
Trace Reduction for Virtual Memory SimulationsScott F. Kaplan, Yannis Smaragdakis, and Paul R. WilsonDept. of Computer SciencesUniversity of Texas at AustinAustin, Texas 78712fsfkaplan|smaragd|wilsong@cs.utexas.eduAbstractThe unmanageably large size of reference traces hasspurred the development of sophisticated trace reduc-tion techniques. In this paper we present two newalgorithms for trace reduction|Safely Allowed Drop(SAD) and Optimal LRU Reduction (OLR). Bothachieve high reduction factors and guarantee exactsimulations for common replacement policies and formemories larger than a user-de�ned threshold. In par-ticular, simulation on OLR-reduced traces is accuratefor the LRU replacement algorithm, while simulationon SAD-reduced traces is accurate for the LRU andOPT algorithms. OLR also satis�es an optimalityproperty: for a given trace and memory size it pro-duces the shortest possible trace that has the sameLRU behavior as the original for a memory of at leastthis size.Our approach has multiple applications, especiallyin simulating virtual memory systems; many page re-placement algorithms are similar to LRU in that morerecently referenced pages are likely to be resident. Forseveral replacement algorithms in the literature, SAD-and OLR-reduced traces yield exact simulations. Formany other algorithms, our trace reduction eliminatesinformation that matters little: we present extensivemeasurements to show that the error for simulations ofthe clock and segq (segmented queue) replacementpolicies (the most common LRU approximations) isunder 3% for the majority of memory sizes. In nearlyall cases, the error is smaller than that incurred by thewell known stack deletion technique.SAD and OLR have many desirable properties. Inpractice, they achieve reduction factors up to severalorders of magnitude. The reduction translates to bothstorage savings and simulation speedups. Both tech-niques require little memory and perform a single for-ward traversal of the original trace, which makes themsuitable for on-line trace reduction. Neither requiresthat the simulator be modi�ed to accept the reducedtrace.

1 IntroductionTrace driven simulation is a common approach tostudying virtual memory systems. Given a referencetrace|a sequence of the virtual memory addressesthat are accessed by an executing program|a sim-ulator can imitate the management of a virtual mem-ory system. Thanks to reference traces, experimentson virtual memory management policies can be re-produced in a controlled environment. Unfortunately,these traces can be extremely large, easily exceed-ing the capacities of modern storage devices even fortraced executions lasting only a few seconds. The sizeof traces impedes both their storage and processing.Trace reduction is the compression of reference traces(either lossless or lossy) so that they can be stored andprocessed e�ciently.There are many existing methods for trace reduc-tion. However, these methods have undesirable char-acteristics for virtual memory simulation: Some dis-card so much reference information that the reducedtrace introduces signi�cant error into the simulationof common page replacement policies. Other methodsmake it di�cult to control how much information isdiscarded, and thus what size memories can be sim-ulated accurately. Some methods reduce the storagecosts without reducing the number of references andthus the time required to process a trace.We present two trace reduction methods|SafelyAllowed Drop (SAD) and Optimal LRU Reduction(OLR)|that do not su�er from these de�ciencies.Both allow a user to control the degree of reductionby the speci�cation of a reduction memory size. SADis the simpler of the two: it removes references that areguaranteed not to a�ect the LRU and OPT behaviorof a trace, provided that the simulated memory sizesare no smaller than the reduction memory size. Un-der the same assumption, the OLR algorithm yieldsthe shortest possible trace that can be used for exactLRU simulations in place of the original trace. OLR isuseful both because it provides greater reduction thanSAD and because its output gives a lower bound for1

the length of a reduced trace. Both algorithms are ef-�cient in practice, and signi�cantly reduce storage andprocessing costs.Guaranteeing accurate simulation for LRU and OPTmay not seem exciting at �rst. If the trace were usedonly with these policies, the simulation could be runonly once and the results stored and re-used. Our ap-proach is e�ective, however, for simulations of manyvirtual memory replacement policies. Nearly all re-placement policies used or studied with real work-loads are either variants or approximations of LRU.This similarity of common page replacement poli-cies is hardly surprising|good replacement algorithmsshould not evict pages that are in current use.Variants of LRU (e.g., GLRU [FeLW78], SEQ[GlCa97], FBR [RoDe90], EELRU [SKW98]) keep thek most recently referenced pages in memory, eventhough not all m pages in memory (m > k) are them most recently accessed (as they are in pure LRU).Our approach to trace reduction is applicable in allsuch cases for a reduction memory size of at most k.Even small values of k (10 to 100) are enough to allowOLR and SAD to achieve reduction factors of up toseveral orders of magnitude, while guaranteeing exactsimulations.SAD and OLR are also useful when studying ap-proximations of LRU. The most prominent approxi-mations are clock and segq (segmented queue|alsoknown as hybrid FIFO-LRU [BaFe83] or segmentedFIFO [TuLe81]). These replacement policies ignorethe same high-frequency referencing information thatnearly any replacement policy will ignore, and thatSAD and OLR discard from traces. This informationis ignored not because these are LRU approximations,but because references to recently used pages don't af-fect replacement decisions, and because hardware of-ten does not allow the collection of such information.We show that the error introduced by SAD and OLRfor both clock and segq replacement simulations issmall|under 2% in number of faults in most cases.We also compare SAD and OLR to stack deletion[Smit77], which is a commonly known technique forremoving high frequency reference information fromvirtual memory traces. Given reduced traces of com-parable size created using all three methods, SAD andOLR introduce less error on average into clock andsegq simulations.Additionally, the ability of the SAD algorithm toproduce reduced traces valid for exact OPT simula-tions is a pleasant side-e�ect: it means that a singletrace can be used for all experiments in a virtual mem-ory study. Such studies often compare a new algo-rithm to LRU and OPT. All these experiments can beconducted with perfect accuracy (in the case of LRU,OPT, and LRU variants) or small error (in the case of

LRU approximations).2 Background and MotivationGiven the importance of trace reduction, it is not sur-prising that there has been a wealth of research workon reduction techniques. It is impossible to exhaus-tively reference all the approaches|instead Section2.1 presents an overview and Section 2.2 positions ourmethod relative to the most closely related techniques.A good further reference is the recent survey of trace-driven simulation by Uhlig and Mudge [UhMu97].2.1 Overview of Related WorkLike all data compression, trace reduction techniquesare divided into lossless and lossy approaches. In alossless approach, the entire trace can be reconstructedfrom its reduced form, while lossy reduction does notpreserve all information in the original trace. Our tech-nique is lossy in nature but guarantees that certainkinds of simulations (namely LRU and OPT simula-tions) are exact on the reduced traces.Lossless Reduction. A straightforward approachto lossless trace reduction is to apply standard datacompression techniques on a trace. Simple Lempel-Ziv compression results into reduction factors of about5 for typical traces [UhMu97]. Higher degrees of re-duction can be achieved by combining compression al-gorithms with di�erential encoding techniques. Thebest known such instances are the Mache [Samp89]and PDATS [JoHa94] systems, which explore spatiallocality in the reference trace to encode it di�eren-tially. Subsequently, standard text compression tech-niques are applied and result into further reduction ofits size.Lossless techniques can be used to reconstruct atrace accurately for all purposes. Nevertheless, thecompression ratios achieved are not as high as thosepossible with lossy trace reduction. More importantly,traces need to be uncompressed before simulation isperformed. Thus, the reduction gains of lossless com-pression do not translate into simulation speedups.Lossy Reduction. When performing trace reduc-tion, one usually has some knowledge of the future usesof a program trace. Lossy trace reduction techniquesattempt to exploit such knowledge so that the tracesize is reduced dramatically but enough information ismaintained for the intended uses of a trace.The simplest lossy reduction technique is blocking.Blocking replaces references to individual addresseswith references to memory pages. Subsequent refer-ences to addresses within the same page can then be2

reduced to a single reference. This reduction doesnot a�ect the simulation of time-independent pagingalgorithms|algorithms that do not consider the ex-act time of each reference in making replacement de-cisions. Such algorithms are LRU, OPT, etc., butnot, for instance, Working Set [Denn68]. Blocking isso widely applicable that it is practically assumed inmost simulation work. For the remainder of this paper,when we refer to an original trace, we are referring toa blocked trace.Recent work on trace reduction includes the tech-nique of Agarwal and Hu�man [AgHu90]. Whereasmost lossy reduction techniques concentrate on thetemporal locality of a program trace, their approachexploits spatial locality and results in an extra signi�-cant factor of reduction.Other trace reduction methods include trace sam-pling and trace stripping (e.g., see [Puza85]). Both arebetter suited for high-speed cache simulations as theyintroduce inaccuracy into virtual memory simulations.The majority of lossy trace reduction methods, how-ever, are oriented towards virtual memory simulations.These techniques address the same concerns as our al-gorithms and are directly comparable to them. Thenext section discusses such related reduction tech-niques in detail.2.2 The Value of Our TechniquesOur approach �lls a prominent gap in the spectrum oftrace reduction techniques. Most existing techniqueseither do not guarantee accurate simulations or do notachieve the same high reduction factors as our method.We isolate three approaches that stand out as partic-ularly related to ours.� Smith's stack deletion [Smit77] consists of onlykeeping references that cause pages to be fetchedto an LRU memory of size k. Stack deletion isdirectly comparable to the SAD algorithm. Bothtechniques are very simple and have similar pre-conditions: both require that the reduced trace beused with memories no smaller than the memoryused for reduction. Nevertheless, SAD guaranteesthat no error is introduced for LRU and OPT sim-ulations, contrary to stack deletion. Smith arguedexperimentally that the error of stack deletion issmall. Still, it is a signi�cant drawback for virtualmemory experiments. For one thing, it is not clearhow large the error will be for experimental (i.e.,not strictly LRU) replacement algorithms. Foranother, the error of stack deletion is indeed smallbut only if the depth of the stack (i.e., the size ofthe memory used for reduction) is much smallerthan the simulated memory (typically 20% to 50%

of its size). Hence, SAD can use a much larger re-duction memory and achieve exact results. Aswe show in our experiments, the larger reductionmemory size translates into signi�cantly more re-duction. Additionally, we show that stack dele-tion introduces larger error than both SAD andOLR for clock and segq simulations (for re-duced traces of the same size). In conclusion, SADand OLR are both safer (i.e., introduce less error)and more e�ective (i.e., yield smaller traces usefulfor comparable purposes) than stack deletion.� The technique of Co�man and Randell [CoRa70]can be seen as an alternative to both SAD andOLR for LRU simulations. Their approach con-sists of using the LRU behavior sequence (i.e., thesequence of pages fetched and evicted) for an LRUmemory of size k to perform exact simulations ofLRU memories of size larger than k. The behav-ior sequence is typically very short, even for smallvalues of k. The biggest drawback of the Co�manand Randell approach, however, is that the prod-uct of reduction is not itself a trace. For instance,it is not clear how the LRU behavior sequence ofa trace can be used for OPT simulations. In thebest case, the simulator as well as any other tools(e.g., trace browsers) will need to change to ac-cept the new format. This is a practical burdento the simulator implementors and makes it hardto distribute traces in a compatible form. This isthe main reason why this simple technique has notbecome more widespread. Our OLR algorithm iscomplementary to the approach of Co�man andRandell: it o�ers an e�cient way to turn the be-havior sequence format into the shortest possibletrace exhibiting this LRU behavior. Other advan-tages of our algorithms exist. For instance, SADis also applicable to OPT simulations and we showthat both SAD and OLR introduce little error forsimulations of clock and segq.� Just like our techniques, the reduction methodused by Glass and Cao [GlCa97] is applicable toexact virtual memory simulations. Like Co�manand Randell's method, the Glass and Cao tech-nique su�ers from needing to modify the simulatorto accept the reduced trace format. The modi�-cations are far from trivial and it can be hard touse the reduced trace information for simulationsof policies other than those studied in [GlCa97](LRU, OPT, and SEQ|an experimental replace-ment algorithm). Another drawback of this tech-nique is its lack of control over the interestingmemory ranges. It is not possible to specify di-rectly the memory sizes for which the simulationshould be exact. Instead, the trace �lter intro-3

duces uncontrollable factors which determine thememory sizes for which the simulation is valid.Also, the method seems to be less e�cient thanour approach, at least for LRU simulations. Wedid not have access to the traces used by Glassand Cao in unreduced form, but were able to de-rive the OLR-reduced form of these traces (di-rectly from the Glass and Cao reduced traces).This was several times shorter than the reducedform used by Glass and Cao, both in terms of ab-solute size and in terms of signi�cant events. Wepresent these results in Appendix A.Other applications of our algorithms are possible.Because of its optimality properties, OLR is ideal forthe purposes of trace analysis. It provides an estimateof the amount of reordering done inside an LRU mem-ory. This is useful for evaluating whether a trace willbehave similarly under LRU and under LRU approxi-mations (e.g., clock or segq implementations). An-other possible application of OLR is in trace synthesis.Given any exact sequence of fetched and evicted pagesfrom an LRU memory, OLR can produce a minimumlength trace that will cause the same fetches and evic-tions. This could provide an alternative to statisticaltrace synthesis techniques (e.g., [Baba81]).Finally, we should mention that our techniques arecomplementary to reduction algorithms that exploitdi�erent principles. Since the output of our algorithmsis itself a trace, other trace reduction techniques canbe applied (e.g., [JoHa94, AgHu90]). As we will see,simple �le compression of our reduced traces with thegzip utility yields much smaller �les, further decreas-ing storage requirements.3 The Algorithms3.1 Safely Allowed Drop (SAD)Full traces commonly contain a large number of refer-ences that are ignored by virtual memory replacementpolicies. These references account for the majority ofspace required to store a trace, and consume the ma-jority of time required to perform a virtual memorysimulation. Safely Allowed Drop (SAD) removes ref-erences from a trace that do not a�ect the order offetches into and evictions from an LRU memory ofsome user-speci�ed size.We will show that SAD allows for exact simulationsnot only of LRU, but also of OPT. We will also show,in Section 4 that it introduces very little error into thesimulation of LRU approximations such as clock andsegq.

3.1.1 Finding References to DropFor any two references to the same page in a programtrace, we can de�ne their LRU distance as the num-ber of distinct other pages referenced between the tworeferences. The idea behind SAD is simple: For anythree references to the same page in a trace, if the LRUdistance of the �rst and third reference is d, then re-moving the middle reference does not a�ect the out-come of LRU and OPT simulations on memories ofsize greater than d. Section 3.1.3 describes why theelimination of these middle references has no e�ect onLRU and OPT.SAD is an application of this observation. Theuser speci�es a reduction memory size, k. Then SADsearches the trace from left to right, to �nd triples ofthe above form|references to the same page, such thatthe LRU distance between the �rst and third referenceis less than k. All middle references of such triples areeliminated.
Afirst Asecond Athird

... A B C A D E A...

Figure 1: Asecond can be eliminated because the LRUdistance between Afirst and Athird is less than thereduction memory size of 5 pages.The �gure shows three references to page A. TheLRU distance between the �rst reference Afirst andthe third reference Athird is 4, as there are four dis-tinct pages (B, C, D, and E) that are referenced betweenAfirst and Athird. If the memory size chosen for re-duction is at least 5, then we can safely drop Asecondwithout a�ecting the results of an LRU or OPT simu-lation.Nearly all programs frequently reference pages thatwere recently used. Due to this temporal locality, ref-erences eliminated by SAD constitute the vast major-ity of references in usual program traces, even for smallreduction memories.3.1.2 SAD Algorithm ImplementationSAD needs only to determine LRU distances betweenpairs of references to the same page in order to �ndmiddle references that can be eliminated. The searchproceeds from left to right, allowing reduction to beperformed in a single forward traversal of the originaltrace.As the trace is processed, the algorithm maintainsan LRU queue of the requested size. It also stores4

some of the most recently input references from theoriginal trace. By keeping both the LRU queue anda recent history of references, the algorithm can �ndgroups of three references to the same page where theLRU distance between the �rst and third references isless than the reduction memory size. Therefore, thisinformation is enough to �nd middle references thatcan be eliminated.Although it is necessary to store recent referencesto �nd these triplets, the number of references canbe bounded. It is only necessary to store at most2k + 1 of the most recent references in order to �ndthe LRU distance between �rst and third most re-cent references to a page. Because of space limita-tions, we will not describe how to derive this bound.With something like a hash table to help �nd re-cent references to pages, performing this reductionis little more than an augmented LRU queue simu-lation; it can be executed e�ciently. For more de-tails, we refer you to our implementation of SAD at<http://www.cs.utexas.edu/users/oops/>.3.1.3 Exact Simulation of LRU and OPTIf SAD reduces a trace using a k page memory, thenthat reduced trace can be used for the exact simulationof both LRU and OPT memories that are at least kpages.Recall the de�nition of LRU distance: Given two ref-erences to the same page, the LRU distance betweenthem is the number of other distinct pages referencedbetween those two references. Therefore, if the LRUdistance between two references to a page is less thank, then that page will not be evicted from an LRU mem-ory of at least k pages.First, consider an LRU queue of unbounded lengthand its contents for both the unreduced and the re-duced trace. By dropping references, SAD allowspages to drift further away from the top of the LRUqueue, as each page is referenced less often. Thesepages, however, are guaranteed to be in the �rst k po-sitions of the queue; each eliminated reference is fol-lowing by another reference to the same page that is anLRU distance less than k from the previous reference.Other pages are not adversely a�ected by removinga reference. Their position in the LRU queue can onlybe closer to the top for the reduced trace than it wouldhave been for the original one. The only positions inthe queue that may have di�erent contents for reducedtraces are the ones from 1 to k. Therefore, the resultsof LRU simulations for memories of size k or larger willbe identical for the reduced and the unreduced trace.It is easy to follow the argument in the example ofFigure 1. For a memory of size 5 or larger, A will re-main in memory between Afirst and Athird. The mid-dle reference Asecond has no e�ect on LRU replacement

and if it is dropped, the reference Athird will ensurethat A is not incorrectly evicted.SAD-reduced traces also yield exact simulations forOPT memories of at least k pages. Consider again thethree references in Figure 1. When OPT must choosea page for eviction, it selects the resident page �rstreferenced furthest in the future. We can show, caseby case, how the removal of Asecond does not a�ect thereplacement decisions made by OPT:� If OPT is processing references before Afirst, thenthe removal of Asecond will not a�ect its evictionchoices, as Afirst is the reference that OPT willuse to determine whether A is evicted.� If OPT is processing references between Afirstand Athird, then we already know that fewer thank distinct pages are referenced between those tworeferences to A. Note also that the page currentlybeing referenced is not already in memory (since itcaused a replacement) and cannot be a candidatefor eviction, making the number of other distinctreferenced pages preceeding Athird less than k�1.Therefore, if the memory size is at least k, pageA cannot be the one �rst referenced furthest intothe future (because of reference Athird). The ab-sence of Asecond does not a�ect the replacementdecision.� If OPT is processing references that follow Athird,then none of these three references to page A willa�ect decisions. OPT examines future referencesto make its decisions, so the missing referenceAsecond will have no e�ect.3.2 Optimal LRU Reduction (OLR)The SAD algorithm obtains signi�cant reduction fac-tors for actual traces. Nevertheless, SAD-reducedtraces are not necessarily the smallest for which ei-ther LRU or OPT simulations are exact. For instance,consider the reference sequence:A B C B A C D A B DApplying SAD with a reduction memory of 3 pagesto this trace yields no reduction. Nevertheless, theshorter traceA B C A D Bhas exactly the same LRU behavior as the original fora memory of size 3 or larger. Recall that the LRU be-havior of a trace for a memory of size k is the sequenceof pairs of pages fetched into and evicted from memorywhen the given trace is applied. The LRU behavior ofthe two above traces for a memory of size 3 is:hA; NF i ; hB; NF i ; hC; NF i ; hD; Bi ; hB; Ciwhere the special value NF denotes that the memoryis not full and, hence, the insertion of one element doesnot cause the eviction of another.5

The importance of LRU for actual virtual memorysystems motivated the design of the Optimal LRU Re-duction algorithm (OLR). OLR takes a reference traceas input and outputs the smallest trace that has thesame LRU behavior as the input for a memory of sizek or larger. The output of OLR is a function of the be-havior of the input trace (and not directly of the traceitself). Hence, the �rst step of OLR is to simulate theinput trace on an LRU memory of size k and deriveits behavior sequence. Then, the olr core algorithmshown in Figure 2 is applied to produce the shortesttrace having the given behavior. Note that we use theterm block as a synonym for page.Some explanation of the conventions followed inthe algorithm description is necessary: The input se-quence, behavior, is represented as an array for simplic-ity. The special value Last signals the end of the se-quence. olr core uses a data structure queue, whichis an LRU queue augmented with two operations:� blocks after(block): returns the set of blocks,touched less recently than block, but still in thedata structure (i.e., within the last k distinctblocks touched). If block has the special valueNF , the returned set is empty (this is useful foruniform treatment of the boundary case where thestructure is being �lled up).� more recent(block1; block2): returns a booleanvalue indicating whether block1 was touched morerecently than block2. If block1 has the specialvalue LowerLimit, or block2 has the specialvalue NF , False is returned.Due to space limitations we cannot present an ex-tensive treatment and proof of correctness for theolr core algorithm. Such analysis can be found in[Smar98]. Here we will only note that olr core isvery e�cient, so that the main component of the run-ning time of OLR is the LRU simulation performedon the input trace to derive its behavior sequence.That is, OLR execution is about as fast as a sim-ple LRU simulation on the input trace for a mem-ory of size k. The algorithm performs just a sin-gle forward pass with bounded look-ahead (at most kelements) and, thus, is ideal for online applications.Our free implementation of OLR can be found at<http://www.cs.utexas.edu/users/oops/>.3.3 Trace Manipulation IssuesIn our discussion of SAD and OLR we used a simpli-�ed form of reference traces (only containing addressinformation for the page being referenced). Real traceformats may need to contain other information, suchas the kind of reference (instruction, read, or write),the instruction causing it, the program counter (or any

timer info), etc. Additionally, a trace may need to bere-blocked so that experiments can be conducted fordi�erent page sizes. Such standard trace manipulationis perfectly compatible with both SAD and OLR. Forinstance:� Re-blocking: a reduced trace for a reductionmemory of size k can be re-blocked for any largerpage size and simulations will continue to be ac-curate for memories of size k or larger (note thatthe size refers to the number of pages|the actualminimum memory size in KB for which simula-tions are exact is larger after the re-blocking).This is a consequence of the stack algorithm[MGST70] properties of LRU and OPT.� Maintaining Dirtiness Information: manyvirtual memory studies measure the cost of writ-ing dirty pages to a backing store upon eviction.Such studies require traces in which each referenceis marked as a read or write operation. Both SADand OLR can be augmented to tag references withthe appropriate operation.Note that both SAD and OLR guarantee thatthe sequence of fetches into and evictions froma k page LRU memory are the same as speci-�ed by the original trace. In order to maintainthe dirtiness information about each page in re-duced traces, the reduction methods must noticewhich pages would be modi�ed by a write op-eration while in a k page LRU memory. Sinceboth methods maintain such a memory during re-duction, an implementation can record whether apage is dirtied while in that memory as speci�edby the original trace. If a page is dirtied whilein the reduction memory, then the last referenceto that page before it is evicted is marked as awrite operation. A simulation based on the re-duced trace will mark the page as dirty before itis evicted from a k page or larger memory.� Maintaining Timing Information: timing in-formation is trivial to maintain for SAD, since thealgorithm only removes references from the orig-inal trace. For OLR, where reference reorderingmay occur, it makes sense to keep time informa-tion for references causing a page to be fetchedinto memory. These are guaranteed to be exactlythe same (and, hence, in the same order) as in theoriginal trace.4 Experimental ResultsWe applied our trace reduction methods to traces col-lected both on Windows NT and UNIX platforms.The nine Windows NT traces include the full set of6

olr core(behavior, k)1 lookahead 0; current 0; fetched in future �; previous evict LowerLimit2 queue �(k)3 . �(k) denotes an empty LRU stack of size k4 while behavior[current] 6=Last5 do must touch queue:blocks after(behavior[current]:evict)6 lookahead done False7 while behavior[lookahead] 6= Last and :lookahead done8 do if behavior[lookahead]:evict 2 fetched in future9 then lookahead done True10 else if queue:more recent(previous evict; behavior[lookahead]:evict)11 then produce reference(behavior[lookahead]:evict)12 must touch must touch n fbehavior[lookahead]:evictg13 previous evict behavior[lookahead]:evict14 fetched in future fetched in future [fbehavior[lookahead]:fetchg15 lookahead lookahead+ 116 for x 2 must touch17 do produce reference(x)18 produce reference(behavior[current]:fetch)19 fetched in future fetched in future n fbehavior[current]:fetchg20 current current+ 1produce reference(block)1 queue:touch(block)2 output(block) Figure 2: olr core is the core of the OLR algorithmthe commercially distributed traces gathered using theutility Etch [LCBAB98]. These include well-knownWindows NT applications (Acrobat Reader, Netscape,Photoshop, Powerpoint, Word) as well as various otherprograms (CC, Compress, Go, Vortex). The six UNIXtraces (Espresso, GCC, Grobner, Ghostscript, Lind-say, P2C) were gathered using VMTrace [Kapl98], aportable tracing tool based on user level page protec-tion; these traces are freely available on our web site.The Windows NT traces were blocked for 4 Kbytepages so that they would be appropriate for virtualmemory simulations. The UNIX traces were gener-ated as references to 4 Kbyte pages.In this section, we show the reduction factorsachieved over a range of reduction memory sizes. Wealso used reduced traces to simulate both the clockand segq replacement policies. These two policiescannot be simulated exactly using reduced traces, butwe show that the error introduced into their simula-tion is small in practice. We also show that the errorintroduced is signi�cantly less than with stack dele-tion [Smit77], a well known reduction method. Wechose to simulate clock and segq because they arethe two replacement policies most used in real systems.As approximations of LRU, they are similar to many

replacement policies that discard information aboutreferences to the most recently used pages.4.1 Reduction ResultsEach of the traces was reduced using both SAD andOLR over a range of reduction memory sizes. Re-call that the \original" traces are blocked on 4 Kbytepages, and yet are hundreds of Mbytes to a few Gbyteseach. We measured the number of bytes required tostore the original trace and each of the reduced traces.Because each reference in these traces is a text repre-sentation of the virtual memory page number in hex-adecimal, each record comprises at most (and usuallyexactly) �ve bytes. Thus, there is a direct correspon-dence between number of bytes and number of recordsin each trace.The plots in Figure 3, show the reductions achievedby SAD and OLR on six of the �fteen original traces.The curves shown plot the reduction ratio achieved asa function of increasing reduction memory size. Wechose to show the reduction results from three of theoriginal traces per platform due to space limitations.The remaining programs show similar increase in re-duction with memory size, as well as equally high re-7

