9g], a
portable tracing tool based on user level page protec-
tion; these traces are freely available on our web site.
The Windows NT traces were blocked for 4 Kbyte
pages so that they would be appropriate for virtual
memory simulations. The UNIX traces were gener-
ated as references to 4 Kbyte pages.

In this section, we show the reduction factors
achieved over a range of reduction memory sizes. We
also used reduced traces to simulate both the cLoCck
and SEGQ replacement policies. These two policies
cannot be simulated exactly using reduced traces, but
we show that the error introduced into their simula-
tion is small in practice. We also show that the error
introduced is significantly less than with stack dele-
tion [Smit77], a well known reduction method. We
chose to simulate CLOCK and SEGQ because they are
the two replacement policies most used in real systems.
As approximations of LRU, they are similar to many

replacement policies that discard information about
references to the most recently used pages.

4.1 Reduction Results

Each of the traces was reduced using both SAD and
OLR over a range of reduction memory sizes. Re-
call that the “original” traces are blocked on 4 Kbyte
pages, and yet are hundreds of Mbytes to a few Gbytes
each. We measured the number of bytes required to
store the original trace and each of the reduced traces.
Because each reference in these traces is a text repre-
sentation of the virtual memory page number in hex-
adecimal, each record comprises at most (and usually
exactly) five bytes. Thus, there is a direct correspon-
dence between number of bytes and number of records
in each trace.

The plots in Figure 3, show the reductions achieved
by SAD and OLR on six of the fifteen original traces.
The curves shown plot the reduction ratio achieved as
a function of increasing reduction memory size. We
chose to show the reduction results from three of the
original traces per platform due to space limitations.
The remaining programs show similar increase in re-
duction with memory size, as well as equally high re-

