
Trace Reduction for LRU-based SimulationsYannis SmaragdakisUniversity of Texas at AustinAbstractLRU bu�er management is a policy under which an element bu�er of size k always stores the k most recentlyused elements. Many variants of the policy are widely used in memory systems (e.g., virtual memorysubsystems). We study a simple algorithmic problem (called the trace reduction problem): given a sequenceof references to elements (a reference trace), compute the shortest sequence with identical LRU behaviorfor bu�ers of at least a certain size. Despite the straightforward statement of the problem, its solution isnon-trivial. We o�er an algorithm and discuss its practical applications. These are mostly in the area oftrace-driven program simulation: for quite realistic bu�er sizes, reference traces from real programs can bereduced by a factor of up to several orders of magnitude. This compares favorably with all previous tracereduction techniques in the literature.1 IntroductionAn LRU stack of size k is a data structure storing the k most recently accessed elements of a larger set.References to set elements may cause the subset stored in an LRU stack to change. A full record of thesechanges is said to constitute the (LRU) behavior of the stack under the sequence of references. We willdiscuss the LRU trace reduction problem: given a sequence of references, �nd the shortest sequence withidentical behavior for an LRU stack of (at least) a given size.As an example, consider a set with four elements (a, b, c, and d) and the reference sequence:a b c b a c d a b d (1)For an LRU bu�er of size k = 3, the behavior of the sequence is:ha; NF i ; hb; NF i ; hc; NF i ; hd;bi ; hb; ci ;Last (2)The above behavior consists of pairs of elements entering and leaving the LRU stack. The special valueLast signals the end of the sequence, while NF denotes that the LRU stack is not full and, hence, theinsertion of one element does not cause the eviction of another. It is easy to con�rm that the sequence:a b c a d b (3)has identical LRU behavior to (1) for a stack of size k = 3 (or greater). In fact, something more can besaid: there is no sequence shorter than (3) with the same LRU behavior. Hence, sequence (3) is a solutionto the LRU trace reduction problem for input (1) and a stack size of 3.In this paper we will describe a general algorithm for computing such solutions. The algorithm hasalready found application in the area of trace-driven simulation of replacement policies for storage hierarchies.Storage hierarchies are used in various parts of modern computer systems (CPU, disk, and network caches,for instance). In such hierarchies, one level acts as a fast bu�er that stores elements from the next levelof storage. When the bu�er is full, a decision needs to be made about the bu�er element that will getreplaced. The Least Recently Used (LRU) policy (to which the \LRU stack" data type owes its name) is themost extensively studied replacement policy for storage hierarchies. Under LRU the element replaced is theone used least recently (i.e., furthest in the past) | the bu�er is essentially an LRU stack. Replacementpolicies can be studied cost-e�ectively using trace-driven simulation: reference traces from actual programsare collected and re-used in simulations of various policies. The size of such traces is usually enormous. As a1



result, traces are often hard to store and process (simulation time is commonly proportional to the length ofthe trace). Using our algorithm to solve the LRU trace reduction problem, traces can be drastically reducedin size and the results of the simulation are entirely accurate, provided the simulated LRU stack is of at leasta certain size. What makes this application of even greater interest are the many variations of LRU thathave been studied (e.g.,[FeLW78, GlCa97]). These policies handle a small part of the bu�er using LRU andthe rest using a di�erent policy. Under the guarantees o�ered by our algorithm, simulation with reducedtraces is exact for all such policies (provided that the LRU part of the bu�er is larger than the reductionstack size of k elements).The results of trace reduction using our algorithm are signi�cant: for quite realistic bu�er sizes, referencetraces can be reduced by several orders of magnitude. All previous techniques that achieve similar com-pression results have one of three drawbacks: they are either inaccurate (i.e., introduce error by droppinginformation from the trace), or require a decompression phase (and, hence, do not speed up simulation whichis performed on the decompressed result), or require modi�cations to the simulator to accept information ina di�erent format (i.e., the result of the reduction is not itself a reference trace).2 LRU Trace Reduction2.1 BackgroundIn this section we will de�ne more formally the LRU trace reduction problem as well as some helpful concepts.An LRU stack of size k is a data type de�ning a single operation touchk(m), where m identi�es a \block"(we assume no properties for blocks other than identity). The semantics of the operation is de�ned as follows:� If there have been less than k distinct blocks \touched" in the past, touchk(m) returns the specialvalue NF .� If m is among the k most recently \touched" blocks, touchk(m) returns the special value none.� Otherwise touchk(m) returns an identi�er of the k + 1-th most recently \touched" block.A reference trace is a �nite sequence of references to blocks. We say that a reference trace r is appliedto an LRU stack by performing the operation touchk for each block of the trace in increasing order (i.e.,touchk(r(0)); touchk(r(1)); : : : ; touchk(r(#r�1)) 1 ). We de�ne the complete (LRU) trace of a reference tracer to be a sequence ck;r with ck;r(i) = hr(i); touchk(r(i))i, 0 � i < #r. The complete trace is terminatedby a special element Last (that is, ck;r(#r) = Last). We also de�ne the relevant event sequence rek;r toconsist of all indices i (in increasing order) such that touchk(r(i)) 6= none. In the following, we will dropsubscripts when they can be deduced from the context (both for the above de�nitions and for ones still tobe introduced). Thus we may often refer to touchk, ck;r and rek;r as touch, c and re, for simplicity.We de�ne the behavior of a reference trace r relative to an LRU stack to be the subsequence b of thecomplete sequence c, consisting only of relevant events. That is, b(i) = c(re(i)) = hr(re(i)); touch(re(i))i,for 0 � i < #re. By analogy to the complete trace, b(#re) = Last. Thus, the behavior of a reference tracecontains all references made to blocks that were not among the k most recently touched, and the results ofthe respective touch operations. The �rst component r(re(i)) of a pair hr(re(i)); e(re(i))i will be called thefetch part (since it corresponds to a block \fetched" in the LRU stack) and the second component e(re(i))will be called the evict part (since it corresponds to a block \evicted" from the stack). We will write b(i):fetchand b(i):evict for the fetch and evict parts of the i-th element of a sequence b.Data structures conforming to the LRU stack speci�cation are usually studied in the context of storagehierarchies, where they correspond to the Least Recently Used replacement policy. This policy is knownto belong in the general class of stack algorithms [MGST70]. In fact, LRU belongs to the subset of stack1With #r we denote the length of a sequence r. 2



algorithms de�ned in [MGST70] that base their replacement decisions on a priority list for elements. Aproperty of these algorithms is that if two reference traces have identical behavior for a bu�er of size k, theywill also have identical behavior for all bu�ers larger than k. We can now de�ne the problem we are tryingto solve:The LRU Trace Reduction Problem: Given a reference trace, compute a trace such that it has thesame behavior for an LRU stack of size k and no shorter trace has that behavior.Due to the aforementioned property of LRU stacks, the resulting trace will also have identical behaviorfor larger bu�ers. A trace satisfying the conditions of the LRU trace reduction problem will be called areduced trace. In general, there will be more than one reduced trace, but all of them will be of the samelength.2.2 Developing a Lower BoundBefore we present an algorithm for the LRU trace reduction problem, it is useful to examine some of thecharacteristics of the reduced trace.A simple observation regarding the reduced reference trace is that it depends only on the behavior ofthe original trace: two input traces with the same behavior will have the same set of reduced traces. Hence,our problem is to compute a reduced trace from a given behavior sequence (derived from the input tracethrough LRU simulation). Consider the sequence formed by taking the \fetch" parts (i.e., �rst elements ofpairs) of the elements in a behavior sequence. Clearly, this needs to be a subsequence of any reference tracehaving this behavior. The LRU trace reduction problem is equivalent to adding the smallest possible set ofelements to the behavior sequence, so that it becomes a complete LRU trace. We will attempt to develop alower bound for the contents of this set. Later we will show that this bound is tight: our algorithm producesa trace containing exactly the extra references speci�ed by the lower bound.Consider a sequence of pairs (of the form found in a complete LRU trace or a behavior sequence). Anyconsecutive subsequence of a sequence seq is called an interval of seq. Two concepts that are important forour later development are those of a \run" and a \tight run":De�nition 1 (run) A fetch-evict run (or just run) in a sequence of pairs of the form hr(i); touch(r(i))i isan interval, such that:� it begins with a pair hr(s); touch(r(s))i and ends either with a pair hr(f); r(s)i or with Last� no other element in the run has block r(s) in its fetch part (i.e., for every i, s < i < f it is r(i) 6= r(s)).Intuitively, a run describes the behavior of an LRU stack between the point where an element is lastreferenced before it is evicted, and the corresponding eviction point. We will describe intervals (and, hence,runs) using the starting and �nishing indices in the sequence where they occur. A run (s0; f0) (that is, arun starting at index s0 and �nishing at index f0) will be said to contain another run (s1; f1) i� s0 < s1 andf1 < f0 (note that this de�nition prescribes that runs extending till the end of a sequence do not containone another).De�nition 2 (tight run) A tight fetch-evict run (or just tight run) is a run that contains no other runs.For illustration purposes, consider the example reference trace presented in the Introduction. Its completeLRU trace appears below (indexed for easier reference):0 1 2 3 4 5 6 7 8 9 10ha; NF i hb; NF i hc; NF i hb; nonei ha; nonei hc; nonei hd;bi ha; nonei hb; ci hd; nonei LastThere are �ve runs in this trace: (3; 6), (5; 8), (7; 10), (8; 10), and (9; 10). All of them are tight. Accordingto the following lemma, this is not a coincidence. 3



Lemma 1 All runs in a complete LRU trace are tight.Proof: Assume that a run (s0; f0) in c is not tight. Then there exists a run (s1; f1) with s0 < s1 and f1 < f0.The last inequality means that c(f1) 6= Last (because there is a later element in the trace). Hence, theresult of the operation touch(r(f1)) must have been r(s1) (by de�nition of a run). By de�nition of touch,this is the k + 1-th most recently touched element. This is, however, impossible since r(s0) is less recentlylast touched than r(s1) (no reference to r(s0) can exist between indices s0 and f1 by de�nition of a run) andit is still among the k most recently touched elements (since it has not been evicted from the stack by pointf1). Hence, every run in c is tight. 2Continuing our example, consider the behavior sequence (2) from the Introduction (reproduced belowwith indices): 0 1 2 3 4 5ha; NF i hb; NF i hc; NF i hd;bi hb; ci Last (4)Not all runs in this sequence are tight: for instance, run (0; 5) contains both runs (1; 3) and (2; 4).To derive a complete LRU trace from a behavior sequence, we need to add \extra" references to ensurethat all runs are tight. The following lemma is straightforward:Lemma 2 If a run (s0; f0) of a behavior sequence b contains another run (s1; f1), then the reduced tracer contains a reference to b(s0):fetch between re�1k;r(s1) and re�1k;r(f1). (Recall that rek;r was de�ned to bemonotonically increasing, hence its inverse re�1k;r always exists.)Proof: Consider the complete LRU trace c produced from r. From Lemma 1, we have that all runs in care tight. Since b is a subsequence of c, either interval (re�1(s0); re�1(f0)) or interval (re�1(s1); re�1(f1))is not a run in c. Quick inspection of all possible cases for reference addition shows that the only way thetightness constraint can be preserved is if there exists i, such that c(i) = b(s0):fetch = c(re�1(s0)):fetch,re�1(s1) < i < re�1(f1). 2In the example of sequence (4), run (0; 5) contains run (1; 3) and run (2; 4). Lemma 2 implies that thereneeds to be a reference to b(0):fetch = a between indices 1 and 3, as well as between 2 and 4. A referenceto a after position 2 satis�es both requirements, as seen in sequence (3). The corresponding complete LRUtrace is: 0 1 2 3 4 5 6ha; NF i hb; NF i hc; NF i ha; nonei hd;bi hb; ci Last (5)In the general case, we are looking for the smallest number of extra references that if added to a behaviorsequence will turn it into a complete LRU trace. Lemma 2 can be applied to all pairs of runs containedwithin one another to give a set of constraints for the extra references. In this way, we obtain for everyblock a set of constraints represented as intervals. The meaning of every constraint is that a reference to theblock must appear within the given interval. (In the following, we will not distinguish between a constraintand the interval representing it.) As we saw in our example, several constraints can be satis�ed by addinga single reference. We can recast the problem in a more general form: given intervals (s0; f0); : : : ; (sk; fk),compute a minimal set of points S, such that for each (si; fi), there exists p 2 S with si < p < fi. It is nothard to show that the problem is almost identical to the activity-selection problem (e.g., [CoLR90], p.330):given activities represented as intervals, compute the maximum-size set of non-overlapping activities.The extra requirement in our case is that we also want to compute the intersection of intervals thata certain point in the above minimal set will satisfy. Because of this requirement, a slightly di�erentalgorithm than that presented in [CoLR90], p.330, is more suitable. Clearly, a reference satis�es constraints(s0; f0); : : : ; (sk; fk) i� it belongs to the interval (maxfs0; : : : ; skg;minff0; : : : ; fkg). The interval is emptyif maxfs0; : : : ; skg � minff0; : : : ; fkg. Examining the constraints in increasing starting index order (so thatmaxfs0; : : : ; skg = sk) leads to the following lemma: 4



Lemma 3 Consider all constraints for a single block (assuming at least one exists), represented as intervals(s0; f0); : : : ; (sn; fn) with si < sj for i < j.1. The least number of extra references required to satisfy all such constraints is equal to #e� 1, where eis the sequence with e(0) = 0 and e(i+ 1) is the least index, such that se(i+1) � minffe(i); : : : ; fe(i+1)gor, if none exists, e(i+ 1) = n+ 1 and e(i+ 1) is the last element of the sequence e.2. The corresponding intervals (#e � 1 in total) where the extra references must lie are (se(i+1)�1;minffe(i); : : : ; fe(i+1)�1g), for 0 � i < #e� 1. For a sequence seq and a block identi�er bl we call theset of these intervals, intseq;bl.Proof by simple induction (omitted). Very similar in spirit to Theorem 17.1 in [CoLR90], p.332.We will also use the name conjunctive constraints for the elements of intseq;bl (again, we may drop anysubscripts whose value is clear from the context).Lemma 3 essentially describes an algorithm for computing a minimal set of intervals where referencessatisfying all constraints must lie (the same algorithm can be applied to the activity-selection problem). Thealgorithm gives a lower bound for the set of extra references required to produce a reduced trace. Noticethat it is not clear that there is always a trace with no more extra references than these speci�ed by thelower bound. Also, the procedure does not determine the exact place in an interval where extra referencesneed to be inserted, or the relative positions of extra references. The algorithm described in the next sectionensures that the lower bound is tight and provides a very e�cient way of computing a reduced trace (inessence, without having to recognize long runs, which would be computationally costly).2.3 The AlgorithmWe will present an algorithm to solve the LRU trace reduction problem. The algorithm takes a behaviorsequence as input (derived from a reference trace through simple LRU simulation) and outputs a reducedtrace. Additionally, it uses a data structure queue, which is an LRU stack augmented by two operations:� blocks after(block): returns the set of blocks, touched less recently than block, but still in the datastructure (i.e., within the last k distinct blocks touched). If block has the special value NF , thereturned set is empty (this is useful for uniform treatment of the boundary case where the structure isbeing �lled up).� more recent(block1; block2): returns a boolean value indicating whether block1 was touched more re-cently than block2. If block1 has the special value LowerLimit, or block2 has the special value NF ,False is returned.We use the form queue.<operation> to designate the invocation of an operation on queue. The inputsequence, behavior, is represented as an array for simplicity. The full algorithm (called olr for optimal LRUreduction) appears below:
5



olr(behavior, k)1 lookahead 0; current 0; fetched in future �; previous evict LowerLimit2 queue �(k)3 . �(k) denotes an empty LRU stack of size k4 while behavior[current] 6= Last5 do must touch queue:blocks after(behavior[current]:evict)6 lookahead done False7 while behavior[lookahead] 6= Last and :lookahead done8 do if behavior[lookahead]:evict 2 fetched in future9 then lookahead done True10 else if queue:more recent(previous evict; behavior[lookahead]:evict)11 then produce reference(behavior[lookahead]:evict)12 must touch must touch n fbehavior[lookahead]:evictg13 previous evict behavior[lookahead]:evict14 fetched in future fetched in future[fbehavior[lookahead]:fetchg15 lookahead lookahead+ 116 for x 2 must touch17 do produce reference(x)18 produce reference(behavior[current]:fetch)19 fetched in future fetched in future n fbehavior[current]:fetchg20 current current+ 1produce reference(block)1 queue:touch(block)2 output(block)olr essentially outputs the fetch parts of pairs in the behavior sequence, interspersed with references toelements in the stack. It works by advancing two pointers (current, lookahead) through the input (behaviorsequence). After each iteration of the loop in lines 7-15, the lookahead pointer has advanced to the end ofthe �rst tight run beginning at or after position current. With each iteration of the loop in lines 4-20, thecurrent pointer advances to the next pair in the behavior sequence. The output (reduced) trace is createdthrough successive calls to function produce reference (lines 11, 17, and 18). Before a reference to ablock is output, it gets applied to the queue data structure. This ensures that queue reects the state of anLRU stack of size k, to which the output trace is being applied.During the execution of the algorithm, two sets of blocks are maintained: fetched in future containsthe set fbehavior[i]:fetch : current � i < lookaheadg (this property holds everywhere other than be-tween lines 14 and 15). The must touch set is initialized to contain the blocks touched less recently thanbehavior[current]:evict. Finally, previous evict is introduced for convenience: it holds the same block asbehavior[lookahead� 1]:evict, except in the �rst iteration when it holds the value LowerLimit.An important observation concerns the if statement in lines 10-12 of the algorithm:Observation 1 After the execution of lines 10-12 the following property holds: if current � i < j �lookahead, then behavior[j]:evict was touched more recently than behavior[i]:evict (in the current state ofqueue). That is, lines 10-11 make sure (by adding references to blocks) that eviction order matches touchorder by increasing recency (up to the lookahead point). Line 12 removes any touched elements from themust touch set (if the element was in the set).It is illustrative to follow the execution of the algorithm's outer loop (lines 4-20) in a simple example (fora stack of size k = 7). Consider the following state of execution (the contents of queue appear on the left,6



ordered by recency of touches, with the rightmost element being the most recently touched).queue = a;b; c;d; e; f ;gfetched in future = fh; igmust touch = fag : : : hh;bi hi; ci hj; fi hk;di hl;gi hb; ii : : :dcurrent dlookaheadThe state shown is reached after the execution of line 5 (computation of the must touch set). This setrepresents the blocks in the stack that need to be referenced before behavior[current]:fetch. The loop inlines 7-15 will iterate till lookahead reaches the end of the �rst tight run after position current (that is,till lookahead points to the hb; ii element). For each element that lookahead visits (namely hj; fi ; hk;di ;hl;gi ; hb; ii ) the algorithm examines the blocks identi�ed by their evict parts. Extra references are addedto out-of-order blocks, so that Observation 1 holds. Note that once a block is referenced, it becomes themost recently touched block. Hence, the check of line 10 will always succeed till the end of the next tightrun, causing all other blocks examined in the course of the inner loop (lines 7-15) to also be referenced. Inour example, the output would be d, g.After the end of the inner loop, lines 16-17 will add references to all remaining blocks in the must touchset. Finally, a reference for the fetch part of the current behavior element is output. This completes theoutput sequence for this iteration of the outer block. The complete output and �nal state after the executionof line 20 are:queue = c; e; f ;d;g; a;hfetched in future = fi; j;k; l;bgoutput = : : :d;g; a;h : : : : : : hh;bi hi; ci hj; fi hk;di hl;gi hb; ii : : :dcurrent dlookaheadNote that the queue structure is not fully ordered according to eviction order (for instance, there is an ebetween the c and f). The need to add just enough references to preserve some order in the structure is whatmakes the LRU trace reduction problem challenging. Related problems (e.g., minimum reference trace toconvert an LRU stack from one con�guration to another) have trivial solutions (which cannot be translatedinto a solution for the reduction problem).2.4 Algorithm CorrectnessTo argue that the algorithm is correct, we must show that the behavior of the produced trace is identicalto the algorithm's input and that no shorter trace can have that behavior. Due to its length, the proof canbe found in the Appendix. Nevertheless, we will try to give some intuition on the proof development here.Proving that the behavior of the output is identical to the input is straightforward. We will concentrate onthe more interesting task of proving that the produced trace is minimal:� Extra references produced by lines 11 and 17 of the algorithm correspond to non-tight runs. Addition-ally, in both cases the references satisfy the requirements of Lemma 3: the next constraint on the blockreferenced has se(i+1) � minffe(i); : : : ; fe(i+1)g (and thus cannot be satis�ed by the same reference asthe previous constraints). This guarantees that the extra references are as few as possible.� The previous steps are meaningless if we cannot establish a correspondence between non-tight runs inthe behavior sequence and in the produced trace. In particular, the di�culty is that the algorithmadds references to a behavior trace to produce the reduced trace. These references can introduce newruns, and these runs entail more constraints (in the sense of Lemma 3). Fortunately, we can prove thatthe new constraints do not a�ect the computation of conjunctive constraints (i.e., do not increase thelower bound).Proving the latter point is quite interesting. Part of the value of the olr algorithm lies in its e�ciency:the algorithm only needs to examine at most k references at any given time. Thus, it does not explicitlydetect the endpoints of long non-tight runs. This is, for instance, reected in lines 16-17, where new references7



are output in any relative order (i.e., without regard to the subsequent eviction order of the blocks). As itturns out, this order does not matter: extra references to the same blocks need to be inserted in the futurebefore the blocks are actually evicted. Lines 10-11 ensure that the order of �nal references is such that nonew non-tight runs are introduced. Note that this freedom in the relative ordering of extra references byline 17 results into multiple traces that are all solutions to the trace reduction problem2.2.5 Time and Space RequirementsWe will �rst examine the running time of olr. Its asymptotic complexity depends on the complexityof operations on our augmented LRU stack (queue data structure). Assume that h(k) is the complexityof operations touch and more recent, for a stack of k elements. It is then reasonable to assume thatthe complexity of operation blocks after is O(h(k) + n), if n is the size of the returned set. For mostpractical applications, h(n) will be the function logn and the queue structure will be implemented as anaugmented self-balancing tree. Another factor is the cost of maintaining simple sets (fetched in future andmust touch) under additions of a single element and deletions. It is quite reasonable to assume that thiscost is also bounded by h(n).Under the above assumptions, the running time of olr is O(m �h(k)+n), where m is the size of the input(behavior sequence) and n the size of the output (the inequality m � n � m � k holds). This is not hard tosee: Loop 7-15 of the algorithm will be executed exactly m times and the complexity of every operation isat most h(n), for a total running time of O(m � h(n)). The outer loop (lines 4-20) will also be executed mtimes and the total cost of the m blocks after operations is O(m � h(k) + n) (the total size of sets returnedcannot be more than the length of the output since a reference is produced for each element). Similarly, therunning time of the loop in lines 16-17 is O(n) and the cost of lines 18 and 19 is O(m �h(n)). Thus the totalrunning time of olr is O(m � h(k) + n). Note that the input of olr (behavior sequence) is produced byapplying a reference trace to an LRU stack. If we assume h(k) to also be the cost of maintaining a simpleLRU stack of k elements (i.e., one with only the operation touch), then for a reference trace of length l,producing the behavior sequence has a runtime cost of O(l � h(k)). Thus, producing the behavior sequenceis generally much more costly than applying olr.Another interesting aspect of olr is that the size of its working storage is bounded by k (i.e., all structuresused, including the portion of the input being examined, have at most k elements). This makes the algorithmideal for online implementations (i.e., reduction can take place while a trace is being produced).3 ApplicationsWe implemented the reduction algorithm and applied it to actual memory reference traces. The reducedtraces were then used in experiments with adaptive replacement policies based on LRU and proved quitevaluable. These results provide a good preliminary indication of the applicability of the algorithm.Traces in our experiment came from six actual programs 3 (\espresso", \gcc", \grobner", \ghostscript",\lindsay", and \p2c"). The traces were collected using the VMTrace utility [Kapl98]. The original traceswere already in a \blocked" form (i.e., contained references to pages and not to individual addresses, andcontiguous references to the same page were replaced by a single reference). The sizes of the blocked tracesappear on the table below:Trace name Original size (KBytes) Trace name Original size (KBytes)espresso 2,288,568 gcc-2.7.2 262,670grobner 54,514 gs3.33 940,603lindsay 865,835 p2c 215,0572There are, however, solutions that cannot be produced by olr (due to its bounded lookahead).3These traces are the ones to which we had immediate access for our initial experiments. Many more traces have beenreduced since, but the above results are highly typical. 8


