
Parallel Solution of Selected Problems in Control TheoryEnrique S. Quintana-Ort��� Robert van de GeijnyAbstractLyapunov and Stein matrix equations arise in many important analysis and synthesis appli-cations in control theory. The traditional approach to solving these equations relies on the QRalgorithm which is notoriously di�cult to parallelize. We investigate iterative solvers based onthe matrix sign function and the Smith iteration which are highly e�cient on parallel distributedcomputers. We also show that by coding using the Parallel Linear Algebra Package (PLAPACK)it is possible to exploit structure in the matrices and reduce the cost of these solvers.The experimental results on a Cray T3E report the high e�ciency of these parallel solvers.1 IntroductionConsider the Lyapunov matrix equation,ATXL +XLA+Q = 0;(1)and the Stein matrix equation, ATXSA�XS +Q = 0;(2)where A, Q, XL, XS 2 IRn�n, Q = QT , andXL = XTL , XS = XTS are the corresponding sought-aftersolutions. These matrix equations arise in many applications of control theory and stability analysisof linear control systems governed by �rst-order ordinary di�erential equations [1, 19, 23, 25, 27].In particular, large scale equations of these types arise in stabilization of linear control systems,J -inner-outer factorizations of rational matrices, optimal linear-quadratic control problems, etc.[4, 5, 32, 33].In order to guarantee that (1) has a unique solution, we assume that �i + �j 6= 0, for all �i,�j 2 �(A) (here, �(A) denotes the eigenspectrum of A). The existence and uniqueness of thesolution of (2) is guaranteed by assuming that �i � �j 6= 1, for all �i, �j 2 �(A).In particular, in control applications we are interested in the semide�nite (Q � 0) c-stable caseof the Lyapunov equation (�(A) � C�, the open left half complex plane), and the semide�nite(Q � 0) d-stable case of the Stein equation (j�ij 6= 1, for all �i 2 �(A)). Note that the stabilityconditions guarantee the existence and uniqueness of the solution for both types of equations.�Departamento de Inform�atica, Universidad Jaime I, 12.080-Castell�on (Spain), quintana@inf.uji.es.yDepartment of Computer Sciences, The University of Texas at Austin, Taylor Hall 2.124, Austin, TX 78712,rvdg@cs.utexas.edu. 1



2Numerical QR-type solvers for Lyapunov and Stein equations include the Bartels-Stewartmethod, the Hessenberg-Schur method, and Hammarling's algorithm [3, 14, 17, 18]. The com-mon initial step in all these methods is the reduction of the coe�cient matrix A to real Schur formby means of the QR algorithm [15]. This is followed by a less-expensive, specialized back substitu-tion procedure. The overall cost of these algorithms is about 31n3 ops (oating-point arithmeticoperations).All attempts to parallelize these algorithms for distributed-memory architectures su�er thusfrom the same problem: the di�culties in parallelizing the implicit double-shift QR algorithm [20].A new multishift technique, which increases the granularity, has been recently analyzed in [21]. Adi�erent technique relies on a block Hankel distribution (see references in [20]), which improves thebalancing of the computational load. Nevertheless, the parallelism and scalability of these parallelQR algorithms are still far from those of matrix factorizations, triangular linear systems solvers,etc. (see, e.g., [9, 13]).Explicit iterative methods for solving Lyapunov and Stein matrix equations have been knownfor some years now [26, 28]. These algorithms have received renewed interest [6] as they rely onso-called Level-3 BLAS computations such as matrix inversions, linear system solvers, and matrixproducts, which are highly e�cient on current high performance parallel distributed architectures.Furthermore, although these methods can not be considered as numerically stable, the numericalresults obtained in practice are close to those obtained by means of QR-type solvers [7].In this paper we show that by coding in PLAPACK [31], and using the given o�-the-shelf kernelsin this library, it is easy to obtain parallel iterative distributed solvers for these matrix equations.Furthermore, we also show that PLAPACK allows us to specialize our parallel kernels to exploitthe symmetry in the equations, thus reducing the cost of the iterative methods.The paper is structured as follows. In Sections 2 and 3 we briey review the theory behind theiterative solvers for the Lyapunov and Stein equations, respectively. In Section 4, we discuss theparallel implementation of a specialized dense matrix kernel, which allows one to exploit symmetryin the problem. Performance results obtained on a Cray T3E-600 are given in Section 5, andconcluding remarks follow in the �nal section.2 Solving Lyapunov matrix equations with the matrix sign func-tionThe Newton iteration for the matrix sign functionAk+1 = 12 �Ak +A�1k � ; A0 = A;Qk+1 = 12 �Qk +A�Tk QkA�1k � ; Q0 = Q;(3)was proposed by Roberts as a Lyapunov solver in [26]. In case matrix A is c-stable, the iterationcan be shown to converge to A1 = �In (the identity matrix of order n), and Q1 = 2XL.Although the convergence of the Newton iteration is globally quadratic, the initial convergencemay be slow. Several quasi-optimal acceleration schemes have been proposed to speed up theinitial convergence (optimal schemes require complete knowledge of �(A)). Among these, the



3determinantal scaling [10] is usually preferred because of its e�ciency and simplicity. Speci�cally,when using the determinantal scaling, iteration (3) becomesAk+1 = 12 �Ak=k + kA�1k � ; A0 = A;Qk+1 = 12 �Qk=k + kA�Tk QkA�1k � ; Q0 = Q;(4)with k = jdet(Ak)j1=n. For an excellent survey on the matrix sign function and scaling schemes,see [22].The convergence of Ak to �In in the Newton iteration suggests the following convergencecriterion kAk + Ink1=kAkk1 < cp�;where � is the machine precision and c is a small-order constant. When this criterion is satis�ed,two more iterations are performed as the ultimate quadratic convergence of the Newton iterationwill then ensure the maximum attainable accuracy.The numerical solution of Lyapunov equations by means of the matrix sign function can notbe considered as a numerically stable procedure; in fact, the numerical stability depends on thedistance of the eigenspectrum of A to the imaginary axis. However, recent studies [7, 11] show thatthe matrix sign function approach, with careful shifts and scaling, can obtain numerical resultswhich are close to those obtained by means of the numerically stable QR-type algorithms. A moredetailed study of the numerical stability of the iterative solvers based on the matrix sign functionand the Smith iteration is beyond the scope of this work.The Newton iterative scheme has a cost of 6n3 ops per iteration. In practice, 7{10 iterations areusually enough to achieve convergence. Thus, the overall cost is around 42n3{60n3 ops comparedto 31n3 ops for the QR-type algorithms. Nevertheless, the higher cost of the Newton iteration isbalanced by its higher e�ciency on current high performance computers, and its higher degree ofparallelism on parallel distributed computers.A naive implementation of the Lyapunov equation solver requires only e�cient parallel kernelsfor matrix inversion and matrix-matrix multiplication. E�cient parallel inversion is discussed in[29] and e�cient parallel matrix-matrix multiplication in [12, 16, 30].The cost per iteration can be reduced by exploiting the symmetry in the sequence for Qk. AsQ0 is symmetric, all Qk's are also symmetric and we only need to compute the upper (lower) halfpart of these matrices. We therefore reduce the cost of the Newton iterative scheme to 5n3 periteration.Exploiting the symmetry in matrix computations is di�cult (to code and to optimize) on paralleldistributed computers. In section 4 we show that by coding in PLAPACK we easily obtain parallelalgorithms which exploit this characteristic and obtain maximum performance.3 Solving Stein matrix equations via the Smith iterationThe Smith iteration for the Stein equationAk+1 = A2k; A0 = A;Qk+1 = Qk +ATkQkAk; Q0 = Q;(5)



4is described in [28]. This iteration converges, provided A is d-stable, to A1 = 0, and Q1 = XS .The Smith iteration has received considerable less attention than (the Newton iteration for)the matrix sign function. Only very recently this iteration has been used for solving large sparseLyapunov equations in [24]. A �rst study of the parallelization of this iteration is reported in [8].As Ak converges to 0n, an appropriate stopping criterion is based onkAkk1 < cp�:As in the previous case, when this criterion is satis�ed, we perform two more iterations to maximizethe attainable accuracy.The cost of the Smith iteration is 6n3 per iteration. As for the Newton iteration, this can bereduced to 5n3 ops by exploiting the symmetry in the Qk's.A naive implementation of the Stein equation solver is given in Fig. 1. This implementationdoes not take advantage of symmetry in Q. Taking advantage of symmetry requires a special kernelfor computing ATkQkAk that only updates the lower (or upper) triangular portion of Qk. Parallelimplementation of this kernel is discussed in Section 4.4 Parallel Implementation of Q Q+ ATQAIn this section, we show how by exploiting symmetry in Q one can reduce the cost of this operationfrom 4n3 operations to 3n3 operations, thereby reducing the cost of the Newton or the Smithiterations from 6n3 to 5n3 per iteration.Notice that Q Q+ATQA can be implemented by the following steps:1. B  QA (symmetric matrix-matrix multiplication)2. Q  Q + ATB which requires a matrix-matrix multiplication that only updates the lower-triangular portion of Q.While the �rst operation is a standard matrix-matrix operation provided by the level-3 BLAS, andparallelized as part of parallel libraries like PLAPACK, the second is not part of those widely usedkernels. Thus we must describe how to parallelize it explicitly.In [16, 31, 30] we discuss parallel implementation of matrix-matrix multiplication as a sequenceof rank-k updates or matrix-panel multiplies. The only di�erence for the required operation is thatnow a sequence of rank-k updates that a�ect only the lower triangular part of A is substituted:Partition A =  A1A2 ! and B =  B1B2 !where A1 and B1 are b� n submatrices. ThenQ = Q+ATB = Q+ � AT1 AT2 � B1B2 ! = Q+AT1B1 +AT2B2so that the operation can be performed by the steps



5int PLA_Stein( PLA_Obj A, PLA_Obj Q )/* Solve the stable Stein equation A' X A - X + Q = 0 by the Smith iteration.On exit, A is overwritten by intermediate results and Q is overwritten by X.*/{ /* Declarations */PLA_Obj B = NULL,one = NULL, zero = NULL;int dummy, convergence, size;double res_norm, tolerance, eps = 2.2e-16;/* Extract template from any of the matrices*/PLA_Obj_global_length( Q, &size );/* Create local objects */PLA_Matrix_create_conf_to( Q, &B );PLA_Create_constants_conf_to( A, NULL, &zero, &one );PLA_Mscalar_create_conf_to( zero, PLA_ALL_ROWS, PLA_ALL_COLS, &res_norm );/* constants */tolerance = size*sqrt(eps);convergence = 0;while ( TRUE ){PLA_Gemm( PLA_TRANS, PLA_NO_TRANS, one, A, Q, zero, B ); /* B = A' Q */PLA_Gemm( PLA_NO_TRANS, PLA_NO_TRANS, one, B, A, one, Q ); /* Q = B A */PLA_Gemm( PLA_NO_TRANS, PLA_NO_TRANS, one, A, A, zero, B ); /* B = A A */PLA_Copy( B, A ); /* A = B *//* Check end of iteration */PLA_Matrix_one_norm( A, res_norm );if( convergence == 2 ) break;else if( res_norm < tolerance ) convergence++;}PLA_Obj_free( &B );PLA_Obj_free( &one ); PLA_Obj_free( &zero );return PLA_SUCCESS;} Figure 1: Naive PLAPACK implementation of Stein equation solver using the Smith iteration.



6� Partition A =  A1A2 ! and B =  B1B2 ! :� Update lower triangular part of Q = Q+AT1B1.� Continue recursively with updated Q, B = B2 and A = A2.Parallelization of the rank-k update Q Q+AT1B1 is very similar in nature to the symmetricrank-k update C  C � A1AT1 used for example in a right-looking Cholesky factorization andis well-understood [12, 31]. A parallel implementation using the PLAPACK infrastructure of thepresented algorithm is given in Fig. 2.5 Experimental ResultsIn this section, we report the performance attained by the special kernel for computingQ = Q+ATBas well as the overall performance of the Lyapunov and Stein equation solvers.Performance results are given for the Cray T3E-600 (300 MHz), with all computations performedin 64-bit arithmetic. The algorithms were implemented using PLAPACK Version R1.2, which per-forms all communication by means of MPI. We report performance measuring MFLOPS/sec./node(millions of oating point operations per second per processing node) and total MFLOPS/sec.on 16 and 32 processor con�gurations. For reference, the following table shows performance ofmatrix-matrix multiplication on a single node of the T3E-600 in MFLOPS/sec:gemm PLA Gemmn C = AB C = ATB C = AB C = ATB500 418 418 370 3381000 443 444 404 3751500 425 424 418 364The columns marked gemm indicate performance of a call to the 64 bit BLAS matrix-matrix mul-tiplication kernel. The columns marked PLA Gemm show performance of the parallel matrix-matrixmultiplication kernels provided by PLAPACK, when executed on one node.Since the Newton and the Smith iterations are composed of calls to multiplication and inversionof matrices, Fig. 3(a) reports performance of parallel implementations of those kernels. Notice thatcommunication and load-balance is much more complex in the parallel matrix inversion routineand thus performance of that kernel is substantially less than that of matrix-matrix multiplication,in particular for small problems. In Fig. 3(b) we show the performance of various approaches forcomputing Q = Q + ATB. In this �gure, we report performance for a version that does not takeadvantage of symmetry and the discussed algorithm that does take advantage of symmetry. Forboth implementations, we use an operation count of n3, which represents the useful operationsperformed by the algorithms. Thus, the performance of the version that does not take advantageof symmetry is half of what was reported for C = ATB in Fig. 3(a). Notice that there is a clearbene�t to exploiting symmetry when the matrices are large.



7int Sym_Q_plus_AtB( PLA_Obj A, PLA_Obj B, PLA_Obj Q, int nb_alg ){ PLA_Obj Acur = NULL, A_1 = NULL, A_1_dup = NULL, A_1_dup_temp = NULL,Bcur = NULL, B_1 = NULL, B_1_dup = NULL, B_1_dup_temp = NULL,one = NULL;int size;PLA_Create_constants_conf_to( A, NULL, NULL, &one );PLA_Obj_view_all( A, &Acur );PLA_Obj_view_all( B, &Bcur );PLA_Pmvector_create_conf_to( Q, PLA_PROJ_ONTO_ROW, PLA_ALL_ROWS,nb_alg, &B_1_dup );PLA_Pmvector_create_conf_to( Q, PLA_PROJ_ONTO_COL, PLA_ALL_COLS,nb_alg, &A_1_dup );while( TRUE ){PLA_Obj_global_length( Acur, &size );if ( 0 == ( size = min( size, nb_alg ) ) ) break;PLA_Obj_horz_split_2( Acur, size, &A_1,&Acur );PLA_Obj_horz_split_2( Bcur, size, &B_1,&Bcur );PLA_Obj_set_orientation( A_1, PLA_PROJ_ONTO_ROW );PLA_Obj_set_orientation( B_1, PLA_PROJ_ONTO_ROW );PLA_Obj_vert_split_2( A_1_dup, size, &A_1_dup_temp, PLA_DUMMY );PLA_Obj_horz_split_2( B_1_dup, size, &B_1_dup_temp,PLA_DUMMY );PLA_Copy( A_1, A_1_dup_temp );PLA_Copy( B_1, B_1_dup_temp );Sym_AB_perform_local_part( PLA_LOWER_TRIANGULAR,one, A_1_dup_temp, B_1_dup_temp, one, Q );}PLA_Obj_free( &Acur ); PLA_Obj_free( &A_1 );PLA_Obj_free( &A_1_dup ); PLA_Obj_free( &A_1_dup_temp );PLA_Obj_free( &Bcur ); PLA_Obj_free( &B_1 );PLA_Obj_free( &B_1_dup ); PLA_Obj_free( &B_1_dup_temp );PLA_Obj_free( &one );} Figure 2: PLAPACK implementation of Q Q+ATB.


