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Chapter 1
Introduction

John McCarthy in his 1959 paper \Programs with Common Sense" [McC59] pro-posed that researchers in arti�cial intelligence try to formalize and automate com-monsense reasoning about actions. The challenge is to obtain correct conclusionsabout the outcomes of actions on the basis of concise declarative representations ofcommonsense knowledge about action domains. This has proved di�cult.It is widely remarked that the notion of causality plays little or no role indescriptions of the world in the physical sciences. The same has been generally trueof proposed formalizations of reasoning about action, despite the central role playedby causal notions in everyday discourse and thought about actions. This dissertationbelongs to a line of recent work investigating the advantages of considering causalitymore explicitly.1.1 The Frame Problem and NonmonotonicityA fundamental di�culty in reasoning about action|the so-called \frame problem"|was recognized and named by McCarthy and Hayes in their 1969 paper \SomePhilosophical Problems from the Standpoint of Arti�cal Intelligence" [MH69]. A1



natural strategy for making action representations concise is to focus on describingthe changes caused by an action, while leaving implicit our knowledge of facts un-a�ected by the action. About facts una�ected by an action, we assume that theysimply persist, according to a \commonsense law of inertia." Thus, generally speak-ing, the frame problem is the problem of making the commonsense law of inertiamathematically precise.It is clear that solutions to the frame problem will be nonmonotonic: that is,in contrast to classical logic, conclusions may be lost when premises are added. Forexample, consider an action domain description involving two propositional uents,P and Q, and a single action A. (A propositional uent is a proposition whose valuedepends on time.) Suppose you are told that P and Q are initially false, and thatA makes P true. You are expected to conclude not only that P would become trueif A were performed, but also that Q would not. Now suppose that you are toldin addition that A makes Q true. You should no longer conclude that Q would befalse after A; instead, Q would be true after A.Although the previous informal example demonstrates that solutions to theframe problem will be nonmonotonic, it does little to suggest that such solutionsmay be subtle or di�cult to �nd. Nonetheless, this seems so far to be the case,particularly as we attempt to represent more elaborate kinds of domain knowledge.For instance, in this dissertation we are interested not only in how to represent the\direct" e�ects of actions, but also in how to represent \background knowledge"concerning relationships between uents, in order to correctly infer the \indirect"e�ects of actions. For example, you might be told not only that A makes P true,but also that Q can be made true by making P true. You should again concludethat Q would be true after A.
2



1.2 Commonsense Inertia as Minimal ChangeIn most proposals for reasoning about action, the commonsense law of inertia isunderstood according to a principle of minimal change. Roughly speaking, the ideais to capture the assumption that things change as little as possible, while alsoreecting our knowledge of what does change.1.2.1 The Yale Shooting ProblemIn 1986 McCarthy proposed a formalization of commonsense knowledge about ac-tions in which the commonsense law of inertia is understood according to a principleof minimal change [McC86]. Essentially, McCarthy said that change is abnormal,and he used technical means|namely, circumscription (introduced in [McC80])|toselect models of his action theory in which that kind of abnormality is minimal.That is, he preferred models in which things change as little as possible.Hanks and McDermott famously exposed a fundamental di�culty with Mc-Carthy's proposal, by introducing a counterexample widely known as the \YaleShooting" domain [HM87]. The essential elements can be described as follows.There is a turkey (Fred) and a gun. If the gun is loaded, shooting it kills Fred. Thequestion is this: If Fred is initially alive and the gun is initially loaded, will Fredbe dead after the actions Wait and Shoot are performed in sequence? Clearly theanswer should be yes. Unfortunately, McCarthy's formalization could not predictthis. The fundamental di�culty with McCarthy's 1986 proposal is that it mini-mizes change globally (i.e. across all situations). In the intended models of the YaleShooting domain, no uents change as a result of theWait action|in particular, thegun remains loaded|and then Fred becomes dead as a result of the Shoot action.McCarthy calls the death of Fred abnormal, and is in principle willing to trade thedeath of Fred for other possible abnormalities. Thus, the global minimization policy3



is satis�ed by anomalous models in which the gun becomes unloaded as a result ofthe Wait action, and then no uents change as a result of the Shoot action|inparticular, Fred remains alive after the Shoot action.1This account of the Yale Shooting problem suggests that it is wrong to min-imize change globally, but does not show that the principle of minimal change willnever do.1.2.2 Possible Next StatesThe principle of minimal change can carry us a long way if applied more carefully.The essence of the frame problem can be formulated as follows. Given an initialstate of the world and a description of the e�ects of an action when performed inthat state, we must say which states of the world may result|so far as we know|after the action is performed. We say a de�nition of this kind identi�es \possiblenext states." Winslett [Win88] proposed a de�nition of possible next states in whichthe commonsense law of inertia is captured mathematically as the straightforwardrequirement that things change as little as possible (while still satisfying the e�ectsof the action).This simple idea (in various guises) has led to considerable progress. In fact,it seems that a good deal of the widely-remarked technical di�culty in work onreasoning about action can be attributed to the need to �nd mathematical meansfor capturing this simple de�nition of possible next states within descriptions thatare more complex primarily because they encompass more than an initial situation,an action and a resulting situation. (See for example [Bak91], or Chapter 4 of thisdissertation.)21According to the informal description given here, there will be another class of models, in whichFred dies as a result of the Wait action (while the gun remains loaded). As it happens, this kindof anomalous model is ruled out in McCarthy's style of formalization, which forces an abnormalitywith respect to Alive whenever Shoot is performed with a loaded gun, even if Fred is already dead.2In passing we remark that Winslett also emphasized a second crucial element in the possiblenext states setting. Reasoning about action is by its nature a matter of reasoning about complete4



1.3 State Constraints and Static Causal LawsState constraints are formulas of classical logic that are said to hold in every possiblestate of an action domain. Traditionally, state constraints have been used to deriveindirect e�ects, or \rami�cations," of actions. Adapting a widely familiar example(from [Bak91]), let's assume that you can make Fred stop walking by making him notalive. So if shooting Fred kills him, you can make him stop walking by shooting him:not walking is a rami�cation of shooting. Traditionally, the background knowledgeused in this example has been expressed by the state constraint:Alive � :Walking : (1.1)This state constraint is equivalent in classical logic to its contrapositiveWalking � Alive :This is troublesome because it is clear that the causal relation itself is not contra-positive. That is, roughly speaking, although you can make Fred stop walking bykilling him, it does not follow from this that you can bring Fred back to life bymaking him walk.Recently, a number of researchers have argued that state constraints areinadequate for representing background knowledge in action domains, because theydo not adequately represent causal relations [Gef90, Elk92, BH93, Bar95, Lin95,MT95b, Thi95a, Gus96]. In this dissertation we explore the use of \static causallaws" of the kind introduced by McCain and Turner in [MT95b]: if a uent formula �is caused to be true, then a uent formula  is also caused to be true. From sucha causal law it follows that one can make  true by making � true. It also followsthat in every possible state,  is true if � is. That is, the state constraint � �  states of the world. Katsuno and Mendelzon emphasize a similar point in their inuential paper \Onthe Di�erence Between Updating a Knowledge Base and Revising It" [KM91]. We will allude to thispoint several times in this dissertation, since it also helps explain technical di�culties encounteredin some formalizations of actions. 5



holds. On the other hand, it does not follow that if : is caused to be true, then :�is also caused to be true. Thus, the static causal law is not contrapositive. In thisdissertation we argue for the usefulness of propositions that represent such staticcausal laws, and we show that such propositions are more expressive than traditionalstate constraints.In the example involving Fred, we can express the relevant causal backgroundknowledge by means of a static causal law: if Fred is caused to be not alive, he isalso caused to be not walking. In the treatment of static causal laws investigatedin the �rst part of this dissertation (as in [MT95b, Tur97]), the logical properties ofstatic causal laws are captured mathematically through the use of inference rules.In particular, the failure of contraposition in static causal laws is reected in thenoncontrapositive nature of inference rules. Thus, in the �rst part of the dissertation,we (essentially) replace the state constraint (1.1) with the inference rule:Alive:Walking (1.2)which says that from :Alive you can derive :Walking . The inference rule is non-contrapositive: it does not say that you can derive Alive from Walking .1.4 A Causal Account of Commonsense InertiaIn the presence of state constraints it is still possible to solve the frame problemby applying the principle of minimal change. In fact, Winslett's classic de�nitionof possible next states already allows for state constraints, requiring that resultingstates di�er as little as possible from the initial state, while satisfying both the directe�ects of the action and all state constraints. But in the presence of static causallaws, we need an understanding of the commonsense law of inertia that takes causalnotions into account more explicitly.Recently, Marek and Truszczy�nski [MT94, MT95a, MT98a] introduced a6



formalism they call \revision programming," which de�nes possible next states onthe basis of an essentially causal understanding of the commonsense law of inertia:they call it a principle of \justi�ed change." Moreover, in revision programming thecausal knowledge is expressed by means of what are essentially inference rules � ,under the restriction that both � and  are simple conjunctions (conjunctions ofliterals). Thus, in our terminology, they solve the frame problem in the presence ofa restricted subclass of static causal laws. As evidence of the reasonableness of theirde�nition, Marek and Truszczy�nski show that it agrees with Winslett's where thetwo overlap|taking a conjunction � of literals to correspond to the inference ruleTrue� . In the �rst part of this dissertation, we employ a causal de�nition of possiblenext states that is applicable in the presence of arbitrary static causal laws, expressedby means of (arbitrary) inference rules, following [MT95b, PT95, PT97, Tur97]. Asevidence of the reasonableness of our de�nition, we note that it extends, and uni�es,the de�nitions of Winslett and of Marek and Truszczy�nski.Our solution to the frame problem is based on a �xpoint condition that makesmathematically precise a causal understanding of the commonsense law of inertia.Intuitively speaking, we capture the idea that things change only when they'remade to. But we capture this idea indirectly, roughly as follows. We �rst imposethe requirement that every fact in the resulting situation have a cause according toour description. In particular then, since we describe the changes caused by actions,those changes will have a cause according to our description. On the other hand,we build in the assumption that every fact that persists is caused. Therefore, factsthat persist need no (additional) explanation. As a result, in e�ect, it is preciselythe facts that change that must be explained by our description. That is, thingsdon't change unless (our description tells us that) they're made to.Also in the �rst part of this dissertation, we show how to express the com-7



monsense law of inertia in the rule-based nonmonotonic formalisms of default logic[Rei80] and logic programming. Here we confront the technical di�culty, previouslydiscussed, of honoring our causal de�nition of possible next states while workingwith descriptions that encompass more than an initial situation, an action and aresulting situation. And true to form, we end up expending considerable mathemat-ical e�ort verifying that our default theories and logic programs indeed are correctwith respect to our de�nition of possible next states. Nonetheless, the descriptionsthemselves are relatively straightforward. In particular, the default rules expressingthe commonsense law of inertia have a remarkably simple form. Essentially, we writedefault rules of the form Ft : Ft+1Ft+1 (1.3)where Ft says that a uent F is true at time t and Ft+1 says that F is true attime t+1.3 The default rule (1.3) can be understood to say that if F is caused tobe true at time t and remains true at time t+1, then it is caused to be true attime t+1.1.5 Causally Possible Worlds and Universal CausationThe second part of the dissertation discusses a new modal nonmonotonic logic of\universal causation," called UCL, designed speci�cally for formalizing common-sense knowledge about actions. This logic was introduced in [Tur98]. UCL extendsthe recently introduced causal theories formalism of McCain and Turner [MT97],which shares its underlying motivations. The fundamental distinction in UCL|3Inertia rules of essentially this form have been entertained previously in the literature [Rei80,MS88], but without substantial success. The speci�c proposals are not complete enough to analyzein any detail. We do discuss throughout the �rst part of the dissertation several interacting factorsthat contribute to the success of our approach. One such factor is that, while default logic isdesigned to deal with incompleteness|its models (\extensions") are logically closed sets of formulas,not classical interpretations|it is important in reasoning about action that we focus on completeworlds, as previously mentioned. Our default theories guarantee this kind of completeness, incontrast to previous published proposals in default logic.8



between facts that are caused and facts that are merely true|is expressed by meansof the modal operator C, read as \caused." For example, one can write � � C tosay that  is caused whenever � is true. These simple linguistic resources make itpossible for a UCL theory to express the conditions under which facts are caused.It is in this sense that UCL is a logic of causation.In UCL, we can express the commonsense law of inertia by writing, for in-stance CFt ^ Ft+1 � CFt+1 (1.4)which corresponds closely to the default rule (1.3) for inertia discussed previously.Formual (1.4) stipulates that F is caused at time t+1 whenever it is caused at time tand persists from time t to time t+1.Typical features of action domain descriptions are easily expressed in UCL.For instance, in a variant of the Yale Shooting domain [HM87] as extended by Baker[Bak91], one can write Shoot t � C:Alivet+1 ^ C:Loaded t+1 (1.5)to describe the direct e�ects of shooting: whenever Shoot occurs, both :Alive and:Loaded are caused to hold subsequently. One can writeShoot t � Loaded t (1.6)to express a precondition of the shoot action: shoot can occur only when the gun isloaded. To say that Fred is caused to be not walking whenever he is caused to benot alive, one can write the UCL formulaC:Alivet � C:Walking t : (1.7)This formula corresponds closely to the inference rule (1.2) considered previously.Notice that from (1.5) and (1.7) it follows by propositional logic that whenever9



Shoot occurs, :Walking is caused to hold subsequently. Thus (1.7) correctly yields:Walking as an indirect e�ect, or rami�cation, of the Shoot action.In accordance with common sense, (1.7) does not imply CWalking t�CAlivet.Intuitively, you cannot bring Fred back to life by getting him to walk. Instead, hesimply can't walk unless he's alive. To put it another way, in any causally possibleworld, Fred is alive if he is walking. Accordingly, if (1.7) is an axiom of a UCLtheory T , then Walking t � Alivet is true in every interpretation that is causallyexplained by T .1.6 Automated Reasoning about Actions and Satis�a-bility PlanningOne of the purposes of formalizing commonsense knowledge about actions is toenable the automation of reasoning about actions. There is a subset of propositionalUCL theories extremely well-suited to this purpose, in which every formula has eitherthe form � � CLor �where � is a formula in which the modal operator C does not occur and L is a literal.Such UCL theories are called \de�nite." There is a concise translation of de�niteUCL theories into classical propositional logic. Thus, standard automated reasoningtools for classical logic can be applied to de�nite UCL theories. This possibility isnotable, but does not constitute a primary contribution of this dissertation. Wefocus instead on the problem of automated planning.Planning is an automated reasoning task associated with action domainsthat has been especially well-studied, due to its potential practical utility and its10



fundamental computational di�culty, even for action domains that can be describedquite simply, as in STRIPS [FN71, Lif87b]. In this dissertation, following [MT98b],we describe an implemented approach to satis�ability planning [KS92, KS96], inwhich a plan is obtained by \extracting" the action occurrences from a suitablemodel of a classical propositional theory describing the planning domain. In ourapproach, the description in classical logic is obtained by translation from a de�niteUCL theory.This approach to planning is noteworthy for two reasons. First, it is based ona formalism for describing action domains that is more expressive than the STRIPS-based formalisms traditionally used in automated planning. Secondly, our experi-ments suggest that the additional expressiveness of causal theories comes with noperformance penalty in satis�ability planning. Speci�cally, we show that the largeblocks world and logistics planning problems used by Kautz and Selman [KS96] todemonstrate the e�ectiveness of satis�ability planning can be conveniently repre-sented as UCL theories and solved in times comparable to those that they haveobtained.1.7 Outline of DissertationChapter 2 consists of a review of the literature, and extends some of the themesraised thus far.The �rst part of the dissertation (Chapters 3 and 4) is devoted to demonstrat-ing the extent to which inference rules, and rule-based formalisms such as defaultlogic, can be convenient for formalizing causal aspects of commonsense knowledgeabout actions. We introduce, and investigate in detail, an approach to representingactions in which inference rules play a central role. More speci�cally, we de�ne ahigh-level action language, called AC, and we show how to translate AC into therule-based nonmonotonic formalisms of default logic and logic programming. This11



line of investigation is motivated by the simple observation that the noncontraposi-tive nature of causal relationships is nicely reected in the noncontrapositive natureof inference rules. More precisely, we show that an inference rule� (1.8)can be understood to represent the corresponding static causal law: if � is causedthen  is caused. In this way we obtain causal theories of action based on familiarand well-understood mathematical tools.In the second part of the dissertation (Chapter 5) we introduce a new modalnonmonotonic logic|called UCL| in which the appropriate (mathematically sim-ple) causal notions can be represented by means of a modal operator C (read as\caused") along with standard truth-functional connectives. In this logic, we saythat a formula � is caused to be true by writing the modal formula C�. Thus, forinstance, instead of the inference rule (1.8), we can write the UCL formulaC� � C : (1.9)We discuss the fact that UCL can be understood to provide a more general, alter-native account of the causal notions that underlie the work presented in the �rstpart of the dissertation. We also introduce a di�erent, but closely related, approachto formalizing commonsense knowledge about actions, directly in UCL. In order tohelp clarify the relationship between this new nonmonotonic logic and well-knowngeneral-purpose nonmonotonic formalisms, we present several theorems concerningtranslations back and forth from default logic [Rei80], autoepistemic logic [Moo85],and circumscription [McC80]. We also relate action formalizations in UCL to thecircumscriptive causal action theories of Lin [Lin95, Lin96].In the third and last part of the dissertation (Chapter 6), we develop mathe-matical results that justify planning on the basis of a restricted class of UCL action12



descriptions, and show that this approach to planning is relatively e�ective on largeclassical planning problems.Chapter 7 consists of a brief summary of the dissertation and a few remarksconcerning possible directions of future work.
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Chapter 2
Literature Survey

The common knowledge about the world that is possessed by everyschoolchild and the methods for making obvious inferences from thisknowledge are called common sense. { Ernest Davis [Dav90]2.1 The Situation CalculusAs mentioned in the previous chapter, McCarthy and Hayes recognized and namedthe frame problem in [MH69]. In that paper they also introduced the \situationcalculus," which can be understood as both a simple ontology for models of actiondomains and a family of convenient notational conventions for representing theoriesabout action. The essential elements and assumptions of the situation calculusontology can be described roughly as follows.� There are properties of the world that vary with time, called \uents."� A world at a moment in time is called a \situation."� Each situation maps each uent to a value.14



� For each situation S and action A, there is a unique situation, Result(A;S),that would result if the action A were performed in situation S.In addition, it is common to assume that there is a distinguished \initial situation."In fact, in situation calculus settings, the model structures of action domains can beunderstood essentially as trees in which nodes correspond to situations and edgescorrespond to actions, with the initial situation at the root. We can complete ourdescription of such a situation calculus model structure by associating with eachsituation an interpretation of the set of uents. That is, each situation is mapped toa state. Notice that in such a model, each situation can be uniquely speci�ed by thesequence of actions that, when performed in the initial situation, would lead to it.This lends itself naturally to the following notational conventions. First, we denotethe initial situation by a constant S0. We then denote the situation that would resultfrom doing, for instance, action A1 followed by action A2, in the initial situation, bythe term Result(A2;Result(A1; S0)). Given this, we say, for instance, that a uent Fis true in that situation by writing Holds(F;Result(A2;Result(A1; S0))), and we saythat it is false in that situation by writing :Holds(F;Result (A2;Result(A1; S0))).In the �rst part of this dissertation, we propose a high-level language forrepresenting actions that reects a situation calculus ontology. Furthermore, ourtranslations of this high-level action language into default logic and logic program-ming utilize standard syntactic conventions for representing situation calculus theo-ries in a many-sorted, �rst-order language. These are convenient choices for severalinterrelated reasons. First, the situation calculus ontology is appealing in its sim-plicity. For instance, it does not address the problem of representing the duration ofactions. In fact, the passage of time is reected only in the state changes associatedwith discrete action occurrences. Second, the syntactic conventions of the situationcalculus are themselves simple and convenient. Third, in light of the �rst two ob-servations, it is not surprising that there has been a great deal of previous work on15



representing actions in the situation calculus. Thus, the situation calculus is widelyfamiliar.There have been, of course, many other proposals of ontologies and notationalconventions for theories of action. A discussion of such proposals is beyond the scopeof this literature survey. However, because this dissertation includes a proposal forrepresenting actions in logic programming, we mention that there is a considerablebody of work on formalizing actions in logic programming that is based on the \eventcalculus" of Kowalski and Sergot [KS86]. As with the situation calculus, the eventcalculus can be understood as both a simple ontology for models of action domainsand a family of convenient notational conventions for representing theories aboutaction. Recently there have been a number of papers investigating relationshipsbetween the event calculus and situation calculus [PR93, KS94, Mil95, vBDS95].In the second and third parts of this dissertation, we employ a simple alterna-tive ontology and notation, in which time has the structure of the natural numbers,and in which the occurrence of an action at a time becomes a proposition. Oneadvantage of this approach is that it makes it more convenient to represent andreason about concurrent actions. Another advantage of this alternative approachis related to a complication in the situation calculus that has been suppressed tothis point in our discussion|in a situation calculus model, there may be situationsthat are, intuitively speaking, unreachable. That is, as the tree-like model struc-ture \unfolds" we may reach a situation in which some action simply cannot beperformed, given what is true in that situation. This renders \unreachable" thesituation that would result from performing the action. Nonetheless, our model willsatisfy sentences that describe the state of the world in that unreachable situation.For instance, even if S names such an unreachable situation (about which it intu-itively makes no sense to say that a uent holds or does not hold), the sentence8f(Holds(f; S) _ :Holds(f; S)) is logically valid. This technical, and conceptual,16



di�culty can be dealt with, at the cost of additional complexity.1 By contrast, inthe alternative approach utilized in the latter parts of the dissertation, the fact thata certain action cannot be performed in a certain situation is, roughly speaking,reected in the fact that there is simply no model in which that action occurs insuch a situation.2.2 Nonmonotonic FormalismsRepresentational di�culties in commonsense reasoning|such as the need to repre-sent the nonmonotonicity inherent in the commonsense law of inertia|led in the1980's to the introduction of several nonmonotonic formalisms. In 1980, defaultlogic was de�ned by Reiter [Rei80], McCarthy introduced cirumscription [McC80],and a modal nonmonotonic logic was proposed by McDermott and Doyle [MD80]. In1985, Moore introduced a particularly inuential modal nonmonotonic logic, calledautoepistemic logic [Moo85]. Circumscription has undergone a great deal of re-�nement and extension, some of which is reected in [Lif85, McC86, Lif91, Lif95].Autoepistemic logic received a particularly elegant, model-theoretic characterizationin [LS93].Because of the prominent role played by default logic in the �rst part of thisdissertation, we provide at this point an informal introduction to it.2 A default ruleis an expression of the form � : �1; : : : ; �nwhere all of �; �1; : : : ; �n;  are formulas (n � 0). Such a rule says, intuitivelyspeaking, if you know � and each of �1; : : : ; �n are consistent with what you know,then conclude . A default theory is a set of default rules. Its meaning is formally1For instance, a portion of the technical challenge in Chapter 4|where we prove the correctnessof a family of situation calculus theories in default logic|can be attributed to this feature of thesituation calculus.2The precise de�nition appears in Section 3.5.1.17



determined by the set of its \extensions," which are �xpoints of an equation thatreects the intuition described above. Each extension is a logically closed set offormulas which is also \closed under" the rules of the default theory. A formula isa consequence of a default theory if it belongs to all of its extensions. Default logicis nonmonotonic: we may lose consequences when we add rules to a default theory.Logic programming is another nonmonotonic formalism which, along withdefault logic, is of special interest in this dissertation. Logic programming wasinspired by Kowalski's 1974 paper \Predicate Logic as a Programming Language"[Kow74]. Because of the \closed world assumption" and the \negation as failure"operator, logic programming has long been recognized as a nonmonotonic formalism,but the appropriate semantics has been a contentious issue. An early proposal byClark [Cla78], known as \Clark's completion," remains inuential, although it su�ersfrom well-known anomalies (as a semantics for logic programs). Other much-studiedproposals appear in [Fit85, Kun87, Prz88, VGRS90]. One fruitful line of researchinvestigated connections between the semantics of logic programming and othernonmonotonic formalisms. Of particular interest in relation to this dissertation arethe connections to autoepistemic logic [Gel87] and default logic [BF87], which in1988 led to the proposal by Gelfond and Lifschitz of the \stable model" semanticsfor logic programs [GL88], later renamed the \answer set" semantics and extendedto apply to logic programs with \classical" negation and \epistemic" disjunction[GL90, GL91].In the �rst part of this dissertation, we are concerned with logic programswith classical negation under the answer set semantics. Such programs correspondto a simple subset of default logic, as observed in [GL90]. Thus, we will essentiallyview a logic program rule of the formL0  L1; : : : ; Lm;notLm+1; : : : ;notLn18



(where all the Li's are literals) as an abbreviation for the corresponding default ruleL1 ^ � � � ^ Lm : Lm+1; : : : ; LnL0where for each literal Li, Li stands for the literal complementary to Li.3 The symbolnot that appears in the bodies of some logic program rules stands for \negation asfailure." Roughly speaking, the expression notL can be read as \L is not known."We introduce in the second part of this dissertation a new nonmonotonic for-malism, called UCL. The syntax and some of the motivations of UCL are anticipatedin a more ambitious formalism introduced by Ge�ner [Gef89, Gef90, Gef92]. Ge�neremploys a modal language with a single modal operator C, read as \explained,"and de�nes \default theories which explicitly accomodate a distinction between `ex-plained' and `unexplained' propositions" [Gef90]. His proposal is meant to enhance\the appeal of preferential entailment as a unifying framework for non-monotonicinference" by contributing to the development of \a general domain-independentcriterion for inferring preferences from theories" [Gef90]. The mathematical com-plexity of Ge�ner's de�nitions may reect the generality of his goal. By comparison,in UCL both aim and means are modest. It appears that UCL can be embeddedin Ge�ner's formalism, perhaps with some minor technical modi�cations, but wedo not pursue this possibility in this dissertation. The rewards would be minimal,given the di�erences in emphasis, and in mathematical machinery.2.3 Action Theories in Logical FormalismsIn 1986 McCarthy published a proposal for reasoning about actions in circumscrip-tive theories [McC86], discussed in the previous chapter. Partly in response to thisproposal, Hanks and McDermott wrote the landmark paper in which they not onlyexposed a di�culty with McCarthy's proposal, but also showed that an analagous3The precise de�nition appears in Section 3.6.1.19



di�culty could arise in default logic. As we have described, their counterexampleswere based on the \Yale Shooting" domain [HM87].4 Hanks and McDermott werenot content to reject McCarthy's speci�c proposal, but instead went on to argue moregenerally against the use of nonmonotonic formalisms for reasoning about action.Two of their claims are especially relevant to this dissertation: (i) nonmonotonicformalizations will be too di�cult to understand and evaluate, and (ii) nonmono-tonic formalisms will not directly capture the appropriate commonsense conceptsand patterns of reasoning.Despite, or perhaps because of, the warnings of Hanks and McDermott, thereis a sizable body of work published in the last decade on logic-based, nonmono-tonic approaches to representing actions. One such line of work involves propos-als for representing actions in classical (monotonic) logic. There are a number ofproposals that specify a standard method for generating �rst-order frame axioms[Ped89, Sch90, Rei91]. In these proposals, there is a standard form for �rst-orderaxioms describing the e�ects of actions and other features speci�c to a given actiondomain. The resulting �rst-order theory is then augmented by additional standardaxioms. Finally, there is a procedure for generating frame axioms, based on thedomain speci�c axioms. Because such a procedure depends on the domain speci�caxioms, the method as a whole is nonmonotonic, in spite of the fact that the re-sulting action theories are expressed in monotonic logic. The inescapable fact hereis the underlying, fundamental nonmonotonicity of the frame problem itself. Anycorrect solution, taken as a whole, will be nonmonotonic, even if the end productis expressed in a monotonic formalism. Of course this holds, presumptively, forless systematic proposals, which discuss frame axioms for some examples withoutspecifying a general method for generating them [Haa87, Elk92]. Thus the so-calledmonotonic approaches are conceptually similar to the more clearly nonmonotonic4In Chapter 3.5 we discuss in some detail their default theory for the Yale Shooting domain.20



approaches which employ variants of circumscription, autoepistemic logic, defaultlogic and logic programming. Undoubtedly the greatest concentration of such workhas been in circumscription [Hau87, Lif87a, LR89, Lif90, Bak91, GLR91, Lif91,LS91, CE92, LR94, KL95, Lin95, Gus96, Lin96]. There were also early publishedsolutions to the Yale Shooting problem in autoepistemic logic [Gel88], default logic[Mor88] and logic programming [EK89, Eva89, AB90].A primary methodological weakness of much of the work cited above is thefact that it is motivated by, and validated for, only a small set of examples. In manycases, there is no clear claim about what kinds of action domains can be representedcorrectly by a given approach. Moreover, it is often unclear how the technical meansemployed are related to the intuitions they are meant to capture.2.4 High-Level Action LanguagesRecently, Gelfond and Lifschitz [GL93] proposed an inuential research method-ology, which involves the introduction of special-purpose, high-level languages forrepresenting action domains. The advantage of starting with a high-level actionlanguage is that it can utilize a restricted syntax and a relatively simple semanticswhich is nonetheless adequate to capture our commonsense intuitions about thewhole family of action domains expressible in the language. Of particular signi�-cance in obtaining a simple semantics is the fact that such high-level languages canisolate the problem of de�ning possible next states, and then deploy such a de�ni-tion explicitly, in straightforward fashion, to constrain more general model structures(encompassing more than an initial situation, action, and resulting situation).In [GL93], the high-level action language A was introduced. Many of thesubsequent action languages [BG93, KL94, Thi94, BGP95, GKL95, GL95, Thi95b,Tur96a] are essentially extensions of A. These languages share a situation calculusontology. Next we briey describe some of their main features and di�erences. In21



A actions are deterministic, always executable, and cannot be performed concur-rently. Furthermore, uents are propositional (that is, boolean-valued), and there isno way to represent background knowledge of any kind. In AC [BG93], concurrentactions are allowed and actions are no longer required to be always executable. InAND [Thi94], actions may be nondeterministic. In the languages AR0 and AR[KL94, GKL95, GKL97], actions may be nondeterministic and are not required tobe always executable. More importantly, these languages allow the use of stateconstraints to express background knowledge. Also, these languages employ the\frame/nonframe" distinction introduced in [Lif90], which is discussed briey inChapter 3.4 of this dissertation. In addition, AR allows non-boolean uents. Thelanguage ARD [GL95] extends AR by adding the notion of \dependent" uents.The language AC [Tur96a, Tur97] that is included in the dissertation essentially ex-tends the propositional portion of AR, but restricts the use of the frame/nonframedistinction, allowing it only for the purpose of introducing \explicit de�nitions."The main improvement of AC over propositional AR is its adoption of the methodintroduced in [MT95b] for representing causal background knowledge. The languageL0 [BGP95] is an extension of a subset of A, incorporating the notion of \observa-tions" about an actual past, which a�ords L0 some of the distinctive expressivenessof the event calculus. The formalism of \dynamic systems" [Thi95b] is an extensionof A, incorporating concurrent actions and events, \momentary" uents and delayede�ects of actions.High-level action languages can be of help in the evaluation of existing pro-posals for representing commonsense knowledge about actions in general-purposeformalisms. One can demonstrate the (partial) correctness of such a proposal byspecifying a correct translation of (some portion of) a high-level language into ageneral-purpose formalism, using the methods and ideas of the proposal. In [Kar93],Kartha shows that the \monotonic" proposals due to Pednault [Ped89] and Reiter22



[Rei91] are in fact correct for action domains expressible in A. He also shows thatA can be embedded in Baker's [Bak91] circumscriptive approach to representing ac-tions. This is an instructive case. Baker's proposal is considerably more expressivethan A, allowing the use of state constraints to represent background knowledge.Moreover, Baker's approach has been widely admired, although its correctness hasbeen di�cult to assess due to its technical complexity. It turns out, as Karthademonstrates in [Kar94], that Baker's approach can yield intuitively incorrect re-sults when applied to action domains in which there are nondeterministic actions.High-level action languages also help generate new proposals for represent-ing actions in general-purpose formalisms, as new translations are developed. Forinstance, the original paper on A [GL93] included a sound translation of a portionof A into logic programming. Now there are sound and complete translations ofA into abductive logic programming [DD93, Dun93], equational logic programming[Thi94] and disjunctive logic programming [Tur94]. In [LT95], we show that thetranslation from [Tur94] can be transformed into the translation from [DD93] by aseries of simple syntactic transformations, obtaining in the process a family of seventranslations of A into logic programming. In [BG93], the language AC is given asound but incomplete translation into logic programming. In [Tur97], we specify asound and complete translation into logic programming of a portion of the languageAC. (This translation is included in the �rst part of this dissertation.) Subramanian[Sub93] embeds A in the logic of the Boyer-Moore theorem prover [BM88]. The lan-guages AR0 and AR are embedded in circumscriptive theories in [KL94, GKL95].Finally, in [Tur96a, Tur97] a portion of the language AC is embedded in defaultlogic. (Again, this translation is included in the �rst part of this dissertation.)
23



2.5 Possible Next States and Theory UpdateIn addition to all of the previously discussed work on representing action domains,there is a body of relevant work in the simpler settings of possible next states and\theory update." As described previously, work on de�ning possible next states isstill explicitly directed toward the problem of reasoning about action, but in a settingwhere some of the complexities of action domains are ignored in order to focus moredirectly on the frame problem itself [GS88, MS88, Win88, BH93, Bar95, MT95b,Thi95a]. The frame problem is also confronted in the still more abstract settingof theory update [KM91, MT93b, Bar94, MT94, MT95a, PT95, PT97, MT98a].Recall that one example is the formalism of revision programming [MT94, MT98a],which can be understood as a precurser to the causal approaches presented in thisdissertation. As previously mentioned, an extension of the proposal of [MT95b,PT95] is used to de�ne possible next states in the action language AC in the �rstpart of this dissertation.2.6 Causal Theories of ActionWe mention separately the ongoing line of recent work on causal theories of action[Gef90, Elk92, BH93, Bar95, Lin95, MT95b, Thi95a, Gus96, Lin96, San96, Lif97,MT97, Thi97, Tur97, GL98, MT98b, Tur98], most of which has already been citedin other contexts.Recall that Hector Ge�ner in [Gef89, Gef90] introduced an ambitious non-monotonic formalism for causal and default reasoning, and discussed how to apply itto a number of problems in commonsense knowledge representation and nonmono-tonic reasoning, including the problem of reasoning about action. Although puzzlingin some details, his proposal anticipates several ideas central to the work presentedin the second part of this dissertation. For one thing, the syntax of UCL is essen-24



tially that of his nonmonotonic formalism.5 Moreover, the intuitive reading of themodal operator is really very close in the two formalisms: Ge�ner reads \explained,"where we read, essentially, \has a cause." In fact, Ge�ner was interested in a similarnotion of causal explanation, and, except for some minor technical complications,it seems that UCL can be embedded in his formalism. Since Ge�ner's formalism isconsiderably more ambitious, one way to characterize the relative contribution ofUCL is to say that while its aims are simpler, so are its means.There is another striking fact. In his example of an action theory, Ge�nerincludes formulas of the form � � C (2.1)which is exactly the form of formulas in the subset of UCL that corresponds tothe causal theories formalism of McCain and Turner introduced in [MT97]. Suchformulas have one of the crucial properties of static causal laws: they are noncon-trapositive. That is, (2.1) does not entail the formula : � C:�. Such causal lawsare of considerable interest for a number of reasons. For one thing, as discussed atlength in the third part of this dissertation, they can lead to e�ective methods forautomated reasoning about actions when the formula  in the consequent of (2.1)is restricted to be a literal. They also played at least an inspirational role in thecircumscriptive proposal of Lin [Lin95], in which Caused is introduced as a predicatethat is minimized with respect to \causal laws" of roughly the formHolds(�; s) � Caused(F; V; s)where V is a \truth value" and F is the name of a uent. Again, intuitively at least,such a sentence corresponds to the special case of (2.1) when  is a literal.5More accurately, Ge�ner stops short of introducing a modal logic, but considers instead atomicsymbols of the form C�, where � is a formula of propositional logic. He then imposes closureconditions on his propositional models which serve to approximate the semantics of propositionalS5 modal logic. 25



Elkan [Elk92] argues for the importance of causality in describing the indirecte�ects of actions, but his proposal is not fully speci�ed. Instead he illustrates hisideas by considering examples. It is clear though that his approach involves \pre-computing" the indirect e�ects of actions as a preliminary step to formalizing theaction domain. This is counter to the spirit of the work in this dissertation. Elkanalso rejects the notion of static causal laws, arguing that cause always temporallyprecedes e�ect.Brewka and Hertzberg [BH93] attempt to represent causal background knowl-edge using inference rules, much as is done in the de�nition of possible next statesused in this dissertation. Nevertheless, their de�nition is based on the principleof minimal change. Rather than attempt to reason directly about what is caused,they use inference rules to alter the measure of change. This can lead to unsatisfac-tory results, as discussed in Chapter 3.4 of this dissertation, and also makes theirde�nition somewhat unwieldy.As we have said, the action language AC discussed in Chapter 3.4 incorpo-rates the causal approach introduced in [MT95b]. Further discussion of the recentwork on causality in theories of action in [Bar95, Lin95, Thi95a, Thi97] is post-poned until Chapter 3.4, where brief comparisons with AC appear. Lin's proposal[Lin95, Lin96] is also considered again, in much greater detail, in Chapter 5.
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Chapter 3
Inference Rules in CausalAction Theories

3.1 IntroductionIn the �rst part of this dissertation, we employ the methodology proposed by Gel-fond and Lifschitz (discussed in Chapter 2) which involves �rst de�ning a high-levellanguage for representing commonsense knowledge about actions, and then specify-ing translations from the high-level action language into general-purpose formalisms.Accordingly, we de�ne a high-level action language AC, and specify sound and com-plete translations of portions of AC into default logic and logic programming.Before de�ning the action language AC, we introduce a de�nition of possiblenext states that reects a causal understanding of the commonsense law of iner-tia, as previously discussed, and allows us to take into account static causal laws,characterized mathematically by means of inference rules.Our translations of AC take advantage of the fact that default logic and logicprogramming are rule-based formalisms. This of course simpli�es the translation ofstatic causal laws, but, as we demonstrate, it also allows convenient representations27



of other causal aspects of action domains. In particular, as previously described, werepresent the commonsense law of inertia with rules of a very simple form.This chapter is organized as follows. In Section 3.2 we illustrate the range ofapplicability of the de�nitions introduced in this chapter, by considering four exam-ple action domains. We provide for each a brief informal description, a formalizationin the action language AC, and a corresponding formalization in logic programming,default logic, or both. In Section 3.3 we introduce the causal de�nition of possiblenext states that is used in AC, and briey investigate its mathematical properties.We then de�ne AC in Section 3.4, and compare it to some other recent proposals forcausal theories of action. In Section 3.5 we specify a translation from a subset of ACinto default logic, and state the relevant soundness and completeness theorems. Wealso specify a second, simpler translation which is sound and complete for a smallersubset of AC. Section 3.5 also includes a comparison between the default theory weobtain for the classic Yale Shooting domain and the default theories considered byHanks and McDermott and by Morris [Mor88]. In Section 3.6 we show that, undersimple syntactic restrictions on the form of AC domain descriptions, the translationsinto default logic can be adapted to generate logic programs that correctly representcommonsense knowledge about actions. We defer until Chapter 4 most proofs oftheorems.3.2 Four ExamplesIn order to illustrate the range of applicability of the de�nitions introduced in thischapter, we next consider four example action domains, providing for each an infor-mal description, a formalization in the high-level action language AC, and a soundand complete translation into default logic, logic programming, or both.
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Example 1We begin with yet another variant of the Yale Shooting domain. There is a pilgrimand a turkey. The pilgrim has two guns. If the pilgrim �res a loaded gun, theturkey will be caused to be not alive in the resulting situation. Furthermore, onecan make the turkey be not trotting by making it not alive, because whenever thereis a cause for the turkey being not alive there is also a cause for the turkey nottrotting. Initially the turkey is trotting and at least one of the two guns is loaded.Based on this informal description, we can conclude, for instance, that theturkey is not trotting in the situation that would result if the pilgrim were to shoothis two guns, one after the other, in the initial situation.This is an example of a \temporal projection" action domain, in which weare told only about the values of uents in the initial situation. Furthermore, thisis an \incomplete" temporal projection domain, since the information we are givenabout the initial situation does not completely describe it.This action domain includes a static causal law: whenever not alive is caused,not trotting is also caused. It follows from this static causal law that one can makethe turkey be not trotting by making it be not alive. Therefore, shooting a loadedgun when the turkey is trotting has not only the direct e�ect of killing the turkey,but also the indirect e�ect, or rami�cation, of making it stop trotting.In the action language AC, this action domain can be formalized as follows.1initially Trottinginitially Loaded (Gun1) _ Loaded (Gun2):Alive su�ces for :TrottingShoot (x) causes :Alive if Loaded (x)1Although AC domain descriptions do not include variables, we sometimes use metavariablesin our representations of them. For instance, the metavariable x in the fourth expression in thedomain description ranges over fGun1;Gun2g. 29



This AC domain description entails, for instance, the AC proposition:Trotting after Shoot (Gun1);Shoot (Gun2)which says that :Trotting holds in the situation that would result from performingthe action sequence Shoot (Gun1);Shoot (Gun2) in the initial situation.The domain description includes the proposition:Alive su�ces for :Trottingwhich describes the static causal law: it says that, in the action domain we aredescribing, whenever :Alive is caused, :Trotting is also caused. Because of thisstatic causal law, it is impossible in this action domain for Trotting to be true whenAlive is false. Intuitively, this can be explained as follows. In every situation, (werequire that) every fact is caused. In particular then, whenever Alive is false in asituation, the fact that Alive is false must be caused. And since :Alive is caused,it follows by the static causal law that :Trotting is also caused; and consequently:Trotting must be true as well. Accordingly, the semantics of AC guarantees thatno model of the domain description includes a situation in which both Trotting and:Alive hold. On the other hand, we emphasize that in the semantics of AC it doesnot follow from this proposition that Alive can be made true by making Trottingtrue! This failure of contraposition reects the fact that one cannot make a turkeybe alive just by making it trot. (On the contrary, common sense tells us that aturkey simply cannot trot unless it is alive.)We display in Figure 3.1 a correct formalization in default logic of this ex-ample. It can be obtained from the above AC domain description by a translationde�ned in Section 3.5 of this dissertation.The �rst rule in this default theory reects the assertion that the turkey isinitially trotting, by ensuring that there can be no consistent extension of the defaulttheory in which the turkey is initially not trotting. In a similar fashion, the second30



:Holds(Trotting ; S0)False :(Holds(Loaded (Gun1); S0) _Holds(Loaded (Gun2); S0))False:Holds(Alive; s):Holds(Trotting ; s) Holds(Loaded (x); s):Holds(Alive;Result(Shoot (x); s)): Holds(f; S0)Holds(f; S0) : :Holds(f; S0):Holds(f; S0)Holds(f; s) : Holds(f;Result(a; s))Holds(f;Result(a; s)) :Holds(f; s) : :Holds(f;Result(a; s)):Holds(f;Result(a; s))Figure 3.1: Default theory for Example 1.rule says that at least one of the pilgrim's guns is initially loaded. The form of thesetwo rules may be surprising. For instance, one may wonder why the �rst rule is notTrueHolds(Trotting ; S0)instead. This can be explained as follows.Consider the following AC domain description, obtained by deleting the �rsttwo propositions from the above domain description.:Alive su�ces for :TrottingShoot (x) causes :Alive if Loaded (x)This reduced domain description has exactly twelve models, one for each possibleinitial situation. (Recall that the AC proposition :Alive su�ces for :Trottingrules out any situation in which Alive is false and Trotting is true.) In the semanticsof AC, the role of the propositioninitially Trottingis simply to eliminate those models in which trotting is initially false. Similarly, theAC proposition initially Loaded (Gun1) _ Loaded (Gun2)31



simply eliminates those models in which both guns are initially unloaded. Thus thefull domain description has exactly three models.Now, the translation into default logic has the property that there is a one-to-one correspondence between AC models of the domain description and consistentextensions of the corresponding default theory. Thus, the default theory for thereduced domain description has twelve consistent extensions. In general, adding adefault rule of the form �Falsesimply eliminates all consistent extensions to which � belongs. Therefore, addingthe rule :Holds(Trotting ; S0)Falsesimply eliminates those extensions that include the literal :Holds(Trotting ; S0).Similarly, adding the rule:(Holds(Loaded (Gun1); S0) _Holds(Loaded (Gun2); S0))Falsesimply eliminates those extensions in which, roughly speaking, both guns are initiallyunloaded. Adding both of these rules eliminates nine extensions in all, and leaves uswith exactly the three extensions that correspond to the three models of the originaldomain description. Because of the simple, monotonic behavior of such default rules,the correctness of this aspect of the translation is relatively transparent.The third rule in the default theory can be understood to say that the turkeycan be made to stop trotting by making it not alive. Notice that this default ruledoes not allow one to derive Holds(Alive; S0) from Holds(Trotting ; S0), for instance.This reects the fact that the static causal law is noncontrapositive. Nonetheless,in the context of the default theory as a whole, this default rule guarantees that noconsistent extension includes both Holds(Trotting ; S0) and :Holds(Alive; S0).The fourth rule in the default theory can be understood to say that the32



1: False  not Holds(Trotting ; S0)2: False  not Holds(Loaded (Gun1); S0);not Holds(Loaded (Gun2); S0)3: :Holds(Trotting ; s) :Holds(Alive; s)4: :Holds(Alive;Result(Shoot (x); s)) Holds(Loaded (x); s)5: Holds(f; S0) not:Holds(f; S0)6: :Holds(f; S0) notHolds(f; S0)7: Holds(f;Result(a; s)) Holds(f; s);not:Holds(f;Result(a; s))8: :Holds(f;Result(a; s)) :Holds(f; s);not Holds(f;Result(a; s))Figure 3.2: Logic program for Example 1.turkey is not alive after the pilgrim �res a gun, if that gun is loaded.2 Notice thatthis default rule does not allow one to derive the literal :Holds(Loaded (Gun1); S0)from the literal Holds(Alive;Result(Shoot (Gun1); S0)), for instance. This reectsthe commonsense intuition that facts in the future cannot cause facts in the past.3The remaining rules in the default theory are standard elements of the trans-lation we are considering. The �fth and sixth rules reect the obvious, and crucial,fact that each uent is either true or false in the initial situation, by forcing each con-sistent extension of the default theory to include, for each uent F , either the literalHolds(F; S0) or the literal :Holds(F; S0). Furthermore, these two rules interact toguarantee that the default theory takes into account every possible initial situation.The seventh and eighth rules express the commonsense law of inertia, as previouslydiscussed. For instance, since we have the literal Holds(Trotting ; S0), one of the in-ertia rules allows us to derive the literal Holds(Trotting ;Result(Shoot (Gun1); S0)),so long as it is consistent to do so (which, roughly speaking, it will be if and only ifthe �rst gun is initially unloaded). Notice that these inertia rules again reect thecommonsense belief that facts in the future do not cause facts in the past.2Here, as earlier, x appears as a metavariable ranging over fGun1;Gun2g.3This point is discussed further in Section 3.5, when we compare our translation for the YaleShooting domain to previously published default logic formalizations.33



This action domain can also be correctly formalized in logic programming,under the answer set semantics of Gelfond and Lifschitz. Because of the equivalenceof logic programming under the answer set semantics and the appropriate subsetof default logic, the logic program in Figure 3.2 can be understood as a directtranslation of the previous default theory, except for the �rst and second rules,which are handled in a slightly more complex fashion (to be explained in Section 3.6of this dissertation).Recall that one consequence of the action domain in this example is that theturkey would not be trotting if the pilgrim were to shoot his two guns, one after theother, in the initial situation. Accordingly, the literal:Holds(Trotting ;Result(Shoot (Gun2);Result(Shoot (Gun1); S0)))is a consequence of both the default theory and the logic program.Example 2Let us consider a second action domain, adapted from [Lin95], in which there is aspring-loaded briefcase with two clasps. We have actions that unfasten the clasps,one at a time. If both clasps are unfastened, the briefcase pops open. Initially thebriefcase is not open. We can conclude in this case that the briefcase would be openafter we unfastened the �rst clasp in the initial situation if and only if the secondclasp is initially not fastened.As in the previous example, this is an incomplete temporal projection domainin which there is a static causal law. Once again, we are interested in rami�cations.This action domain can be described in AC as follows.initially :OpenUnfasten(x) causes :Fastened (x):Fastened(Clasp1) ^ :Fastened(Clasp2) su�ces for Open34



Holds(Open ; S0)False True:Holds(Fastened (x);Result(Unfasten(x); s)):Holds(Fastened (Clasp1); s) ^ :Holds(Fastened (Clasp2); s)Holds(Open; s): Holds(f; S0)Holds(f; S0) : :Holds(f; S0):Holds(f; S0)Holds(f; s) : Holds(f;Result(a; s))Holds(f;Result(a; s)) :Holds(f; s) : :Holds(f;Result(a; s)):Holds(f;Result(a; s))Figure 3.3: Default theory for Example 2.The corresponding default theory is shown in Figure 3.3. The �rst three rulesof the default theory correspond to the three propositions in the domain description.The last four rules again encode the completeness of the initial situation and thecommonsense law of inertia. (As in the previous example, this domain descriptioncan also be translated into a logic program.)The domain description entails the AC proposition(Open after Unfasten(Clasp1) ) � ( initially :Fastened (Clasp2) )and, accordingly, the formulaHolds(Open ;Result(Unfasten(Clasp1); S0)) � :Holds(Fastened (Clasp2); S0)is a consequence of the default theory. In contrast with the previous example, we areconcerned in this case with a consequence of a more complex kind, relating uentvalues at two di�erent time points.As we have said, background knowledge in action domains has traditionallybeen represented in the form of state constraints, which are, intuitively speaking,formulas of classical logic that are said to hold in every possible state of the world.Thus, for example, in a more traditional description of this action domain, one mightwrite a state constraintalways :Fastened (Clasp1) ^ :Fastened (Clasp2) � Open35



in place of the proposition:Fastened(Clasp1) ^ :Fastened(Clasp2) su�ces for Openwhich represents a static causal law. It would in fact be a mistake to do this. Whileboth propositions correctly rule out states in which the briefcase is closed and yetneither clasp is fastened, the two propositions do not agree on the indirect e�ects, orrami�cations, of actions. For instance, consider a situation in which the �rst claspis fastened, the second one isn't, and the briefcase is closed. According to the stateconstraint, it is possible that, after unfastening the �rst clasp, the briefcase wouldremain closed and the second clasp would (mysteriously) become fastened.4 Thisoutcome|sanctioned by the state constraint|is contrary to expectation, and is infact not sanctioned by the static causal law.In general, static causal laws are more expressive than state constraints, asthe previous example suggests. In fact, as we show in Section 3.3, state constraints,as they have been traditionally understood, constitute a simple special case of staticcausal laws. In Section 3.4 we will discuss these issues at greater length in light ofthis and other examples.Example 3A third action domain, loosely adapted from [KL94, GKL95], involves ipping acoin and betting on the outcome.5 After each toss the coin either lies heads or itdoesn't. (Intuitively, the outcome of the toss action is nondeterministic.) If you betheads when the coin lies heads, you become a winner. If you bet heads when thecoin doesn't lie heads, you cease being a winner. Now, suppose that you toss andbet heads, after which you are a winner. In this case we can conclude that the coin4The reader may notice the similarity to the \Two Ducts" domain of Ginsberg and Smith [GS88],as well as to the \Two Switches" domain of [Lif90]. As we'll explain in Section 3.4, the currentexample is more telling for our purposes.5This action domain also resembles Sandewall's \Russian Turkey Shoot" domain [San94].36



1: False  notHolds(Winner ;Result(BetHeads ;Result(Toss ; S0)))2: Holds(Heads ;Result(Toss ; s)) not:Holds(Heads ;Result(Toss ; s))3: :Holds(Heads ;Result(Toss ; s)) notHolds(Heads ;Result(Toss ; s))4: Holds(Winner ;Result(BetHeads ; s)) Holds(Heads ; s)5: :Holds(Winner ;Result(BetHeads ; s)) :Holds(Heads ; s)6: Holds(f; S0) not:Holds(f; S0)7: :Holds(f; S0) not Holds(f; S0)8: Holds(f;Result(a; s)) Holds(f; s);not:Holds(f;Result(a; s))9: :Holds(f;Result(a; s)) :Holds(f; s);not Holds(f;Result(a; s))Figure 3.4: Logic program for Example 3.was heads after the toss.This is an action domain in which there is a nondeterministic action. Noticealso that this is not a temporal projection domain, since we are told about the valueof a uent in a non-initial situation. In this case, we are interested in reasoning froma later to an earlier time.This action domain can be formalized in AC as follows.Winner after Toss ;BetHeadsToss possibly changes HeadsBetHeads causes Winner if HeadsBetHeads causes :Winner if :HeadsThis domain description entails the AC propositionHeads after Tossand, accordingly, the literalHolds(Heads ;Result(Toss ; S0))is entailed by the corresponding logic program, listed in Figure 3.4.37



The �rst rule of this program corresponds to the �rst proposition in thedomain description. The next two rules correspond to the second proposition inthe domain description: the nondeterministic e�ect of the Toss action is capturedthrough the interaction of these rules. The fourth and �fth rules correspond to thethird and fourth propositions in the domain description. Again, the last four rulesencode the completeness of the initial situation and the commonsense law of inertia.Example 4Finally, consider a fourth action domain, adapted from [KL94]. The door to yourhotel room is closed. It can be opened by inserting the keycard, but that is notpossible when you do not have the keycard.In AC we write the following.initially :DoorOpenInsertCard causes DoorOpenimpossible InsertCard if :HasCardSince it is not known whether or not you initially have your keycard, this domaindescription does not entail the AC propositionDoorOpen after InsertCardbut it does entail the following weaker AC proposition.(DoorOpen after InsertCard ) � ( initially HasCard )Accordingly, the corresponding logic program (Figure 3.5) does not entail the literalHolds(DoorOpen ;Result(InsertCard ; S0))but each answer set for the program includes exactly one of the following two literals:Holds(DoorOpen ;Result(InsertCard ; S0)) ; :Holds(HasCard ; S0) :38



1: False  not:Holds(DoorOpen ; S0)2: Holds(DoorOpen ;Result(InsertCard ; s)) Reachable(Result(InsertCard ; s))3: :Reachable(Result(InsertCard ; s)) :Holds(HasCard ; s)4: Reachable(s) not:Reachable(s)5: :Reachable(Result(a; s)) :Reachable(s)6: Holds(f; S0) not:Holds(f; S0)7: :Holds(f; S0) not Holds(f; S0)8: Holds(f;Result(a; s)) Holds(f; s);Reachable(Result(a; s));not:Holds(f;Result(a; s))9: :Holds(f;Result(a; s)) :Holds(f; s);Reachable(Result(a; s));notHolds(f;Result(a; s))Figure 3.5: Logic program for Example 4.This domain description, unlike those considered in the previous examples,describes an \action precondition" for one of its actions: the action InsertCardcan be performed only in situations where HasCard holds. Thus, for instance, thedomain description fails to entail the propositionTrue after InsertCardwhich says, roughly speaking, that the action of inserting the keycard can be per-formed in the initial situation.The action language AC handles action preconditions in a exible and robustmanner. By contrast we note that the sole restriction placed in this dissertation onthe AC domain descriptions translated into default logic will be a requirement thataction preconditions be expressed in a particular explicit form. The domain descrip-tion above satis�es this requirement. There are additional, syntactic restrictions onthe domains that we translate into logic programming. This domain satis�es theseadditional restrictions as well, and therefore we are able to formalize it in logic pro-gramming, as shown in Figure 3.5, using a translation de�ned in Section 3.6 of this39



dissertation.The �rst three rules of this program correspond to the three propositionsin the domain description. Notice that the translation in this case is complicatedby the fact that in this action domain, unlike the domains considered previously,there is an action that is sometimes impossible to perform. This additional di�-culty is accommodated in the translation through the use of an additional predicateReachable , which says of a sequence of actions that it can be performed in the ini-tial situation. (Recall the related discussion in Chapter 2.) For instance, the thirdrule says, roughly speaking, that if you are in a situation in which you do not haveyour keycard, there is no \reachable" situation that can result from inserting yourkeycard|since you in fact cannot insert it. Rule 2 says that if it is indeed possibleto insert your keycard in the current situation, then the door will be open after youhave done so. Rule 4 expresses the assumption that situations are reachable unlesswe say otherwise. This assumption is based on the more fundamental assumptionin AC that actions are performable unless we say otherwise (either explicitly or im-plicitly). Rule 5 says that if a given situation is not reachable, then it does not haveany reachable successors. Notice that in this translation the assumption of inertia(in the last two rules) is also predicated on reachability.3.3 A Causal De�nition of Possible Next StatesIn this section we introduce and briey investigate the causal de�nition of possi-ble next states that is used in the action language AC. As mentioned previously,(essentially) this de�nition was �rst introduced in [MT95b, PT95].3.3.1 Preliminary De�nitionsGiven a set U of propositional symbols, we denote by L(U) the language of propo-sitional logic with exactly the atoms U . We assume here and throughout the dis-40



sertation that the language includes a zero-place logical connective True such thatTrue is a tautology. False stands for :True. (Notice that U can be empty.) Forany literal L, let L denote the literal complementary to L. For any set X of literals,let X = fL : L 2 Xg. By Lit(U) we denote the set consisting of all literals in thelanguage L(U). In this description we say nothing about the form of the atoms in U ,but of course an important special case is when U is the set of all ground atoms ofa many-sorted �rst-order language.We identify each interpretation of L(U) with the set of literals from Lit(U)that are true in it. We say that a set of formulas from L(U) is logically closed if itis closed under propositional logic (with respect to the language L(U)). Inferencerules over L(U) will be written as expressions of the form� where � and  are formulas from L(U).Let R be a set of inference rules, and let � be a set of formulas. We say that� is closed under R if for every rule � in R, if � belongs to � then  does too. ByCnU (R) we denote the least logically closed set of formulas from L(U) that is closedunder R. We often �nd it convenient to identify a formula � with the inference ruleTrue� :Under this convention, CnU (�) denotes the least logically closed set of formulasfrom L(U) that contains �. Similarly, CnU (� [ R) is the least logically closed setof formulas from L(U) that contains � and is also closed under R. We usually omitthe subscript to Cn when there is no danger of confusion.Although the de�nitions in this section are stated for the propositional case,they are taken, in the standard way, to apply in the (quanti�er-free) non-propositionalcase as well, by taking each non-ground expression to stand for all of its ground in-stances. 41



3.3.2 Possible Next States: Rule UpdateWe are now ready to introduce the causal de�nition of possible next states from[MT95b, PT95], which is applicable in the presence of arbitrary inference rules.Following [PT95], we call this de�nition \rule update." In the last subsection of thissection we will discuss a slight extension of this de�nition that corresponds preciselyto the de�nition of possible next states used in the action language AC.Let R be a set of inference rules over L(U).6 Let I and I 0 be interpretationsof L(U). We say I 0 is a rule update of I by R ifCnU (I 0) = CnU �(I \ I 0) [R� :The literals in I \ I 0 can be understood as the facts that are \preserved byinertia" as we move from interpretation I to interpretation I 0. In accordance witha causal understanding of the commonsense law of inertia, the de�nition of ruleupdate does not require any additional \causal explanation" for the truth of theseliterals in I 0. The de�nition does require though that all new facts in I 0|that is, theliterals in I 0 n I|be \causally explained" by the rules in R, along with the literalsin I \ I 0. Accordingly, it follows from the de�nition of rule update that I 0 is a ruleupdate of I by R if and only if the following two conditions are met:� Cn(I 0) is closed under R ;� for all literals L in I 0 n I, L 2 Cn ((I \ I 0) [R) :That is, roughly speaking, in order for I 0 to be a rule update of I by R, I 0 must be\consistent with" the rules inR, and furthermore every literal in I 0 must be causallyexplained|either it held in I or it was forced to become true according to R.6In applications to reasoning about action, the set R will normally consist of two parts|a set Eof formulas whose truth is \directly" caused by an action, and a set R of inference rules thatrepresent static causal laws. For present purposes, it is convenient to suppress these details.42



Consider the following example.I1 = fa; b; cg R1 = � a:b _ :c� I2 = fa;:b; cgFirst we will show that I2 is a rule update of I1 by R1. Notice thatI1 \ I2 = fa; cgand that :b 2 Cn ((I1 \ I2) [R1) :So for all literals L 2 I2 n I1, L 2 Cn ((I1 \ I2) [R1) : And since Cn(I2) is closedunder R1, we have shown that I2 is an update of I1 by R1. A symmetric argumentshows that the interpretation fa; b;:cg is also a rule update of I1 by R1. Onthe other hand, if we take I3 = f:a; b; cg, then I1 \ I3 = fb; cg; and we see that:a =2 Cn ((I1 \ I3) [R1) : So I3 is not a rule update of I1 by R1. One can similarlyshow that fa;:b;:cg is not a rule update of I1 by R1.3.3.3 Rule Update and Minimal ChangeNext we briey investigate mathematical properties of rule update. For instance,we show that rule update does not violate the principle of minimal change, eventhough it is based on a causal understanding of the commonsense law of inertia.We also show that rule update includes as a special case Winslett's classic minimal-change de�nition of update by means of formulas. We do not include a proof thatrule update also generalizes Marek and Truszczy�nski's revision programming [MT94,MT98a], as mentioned previously in Chapter 1. This fact is proved in [PT95, PT97].Given interpretations I; I 0 and I 00, we say that I 0 is closer to I than I 00 is ifI 00 \ I is a proper subset of I 0 \ I.Let � be a set of formulas. Let I and I 0 be interpretations. We say that I 0is a formula update of I by � if I 0 is a model of � such that no model of � is closer43



to I than I 0 is.7In order to compare formula update and rule update, we introduce the follow-ing additional de�nition. Given a set R of inference rules, we de�ne a correspondingset of formulas Theory(R) as follows.Theory(R) = �� �  : � 2 R�Thus, for example, Theory(R1) = fa � :b _ :cg.Let R be a set of inference rules and I an interpretation. Notice that Cn(I)is closed under R if and only if I is a model of Theory(R). Thus, every rule updateof I by R is a model of Theory(R). In fact, we have the following stronger result,which shows that rule update satis�es the principle of minimal change.Proposition 3.1 Let R be a set of inference rules and I an interpretation. Everyrule update of I by R is a formula update of I by Theory(R).Proof. Assume that I 0 is a rule update of I by R. So I 0 is a model of Theory(R).Let I 00 be a model of Theory(R) such that I 0 \ I � I 00 \ I. We need to showthat I 00 = I 0. Since I 0 and I 00 are both interpretations, it's enough to show thatCn(I 0) � Cn(I 00).Cn(I 0) = Cn ((I \ I 0) [R) ( I 0 is an update of I by R )� Cn ((I \ I 00) [R) ( I 0 \ I � I 00 \ I )� Cn (I 00 [R) ( I 00 \ I � I 00 )= Cn(I 00) ( Cn(I 00) is closed under R ) 2The converse of Proposition 3.1 doesn't hold in general. For instance, wehave seen in the example in the previous section that I3 is not a rule update of I1by R1, and yet it is easy to verify that I3 is a formula update of I1 by Theory(R1).7The de�nition given here is equivalent, and almost identical, to the de�nition in [Win88].44



On the other hand, the following proposition shows that if every inferencerule in R has the form True� then the rule updates of I by R will be exactly theformula updates of I by Theory(R). Thus, rule update includes formula update asa special case.Proposition 3.2 Let R be a set of inference rules, each of the form True� . Anyformula update of an interpretation I by Theory(R) is a rule update of I by R.Proof. Assume I 0 is a formula update of I by Theory(R). Let I 00 be a modelof (I \ I 0) [ Theory(R). So I 00 is a model of Theory(R). Also I 0 \ I � I 00, soI 0 \ I � I 00 \ I. Since no model of Theory(R) is closer to I than I 0 is, we canconclude that I 00 = I 0. Thus, I 0 is the only model of (I \ I 0)[Theory(R). It followsthat Cn(I 0) = Cn((I \ I 0)[Theory(R)). Due to the special form of the rules in R,Cn((I \ I 0) [ Theory(R)) = Cn((I \ I 0) [R). So I 0 is a rule update of I by R. 2We will �nd that inference rules of the form �False constitute another simplecase of special interest. Adding such a rule simply eliminates all rule updates thatsatisfy �.Proposition 3.3 Let R be a set of inference rules, and I an interpretation. Anintepretation I 0 is a rule update of I by R[� �False� if and only if I 0 is a rule updateof I by R and I 6j= �.The proof is straightforward.3.3.4 Explicit De�nitions in Rule UpdateThe de�nition of possible next states in AC is actually a slight extension of ruleupdate, in which \explicit de�nitions" are accomodated. This will require a littleexplanation. 45



In classical propositional logic, given a theory � in a language L(U n fpg),we can obtain a de�nitional extension �0 of �, in the language L(U), by adding to �an explicit de�nition of the form p � �, where � is a formula of L(U n fpg). Thereis a one-to-one correspondence between models of � and models of �0, which canbe characterized as follows. For any interpretation I of L(U n fpg), let p(I) denotethe interpretation of L(U) such that I � p(I) and p(I) j= p � �. Every model of �0can be written in the form p(I) for some interpretation I of L(U n fpg). Moreover,for all interpretations I of L(U n fpg), I j= � if and only if p(I) j= �0. Notice thatit follows that �0 is a conservative extension of �. Finally, it is clear that we canthen replace with p any occurrence of � in any formula of �0, except in the explicitde�nition of p, and obtain an equivalent theory.We wish to obtain a similar \de�nitional extension" result for rule update.Here explicit de�nitions will be inference rules of the form Truep � � . (Recall that weoften identify such a rule with the formula p � �.)Let R be a set of inference rules in a language L(U n fpg). Let R0 be the setof inference rules over L(U) obtained by adding to R the explicit de�nition Truep � � ,where � is a formula of L(U nfpg). In this case what we can say is that there is a one-to-one correspondence between models of CnUnfpg(R) and models of CnU (R0). Thecharacterization is the same as before. Every model of CnU (R0) can be written in theform p(I) for some interpretation I of L(U nfpg). Moreover, for all interpretations Iof L(U n p), I j= CnUnfpg(R) if and only if p(I) j= CnU (R0). Finally, it is clear thatif R00 can be obtained from R0 by replacing with p any or all occurrences of � in anyor all rules in R0, except in the explicit de�nition of p, then CnU (R0) = CnU (R00).This is almost the result we want, except that it does not refer to rule update.So, is there a one-to-one correspondence between updates by R and updates by R0?More precisely, is it the case that, for any interpretations I and I 0 of L(U n p), I 0 isan update of I by R if and only if p(I 0) is an update of p(I) by R0? The answer is46



no. To see why this may be so, observe that our previous observations imply thatCnUnfpg(I 0) = CnUnfpg �(I \ I 0) [R� i� CnU (p(I 0)) = CnU ((I \ I 0) [R0) :Therefore, I 0 is an update of I by R if and only ifCnU (p(I 0)) = CnU �(I \ I 0) [R0� :But p(I 0) is an update of p(I) by R0 if and only ifCnU(p(I 0)) = CnU �(p(I) \ p(I 0)) [R0� :We see that update by R and update by R0 may diverge because, in general, I \ I 0can be a proper subset of p(I) \ p(I 0).Here's such an example. Take U = fp; q; rg, R = nTrue:q o, and considerR0 = R[ � Truep � (q _ r)�:The interpretation I 0 = f:q;:rg is the only rule update of I = fq;:rg by R. Asexpected, p(I 0) = f:p;:q;:rg is a rule update of p(I) = fp; q;:rg by R0. But thereis a second, unintended rule update of p(I) by R0. The interpretation I 00 = f:q; rgis not a rule update of I by R, but p(I 00) = fp;:q; rg is a rule update of p(I) by R0.This second rule update of p(I) by R0 makes no sense if we are to understand theinference rule Truep � (q _ r) as a de�nition of p. Intuitively, the problem here is thatin computing rule updates by R0, we inappropriately take the uent p to be inertial.Thus I \ I 00 = ; while p(I) \ p(I 00) = fpg. Since we mean for p to be a de�neduent, it should not be inertial in itself|instead its inertial characteristics shouldbe obtained indirectly from the uents in terms of which it is de�ned.The following proposition justi�es the de�nition of possible next states in thepresence of explicit de�nitions that is used in the following section in de�ning thesemantics of AC. 47



Proposition 3.4 Let R0 be a set of inference rules over L(U) that includes arule Truep � � , where � is a formula of L(U n fpg). Let R be the set of inferencerules over L(U n fpg) obtained from R0 n � Truep � �� by replacing all occurrences of pwith �. Every interpretation of L(U nfpg) can be written in the form I\Lit(U nfpg),where I is an interpretation of L(U) that satis�es p � �. Moreover, for all inter-pretations I and I 0 of L(U) that satisfy p � �, I 0 \ Lit(U n fpg) is a rule update ofI \ Lit(U n fpg) by R if and only ifCnU (I 0) = CnU � (I \ I 0 \ Lit(U n fpg)) [R0 � :The proof of this proposition is straightforward based on the observationswe've already made.The formulation used here brings us close to the precise statement of the�xpoint condition in the de�nition of possible next states in AC.3.4 The Action Language ACIn the high-level action language AC, a description of an action domain is a set ofpropositions of the following �ve kinds:1. value propositions, which restrict the values of uents in situations that wouldresult from the performance of sequences of actions;2. su�ciency propositions, which say that whenever one uent formula is causedto be true, a second uent formula is also caused to be true;3. e�ect propositions, which say that under certain conditions a uent formulawould be caused to hold as a result of the performance of an action;4. inuence propositions, which say that under certain conditions the perfor-mance of an action would \nondeterministically" change the value of a uent;48



5. executability propositions, which say that under certain conditions an actionwould be impossible to perform.In this section, we specify the syntax and semantics of AC, and illustrate thede�nitions with an example. We then discuss properties of AC and consider somerelated work.3.4.1 Syntax of ACWe begin with two disjoint nonempty sets of symbols, a set F of uent names anda set A of action names. We designate a subset Ff of F as the frame uents andwe call the members of F n Ff the nonframe uents. A uent formula is a formulafrom L(F). A frame uent formula is a formula from L(Ff ).An atomic value proposition is an expression of the form� after Awhere � is a uent formula, and A is a string of action names. Such an expressionsays that the actions A can be performed in sequence, beginning in the initial situ-ation, and if they were, the uent formula � would hold in the resulting situation.If A is the empty string, we may write insteadinitially � :A value proposition is a propositional combination of atomic value propositions.A su�ciency proposition is an expression of the form� su�ces for  where � and  are uent formulas. Su�ciency propositions represent static causallaws. Thus, such a proposition says that, in the action domain being described,whenever � is caused,  is caused. We writealways �49



as an abbreviation for the proposition True su�ces for � and we writenever �as an abbreviation for the proposition � su�ces for False . Given a nonframeuent F , an expression of the formalways F � �where � is a frame uent formula, is called an explicit de�nition of F . We requirethat AC domain descriptions include an explicit de�nition of every nonframe uent.An e�ect proposition is an expression of the formA causes � if  where A is an action name, and � and  are uent formulas. Such an expressionsays that, if the action A were to be performed in a situation in which  holds,the uent formula � would be caused to hold in the resulting situation. If  is theformula True, we may simply write A causes �.An inuence proposition is an expression of the formA possibly changes F if  where A is an action name, F is a uent name, and  is a uent formula. Such anexpression says that, if the action A were to be performed in a situation in which  holds, the uent F would be caused to be true or caused to be false in the resultingsituation. If  is the formula True, we may simply write A possibly changes F .An executability proposition is an expression of the formimpossible A if  where A is an action name and  is a uent formula. Such an expression says thatthe action A cannot be performed in any situation in which  holds. One easily50



checks that, in the semantics of AC, such a proposition has essentially the samemeaning as the e�ect proposition A causes False if  , but the syntactic distinctionbecomes convenient in Sections 3.5 and 3.6 when we specify translations of ACdomain descriptions into default logic and logic programming.An AC domain description is a set of AC propositions that includes an ex-plicit de�nition for each nonframe uent.3.4.2 Semantics of ACLetD be anAC domain description, with uents F and frame uents Ff . A structurefor D is a partial function from action strings to interpretations of L(F), whosedomain is nonempty and pre�x-closed.8 By Dom(	) we denote the domain of astructure 	. Notice that for every structure 	, Dom(	) includes the empty string(denoted by �).Let R be the set of inference rules � such that the su�ciency proposition� su�ces for  is in D. An interpretation S of L(F) is called a state if CnF(S) is closed under R.Let A be action name and S a state. We say that A is prohibited in S ifthere is an executability propositionimpossible A if  in D such that S satis�es  . Let E(A;S) be the set of all uent formulas � forwhich there is an e�ect propositionA causes � if  in D such that S satis�es  . Similarly, let F (A;S) be the set of all uent names Ffor which there is an inuence propositionA possibly changes F if  8A set � of strings is pre�x-closed if, for every string � 2 �, every pre�x of � is also in �.51



in D such that S satis�es  .A set E of uent formulas is called an explicit e�ect of A in S if:1. A is not prohibited in S, and2. there is an interpretation I of L(F (A;S)) such that E = I [E(A;S).We de�ne possible next states for domain description D as follows, using the�xpoint condition described in Section 3.3.4. We say that a state S0 may result fromdoing A in S if there is an explicit e�ect E of A in S such thatCnF(S0) = CnF � (S \ S0 \ Lit(Ff ) ) [E [R � :As discussed in the previous section, this de�nition guarantees that S0 may resultfrom doing A in S if and only if the value of every frame uent in S0 is suitablyexplained|either it held the same value in S and was not made to change, or itsvalue was changed (directly or indirectly) by the action. Let Res(A;S) denote theset of states that may result from doing A in S.Given a structure 	, we say that an atomic value proposition � after A istrue in 	 if A 2 Dom(	) and 	(A) satis�es �. The general truth de�nition for valuepropositions is then given by the standard recursion over the logical connectives.A structure 	 forD is amodel of D if it satis�es the following four conditions.1. 	(�) is a state.2. For all A 2 Dom(	) and all action names A, if Res(A;	(A)) is nonemptythen A;A 2 Dom(	).3. For all A;A 2 Dom(	), 	(A;A) 2 Res(A;	(A)).4. Every value proposition in D is true in 	.A value proposition is entailed by D if it is true in every model of D.52



Let us briey, and somewhat informally, describe two easily veri�ed proper-ties of such models. First, all \reachable" situations are mapped to states. That is,for all A 2 Dom(	), 	(A) is a state. Second, if an action string A corresponds toa reachable situation, then according to our de�nition of possible next states it ispossible to achieve the state 	(A) by performing the actions A in sequence startingin the initial state 	(�).3.4.3 An Example AC Domain DescriptionAs an example illustrating the use of the preceding de�nitions, consider the followingAC domain description D1|another variant of the Yale Shooting domain. In thisdomain description, Dead is the only nonframe uent.always Dead � :Aliveinitially Walking:Walking after Shoot:Alive su�ces for :WalkingShoot causes Dead ^ :Loadedimpossible Shoot if :LoadedNotice that we are describing here a di�erent shoot action than in Example 1 (Sec-tion 3.2), where shooting was always possible. There, the direct e�ect :Alive of theshoot action had a \uent precondition" Loaded . Here, Loaded becomes instead anaction precondition of Shoot .Domain description D1 has a unique model 	1, as follows.Dom(	1) = f�;Shootg	1(�) = fLoaded ;Alive;:Dead ;Walkingg	1(Shoot ) = f:Loaded ;:Alive;Dead ;:Walkingg53



It is easy to check, for instance, that the following value proposition is true in 	1.( initially Loaded ) ^ (Dead ^ :Loaded after Shoot )To exercise the de�nitions, we will verify that 	1 is the unique model of D1.It is clear that 	1 is a structure for D1, so we begin by showing that 	1 is a model.First, we must check that 	1(�) is a state. We see that domain descriptionD1 includes the su�ciency propositionsalways Dead � :Aliveand :Alive su�ces for :Walkingfrom which we obtain the associated set of inference rulesR = � TrueDead � :Alive ; :Alive:Walking� :It follows that there are exactly six states in this action domain: namely, the sixinterpretations of L(F) that satisfy the uent formulasDead � :Aliveand :Alive � :Walking :We see that 	1(�) is indeed one of these six states.Second, we must check that Res(Shoot ;	1(Shoot )) is empty. Since D1 in-cludes the executability propositionimpossible Shoot if :Loadedwe see that Shoot is prohibited in 	1(Shoot ). Therefore there can be no explicite�ect E of Shoot in 	1(Shoot ), which shows that Res(Shoot ;	1(Shoot )) = ;.54



Third, we must verify that 	1(Shoot ) belongs to Res(Shoot ;	1(�)). That is,we must show that 	1(Shoot ) may result from doing Shoot in 	1(�). This requiresthat we check thatCn(	1(Shoot )) = Cn((	1(�) \	1(Shoot ) \ L(Ff )) [E [R)where E is an explicit e�ect of Shoot in 	1(�). We �rst observe that Shoot isnot prohibited in 	1(�). Since D1 includes no inuence propositions, we haveF (Shoot ;	1(�)) = ;. Thus the only interpretation of L(F (Shoot ;	1(�))) is also;. Since D1 includes the e�ect propositionShoot causes Dead ^ :Loadedwe have E(Shoot ;	1(�)) = fDead ^ :Loadedg :Given these observations, we can conclude that the unique explicit e�ect E of Shootin 	1(�) is fDead^:Loadedg. It remains to observe that 	1(�)\	1(Shoot ) is empty,so 	1(�) \	1(Shoot ) \ L(Ff ) is also. Thus what we are to verify is thatCn(	1(Shoot )) = Cn(fDead ^ :Loadedg [R)which is clearly true. In fact, what we have shown is thatRes(Shoot ;	1(�)) = f	1(Shoot )gsince 	1(Shoot ) is the only state that satis�es Dead ^ :Loaded .Fourth, we must check that 	1 satis�es the two value propositions in D1,which it clearly does.So we've shown that 	1 is indeed a model of domain description D1. Nowlet us verify that it is the only model.Assume that 	 is a model of D1. By model condition 1 we know that 	(�)is a state, and by model condition 4, we know that the value propositioninitially Walking55



is true in 	. That is, 	(�) must satisfy the uent formula Walking . It follows that	(�) also satis�es Alive and :Dead . Thus at this point we know everything about	(�) except whether or not it satis�es Loaded , so there are two states to consider.Consider the state S = f:Loaded ;Alive;:Dead ;Walkingg. We will showthat 	(�) cannot be S, which will be su�cient to show that 	(�) = 	1(�). SinceD1 includes the executability proposition impossible Shoot if :Loaded we knowthat Shoot is prohibited in S. It follows that there can be no explicit e�ect E ofShoot in S, which allows us to conclude that Res(Shoot ; S) is empty. Now, by modelcondition 4 we know that D1 must satisfy the value proposition:Walking after Shootso we can conclude that Shoot 2 Dom(	). It follows by model condition 3 that	(Shoot ) 2 Res(Shoot ;	(�)). Since Res(Shoot ; S) = ;, we have 	(�) 6= S. So	(�) = 	1(�). And since we've already seen that Res(Shoot ;	1(�)) = f	1(Shoot )g,we can conclude by model conditions 2 and 3 that 	(Shoot ) = 	1(Shoot ), which issu�cient to establish the fact that 	 = 	1. So 	1 is the unique model of D1.3.4.4 Remarks on the Action Language ACAs we have said, the action language AC closely resembles the language AR ofGiunchiglia, Kartha and Lifschitz [GKL95, GKL97] and its predecessor AR0 [KL94].Unlike the language AC, AR allows non-boolean uents; but if we consider only thepropositional portion of AR, we �nd that the model structures for the languagesare essentially identical.Syntactically, the languages AC and AR are also very similar. One di�erenceis that AR does not include su�ciency propositions for representing backgroundknowledge, which is instead represented by state constraints of the form always �,where � is a uent formula. In AC we understand such an expression as an ab-breviation of the corresponding su�ciency proposition True su�ces for �. Thus56



AR state constraints are well-formed AC propositions. Another signi�cant syntacticdi�erence between AC and AR is that AR includes only atomic value propositions,whereas AC allows propositional combinations of atomic value propositions. A thirddi�erence is that in AR the expression impossible A if  is simply an abbrevia-tion for the e�ect proposition A causes False if  whereas in AC these are distinctpropositions.9As the preceding observations suggest, the set of well-formed propositionalAR expressions is a proper subset of the set of well-formed AC expressions. Giventhis, the relationship between high-level action languages AR and AC is capturedin the following theorem.10Theorem 3.5 (AR Theorem) Let D be a propositional AR domain descriptionsuch that every nonframe uent in D has an explicit de�nition in terms of frameuents. D is an AC domain description, and the AC models of D are exactly theAR models of D.The statement of the AR Theorem reects the fact that some propositionalAR domain descriptions are not AC domain descriptions. These are the propo-sitional AR domain descriptions in which there is a nonframe uent that is notexplicitly de�ned in terms of frame uents. On the other hand, we have observedthat some AC domain descriptions are not AR domain descriptions. For example,consider the following AC formalization of the Two-Switches domain, adapted from9As noted earlier, we will see that this distinction becomes convenient when we specify thetranslations from AC into default logic and logic programming in Sections 3.5 and 3.6. Otherwisethe distinction is unnecessary.10We omit the proof of this theorem, which would be long and mostly unilluminating, involvingthe full de�nition of both AR and AC. The idea of the main lemma though is interesting: itshows that, under the restrictions in the statement of the theorem, the two high-level languageshave equivalent de�nitions of possible next states. We have already seen two closely related re-sults: Proposition 3.2, which shows that rule update subsumes Winslett's classic minimal-changede�nition; and Proposition 3.4, which shows that our causal de�nition of possible next states is asuitable extension of rule update in the presence of explicit de�nitions.57



[KL94] (and originally introduced in [Lif90]).Up(Switch1) � Up(Switch2) su�ces for OnUp(Switch1) 6� Up(Switch2) su�ces for :OnToggle(x) causes Up(x) if :Up(x)Toggle(x) causes :Up(x) if Up(x)The Two-Switches domain can be formalized in AR by declaring the uentOn to be nonframe and replacing the two su�ciency propositions by a single stateconstraint always On � (Up(Switch1) � Up(Switch2) ) :In modifying the domain description in this manner, we seem to be replacing causalinformation|the fact that the state of the switches causally determines the stateof the light|with a \non-causal" explicit de�nition. But in doing so, we do notchange the set of models.11Let us consider a slight elaboration of the AC domain description from Exam-ple 2 (Section 3.2), adapted from [Lin95], which demonstrates that it is not alwayspossible to obtain intuitively correct results using state constraints augmented bythe frame/nonframe distinction. Recall that in this action domain, there is a spring-loaded briefcase with two clasps. We have actions that unfasten the clasps, one ata time. If both clasps are unfastened, the briefcase pops open. We will assume thatinitially the briefcase is not open and the second clasp is not fastened.initially :Open ^ :Fastened(Clasp2)Unfasten(x) causes :Fastened (x):Fastened(Clasp1) ^ :Fastened(Clasp2) su�ces for Open11Notice that in this case, the domain description we obtain is in fact a \legal" AC domaindescription, since the nonframe uent On is explicitly de�ned in terms of the frame uent formulaUp(Switch1) � Up(Switch2). 58



This domain description entails the value propositionOpen after Unfasten(Clasp1) :As discussed in Section 3.2, one might think of writing the state constraintalways (:Fastened (Clasp1) ^ :Fastened (Clasp2)) � Openin place of :Fastened (Clasp1) ^ :Fastened (Clasp2) su�ces for Open :But it seems that there is no way of designating frame and nonframe uents thatwill allow the resulting AR domain description to capture the intended models ofthe domain. For instance, if we declare Open nonframe, then the briefcase can openspontaneously, as it were, at any time. On the other hand, if we leave all uents\in the frame," we �nd that unfastening the �rst clasp can sometimes have theunintended rami�cation of fastening the second clasp.Lin and Reiter [LR94] have suggested the name \rami�cation constraints"for state constraints that are used to derive indirect e�ects. One thing the ARTheorem shows is that AC expressions of the formalways �correspond precisely to state constraints in AR, assuming that all nonframe uentsare explicitly de�ned in terms of frame uents. Recall that in AC such an expressionstands for the su�ciency propositionTrue su�ces for � :It is natural to call such AC propositions rami�cation constraints.Lin and Reiter [LR94] describe another use of state constraints: as so-called\quali�cation constraints." Quali�cation constraints are state constraints that sim-ply restrict the state space; they do not themselves lead to any indirect e�ects.59



Quali�cation constraints are so-named because they can lead to \derived actionpreconditions," or \quali�cations."12 It is straightforward to verify that AC su�-ciency propositions of the form� su�ces for Falsein fact function as quali�cation constraints, since such propositions simply rule outany state in which � holds, without leading to any indirect e�ects.13 Recall that weabbreviate such su�ciency propositions asnever � :It is natural to call such AC propositions quali�cation constraints.As an example of an AC domain description involving a quali�cation con-straint, consider the following formalization of the Emperor Domain of Lin andReiter [LR94], in which, so the story goes, at most one block at a time can beyellow, by decree of the emperor.never Yellow(Block 1) ^Yellow (Block2)Paint(x) causes Yellow(x)This domain description does not entail the AC value propositionYellow(Block 2) after Paint(Block2)but it does entail the following weaker proposition.(Yellow(Block 2) after Paint(Block 2) ) � ( initially :Yellow(Block 1) )This reects the fact that it is possible to paint the second block yellow if and onlyif the �rst block is not already yellow. Observe that in this case, in order to obtain12This idea was anticipated by Ginsberg and Smith [GS88].13This is essentially what Proposition 3.3 showed.60



an equivalent AR domain description we replace the su�ciency proposition withthe state constraintalways :(Yellow(Block 1) ^Yellow(Block 2) )and also explictly describe the action preconditions, as follows.impossible Paint(Block 1) if Yellow(Block 2)impossible Paint(Block 2) if Yellow(Block 1)Up to now we have not presented an example in which it is natural to usea rami�cation constraint (except to introduce an explicit de�nition). So consider ablocks world in which there are two blocks (A,B) and four locations (1,2,3,4). Eachblock is always in exactly one location. There are never two blocks in the samelocation. For each block, there is a move action that changes its location. We candescribe this action domain in AC as follows.always Loc(x; 1) _ Loc(x; 2) _ Loc(x; 3) _ Loc(x; 4)always :Loc(x;m) _ :Loc(x; n) (m 6= n)never Loc(A;n) ^ Loc(B;n)Move(x) causes :Loc(x; n) if Loc(x; n)This domain description entails, for instance, the value propositions( initially Loc(A; 1) ^ Loc(B; 2) ) � (Loc(A; 3) 6� Loc(A; 4) after Move(A) )and (Loc(A; 1) after Move(A) ) � initially :Loc(B; 1) :Su�ciency propositions are closely related to inference rules, as is apparentfrom the de�nition of Res in the semantics of AC. As we mentioned in Chapter 2,Brewka and Hertzberg [BH93] also use inference rules to encode causal background61



knowledge for reasoning about action. Their de�nition di�ers markedly from oursthough. For instance, as we point out in [MT95b], their approach cannot capturethe notion of quali�cation constraints. In fact, it sometimes yields di�erent resultseven when derived action preconditions are not involved. For example, consider thefollowing AC domain description.initially :HaveWine ^ :WineOnTable ^ :WaterOnTable:HaveWine su�ces for :WineOnTableServeBeverage causes WaterOnTable _WineOnTableThis domain entailsWaterOnTable ^ :HaveWine ^ :WineOnTable after ServeBeveragewhile the corresponding question is resolved di�erently under the de�nition of Brewkaand Hertzberg, according to which it is possible that wine will appear on the table,and, as an indirect e�ect, you will|somewhat miraculously|have wine. Intuitively,the weakness of their de�nition is that it still relies on a principle of minimal change,and thus fails to capture adequately the causal nature of the commonsense law ofinertia. Consequently, in some cases, intuitively uncaused changes are sanctionedsimply because they are minimal.In other recent related work, Baral [Bar95] proposes an action descriptionlanguage based closely upon revision programming, which, as we have already men-tioned, can be seen as a special case of the de�nition of possible next states usedin AC. Unfortunately, the semantics of Baral's action language is given directly interms of a translation into disjunctive logic programs, which in general are relativelydi�cult to reason about. Nonetheless, it is possible to show that where his proposaloverlaps with ours, it agrees.Lin [Lin95] introduces a circumscriptive approach to causal theories of actionthat is closely related to his previous work with Reiter [LR94]. Lin shows that for62



a special class of action descriptions|those he calls \strati�ed"|the meaning ofa description can be obtained by a straightforward completion process. In thegeneral case though, the semantics of Lin's action descriptions is given in terms ofa multi-step minimization process. In the special case of Lin's \strati�ed" actiondescriptions, it is again possible to show that his proposal will agree with ours.14Thielscher [Thi95a, Thi97] extends previous work, by himself and his col-leagues, on reasoning about action in the formalism of equational logic program-ming. His proposal involves the use of state constraints accompanied by auxiliaryinformation about directional, causal relationships between pairs of uent atoms.The semantics of his action description language is given by a de�nition that isessentially procedural, and in fact seems motivated by computational (rather thandeclarative) concerns. It is unclear to what extent his proposal is related to ours.15One clear advantage of the action description language AC over those of[Bar95, Lin95, Thi95a] is that it allows the use of arbitrary propositional formulasin the description of static causal laws and e�ects of actions. This makes it pos-sible to express traditional rami�cation constraints, for instance. Also, recall thatsuch formulas are used when explicit de�nitions are introduced. Another advantageis that AC has a relatively transparent semantics, specially tailored for action do-mains, in which there is a simple de�nition of possible next states that is used in astraightforward manner to constrain a situation calculus model structure.We conclude this section with three results concerning general mathematicalproperties of AC, modeled on similar results for the language AR in [GKL95].Theorem 3.6 (Replacement Theorem) Let D be an AC domain description.Let T be a subset of the su�ciency propositions in D. TakeRT = � � : � su�ces for  2 T � :14We will consider Lin's work more closely in the second part of this dissertation.15A weak result along these lines appears in [Thi97].63



Let �; �0 be uent formulas such that (� � �0) 2 Cn(RT ). Let D0 be an AC domaindescription obtained from D by replacing some or all occurrences of � with �0 insome or all propositions that do not belong to T . Domain descriptions D and D0have the same models.Proof Sketch. Let R be the set of inference rules corresponding to the su�ciencypropositions in domain description D, and let R0 be the analagous set for D0. Thekey to this theorem is the observation that for any sets �, �0 of formulas, ifCn(� [RT ) = Cn(�0 [RT )then Cn(� [R) = Cn(�0 [R0)which is not hard to prove. This implies, for instance, that the two domains havethe same set of states. Furthermore, this observation can be used to show that thetwo domains agree on possible next states (that is, on Res). From these facts itfollows that a structure 	 satis�es the �rst three model conditions for domain D ifand only if it satis�es them for domain D0. Consider such a structure 	. Since allstates in the two domains satisfy � � �0, it is clear that all of the value propositionsin D are true in 	 if and only if all of the value propositions in D0 are true in 	.So D and D0 indeed have the same models. 2Recall that in Section 3.3.4 we showed that (a slight simpli�cation of) thede�nition of possible next states in AC handles explicit de�nitions in an appropriatemanner (Proposition 3.4). Here we present a similar result for the language AC asa whole.Theorem 3.7 (Explicit De�nitions Theorem) Let D be an AC domain de-scription, with uents F, in which there is an explicit de�nition always F � � andfurthermore there is no inuence proposition A possibly changes F if  . Let D064



be the domain description with uents FnfFg that can obtained from D by deletingthe explicit de�nition always F � � and replacing all remaining occurrences of Fwith �. For every value proposition V in which F does not occur, V is true in D ifand only if V is true in D0.Proof Sketch. Let D00 be the domain description, with uents F, obtained from D0by adding only the explicit de�nition always F � �. We know from the Replace-ment Theorem that domains D and D00 have the same models. The proof can becompleted by showing that the desired result holds between domains D00 and D0, asfollows.For any interpretation I of L(FnfFg), let F (I) be the interpretation of L(F)such that I � F (I) and F (I) j= F � �. It is clear that this establishes a one-to-onecorrespondence between the states of D0 and D00. Moreover, it is straightforwardto show, along the lines of Proposition 3.4, that there is a similar one-to-one corre-spondence between the de�nitions of Res in the two domains. From these facts itfollows that there is also a similar one-to-one correspondence between the models ofD0 and D00, which is su�cient to show that for every value proposition V in whichF does not occur, V is true in D00 if and only if V is true in D0. 2Theorem 3.8 (Restricted Monotonicity Theorem)16 Let D be an AC domaindescription. If D0 can be obtained by adding value propositions to D, then everyvalue proposition entailed by D is also entailed by D0.Proof. Immediate, since adding value propositions can only rule out models. 23.5 Representing Actions in Default LogicWe begin this section by reviewing the de�nition of default logic. Next, as a prelim-inary step, we show how to embed the AC de�nition of possible next states|that is,16See [Lif93b] for a general account of restricted monotonicity.65



the function Res|in default logic. We then de�ne a class of AC domain descriptionscalled \quali�cation-free." Roughly speaking, in quali�cation-free domain descrip-tions, all action preconditions are stated \explicitly," in the form of executabilitypropositions. We specify a sound and complete translation of quali�cation-free ACdomain descriptions into default theories. We also specify a second, simpler trans-lation for those AC domain descriptions in which there are no action preconditionswhatsoever. Finally, we compare the formalization of the Yale Shooting domainobtained by our translation with the default theories discussed by Hanks and Mc-Dermott and by Morris.3.5.1 Review of Default LogicA default rule over L(U) is an expression of the form� : �1; : : : ; �n (3.1)where all of �; �1; : : : ; �n;  are formulas from L(U) (n � 0). Let r be a default ruleof the form (3.1). We call � the prerequisite of r, and denote it by pre(r). We callthe formulas �1; : : : ; �n the justi�cations of r, and write just(r) to denote the setf�1; : : : ; �ng. We call  the consequent of r, and denote it by cons(r). If just(r) isempty, we say r is justi�cation-free. If r is justi�cation-free, we often identify r withthe corresponding inference rule � :If pre(r) = True we often omit it and write : �1; : : : ; �n instead. If just(r) =fcons(r)g, we say that r is normal.A default theory over L(U) is a set of default rules over L(U). Let D be adefault theory over L(U) and let E be a set of formulas from L(U). We de�ne thereduct of D by E, denoted by DE, as follows.DE = � pre(r)cons(r) : r 2 D and for all � 2 just(r) ; :� =2 E �66



We say that E is an extension of D ifE = CnU (DE) :We say D is consistent if it has at least one consistent extension. We say that aformula is a consequence of D if it belongs to every extension of D. Default logic isdue to Reiter [Rei80]. The de�nition of an extension given above follows [GLPT91],and is equivalent to Reiter's de�nition.3.5.2 Embedding Possible Next States in Default LogicThe embedding in this section is not directly used in specifying the more generalembedding of AC into default logic in the next section, and thus this section cansafely be skipped. On the other hand, embedding in default logic the function Res|which de�nes the possible next states in AC|is a clearly related, smaller problem,and some of the ideas used here are also applied in the next section. Moreover,the fact that this embedding is correct is a fundamental theorem used in the proof(presented in Chapter 4) of the correctness of the AC embedding .Let D be an AC domain description. For any state S and action name A, let�(A;S) be the default theory obtained by taking the union of the following four setsof rules. (Recall that, roughly speaking, E(A;S) is the set of direct, deterministice�ects of action A in state S. Similarly, F (A;S) is the set of uents that may benondeterministically a�ected by action A in state S. R is the set of inference rulescorresponding to the static causal laws of the domain.)1. All rules of the form : LL where L is a frame uent literal in S.2. E(A;S)3. All rules of the forms : FF and : :F:F where F 2 F (A;S).4. R 67



Notice that �(A;S) is a default theory over L(F). The following theorem showsthat �(A;S) characterizes the possible next states as de�ned in Res(A;S).Theorem 3.9 Let S be a state and A an action that is not prohibited in S. Thefollowing hold.1. A state S0 belongs to Res(A;S) if and only if CnF(S0) is a consistent extensionof �(A;S).2. Every consistent extension of �(A;S) can be written in the form CnF(S0),where S0 is a state.Proof. For the �rst part, let S0 be a state, and letE = E(A;S) [ (S0 \ Lit(F (A;S))) :Observe that E is an explicit e�ect of A in S. It is not di�cult to verify that�(A;S)Cn(S0) = (S \ S0 \ Lit(Ff )) [E [R :Thus we see that Cn(S0) is a consistent extension of �(A;S) if and only if Cn(S0) =Cn[(S \ S0 \ Lit(Ff )) [E [R].Since E is an explicit e�ect of A in S, we have shown that if Cn(S0) is aconsistent extension of �(A;S) then S0 2 Res(A;S). To see the other direction,assume that S0 2 Res(A;S). Thus there is an explicit e�ect E0 of A in S such thatCn(S0) = Cn[(S \ S0 \ Lit(Ff )) [ E0 [ R]. It is clear that E0 = E(A;S) [ (S0 \Lit(F (A;S))), which is to say that E0 = E. Thus we can conclude that Cn(S0) is aconsistent extension of �(A;S).For the second part, assume that X is a consistent extension of �(A;S).Suppose there is a uent name F such that F =2 X and :F =2 X. Since everynonframe uent in an AC domain description must have a de�nition in terms of68



frame uents, we can assume without loss of generality that F is a frame uent.But in this case, since S is a state, �(A;S) includes one of the following two rules.: FF : :F:FFrom this we can conclude that Cn(�(A;S)X ) includes either F or :F . This showsthat Cn(�(A;S)X) 6= X. Contradiction. So we have shown that for every uentname F , either F 2 X or :F 2 X. And since X is consistent, it follows that thereis an interpretation S0 of L(F) such that X = Cn(S0). Now, since �(A;S) containsthe inference rules R, we know that Cn(S0) is closed under R. So S0 is a state. 2This embedding of possible next states in default logic is closely related tothe embeddings of rule update in default logic in [PT95, PT97]. As previouslymentioned, this theorem is useful in proving the AC embedding correct, and it alsodemonstrates (in slightly di�erent form) some of the ideas behind that embedding.3.5.3 Embedding AC in Default LogicWe say that an AC domain description is quali�cation-free if for all action names Aand states S, A is prohibited in S whenever Res(A;S) is empty.Our default theories for reasoning about action use the situation calculus.For any uent formula �, we write Holds(�; S) to stand for the formula obtained byreplacing each uent atom F in � by Holds(F; S). Given an action stringA1; � � � ;Am,we write [A1; � � � ;Am]to stand for the termResult(Am;Result(Am�1; : : :Result(A1; S0) � � �)) :Given an atomic value proposition � after A, we write[� after A]69



to stand for the formula (Holds(�; [A]) ^ Reachable([A]) ) :Given a (non-atomic) value proposition V , we write [V ] to stand for the formulaobtained by simultaneously replacing each atomic value proposition V 0 that occursin V by the formula [V 0].The translation � takes an AC domain descriptionD to a default theory �(D)over the language L(U), where U is the least set of atoms such that, for every actionstring A: (i) Reachable([A]) 2 U ; (ii) for every uent name F , Holds(F; [A]) 2 U .For each value proposition V in D, �(D) includes the rule:[V ]False :For each su�ciency proposition � su�ces for  in D, �(D) includes the ruleHolds(�; s) ^ Reachable(s)Holds( ; s) :For each e�ect proposition A causes � if  in D, �(D) includes the ruleHolds( ; s) ^ Reachable(Result(A; s))Holds(�;Result(A; s)) :For each inuence proposition A possibly changes F if  in D, �(D) includes thepair of rulesHolds( ; s) ^ Reachable(Result(A; s)) : Holds(F;Result(A; s))Holds(F;Result (A; s))and Holds( ; s) ^ Reachable(Result(A; s)) : :Holds(F;Result(A; s)):Holds(F;Result(A; s)) :For each executability proposition impossible A if  in D, �(D) includes the ruleHolds( ; s):Reachable(Result(A; s)) :Default theory �(D) also includes the additional, standard rules shown in Figure 3.6.The following theorem shows that the translation � is indeed sound andcomplete for quali�cation-free AC domain descriptions.70



Reachability axioms. Default theory �(D) includes the rules: Reachable(s)Reachable(s) and :Reachable(s):Reachable(Result(a; s)) :Initial situation axioms. For each uent literal L, �(D) includes the rule: Holds(L; S0)Holds(L; S0) :Inertia axioms. For each frame uent literal L, �(D) includes the ruleHolds(L; s) ^ Reachable(Result(a; s)) : Holds(L;Result(a; s))Holds(L;Result(a; s)) :Figure 3.6: Standard elements of the translation �.Theorem 3.10 (Embedding Theorem) Let D be a quali�cation-free AC domaindescription. A value proposition V is entailed by D if and only if the formula [V ] isentailed by the default theory �(D).The Embedding Theorem is an immediate consequence of the following strongertheorem, which is proved in Chapter 4.Theorem 3.11 (Correspondence Theorem) Let D be a quali�cation-free ACdomain description. There is a one-to-one correspondence between models of D andconsistent extensions of �(D) such that, for every model 	 of D and its correspondingextension E, a value proposition V is true in 	 if and only if [V ] 2 E.For example, recall domain description D1 from Section 3.4, which is repro-duced here in Figure 3.7. In this AC domain description, Dead is the only nonframeuent. Domain description D1 entails, for instance, the value propositioninitially Loaded71



always Dead � :Aliveinitially Walking:Walking after Shoot:Alive su�ces for :WalkingShoot causes Dead ^ :Loadedimpossible Shoot if :LoadedFigure 3.7: AC domain description D1.and the Embedding Theorem guarantees that the corresponding formulaHolds(Loaded ; S0) ^ Reachable(S0)is entailed by the corresponding default theory �(D1), listed in Figure 3.8.If a domain description includes no executability propositions, we can elim-inate the Reachable atoms in the corresponding default theory, thus obtaining asimpler translation, as follows. Let D be an AC domain description. By �0(D) wedenote the default theory obtained from �(D) by �rst eliminating the reachabil-ity axioms and then replacing each Reachable atom in the remaining rules by thespecial atom True. Of course it is then straightforward to eliminate the resultingoccurrences of True in the resulting default theory. Notice that the default theoriesin Examples 1 and 2 (Section 3.2) can be obtained by translation �0.For each atomic value proposition � after A, let[[� after A]]denote the formula Holds(�; [A])and for each (non-atomic) value proposition V , let [[V ]] be the formula obtained fromV by simultaneously replacing each atomic value proposition V 0 that occurs in Vby the formula [[V 0]]. 72



True ^ Reachable(s)Holds(Dead ; s) � :Holds(Alive; s) :(Holds(Walking ; S0) ^ Reachable(S0))False:(:Holds(Walking ;Result(Shoot ; S0)) ^ Reachable(Result(Shoot ; S0)))False:Holds(Alive; s) ^ Reachable(s):Holds(Walking ; s) :Holds(Loaded ; s):Reachable(Result(Shoot ; s))True ^ Reachable(Result(Shoot ; s))Holds(Dead ;Result(Shoot ; s)) ^ :Holds(Loaded ;Result(Shoot ; s)): Holds(f; S0)Holds(f; S0) : :Holds(f; S0):Holds(f; S0) : Reachable(s)Reachable(s) :Reachable(s):Reachable(Result(a; s))Holds(Alive; s) ^Reachable(Result(a; s)) : Holds(Alive;Result(a; s))Holds(Alive;Result(a; s)):Holds(Alive; s) ^Reachable(Result(a; s)) : :Holds(Alive;Result(a; s)):Holds(Alive;Result(a; s))Holds(Loaded ; s) ^Reachable(Result(a; s)) : Holds(Loaded ;Result(a; s))Holds(Loaded ;Result(a; s)):Holds(Loaded ; s) ^Reachable(Result(a; s)) : :Holds(Loaded ;Result(a; s)):Holds(Loaded ;Result(a; s))Holds(Walking ; s) ^Reachable(Result(a; s)) : Holds(Walking ;Result(a; s))Holds(Walking ;Result(a; s)):Holds(Walking ; s) ^Reachable(Result(a; s)) : :Holds(Walking ;Result(a; s)):Holds(Walking ;Result(a; s))Figure 3.8: Translation �(D1) of AC domain description D1.
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Corollary 3.12 (Reachability Corollary) Let D be a quali�cation-free AC do-main description with no executability propositions. There is a one-to-one corre-spondence between models of D and consistent extensions of �0(D) such that, forevery model 	 of D and its corresponding extension E, a value proposition V istrue in 	 if and only if [[V ]] 2 E.3.5.4 The Yale Shooting Problem in Default LogicAt this point it may be interesting to briey consider some of the ways in whichour default theory for the Yale Shooting domain di�ers from the one proposed andfound inadequate by Hanks and McDermott [HM87], and from the more adequatesolution later proposed by Morris [Mor88].We can represent the origial Yale Shooting domain in AC as follows.17initially AliveLoad causes LoadedShoot causes :Alive if LoadedOf course this domain description entails the AC value proposition:Alive after Load ;Wait ;Shootand accordingly, we know by the Reachability Corollary that the correspondingliteral :Holds(Alive;Result(Shoot ;Result(Wait ;Result(Load ; S0))))is a consequence of the corresponding default theory Y1, which appears in Figure 3.9.By comparison, the default theory that was introduced and rejected by Hanksand McDermott is (essentially) the default theory Y2 that appears in Figure 3.10.17This version of the Yale Shooting domain, which is more elaborate than the one discussed inChapter 1, is faithful to the description given by Hanks and McDermott.74



:Holds(Alive; S0)FalseTrueHolds(Loaded ;Result(Load ; s)) Holds(Loaded ; s):Holds(Alive;Result(Shoot ; s)): Holds(f; S0)Holds(f; S0) : :Holds(f; S0):Holds(f; S0)Holds(f; s) : Holds(f;Result(a; s))Holds(f;Result(a; s)) :Holds(f; s) : :Holds(f;Result(a; s)):Holds(f;Result(a; s))Figure 3.9: Default theory Y1.

TrueHolds(Alive; S0) TrueAb(Loaded ;Load ; s) ^Holds(Loaded ;Result(Load ; s))TrueHolds(Loaded ; s) � (Ab(Alive;Shoot ; s) ^ :Holds(Alive;Result(Shoot ; s)))True(Holds(f; s) ^ :Ab(f; a; s)) � Holds(f;Result(a; s))True(:Holds(f; s) ^ :Ab(f; a; s)) � :Holds(f;Result(a; s)): :Ab(f; a; s):Ab(f; a; s)Figure 3.10: Default theory Y2.
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As suggested by the discussion in Section 1.2.1, the well-known di�culty in defaulttheory Y2 can be attributed to the fact that the default rule : :Ab(f; a; s):Ab(f; a; s) e�ectivelyminimizes the extent of Ab. We can observe that the two inertia rules togetherguarantee that all ground instances of the standard circumscriptive frame axiom:Ab(f; a; s) � (Holds(f; s) � Holds(f;Result(a; s))belong to every extension of Y2. These three default rules together then can beunderstood to minimize the instances ofHolds(f; s) 6� Holds(f;Result(a; s))in the extensions of Y2. In this way Y2 minimizes global change.But there is another way to describe what goes wrong here, which bringsinto relief a second point of interest (from our point of view). The default rule thatminimizes Ab allows the default \supposition":Ab(Alive;Shoot ;Result(Wait ;Result(Load ; S0))) :We can then reason \backward in time," using the rule describing the e�ect of Shoot ,to derive :Holds(Loaded ;Result(Wait ;Result(Load ; S0))) :And from this fact, we can again reason \backward," using the inertia rule, to obtainAb(Loaded ;Wait ;Result(Load ; S0)) :It is this combination of \supposing" that certain changes do not occur and reasoningbackward in time that allows us to obtain the extensions of Y2 that correspond to thefamous anomaly|according to which the gun may become mysteriously unloadedduring the wait action.There is another peculiarity to be noted here, related to the fact that inthe Yale Shooting domain (as originally described by Hanks and McDermott) we76



TrueHolds(Alive; S0) TrueAb(Loaded ;Load ; s) ^Holds(Loaded ;Result(Load ; s))TrueHolds(Loaded ; s) � (Ab(Alive;Shoot ; s) ^ :Holds(Alive;Result(Shoot ; s)))Holds(f; s) : :Ab(f; a; s)Holds(f;Result(a; s)) :Holds(f; s) : :Ab(f; a; s):Holds(f;Result(a; s))Figure 3.11: Default theory Y3.are not told whether or not the gun is initially loaded. Accordingly, the AC do-main description entails neither initially Loaded nor initially :Loaded . From theReachability Corollary it follows, for instance, that our default theory Y1 does notentail the literal :Holds(Loaded ; S0).By comparison, in the default theory Y2 of Hanks and McDermott, we can\suppose" :Ab(Alive;Shoot ; S0)and from this default supposition we can derive:Holds(Loaded ; S0)again by reasoning \backwards in time," using the rule describing the e�ect of theshoot action. This observation suggests that :Holds(Loaded ; S0) may belong tosome extension of the default theory. This is not unexpected, since the AC domaindescription itself has a model in which Loaded is initially false. But as it turns out,:Holds(Loaded ; S0) belongs to every extension of the default theory of Hanks andMcDermott, which is therefore not only incomplete for the Yale Shooting domain,but also unsound.The default theory proposed by Morris for the Yale Shooting domain is (es-sentially) the default theory Y3 shown in Figure 3.11. In Morris' default theory wecan again reason \backwards in time," using the rule describing the e�ect of theaction Shoot . But notice that there is now no default rule allowing us to \suppose"77



literals of the form :Ab(f; a; s). Moreover, there is no opportunity for \inappropri-ately" deriving atoms of the form Ab(f; a; s) by reasoning backwards in time. Thusthe famous anomaly is eliminated. On the other hand, it turns out that the formula:Holds(Loaded ; S0) is once again inappropriately entailed. To see this, notice �rstthat we cannot derive the literalAb(Alive;Shoot ; S0)in default theory Y3. Because of this, we are able to deriveHolds(Alive;Result(Shoot ; S0))using one of the default rules expressing the commonsense law of inertia. And, fromthis, we can derive :Holds(Loaded ; S0)by reasoning backwards in time, using the rule describing the e�ect of the shootaction. Thus, Morris' default theory for the Yale Shooting domain is, apparently,complete but unsound.In our translations of AC into default logic, as emphasized in the discussionin Section 3.2, we never write default rules making past facts derivable from futurefacts. Such rules would not, in general, make sense for us, since we think of theserules as expressing a simple kind of causal relation. Moreover, our discussion ofthe Hanks and McDermott and Morris default theories (correctly) suggests that ourpractice is technically useful. In fact, our use of the directional properties of defaultrules is essential to the proof of the Correspondence Theorem. Roughly speaking,it allows us to show that our general default theories correctly embed our causalde�nition of possible next states, by guaranteeing that in our default theories futurefacts cannot a�ect past facts.It may or may not be helpful to point out also that the observed unsoundnessof default theories Y2 and Y3 can be overcome simply by adding to them the following78



rules enforcing completeness of the initial situation.: Holds(f; S0)Holds(f; S0) : :Holds(f; S0):Holds(f; S0)Recall that these rules are standard elements of our translations fromAC into defaultlogic. In a manner of speaking, they interact to force a default theory to take intoaccount every possible (complete!) initial situation.3.6 Logic Programs for Representing ActionsWe begin this section by reviewing the relevant de�nitions in logic programming. Wethen identify a syntactically restricted class of AC domain descriptions for which thetranslation into logic programming is particularly convenient. We call such domaindescriptions \LP-simple." After specifying a sound and complete translation of LP-simple, quali�cation-free domain descriptions into logic programming, we introducethe somewhat broader class of \vivid"AC domain descriptions, and show how vivid,quali�cation-free domain descriptions can be transformed into equivalent LP-simple,quali�cation-free domain descriptions. Thus we obtain a correct embedding in logicprogramming for all vivid, quali�cation-free AC domain descriptions.In the case of value propositions, the translation into logic program rules ismore complicated than the translation into default rules speci�ed in the previoussection. For all other AC propositions, the translation is essentially the same.3.6.1 Review of Logic ProgrammingFor the purposes of this dissertation, a logic program rule over L(U) is an expressionof the form L0  L1; : : : ; Lm;notLm+1; : : : ;notLn (3.2)with 0 �m � n, where L0 2 Lit(U)[fFalseg and for all i (1 � i � n), Li 2 Lit(U).A logic program over L(U) is a set of logic program rules over L(U).79



Under the answer set semantics of Gelfond and Lifschitz [GL90], logic pro-gramming corresponds to a subset of default logic.18 Because it is convenient for thepurposes of this dissertation, we will de�ne the notions of \answer sets" and \en-tailment" for logic programs indirectly, in terms of the related notions for defaultlogic. For each logic program P there is a corresponding default theory dt(P ),de�ned as follows. For each logic program rule r 2 P of form (3.2), dt(P ) includesthe corresponding default ruleL1 ^ � � � ^ Lm : Lm+1; : : : ; LnL0 :A subset X of Lit(U) is an answer set for P if there is an extension E of dt(P )such that X = E \Lit(U). It follows that X is a consistent answer set for P if andonly if Cn(X) is a consistent extension of dt(P ). For any L 2 Lit(U), we say thatP entails L if L belongs to all answer sets for P . It follows that P entails L if andonly if dt(P ) does.3.6.2 LP-Simple AC Domain DescriptionsAn atomic value proposition is LP-simple if it has the formL after Awhere L is a uent literal, and a (non-atomic) value proposition is LP-simple if ithas the form V1 _ � � � _ Vm _ :Vm+1 _ � � � _ :Vn ( 0 � m � n ; n > 0 )where each Vi (1 � i � n) is an LP-simple atomic value proposition.A su�ciency proposition is LP-simple if it has either the form18Logic programs of this kind are also reducible (as shown in [GL90]) to normal logic programsunder the stable model semantics [GL88]. 80



L1 ^ � � � ^ Ln su�ces for L0 (n > 0 )where each Li (0 � i � n) is a uent literal, or the formalways Lwhere L is a uent literal, or the formnever L1 ^ � � � ^ Ln (n > 0 )where each Li (1 � i � n) is again a uent literal.An e�ect proposition is LP-simple if it has either the formA causes L0 if L1 ^ � � � ^ Ln (n > 0 )where each Li (0 � i � n) is a uent literal, or the formA causes Lwhere L is a uent literal.An inuence proposition is LP-simple if it has either the formA possibly changes F if L1 ^ � � � ^ Ln (n > 0 )where each Li (1 � i � n) is a uent literal, or the formA possibly changes F :Finally, an executability proposition is LP-simple if it has the formimpossible A if L1 ^ � � � ^ Ln (n > 0 )where each Li (1 � i � n) is a uent literal.We say that an AC domain description is LP-simple if all of its propositionsare. Perhaps the most severe restriction on LP-simple domain descriptions is that81



they cannot include explicit de�nitions, due to the restricted form of su�ciencypropositions. Notice that three of the four example domain descriptions consideredin Section 3.2 are in fact LP-simple domain descriptions.3.6.3 LP-Simple AC Domain Descriptions as Logic ProgramsLet D be an LP-simple AC domain description. We de�ne its translation into alogic program �(D) as follows.For each value proposition V1 _ � � � _ Vm _ :Vm+1 _ � � � _ :Vn in D, includethe rule False  [[Vm+1]]; : : : ; [[Vn]];not [[V1]]; : : : ;not [[Vm]] :For each su�ciency proposition inD of the form L1^� � �^Ln su�ces for L0 includethe rule Holds(L0; s)  Holds(L1; s); : : : ;Holds(Ln; s);Reachable(s) :For each su�ciency proposition in D of the form always L include the ruleHolds(L; s)  Reachable(s) :For each su�ciency proposition in D of the form never L1 ^ � � � ^ Ln include therule False  Holds(L1; s); : : : ;Holds(Ln; s);Reachable(s) :For each e�ect proposition in D of the form A causes L0 if L1 ^ � � � ^ Ln includethe ruleHolds(L0;Result(A; s))  Holds(L1; s); : : : ;Holds(Ln; s);Reachable(Result(A; s)) :82



For each e�ect proposition in D of the form A causes L include the ruleHolds(L;Result (A; s))  Reachable(Result(A; s)) :For each inuence proposition in D of the formA possibly changes F if L1 ^ � � � ^ Lninclude the following two rules.Holds(F;Result(A; s))  Holds(L1; s); : : : ;Holds(Ln; s);Reachable(Result(A; s));not:Holds(F;Result(A; s)):Holds(F;Result(A; s))  Holds(L1; s); : : : ;Holds(Ln; s);Reachable(Result(A; s));not Holds(F;Result(A; s))For each inuence proposition in D of the form A possibly changes F include thefollowing two rules.Holds(F;Result(A; s))  Reachable(Result(A; s));not:Holds(F;Result(A; s)):Holds(F;Result(A; s))  Reachable(Result(A; s));not Holds(F;Result(A; s))Finally, for each executability proposition impossible A if L1 ^ � � � ^ Ln in D,include the rule:Reachable(s)  Holds(L1; s); : : : ;Holds(Ln; s) :Also include the following six standard rules for reachability, completeness of theinitial situation, and the commonsense law of inertia.Reachable(s)  not:Reachable(s):Reachable(Result(a; s))  :Reachable(s)Holds(f; S0)  not:Holds(f; S0)83



:Holds(f; S0)  notHolds(f; S0)Holds(f;Result(a; s))  Holds(f; s);Reachable(Result(a; s));not:Holds(f;Result(a; s)):Holds(f;Result(a; s))  :Holds(f; s);Reachable(Result(a; s));notHolds(f;Result(a; s))Notice that the logic program in the fourth example in Section 3.2 can beobtained by the translation �.Theorem 3.13 (LP Embedding Theorem).Let D be an LP-simple, quali�cation-free AC domain description. an LP-simpleatomic value proposition L after A is entailed by D if and only if Holds(L; [A]) isentailed by the logic program �(D).The LP Embedding Theorem is an immediate consequence of the followingstronger theorem, which is proved in Chapter 4 using the Correspondence Theoremfor default logic.Theorem 3.14 (LP Correspondence Theorem)Let D be an LP-simple, quali�cation-free AC domain description. There is a one-to-one correspondence between models of D and consistent answer sets of �(D) suchthat, for every model 	 of D and corresponding answer set X, an LP-simple valueproposition V1 _ � � � _ Vm _ :Vm+1 _ � � � _ :Vnis true in 	 if and only if at least one of the sets f [[V1]]; : : : ; [[Vm]] g \ X andf [[Vm+1]]; : : : ; [[Vn]] g nX is nonempty.If an LP-simple domain description includes no executability propositions, wecan eliminate the Reachable atoms in the corresponding logic program, thus obtain-ing a simpler translation. So let D be an LP-simple AC domain description without84



executability propositions. By �0(D) we denote the logic program obtained from�(D) by �rst eliminating the reachability axioms and then deleting all Reachableatoms from the remaining rules. Notice that the logic program in the third examplein Section 3.2 can be obtained by the translation �0.Corollary 3.15 (LP Reachability Corollary)Let D be an LP-simple, quali�cation-free AC domain description without executabil-ity propositions. There is a one-to-one correspondence between models of D andconsistent answer sets of �0(D) such that, for every model 	 of D and correspond-ing answer set X, an LP-simple value proposition V1_� � �_Vm_:Vm+1_� � �_:Vn istrue in 	 if and only if the set f [[V1]]; : : : ; [[Vm]]; [[Vm+1]]; : : : ; [[Vn]] g\X is nonempty.3.6.4 Making Vivid AC Domain Descriptions LP-SimpleThe syntactic restrictions which de�ne the class of LP-simple domain descriptionsare, fortunately, more strict than necessary. In this section we show that a muchbroader class of AC domain descriptions can be embedded into logic programming.We say that a su�ciency proposition is vivid if it has the form� su�ces for  where  is a conjunction of uent literals. Similarly, we say that an e�ect propositionis vivid if it has the form A causes � if  where � is a nonempty conjunction of uent literals.We say that a domain description is vivid if all of its su�ciency propositionsand e�ect propositions are. Any vivid domain description can be transformed intoan equivalent LP-simple domain description, in the manner described below.We begin by assuming a function CNF that takes every uent formula � toan equivalent uent formula CNF (�) in conjunctive normal form. We also assume85



a function DNF that takes every uent formula � to an equivalent uent formulaDNF (�) in disjunctive normal form.For any atomic value proposition � after A, let CNF (� after A) be theresult of simultaneously replacing each disjunct L of each conjunct of CNF (�) withthe LP-simple atomic value proposition L after A. Notice that � after A is true ina structure 	 if and only if CNF (� after A) is.Next we describe a three-step transformation that takes any value propositionV to a corresponding family of LP-simple value propositions.1. Let Vs be the result of simultaneously replacing each atomic value propositionV 0 that occurs in V with the value proposition CNF (V 0). Notice that Vs isa propositional combination of LP-simple atomic value propositions. Noticealso that V is true in a structure 	 if and only if Vs is.2. Let C be the set of conjuncts of the conjunctive normal form of Vs. Noticethat each member of C is a disjunction of LP-simple atomic value propositionsor their negations. Notice also that Vs is true in a structure 	 if and only ifevery member of C is.3. Take the set of value propositions obtained by reordering the literals of eachmember of C so that each of the resulting expressions is an LP-simple valueproposition.Observe that V is true in a structure 	 if and only if all of the correspondingLP-simple value propositions are.For any vivid su�ciency proposition � su�ces for  , take the family ofLP-simple su�ciency propositions �0 su�ces for L such that �0 is a disjunct ofDNF (�) and L is a conjunct of  .For any vivid e�ect proposition A causes � if  , take the family of LP-simple e�ect propositions A causes L if  0 such that L is a conjunct of � and  0 is86



a disjunct of DNF ( ).For any inuence proposition A possibly changes F if  , take the familyof LP-simple inuence propositions A possibly changes F if  0 such that  0 is adisjunct of DNF ( ).Finally, for each executability proposition impossible A if  , take the fam-ily of LP-simple executability propositions impossible A if  0 such that  0 is adisjunct of DNF ( ).Let LP-Simple be a function that takes every vivid domain description toan LP-simple domain description that can be obtained by transforming each of itspropositions in the manner described above.Theorem 3.16 (Vivid Domains Theorem) Let D be a vivid AC domain de-scription. The domain descriptions D and LP-Simple(D) have the same models.Moreover, D is quali�cation-free if and only if LP-Simple(D) is.Since we have already speci�ed a correct embedding of LP-simple, quali�cation-free domain descriptions into logic programming, the Vivid Domains Theorem estab-lishes the more general fact that every vivid, quali�cation-free domain descriptioncan be correctly embedded in logic programming, by �rst transforming it into anequivalent LP-simple, quali�cation-free domain description. For instance, the logicprogram in the �rst example in Section 3.2 can be obtained in this manner.Finally, it is clear from the previous discussion that any value propositionV can be transformed into a family Q of LP-simple value propositions such thatV is true in a structure 	 if and only if every member of Q is. Thus we haveshown that the LP Correspondence Theorem can be applied to any value proposi-tion, for any vivid quali�cation-free AC domain description. In this way we obtaincorrect formalizations of action domains that include non-atomic value propositions,nondeterministic actions, causal background information and action preconditions.87



Chapter 4
Proofs for Preceding Chapter

We begin with the statement of the Splitting Set and Splitting Sequence Theorems[Tur96b], and their proofs.We then prove the Correspondence Theorem and Reachability Corollary,showing that the translations from AC into default logic are sound and complete.On the basis of these results, we go on to prove the LP Correspondence The-orem and LP Reachability Corollary, showing the correctness of our translationsof LP-simple, quali�cation-free AC domain descriptions into logic programming.Finally we prove the Vivid Domains Theorem, which shows that every vivid ACdomain description can be transformed into an equivalent LP-simple domain de-scription.4.1 Splitting a Default TheoryIn this section we briey turn our attention from the speci�c problem of representingactions in default logic and logic programming, in order to present technical resultsconcerning default theories in general. These results|the Splitting Set Theoremand Splitting Sequence Theorem for default logic from [Tur96b]|are needed for the88



proof of the Correspondence Theorem.The Splitting Theorems for default logic can sometimes be used to simplifythe task of reasoning about a default theory, by \splitting it into parts." TheseSplitting Theorems are related somewhat, in spirit, to \partial evaluation" in logicprogramming, in which results obtained from one part of a program are used tosimplify the remainder of the program.1 In fact, the Splitting Theorems for defaultlogic closely resemble the Splitting Theorems for logic programming introduced in[LT94], despite complications due to the presence of arbitrary formulas in defaulttheories.2 Similar results for autoepistemic logic can be found in [GP92]. Veryclosely related, but independently obtained, results for default logic can be found in[Cho94, Cho95]. The relationship of that work to the splitting theorems presentedhere is examined in [Ant97].4.1.1 Splitting SetsLet D be a default theory over L(U) such that, for every rule r 2 D, pre(r) is inconjunctive normal form. (Of course any default theory can be easily transformedinto an equivalent default theory, over the same language, satisfying this condition.)For any rule r 2 D, a formula � is a constituent of r if at least one of the followingconditions holds: (i) � is a conjunct of pre(r); (ii) � 2 just(r); (iii) � = cons(r).A splitting set for D is a subset A of U such that for every rule r 2 D thefollowing two conditions hold.1. Every constituent of r belongs to L(A) [ L(U n A).2. If cons(r) does not belong to L(U nA), then r is a default rule over L(A).1See, for example, [Kom90].2In [LT94] we presented without proof Splitting Theorems for logic programs with classicalnegation and disjunction, under the answer set semantics [GL91]. The results for nondisjunctivelogic programs follow from the Splitting Theorems for default logic. The de�nitions and proofspresented here can be adapted to the more general case of disjunctive default logic [GLPT91], fromwhich the Splitting Theorems for disjunctive logic programs would follow as well.89



If A is a splitting set for D, we say that A splits D. The base of D relative to A,denoted by bA(D), is the default theory over L(A) that consists of all members ofD that are default rules over L(A).Let U2 = fa; b; c; dg. Consider the following default theory D2 over L(U2).: :ba : :ab a _ b : a; bc _ d a ^ (c _ d) : :d:d b ^ (c _ d) : :c:cTake A2 = fa; bg. It's easy to verify that A2 splits D2, withbA2(D2) = � : :ba ; : :ab � :Notice that the default theory bA2(D2) over L(A2) has two consistent extensions:CnA2(fag) and CnA2(fbg) :Given a splitting set A for D, and a set X of formulas from L(A), the partialevaluation of D by X with respect to A, denoted by eA (D;X), is the default theoryover L(U nA) obtained from D in the following manner. For each rule r 2 DnbA(D)such that1. every conjunct of pre(r) that belongs to L(A) also belongs to CnA(X), and2. no member of just(r) has its complement in CnA(X)there is a rule r0 2 eA (D;X) such that1. pre(r0) is obtained from pre(r) by replacing each conjunct of pre(r) that be-longs to L(A) by True, and2. just(r0) = just(r) \ L(U nA), and3. cons(r0) = cons(r) .For example, it is easy to verify thateA2(D2;CnA2(fag)) = � Truec _ d ; True ^ (c _ d) : :d:d �90



and that eA2(D2;CnA2(fbg)) = � Truec _ d ; True ^ (c _ d) : :c:c � :Let A be a splitting set for D. A solution to D with respect to A is a pairhX;Y i of sets of formulas satisfying the following two properties.1. X is a consistent extension of the default theory bA(D) over L(A).2. Y is a consistent extension of the default theory eA (D;X) over L(U nA).For example, given our previous observations, it is easy to verify that D2 hastwo solutions with respect to A2:hCnA2(fag) ; CnU2nA2(fc;:dg) i and hCnA2(fbg) ; CnU2nA2(f:c; dg) i :Theorem 4.1 (Splitting Set Theorem) Let A be a splitting set for a defaulttheory D over L(U). A set E of formulas is a consistent extension of D if and onlyif E = CnU (X [ Y ) for some solution hX;Y i to D with respect to A.Thus, for example, it follows from the Splitting Set Theorem that the defaulttheory D2 has exactly two consistent extensions:CnU2(fa; c;:dg) and CnU2(fb;:c; dg) :Corollary 4.2 (Splitting Set Corollary) Let A be a splitting set for a defaulttheory D over L(U). If E is a consistent extension of D, then the pairh E \ L(A) ; E \ L(U n A) iis a solution to D with respect to A.
91



4.1.2 Splitting SequencesA (trans�nite) sequence is a family whose index set is an initial segment of ordinalsf� : � < �g. We say that a sequence hA�i�<� of sets is monotone if A� � A�whenever � < �, and continuous if, for each limit ordinal � < �, A� = S<�A .A splitting sequence for a default theory D over L(U) is a nonempty, mono-tone, continuous sequence hA�i�<� of splitting sets for D such that S�<�A� = U .The de�nition of a solution with respect to a splitting set is extended tosplitting sequences as follows. Let A = hA�i�<� be a splitting sequence for D.A solution to D with respect to A is a sequence hE�i�<� of sets of formulas thatsatis�es the following three conditions.1. E0 is a consistent extension of the default theory bA0(D) over L(A0).2. For any � such that � + 1 < �, E�+1 is a consistent extension of the defaulttheory eA� 0@bA�+1(D); [��E1Aover L(A�+1 n A�).3. For any limit ordinal � < �, E� = Cn;(;).We generalize the Splitting Set Theorem as follows.Theorem 4.3 (Splitting Sequence Theorem) Let A = hA�i�<� be a splittingsequence for a default theory D over L(U). A set E of formulas is a consistentextension of D if and only if E = CnU 0@[�<�E�1Afor some solution hE�i�<� to D with respect to A.92



The proof of this theorem relies on the Splitting Set Theorem. We also havethe following counterpart to the Splitting Set Corollary.Corollary 4.4 (Splitting Sequence Corollary) Let A = hA�i�<� be a splittingsequence for a default theory D over L(U). Let hU�i�<� be the sequence of pairwisedisjoint subsets of U such that for all � < �U� = A� n [<�A :If E is a consistent extension of D, then the sequence hE \L(U�) i�<� is a solutionto D with respect to A.4.2 Proof of Splitting Set TheoremThe proof begins with three auxiliary lemmas.Lemma 4.5 Let U;U 0 be disjoint sets of atoms. Let R be a set of inference rulesover L(U). Let R0 be a set of inference rules over L(U 0). Let X = CnU[U 0(R[R0).� If X is consistent, then X \ L(U) = CnU (R) .� X = CnU[U 0 (CnU (R) [R0) .Proof. Straightforward. 2Lemma 4.6 Let U;U 0 be disjoint sets of atoms. Let D be a default theory overL(U), and let D0 be a default theory over L(U 0). Let E be a consistent, logicallyclosed set of formulas from L(U) and let E0 be a consistent, logically closed set offormulas from L(U 0). Let X = CnU[U 0(E [ E0). X = CnU[U 0((D [D0)X) if andonly if E = CnU (DE) and E0 = CnU 0((D0)E0).
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Proof. By Lemma 4.5, we have X \ L(U) = CnU(E) and X \ L(U 0) = CnU 0(E0).And because E and E0 are logically closed, we haveX \ L(U) = E and X \ L(U 0) = E0 : (4.1)The fact that (D[D0)X = DX\L(U) [ (D0)X\L(U 0) is easily checked. Hence by (4.1)we have (D [D0)X = DE [ (D0)E0 : (4.2)()) Assume that X = CnU[U 0((D [ D0)X). It follows by (4.2) that X =CnU[U 0(DE [ (D0)E0). By Lemma 4.5 and (4.1), we have E = CnU (DE) andE0 = CnU 0((D0)E0).(() Assume E = CnU (DE) and E0 = CnU 0((D0)E0). Thus we haveX = CnU[U 0(CnU (DE) [ CnU 0((D0)E0)) :By Lemma 4.5 we conclude that X = CnU[U 0(DE [ (D0)E0). By (4.2) we haveX = CnU[U 0((D [D0)X). 2Lemma 4.7 Let D be a default theory over L(U), and let E be a set of formulasfrom L(U). Let D0 be a default theory over L(U) such that every rule r 2 D0satis�es at least one of the following conditions: (i) cons(r) is equivalent to True;(ii) pre(r) =2 E; (iii) some member of just(r) has its complement in E. E is anextension of D if and only if E is an extension of D [D0.Proof. Straightforward. 2In proving the Splitting Set Theorem it is convenient to introduce a set ofalternative de�nitions, di�ering very slightly from those used in stating the theorem.(We nonetheless prefer the original de�nitions, because they are more convenient inapplications of the Splitting Theorems.)Let D be a default theory over L(U) split by A. We de�ne the following.94



� t�A(D) = f r 2 D : cons(r) 2 L(U n A) g� b�A(D) = D n t�A(D)The advantage of these alternative de�nitions is captured in the followingkey lemma, which fails to hold for their counterparts bA(D) and D n bA(D).Lemma 4.8 Let D be a default theory over L(U) with splitting set A. For any setX of formulas from L(U), b�A(D)X = b�A(DX) and t�A(D)X = t�A(DX).Proof. It is enough to show that t�A(D)X = t�A(DX).()) Assume r 2 t�A(D)X . Clearly we have r 2 DX . We need to show thatcons(r) 2 L(U n A). Since r 2 t�A(D)X , there must be an r0 2 t�A(D) such thatfr0gX = frg. We know that cons(r0) 2 L(U n A); and since cons(r) = cons(r0),we're done. Proof in the other direction is similar. 2The proof also makes use of the following additional alternative de�nitions.Given a set X of formulas from L(A), let e�A(D;X) be the default theoryover L(U n A) obtained from D in the following manner. For each rule r 2 t�A(D)such that� every conjunct of pre(r) that belongs to L(A) also belongs to CnA(X), and� no member of just(r) has its complement in CnA(X)there is a rule r0 2 e�A (D;X) such that� pre(r0) is obtained from pre(r) by replacing each conjunct of pre(r) that be-longs to L(A) by True, and� just(r0) = just(r) \ L(U nA), and� cons(r0) = cons(r) . 95



Notice that e�A di�ers from eA only in starting with the rules in t�A(D) insteadof the rules in D n bA(D).Finally, let s�A(D) be the set of all pairs hX;Y i such that� X is a consistent extension of b�A(D), and� Y is a consistent extension of e�A (D;X) .The following lemma shows that these alternative de�nitions are indeed suit-able for our purpose.Lemma 4.9 If a default theory D over L(U) is split by A, then s�A(D) is preciselythe set of solutions to D with respect to A.Proof. (() Assume that hX;Y i is a solution to D with respect to A. Thus X is aconsistent extension of bA(D) and Y is a consistent extension of eA (D;X). Let r bea rule in bA(D)n b�A(D). Notice that bA(D)n b�A(D) � t�A(D). So r 2 bA(D)\ t�A(D).It follows that r is a rule over L(A) such that cons(r) 2 L(U n A). Thus, eithercons(r) is equivalent to True or cons(r) is equivalent to False . Assume that cons(r)is equivalent to False . Since r 2 bA(D) and X is a consistent extension of bA(D), wecan conclude that either pre(r) =2 X or some member of just(r) has its complement inX. So we've shown that for every rule r 2 bA(D)nb�A(D), either cons(r) is equivalentto True or pre(r) =2 X or some member of just(r) has its complement in X. Sinceb�A(D) � bA(D), it follows by Lemma 4.7 that X is a consistent extension of b�A(D).It remains to show that Y is a consistent extension of e�A (D;X). The reasoning hereis much the same. Since D n bA(D) � t�A(D), we know that eA (D;X) � e�A (D;X).Furthermore, it is not di�cult to show, by the de�nitions of eA and e�A, along withsome of the previous observations, that if a rule r belongs to e�A (D;X) n eA (D;X),then cons(r) is equivalent to True. From this it follows by Lemma 4.7 that Y is aconsistent extension of e�A (D;X). 96



Proof in the other direction is similar. 2The next three lemmas are used in the proof of Lemma 4.13, which is one ofthe main lemmas in the proof of the Splitting Set Theorem.Lemma 4.10 Let R be a set of inference rules over L(U) with splitting set A. LetE be a consistent set of formulas. If E = CnU (R), then E \ L(A) = CnA(b�A(R)).Proof. Let r be a rule from b�A(R). Since E is closed under R and r is a rule overL(A), we know that either pre(r) =2 E \ L(A) or cons(r) 2 E \ L(A). This showsthat E \ L(A) is closed under b�A(R). Since E is logically closed, so is E \ L(A). Itfollows that CnA(b�A(R)) � E \ L(A).Let E0 = CnU [CnA(b�A(R))[ (E \L(U nA))]. Notice that E0 is a consistent,logically closed subset of E. Also notice that by Lemma 4.5 we can conclude thatE0 \L(U nA) = E \L(U nA). Again by Lemma 4.5 we also know that E0 \L(A) =CnA(b�A(R)). So we will complete the proof by showing that E0 = E.Let r be a rule in t�A(R). We know that either pre(r) =2 E or cons(r) 2 E.Since E0 � E, we have pre(r) =2 E0 if pre(r) =2 E. On the other hand, sinceE0 \ L(U n A) = E \ L(U n A) and cons(r) 2 L(U n A), we have cons(r) 2 E0 ifcons(r) 2 E. Thus, either pre(r) =2 E0 or cons(r) 2 E0. That is, E0 is closed undert�A(R). Of course E0 is also closed under b�A(R). So we've shown that E0 is a logicallyclosed subset of E that is closed under R. And since E is the least logically closedset of formulas closed under R, E0 = E. 2Lemma 4.11 Let R be a set of inference rules over L(U) with splitting set A. Let Ebe a consistent set of formulas. If E = CnU (R), then E = CnU [(E\L(A))[ t�A(R)].Proof. Let E0 = CnU [(E \ L(A)) [ t�A(R)]. We'll show that E = E0. By theprevious lemma we can conclude that E0 \ L(A) = E \ L(A). Also by the previouslemma, we know that E \ L(A) = CnA(b�A(R)). It follows that E0 \ L(A) is closed97



under b�A(R), and since b�A(R) is a set of rules over L(A), E0 is closed under b�A(R).Since E0 is also closed under t�A(R), E0 is closed under R. Since E is the leastlogically closed set that is closed under R, E � E0. On the other hand, we can seethat E is closed under (E \ L(A)) [ t�A(R). It follows that E0 � E. So E = E0. 2Lemma 4.12 Let R be a set of inference rules over L(U) with splitting set A. LetE be a consistent set of formulas. If E \ L(A) = CnA(b�A(R)) and E = CnU [(E \L(A)) [ t�A(R)], then E = CnU (R).Proof. Let E0 = CnU (R). It's easy to see that E is closed under R. Thus E0 � E.Since E0 is closed under b�A(R) and E \ L(A) is the least set closed under b�A(R),we have E \ L(A) � E0. So E0 is closed under E \ L(A). Since E0 is also closedunder t�A(R), E0 is closed under (E \ L(A)) [ t�A(R). Since E0 is a logically closedsubset of E and E is the least logically closed set closed under (E \L(A)) [ t�A(R),we have E0 = E. 2Lemma 4.13 Let D be a default theory over L(U) with splitting set A. Let E be aconsistent set of formulas from L(U). E = CnU (DE) if and only if� E \ L(A) = CnA[b�A(D)E\L(A)] and� E = CnU [(E \ L(A)) [ t�A(D)E ] .Proof. ()) Assume that E = CnU (DE). Notice that A splitsDE . By Lemma 4.10,E\L(A) = CnA(b�A(DE)). By Lemma 4.8, b�A(DE) = b�A(D)E . Since b�A(D) is a de-fault theory over L(A), b�A(D)E = b�A(D)E\L(A). So E\L(A) = CnA(b�A(D)E\L(A)).By Lemma 4.11, E = CnU [(E\L(A))[t�A(DE)]. By Lemma 4.8, t�A(DE) = t�A(D)E .So E = CnU [(E \ L(A)) [ t�A(D)E ].(() Assume that E = CnU [(E \L(A)) [ t�A(D)E ]. Recall that A splits DE .Since b�A(D) is a default theory over L(A), we have b�A(D)E\L(A) = b�A(D)E . ByLemma 4.8, t�A(D)E = t�A(DE) and b�A(D)E = b�A(DE). Thus we have E \ L(A) =98



CnA(b�A(DE)) and E = CnU [(E\L(A))[t�A(DE)]. By Lemma 4.12, E = CnU (DE).2The next three lemmas are used in the proof of Lemma 4.17, which is anotherof the main lemmas in the proof of the Splitting Set Theorem.Lemma 4.14 Let R,R0 be sets of inference rules over L(U). If CnU (R) is closedunder R0 and CnU (R0) is closed under R, then CnU (R) = CnU (R0).Proof. Straightforward. 2Lemma 4.15 Let D be a default theory over L(U) split by A. Let E be a logicallyclosed set of formulas from L(U), with X = E \ L(A) and Y = E \ L(U n A). Theset CnU [X [ e�A (D;X)Y ] is closed under X [ t�A(D)E.Proof. Let E0 = CnU [X [ e�A (D;X)Y ]. Of course E0 is closed under X. Wemust show that E0 is also closed under t�A(D)E . Let r be a rule from t�A(D)E suchthat pre(r) 2 E0. We must show that cons(r) 2 E0. Let r0 be a rule in t�A(D)such that fr0gE = frg. It follows that no member of just(r0) has its complementin E. Hence no member of just(r0) has its complement in X. Notice also thatpre(r0) = pre(r). Since pre(r) 2 E0 and E0 is logically closed, we can concludethat every conjunct of pre(r0) that belongs to L(A) also belongs to X. Given theseobservations, we know there is a rule r0e such that e�A (fr0g;X) = fr0eg. Notice thatjust(r0e) = just(r0)\L(U nA). Since no member of just(r0) has its complement in E,it's clear that no member of just(r0e) has its complement in Y . Given this observationwe know that there is a rule re such that fr0egY = freg. Since pre(re) = pre(r0e), weknow that pre(re) is the result of replacing each conjunct of pre(r0) that belongs toL(A) by True. And since pre(r0) = pre(r), we can conclude that pre(re) 2 E0. Itfollows that cons(re) 2 E0. And since cons(re) = cons(r0e) = cons(r0) = cons(r), wehave cons(r) 2 E0. 299



Lemma 4.16 Let D be a default theory over L(U) split by A. Let E be a logicallyclosed set of formulas from L(U), with X = E \ L(A) and Y = E \ L(U n A). Theset CnU (X [ t�A(D)E) is closed under X [ e�A (D;X)Y .Proof. Let E0 = CnU (X [ t�A(D)E). Of course E0 is closed under X. We must showthat E0 is also closed under e�A (D;X)Y . Let re be a rule from e�A (D;X)Y such thatpre(re) 2 E0. We must show that cons(re) 2 E0. Let r0 be a rule in t�A(D) suchthat e�A (fr0g;X)Y = freg. Notice that no member of just(r0) has its complementin X. Furthermore, no member of just(r0) \ L(U n A) has its complement in Y .We can conclude that no member of just(r0) has its complement in E. Given thisobservation we know that there is a rule r in t�A(D)E such that fr0gE = frg. Noticethat pre(r) = pre(r0). We know that every conjunct of pre(r0) that belongs to L(A)also belongs to X, which is a subset of E0. Moreover, since pre(re) 2 E0, we knowthat every conjunct of pre(r0) that does not belong to L(A) belongs to E0. It followsthat pre(r0) 2 E0. Thus pre(r) 2 E0, from which it follows that cons(r) 2 E0. Andsince cons(r) = cons(r0) = cons(re), cons(re) 2 E0. 2Lemma 4.17 Let D be a default theory over L(U) split by A. Let E be a logicallyclosed set of formulas from L(U), with X = E \ L(A) and Y = E \ L(U n A). Wehave CnU [X [ e�A (D;X)Y ] = CnU [X [ t�A(D)E ] :Proof. Immediate from the previous three lemmas. 2Proof of Splitting Set Theorem. Given a default theory D over L(U) with splittingset A, we know by Lemma 4.9 that s�A(D) is precisely the set of solutions to D withrespect to A. We will show that E is a consistent extension of D if and only ifE = CnU (X [ Y ) for some hX;Y i 2 s�A(D).()) Assume E is a consistent extension of D. Let X = E \ L(A) andY = E\L(U nA). By Lemma 4.13, X = CnA(b�A(D)X) and E = CnU (X[t�A(D)E).By Lemma 4.17, E = CnU (X [ e�A (D;X)Y ). By Lemma 4.5, we can conclude that100



Y = CnUnA(e�A (D;X)Y ). So we have established that hX;Y i 2 s�A(D). We canalso conclude by Lemma 4.5 that E = CnU [X [ CnUnA(e�A (D;X)Y )]. And sinceY = CnUnA(e�A (D;X)Y ), we have E = CnU (X [ Y ).(() Assume E = CnU (X [ Y ) for some hX;Y i 2 s�A(D). Since hX;Y i 2s�A(D), we have Y = CnUnA(e�A (D;X)Y ). Hence E = CnU [X[CnUnA(e�A (D;X)Y )].By Lemma 4.5, we can conclude that E = CnU (X [ e�A (D;X)Y ). Thus, byLemma 4.17, E = CnU (X [ t�A(D)E). By Lemma 4.5, E \ L(A) = CnA(X), andsince X is logically closed, CnA(X) = X. So E \L(A) = X. Since hX;Y i 2 s�A(D),we have X = CnA(b�A(D)X). It follows by Lemma 4.13 that E = CnU (DE). 2Proof of Splitting Set Corollary. Assume that E is a consistent extension of D. Bythe Splitting Set Theorem, there is a solution hX;Y i to D with respect to A suchthat E = CnU (X [ Y ). Since X � L(A) and Y � L(U n A), we can conclude byLemma 4.5 that E\L(A) = CnA(X). And sinceX is logically closed, CnA(X) = X.So E \ L(A) = X. A symmetric argument shows that E \ L(U n A) = Y . 24.3 Proof of Splitting Sequence TheoremLemma 4.18 Let D be a default theory over L(U) with splitting sequence A =hA�i�<�. Let E be a set of formulas from L(U). Let X = hX�i�<� be a sequenceof sets of formulas from L(U) such that� X0 = E \ L(A0) ,� for all � s.t. �+ 1 < �, X�+1 = E \ L(A�+1 nA�) ,� for any limit ordinal � < �, X� = Cn;(;).If E is a consistent extension of D, then X is a solution to D with respect to A.Proof. There are three things to check.101



First, by the Splitting Set Corollary, we can conclude that E \ L(A0) is aconsistent extension of bA0(D).Second, choose � such that � + 1 < �. We must show that X�+1 is aconsistent extension of eA� 0@bA�+1(D); [��X1A : (4.3)Let � = �+1. By the Splitting Set Corollary, E\L(A�) is a consistent extension ofbA� (D). Let D0 = bA�(D) and let E0 = E \ L(A�). By the Splitting Set Corollary,since A� splits D0, E0\L(A� nA�) is a consistent extension of eA�(D0; E0 \L(A�)).It is easy to verify that X�+1 = E0 \ L(A� n A�). It is not di�cult to verify alsothat eA�(D0; E0 \ L(A�)) is the same as (4.3).Third, for any limit ordinal � < �, X� = Cn;(;). 2Lemma 4.19 Let D be a default theory over L(U) with splitting sequence A =hA�i�<�. Let hE�i�<� be a solution to D with respect to A. For all � < �CnA� 0@[��E1Ais a consistent extension of bA�(D).Proof. For all � < �, let X� = CnA� 0@[��E1A :Proof is by induction on �. Assume that for all  < �, X is a consistent extensionof bA (D). We'll show that X� is a consistent extension of bA�(D). There are twocases to consider.Case 1: � is not a limit ordinal. Choose  such that  + 1 = �. By theinductive hypothesis, X is a consistent extension of bA (D). We also know thatE� is a consistent extension of eA (bA�(D);S�� E�). Let D0 = bA�(D). It is clear102



that bA (D) = bA (D0). It is not di�cult to verify that eA (bA�(D);S�� E�) is thesame as eA (D0;X). So we've shown that X is a consistent extension of bA (D0)and that E� is a consistent extension of eA (D0;X). By the Splitting Set Theorem,it follows that CnA�(X [ E�) is a consistent extension of D0. And since it's easyto check that CnA�(X [E�) = X�, we're done with the �rst case.Case 2: � is a limit ordinal. First we show thatX� is closed under bA�(D)X� .So suppose the contrary. Thus there is an r 2 bA�(D)X� such that pre(r) 2 X� andcons(r) =2 X�. Since A is continuous and � is a limit ordinal, we know there mustbe a  < � such that r 2 bA (D)X� . Since bA (D) is a default theory over L(A),we have bA (D)X� = bA (D)X . So r 2 bA (D)X . Furthermore, it follows thatpre(r) 2 X and cons(r) =2 X . This shows that X is not closed under bA (D)X ,which contradicts the fact that, by the inductive hypothesis, X is a consistentextension of bA (D). So we have shown that X� is closed under bA�(D)X� .Now, let E = CnA�(bA�(D)X�). We will show that E = X�, from which itfollows that X� is a consistent extension of bA�(D). Since X� is logically closed andclosed under bA�(D)X� , we know that E � X�. Suppose E 6= X�, and consider anyformula � 2 X� nE. Since A is continuous and � is a limit ordinal, there must be a < � such that � is from L(A) and therefore � 2 X . Thus,X is a proper supersetof E \L(A). By the inductive hypothesis, we know that X is a consistent exten-sion of bA (D). Thus, X = CnA (bA (D)X ). And since bA (D)X = bA (D)X� ,we have X = CnA (bA (D)X�). Since E = CnA�(bA�(D)X�) and bA (D)X� �bA�(D)X� , we know that E is closed under bA (D)X� . Moreover, since bA (D)X�is a default theory over L(A), E \ L(A) is closed under bA (D)X� . But X isthe least logically closed set closed under bA (D)X� , so X � E \ L(A), whichcontradicts the fact that X is a proper superset of E \ L(A). We can concludethat E = X�, which completes the second case. 2
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Let D be a default theory over L(U) with splitting sequence A = hA�i�<�.The standard extension of A is the sequence B = hB�i�<�+1 such that� for all � < �, B� = A� , and� B� = U .Notice that the standard extension of A is itself a splitting sequence for D.Lemma 4.20 Let D be a default theory over L(U) with splitting sequence A =hA�i�<�. Let B = hB�i�<�+1 be the standard extension of A. Let X = hX�i�<� bea sequence of sets of formulas from L(U). Let Y = hY�i�<�+1 be de�ned as follows.� For all � < �, Y� = X�.� Y� = Cn;(;).If X is a solution to D with respect to A, then Y is a solution to D with respect toB.Proof. First, it's clear that Y0 is a consistent extension of bB0(D), since Y0 = X0,bB0(D) = bA0(D), and X0 is a consistent extension of bA0(D). Similarly, it's clearthat for any � such that �+ 1 < �, Y�+1 is a consistent extension ofeB� 0@bB�+1(D); [��Y1A :We also know that for any limit ordinal � < �, Y� = Cn;(;). It remains to showthat we handle � correctly. There are two cases to consider.Case 1: � is a limit ordinal. In this case we must show that Y� = Cn;(;),which it does.Case 2: � is not a limit ordinal. In this case, choose � such that �+ 1 = �.We must show that Y� is a consistent extension of the default theoryeB� 0@bB�(D); [��Y1A (4.4)104



over L(B� n B�). Since A is a splitting sequence for a default theory over L(U),we know that S<�A = U . Moreover, since A is monotone and � is not a limitordinal, it follows that A� = U . And since B� = A�, we know that bB�(D) = D. Itfollows that default theory (4.4) is empty. It also follows that B� n B� = ;, so thelanguage of (4.4) is L(;). Since Y� = Cn;(;), we have shown that Y� is a consistentextension of (4.4). 2Proof of Splitting Sequence Theorem. ()) Assume that E is a consistent extensionof D. By Lemma 4.18, there is a solution hE�i�<� to D with respect to hA�i�<�for which it is not di�cult to verify thatE = CnU 0@ [�<�E�1A :(() Assume that X = hX�i�<� is a solution to D with respect to hA�i�<�.Let E = CnU 0@ [�<�X�1A :Let B = hB�i�<�+1 be the standard extension of hA�i�<�. By Lemma 4.20, weknow there is a solution hY�i�<�+1 to D with respect to B such thatE = CnU 0@ [�<�+1Y�1A :Moreover, we know there is an � < �+1 such that B� = U . Thus bB�(D) = D andE = CnB� 0@[��Y1A :It follows by Lemma 4.19 that E is a consistent extension of D. 2Proof of Splitting Sequence Corollary. Assume that E is a consistent extension ofD. By the Splitting Sequence Theorem, there is a solution hX�i�<� to D withrespect to A such that E = CnU �S�<�X��. We will show that for all � < �,105



E \ L(U�) = X�. Let X = S�<�X�. Consider any � < �. We have X� � L(U�),X n X� � L(U n U�), and E = CnU (X� [ X n X�). Thus, by Lemma 4.5 we canconclude that E \ L(U�) = CnU�(X�). And since X� is logically closed, we haveCnU�(X�) = X�. 24.4 Proof of Correspondence Theorem and Reachabil-ity CorollaryOur primary task is to prove the special case of the Correspondence Theorem inwhich the domain description has no value propositions. We'll call this intermediateresult the Correspondence Lemma. Most of the work in this section is devoted toits proof.Let D be a quali�cation-free domain description without value propositions,with uents F, and frame uents Ff . We will show that there is a one-to-onecorrespondence between models of D and consistent extensions of �(D) such that avalue proposition V is true in a model of D if and only if the formula [V ] belongsto the corresponding extension of �(D).We begin with a fundamental lemma, used to show that our default theory�(D) correctly characterizes the possible initial situations.Let �0 be the default theoryR [ � : LL : L is a uent literal � :Notice that �0 is default theory over L(F).Lemma 4.21 A consistent set X of uent formulas is an extension of �0 if andonly if there is a state S such that X = CnF(S).Proof. Recall that an interpretation S is a state if and only if CnF(S) is closedunder R. (Recall also that interpretations are maximal consistent sets of literals.)106



(Left-to-right) Assume that X is a consistent extension of �0. It is easyto verify that, for every uent F , either F or :F belongs to X. So there is aninterpretation S such that X = CnF(S). Moreover, since R � �X0 , we know thatX is closed under R; so S is a state.(Right-to-left) Assume that S is a state, and take X = CnF(S). It is easyto verify that �X0 = S [Rfrom which it follows that X � CnF(�X0 ). Of course X is closed under S, and sinceS is a state, we know that X is also closed under R. And since X is logically closed,we can conclude that X = CnF(�X0 ). 2The second fundamental lemma is actually Theorem 3.9 from Section 3.5. Itwill be used to show that in the consistent extensions of �(D), non-initial situationsrespect the transition function Res .Recall that for any state S and action name A, �(A;S) is the default theoryobtained by taking the union of the following four sets of rules.1. All rules of the form : LL where L is a frame uent literal in S.2. E(A;S)3. All rules of the forms : FF and : :F:F where F 2 F (A;S).4. RNotice that �(A;S) is a default theory over L(F).We showed in Theorem 3.9 that, for any state S and any action A that isnot prohibited in S, The following hold.1. A state S0 belongs to Res(A;S) if and only if CnF(S0) is a consistent extensionof �(A;S). 107



2. If X is a consistent extension of �(A;S), then there is a state S0 such thatX = CnF(S0).Next we prepare to move these results into the language of default theory�(D). This will require three preliminary lemmas.Let U be the set of atoms such that L(U) is the language of the defaulttheory �(D). We can view L(U) as including a tree of copies of the language L(F):one copy for each action string A. For any set � of rules (that is, any combinationof default rules, inference rules and formulas) over L(F) and any action string A,let �(�; A) denote the set of rules over L(U) obtained by replacing each occurrenceof each uent atom F in � by the atom Holds(F; [A]). Observe that for each actionstring A, the language L(�(F; A)) is a subset of L(U) such that the rules overL(�(F; A)) and the rules over L(F) are in one-to-one correspondence.Lemma 4.22 For every set � of inference rules over L(F) and every action stringA, a set X of formulas from L(F) is closed under � if and only if �(X;A) is closedunder �(�; A).Proof. (Left-to-right) Assume X is closed under �. Let r0 be a rule from �(�; A)such that pre(r0) 2 �(X;A). We must show that cons(r0) 2 �(X;A). We knowthere is a rule r 2 � such that r0 can be obtained from r by replacing each occurrenceof each uent atom F in r by the atom Holds(F; [A]). Since pre(r0) 2 �(X;A), weknow that pre(r) 2 X. Since X is closed under �, cons(r) 2 X, from which itfollows that cons(r0) 2 �(X;A). Proof in the other direction is similar. 2Notice that the previous lemma is su�cient to establish also that X is logi-cally closed if and only if �(X;A) is.Lemma 4.23 For every set � of inference rules over L(F) and every action stringA, we have �(CnF(�); A) = Cn�(F;A)(�(�; A)).108



Proof. Follows easily from the previous lemma. 2Lemma 4.24 For every default theory D over L(F) and every action string A, aset X of formulas from L(F) is an extension of D if and only if �(X;A) is anextension of �(D;A).Proof. By Lemma 4.22 we know that X = CnF(DX) if and only if �(X;A) =�(CnF(DX); A). By Lemma 4.23 we have �(CnF(DX); A) = Cn�(F;A)(�(DX ; A)).Finally, it is not di�cult to verify that �(DX ; A) = �(D;A)�(X;A) which su�ces toestablish the lemma. 2In order to apply the two fundamental lemmas, Lemma 4.21 & Theorem 3.9,to the default theory �(D), we will split �(D) into simpler parts, using the SplittingSequence Theorem. To this end, we introduce a partial mapping � from an initialsegment of ordinals f� : � < �g to action strings, which satis�es the following threeconditions.1. For each action string A there is a non-limit ordinal � < � such that �(�) = A.2. For each non-limit ordinal � < � there is an action string A such that �(�) =A.3. For all non-limit ordinals � and � such that � < � < �, �(�) 6= �(�) and thelength of �(�) is no greater than the length of �(�).Notice that �(0) = �.Let hU�i�<� be the sequence of pairwise disjoint subsets of U with the fol-lowing two properties.1. For each limit ordinal � < �, U� = ;.2. For each non-limit ordinal � < �, U� consists of all atoms from U with thesituation argument [�(�)]. 109



Let hA�i�<� be the sequence of subsets of U such that for all � < �A� = [��U :It is not di�cult to verify that hA�i�<� is a splitting sequence for �(D).Now we can prove that default theory �(D) is correct with respect to theinitial situation S0, which we can also write as [�] and as [�(0)]. We do this byshowing that the default theory bA0(�(D)) behaves correctly, as follows.Lemma 4.25 A set X of formulas from L(U0) is a consistent extension of bA0(�(D))if and only if there is a state S such thatX = CnU0 [fReachable(S0)g [�(S; �)] :Proof. It is easy to verify thatbA0(�(D)) = �(�0; �) [ � : Reachable(S0)Reachable(S0) � :The lemma follows in a straightforward fashion from this observation, by Lem-mas 4.21 and 4.24. 2We next show that default theory �(D) uses the structure of the situationcalculus to build what is essentially a tree of embeddings of the de�nition of Res .For each �+ 1 < �, letD�+1 = bA�+1(�(D)) n bA�(�(D)) :So D�+1 is the default theory over L(A�+1) which can be described as follows. LetA be the action string and A the action name such that �(�+ 1) = A;A. For eachsu�ciency proposition � su�ces for  in D, we have the ruleHolds(�; [A;A]) ^ Reachable([A;A])Holds( ; [A;A]) :110



For each e�ect proposition A causes � if  in D, we have the ruleHolds( ; [A]) ^ Reachable([A;A])Holds(�; [A;A]) :For each inuence proposition A possibly changes F if  in D, we have the rulesHolds( ; [A]) ^ Reachable([A;A]) : Holds(F; [A;A])Holds(F; [A;A])and Holds( ; [A]) ^ Reachable([A;A]) : :Holds(F; [A;A]):Holds(F; [A;A]) :For each executability proposition impossible A if  in D, we have the ruleHolds(�; [A]):Reachable([A;A]) :We also have a number of additional rules, as speci�ed below.Reachability axioms.: Reachable([A;A])Reachable([A;A]) and :Reachable([A]):Reachable([A;A]) :Inertia axioms. For each frame uent literal L,Holds(L; [A]) ^ Reachable([A;A]) : Holds(L; [A;A])Holds(L; [A;A]) :For any set Y of formulas from L(A�), letE�+1(Y ) = eA�(D�+1; Y ) :Notice that E�+1(Y ) is a default theory over L(U�+1).Lemma 4.26 Let � be such that � + 1 < �. Let A be the action string and A theaction name such that �(� + 1) = A;A. Let  be such that �() = A. For anylogically closed set Y of formulas from L(A�), we haveE�+1(Y ) = E�+1(Y \ L(U)) :111



Proof. Follows easily from the fact that every constituent of every rule in D�+1belongs to L(U) [ L(U�+1). 2Lemma 4.27 Let � be such that � + 1 < �. Let A be the action string and Athe action name such that �(� + 1) = A;A. Let  be such that �() = A. LetY = CnU (f:Reachable([A])g). Let S be a state. Let Z = CnU [fReachable([A])g[�(S;A)]. The following hold.1. The unique extension of E�+1(Y ) is CnU�+1(f:Reachable([A;A])g).2. If A is prohibited in S, then the unique extension of E�+1(Z) isCnU�+1(f:Reachable([A;A])g) :3. If A is not prohibited in S, then X is an extension of E�+1(Z) if and only ifthere is a state S0 2 Res(A;S) such thatX = CnU�+1 [fReachable([A;A])g [�(S0; A;A)] :Proof. For this lemma we will use the Splitting Set Theorem, with splitting setB = fReachable([A;A])g. Notice that B splits both E�+1(Y ) and E�+1(Z).For the �rst part, it's not hard to verify that the unique extension of defaulttheory bB(E�+1(Y )) is CnB(f:Reachable([A;A])g). Moreover, it is easy to verifythat eB(E�+1(Y );CnB(f:Reachable([A;A])g)) = ; :Thus h CnB(f:Reachable([A;A])g) ; Cn�(F;A;A)(;) iis a solution to E�+1(Y ) with respect to B, and by the Splitting Set Theorem itfollows that CnU�+1(f:Reachable([A;A])) is the unique extension of E�+1(Y ).112



For part two, assume that A is prohibited in S. Thus there is uent formula� such that the rule Holds(�; [A]):Reachable(A;A)belongs to D�+1 and � is satis�ed in S. Since � is satis�ed in S, � 2 CnF(S).Thus we have Holds(�; [A]) 2 �(CnF(S); A), and it follows by Lemma 4.23 thatHolds(�; [A]) 2 Cn�(F;A)(�(S;A)). And since Cn�(F;A)(�(S;A)) � Z, we haveHolds(�; [A]) 2 Z. It follows easily that the unique extension of bB(E�+1(Z)) isCnB(f:Reachable([A;A])g). Again, it is easy to verify thateB(E�+1(Z);CnB(f:Reachable([A;A])g)) = ; :Thus, by essentially the same reasoning as in the previous case, we can concludethat the unique extension of E�+1(Z) is CnU�+1(f:Reachable([A;A])g).For the third part, assume that A is not prohibited in S. Reasoning muchas before, we see that unique extension of bB(E�+1(Z)) is CnB(B). Now takeD0 = eB(E�+1(Z);CnB(B)) :The key step is to recognize thatD0 = �(�(A;S); A;A) :Thus, we can apply Theorem 3.9 relating Res(A;S) and �(A;S), as follows.(Left-to-right) Assume that X is an extension of E�+1(Z). By the Split-ting Set Corollary, hX \ L(B);X \ L(�(F; A;A))i is a solution to E�+1(Z) withrespect to B, and it follows immediately that X \ L(B) is a consistent exten-sion of bB(E�+1(Z)) and that X \ L(�(F; A;A)) is a consistent extension of D0.Let X 0 = X \ L(�(F; A;A)). Notice that X = CnU�+1(B [ X 0). Since D0 =�(�(A;S); A;A), we know by Theorem 3.9 and Lemma 4.24 that there is a stateS0 2 Res(A;S) such that we have X 0 = Cn�(F;A;A)[�(S0; A;A)]. It follows thatX = CnU�+1(B [ �(S0; A;A)). 113



(Right-to-left) Assume there is a state S0 2 Res(A;S) such that we haveX = CnU�+1(B [ �(S0; A;A)). We know that CnB(B) is a consistent extension ofbB(E�+1(Z)). Let X 0 = Cn�(F;A;A)[�(S0; A;A)]. Since D0 = �(�(A;S); A;A). weknow by Theorem 3.9 and Lemma 4.24 that X 0 is a consistent extension of D0. Itfollows by the Splitting Set Theorem that X is an extension of E�+1(Z). 2At this point we have applied the fundamental lemmas, Lemma 4.21 & The-orem 3.9, to the parts of �(D) that we obtain using the splitting sequence hA�i�<�.The resulting lemmas (4.25 & 4.27) capture essential properties of �(D) in a formthat will be convenient for our proof of the Correspondence Lemma.In what follows, we will �rst show that for any model 	 of D we can con-struct a corresponding extension of �(D) (Lemma 4.33). It will then remain toshow that each consistent extension of �(D) corresponds to a unique model of D(Lemma 4.40). These results together will establish that there is indeed a one-to-onecorrespondence between models of D and consistent extensions of �(D). Moreover,we'll show that each model and its corresponding extension agree on the truth ofall value propositions, which will su�ce to establish the Correspondence Lemma.At this point we associate with each structure for D a unique set of literalsfrom L(U). It will be our goal to show that, for any model of D, the associated setof literals is a consistent extension of �(D).For any structure 	 for D, let �(	) be the least set of literals from L(U)such that for every action string A:1. if A =2 Dom(	), then :Reachable([A]) 2 �(	); and2. if A 2 Dom(	), then Reachable([A]) 2 �(	) and �(	(A); A) � �(	).In Lemma 4.29 below, we will show that �(	) has the following crucial prop-erty: a value proposition V is true in 	 if and only if [V ] 2 CnU (�(	)).114



Lemma 4.28 Let 	 be a structure for D. For all action strings A, we haveCnU (�(	)) \ L(�(F; A)) = Cn�(F;A)(�(	) \ L(�(F; A))) :Proof. Straightforward. 2Lemma 4.29 A value proposition V is true in a structure 	 for D if and only if[V ] 2 CnU (�(	)).Proof. Notice that it is su�cient to prove that the lemma holds for all atomic valuepropositions. So consider any value proposition � after A.(Left-to-right) Assume that � after A is true in 	. Thus, A 2 Dom(	) and� is satis�ed in 	(A). Since � is satis�ed in 	(A), we know that � 2 CnF(	(A)).Thus, Holds(�; [A]) 2 �[CnF(	(A)); A]. We can conclude by Lemma 4.23 thatHolds(�; [A]) 2 CnU (�(	(A); A)). By the de�nition of �(	), Reachable([A]) 2 �(	)and �(	(A); A) � �(	). So we've shown that Reachable([A]) ^ Holds(�; [A]) 2CnU (�(	)). That is, [� after A] 2 CnU (�(	)).(Right-to-left) Assume that [� after A] 2 CnU (�(	)). That is just to saythat Reachable([A]) ^Holds(�; [A]) 2 CnU (�(	)). Thus Holds(�; [A]) 2 CnU (�(	))and Reachable([A]) 2 CnU (�(	)). By the de�nition of �(	), it follows that A 2Dom(	). Again by the de�nition of �(	), we can conclude that �(	(A); A) =�(	) \ L(�(F; A)). Thus, Cn�(F;A)(�(	(A); A)) = Cn�(F;A)(�(	) \ L(�(F; A))).By Lemmas 4.23 and 4.28 it follows that�[CnF(	(A)); A] = CnU (�(	)) \ L(�(F; A)) :And since we know that Holds(�; [A]) 2 CnU (�(	)) \ L(�(F; A)), it follows thatHolds(�; [A]) 2 �[CnF(	(A)); A]. So � 2 CnF(	(A)). That is, 	(A) satis�es �and thus � after A is true in 	. 2Now we begin the main part of the proof of the left-to-right direction of theCorrespondence Lemma. 115



Let 	 be a model of D. We will show that CnU(�(	)) is an extension of�(D). We begin by putting CnU(�(	)) in a form more suitable for application ofthe Splitting Sequence Theorem.Let hX�i�<� be de�ned as follows.1. X0 = CnU0(�(	) \ L(U0)).2. For all � such that �+ 1 < �, X�+1 = CnU�+1(�(	) \ L(U�+1)).3. For all limit ordinals � < �, X� = Cn;(;).Lemma 4.30 We have CnU(�(	)) = CnU 0@ [�<�X�1A :Proof. It is straightforward to verify that�(	) = [�<�(�(	) \ L(U�)) :It is clear from the de�nitions that for all � < �, X� = CnU�(�(	) \ L(U�)). Thelemma follows easily from these observations. 2We will show that hX�i�<� is a solution to �(D) with respect to hA�i�<�.Lemma 4.31 Let � be a non-limit ordinal such that � < �. Let A be the actionstring such that A = �(�). The following hold.1. If A 2 Dom(	) then X� = CnU� [fReachable([A])g [ �(	(A); A)].2. If A =2 Dom(	) then X� = CnU�(f:Reachable([A])g).Proof. By the de�nition of hX�i�<� we know that X� = CnU�(�(	)\L(U�)). Forpart one, assume that A 2 Dom(	). From the de�nition of �(	) we can concludethat �(	) \ L(U�) = fReachable([A])g [ �(	(A); A). For part two, assume thatA =2 Dom(	). From the de�nition of �(	) we can conclude that �(	) \ L(U�) =f:Reachable([A])g. 2116



Lemma 4.32 For each � such that � + 1 < �, X�+1 is a consistent extension ofthe default theory E�+10@ [���X�1Aover L(U�+1).Proof. Let A be the action string and A the action name such that �(�+1) = A;A.Let  be such that �() = A. By the de�nition of E�+1 we know thatE�+10@ [���X�1A = E�+10@CnA� 0@ [���X�1A1A :It is easy to verify that CnA� 0@ [���X�1A \ L(U) = X :Thus, by Lemma 4.26 we can conclude thatE�+10@ [���X�1A = E�+1(X) :So we will show that X�+1 is an extension of E�+1(X). Consider three cases.Case 1: A;A 2 Dom(	). Since the domain of 	 is pre�x-closed, we haveA 2 Dom(	). Let S = 	(A) and S0 = 	(A;A). By the previous lemma we havethe following. X = CnU [fReachable([A])g [ �(S;A)]X�+1 = CnU�+1 [fReachable([A;A])g [ �(S0; A;A)]Since A;A 2 Dom(	), we know that A is not prohibited in S. Furthermore, since	 is a model of D, we have S0 2 Res(A;S). Thus, by part three of Lemma 4.27,X�+1 is a consistent extension of E�+1(X).117



Case 2: A;A =2 Dom(	) and A 2 Dom(	). Let S = 	(A). In this case, Xis the same as in the previous case. By the previous lemmaX�+1 = CnU�+1(f:Reachable([A;A])g) :Since D is a quali�cation-free domain, and A;A =2 Dom(	) while A 2 Dom(	), wecan conclude that A is prohibited in S. Thus, by part two of Lemma 4.27, X�+1 isa consistent extension of E�+1(X).Case 3: A;A =2 Dom(	) and A =2 Dom(	). In this case, X�+1 is the sameas in the previous case. By the previous lemmaX = CnU(f:Reachable([A])g) :By part one of Lemma 4.27, X�+1 is a consistent extension of E�+1(X). 2Lemma 4.33 Let D be a quali�cation-free domain theory without value proposi-tions. If 	 is a model of D, then CnU(�(	)) is a consistent extension of �(D).Proof. First, the fact that X0 is a consistent extension of bA0(�(D)) follows easilyfrom Lemma 4.25. Second, the previous lemma shows that for each � such that�+ 1 < �, X�+1 is a consistent extension ofE�+10@[��X1A :Finally, by the de�nition of hX�i�<�, we know that for all limit ordinals � < �,X� = Cn;(;). These observations are su�cient to establish that hX�i�<� is asolution to �(D) with respect to hA�i�<�. By Lemma 4.30CnU(�(	)) = CnU 0@ [�<�X�1Aso we can conclude by the Splitting Sequence Theorem that CnU(�(	)) is a consis-tent extension of �(D). 2118



We have essentially established the left-to-right direction of the Correspon-dence Lemma. Now we turn our attention to the other direction.LetX be a consistent extension of �(D). We will show that there is a (unique)model 	 of D such that X = CnU(�(	)) (Lemma 4.40). To this end, we specify aconstruction that, as we will show, yields a unique model of D for each consistentextension of �(D).Let 	X be the partial function from actions strings to sets of uent literalsthat satis�es the following two conditions.1. Dom(	X) = fA : Reachable([A]) 2 Xg.2. For all non-limit ordinals � < �, if �(�) 2 Dom(	X), then 	X(�(�)) is thegreatest set of uent literals such that �(	X(�(�)); �(�)) � X \ L(U�).Thus, for every action string A 2 Dom(	X), 	X(A) is the greatest set S ofuent literals such that �(S;A) is a subset of X. One thing we will show is thatsuch sets S are in fact states (Lemma 4.36). More generally, we will establish thefact that 	X is a structure for D such that X = CnU (�(	X)) (Lemma 4.37).Lemma 4.34 The domain of 	X is nonempty and pre�x-closed.Proof. By Lemma 4.25 (and the Splitting Sequence Corollary), we can concludethat Reachable(S0) 2 X. Thus the domain of 	X is nonempty.For every action string A, �(D) includes the rule: Reachable([A])Reachable([A])from which it follows that for every action string A, either Reachable([A]) 2 X or:Reachable([A]) 2 X. Furthermore, for every action string A and action name A,�(D) includes the rule :Reachable([A]):Reachable([A;A])119



which guarantees that if :Reachable([A]) 2 X then :Reachable([A;A]) 2 X. Thuswe can conclude that if A =2 Dom(	X) then A;A =2 Dom(	X), which is just to saythat the domain of 	X is pre�x-closed. 2Once again we will be looking to apply Lemmas 4.25 and 4.27. In order todo this, we need an appropriate sequence, which is de�ned next.Let hX�i�<� be the sequence such that for every � < �, X� = X \ L(U�).We know by the Splitting Sequence Corollary that hX�i�<� is a solution to �(D)with respect to hA�i�<�. Moreover, it is not hard to verify thatX = CnU 0@ [�<�X�1A :Lemma 4.35 Let � be such that � + 1 < �. Let A be the action string and A theaction name such that �(� + 1) = A;A. The following hold.1. If Reachable([A;A]) 2 X�+1, then there is a state S such thatX�+1 = CnU�+1 [fReachable([A;A])g [ �(S;A;A)] :2. If Reachable(A;A]) =2 X�+1, thenX�+1 = CnU�+1(f:Reachable([A;A])g) :Proof. Proof is by induction on �. Let  be such that �() = A. By the de�nitionof E�+1 we know thatE�+10@ [���X�1A = E�+10@CnA� 0@ [���X�1A1A :It is not di�cult to verify thatCnA� 0@ [���X�1A \ L(U) = X :120



Thus, by Lemma 4.26 we can conclude thatE�+10@ [���X�1A = E�+1(X) :So X�+1 is an extension of E�+1(X). Now consider three cases.Case 1:  = 0. Thus A = �. By Lemma 4.25 there is a state S such thatX = CnU [fReachable([A])g [ �(S;A)] :To show part one for this case, assume that Reachable([A;A]) 2 X�+1. By parttwo of Lemma 4.27 we can conclude that A is not prohibited in S and the desiredconclusion then follows from part three of Lemma 4.27. Part two for this case canbe proved similarly.Case 2:  6= 0 and Reachable([A]) 2 X . In this case we use the inductivehypothesis, which guarantees that there is a state S such thatX = CnU [fReachable([A])g [ �(S;A)] :From this point the proof proceeds as in the previous case.Case 3:  6= 0 and Reachable([A]) =2 X . In this case we again use theinductive hypothesis, which guarantees that X = CnU (f:Reachable([A])g). Wereach the desired conclusion by applying part one of Lemma 4.27. 2Lemma 4.36 	X is a partial function from action strings to states.Proof. We show that for all non-limit ordinals � < �, if �(�) 2 Dom(	X),then 	X(�(�)) is a state. First, if � = 0, we can conclude by Lemma 4.25 (andthe Splitting Sequence Corollary), along with the de�nition of 	X , that �(�) 2Dom(	X) and that 	X(�(�)) is a state. Let � be such that �+1 < �. If �(�+1) 2Dom(	X), then Reachable([�(�+1)]) 2 X�+1, and we can conclude by the previouslemma that 	X(�(� + 1)) is a state. 2121



Lemma 4.37 	X is a structure for D such that X = CnU (�(	X )).Proof. By Lemma 4.34 and the previous lemma, 	X is partial function from actionstrings to states whose domain is nonempty and pre�x-closed, which shows that 	Xis a structure for D. Thus, �(	X) is de�ned. We must show that X = CnU (�(	X )).To begin, it is easy to verify thatCnU (�(	X)) = CnU 0@ [�<�CnU�(�(	X ) \ L(U�))1A :Recall that X = CnU 0@ [�<�X�1A :Given these observations, we see that it will be su�cient to show that for every� < �, X� = CnU�(�(	X ) \ L(U�)).If � is a limit ordinal, this is trivially true; so assume that � is a non-limitordinal and let A be the action string such that A = �(�). Now consider two cases.Case 1 : A =2 Dom(	X). In this case, by the de�nition of �, we have �(	X)\L(U�) = f:Reachable([A])g. Similarly, by the de�nition of 	X , we know thatReachable([A]) =2 X�. It follows by Lemma 4.25 that � 6= 0. Thus, by part two ofLemma 4.35 we can conclude that X� = CnU�(�(	X ) \ L(U�)).Case 2 : A 2 Dom(	X). By the de�nition of 	X , we have Reachable([A]) 2X�. Now, if A = � we know by Lemma 4.25 that there is a state S such thatX� = CnU�(fReachable([A])g [ �(S;A)) :On the other hand, if A 6= �, the same thing follows from part one of Lemma 4.35.By the de�nition of 	X we know that �(	X(A); A) � X�. Since X� is consistent,we can conclude that 	X(A) = S. It follows by the de�nition of � that�(	X) \ L(U�) = fReachable([A])g [ �(S;A) :Thus X� = CnU�(�(	X) \ L(U�)). 2122



Now that we know 	X is a structure for D, we'll need just two more lemmasin order to establish that 	X is in fact a model for D (Lemma 4.40).Lemma 4.38 For all A 2 Dom(	X) and all action names A, if Res(A;	X(A)) isnonempty, then A;A 2 Dom(	X).Proof. Let S = 	X(A). By Lemma 4.36, S is a state. Let � and  be such that�(� + 1) = A;A and �() = A. By the construction of 	X from X, we know that�(S;A) � X , and also that Reachable([A]) 2 X . If  = 0 it follows by Lemma 4.25that X = CnU [fReachable([A])g [ �(S;A)]since X is consistent. On the other hand, if  6= 0, the same thing follows from partone of Lemma 4.35. Since Res(A;S) is nonempty, we know that A is not prohibitedin S. It follows by part three of Lemma 4.27 that Reachable([A;A]) 2 X�+1. Thus,by the construction of 	X from X, A;A 2 Dom(	X). 2Lemma 4.39 For all A;A 2 Dom(	X), 	X(A;A) 2 Res(A;	X(A)).Proof. By Lemma 4.34, A 2 Dom(	X), since A;A is. Let S = 	X(A) andS0 = 	X(A;A). Let � and  be such that �(� + 1) = A;A and �() = A. ByLemma 4.36, S and S0 are states. By essentially the same reasoning used in theproof of the previous lemma, we can show each of the following.X = CnU [fReachable([A])g [ �(S;A)]X�+1 = CnU�+1 [fReachable([A;A])g [ �(S0; A;A)]It follows from part two of Lemma 4.27 that A is not prohibited in S. We canconclude by part three of Lemma 4.27 that S0 2 Res(A;S). That is, 	X(A;A) 2Res(A;	X(A)). 2123



Lemma 4.40 Let D be a quali�cation-free domain theory without value proposi-tions. If X is a consistent extension of �(D), then 	X is a (unique) model of Dsuch that X = CnU (�(	X )).Proof. By Lemma 4.37, 	X is a structure for D such that X = CnU(�(	X )).Moreover, it is clear that 	X is the only such structure. Lemma 4.36 shows that	X(�) is a state. Given this, Lemmas 4.38 and 4.39 establish the fact that 	X is amodel of D. 2Lemma 4.41 (Correspondence Lemma) Let D be a quali�cation-free AC do-main description without value propositions. There is a one-to-one correspondencebetween models of D and consistent extensions of �(D) such that a value propositionV is true in a model of D if and only if the formula [V ] belongs to the correspondingextension of �(D).Proof. We have de�ned a total function from models 	 ofD to consistent extensionsCnU (�(	)) of �(D) (Lemma 4.33). Notice that this function is injective. To see thatit is also surjective, notice that we have also de�ned a total function from consistentextensionsX of �(D) to models 	X of D such that X = CnU (�(	X )) (Lemma 4.40).Thus � can be used to de�ne a one-to-one correspondence between models of D andconsistent extensions of �(D). Finally, we've shown that a value proposition V istrue in a model 	 of D if and only if the formula [V ] belongs to the correspondingextension CnU (�(	)) of �(D) (Lemma 4.29). 2We require one more lemma for the proof of the Correspondence Theorem.Lemma 4.42 Let D be a quali�cation-free domain description. Let D0 be the do-main description obtained by deleting all value propositions from D. Let E bea consistent set of formulas from L(U). E = CnU ( �(D)E ) if and only if E =CnU ( �(D0)E ) and for every value proposition V 2 D, [V ] 2 E.124



Proof. (Left-to-right) Assume that E = CnU ( �(D)E ). It is clear that E =CnU ( �(D0)E ), since every rule in �(D) n �(D0) has the form �False . By the Corre-spondence Lemma, there is a model 	 of D0 such that for every value propositionV , V is true in 	 if and only if [V ] 2 E. Consider any value proposition V 2 D.Since :[V ]False 2 �(D), we know that :[V ] =2 E. It follows that :V is not true in 	,and thus that V is true in 	. So we can conclude that [V ] 2 E.Proof in the other direction is similar, but slightly simpler. 2Proof of Correspondence Theorem. Let D be a quali�cation-free domain descrip-tion. Let D0 be the domain description obtained by deleting all value propositionsfrom D. By the Correspondence Lemma, we know that there is a one-to-one cor-respondence between models of D0 and consistent extensions of �(D0) such that avalue proposition V is true in a model of D0 if and only if the formula [V ] belongsto the corresponding extension of �(D0).Let C be the set of pairs h	; Ei such that 	 is a model of D0 and E is thecorresponding extension of �(D0). Since every model of D is a model of D0 andsimilarly every consistent extension of �(D) is a consistent extension of �(D0), wecan complete our proof by showing that, for each pair h	; Ei that belongs to C, 	is a model of D if and only if E is a consistent extension of �(D). So consider anyh	; Ei 2 C.(Left-to-right) Assume that 	 is a model of D. We can conclude by theCorrespondence Lemma that for every value proposition V 2 D, [V ] 2 E. SinceE is a consistent extension of �(D0), it follows by the previous lemma that E is aconsistent extension of �(D).(Right-to-left) Assume that E is a consistent extension of �(D). It followsby the previous lemma that E is a consistent extension of �(D0) such that for everyvalue proposition V 2 D, [V ] 2 E. We can conclude by the Correspondence Lemmathat 	 is a model of D0 that satis�es every value proposition in D. That is, 	 is a125



model of D. 2Proof of Reachability Corollary. Let A be the set of all Reachable atoms in U . SinceD includes no executability propositions, A is a splitting set for �(D). Furthermore,it is clear that CnA(A) is the unique extension of bA(�(D)). Notice that�0(D) = eA(�(D);CnA(A)) :It follows by the Splitting Set Theorem that there is a one-to-one correspondencebetween the consistent extensions of �(D) and the consistent extensions of �0(D)such that for every value proposition V , [V ] belongs to a consistent extension of�(D) if and only if [[V ]] belongs to the corresponding extension of �0(D). Given thisfact, the corollary follows immediately from the Correspondence Theorem. 24.5 Proof of LP Correspondence Theorem, LP Reach-ability Corollary, and Vivid Domains TheoremProof of the LP Correspondence Theorem is based on the following lemma, whichis shown to follow from the Correspondence Theorem for default logic.Lemma 4.43 (LP Correspondence Lemma)Let D be an LP-simple, quali�cation-free AC domain description without valuepropositions. There is a one-to-one correspondence between models of D and consis-tent answer sets of �(D) such that, for every model 	 of D and corresponding answerset X, an LP-simple value proposition V1_� � �_Vm_:Vm+1_� � �_:Vn is true in 	 ifand only if at least one of the sets f [[V1]]; : : : ; [[Vm]] g\X and f [[Vm+1]]; : : : ; [[Vn]] gnXis nonempty.Proof. To begin, because D includes no value propositions, it is straightfor-ward to determine that the default theories dt(�(D)) and �(D) have precisely the126



same extensions. By the Correspondence Theorem, we know there is a one-to-one correspondence between models of D and consistent extensions of �(D) suchthat, for every model 	 of D and corresponding extension E, a value proposi-tion V is true in 	 if and only if [V ] 2 E. Let C be the set of pairs h	; Eisuch that 	 is a model of D and E is the corresponding consistent extension of�(D). Since �(D) and dt(�(D)) have the same extensions, we know that the setfE \Lit(U) : E is a consistent extension of �(D) g is precisely the set of consistentanswer sets for �(D). Take A = f h	; E \ Lit(U)i : h	; Ei 2 C g.Consider any h	; Ei 2 C, along with the corresponding pair h	;Xi 2 A.It is clear from the construction of �(D) that for any LP-simple atomic valueproposition L after A, [[L after A]] 2 X if and only if both [[L after A]] 2 Xand Reachable([A]) 2 X. We can conclude that [[L after A]] 2 X if and only if[L after A] 2 E. It follows by the Correspondence Theorem that for any LP-simpleatomic value proposition V , V is true in 	 if and only if [[V ]] 2 X.Assume that h	;Xi and h	0;X 0i are distinct members of A. It follows that 	and 	0 are distinct, and so must di�er on the truth of some LP-simple atomic valueproposition V . We can conclude that exactly one of the two sets X;X 0 includes [[V ]].Thus X 6= X 0. This shows that A captures a one-to-one correspondence betweenmodels of D and consistent answer sets of �(D).Now consider any LP-simple value proposition V = V1 _ � � � _ Vm _:Vm+1 _� � � _ :Vn and any h	;Xi 2 A. We know that V is true in 	 if and only if atleast one of V1; : : : ; Vm is true in 	 or at least one of Vm+1; : : : ; Vn is not true in 	.Since each of V1; : : : ; Vm is an LP-simple atomic value proposition, we can concludethat at least one of V1; : : : ; Vm is true in 	 if and only if f [[V1]]; : : : ; [[Vm]] g \ Xis nonempty. Similarly, since each of Vm+1; : : : ; Vn is an LP-simple atomic valueproposition, we can conclude that at least one of Vm+1; : : : ; Vn is not true in 	 i�f [[Vm+1]]; : : : ; [[Vn]] g nX is nonempty. Summing up, we have shown that V1 _ � � � _127



Vm _:Vm+1 _ � � � _:Vn is true in 	 i� at least one of the sets f [[V1]]; : : : ; [[Vm]] g\Xand f [[Vm+1]]; : : : ; [[Vn]] g nX is nonempty. 2Proof of LP Correspondence Theorem. Let D be an LP-simple, quali�cation-freedomain description. Let D0 be the domain description obtained from D by deletingall value propositions. By the LP Correspondence Lemma, we know that there is aone-to-one correspondence between models of D0 and consistent answer sets of �(D0)such that, for every model 	 of D0 and corresponding answer set X, an LP-simplevalue proposition V1 _ � � � _ Vm _:Vm+1 _ � � � _ :Vn is true in 	 if and only if eitherf [[V1]]; : : : ; [[Vm]] g \X 6= ; or f [[Vm+1]]; : : : ; [[Vn]] g nX 6= ;.Notice that �(D) n �(D0) consists of all rules of the formFalse  [[Vm+1]]; : : : ; [[Vn]];not [[V1]]; : : : ;not [[Vm]]where V1 _ � � � _ Vm _ :Vm+1 _ � � � _ :Vn is an LP-simple value proposition in D.It is a consequence of this observation that, for any set X, X is an answer setfor �(D) if and only if X is an answer set for �(D0) such that, for every valueproposition V1_ � � � _Vm_:Vm+1_ � � � _:Vn in D, either f [[V1]]; : : : ; [[Vm]] g\X 6= ;or f [[Vm+1]]; : : : ; [[Vn]] g nX 6= ;. We will rely on this result below.Let A be the set of pairs h	;Xi such that 	 is a model of D0 and X is thecorresponding answer set for �(D0). Since every model of D is a model of D0 andsimilarly every consistent answer set for �(D) is a consistent answer set for �(D0),we can complete our proof by showing that, for each pair h	;Xi that belongs to A,	 is a model of D if and only if X is a consistent answer set for �(D). So considerany h	;Xi 2 A.(Left-to-right) Assume that 	 is a model of D. Thus, every value propositionin D is true in 	. It follows by the LP Correspondence Lemma that for every valueproposition V1_ � � � _Vm_:Vm+1_ � � � _:Vn in D, either f [[V1]]; : : : ; [[Vm]] g\X 6= ;or f [[Vm+1]]; : : : ; [[Vn]] g nX 6= ;. We can conclude that X is an answer set for �(D).128



Proof in the other direction is similar. 2Next we sketch a proof of the LP Reachability Corollary. A complete proofwould use the Splitting Set Theorem for logic programs [LT94].Proof of LP Reachability Corollary (Sketch).Let B = fReachable([A]) : A is an action stringg. Since D is quali�cation-free, wecan show that for every consistent answer set X for �(D), X \ Lit(B) = B. Giventhis, show that for any subset X of Lit(U n B), X [ B is a consistent answer setfor �(D) if and only if X is a consistent answer set for �0(D). Finally, since everyaction string A belongs to Dom(	), we know that for every LP-simple atomic valueproposition V , V is true in 	 if and only if :V is not true in 	. We can conclude thatf [[V1]]; : : : ; [[Vm]]; [[Vm+1]]; : : : ; [[Vn]] g \X 6= ; if and only if either f [[V1]]; : : : ; [[Vm]] g \X 6= ; or f [[Vm+1]]; : : : ; [[Vn]] g nX 6= ;. 2Finally we begin the proof of the Vivid Domains Theorem.For any domain description D, letRules(D) = � � : � su�ces for  2 D� :We will need the following lemma.Lemma 4.44 (Vivid Domains Lemma) Let D be a vivid AC domain description.For any set X of uent literals,Cn(X [ Rules(D)) = Cn(X [ Rules(LP-Simple(D))) :Proof. It is easy to verify that for any set X of uent formulas we haveCn(X [ Rules(LP-Simple(D))) � Cn(X [ Rules(D)) :For the other direction, let X be a set of uent literals, and takeY = Cn(X [ Rules(LP-Simple(D))) :129



We will show that Y is closed under X [ Rules(D). We begin by observing thatbecause X is a set of uent literals and every rule in Rules(LP-Simple(D)) has eitherthe form �L where L is a uent literal or the form �False , we can conclude that thereis a set Y 0 of uent literals such that Y = Cn(Y 0). It's clear that Y is closed underX, so consider any rule � 2 Rules(D) such that � 2 Y . We must show that  alsobelongs to Y . Since � 2 Y and Y = Cn(Y 0) for some set Y 0 of uent literals, wecan conclude that some disjunct �0 of DNF (�) belongs to Y . Since � su�ces for  is vivid, we know that  is either a nonempty conjunction of uent literals or theformula False . If  is False , then Y is inconsistent and we're done; so assume that  is a nonempty conjunction of uent literals. Consider any conjunct L of  . The rule�0 su�ces for L belongs to LP-Simple(D), and since �0 2 Y , we have L 2 Y . Wecan conclude that each conjunct of  belongs to Y ; and since Y is logically closed,we have  2 Y . 2Notice that the preceding lemma establishes the fact that domain descrip-tions D and LP-Simple(D) have the same set of states.Proof of Vivid Domains Theorem. We have already observed that, for any structure	, all of the value propositions in D are true in 	 if and only all of the valuepropositions in LP-Simple(D) are true in 	. By the Vivid Domains Lemma, weknow that domains D and LP-Simple(D) have the same set of states. Consider anyaction A and state S. We complete the �rst part of the proof by showing that astate S0 may result from doing A in S in domain D if and only if S0 may result fromdoing A in S in domain LP-Simple(D).It is easy to verify that A is prohibited in S in domain D if and only if Ais prohibited in S in domain LP-Simple(D). If A is prohibited in S in the twodomains, we're done. So assume otherwise. It is also easy to see that the twodomains agree on the set F (A;S). Furthermore, although the two domains may notagree precisely on the set E(A;S), it is clear that they do agree on Cn(E(A;S)). It130



follows that E0 is an explicit e�ect of A in S in domain LP-Simple(D) if and only ifthere is an explicit e�ect E of A in S in domain D such that E0 = Cn(E) \ Lit(F).Moreover, for any such E and E0, it is clear that, for any set � of inference rules,Cn(� [E) = Cn(� [E0).(Left-to-right) Assume that S0 may result from doing A in S in domain D.So there is an explicit e�ect E of A in S in domain D such thatCn(S0) = Cn[ (S \ S0 \ Lit(Ff ) ) [E [ Rules(D) ] :We have already observed that there must be an explicit e�ect E0 of A in S in domainLP-Simple(D) such that E0 = Cn(E) \Lit(F) and, for any set � of inference rules,Cn(� [E) = Cn(� [E0). ThusCn(S0) = Cn[ (S \ S0 \ Lit(Ff ) ) [E0 [Rules(D) ] :Furthermore, because (S \ S0 \ Lit(Ff ) ) [ E0 is a set of uent literals, we canconclude by the Vivid Domains Lemma thatCn(S0) = Cn[ (S \ S0 \ Lit(Ff ) ) [E0 [ Rules(LP-Simple(D)) ] :That is, S0 may result from doing A in S in domain LP-Simple(D).Proof in the other direction is similar. Thus we have shown that the twodomains agree on Res , which is su�cient to establish the fact that they have thesame models, given the earlier observation that they have equivalent sets of valuepropositions (Section 3.6). Moreover, since they also agree, for each action A andstate S, on the question of whether or not A is prohibited in S, we can concludethat either both domain descriptions are quali�cation-free or neither is. 2
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Chapter 5
A Logic of Universal Causation

This chapter discusses a modal nonmonotonic logic of \universal causation," calledUCL, designed for formalizing commonsense knowledge about actions. It was intro-duced in [Tur98]. UCL extends the recently introduced causal theories formalism ofMcCain and Turner [MT97], which shares its underlying motivations.The mathematical ideas underlying UCL, and the approach to formalizingactions in it, can also be understood as an outgrowth of the work described in the�rst part of the dissertation.5.1 IntroductionThe fundamental distinction in UCL|between facts that are caused and facts thatare merely true|is expressed by means of the modal operator C, read as \caused."For example, one can write � � C to say that  is caused whenever � is true.These simple linguistic resources make it possible for a UCL theory to express theconditions under which facts are caused. It is in this sense that UCL is a logic ofcausation.As usual for nonmonotonic logics, the main semantic de�nition in UCL|of132



a \causally explained" interpretation|is given by a �xpoint condition. Intuitively,an interpretation is causally explained by a UCL theory T if it represents the factstrue in a world that is \causally possible" according to T . The focus in UCL oncausally possible worlds is motivated by the following pair of observations.� Knowledge of the causally possible worlds is su�cient for many commonsensereasoning tasks associated with action domains, such as prediction and plan-ning.� In order to determine the causally possible worlds, it is su�cient to know theconditions under which facts are caused.The �rst observation suggests that UCL can be useful. The second observationhelps explain why UCL can be simple: it formalizes causal knowledge of a relativelysimple kind, and does not attempt the notoriously di�cult task of formalizing causalrelations of the form \� causes  ." Happily, one can describe and reason about theconditions under which facts are caused without settling the question of what causeswhat. In UCL, the notion of a causally possible world is made precise on the basisof the following pair of assumptions.� In a causally possible world, every fact that is caused obtains.� In a causally possible world, every fact that obtains is caused.The �rst assumption is unremarkable. The second is not. As in [MT97], we call itthe principle of universal causation. This simplifying assumption is the key to themain semantic de�nition of the logic, which is therefore named for it. We take thesetwo assumptions together to de�ne what it is for a world to be causally possible:what obtains in the world is exactly what is caused in it. Accordingly, the mainsemantic de�nition in UCL says that an interpretation I is causally explained by aUCL theory T if what is true in I is exactly what is caused in I according to T .133



The principle of universal causation is easily relaxed in practice. For instance,when describing action domains, we generally have little or nothing to say about the\actual" conditions under which facts in the initial situation are caused. Instead,our UCL action theories typically stipulate that facts in the initial situation arecaused. Such stipulations are straightforward in UCL, where one can say that � iscaused whenever it is true simply by writing� � C� : (5.1)In the same way, we typically stipulate that facts about the occurrence and non-occurrence of actions are caused.More interesting are those facts that, roughly speaking, are true simply be-cause they were true before and haven't been made false since. It is facts of thiskind that give rise to the frame problem [MH69]. Solutions to the frame problemtypically appeal to the \commonsense law of inertia," according to which the valueof an inertial uent persists unless it is caused to change. The principle of univer-sal causation makes possible a simple, robust encoding of the commonsense law ofinertia. Take ft to stand for the proposition that a uent f holds at a time t. Onecan write Cft ^ ft+1 � Cft+1 (5.2)to stipulate that f is caused at time t+1 whenever it is caused at time t andcontinues to hold at time t+1. Thus, axioms of form (5.2) can, in e�ect, suspendthe principle of universal causation with respect to persistent inertial uents. Ofcourse, universal causation still requires that if f does not persist, the new valueof f must be caused. That is, the UCL theory must describe conditions su�cient forit to be caused. In this way, inertia axioms of form (5.2) interact with the principleof universal causation to solve the frame problem, guaranteeing that inertial uentspersist unless they are caused to change.134



UCL di�ers in fundamental ways from nonmonotonic formalisms such asdefault logic [Rei80] and autoepistemic logic [Moo85]. First, UCL is not motivatedby the problem of general default reasoning and knowledge representation. It isdesigned for a more speci�c purpose. Second, in UCL one describes the conditionsunder which facts are caused, rather than the conditions under which facts arebelieved or known. Third, the �xpoint condition in UCL characterizes completeworlds, in the form of classical interpretations, rather than incomplete, logicallyclosed belief sets. Nonetheless, we will see that UCL is closely related to defaultlogic, in the special case when we consider only the \complete," consistent extensionsof default theories. We will also consider briey a rather striking similarity betweenthe main semantic de�nitions of UCL and autoepistemic logic.UCL can be understood as an extension of nonmonotonic formalism of causaltheories introduced in [MT97], in which there are so-called \causal laws" of the form� )  , with the intended reading \whenever � is true,  is caused to be true." Herewe show that such causal laws can be translated in UCL as� � C (5.3)thus providing a more adequate semantic account of them. We go on to develop insome detail the close relationship between such causal laws and the circumscriptiveapproach to \causal laws" of Lin [Lin95]. Along the same lines, we show that the\static causal laws" of [MT95b] correspond to UCL formulas of the formC� � C : (5.4)The contributions of this chapter can be summarized as follows. It introducesUCL, a mathematically simple modal nonmonotonic logic designed for representingcommonsense knowledge about actions. By establishing relationships with previ-ous proposals, including the proposal studied in the �rst part of this dissertation,it shows how a variety of causal theories of action can be expressed in UCL. By135



relating these proposals to a single logical framework, it contributes to the ongo-ing investigation of the relationships between various approaches. Finally, it relatesUCL to some well-known nonmonotonic formalisms.We proceed as follows. Section 5.2 de�nes propositional UCL, the fragmentprimarily investigated in this dissertation. Section 5.3 shows how the inference rulesused in the �rst part of the dissertation are captured in UCL, and also embeds ruleupdate (Section 3.3.2) in UCL. In doing so, we see how the commonsense law ofinertia can be expressed in UCL. Section 5.4 relates UCL to default logic, and inSection 5.5 we observe that the embedding of AC in default logic from Chapter 3yields a similar embedding in UCL. We also consider how to simplify the embeddingsomewhat, in anticipation of subsequent work. Section 5.6 introduces subclasses ofUCL for which simpler semantic characterizations can be given. Flat UCL theoriescorrespond to the causal theories formalism of [MT97], and de�nite UCL theoriescorrespond to the de�nite causal theories of [MT97, MT98b]. De�nite theories areparticularly important from a computational perspective, since they have a concisetranslation into classical logic, called \literal completion." Section 5.7 describes ageneral method of formalizing action domains based on the approach from [MT97].Here we leave behind the situation calculus and move to natural number time.Section 5.8 shows that a subset of UCL can be nicely reduced to circumscriptivetheories, and Section 5.9 explores the relationship between UCL and the circum-scriptive action theories of Lin [Lin95, Lin96]. In Section 5.10, we briey considerthe relationship of UCL to autoepistemic logic. In Section 5.11, we extend UCLto allow �rst and second-order quanti�ers. In Section 5.12, we show that (second-order) UCL extends the second-order subset of the nonpropositional causal theoriesof Lifschitz [Lif97], which, in turn, extend the at propositional UCL theories ofSection 5.6.
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5.2 Propositional UCL5.2.1 Syntax and SemanticsBegin with a set of propositional symbols (atoms)|the signature of our language.For convenience, we assume that the language includes a zero-place logical connec-tive True such that True is a tautology. Let False stand for :True. A literal is anatom or its negation. We identify each interpretation with the set of literals truein it. UCL formulas are de�ned as usual for a modal propositional language withsingle unary modal operator C. A formula is nonmodal if C does not occur in it. AUCL theory is a set of UCL formulas.The main semantic de�nition (of a \causally explained" interpretation) isobtained by imposing a �xpoint condition on S5 modal logic. Thus, a UCL structureis a pair (I; S) such that I is an interpretation, and S is a set of interpretations towhich I belongs. The truth of a UCL sentence in a UCL structure is de�ned bythe standard recursions over the propositional connectives, plus the following twoconditions. (I; S) j= p i� I j= p (for any atom p)(I; S) j= C� i� for all I 0 2 S; (I 0; S) j= �Given a UCL theory T , we write (I; S) j= T to mean that (I; S) j= �, for every� 2 T . In this case, we say that (I; S) is a model of T . We also say that (I; S) is anI-model of T , emphasizing the distinguished interpretation I.Main De�nition. Let T be a UCL theory. An interpretation I is causally explainedby T if (I; fIg) is the unique I-model of T .We distinguish three entailment relations. The �rst two|classical proposi-tional entailment and propositional S5 entailment|are standard, monotonic rela-tions. The third|UCL entailment|is de�ned as follows. For any UCL theory Tand nonmodal formula �, we write T j�� to say that � is true in every interpretation137



causally explained by T .Here is an alternative characterization of causally explained interpretations.Proposition 5.1 For any UCL theory T , an interpretation I is causally explainedby T if and only if (I; fIg) is the unique model of T [ I.Proof. Clearly T and T [ I have the same I-models. It remains only to observethat all models of T [ I are I-models. 25.2.2 ExamplesLet T1 be the UCL theory with one formulap � Cp (5.5)in the language with a single atom p. Let I1 be the interpretation fpg. The struc-ture (I1; fI1g) is the unique I1-model of T1, so I1 is causally explained by T . Theonly other interpretation is I2 = f:pg. Since (I2; fI1; I2g) j= T1, I2 is not causallyexplained by T1. Therefore, T1 j� p.Notice that it is essential that the language of T1 include only the atom p.If it were extended to include a second atom, there would no longer be any causallyexplained interpretations.Let T2 be the UCL theory obtained by adding to T1 the formula:p � C:p : (5.6)Both I1 and I2 are causally explained by T2. Therefore, T2 j6� p, which illustratesthe nonmonotonicity of UCL.Let T3 be the UCL theory obtained from T2 by adding a single atom q to thelanguage, and also adding the formulaC(q � p) : (5.7)138



The interpretations fp; qg and f:p;:qg are both causally explained by T3. No othersare. This last example illustrates the following general phenomenon. We obtain ade�nitional extension T 0 of a UCL theory T by adding a new atom p to the signatureand also adding an explicit de�nition of p|a formula of the formC (p � �) (5.8)where � is a nonmodal formula in which p does not occur. Clearly, one can replaceany formula equivalent to � by p anywhere in T 0, except in (5.8), without a�ectingthe models of T 0, or, therefore, the causally explained interpretations. Moreover, itis not di�cult to verify that T 0 is a conservative extension of T : that is, T and T 0have the same UCL-consequences (and, in fact, the same S5-consequences) in thelanguage of T .5.3 Possible Next States and Inertia in UCLIn this chapter we embed rule update, de�ned in Section 3.3.2, in UCL. In this man-ner we obtain a more traditional semantic account of the use of inference rules bothin rule update and in the de�nition of possible next states in the action language AC.5.3.1 Inference Rules in UCLWe �rst make precise the simple relationship between an inference rule� and the corresponding UCL formulaC� � C :We begin with three preliminary de�nitions and an easy lemma.139



Given a set R of inference rules, letCE (R) = �C� � C : � 2 R� :Given a set S of interpretations, let Th(S) denote the set of nonmodal formulas truein all members of S. Given a set � of nonmodal formulas, let Mod(�) denote theset of interpretations that satisfy all members of �.Lemma 5.2 Let R be a set of inference rules, S a set of interpretations, and I aninterpretation in S. Th(S) is closed under R if and only if (I; S) j= CE (R).Proof. Assume Th(S) is closed under R. Consider any formula C� � C fromCE (R) such that (I; S) j= C�. It follows that � 2 Th(S). By the de�nition ofCE (R), we know that � 2 R; and since Th(S) is closed under R, we can concludethat  2 Th(S). It follows that (I; S) j= C .Proof in the other direction is similar. 2This lemma yields the following characterization of the relationship betweena set R of inference rules and the corresponding set CE(R) of UCL formulas.Proposition 5.3 For any set R of inference rules and any nonmodal formula �,� 2 Cn(R) if and only if C� is an S5-consequence of CE(R).Proof. In this proof we use the fact that � 2 Cn(R) i� � belongs to every set offormulas that is both closed under propositional logic and closed under R.(Left-to-right) Assume that � 2 Cn(R). Consider any model (I; S) ofCE (R). By the previous lemma, Th(S) is closed underR. It follows that � 2 Th(S),and thus that (I; S) j= C�.(Right-to-left) Assume that � =2 Cn(R). Thus there is a nonempty set S ofinterpretations such that Th(S) is closed under R and � =2 Th(S). Consider anyI 2 S. By the previous lemma, (I; S) j= CE (R). Since � =2 Th(S), (I; S) 6j= C�. 2140



The causally explained interpretations of a UCL theory CE (R) can be char-acterized as follows, simplifying the more general, similar result of Proposition 5.1.Proposition 5.4 For any set R of inference rules, an interpretation I is causallyexplained by CE(R) if and only if (I; fIg) is the unique model of CE (R).The proof begins with an observation about inference rules. If sets X and Yof formulas are both closed under a set R of inference rules, then X \ Y is alsoclosed under R. This fact, along with Lemma 5.2, yields the following.Lemma 5.5 For any set R of inference rules, if (I; S) j= CE (R) and(I 0; S0) j= CE (R), then (I; S [ S0) j= CE(R).Proof. By Lemma 5.2, both Th(S) and Th(S0) are closed under R. It fol-lows, as observed above, that Th(S) \ Th(S0) is also closed under R. Since I be-longs to S and Th(S) \ Th(S0) = Th(S [ S0), we conclude by Lemma 5.5 that(I; S [ S0) j= CE(R). 2Proof of Proposition 5.4. The right-to-left direction is trivial. For the other direc-tion, assume I is causally explained by CE (R). So (I; fIg) is the unique I-modelof CE (R). Assume that (I 0; S) j= CE(R). By Lemma 5.5, (I; fIg [ S) j= CE (R).Since (I; fIg) is the unique I-model of CE (R), S = fIg and I 0 = I. 2If a UCL theory T has a unique model (I; fIg), then, for every nonmodalformula �, C� is among the S5-consequences of T if and only if I j= �. Given thisobservation, the previous proposition yields the following corollary.Corollary 5.6 For any set R of inference rules, an interpretation I is causally ex-plained by CE (R) if and only if Cn(I) = f� : C� is an S5-consequence of CE (R)g,where � ranges over nonmodal formulas.The �xpoint condition in Corollary 5.6 is very similar to that used in thede�nition of rule update, which we consider next.141



5.3.2 Two Embeddings of Rule Update in UCLFirst we recall the de�nition of rule update from Section 3.3.2.LetR be a set of inference rules, and I an interpretation. An interpretation I 0is a rule update of I by R if and only ifCn(I 0) = Cn((I \ I 0) [R) :Here is a �rst, easy embedding of rule update in UCL.Proposition 5.7 Let R be a set of inference rules, and I and I 0 interpretations.Take T (R; I; I 0) = CE (R) [ fCL : L 2 I \ I 0 g :I 0 is a rule update of I by R if and only if I 0 is causally explained by T (R; I; I 0).Proof. I 0 is a rule update of I by R i� Cn(I 0) = Cn((I \ I 0) [R), which, byProposition 5.3, is equivalent toCn(I 0) = f� : C� is an S5-consequence of CE ((I \ I 0) [R)gwhich, by Corollary 5.6, is true i� I 0 is causally explained by CE ((I \ I 0) [R). Itremains only to notice that T (R; I; I 0) is S5-equivalent to CE ((I \ I 0) [R). 2We can improve the embedding of rule update in UCL by writing formulasthat capture the commonsense law of inertia, which is built into the de�nition of ruleupdate. We establish one way to do this in the following theorem. This embeddingis similar to the embedding into default logic of the de�nition of possible next statesfrom AC that was presented in Chapter 3.5.2.Proposition 5.8 Let R be a set of inference rules, and I an interpretation. TakeT 0(R; I) = CE(R) [ fL � CL : L 2 I g :An interpretation I 0 is a rule update of I by R i� I 0 is causally explained by T 0(R; I).142



Proof. In light of Proposition 5.7, it is enough to show that I 0 is causally explainedby T 0(R; I) i� I 0 is causally explained by T (R; I; I 0). This follows easily from theobservation that, for every superset S of I 0,(I 0; S) j= T (R; I; I 0) i� (I 0; S) j= T (R; I)which, in turn, follows from the easily veri�ed observation that(I 0; S) j= fCL : L 2 I \ I 0g i� (I 0; S) j= fL � CL : L 2 I g : 2For example, recalling the rule update example from Section 3.3.2, we seethat T 0(R1; I1) is the following UCL theory.Ca � C(:b _ :c)a � Cab � Cbc � CcIt is easy to check that T 0(R1; I1) has exactly two causally explained interpretations|fa;:b; cg and fa; b;:cg|which are the two rule updates of I1 by R1.In anticipation of our interest in UCL theories for commonsense reasoningabout action, it will be helpful to consider a third, somewhat more complex em-bedding of rule update in UCL, which features a more explicit representation of thecommonsense law of inertia.5.3.3 A Third Embedding: Commonsense Inertia in UCLIn order to obtain a more explicit embedding of rule update in UCL, we �rst extendthe language by adding a fresh atom A0 for every atom A. For any literal L inthe original language, let L0 be the formula obtained by replacing the atom A that143



occurs in L with the atom A0. Given an interpretation I of the original language,let I0 = fL0 : L 2 Ig.Given a set R of inference rules, the UCL theory T 00(R) is the union of thefollowing three sets of UCL formulas. CE (R) (5.9)fCL0 ^ L � CL : L is a literal in the original language g (5.10)fL0 � CL0 : L is a literal in the original language g (5.11)Proposition 5.9 Let R be a set of inference rules, and I an interpretation. Aninterpretation I 0 is a rule update of I by R if and only if I0[ I 0 is causally explainedby T 00(R).Proof Sketch. By Proposition 5.8, it is enough to show that I 0 is causally ex-plained by T 0(R; I) i� I0 [ I 0 is causally explained by T 00(R). The key observa-tion is that I 0 is causally explained by T 0(R; I) i� I0 [ I 0 is causally explainedby fCL0 : L 2 Ig [ T 0(R; I). Thus, we need to show that(I0 [ I 0; S) j= fCL0 : L 2 Ig [ CE (R) [ fL � CL : L 2 Igi� (I0 [ I 0; S) j= T 00(R);which follows from the fact that (I0 [ I 0; S) satis�es the formulas in (5.10) and (5.11)i� (I0 [ I 0; S) j= fCL0 : L 2 Ig [ fL � CL : L 2 Ig: 2In this alternative embedding, unlike the previous one, we do not include animplicit encoding of any particular initial interpretation I. Instead we say of everyliteral L that it is caused initially if it is true initially (5.11). That is roughly to saythat we require no additional causal explanation for literals in the initial situation144



beyond the fact that they are true. (Or, more accurately, we simply say that theyare caused whenever they are true.)1Given this, we can understand the formulas in (5.10) as an explicit represen-tation of the causal understanding of the commonsense law of inertia that motivatesthe de�nition of rule update. Each rule in (5.10) says of a literal L that if it iscaused initially, then it is also caused after the update whenever it is true after theupdate. And since every fact in a causally possible world must be caused accord-ing to our theory, we know that whenever a uent changes its value in a causallypossible world, the new value must have a causal explanation other than inertia.That is, the formulas CE (R), in concert with the formulas (5.10), must describeconditions su�cient for it to be caused. We have often described the commonsenselaw of inertia in terms of this second observation|saying \things change only whenmade to."The UCL formula for inertia in this second embedding of rule update is verysimilar to the default rules for inertia used in the translation of AC into defaultlogic. It is interesting to note that Proposition 5.9 continues to hold if we replacethe inertia formulas (5.10) with the stronger UCL formulasfL0 ^ L � CL : L is a literal in the original language g : (5.12)We will �nd this sort of fact quite useful. Formula (5.12) is what we will eventuallycall a \de�nite" formula, while formula (5.10) is not. We will see that theoriesin which all formulas are de�nite have nice mathematical properties, leading toconvenient methods for automated reasoning.1Recall that essentially the same idea was used in the translations of AC in the �rst part of thedissertation.
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5.4 UCL and Default LogicIn this section, we establish the close mathematical relationship between UCL anddefault logic [Rei80]. More precisely, to be more general, we consider an elaborationof default logic, called disjunctive default logic [GLPT91], which includes Reiter'sdefault logic as a special case. The semantics of a disjunctive default theory is givenin terms of its extensions, which are logically closed sets of (nonmodal) formulas thatsatisfy a certain �xpoint condition. Although an extension may be inconsistent, orincomplete (that is, there may be an atom p such that neither p nor :p belong toit), we will be interested in the special case of extensions that are both consistentand complete, since it is these extensions that correspond to interpretations.We will specify a translation from disjunctive default logic to UCL such thatthe complete, consistent extensions correspond to the causally explained interpre-tations. The translation is invertible, so there is a strong sense in which UCL isequivalent to disjunctive default logic, restricted to the special case of complete,consistent extensions.5.4.1 Review of Disjunctive Default LogicHere we recall de�nitions from [GLPT91].A disjunctive default rule is an expression of the form� : �1; : : : ; �m1j � � � jn (5.13)where all of �; �1; : : : ; �m; 1; : : : ; n are (nonmodal) formulas (m � 0; n � 1).A disjunctive default theory is a set of disjunctive default rules. Let D be adisjunctive default theory and E a set of formulas. De�ne DE as follows.DE = � �1j � � � jn : � : �1; : : : ; �m1j � � � jn 2 D and for all i (1� i�m) ; :�i =2 E �A set E0 of formulas is closed under DE if, for every member of DE, if � 2 E0 thenat least one of 1; : : : ; n 2 E0. We say E is an extension for D if E is a minimal set146



closed under propositional logic and closed under DE. We say E is complete if, forevery atom p, either p 2 E or :p 2 E. Notice that, for the purpose of computingcomplete extensions, the prerequisites �1; : : : ; �m of a disjunctive default rule canbe safely replaced with their conjunction.Reiter's default logic corresponds to the special case when n = 1.5.4.2 UCL and Disjunctive Default LogicGiven a disjunctive default theory D, let ucl(D) be the UCL theory obtained fromDby replacing each disjunctive default rule (5.13) with the UCL formulaC� ^ �1 ^ � � � ^ �m � C1 _ � � � _ Cn : (5.14)It is a fact of propositional S5 modal logic that every theory is equivalent toone in which every formula has the form (5.14), with m = 1.2 Thus, every UCLtheory is equivalent to one that can be obtained by this translation from disjunctivedefault logic.Theorem 5.10 For any disjunctive default theory D and interpretation I, Th(fIg)is an extension for D if and only if I is causally explained by ucl(D).Lemma 5.11 For any disjunctive default theory D and any UCL structure (I; S),(I; S) j= ucl(D) if and only if Th(S) is closed under DTh(fIg).Proof. Assume (I; S) j= ucl(D). Consider any rule �1j � � � jn in DTh(fIg) such that� 2 Th(S). We must show that at least one of 1; : : : ; n is in Th(S). We know thereis a rule � : �1; : : : ; �m1j � � � jn in D such that I satis�es all of �1; : : : ; �m. It follows thatC� ^ �1 ^ � � � ^ �m � C1 _ � � � _ Cn is in ucl(D), and that (I; S) j= �1 ^ � � � ^ �m.Since � 2 Th(S), (I; S) j= C�. And since (I; S) j= ucl(D), we can conclude that2This follows, for instance, from the MCNF Theorem in [HC68].147



(I; S) j= C1 _ � � � _ Cn. Thus, for at least one of i (1� i�n), (I; S) j= Ci, andconsequently i 2 Th(S). Proof in the other direction is similar. 2Proof of Theorem 5.10. (=)) Assume that Th(fIg) is an extension for D. Weknow by Lemma 5.11 that (I; fIg) j= ucl(D). Let S be a superset of fIg such that(I; S) j= ucl(D). By Lemma 5.11, Th(S) is closed under DTh(fIg). Since Th(fIg)is a minimal among sets closed under DTh(fIg), and Th(S) � Th(fIg), we haveTh(S) = Th(fIg). It follows that S = fIg. So (I; fIg) is the unique I-modelof ucl(D). That is, I is causally explained by ucl(D).((=) Assume I is causally explained by ucl(D). So (I; fIg) j= ucl(D). ByLemma 5.11, Th(fIg) is closed under DTh(fIg). Let E be a subset of Th(fIg) closedunder propositional logic and underDTh(fIg). By Lemma 5.11, (I;Mod (E)) j= ucl(D).Since (I; fIg) is the unique I-model of ucl(D), we have Mod(E) = fIg. It followsthat E = Th(fIg). We can conclude that Th(fIg) is a minimal set closed underpropositional logic and under DTh(fIg). That is, Th(fIg) is an extension for D. 2In the statement of Theorem 5.10, we restrict attention to extensions that canbe expressed in the form Th(I), where I is an interpretation. That is, we consideronly complete, consistent extensions. The restriction to complete extensions can ofcourse be expressed in the default theory itself, simply by adding the default rule: p;:pFalsefor each atom p in the language.5.5 Embedding AC in UCLRecall that the Reachability Corollary in the �rst part of the dissertation shows thatquali�cation-free AC domain descriptions that do not include executability propo-sitions can be embedded in default logic (via the translation �0). This embedding148



yields a one-to-one correspondence between AC models and consistent default ex-tensions, and, moreover, one can easily verify that all such default extensions arecomplete. In light of these observations, we obtain the following embedding theo-rem as an immediate consequence of Theorem 5.10 and the Reachability Corollary(Corollary 3.12).Theorem 5.12 Let D be a quali�cation-free AC domain description with no exe-cutability propositions. There is a one-to-one correspondence between models of Dand the interpretations causally explained by ucl(�0(D)) such that, for every model 	of D and its corresponding causally explained interpretation I, a value proposition Vis true in 	 if and only if I j= [[V ]].In this manner we obtain the UCL formalization of Example 1 (from Sec-tion 3.2) that appears in Figure 5.1 simply by translating the default theory fromFigure 3.1. The �rst two UCL formulas in this translation are unnecessarily awk-ward. They are easily simpli�ed though, in light of the following two facts. First,the formula C� � CFalse is S5-equivalent to :C�. Second, the following propositionholds.Proposition 5.13 For any UCL theory T and nonmodal formula �, adding :C�to T simply eliminates the causally explained interpretations that satisfy �Proof. Consider two cases.Case 1 : I 6j= �. Thus, for any superset S of fIg, (I; S) j= :C�. So (I; S) j= Ti� (I; S) j= T [ f:C�g. Hence, adding :C� to T does not a�ect the causally ex-plained interpretations that don't satisfy �.Case 2 : I j= �. Thus, (I; fIg) 6j= :C�, and so (I; fIg) 6j= T [ f:C�g, whichshows that adding :C� to T eliminates any causally explained interpretations thatsatisfy �. 2149



CHolds(Trotting ; S0) � CFalseC(:(Holds(Loaded (Gun1); S0) _Holds(Loaded (Gun2); S0))) � CFalseC:Holds(Alive; s) � C:Holds(Trotting ; s)CHolds(Loaded (x); s) � C:Holds(Alive;Result(Shoot (x); s))Holds(f; S0) � Holds(f; S0) :Holds(f; S0) � :Holds(f; S0)CHolds(f; s) ^Holds(f;Result(a; s)) � CHolds(f;Result(a; s))C:Holds(f; s) ^ :Holds(f;Result(a; s)) � C:Holds(f;Result(a; s))Figure 5.1: UCL translation of default theory for Example 1.Holds(Trotting ; S0)Holds(Loaded (Gun1); S0) _Holds(Loaded (Gun2); S0)))C:Holds(Alive; s) � C:Holds(Trotting ; s)CHolds(Loaded (x); s) � C:Holds(Alive;Result(Shoot (x); s))Holds(f; S0) � Holds(f; S0) :Holds(f; S0) � :Holds(f; S0)CHolds(f; s) ^Holds(f;Result(a; s)) � CHolds(f;Result(a; s))C:Holds(f; s) ^ :Holds(f;Result(a; s)) � C:Holds(f;Result(a; s))Figure 5.2: Simpler UCL theory for Example 1.Of course adding the formula :� to a UCL theory has precisely the samee�ect on the causally explained interpretations: it simply eliminates those thatsatisfy �. Hence, we have shown that one can replace C� � CFalse with :� withouta�ecting causally explained interpretations.These observations, and some propositional logic, show that the UCL theoryin Figure 5.1 has exactly the same causally explained interpretations as the simplertheory shown in Figure 5.2. This approach also yields the UCL theories shown inFigures 5.3 and 5.4 for Examples 2 and 3 from Section 3.2. (In the third formula inFigure 5.3, we have also used the fact that C� ^ C is S5-equivalent to C(� ^  ).)
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:Holds(Open ; S0)C:Holds(Fastened (x);Result(Unfasten(x); s))C:Holds(Fastened (Clasp1); s) ^ C:Holds(Fastened (Clasp2); s)� CHolds(Open ; s)Holds(f; S0) � CHolds(f; S0) :Holds(f; S0) � C:Holds(f; S0)CHolds(f; s) ^Holds(f;Result(a; s)) � CHolds(f;Result(a; s))C:Holds(f; s) ^ :Holds(f;Result(a; s)) � C:Holds(f;Result(a; s))Figure 5.3: UCL theory for Example 2.
Holds(Winner ;Result(BetHeads ;Result(Toss ; S0)))Holds(Heads ;Result(Toss ; s)) � CHolds(Heads ;Result(Toss ; s)):Holds(Heads ;Result(Toss ; s)) � C:Holds(Heads ;Result(Toss ; s))CHolds(Heads ; s) � CHolds(Winner ;Result(BetHeads ; s))C:Holds(Heads ; s) � C:Holds(Winner ;Result(BetHeads ; s))Holds(f; S0) � CHolds(f; S0) :Holds(f; S0) � C:Holds(f; S0)CHolds(f; s) ^Holds(f;Result(a; s)) � CHolds(f;Result(a; s))C:Holds(f; s) ^ :Holds(f;Result(a; s)) � C:Holds(f;Result(a; s))Figure 5.4: UCL theory for Example 3.
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The Correspondence Theorem of Chapter 3, along with Theorem 5.10, canlead to a still more general embedding of AC in UCL. There is a minor complicationthough. The default theories used to establish the Correspondence Theorem are notguaranteed to yield complete extensions. While it is possible to modify them to doso, we will not pursue that possibility here.Instead we move toward simpler kinds of UCL theories, and simpler repre-sentations of action domains in UCL. As we will see, one way to make UCL theoriesmathematically simpler is to eliminate occurrences of the modal operator C, partic-ularly negative occurrences.Here is a related proposition.Proposition 5.14 Let T be a UCL theory in which every formula has the standardform C� ^ � � C1 _ � � � _ Cn (5.15)where all of �; �; 1; : : : ; n are nonmodal formulas. Any interpretation causallyexplained by T is also causally explained by any UCL theory T 0 that can be obtainedfrom T by replacing some or all formulas (5.15) of T with the corresponding formula� ^ � � C1 _ � � � _ Cn : (5.16)Proof. Assume that I is causally explained by T . Thus, (I; fIg) j= T . If (5.15) istrue in (I; fIg), then so is (5.16). Hence, (I; fIg) j= T 0. Let S be a superset of fIgsuch that (I; S) j= T 0. If (5.16) is true in (I; S), then so is (5.15). Hence, (I; S) j= T ,and since I is causally explained by T , S = fIg. Therefore, I is causally explainedby T 0. 2To see that, in general, the converse of Proposition 5.14 does not hold, con-sider T = fCp � Cpg and T 0 = fp � Cpg, with p the only atom in the language.The interpretation fpg is causally explained by T 0, but not by T .152



Holds(Trotting ; S0)Holds(Loaded (Gun1); S0) _Holds(Loaded (Gun2); S0))):Holds(Alive; s) � C:Holds(Trotting ; s)Holds(Loaded (x); s) � C:Holds(Alive;Result(Shoot (x); s))Holds(f; S0) � Holds(f; S0) :Holds(f; S0) � :Holds(f; S0)Holds(f; s) ^Holds(f;Result(a; s)) � CHolds(f;Result(a; s)):Holds(f; s) ^ :Holds(f;Result(a; s)) � C:Holds(f;Result(a; s))Figure 5.5: Another UCL theory for Example 1.:Holds(Open ; S0)C:Holds(Fastened (x);Result(Unfasten(x); s)):Holds(Fastened (Clasp1); s) ^ :Holds(Fastened (Clasp2); s) � CHolds(Open ; s)Holds(f; S0) � CHolds(f; S0) :Holds(f; S0) � C:Holds(f; S0)Holds(f; s) ^Holds(f;Result(a; s)) � CHolds(f;Result(a; s)):Holds(f; s) ^ :Holds(f;Result(a; s)) � C:Holds(f;Result(a; s))Figure 5.6: Another UCL theory for Example 2.Nonetheless, it is possible to show that this transformation preserves allcausally explained interpretations for the UCL theories in Figures 5.2{5.4, yieldingthe still simpler versions displayed in Figures 5.5{5.7, in which all negative occur-rences of C are eliminated. Next we state a general theorem along these lines. Itsproof can be constructed by using Theorem 5.10 to map the problem into defaultlogic, and then reasoning on the basis of the Splitting Sequence Theorem for defaultlogic (stated and proved in Section 4.1). For this we'll want a few de�nitions.Let T be a UCL theory whose formulas have the (simpler) standard formC� ^ � � C (5.17)
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Holds(Winner ;Result(BetHeads ;Result(Toss ; S0)))Holds(Heads ;Result(Toss ; s)) � CHolds(Heads ;Result(Toss ; s)):Holds(Heads ;Result(Toss ; s)) � C:Holds(Heads ;Result(Toss ; s))Holds(Heads ; s) � CHolds(Winner ;Result(BetHeads ; s)):Holds(Heads ; s) � C:Holds(Winner ;Result(BetHeads ; s))Holds(f; S0) � CHolds(f; S0) :Holds(f; S0) � C:Holds(f; S0)Holds(f; s) ^Holds(f;Result(a; s)) � CHolds(f;Result(a; s)):Holds(f; s) ^ :Holds(f;Result(a; s)) � C:Holds(f;Result(a; s))Figure 5.7: Another UCL theory for Example 3.where �, � and  are nonmodal formulas. Let � be a total function from the atomsof the language of T to the ordinals. For each atom A, we call �(A) the level of A.We say that � splits T if, for every formula (5.17)� all atoms that occur in  have the same level, and� no atom that occurs in � or � has a level greater than an atom that occursin .We say that a formula (5.17) is strati�ed by � if� every atom that occurs in � has a level less than the level of every atom in .Theorem 5.15 Let T be a UCL theory all of whose formulas have form (5.17).If � splits T , then T has the same causally explained interpretations as any UCLtheory T 0 that can be obtained by replacing any or all formulas (5.17) that arestrati�ed by � with the corresponding formula� ^ � � C :Proof Sketch. Use Theorem 5.10 to map UCL theories T and T 0 to default the-ories D and D0. The interpretations causally explained by T correspond to the154



complete, consistent extensions of D, and the interpretations causally explainedby T 0 correspond to the complete, consistent extensions of D0. If � splits T , � canbe used to construct a splitting sequence for the default theory D, as follows. Let� be an ordinal such that, for every atom A, �(A) < �. Then for every � < �,U� = fA : �(A) < �g. The resulting sequence also splits D0. Complete theproof by using the Splitting Sequence Theorem to show that D and D0 have thesame complete, consistent extensions. The key observation is that if � strati�es aformula (5.17), then replacing the default rule � : � with the corresponding rule: � ^ � does not change the complete, consistent extensions. 2It would be straightforward to extend the Splitting Theorems for defaultlogic to cover also disjunctive default logic, in which case this theorem could belikewise extended to cover UCL theories whose formulas have standard form (5.15).5.6 Flat and De�nite UCL TheoriesHere we de�ne the class of UCL theories called \at." Flat UCL theories corre-spond exactly to the so-called language of causal theories introduced by McCainand Turner in [MT97]. For this subclass of UCL there is a mathematically simplercharacterization of causally explained interpretations. We also consider in this sec-tion the still more restricted class of \de�nite" UCL theories, for which there is aconcise translation into classical propositional logic.5.6.1 Flat UCL TheoriesA UCL formula is at if it has the form� � C (5.18)where both � and  are nonmodal formulas. A UCL theory is at if all of itsformulas are. 155



Notice that a nonmodal formula � is S5-equivalent to the formula :� � CFalse ,which is at. (So we can think of nonmodal formulas as essentially at.)Given a at UCL theory T and an interpretation I, we de�neT I = f : for some �, � � C 2 T and I j= � g : (5.19)Theorem 5.16 For any at UCL theory T , an interpretation I is causally explainedby T if and only if I is the unique model of T I .Lemma 5.17 For any at UCL theory T and UCL structure (I; S), (I; S) j= T ifand only if, for all I 0 2 S, I 0 j= T I.Proof. The lemma follows easily from the following observation. For any at UCLformula � � C , the following two conditions are equivalent.� (I; S) j= � � C � If I j= � , then, for all I 0 2 S, I 0 j=  . 2Proof of Theorem 5.16. (=)) Assume I is the unique model of T I. By Lemma 5.17,(I; fIg) j= T . Let S be a superset of fIg such that (I; S) j= T . By Lemma 5.17, forall I 0 2 S, I 0 j= T I. It follows that S = fIg, so (I; fIg) is the unique I-model of T .((=) Assume that (I; fIg) is the unique I-model of T . By Lemma 5.17,I j= T I. Assume that I 0 j= T I. By Lemma 5.17, (I; fI; I 0g) j= ucl(T ). It follows thatI = I 0, so I is the unique model of T I. 25.6.2 De�nite UCL TheoriesA at UCL formula � � C is de�nite if  is either a literal or the formula False .A at UCL theory T is de�nite if� each of its formulas is de�nite, and� for every literal L, �nitely many formulas in T have consequent CL.156



Notice that, due to the �rst condition, an interpretation I is causally ex-plained by a de�nite UCL theory T if and only if I = T I.We are particularly interested in de�nite UCL theories because they have aconcise translation into classical propositional logic, which we call \literal comple-tion." Let T be a de�nite UCL theory. By the literal completion of T , denotedby lcomp(T ), we mean the classical propositional theory obtained by an elaborationof the Clark completion method [Cla78], as follows. For each literal L in the languageof T , include in lcomp(T ) the formulaL � (�1 _ � � � _ �n) (5.20)where �1; : : : ; �n are the antecedents of the formulas in T with consequent CL. (Ofcourse, if no causal law in T has consequent CL, then (5.20) becomes L � False.)We will call formula (5.20) the completion of L. Also, for each formula of the form� � CFalse in T , include in lcomp(T ) the formula :�. We will sometimes refer toat UCL formulas with consequent CFalse as constraints.For example, let T be the UCL theory (in the language with exactly theatoms p and q) consisting of the formulasp � Cp ; :q � Cp ; q � Cq ; :q � C:q ; q � CFalse :UCL theory T is de�nite, and lcomp(T ) isf p � p _ :q ; :p � False ; q � q ; :q � :q ; :q g :Theorem 5.18 (Literal Completion Theorem) An intepretation I is causallyexplained by a de�nite UCL theory T if and only if I j= lcomp(T ).Proof. Assume that I is causally explained by T . By Theorem 5.16, I = T I . So,for every literal L 2 I, 157



� there is a formula � such that � � CL belongs to T and I j= �, and� there is no formula � such that � � CL belongs to T and I j= �.It follows that for every literal L 2 I,� I satis�es the completion of L, and� I satis�es the completion of L.That is, I satis�es the completion of every literal in the language of T . Similarly,since False =2 T I , we can conclude that I satis�es every formula in lcomp(T ) obtainedfrom a constraint. So I is a model of lcomp(T ).Proof in the other direction is similar. 2The following corollary to Theorem 5.18 suggests an approach to query eval-uation for de�nite UCL theories.Corollary 5.19 Let T be a de�nite UCL theory, � a set of nonmodal formulas, and� a formula. � [ T j�� if and only if lcomp(D) [ � [ f:�g is unsatis�able.5.7 (More) Causal Theories of Action in UCLIn this section, we introduce a family of languages for describing action domains andillustrate their use. This discussion follows the presentation in [MT97], where thesame approach was introduced in a mathematically more limited setting (speci�cally,the language of \causal theories"). In this approach, time has the structure of thenatural numbers, and action occurrences become propositions in the language. Thus,concurrent actions can be treated more conveniently. Moreover, as we have alreadyargued (Chapter 2), this ontology avoids certain technical di�culties that can arisein the situation calculus due to the phenomenon of \unreachable" situations. Whentime has a linear structure and action occurrences are represented by propositions,158



the question of whether an action can be performed in a particular situation neednot be explicitly addressed in the theory. Instead, if an action can be performed ina situation, there will be, roughly speaking, some causally possible world in whichit actually is.35.7.1 L (F;A;T) LanguagesIt is convenient to specify the underlying propositional signature by means of threepairwise-disjoint sets: a nonempty set F of uent names, a set A of action names,and a nonempty set T of time names, corresponding to the natural numbers or aninitial segment of them. The atoms of the language L (F;A;T) are divided into twoclasses, de�ned as follows. The uent atoms are expressions of the form ft such thatf 2 F and t 2 T. Intuitively, ft is true if and only if the uent f holds at time t.The action atoms are expressions of the form at such that a 2 A and t; t+1 2 T.Intuitively, at is true if and only if the action a occurs at time t. An action literalis an action atom or its negation. A uent literal is a uent atom or its negation.A uent formula is a propositional combination of uent atoms. We say that aformula refers to a time t if an atom whose subscript is t occurs in it.An L (F;A;T) domain description is a UCL theory in an L (F;A;T) language.5.7.2 L (F;A;T) Domain DescriptionsWe illustrate the approach by formalizing a slight elaboration of Lin's Suitcasedomain, considered previously as Example 2 in Section 3.2, and discussed elsewherein the dissertation as well. One thing to notice about the current formalization isthat it allows for concurrent actions, unlike the situation calculus versions we haveconsidered up to now.3A similar idea is made precise in the third part of the dissertation, where the executablity of aplan is de�ned for the kind of UCL action theories introduced in this section.159



Recall that there is a suitcase with two latches, each of which may be ineither of two positions, up or down. The suitcase is spring-loaded so that wheneverboth latches are in the up position the suitcase is caused to be open. We model theopening of the suitcase as a static e�ect (as Lin does); that is, we do not model astate of the domain in which both latches are up but the suitcase is not (yet) open.We take time names corresponding to the natural numbers, and we chooseuent names and action names as follows.Fluents 8>>>><>>>>: Up(L1) : the �rst latch is upUp(L2) : the second latch is upIsOpen : the suitcase is openActions 8>>>><>>>>: Toggle(L1) : toggle the �rst latchToggle(L2) : toggle the second latchClose : close the suitcaseGiven our choice of language, the Suitcase domain can be partially formalizedby the following schemas, where l is a metavariable ranging over fL1; L2g.Toggle(l)t ^Up(l)t � C:Up(l)t+1 (5.21)Toggle(l)t ^ :Up(l)t � CUp(l)t+1 (5.22)Close t � C:IsOpen t+1 (5.23)Up(L1)t ^Up(L2)t � CIsOpen t (5.24)According to schemas (5.21) and (5.22), whenever a latch is toggled at a time t it iscaused to be in the opposite state at time t+1. Schema (5.23) says that wheneverthe suitcase is closed at a time t it is caused to be not open at t+1. Schema (5.24)says that whenever both latches are up at a time t the suitcase is caused to be openalso at t. Schemas (5.21){(5.23) express \dynamic causal laws." Schema (5.24)expresses a \static causal law." 160



Notice that (5.24) is not the weaker formulaCUp(L1)t ^ CUp(L2)t � CIsOpen t (5.25)which would correspond more closely to the static causal laws studied in the �rstpart of the dissertation (and also to the corresponding situation calculus formula inFigure 5.3). In this case, the weaker version would not a�ect the causally explainedinterpretations (as can be shown using Theorem 5.15). Given this, we prefer (5.24)to (5.25), since (5.24) is de�nite.Similarly, one might expect that in place of (5.21) and (5.22), we would writeToggle(l)t ^ CUp(l)t � C:Up(l)t+1 (5.26)Toggle(l)t ^ C:Up(l)t � CUp(l)t+1 : (5.27)Again, Theorem 5.15 could be used to show that for this domain description it makesno di�erence|the causally explained interpretations would not be a�ected. In fact,in this case, we can invoke a somewhat simpler result, Proposition 5.20 below, whichis a straightforward consequence of Theorem 5.15, based on the following de�nitions.Let D be an L (F;A;T) domain description whose formulas have the standardform (5.17). That is, every formula in D has the formC� ^ � � C :We say that D respects the ow of time if every formula (5.17) in D satis�es thefollowing three conditions.�  refers to at most one time.� If  refers to a time t, then neither � nor � refer to a time later than t.� If a uent atom that refers to a time t occurs in , then every action atomthat occurs in � or � refers to a time earlier than t.161



We say that a formula (5.17) in D is strati�ed by time if� every time that � refers to is earlier than every time that  refers to.Proposition 5.20 Let D be an L (F;A;T) domain description whose formulas havethe standard form (5.17). If D respects the ow of time, then D has the samecausally explained interpretations as any L (F;A;T) domain description D0 that canbe obtained by replacing any or all formulas (5.17) that are strati�ed by time withthe corresponding formula � ^ � � C :This result follows easily from Theorem 5.15. (Let � map each atom to thetime it refers to.)The UCL theory (5.21){(5.24) is an incomplete description of the Suitcasedomain because it does not represent su�cient conditions for certain facts beingcaused: namely, facts preserved by inertia, facts about the initial situation, and factsabout which actions occur (and when). The following schemas provide a standardway to �ll these gaps.In the following two schemas, a is a metavariable for action names.at � Cat (5.28):at � C:at (5.29)Schema (5.28) says that the occurrence of an action a at a time t is caused whenevera occurs at t. Schema (5.29) says that the non-occurrence of an action a at a time tis caused whenever a does not occur at t. In e�ect, by these schemas we representthat facts about action occurrences are exogenous to the theory.In the following two schemas, f is a metavariable for uent names.f0 � Cf0 (5.30):f0 � C:f0 (5.31)162



In e�ect, by these schemas we represent that facts about the initial values of uentsmay be exogenous to the theory.By a uent designating formula we mean a propositional combination ofuent names. Given a uent designating formula � and a time name t, we write �tto stand for the uent formula obtained from � by simultaneously replacing eachoccurrence of each uent name f by the uent atom ft.Let I be a set of uent designating formulas. We express that the uentsdesignated by the formulas in I are inertial by writing the following schema, where� is a metavariable ranging over I.�t ^ �t+1 � C�t+1 (5.32)According to schema (5.32), whenever a uent designated in I holds at two successivetimes, its truth at the second time is taken to be caused simply by virtue of itspersistence.4 For the Suitcase domain, we take I to be the set of all uent namesand their negations. Thus, the inertia laws for the Suitcase domain can also berepresented by the schemas ft ^ ft+1 � Cft+1and :ft ^ :ft+1 � C:ft+1 ;where f is a metavariable for uent names. In other cases, there may be inertialuents that are not designated by uent names or their negations, and, conversely,there may be uent names or negations of uent names that do not designate inertialuents. We will see such a case in Section 5.7.3, when we describe how to introduceexplicit de�nitions in L (F;A;T) domain descriptions.4Notice that C�t ^ �t+1 � C�t+1 is strati�ed by time. Hence, when used in a domain descriptionthat respects the ow of time, (5.32) can be replaced with C�t ^ �t+1 � C�t+1 without a�ecting thecausally explained interpretations. 163



Toggle(l)t ^Up(l)t � C:Up(l)t+1Toggle(l)t ^ :Up(l)t � CUp(l)t+1Close t � C:IsOpent+1Up(L1)t ^Up(L2)t � CIsOpen tat � Cat :at � C:at f0 � Cf0 :f0 � C:f0ft ^ ft+1 � Cft+1 :ft ^ :ft+1 � C:ft+1Figure 5.8: L (F;A;T) description D3 of Lin's Suitcase domain.Schemas (5.21){(5.24) and (5.28){(5.32) express the complete UCL theoryfor the Suitcase domain. Schemas (5.21){(5.24) are domain speci�c. We often re-fer to the remaining schemas (5.28){(5.32) as standard schemas. Intuitively, thestandard schemas exempt speci�c classes of facts from the principle of universalcausation. (Notice that the standard schemas respect the ow of time.) The com-plete L (F;A;T) descriptionD3 of the Suitcase domain appears in Figure 5.8. Noticethat it is de�nite.Let I be the interpretation characterized below.:Toggle(L1)0 :Toggle(L1)1 :Toggle(L1)2 � � �Toggle(L2)0 :Toggle(L2)1 :Toggle(L2)2 � � �:Close0 :Close1 :Close2 � � �Up(L1)0 Up(L1)1 Up(L1)2 � � �:Up(L2)0 � Up(L2)1 Up(L2)2 � � �:IsOpen0 � IsOpen1 IsOpen2 � � �Interpretation I speci�es, for all actions a and times t, whether or not a occursat t, and, for all uents f and times t, whether or not f holds at t. Here, exactlyone action occurs|the toggling of the second latch at time 0|and, intuitively, itresults in the suitcase being open at time 1. (The ellipses indicate that after time 2no action occurs and no uent changes its value. The bullets indicate literals that164



are \explained" by domain speci�c schemas. All others are explained by standardschemas.) It is not di�cult to see that I is causally explained by D3.The following formula is a UCL-consequence of D3.Up(L1)0 ^Up(L2)0 ^ Close0 � Toggle(L1)0 _Toggle(L2)0 (5.33)In general, when both latches are up, it is impossible to perform only the action ofclosing the suitcase; one must also concurrently toggle at least one of the latches. Ifthis seems unintuitive, recall that we have chosen to model the suitcase being openas a static e�ect of the latches being up, so there is no time in any causally possibleworld at which both latches are up and the suitcase is closed.5.7.3 Expressive PossibilitiesThe previous example demonstrates that L (F;A;T) domain descriptions can beused to represent some standard features of action domains, such as indirect e�ectsof actions, implied action preconditions and concurrent actions. Next we brieydescribe a few of the additional expressive possibilities of the approach.Rami�cation and Quali�cation ConstraintsRami�cation and quali�cation constraints, in the sense of Lin and Reiter [LR94],are formalized by schemas of the forms C�t and �t respectively, where � (the \stateconstraint") is a uent designating formula. (Similar results are established byProposition 5.8 and Theorem 5.12.)Nondeterministic ActionsThe semantics of UCL rests on the principle of universal causation, according towhich every fact is caused. Intuitively, in the case of a nondeterministic action,there is no cause for one of its possible e�ects rather than another. We have already165



Toss t ^Heads t+1 � CHeads t+1Toss t ^ :Heads t+1 � C:Heads t+1at � Cat :at � C:at f0 � Cf0 :f0 � C:f0ft ^ ft+1 � Cft+1 :ft ^ :ft+1 � C:ft+1Figure 5.9: L (F;A;T) description D4 of Coin Toss domain.seen, however|in standard schemas (5.28) through (5.32)|that there are waysof e�ectively exempting facts from the principle of universal causation. We canuse laws of a similar form to describe nondeterministic actions. For instance, thenondeterministic e�ect of tossing a coin can be described by the following pair ofschemas. Toss t ^Heads t+1 � CHeads t+1 (5.34)Toss t ^ :Heads t+1 � C:Heads t+1 (5.35)Intuitively, according to schemas (5.34) and (5.35), for every time t, Toss t rendersHeads t+1 exogenous. We'll consider some related results in Section 5.9.3.Notice that these formulas are similar to those used in the UCL formalizationof Example 3 appearing in Figure 5.7.This description can be completed by adding the UCL formulas given by thestandard schemas (5.28){(5.32), with the set of inertial uents I = fHeads ;:Headsg.The complete domain description D4 is represented in Figure 5.9. We will considerthis action domain, and some elaborations of it, in more detail in the next chapter,in relation to the de�nitions of various classes of plans. In the meantime, noticethat D4 is de�nite.
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De�ned FluentsGiven an L (F;A;T) domain description, we add a de�ned uent f (f =2 F) by �rstadding f to the set of uent names and then de�ning f by means of a schemaft � �t (5.36)where � is a uent designating formula that doesn't mention f . Notice that theset I used to designate the inertial uents is not altered in this process. Intuitivelyspeaking, the de�ned uent inherits any inertial properties it may have from itsde�niens. The correctness of this method of introducing de�ned uents follows fromthe remarks on de�nitional extension in Section 5.2.2. Notice that it also correspondsclosely to the method inherited via the translation of AC in Theorem 5.12.Delayed E�ects and Things that Change by ThemselvesBecause we refer explicitly to time points in our action descriptions, we may, if wewish, describe actions with delayed e�ects. Similarly, we can write formulas thatrefer to more than two time points. We may also model things that change bythemselves. This we can do simply by writing causal laws that relate uents atdi�erent times, without mentioning any actions. Here we consider an example alongthese lines involving the dynamic mechanism of falling dominos.We wish to describe the chain reaction of dominos falling over one after theother, after the �rst domino is tipped over.Let the uent names be Up(1); : : : ;Up(4) ;and let the single action name be Tip :Identify time with the natural numbers 0; : : : ; 4.167



Tipt � C:Up(d)t+1 Tipt � Up(d)tUp(d)t ^ :Up(d)t+1 � C:Up(d+1)t+2at � Cat :at � C:at f0 � Cf0 :f0 � C:f0ft ^ ft+1 � Cft+1 :ft ^ :ft+1 � C:ft+1Figure 5.10: L (F;A;T) description D5 of Dominos domain.Here, as usual, we assume that facts about the occurrences of actions are ex-ogenous. We also assume that facts about the initial values of uents are exogenous.The uent names Up(1); : : : ;Up(4), and their negations, will be designated inertial.We describe the direct e�ect and action precondition of the Tip action bywriting Tipt � C:Up(1)t+1 (5.37)Tipt � Up(1)t : (5.38)So Tip is the action of tipping over the �rst domino. It can only be done if the �rstdomino is standing up.We describe the chain reaction mechanism as follows, where d is a metavari-able ranging over numbers 1; 2; 3.Up(d)t ^ :Up(d)t+1 � C:Up(d+1)t+2 (5.39)Notice that this schema does not mention an action. It describes dynamic changeinvolving three distinct time points. Roughly speaking, if domino d falls in theinterval from t to t+1, then domino d+1 is caused to fall in the interval from t+1to t+2.Let D5 be the domain description given by schemas (5.37){(5.39), alongwith the standard schemas (5.28){(5.32), as shown in Figure 5.10. Notice thatalthough D5 is not de�nite, it is S5-equivalent to a de�nite UCL theory, since168



Tip(d)t � Up(d)t is S5-equivalent to the formula :(Tip(d)t � Up(d)t) � CFalse ,which is de�nite.Let I be the interpretation shown below.Tip0 :Tip1 :Tip2 :Tip3Up(1)0 � :Up(1)1 :Up(1)2 :Up(1)3 :Up(1)4Up(2)0 Up(2)1 � :Up(2)2 :Up(2)3 :Up(2)4Up(3)0 Up(3)1 Up(3)2 � :Up(3)3 :Up(3)4Up(4)0 Up(4)1 Up(4)2 Up(4)3 � :Up(4)4The only action occurrence is Tip at time 0. One easily veri�es that I is causallyexplained byD5. The four literals preceded by bullets are \explained" by the domainspeci�c schemas (5.37) and (5.39). The others are explained by standard schemas.The Course of NatureThe fact that the commonsense law of inertia can be expressed straightforwardly inUCL makes it easy to generalize it, as follows. Rather than supposing that thingstend to stay the same, we can imagine more generally that they tend to change inparticular ways. That is, there is a course that nature would follow, in the absenceof interventions.As an example, we will formalize a dynamic domain from [GL98]. In thisdomain there is a pendulum. In the course of nature (i.e., in the absence of inter-ventions), the pendulum bob swings back and forth from right to left. However, atany time the agent can intervene to change the course of nature by holding the bobin its current location. So long as he continues to hold it, the bob remains where itis. When he no longer holds it, the bob resumes its natural course, swinging backand forth from right to left.In formalizing the Pendulum domain, we will use a single action name Holdand uent name Right . We will identify time with the natural numbers 0; : : : ; 4.169



Hold t ^ Right t � CRight t+1Hold t ^ :Right t � C:Right t+1:Right t ^Right t+1 � CRight t+1Right t ^ :Right t+1 � C:Right t+1at � Cat :at � C:at f0 � Cf0 :f0 � C:f0Figure 5.11: L (F;A;T) description D6 of Pendulum domain.The e�ects of the action Hold are speci�ed straightforwardly by writingHold t ^ Right t � CRight t+1 (5.40)Hold t ^ :Right t � C:Right t+1: (5.41)The behavior of the pendulum in the absence of interventions is described by writing:Right t ^ Right t+1 � CRight t+1 (5.42)Right t ^ :Right t+1 � C:Right t+1: (5.43)Like the standard schema (5.32) for inertia, schemas (5.42) and (5.43) describe acourse of nature. Here the course of nature is dynamic rather than static, butotherwise there are clear similarities between the two pairs of schemas. Both pairsallow for the possibility that the course of nature may be overridden by the e�ectsof actions, and both achieve this without mentioning facts about the non-occurrenceof actions as preconditions. In essence, schemas (5.42) and (5.43) solve the frameproblem for the dynamic uent Right in the same way that (5.32) solves the frameproblem for inertial uents.Let D6 be the de�nite causal theory given by schemas (5.28){(5.31) and(5.40){(5.43), as shown in Figure 5.11. Consider the following interpretation I.:Hold0 Hold1 Hold 2 :Hold3Right0 :Right1 :Right2 :Right3 Right4170



One easily veri�es that I is causally explained by D6.5.8 A Subset of UCL in CircumscriptionLet T be a �nite UCL theory, with a �nite signature, in which the operator Cis applied only to literals. In this section, we show that T can be reduced to acircumscriptive theory ct(T ).5The language L of ct(T ) is a second-order language with equality, with twosorts, atom and value. Let At stand for the set of atoms in the language of T .In L, the set of all object constants of sort atom is exactly the set At . The symbols> and ? will be the two object constants of sort value. L includes exactly twopredicates, in addition to equality: a unary predicate Holds of sort atom and abinary predicate Caused of sort atom � value. We will use a variable x of sort atom ,and a variable v of sort value.We begin the description of ct(T ) by letting C(T ) stand for the sentence�̂2T C(�) (5.44)where C(�) is de�ned recursively, as follows.C(X) = Holds(X) if X 2 At (5.45)C(CX) = Caused(X;>) if X 2 At (5.46)C(C:X) = Caused(X;?) if X 2 At (5.47)C(True) = True (5.48)C(:�) = :C(�) (5.49)C((��  )) = (C(�)� C( )) (5.50)Here � stands for any binary propositional connective. Notice that this de�nition5Familiarity with circumscription will be assumed. See, for example, [Lif93a].171



depends on the �niteness of the UCL theory T , as well as the assumption that themodal operator C is applied only to literals. Notice also that C(T ) is ground.We will want a unique names axiom (denoted by UNA) to say that all objectconstants of sort atom denote distinct domain objects. Thus, UNA stands for theconjunction of all formulas X 6= X 0 such that X and X 0 are distinct members of At .Notice that this de�nition depends on the �niteness of the signature of T .The complete embedding ct(T ) consists of the following �ve sentences.CIRC[ C(T ) : Caused ] (5.51)8x (Holds(x) � Caused (x;>)) (5.52)8x (:Holds(x) � Caused(x;?)) (5.53)UNA (5.54)8v(v = > 6� v = ?) (5.55)Notice that second-order quanti�cation is used only implicitly, in (5.51). The modelsof (5.51) are simply the models of C(T ) in which the extent of Caused is minimal (fora �xed universe and �xed interpretation of all nonlogical constants except Caused).For every model M of ct(T ), there is a one-to-one correspondence betweenthe domain objects of sort atom and the members of At . To see this, �rst noticethat, because of the UNA, M maps each pair of distinct members of At to distinctdomain objects. Now, suppose there is a domain object � of sort atom such thatM maps no member of At to �. Because C(T ) is ground, and M is a model of C(T )in which the extent of the predicate Caused is minimal, we can conclude that neitherh�;>M i nor h�;?M i belong to CausedM. But the axioms (5.52) and (5.53) togetherimply that 8x(Caused (x;>) 6� Caused(x;?)) : (5.56)Given, in addition, the axiom (5.55) expressing the unique names and domainclosure assumptions for sort values , we can conclude that every model of ct(T ) is172



isomorphic to some Herbrand model of ct(T ). Thus, in what follows, we restrict ourattention to Herbrand interpretations.For every UCL structure (I; S), let M(I; S) be the Herbrand interpretationof L such that, for every X 2 At , the following three conditions hold.� M(I; S) j= Holds(X) i� (I; S) j= X� M(I; S) j= Caused(X;>) i� (I; S) j= CX� M(I; S) j= Caused(X;?) i� (I; S) j= C:XThe following lemma is a straightforward consequence of the de�nitions.Lemma 5.21 Let T be a �nite UCL theory, with �nite signature, in which C isapplied only to literals. For any UCL structure (I; S), (I; S) j= T if and only ifM(I; S) j= C(T ).Theorem 5.22 Let T be a �nite UCL theory, with �nite signature, in which C isapplied only to literals. An interpretation I is causally explained by T if and only ifM(I; fIg) is a model of ct(T ). Moreover, every model of ct(T ) is isomorphic to aninterpretation M(I; fIg), for some interpretation I of the language of T .Proof. We've already established that every model of ct(T ) is isomorphic to aHerbrand model. In light of (5.52) and (5.53), every Herbrand model can be writtenin the form M(I; fIg). Now we turn to the �rst part of the theorem.(=)) Assume I is causally explained by T . So (I; fIg) j= T . By Lemma 5.21,M(I; fIg) j= C(T ). Also, M(I; fIg) clearly satis�es all of (5.52), (5.53), (5.54)and (5.55). It remains only to show that the extent of Caused in M(I; fIg) is min-imal among models of C(T ) with the same universe, and the same interpretation ofall nonlogical constants except Caused . Any possible counterexample can be writtenin the form M(I; S), for some superset S of fIg. So assume that M(I; S) j= C(T ).By Lemma 5.21, (I; S) j= T . Since (I; fIg) is the unique I-model of T , S = fIg.173



((=) Assume M(I; fIg) is a model of ct(T ). By Lemma 5.21, (I; fIg) j= T.Let S be a superset of fIg such that (I; S) j= T . By Lemma 5.21, M(I; S) j= C(T ).Since M(I; fIg) is a model of (5.51), we can conclude that M(I; S) =M(I; fIg). Itfollows that S = fIg, which shows that (I; fIg) is the unique I-model of T . Thatis, I is causally explained by T . 25.9 UCL and Lin's Circumscriptive Action TheoriesLin [Lin95] recently introduced a causal approach to reasoning about action basedon circumscription. In this section, we explore the relationship between Lin's cir-cumscriptive action theories and the UCL action theories described in Section 5.7,restricted to the case when C is applied only to literals. We show that on a widerange of action domains, the two approaches coincide.5.9.1 Lin's Circumscriptive Causal Action TheoriesFor the purpose of comparison, we present an account of Lin's proposal that issimpli�ed in several ways. We do not consider non-propositional uent and actionsymbols. We also do not employ the situation calculus. Instead we model worldsin which time has the structure of the natural numbers. As discussed previously(Chapter 2 and elsewhere), this simpli�es matters somewhat, eliminating the needfor a Poss (or Reachable) predicate. Finally, we include a domain closure assumptionfor uents. In the case of propositional uents, this is not very signi�cant.In some other ways, the circumscriptive approach that we describe is moregeneral than Lin's. Because our language includes propositions about the occurrenceand non-occurrence of actions, we can accomodate concurrent actions more easilythan Lin. We also accomodate a wider variety of causal laws. For instance, we allowformulas expressing causal laws that refer to more than one time point and yet donot involve the occurrence of an action. We allow also for causal laws that involve174



more than two time points, and we do not require that the time points be successive.The language of the circumscriptive theory is constructed in the same man-ner as in the previous section, on the basis of the signature At of an underlyingpropositional language. For this purpose, we employ L (F;A;T) languages, as de-scribed in Section 5.7.1, under the additional restriction that each of the sets F, A,and T is �nite.Let us introduce an abbreviation. Given a uent formula �, Holds(�) standsfor the formula obtained by replacing every occurrence of every uent atom ft in �by Holds(ft).We need axioms expressing domain closure and unique names assumptionsfor both sorts, as follows. 8x(WX2At x = X) (5.57)VX;X02At ;X 6=X0 X 6= X 0 (5.58)8v(v = > 6� v = ?) (5.59)We also need the following axioms, saying that whatever is caused is true.8x(Caused(x;>) � Holds(x)) (5.60)8x(Caused(x;?) � :Holds(x)) (5.61)For the purposes of this chapter, a Lin formula is the conjunction of a �niteset of ground sentences in which Caused appears only positively, and at most oncein each sentence.The next few observations help characterize the relationship between Linformulas as speci�ed here and the kinds of circumscriptive action theories describedin [Lin95]. Assume that � is a uent designating formula, A is an action name, F isa uent name, and V is either > or ?. Lin's \direct e�ect" axioms correspond toschemas of the formHolds(At) ^Holds(�t) � Caused(Ft+1; V ) : (5.62)175



His \causal rule" axioms correspond to schemas of the formHolds(�t) � Caused (Ft; V ) : (5.63)His \explicit precondition" axioms correspond to schemas of the formHolds(At) � Holds(�t) : (5.64)His \quali�cation state constraint" axioms correspond to schemas of the formHolds(�t) : (5.65)For example, consider again the Suitcase domain from [Lin95]. We'll usealmost the same L (F;A;T) language as in Section 5.7.2, but restrict time to a�nite initial segment of the natural numbers. The Lin formula for this example ischaracterized by the following schemas of type (5.62) and (5.63), where l is againmetavariable ranging over fL1; L2g.Holds(Toggle(l)t) ^Holds(Up(l)t) � Caused (Up(l)t+1;?) (5.66)Holds(Toggle(l)t) ^ :Holds(Up(l)t) � Caused (Up(l)t+1;>) (5.67)Holds(Close t) � Caused (IsOpen t+1;?) (5.68)Holds(Up(L1)t) ^Holds(Up(L2)t) � Caused(IsOpen t;>) (5.69)Let D7 be the UCL theory given by schemas (5.21){(5.24), which express the domainspeci�c part of the UCL description of the Suitcase domain from Section 5.7.2. Theconjunction of the sentences given by schemas (5.66){(5.69) is exactly C(D7), whereC is the translation function de�ned in Section 5.8.Given a Lin formula D, the complete circumscriptive action theory cat(D)consists of CIRC[D : Caused ] (5.70)176



along with the standard axioms (5.57){(5.61) and the inertia axioms given by theschema Holds(ft+1) � (Holds(ft) ^ :Caused(ft+1;?)) _ Caused(ft+1;>) (5.71)where f is a metavariable ranging over uent names.5.9.2 Lin's Circumscriptive Action Theories in UCLThe �rst thing to observe is that, for every Lin formula D, there is a UCL theory Tin language L (F;A;T) such that C(T ) = D. We will show that there is an ex-tension uclat(D) of T such that the interpretations causally explained by uclat(D)correspond to the models of cat(D). We obtain uclat(D) by adding to T the for-mulas given by the standard schemas (5.28){(5.32) from Section 5.7.2, taking I tobe the set of all uent names and their negations.6Theorem 5.23 For any Lin formula D, an interpretation I is causally explainedby uclat(D) if and only if there is a superset S of fIg such that M(I; S) is amodel of cat(D). Moreover, every model of cat(D) is isomorphic to an interpre-tation M(I; S), for some UCL structure (I; S).We begin the proof of Theorem 5.23 with a straightforward lemma.Lemma 5.24 Let T be a UCL theory with no nested occurrences of C, in which Coccurs only positively. If (I; S) j= T , then for all subsets S0 of S such that I 2 S0,(I; S0) j= T . If, in addition, C occurs at most once in each formula, (I; S [ S0) j= Twhenever (I; S) j= T and (I; S0) j= T .Proof of Theorem 5.23. We �rst prove the second part of the theorem. Ax-ioms (5.57){(5.59) allow us to restrict our attention to the Herbrand models of cat(D).6We note in passing that uclat(D) is easily seen to be S5-equivalent to a de�nite UCL theory.177



Axioms (5.60) and (5.61) show that every Herbrand model of cat(D) can be ex-pressed in the form M(I; S).Now we turn to the main part of the theorem. Let T be the UCL theorysuch that C(T ) = D. (Here we assume the most natural choice of T , which satis�esthe conditions of Lemma 5.24.) Let T 0 = uclat(D).(=)) Assume I is causally explained by T 0. Thus, (I; fIg) j= T , and byLemma 5.21, M(I; fIg) j= D. It follows that there is a superset S of fIg such thatM(I; S) is a model of CIRC[D : Caused ]. Clearly, M(I; S) satis�es the standardaxioms (5.57){(5.61). It remains to show that M(I; S) satis�es the inertia axiomsgiven by (5.71). Suppose otherwise. Thus, there is a uent atom ft such that eitherM(I; S) j= :Holds(ft) ^Holds(ft+1) ^ :Caused(ft+1;>)or M(I; S) j= Holds(ft) ^ :Holds(ft+1) ^ :Caused(ft+1;?):We'll argue the �rst case. (The second is similar.) By Lemma 5.21, we know that(I; S) j= :ft ^ ft+1 ^ :Cft+1. Let I 0 = I [ f:ft+1g n fft+1g. Notice that I 0 6= I, withI j= ft+1 and I 0 j= :ft+1. Since M(I; S) 6j= Caused (ft+1;>) and I 2 S, we can con-clude by our choice of I 0 thatM(I; S) =M(I; S [ fI 0g). Thus,M(I; S [ fI 0g) j= D,and by Lemma 5.21, (I; S [ fI 0g) j= T . By Lemma 5.24, (I; fI; I 0g) j= T . One eas-ily checks that (I; fI; I 0g) also satis�es (5.28){(5.32). So (I; fI; I 0g) j= T 0, whichcontradicts the assumption that I is causally explained by T 0.((=) Assume M(I; S) is a model of cat(D). Thus, M(I; S) j= D. ByLemma 5.21, (I; S) j= T . By Lemma 5.24, (I; fIg) j= T . One easily veri�es that,since T 0 is obtained from T by adding (5.28){(5.32), (I; fIg) j= T 0. We wish toshow that (I; fIg) is the unique I-model of T 0. Suppose otherwise. So there is astrict superset S0 of fIg such that (I; S0) j= T 0, and there is a literal L such that(I; S0) j= L ^ :CL. In light of (5.28){(5.31), L is a uent literal that refers to a non-zero time. Assume L has the form ft+1. (The argument is analagous if L is :ft+1.) So(I; S0) j= ft+1 ^ :Cft+1. In light of (5.32), (I; S0) j= :ft. So (I; S0) j= :ft ^ ft+1, and178



thus (I; S) j= :ft ^ ft+1 also. By Lemma 5.21, M(I; S) j= :Holds(ft) ^Holds(ft+1).It follows by (5.71) that M(I; S) j= Caused(ft+1;>). On the other hand, since(I; S0) 6j= Cft+1,M(I; S0) 6j= Caused (ft+1;>). HenceM(I; S [ S0) 6j= Caused(ft+1;>),which shows that M(I; S [ S0) 6=M(I; S). Since (I; S0) j= T 0, (I; S0) j= T . Andsince (I; S) j= T also, we know by Lemma 5.24 that (I; S [ S0) j= T . By Lemma 5.21,M(I; S [ S0) j= D. SinceM(I; S) is a model of CIRC[D : Caused ], we can concludethat M(I; S [ S0) =M(I; S). Contradiction. 25.9.3 DiscussionIn [Lin95], Lin briey discusses the possibility of using a more general form of\causal rule" axiom (5.63), in which Caused can occur negatively any number oftimes in a sentence, in addition to the one positive occurrence. For example, hesuggests extending the circumscriptive action theory for the Suitcase domain withan additional uent IsClosed , understood as the antonym of IsOpen, and adding(essentially) the schemasCaused (IsClosed t;>) � Caused (IsOpen t;?) (5.72)Caused (IsClosed t;?) � Caused (IsOpen t;>) (5.73)to reect this understanding. Notice that this resembles the notion of a \de�neduent," discussed in Section 5.7.3, according to which one would augment the UCLSuitcase domain description D3 from Section 5.7.2 withC (IsClosed t � :IsOpent) : (5.74)The �rst thing to observe is that (5.74) entails IsClosed t � :IsOpent (in S5), while(5.72) and (5.73) do not entailHolds(IsClosed t) � :Holds(IsOpen t) : (5.75)179



This correctly suggests that some models of the circumscriptive action theory failto satisfy (5.75), for some time names t. It appears that, in this case, one canobtain a more satisfactory \de�nition" of IsClosed by also including (5.75) in thecircumscriptive theory. In general though, it is unclear how to introduce de�neduents in circumscriptive action theories.A related complication arises if we try, for instance, to replace the causal ruleaxiom (5.69) withCaused (Up(L1)t;>) ^ Caused(Up(L2)t;>) � Caused(IsOpen t;>) : (5.76)(Replacing (5.69) with (5.76) greatly alters the meaning of the circumscriptive actiontheory. For instance, it allows models that fail to satisfyHolds(Up(L1)t) ^Holds(Up(L2)t) � Holds(IsOpen t) : (5.77)It also make it impossible, intuitively speaking, to open the suitcase unless onetoggles both latches at the same time.In a subsequent paper [Lin96], Lin investigates how to extend his circum-scriptive action theories to accomodate nondeterministic actions. For our purposes,the �rst thing to observe is that nondeterministic actions can often be describedusing the natural counterpart to the approach from Section 5.7.3. For instance, onecan describe the nondeterministic e�ect of coin tossing by the schemasHolds(Toss t) ^Holds(Heads t+1) � Caused (Heads t+1;>) (5.78)Holds(Toss t) ^ :Holds(Heads t+1) � Caused (Heads t+1;?) (5.79)which correspond to the UCL schemas (5.34) and (5.35) from Section 5.7.3. Lin doesnot (directly) consider this approach. Instead, he begins by considering a varietyof methods involving sentences with multiple positive occurrences of Caused . Forinstance, he (essentially) considers a coin-toss axiom likeHolds(Toss t) � Caused(Heads t+1;>) _Caused (Heads t+1;?) : (5.80)180



Notice that, in the presence of standard axioms (5.60) and (5.61) guaranteeing thatwhatever is caused obtains, one can equivalently replace (5.80) with (5.78) and(5.79). In UCL, the corresponding formulaToss t � CHeads t+1 _ C:Heads t+1 (5.81)also works, since it is S5-equivalent to the conjunction of (5.34) and (5.35). But ingeneral such approaches do not translate faithfully into UCL. For instance, if wewere to add an action MaybeFlipUp to the Suitcase domain, using the UCL schemaMaybeFlipUpt � CUp(L1)t+1 _ CUp(L2)t+1 (5.82)to describe its e�ects, it would never cause the second latch to go up, when performedalone, if the �rst was already up.Lin shows particular interest in two special cases of nondeterministic e�ects,which he calls \inclusive" and \exclusive." Inclusive nondeterminism corresponds,in the UCL setting, to families of e�ect axioms of the following form, where A is anaction name, and �0; �1; : : : ; �n are uent designating formulas.At ^ �0t � C�1t+1 _ � � � _ C�nt+1 (5.83)At ^ �0t � C�1t+1 _ C:�1t+1 (5.84)...At ^ �0t � C�nt+1 _ C:�nt+1 (5.85)The �rst of these axioms, in the presence of the subsequent axioms, can be equiva-lently replaced (in S5) by At ^ �0t � �1t+1 _ � � � _ �nt+1 : (5.86)We can also equivalently replace each of the subsequent axioms with the followingpair. At ^ �0t ^ �kt+1 � C�kt+1 (5.87)At ^ �0t ^ :�kt+1 � C:�kt+1 (5.88)181



Notice that these transformations yield formulas in which C occurs at most once, andonly positively. Analagous equivalence transformations apply to the correspondingaxioms in Lin's theory, given the axioms (5.60) and (5.61) guaranteeing that anyuent literal that is caused is true. These observations show that Lin's proposalfor inclusive nondeterminism can be applied in the UCL setting, on the basis ofTheorem 5.23. In fact, what we see is that Lin's method for inclusive nondeter-minism is essentially a variant of the approach to nondeterminism described brieyin Section 5.7.3. The same observations apply to Lin's proposal for exclusive non-determinism, which, in the UCL setting, is equivalent to augmenting the inclusivenondeterminism axioms with the additional axiomAt ^ �0t � ^1�i<j�n:(�it+1 ^ �jt+1) : (5.89)Ultimately, Lin [Lin96] introduces a more satisfactory general method forformalizing nondeterminism, using auxiliary Case symbols to distinguish betweenpossible nondeterministic outcomes. Without going into details, we note that Lin's\cases" method is easily adapted to the UCL setting.Finally, while Theorem 5.23 is concerned with an embedding of Lin's cir-cumscriptive action theories in UCL, it is interesting to consider also what hap-pens when we proceed in the opposite direction. Recall that a UCL action theory,as described in Section 5.7, typically includes the formulas given by the standardschemas (5.28){(5.32). Let us assume about such a UCL theory T that it is �nite,with a �nite signature, and that C is applied only to literals. In this case, the trans-lation C(T ) is de�ned. Let us assume in addition that the inertial uents (I) aregiven by the set of uent names and their negations. If we extend the de�nition ofcat so that it applies even when Caused is allowed to occur negatively and more thanonce in each sentence, then it is straightforward to verify that the circumscriptivetheory cat(C(T )) is equivalent to ct(T ). In light of Theorem 5.22, this observa-tion shows that when we augment Lin's circumscriptive action theories with axioms182



corresponding to the standard schemas|so that all models satisfy the principle ofuniversal causation|his approach converges with ours. The principal di�erenceremaining, in the propositional setting, is the ability of the modal language to ex-press directly the fact that a complex formula is caused to hold. In particular, thismakes it possible to introduce de�ned uents and to express traditional rami�cationconstraints, as described in Section 5.7.3.In establishing the relationship between Lin's circumscriptive action theoriesand UCL, it is crucial that we assume that the set of inertial uents is given by theset of uent names and their negations. More generally, in UCL action theories, asremarked earlier, the inertial uents may di�er from this. In fact, as demonstratedin Section 5.7.3, it is possible in UCL to generalize the commonsense law of inertiaso as to allow for uents that tend to change in particular ways (instead of tendingto remain unchanged).5.10 UCL and Autoepistemic LogicIt may be interesting to consider briey the mathematical relationship of UCL toautoepistemic logic, which is surely the most widely-familiar modal nonmonotoniclogic. For this purpose we employ the elegant model-theoretic characterization ofautoepistemic logic from [LS93].Let T be an autoepistemic theory. We say that a set S of interpretations isan AE model of T if S = fI : (I; S) j= Tg : (5.90)Recall that for autoepistemic logic (AEL) we do not require that structures (I; S)satisfy the condition I 2 S.The de�nition of an AE model can be reformulated as follows. A set S ofinterpretations is an AE model of an AE theory T if and only if, for all interpreta-183



tions I, (I; S) j= T i� I 2 S : (5.91)In this form, we can observe a strong resemblance to the �xpoint condition in UCL,which can be similarly reformulated, as follows. An interpretation I is causallyexplained by a UCL theory T if and only if, for every set S of interpretations suchthat I 2 S, (I; S) j= T i� S = fIg : (5.92)Roughly speaking, the reversal of the roles of S and I in the �xpoint conditions (5.91)and (5.92) is reected in a corresponding reversal of the role of the modal operatorin the two logics. In accordance with this observation, it is not di�cult to establishthe following.7Proposition 5.25 Let T be a UCL theory consisting of formulas of the form� _ C (5.93)where � and  are nonmodal formulas. Take the AEL theory T 0 obtained by replacingeach UCL formula (5:93) with the AEL formulaB� _  : (5.94)An interpretation I is causally explained by T if and only if fIg is an AE modelof T 0. We can obtain a more general result of this kind by translating UCL formulasof the form � _ C 1 _ � � � _ C n (5.95)where �;  1; : : : ;  n are nonmodal formulas, into autoepistemic formulasB� _ ( 1 ^ B 1) _ � � � _ ( n ^ B n) : (5.96)7We will use the symbol B for the AEL modal operator, rather than L, which is also often used.184



In this more complex translation, \caused" becomes, roughly speaking, \truly be-lieved."It is unclear what lessons to draw from such mathematical facts. Notice that,for AE models of the form fIg, the �xpoint condition involves only structures ofthe form (I 0; fIg). Therefore, one can, for instance, replace B� with :B:� withouta�ecting the \complete" AE models. This suggests that the \complete" subsetof autoepistemic logic is relatively inexpressive as a logic of belief, as one wouldintuitively expect.5.11 UCL with Quanti�ersIn this section, we extend UCL to allow �rst and second-order quanti�ers. Thismakes it possible to write much more compact theories. Second-order quanti�ca-tion in particular is convenient for axiomatizing the structure of situations in actiontheories. For instance, one can use the Peano axioms, including second-order induc-tion, to characterize completely the structure of situations in linear worlds.The signature of a (nonpropositional) UCL language is given by a set ofnonlogical constants: that is, function symbols (with arities and sorts) and predicatesymbols (with arities and sorts). The de�nitions of a formula, sentence, theory, freeoccurrence of a variable and so on are as expected.A UCL structure is a pair (I; S) such that S is a set of interpretations withthe same universe, and I 2 S.In the recursive truth de�nition, we extend the language each time a quanti-�er is encountered, adding a new nonlogical constant of the appropriate type (thatis, a new function or predicate constant of suitable arity and sort). To this end, weintroduce the following auxiliary de�nition.Let (I; S) be a UCL structure for a given language. When we add a newnonlogical constant X to the signature, we call a UCL structure (I 0; S0) for the185



resulting language an X-extension of (I; S) if I 0 is an extension of I and S0 isobtained by taking, for each member of S, the unique extension that interprets Xas I 0 does.The truth of a UCL sentence in a UCL structure is de�ned by the standardrecursions over the propositional connectives, plus the following four conditions.(I; S) j= P i� I j= P (for any ground atom P )(I; S) j= C� i� for all I 0 2 S; (I 0; S) j= �(I; S) j= 8x�(x) i� for every X-extension (I 0; S0) of (I; S), (I 0; S0) j= �(X)(I; S) j= 9x�(x) i� for some X-extension (I 0; S0) of (I; S), (I 0; S0) j= �(X)Here we assume that X is a new nonlogical constant of the same type as the vari-able x. By �(X) we denote the formula obtained from �(x) by simultaneouslyreplacing each free occurrence of x by X.It is often convenient to designate some nonlogical constants exempt, which,intuitively, exempts them from the principle of universal causation. Mathematically,this practice is reected in the de�nition of an I-structure: a UCL structure (I; S)such that all members of S interpret all exempt symbols exactly as I does. AnI-model of a UCL theory T is an I-structure that is a model of T .The de�nition of a causally explained interpretation is just as it was in thepropositional case. An interpretation I is causally explained by a UCL theory T if(I; fIg) is the unique I-model of T .Clearly, this de�nition extends the de�nition introduced in Section 5.2 forpropositional UCL, assuming that the nonlogical constants of the language (i.e. thepropositional symbols) are not declared exempt.Before continuing, a few remarks about the truth de�nition, and in particularthe de�nition of anX-extension, may be in order. Notice that, roughly speaking, theproposed de�nition of an X-extension makes each newly introduced logical constantexempt from the principle of universal causation, since all members of the second186



component of an X-extension of (I; S) interpret X as I does. As we will see in thenext section, this is mathematically consistent with the de�nition of nonproposi-tional causal theories proposed in [Lif97]. Moreover, such an approach seems to benecessary in order to catch our intended meaning in the case of �rst-order quanti-�ers. For example, consider a language with only a unary predicate symbol P in itssignature, where P is not declared exempt. Let T be the UCL theory consisting ofthe following two sentences. 8x (P (x) � CP (x)) (5.97)8x (:P (x) � C:P (x)) (5.98)We wish to understand these sentences to say that, for every domain object �, if �has the property P then that is caused, and if � does not have the property P thenthat is caused. Thus, our intention is that every interpretation of the language becausally explained by T . Under the proposed de�nition, this is indeed the case. Bycomparison, if we were to allow members of the second component of an X-extensionof (I; S) to interpret X di�erently from I, we would �nd that, in every model of T ,either 8xP (x) or 8x:P (x) holds. Given that the current approach seems correct for�rst-order quanti�ers, it is (mathematically) natural to de�ne truth for second-orderquanti�ers in essentially the same manner. Perhaps we will eventually learn to dobetter. In the meantime, it is convenient to have second-order quanti�ers available.As an example, one more version of Lin's Suitcase domain is displayed inFigure 5.12. The signature of the language and the types of variables should beclear from context. All nonlogical constants except Holds are exempt. We abbre-viate Succ(s) as s0. The axioms for inertia and for the exogeneity of uents in theinitial situation have a di�erent form than previous examples would suggest. (Theyare equivalent to what one would expect, but shorter.)
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8s(0 6=s0) ^ 8s; t(s0= t0 � s= t) ^ 8p (p(0) ^ 8s(p(s) � p(s0)) � 8s(p(s)))8l(l=L1 6� l=L2) ^Up(L1) 6=Up(L2) ^ Toggle(L1) 6=Toggle(L2)8f(9l(f=Up(l)) 6� f=IsOpen) ^ 8a(9l(a=Toggle(l)) 6� a=Close)8f(CHolds(f; 0) _ C:Holds(f; 0))8s; f ((Holds(f; s) � Holds(f; s0)) � CHolds(f; s0) _ C:Holds(f; s0))8s; l (Occurs(Toggle(l); s) ^Holds(Up(l); s) � C:Holds(Up(l); s0))8s; l (Occurs(Toggle(l); s) ^ :Holds(Up(l); s) � CHolds(Up(l); s0))8s (Occurs(Close ; s) � C:Holds(IsOpen ; s0))8s(Holds(Up(L1); s) ^Holds(Up(L2); s) � CHolds(IsOpen ; s))Figure 5.12: Lin's Suitcase domain in second-order UCL.5.12 Nonpropositional Causal Theories in UCLHere we review Lifschitz's de�nition of nonpropositional causal theories [Lif97], al-tering some terminology and notation to follow more closely the presentation ofpropositional causal theories in [MT97], which, as we have previously observed, co-incide with at propositional UCL theories. We then sketch a proof of the fact thatsecond-order causal theories are subsumed by second-order UCL.5.12.1 Lifschitz's Nonpropositional Causal TheoriesBegin with a language of classical logic. As in the previous section, some nonlogicalconstants may be designated exempt. In fact, here we must require that only a�nite number of nonlogical constants are not designated exempt. A causal law is anexpression of the form � )  (5.99)where � and  are formulas of the language. A causal theory is a �nite set ofcausal laws. (Except for the �niteness requirements, this de�nition of a causaltheory extends that of [MT97].) In Lifschitz's account, an interpretation is causally188



explained by a causal theory just in case it is a model of an associated theory ofclassical logic.In what follows, let N be a list of all nonexempt nonlogical constants. Wesay that a list of nonlogical constants or variables is similar to N if it has thesame length as N and each of its members is of the same type as the correspondingmember of N . We can denote a formula (in which none, some, or all nonexemptnonlogical constants appear) by �(N). Then for any listM that is similar to N , wecan write �(M ) to denote the formula obtained by simultaneously replacing eachoccurrence of each member of N by the corresponding member of M .Consider a nonpropositional causal theory D with causal laws�1(N;x1) )  1(N;x1) (5.100)...�k(N;xk) )  k(N;xk) (5.101)where xi is the list of all free variables for the i-th causal law. Let n be a list of newvariables that is similar to N . By D�(n) we denote the formula^1�i�k 8xi ��i(N;xi) �  i(n; xi)� : (5.102)An interpretation is causally explained by D if it is a model of8n�D�(n) � n = N� (5.103)where n = N stands for the conjunction of the equalities between members of n andthe corresponding members of N .As shown in [Lif97], this de�nition of a causally explained interpretationextends the de�nition for propositional causal theories [MT97].5.12.2 Second-Order Causal Theories in UCLHere we sketch a proof of the following theorem.189



Theorem 5.26 Let D be a (nonpropositional ) causal theory in which all variablesare either �rst or second order, and let T be the UCL theory obtained by replacingeach causal law � )  by the universal closure of the UCL formula � � C . Aninterpretation is causally explained by D if and only if it is causally explained by T .Proof sketch. Let us write 8nT �(n) to denote the sentence (5.103) whose modelsare the interpretations causally explained by D. Extend the language of 8nT �(n)as follows. For every X 2 N , add a new nonlogical constant X 0 of the same type.Let N 0 be the list of these new symbols, which is similar to N . Given an interpreta-tion I of the original language, an interpretation J of the new language is called anI-interpretation if J extends I. (That is, if J has the same universe as I and inter-prets all nonlogical constants in the original language exactly as I does.) The �rstobservation is that I j= 8nT �(n) i�, for every I-interpretation J , J j= T �(N 0). LetÎ be the unique I-interpretation such that for every X 2 N , (X 0)J = XI . The sen-tence T �(N 0) is an equivalence whose right-hand side is the sentence N 0 = N . SinceÎ is the only I-interpretation that satis�es N 0 = N , it follows from the previousobservation that I j= 8nT �(n) i� Î is the unique I-interpretation satisfying D�(N 0).The proof can be completed by showing that Î is the unique I-interpretationsatisfying D�(N 0) i� (I; fIg) is the unique I-model of T . The �rst step in this isto show that Î j= D�(N 0) i� (I; fIg) j= T , which can be done by showing that,for any i, Î j= 8xi ��i(N;xi) �  i(N 0; xi)� i� I j= 8xi ��i(N;xi) �  i(N;xi)� i�(I; fIg) j= 8xi ��i(N;xi) � C i(N;xi)�. It remains only to prove that if Î j= D�(N 0),then some I-interpretation other than Î satis�es D�(N 0) i� there is a proper super-set S of I such that (I; S) j= T .Now we describe observations and a lemma su�cient to complete this laststep. First, because C occurs only positively in T , we know that if (I; S) j= T , thenfor any subset S0 of S such that I 2 S0, (I; S0) j= T . Consequently, one need onlyconsider I-structures of the form (I; fI; I 0g) in order to determine whether (I; fIg)190



is the unique I-model of T . This is convenient because there is a natural one-to-onecorrespondence between I-interpretations and I-structures of the form (I; fI; I 0g)such that, for every I-interpretation J and corresponding I-structure (I; fI; I 0g), forall X 2 N , (X 0)J = XI0 . In light of these observations, we can complete the proofby establishing the following lemma. If (I; fIg) j= T , then for any I-interpretation Jand corresponding I-structure (I; fI; I 0g), J j= D�(N 0) i� (I; fI; I 0g) j= T . For theproof of this lemma, it is convenient to extend the truth de�nition for UCL toapply also to structures of the form (I; fI 0g), where I 0 may di�er from I. Under thisextended truth de�nition, one can show that J j= 8xi ��i(N;xi) �  i(N 0; xi)� if andonly if (I; fI 0g) j= 8xi ��i(N;xi) � C i(N;xi)�. So J j= D�(N 0) i� (I; fI 0g) j= T .To complete the proof of the lemma, notice that (I; fI; I 0g) j= T i� both (I; fIg) j= Tand (I; fI 0g) j= T , since C appears at most once, and only positively, in each sentenceof T . 2
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Chapter 6
Satis�ability Planning withCausal Action Theories

6.1 IntroductionIn this chapter, we describe an implemented approach to satis�ability planning[KS92, KS96], which is based on the translation from the \de�nite" subclass of UCLtheories into classical propositional logic that was described in Section 5.6. This ma-terial is adapted from [MT98b]. This approach to planning is noteworthy for tworeasons. First, it is based on a formalism for describing action domains that is moreexpressive than the STRIPS-based formalisms traditionally used in automated plan-ning. Secondly, our experiments suggest that the additional expressiveness of causaltheories comes with no performance penalty in satis�ability planning. Speci�cally,in this chapter we show that the large blocks world and logistics planning problemsused by Kautz and Selman [KS96] to demonstrate the e�ectiveness of satis�abil-ity planning can be conveniently represented as causal theories and solved in timescomparable to those that they have obtained.Because UCL theories are more expressive than traditional planning lan-192



guages, we must consider the preliminary question of when a sequence of actionsis a valid plan for achieving a goal G in an initial situation S0. A valid plan hastwo fundamental properties: su�ciency and executability. Roughly speaking, a suf-�cient plan will always achieve G if carried out starting in S0, and an executableplan can always be carried out starting in S0. We will make these ideas precise, inthe setting of UCL action theories.We must also consider how to �nd valid plans by the satis�ability method.Assume that T is a classical propositional theory describing the worlds that are\causally possible" for an action domain. In satis�ability planning, a plan is obtainedby extracting the sequence of actions from a model of T that satis�es both the initialstate S0 and the goal G. We will call a plan obtained in this way a causally possibleplan, because what we know in this case is simply that there is at least one causallypossible world in which the plan achieves G starting in S0. In order for satis�abilityplanning to be sound, we must guarantee that the causally possible plans are in factvalid. Accordingly, we de�ne a subclass of de�nite UCL theories, called \simple,"and show that their translations into classical logic are suitable for satis�abilityplanning. That is, the plans obtained from the models of their translations are notonly causally possible, but also deterministic, and thus, as we will show, valid.The main contributions of the chapter are (1) to provide a theoretical foun-dation for satis�ability planning on the basis of causal action theories, and (2) topresent experimental evidence that the approach is relatively e�ective. More specif-ically, we de�ne a family of fundamental properties a plan may have: causallypossible, deterministic, su�cient, executable. We say a plan is valid if and only ifit is su�cient and executable. We prove that every causally possible, deterministicplan is valid. We then identify a class of \simple" UCL action theories suitable forsatis�ability planning. Simple theories have a concise translation into classical logic,and, as we prove, the classical models yield valid plans. Simple theories are very193



expressive, thus enabling planning with respect to a wide variety of action domains.We also provide experimental evidence that this planning approach can be verye�ective on classical problems, by solving, comparatively quickly, the large blocksworlds and logistics planning problems from [KS96].The chapter is organized as follows. Section 6.2 de�nes plan validity andrelated notions for L (F;A;T) domain descriptions. Section 6.3 de�nes the class ofsimple L (F;A;T) domain descriptions, and presents the main theorem showing thatsatis�ability planning is sound for them. Section 6.4 describes an implementationof satis�ability planning with L (F;A;T) domain descriptions. Section 6.5 reportsexperimental results on the large blocks world and logistics planning problems from[KS96]. Section 6.6 consists of the proof of the main theorem.6.2 Planning with L (F;A;T) Domain DescriptionsIn this section we de�ne fundamental notions related to planning, in the setting ofL (F;A;T) domain descriptions.Let D be an L (F;A;T) domain description. By an initial state descriptionwe mean a set S0 of uent literals that refer to time 0 such that (1) for everyuent name F 2 F, exactly one of F0;:F0 belongs to S0, and (2) S0 [D j6�False .Intuitively, an initial state description speci�es an initial state that occurs in somecausally possible world, i.e., a causally possible initial state. By a time-speci�c goal,we simply mean a uent formula. Notice that a time-speci�c goal may refer to morethan one time. By an action history we mean a set P of action literals such that,for every action name A 2 A and time t such that t+1 2 T, exactly one of At;:Atbelongs to P . Every interpretation includes exactly one action history.We will de�ne when an action history P is a valid plan for achieving a time-speci�c goal G in an initial state S0. This de�nition rests on the more fundamentalnotions of su�ciency and executability, which we also de�ne. We de�ne two other194



properties of plans, more naturally associated with satis�ability planning. One isdeterminism. The other is discussed next.6.2.1 Causally Possible PlansLet D be an L (F;A;T) domain description, S0 an initial state description, and G atime-speci�c goal. An action history P is a causally possible plan for achieving Gin S0 if S0 [ P [D j6�:G :This condition says that there is, intuitively speaking, some causally possibleworld in which G can be achieved by executing P in initial state S0.Corollary 5.18 (Section 5.6) yields the following proposition showing that thesatis�ability method yields causally possible plans.Proposition 6.1 Let D be a de�nite L (F;A;T) domain description, S0 an initialstate description, and G a time-speci�c goal. An action history P is included ina model of lcomp(D) [ S0 [ fGg if and only if P is a causally possible plan forachieving G in S0.This proposition guarantees that every plan obtained by the satis�abilitymethod is causally possible. Unfortunately, this is a rather weak guarantee. Forexample, in the nondeterministic Coin Toss domain D4, introduced in Section 5.7.3(Figure 5.9), a causally possible plan for having the coin lie heads at time 1, afterlying tails at time 0, is simply to toss the coin at time 0. We can make this precise,as follows. There is a single uent name Heads , and a single action name Toss .Assume that there are two times, 0 and 1. Take S0 = f:Heads0g, G = Heads1, andP = fToss0g. One easily checks that the interpretation S0 [ P [ fGg is causallyexplained by D4. Hence, P is a causally possible plan for achieving Heads1 in S0.On the other hand, P is also a causally possible plan for achieving :Heads1 in S0,since S0 [ P [ f:Gg is also causally explained by D4.195



6.2.2 Su�cient PlansLet D be an L (F;A;T) domain description, S0 an initial state description, and G atime-speci�c goal. An action history P is a su�cient plan for achieving G in S0 ifS0 [ P [D j�G:Intuitively, according to this de�nition, G will be achieved whenever P isdone starting in S0.Su�ciency does not say anything about whether P can be executed in S0, soit is not surprising that some su�cient plans are not valid. In fact, even plans thatare both causally possible and su�cient can fail to be valid. Here is an example,again involving coin tossing, along with a second action of truly saying that thecoin lies heads. We have a single uent name, Heads , two action names, Toss andTrulySayHeads , and three times, 0, 1 and 2. Again Heads is inertial. The L (F;A;T)domain description D8 for this action domain is represented by the schemas ofFigure 5.9, along with one additional domain speci�c schema, shown below.TrulySayHeads t � Heads t (6.1)Take S0 = f:Heads0g, G = Heads2, andP = fToss0;:TrulySayHeads0;:Toss1;TrulySayHeads1g :So the plan is to toss the coin and then truly say heads. There is exactly onemodel of S0 [ P that is causally explained by D8|namely, the interpretationS0 [ P [ fHeads1;Heads2g. Therefore, P is a su�cient, causally possible plan forachieving Heads2 in S0. That is, roughly speaking, there is a causally possibleworld in which doing P in S0 achieves Heads2, and, moreover, in any causally pos-sible world in which P is done in S0, Heads2 is achieved. Nonetheless, P is not avalid plan. Intuitively, the problem is that P is not executable in S0|it could bethat the coin comes up tails after the initial toss, in which case the agent cannottruly say heads at time 1. 196



6.2.3 Executable PlansWe next de�ne when a plan is executable in an initial state. Unfortunately, thiscondition is less convenient to state and check than the previous ones.Let D be an L (F;A;T) domain description. For any time name t 2 T, letTjt = fs 2 T : s � tg. Given a set X of L (F;A;T) literals, and a time name t, wewrite Xjt to denote the set of all literals in X that belong to the restricted languageL (F;A;Tjt).Let P be an action history and S0 an initial state description. We specifywhen P jt is executable in S0 by the following recursive de�nition. P j0 is executablein S0. (Note that P j0 = ;.) For all times t+1 2 T, P jt+1 is executable in S0 if thefollowing two conditions hold: (i) P jt is executable in S0, and (ii) for every causallyexplained interpretation I that satis�es S0 [ P jt, there is a model of Ijt [ P jt+1that is causally explained. Finally, we say that P itself is executable in S0 if, forevery time t 2 T, P jt is executable in S0.So a plan P is executable if all of its pre�xes are. Recall that a pre�x P jtcompletely speci�es all action occurrences before time t, and that P jt+1 speci�esin addition the action occurrences at time t. Thus P jt+1 is executable, roughlyspeaking, if P jt is and, no matter the state of the world after executing P jt, theactions speci�ed by P for time t can then be performed.For example, consider more closely why the plan P from the last exampleis not executable in S0. Recall that initially the coin lies tails. The pre�x P j1 isexecutable in S0. That is, it is possible to toss and not truly say heads at time 0.But pre�x P j2 is not executable in S0. Intuitively, it may not be possible to trulysay heads at time 1. More precisely, notice that the interpretation I obtainedfrom S0 [ P j1 by adding :Heads1;:Toss1;:TrulySayHeads1;:Heads2 is causallyexplained by D8, yet no model of Ij1 [ P j2 is causally explained. This is becauseno causally explained interpretation satis�es both :Heads1 and TrulySayHeads1.197



6.2.4 Valid PlansLet D be an L (F;A;T) domain description, S0 an initial state description, and G atime-speci�c goal. An action history P is a valid plan for achieving G in S0 if it isboth su�cient and executable.The next proposition shows that valid plans are causally possible.Lemma 6.2 Let D be an L (F;A;T) domain description and S0 an initial statedescription. If an action history P is executable in S0, then there is model of S0 [ Pthat is causally explained by D.Proof Sketch. The de�nition of the executability of P in S0 provides a basis forconstructing a causally explained interpretation I such that, for all times t 2 T,I satis�es S0 [ P jt. 2Proposition 6.3 Let D be an L (F;A;T) domain description, S0 an initial statedescription, and G a time-speci�c goal. If P is a valid plan for achieving G in S0,then it is a causally possible plan for achieving G in S0.Proof. By Lemma 6.2, since P is executable in S0, some model I of S0 [ P iscausally explained. Since P is su�cient for G in S0, S0 [ P [D j�G. Hence, I sat-is�es G, which shows that S0 [ P [D j6�:G. 26.2.5 Deterministic PlansWe will de�ne one more class of plans, the deterministic plans. We will show thatif a plan is causally possible and deterministic, it is valid. This is a key result inour approach to satis�ability planning. In Section 6.3 we will introduce the class ofsimple L (F;A;T) domain descriptions, and show that for them all causally possibleplans are deterministic, and thus valid. 198



Let D be an L (F;A;T) domain description, P an action history, and S0 aninitial state description. For every time t, P jt is deterministic in S0 if for all uentnames F and times s � t, S0 [ P jt [D j�Fs or S0 [ P jt [D j�:Fs. We say thatP is deterministic in S0 if for every time t 2 T, P jt is deterministic in S0.Thus a plan P is deterministic if all of its pre�xes are. Recall that a pre�xP jt is a complete speci�cation of action occurrences for all times before t. Pre�xP jt is deterministic if, roughly speaking, performance of the actions in P jt startingin S0 would completely determine the values of all uents up to time t.This de�nition yields a strong lemma.Lemma 6.4 Let D be an L (F;A;T) domain description and S0 an initial statedescription. If an action history P is deterministic in S0, then at most one modelof S0 [ P is causally explained by D.Proof. Let I and I 0 be causally explained models of S0 [ P . Consider any uentatom Ft. Since P is deterministic in S0, so is P jt. Since both I and I 0 satisfyS0 [ P jt, it follows that they agree on Ft. Hence I = I 0. 2The converse of Lemma 6.4 does not hold. P may fail to be deterministicin S0 even when there is at most one causally explained model of S0 [ P . We il-lustrate this with another coin tossing example. Take a single uent name, Heads ,and three action names, Toss , TrulySayHeads and TrulySayTails . Identify timewith the natural numbers. Once more we designate Heads inertial. The domaindescription D9 is represented by the schemas in Figure 5.9 together with the addi-tional domain speci�c schema (6.1) from D8, and two more domain speci�c schemas,shown below. TrulySayTails t � :Heads t (6.2)TrulySayHeads t 6� TrulySayTails t (6.3)199



Due to (6.3), exactly one non-toss action occurs at every time in every causallypossible world. Moreover, by (6.1) and (6.2), whenever truly say heads occurs, thecoin lies heads, and whenever truly say tails occurs, the coin lies tails. Thus, eachcausally possible world is completely determined by its initial state and the actionsthat are performed in it. For instance, let S0 = f:Heads0g and consider the plan Pin which the agent initially tosses and concurrently truly says tails, and forever aftertruly says heads and does not toss. Although exactly one model of S0 [ P is causallyexplained, P is not deterministic. This is because P j1 is not deterministic. That is,tossing and concurrently truly saying tails at time 0 simply does not determine thestate of the coin at time 1.Proposition 6.5 Let D be an L (F;A;T) domain description, S0 an initial statedescription, and G a time-speci�c goal. If P is a causally possible plan for achiev-ing G in S0 and P is also deterministic in S0, then P is a valid plan for achieving Gin S0.Proof. Since P is a causally possible plan for achieving G in S0, some model I�of S0 [ P [ fGg is causally explained. By Lemma 6.4, no other model of S0 [ Pis causally explained. Since I� satis�es G, P is su�cient for achieving G in S0.To show that P is executable in S0, we prove by induction that for all times t,P jt is executable in S0. The base case is trivial. For the inductive step, we showthat P jt+1 is executable in S0. By the inductive hypothesis, P jt is executablein S0. Thus we can complete the proof as follows. Assume that I is a causallyexplained model of S0 [ P jt. Notice that both I and I� satisfy S0 [ P jt. Since P isdeterministic in S0, so is P jt, and it follows that I�jt = Ijt. Since I� also satis�esP jt+1, we're done. 2Of course the converse of Proposition 6.5 does not hold, since valid plansneed not be deterministic. 200



6.3 Satis�ability Planning with L (F;A;T) Domain De-scriptionsIn this section, we consider how to restrict de�nite L (F;A;T) domain descriptions sothat the causally possible plans are deterministic and thus, by Proposition 6.5, valid.To this end, we introduce the class of \simple" L (F;A;T) domain descriptions.6.3.1 Simple Domain DescriptionsA de�nite L (F;A;T) domain description D is simple if it has the following three(yet to be de�ned) properties: it is inertially unambiguous, adequately acyclic, andrespects the ow of time.Inertially UnambiguousLet F+denote the set of all uent atoms that refer to nonzero times. Formulas in Dof the form � ^ L � CL, where L 2 F+ or L 2 F+, and � is any L (F;A;T) formula,will be called inertia-like laws.Note that this de�nition covers not only UCL formulas obtained from thestandard inertia schema (5.32) but also, for instance, formulas such as those obtainedfrom schemas (5.42){(5.43) in the Pendulum domain D3, which describe a dynamiccourse of nature. This de�nition also covers formulas such as those obtained fromschemas (5.34){(5.35) in the coin-tossing domains. Although these UCL formulasexpress the direct nondeterministic e�ect of the coin-tossing action, they have aform similar to that of inertia laws.D is called inertially unambiguous if it includes no pair of inertia-like laws� ^ Ft+1 � CFt+1 (6.4) ^ :Ft+1 � C:Ft+1 (6.5)such that the formula � ^  is satis�able.201



This exclusivity condition on � and  is the only non-syntactic component ofthe de�nition of a simple domain description. Notice that the formulas representedby the schema (5.32) for inertia and schemas (5.42){(5.43) in the Pendulum domainsatisfy this condition.Adequately AcyclicThe proper atom dependency graph of D is the directed graph de�ned as follows.Its nodes are the atoms of the language of D. Let D0 be the UCL theory obtainedfrom D by (i) deleting all formulas whose consequent is CFalse , and (ii) replacingeach inertia-like law � ^ L � CL with the UCL formula � � CL. For each formulain D0, there is an edge from the atom that occurs in the consequent to each atomthat occurs in the antecedent. We use the proper atom dependency graph to de�nean ordering on F+ as follows. For all A;A0 2 F+, A <D A0 if there is a nonemptypath from A0 to A. (So the edges in the graph point downward in the ordering.)We say that D is adequately acyclic if the ordering <D on F+ is well-founded.Intuitively, this condition restricts cyclic causal dependencies between uents,while allowing cycles that arise due to formulas related to inertia.Respects the Flow of TimeHere we provide a simpler version (specialized to de�nite L (F;A;T) doman descrip-tions) of a de�nition �rst presented in Section 5.7. We say that D respects the owof time if every formula in D satis�es the following two conditions.� If the consequent refers to a time t, then the antecedent does not refer to atime later than t.� If the consequent is a uent literal that refers to time t, then every actionatom in the antecedent refers to a time earlier than t.202



Notice that the description D3 of the Suitcase domain (Figure 5.8), as well asthe descriptions D5 of the Dominos domain (Figure 5.10) and D6 of the Pendulumdomain (Figure 5.11) are all simple domain descriptions.1 The coin-tossing domainsD4, D8 and D9 are not, because they are not inertially unambiguous.26.3.2 Simple Domain Descriptions Yield Valid PlansHere is the main technical result related to simple domain descriptions. Its proof ispostponed to Section 6.6.Proposition 6.6 Let D be a simple L (F;A;T) domain description, S0 an initialstate description, and G a time-speci�c goal. If P is a causally possible plan forachieving G in S0, then P is a valid plan for achieving G in S0.From this result, along with Propositions 6.1 and 6.3, we obtain the followingcharacterization of satis�ability planning with simple L (F;A;T) domain descrip-tions.Theorem 6.7 Let D be a simple L (F;A;T) domain description, S0 an initial statedescription, and G a time-speci�c goal. An action history P is included in a modelof lcomp(D) [ S0 [ fGgif and only if P is a valid plan for achieving G in S0.For e�ective satis�ability planning, we must of course also require that thesimple L (F;A;T) domain description be �nite, with F, A, and T �nite as well.1More precisely, as noted previously, D5 is easily seen to be S5-equivalent to a simple domaindescription.2Again, we should note that although D8 and D9 are not de�nite, they are clearly S5-equivalentto de�nite theories.
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% File: pendulum:- declare_typestype(fluent,[right]),type(action,[hold]),type(time,[0..4]),type(atom,[h(fluent,time),o(action,time)]).:- declare_variablesvar(A,action),var(F,fluent),var([T,T1],time).% domain specific schemaso(hold,T) & h(right,T) => h(right,T1) where T1 is T+1.o(hold,T) & -h(right,T) => -h(right,T1) where T1 is T+1.-h(right,T) & h(right,T1) => h(right,T1) where T1 is T+1.h(right,T) & -h(right,T1) => -h(right,T1) where T1 is T+1.% standard schemaso(A,T) => o(A,T). -o(A,T) => -o(A,T).h(F,0) => h(F,0). -h(F,0) => -h(F,0).Figure 6.1: Example input �le for the planning system: the Pendulum domain.6.4 Satis�ability Planning ProgramGiven a �nite signature and a set of schemas representing a �nite, de�nite L (F;A;T)domain description, it is straightforward to instantiate the schemas to obtain therepresented (ground) L (F;A;T) domain description, form its literal completion,and convert it to clausal form. Norm McCain and I (mostly Norm) wrote a Prologprogram to carry out these tasks. It includes a procedure named load file/1,which reads in a �le such as the one displayed in Figure 6.1 for the Pendulumdomain (compare Figure 5.11), and writes out in clausal form the literal completionof the UCL theory. In the input syntax, uent atoms ft are represented as h(f,t),and action atoms at are represented as o(a,t). The symbols h and o are read as\holds" and \occurs," respectively. Also, we write � ) L to stand for the UCLformula � � CL. 204



After load file/1 has processed the domain description, planning problemsare posed by calling the procedure plan/0, as shown in Figure 2. The procedureplan/0 reads in an initial state description S0 and a time-speci�c goal G, convertsthem to clausal form, and adds them to the clause set obtained from the domaindescription.3 The resulting clause set is simpli�ed, as in [KS96]4, and submitted tothe satis�ablity checker rel sat [BS97]. If lcomp(D) [ S0 [ fGg is satis�able, rel sat�nds a satisfying interpretation and plan/0 displays it, answering \yes." The plan Pcan be read o� from this display. By Theorem 6.7, if D is simple, P is guaranteedto be a valid plan for achieving the goal G starting in initial state S0. If rel sat failsto �nd a satisfying interpretation, plan/0 answers \no." Since the solver rel sat issystematic, we know in this case that G cannot be achieved starting in S0. In eithercase, the time spent in the solver rel sat is reported.6.5 Large Planning ProblemsHere we report on the performance of our approach when applied to the large blocksworld and logistics planning problems from [KS96]. As far as we know, the resultsobtained there compare favorably with the best current general-purpose planningsystems. We obtain comparable results.6.5.1 Blocks World ProblemsThe large blocks world planning problems from [KS96] are characterized in Fig-ure 6.3. To provide a rough idea of the quality of our experimental results, we notethat Kautz and Selman report for the planner GraphPlan [BF95] a solution time ofover 7 hours for Blocks World B (on an SGI Challenge). By comparison, we solve3As illustrated in Figure 6.2, the initial state description S0 can be replaced by a set � of formulasreferring only to time 0 such that � [D j��, where � is the conjunction of the members of S0, andyet � [D j6�False.4Steps: subsumption, unit propogation, subsumption.205



| ?- load_file(pendulum).% 9 atoms, 28 rules, 16 clauses loaded.yes| ?- plan.enter facts and goal (then ctrl-d)|: h(right,0).|: -h(right,2) & h(right,4).|:0. rightActions: hold1. rightActions:2. -rightActions: hold3. -rightActions:4. rightElapsed Time (cpu sec): 0.01yes Figure 6.2: Planning session with Pendulum domain.Blocks World A. 9 blocks. Requires 6 moves.Initial state: 2/1/0 4/3 8/7/6/5Goal state: 4/0 7/8/3 1/2/6/5Blocks World B. 11 blocks. Requires 9 moves.Initial state: 2/1/0 10/9/4/3 8/7/6/5Goal state: 0/4/9 7/8/3 1/2/10/6/5Blocks World C. 15 blocks. Requires 14 moves.Initial state: 2/1/0/11/12 10/9/4/3/13/14 8/7/6/5Goal state: 13/0/4/9 14/12/7/8/3 11/1/2/10/6/5Blocks World D. 19 blocks. Requires 18 moves.Initial state: 0/11/12 10/9/4/3/13/14 8/7/6/5 18/17/16/15/2/1Goal state: 16/17/18/13/0/4/9 14/12/7/8/3 11/1/2/15/10/6/5Figure 6.3: Characterization of large blocks world problems from [KS96].206



:- declare_typestype(block,[0..18]),type(location,[block,table]),type(fluent,[on(block,location)]),type(action,[pickup(block),putat(location)]),type(inaction,[nopickup,noputat]),type(time,[0..18]),type(atom,[o(action,time),o(inaction,time),h(fluent,time)]).:- declare_variablesvar([B,B1],block),var([L,L1],location),var(F,fluent),var(A,action),var(X,inaction),var([T,T1],time).% state constraints: the first two allow concise input of initial state and goalh(on(B,L),0) & h(on(B,L1),0) => false where B \== L, B \== L1, L @< L1.h(on(B,L),18) & h(on(B,L1),18) => false where B \== L, B \== L1, L @< L1.h(on(B,B),T) => false.% direct effects of actionso(pickup(B),T) & o(putat(L),T) => h(on(B,L),T1) where T1 is T+1, B \== L.h(on(B,L),T) & o(pickup(B),T) => -h(on(B,L),T1) where T1 is T+1, B \== L.% explicit action preconditionso(pickup(B),T) & h(on(B1,B),T) => false where B =\= B1.o(putat(B),T) & h(on(B1,B),T) => false where B =\= B1.o(pickup(B),T) & o(putat(B),T) => false.o(pickup(B),T) & o(putat(table),T) & h(on(B,table),T) => false.% at most one move action at a timeo(pickup(B),T) & o(pickup(B1),T) => false where B @< B1.o(putat(L),T) & o(putat(L1),T) => false where L @< L1.o(pickup(B),T) => -o(nopickup,T).o(putat(L),T) => -o(noputat,T).o(nopickup,T) & -o(noputat,T) => false.-o(nopickup,T) & o(noputat,T) => false.% standard schemash(F,0) => h(F,0). -h(F,0) => -h(F,0).h(F,T) & h(F,T1) => h(F,T1) where T1 is T+1.-h(F,T) & -h(F,T1) => -h(F,T1) where T1 is T+1.o(A,T) => o(A,T). -o(A,T) => -o(A,T). o(X,T) => o(X,T).Figure 6.4: Input �le for Blocks World D.
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Blocks World B in under a second (on a slower Sparcstation 5).Our input �le representing Blocks World D is displayed in Figure 6.4. Weadapt the \operator splitting" approach used by Kautz and Selman. Instead ofaxiomatizing an action Move(b; l0; l), they axiomatize three \component" actions,which we can write: Pickup(b), Takefrom(l0), Putat(l). Their axioms are based onSchubert's \explanation closure" [Sch90], augmented with state constraints. In com-parison, we introduce names for only two components of the move action: Pickup(b),Putat(l). (When moved, a block is taken from where it currently is.) We also donot introduce a uent Clear (b). Kautz and Selman include in their description anumber of state constraints that we omit.5 Preliminary experiments indicated thatadditional state constraints in our blocks world descriptions increase solution timeson larger problems.One can easily verify that the domain description represented in Figure 6.4is simple. The main complication, compared to our descriptions of the Dominos andPendulum domains involves action atoms, which are largely irrelevant in determiningwhether a description is simple. Here we include a family of action atoms that are\true by default" rather than exogenous. Thus, for example, the action NoPickupis assumed to occur, roughly speaking, and we describe the conditions under whichit is caused not to occur|whenever PickUp(B) occurs, for some block B. Theseauxiliary \inaction" atoms are used to stipulate that a pickup action occurs if andonly if a putat action does.5Their state constraints still do not rule out all \physically impossible" states. This is in accor-dance with the usual practice in describing action domains for planning. Roughly speaking, oneneed only say enough to guarantee that no \illegal" state can be reached from a legal one. Intu-itively, this is adequate because planning problems are posed in part by specifying a legal initialstate.
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6.5.2 Logisitics Planning ProblemsThe logistics domain is due to Veloso [Vel92]. Kautz and Selman studied three largelogistics planning problems. Our input �le for the largest of these problems appearsin Figure 6.5.The logistics domain is more complex than the blocks world domain. Itincludes several kinds of actions that can occur concurrently. Our description ofthe logistics domain does not use operator splitting (which is not generally appli-cable to concurrent actions). Preliminary experiments indicated that, in constrastto the blocks world, logistics domain descriptions should include a variety of stateconstraints in order to get consistently good performance. We note that the lo-gistics domain description used in our experiments is simple, and thus suitable forsatis�ablity planning.6.5.3 Experimental ResultsIn our experimental results on these planning problems, we report the size of theclausal theory obtained from the literal completion of the causal action theory|interms of numbers of atoms, clauses and literal occurrences, after simpli�cation|andtime spent in the solver, following the reporting methodology of [KS96]. Solutiontimes are averaged over 20 runs of the solver rel sat on a Sparcstation 5, usingdi�erent random number seeds. Table 6.1 displays statistics for �nding plans by ourmethod.For the sake of comparison, we performed the corresponding experiments onthe problem descriptions from [KS96], again using the solver rel sat on a Sparcsta-tion 5.6 The results appear in Table 6.2. Bayardo and Schrag [1997] showed that,6Kautz and Selman considered two kinds of descriptions of the logistics domains (both in classicalpropositional logic): one based on intuitions underlying the planner Graphplan [BF95]; the otherobtained by �rst describing the domain as in explanation closure, then eliminating all action atoms.In this second case, a satisfying interpretation does not include an action history. Rather it provides,as it were, a re�nement of the planning problem. That is, the satisfying interpretation can be209



:- declare_types type(package,[0..6]), type(city,[0..3]), type(airplane,[0..1]),type(cityLoc,[p,a]), type(packageLoc,[inPlane(airplane),inVan(city),unloaded(city,cityLoc)]), type(inertialFluent,[planeLoc(airplane,city),vanLoc(city,cityLoc),at(package,packageLoc)]),type(defaultFalseFluent,[nowhere(airplane),misplaced(package)]),type(fluent,[inertialFluent,defaultFalseFluent]),type(action,[fly(airplane,city),drive(city,cityLoc),loadPlane(package,airplane,city), unloadPlane(package,airplane,city),loadVan(package,city,cityLoc), unloadVan(package,city,cityLoc)]),type(time,[0..13]), type(atom,[o(action,time),h(fluent,time)]).:- declare_variables var([T,T1],time), var(If,inertialFluent),var(Dff,defaultFalseFluent), var(E,action), var(P,package), var([C,C1],city),var([PL,PL1],packageLoc), var([L,L1],cityLoc), var([A,A1],airplane).h(planeLoc(A,C),T) & h(planeLoc(A,C1),T) => false where C < C1.h(nowhere(A),T) => false. -h(vanLoc(C,a),T) & -h(vanLoc(C,p),T) => false.h(vanLoc(C,L),T) & h(vanLoc(C,L1),T) => false where L @< L1.h(at(P,PL),T) & h(at(P,PL1),T) => false where PL @< PL1.h(misplaced(P),T) => false. h(planeLoc(A,C),T) => -h(nowhere(A),T).h(at(P,PL),T) => -h(misplaced(P),T). h(If,0) => h(If,0).-h(If,0) => -h(If,0). h(If,T) & h(If,T1) => h(If,T1) where T1 is T+1.-h(If,T) & -h(If,T1) => -h(If,T1) where T1 is T+1. h(Dff,T) => h(Dff,T).o(fly(A,C),T) => h(planeLoc(A,C),T1) where T1 is T+1.o(fly(A,C),T) => -h(planeLoc(A,C1),T1) where T1 is T+1, C =\= C1.o(fly(A,C),T) & h(planeLoc(A,C),T) => false.o(drive(C,L),T) => h(vanLoc(C,L),T1) where T1 is T+1.o(drive(C,L),T) => -h(vanLoc(C,L1),T1) where T1 is T+1, L \== L1.o(drive(C,L),T) & h(vanLoc(C,L),T) => false.o(loadPlane(P,A,C),T) => h(at(P,inPlane(A)),T1) where T1 is T+1.o(loadPlane(P,A,C),T) => -h(at(P,unloaded(C,a)),T1) where T1 is T+1.o(loadPlane(P,A,C),T) & -h(planeLoc(A,C),T) => false.o(loadPlane(P,A,C),T) & -h(at(P,unloaded(C,a)),T) => false.o(loadVan(P,C,L),T) => h(at(P,inVan(C)),T1) where T1 is T+1.o(loadVan(P,C,L),T) => -h(at(P,unloaded(C,L)),T1) where T1 is T+1.o(loadVan(P,C,L),T) & -h(vanLoc(C,L),T) => false.o(loadVan(P,C,L),T) & -h(at(P,unloaded(C,L)),T) => false.o(unloadPlane(P,A,C),T) => h(at(P,unloaded(C,a)),T1) where T1 is T+1.o(unloadPlane(P,A,C),T) => -h(at(P,inPlane(A)),T1) where T1 is T+1.o(unloadPlane(P,A,C),T) & -h(planeLoc(A,C),T) => false.o(unloadPlane(P,A,C),T) & -h(at(P,inPlane(A)),T) => false.o(unloadVan(P,C,L),T) => h(at(P,unloaded(C,L)),T1) where T1 is T+1.o(unloadVan(P,C,L),T) => -h(at(P,inVan(C)),T1) where T1 is T+1.o(unloadVan(P,C,L),T) & -h(vanLoc(C,L),T) => false.o(unloadVan(P,C,L),T) & -h(at(P,inVan(C)),T) => false.o(fly(A,C),T) & o(loadPlane(P,A,C1),T) => false.o(fly(A,C),T) & o(unloadPlane(P,A,C1),T) => false.o(drive(C,L),T) & o(loadVan(P,C,L1),T) => false.o(drive(C,L),T) & o(unloadVan(P,C,L1),T) => false.o(E,T) => o(E,T). -o(E,T) => -o(E,T).Figure 6.5: Input �le for Logistics C.210



Table 6.1: Satis�ability Planning with Causal Action Theories. Sizes are for clausaltheories obtained, via literal completion, from causal action theories (after simpli�-cation). Time in seconds using the satis�ability solver rel sat on a Sparcstation 5.Instance Atoms Clauses Literals TimeBW A 383 2412 5984 0.13BW B 934 6241 15903 0.81BW C 2678 18868 48704 35.2BW D 5745 41726 108267 620.0LOG A 1643 9205 20712 3.7LOG B 1760 10746 24134 8.4LOG C 2300 14450 32346 25.0
Table 6.2: Kautz and Selman Problem Descriptions. Here we establish thebenchmarks|the results for the clausal theories used in [KS96], with solution timesobtained in the same manner as in Table 6.1.Instance Atoms Clauses Literals TimeBW A 459 4675 10809 0.20BW B 1087 13772 31767 1.4BW C 3016 50457 114314 66.3BW D 6325 131973 294118 1052.0LOG A 1782 20895 42497 2.5LOG B 2069 29508 59896 9.8LOG C 2809 48920 99090 32.3
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Table 6.3: Proving Plans Optimal: Satis�ability Planning with Causal Action The-ories. Here, in each case, the domain description includes one time step less thanneeded for a solution. Time reported is number of seconds required for solver rel satto determine unsatis�ability.Instance Atoms Clauses Literals TimeBW A 281 1741 4211 0.04BW B 788 5246 13276 0.43BW C 2420 17033 43865 21.6BW D 5343 38795 100544 374.2LOG A 1354 7378 16595 2.2LOG B 1498 8908 20026 31.3LOG C 1946 11924 26710 54.8for the clausal theories of Kautz and Selman that we consider, their solver rel satoutperforms both of the solvers|one systematic, one stochastic|used in [KS96].7Notice that in all cases except Logistics A our solution times are better.Finally, in order to show that a plan is optimal (in the number of time steps),it is necessary to show that no shorter plan exists. For this purpose it is essentialthat a systematic solver be used. In Table 6.3, we report on the performance ofour approach for this task, again using the solver rel sat. For each problem, wereport the time to fail to �nd a plan one step shorter than the optimal plan. Noticethat, for these planning problems, the time needed to fail is comparable to the timeneeded to succeed.6.6 Proof of Main PropositionWe begin with the main lemma.understood as an initial state and goal which together specify completely the values of all uentatoms. In our reported results, we refer to the �rst kind of description. We note in comparisonthat the solver rel sat takes longer for each instance of the second kind of description.7On the other hand, for their description of the logistics domain in which the action names areeliminated, their stochastic solver (properly tuned) is faster than rel sat.212



Lemma 6.8 Let D be a de�nite L (F;A;T) domain description that is inertiallyunambiguous and adequately acyclic. Let P be an action history and S0 an initialstate description. At most one model of S0 [ P is causally explained by D.Proof. We proceed by the method of contradiction. Suppose that two distinctcausally explained interpretations I and I 0 satisfy S0 [ P . Let X be the set ofatoms on which I and I 0 disagree. Notice that X is a nonempty subset of F+,since I and I 0 di�er, and yet agree on all atoms not in F+. Let X 0 consist ofthe members of X that are minimal (among members of X) with respect to theordering <D. Notice that X 0 is nonempty, since X is nonempty and <D restrictedto X is well-founded. Finally, let Ft+1 be a member of X 0 whose time subscript isminimal (among members of X 0). Without loss of generality, assume that I j= Ft+1and I 0 j= :Ft+1. Since I = DI and I 0 = DI0, there must be a pair of formulas� � CFt+1 and  � C:Ft+1 in D such that I j= � but I 0 6j= �, and I 6j=  but I 0 j=  .It follows that I and I 0 di�er on at least one atom A that occurs in �. Thus, A 2 Xand also A <D Ft+1. Consequently, by the minimality of Ft+1, A is Ft+1. Since D isadequately acyclic, � � CFt+1 must be of the form (6.4), and so can be written�0 ^ Ft+1 � CFt+1. Since I j= �, I j= �0. A similar argument shows that  � C:Ft+1has form (6.5), and can be written  0 ^ :Ft+1 � C:Ft+1, with I 0 j=  0. Because Dis inertially unambiguous, I 0 cannot satisfy both �0 and  0. Hence I 0 6j= �0. (Wecomplete the proof by showing that I 0 j= �0.) We have already shown that the onlyatom in � on which I and I 0 di�er is Ft+1, which is to say that the only atom in�0 ^ Ft+1 on which I and I 0 di�er is Ft+1. Since D is adequately acylic, we knowFt+1 does not occur in �0. So I and I 0 agree on all atoms in �0, and since I j= �0,I 0 j= �0 as well. Contradiction. 2Let D be an L (F;A;T) domain description. For any t 2 T, let Djt be theUCL theory in the restricted language L (F;A;Tjt) consisting of all formulas from Din that language. 213



Observe that if D is a simple L (F;A;T) domain description, then, for everytime t, Djt is a simple L (F;A;Tjt) domain description.Lemma 6.9 Let D be a simple L (F;A;T) domain description, S0 an initial statedescription and P an action history. For all t 2 T, if I is a model of S0 [ P jt that iscausally explained by D, then Ijt is the unique model of S0 [ P jt causally explainedby Djt.Proof. Clearly Ijt is a model of S0 [ P jt. Given that D respects the ow of time,one easily veri�es that (Djt)Ijt = DI jt. Since I = DI , Ijt = DI jt. So Ijt = (Djt)Ijt,and we've shown that Ijt is a model of S0 [ P jt that is causally explained by Djt.We know that Djt is simple since D is, so we can conclude by Lemma 6.8 that Ijt isunique. 2Lemma 6.10 Let D be a simple L (F;A;T) domain description, S0 an initial statedescription, and P an action history. If D has a causally explained interpretationsatisfying S0 [ P , then P is deterministic in S0.Proof. We need to show that, for all times t 2 T, P jt is deterministic in S0. Proofis by induction on t. The base case is trivial. By the inductive hypothesis, P jt isdeterministic in S0. Assume that I and I 0 are models of S0 [ P jt+1 that are causallyexplained by D. We need to show that Ijt+1 = I 0jt+1, which follows easily fromLemma 6.9. 2Proposition 6.5 and Lemma 6.10 yield Proposition 6.6.
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Chapter 7
Concluding Remarks

This dissertation belongs to a recent line of work in reasoning about action in whichcausal notions are represented more explicitly than they typically have been inthe past. It is important that in this dissertation we do not attempt to formalizeassertions of the form \� causes  ", but instead focus on causal knowledge of asimpler kind: knowledge of the conditions under which facts are caused.In the �rst part of the dissertation, we use a simple, well-understood math-ematical tool|inference rules|to express \static causal laws" of the form \if � iscaused, then  is also caused." In Section 3.3 we give a de�nition of \possible nextstates" based on this idea, and in Section 3.4 we use that de�nition as the basis for ahigh-level action language AC, which incorporates it in a situation calculus setting.In Section 3.5, we embed AC in the rule-based nonmonotonic formalism ofdefault logic. The correctness proof for this embedding, presented in Chapter 4, israther elaborate, and uses so-called Splitting Theorems for default logic, introducedfor that purpose. From the embedding in default logic, we derive in Section 3.6 asimilar embedding of AC in logic programming.The de�nition of possible next states on which AC is based reects a new,causal understanding of commonsense inertia. The embedding of AC in default logic215



shows how to express this causal understanding of inertia by means of default rulesof a remarkably simple form. These discoveries contributed to the development ofthe more satisfactory, general approach described in the second part of dissertation.The second part of the dissertation discusses UCL, a modal nonmonotoniclogic designed speci�cally for representing the conditions under which facts arecaused. On the basis of this mathematically simple form of causal knowledge, UCLcharacterizes the worlds that are causally possible. The logic takes its name fromthe principle of universal causation, the simplifying assumption that underlies the�xpoint de�nition of a causally explained interpretation.In applications of UCL to reasoning about action, discussed primarily in Sec-tions 5.5, 5.7, and 5.9, universal causation is easily relaxed by means of standardaxioms. Also, as introduced in Section 5.11, one can declare a subset of the nonlog-ical constants exempt from universal causation, as is done in the formalization ofthe Suitcase domain in second-order UCL (Figure 5.12).Universal causation plays a key role in the simple, robust solution to theframe problem in Section 5.7. In fact, as illustrated by the pendulum example,essentially the same approach can be used to describe inertia in worlds in which,intuitively speaking, things change (in a certain way) unless they are made not to.For another example of this, imagine a timer that can be reset to zero, but neverturned o�. One might (partially) describe such a state of a�airs in second-orderUCL as follows. CTimer(0)=0 (7.1)8s; n(Timer(s)=n ^Timer (s0)=n0 � CTimer(s0)=n0) (7.2)8s(ResetTimer(s) � CTimer(s0)=0) (7.3)(Assume here that the natural numbers are axiomatized as in Figure 5.12, that s0and n0 stand for succ(s) and succ(n), and that ResetTimer is declared exempt.)216



In Sections 5.4, 5.8, and 5.10, we relate UCL to Reiter's default logic (and,more generally, disjunctive default logic), circumscription, and autoepistemic logic.In Section 5.6, we observe that UCL extends the causal theories formalism of McCainand Turner [MT97], and, in doing so, provides a more adequate semantic accountof it. We also introduce the computationally useful class of de�nite UCL theories.In Section 5.12, we show that (second-order) UCL extends the second-order subsetof the nonpropositional causal theories of Lifschitz [Lif97].We show that UCL can express a variety of causal theories of action andchange previously proposed in the literature, including the action language AC fromthe �rst part of the dissertation, as well as the circumscriptive action theories ofLin [Lin95, Lin96]. We also establish, by means of Theorems 5.16 and 5.23, theremarkable similarity between the action theories of Lin and the causal theories ofaction of [MT97]. Moreover, in light of this, Theorem 5.10 and Proposition 5.25show how such causal action theories can also be expressed in default logic|as\prerequisite-free" default theories|and in autoepistemic logic.The third part of the dissertation provides a theoretical foundation for satis-�ability planning with UCL theories. In our approach, action domain descriptionsexpressed as UCL theories are translated into classical propositional logic. The clas-sical models of the translation correspond exactly to the \causally possible" worldhistories according to the causal theory. Following Kautz and Selman, we then �ndplans by extracting them from models obtained by satis�ability checking.In order to establish a basis upon which to judge the soundness of this ap-proach to planning, we de�ne a family of fundamental properties a plan may have:causally possible, deterministic, su�cient, executable. A plan is valid if and onlyif it is su�cient and executable. We observe that the plans obtained by the satis-�ability method may, in general, fail to be su�cient or executable. They are onlyguaranteed to be causally possible. We show though that any causally possible plan217



that is deterministic is also valid.We identify a class of \simple" domain descriptions for which the satis�abilitymethod is applicable. Simple domain descriptions have a concise translation intoclassical logic. Moreover, we show that for such domains, the causally possible plansare deterministic and thus valid.We describe an implemented satis�ability planning system based on theseideas, and provide experimental evidence that the approach can be computationallye�ective, by solving hard classical planning instances from [KS96] comparativelyquickly.These developments are particularly noteworthy because of the expressivepotential of simple UCL theories, as illustrated by the Dominos and Pendulumdomains. Thus, future applications of satis�ability planning with causal theoriesmay address extensions to classical planning involving such features as concurrentactions and dynamic worlds.There remains a great deal of work to do with UCL. We may attempt toautomate more expressive subsets of UCL. It would also be interesting to carry outmore systematic comparisons with other approaches to planning. This could involvemore exhaustive testing of classical planning examples. It could also take the form ofan investigation of how well UCL handles various extensions to classical planning,such as concurrent actions. It would also be interesting to look at embeddingsin UCL of some of the many other causal approaches to reasoning about actionthat have been proposed in recent years. Such results can clarify the relationshipsbetween the various proposals. They can also help guide future work exploring therange of action domains expressible in UCL and its various sublanguages.
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