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Abstract

Lyapunov and Stein matrix equations arise in many important analysis and synthesis appli-
cations in control theory. The traditional approach to solving these equations relies on the QR
algorithm which is notoriously difficult to parallelize. We investigate iterative solvers based on
the matrix sign function and the Smith iteration which are highly efficient on parallel distributed
computers. We also show that by coding using the Parallel Linear Algebra Package (PLAPACK)
it is possible to exploit structure in the matrices and reduce the cost of these solvers.

The experimental results on a Cray T3E report the high efficiency of these parallel solvers.

1 Introduction
Consider the Lyapunov matrix equation,
(1) ATX, + X, A+Q =0,

and the Stein matrix equation,
(2) ATXsA - Xs+Q =0,

where A, Q, X1, X5 € R™" Q = QT,and X, = X}, Xg = X% are the corresponding sought-after
solutions. These matrix equations arise in many applications of control theory and stability analysis
of linear control systems governed by first-order ordinary differential equations [1, 19, 23, 25, 27].
In particular, large scale equations of these types arise in stabilization of linear control systems,
J-inner-outer factorizations of rational matrices, optimal linear-quadratic control problems, etc.
[4, 5, 32, 33].

In order to guarantee that (1) has a unique solution, we assume that A; + A; # 0, for all A,
Aj € A(A) (here, A(A) denotes the eigenspectrum of A). The existence and uniqueness of the
solution of (2) is guaranteed by assuming that A; - A\; # 1, for all A;, A\; € A(A4).

In particular, in control applications we are interested in the semidefinite (Q > 0) c-stable case
of the Lyapunov equation (A(A) C C, the open left half complex plane), and the semidefinite
(Q > 0) d-stable case of the Stein equation (|A\;| # 1, for all \; € A(A)). Note that the stability
conditions guarantee the existence and uniqueness of the solution for both types of equations.
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Numerical QR-type solvers for Lyapunov and Stein equations include the Bartels-Stewart
method, the Hessenberg-Schur method, and Hammarling’s algorithm [3, 14, 17, 18]. The com-
mon initial step in all these methods is the reduction of the coefficient matrix A to real Schur form
by means of the QR algorithm [15]. This is followed by a less-expensive, specialized back substitu-
tion procedure. The overall cost of these algorithms is about 31n3 flops (floating-point arithmetic
operations).

All attempts to parallelize these algorithms for distributed-memory architectures suffer thus
from the same problem: the difficulties in parallelizing the implicit double-shift QR algorithm [20].
A new multishift technique, which increases the granularity, has been recently analyzed in [21]. A
different technique relies on a block Hankel distribution (see references in [20]), which improves the
balancing of the computational load. Nevertheless, the parallelism and scalability of these parallel
QR algorithms are still far from those of matrix factorizations, triangular linear systems solvers,
etc. (see, e.g., [9, 13]).

Explicit iterative methods for solving Lyapunov and Stein matrix equations have been known
for some years now [26, 28]. These algorithms have received renewed interest [6] as they rely on
so-called Level-3 BLAS computations such as matrix inversions, linear system solvers, and matrix
products, which are highly efficient on current high performance parallel distributed architectures.
Furthermore, although these methods can not be considered as numerically stable, the numerical
results obtained in practice are close to those obtained by means of QR-type solvers [7].

In this paper we show that by coding in PLAPACK [31], and using the given off-the-shelf kernels
in this library, it is easy to obtain parallel iterative distributed solvers for these matrix equations.
Furthermore, we also show that PLAPACK allows us to specialize our parallel kernels to exploit
the symmetry in the equations, thus reducing the cost of the iterative methods.

The paper is structured as follows. In Sections 2 and 3 we briefly review the theory behind the
iterative solvers for the Lyapunov and Stein equations, respectively. In Section 4, we discuss the
parallel implementation of a specialized dense matrix kernel, which allows one to exploit symmetry
in the problem. Performance results obtained on a Cray T3E-600 are given in Section 5, and
concluding remarks follow in the final section.

2 Solving Lyapunov matrix equations with the matrix sign func-
tion

The Newton iteration for the matrix sign function

Apyr = %(Ak+A,;l), Ay = A,

3
®) Qry1 = %(Qk'l‘A];TQkA];l)a Qo Q,

was proposed by Roberts as a Lyapunov solver in [26]. In case matrix A is c-stable, the iteration
can be shown to converge to Ao = —I, (the identity matrix of order n), and Qo = 2X.
Although the convergence of the Newton iteration is globally quadratic, the initial convergence
may be slow. Several quasi-optimal acceleration schemes have been proposed to speed up the
initial convergence (optimal schemes require complete knowledge of A(A)). Among these, the



determinantal scaling [10] is usually preferred because of its efficiency and simplicity. Specifically,
when using the determinantal scaling, iteration (3) becomes

Appr = 3 (Au/me +m4gt) 4 = 4
Qe = 5 (Qu/m+ AT QAY), Q = Q
with v, = |det(Az)|/". For an excellent survey on the matrix sign function and scaling schemes,
see [22].

The convergence of A to —I, in the Newton iteration suggests the following convergence
criterion

(4)

1Ak + Inll1/ | Akl < Ve,

where € is the machine precision and c is a small-order constant. When this criterion is satisfied,
two more iterations are performed as the ultimate quadratic convergence of the Newton iteration
will then ensure the maximum attainable accuracy.

The numerical solution of Lyapunov equations by means of the matrix sign function can not
be considered as a numerically stable procedure; in fact, the numerical stability depends on the
distance of the eigenspectrum of A to the imaginary axis. However, recent studies [7, 11] show that
the matrix sign function approach, with careful shifts and scaling, can obtain numerical results
which are close to those obtained by means of the numerically stable QR-type algorithms. A more
detailed study of the numerical stability of the iterative solvers based on the matrix sign function
and the Smith iteration is beyond the scope of this work.

The Newton iterative scheme has a cost of 6n> flops per iteration. In practice, 7-10 iterations are
usually enough to achieve convergence. Thus, the overall cost is around 42n3-60n> flops compared
to 31n> flops for the QR-type algorithms. Nevertheless, the higher cost of the Newton iteration is
balanced by its higher efficiency on current high performance computers, and its higher degree of
parallelism on parallel distributed computers.

A naive implementation of the Lyapunov equation solver requires only efficient parallel kernels
for matrix inversion and matrix-matrix multiplication. Efficient parallel inversion is discussed in
[29] and efficient parallel matrix-matrix multiplication in [12, 16, 30].

The cost per iteration can be reduced by exploiting the symmetry in the sequence for Q. As
Qo is symmetric, all Q’s are also symmetric and we only need to compute the upper (lower) half
part of these matrices. We therefore reduce the cost of the Newton iterative scheme to 5n® per
iteration.

Exploiting the symmetry in matrix computations is difficult (to code and to optimize) on parallel
distributed computers. In section 4 we show that by coding in PLAPACK we easily obtain parallel
algorithms which exploit this characteristic and obtain maximum performance.

3 Solving Stein matrix equations via the Smith iteration

The Smith iteration for the Stein equation

(5) Ak+l = A%) AO = A7
Qi1 = Qe+ALQrAr, Qo = Q,



is described in [28]. This iteration converges, provided A is d-stable, to Ay, =0, and Qoo = X5s.
The Smith iteration has received considerable less attention than (the Newton iteration for)

the matrix sign function. Only very recently this iteration has been used for solving large sparse

Lyapunov equations in [24]. A first study of the parallelization of this iteration is reported in [8].
As Ay converges to 0,, an appropriate stopping criterion is based on

|AkllL < evVe

As in the previous case, when this criterion is satisfied, we perform two more iterations to maximize
the attainable accuracy.

The cost of the Smith iteration is 6n3 per iteration. As for the Newton iteration, this can be
reduced to 5n3 flops by exploiting the symmetry in the Qy’s.

A naive implementation of the Stein equation solver is given in Fig. 1. This implementation
does not take advantage of symmetry in ). Taking advantage of symmetry requires a special kernel
for computing ALY QA that only updates the lower (or upper) triangular portion of Q. Parallel
implementation of this kernel is discussed in Section 4.

4 Parallel Implementation of Q + Q + ATQA

In this section, we show how by exploiting symmetry in () one can reduce the cost of this operation
from 4n3 operations to 3n3 operations, thereby reducing the cost of the Newton or the Smith
iterations from 6n3 to 5n3 per iteration.

Notice that Q + Q + ATQA can be implemented by the following steps:

1. B+ QA (symmetric matrix-matrix multiplication)

2. Q + Q + AT B which requires a matrix-matrix multiplication that only updates the lower-
triangular portion of Q.

While the first operation is a standard matrix-matrix operation provided by the level-3 BLAS, and
parallelized as part of parallel libraries like PLAPACK, the second is not part of those widely used
kernels. Thus we must describe how to parallelize it explicitly.

In [16, 31, 30] we discuss parallel implementation of matrix-matrix multiplication as a sequence
of rank-k updates or matrix-panel multiplies. The only difference for the required operation is that
now a sequence of rank-k updates that affect only the lower triangular part of A is substituted:

Partition
[ A [ B
o (2 = (22)

where A; and B are b X n submatrices. Then

B
Q=Q+ATB=Q+(A1T\A’§ ) ( B; ) =Q+ A B, + Al B,

so that the operation can be performed by the steps



int PLA_Stein( PLA_Obj A, PLA_Obj Q )
/*
Solve the stable Stein equation A’ X A - X + Q = O by the Smith iteration.
On exit, A is overwritten by intermediate results and Q is overwritten by X.
*/
{
/* Declarations */
PLA_Obj B = NULL,
one = NULL, zero = NULL;
int dummy, convergence, size;
double res_norm, tolerance, eps = 2.2e-16;

/* Extract template from any of the matrices*/
PLA_Obj_global_length( Q, &size );

/* Create local objects */

PLA_Matrix_create_conf_to( Q, &B );

PLA_Create_constants_conf_to( A, NULL, &zero, &one );
PLA_Mscalar_create_conf_to( zero, PLA_ALL_ROWS, PLA_ALL_COLS, &res_norm );

/* constants */
tolerance = size*sqrt(eps);

convergence = 0;
while ( TRUE ){

PLA_Gemm( PLA_TRANS, PLA_NO_TRANS, one, A, Q, zero, B ); /¥ B=A"Q */
PLA_Gemm( PLA_NO_TRANS, PLA_NO_TRANS, one, B, A, one, Q ); /¥ Q =B A x/
PLA_Gemm( PLA_NO_TRANS, PLA_NO_TRANS, one, A, A, zero, B ); /* B =AA */
PLA_Copy( B, A ); /* A =B x/

/* Check end of iteration */
PLA_Matrix_one_norm( A, res_norm );

if ( convergence == 2 ) break;
else if( res_norm < tolerance ) convergence++;

3

PLA_Obj_free( &B );
PLA_Obj_free( &one ); PLA_Obj_free( &zero );

return PLA_SUCCESS;

Figure 1: Naive PLAPACK implementation of Stein equation solver using the Smith iteration.



... [ A [ B
° PartltlonA—<A2> andB—<B2>.

¢ Update lower triangular part of Q@ = Q + AT B;.
e Continue recursively with updated @), B = By and A = Aj,.

Parallelization of the rank-k update Q + @Q + A? B; is very similar in nature to the symmetric
rank-k update C « C — A; AT used for example in a right-looking Cholesky factorization and
is well-understood [12, 31]. A parallel implementation using the PLAPACK infrastructure of the
presented algorithm is given in Fig. 2.

5 Experimental Results

In this section, we report the performance attained by the special kernel for computing Q = Q+A’ B
as well as the overall performance of the Lyapunov and Stein equation solvers.

Performance results are given for the Cray T3E-600 (300 MHz), with all computations performed
in 64-bit arithmetic. The algorithms were implemented using PLAPACK Version R1.2, which per-
forms all communication by means of MPI. We report performance measuring MFLOPS /sec./node
(millions of floating point operations per second per processing node) and total MFLOPS/sec.
on 16 and 32 processor configurations. For reference, the following table shows performance of
matrix-matrix multiplication on a single node of the T3E-600 in MFLOPS /sec:

gemm PLA_Gemm
n |[C=AB[C=ATB[[C=AB|C=4A"B
500 418 418 370 338
1000 443 444 404 375
1500 425 424 418 364

The columns marked gemm indicate performance of a call to the 64 bit BLAS matrix-matrix mul-
tiplication kernel. The columns marked PLA_Gemm show performance of the parallel matrix-matrix
multiplication kernels provided by PLAPACK, when executed on one node.

Since the Newton and the Smith iterations are composed of calls to multiplication and inversion
of matrices, Fig. 3(a) reports performance of parallel implementations of those kernels. Notice that
communication and load-balance is much more complex in the parallel matrix inversion routine
and thus performance of that kernel is substantially less than that of matrix-matrix multiplication,
in particular for small problems. In Fig. 3(b) we show the performance of various approaches for
computing @ = Q + AT B. In this figure, we report performance for a version that does not take
advantage of symmetry and the discussed algorithm that does take advantage of symmetry. For
both implementations, we use an operation count of n®, which represents the useful operations
performed by the algorithms. Thus, the performance of the version that does not take advantage
of symmetry is half of what was reported for C = AT B in Fig. 3(a). Notice that there is a clear
benefit to exploiting symmetry when the matrices are large.



int Sym_Q_plus_AtB( PLA_Obj A, PLA_Obj B, PLA_Obj Q, int nb_alg )
{

PLA_Obj Acur = NULL, A_1
Bcur = NULL, B_1
one = NULL;

int size;

NULL, A_1_dup
NULL, B_1_dup

NULL, A_1_dup_temp
NULL, B_1_dup_temp

NULL,
NULL,

PLA_Create_constants_conf_to( A, NULL, NULL, &one );

PLA_Obj_view_all( A, &Acur );
PLA_Obj_view_all( B, &Bcur );

PLA_Pmvector_create_conf_to( Q, PLA_PROJ_ONTO_ROW, PLA_ALL_ROWS,
nb_alg, &B_1_dup );

PLA_Pmvector_create_conf_to( Q, PLA_PROJ_ONTO_COL, PLA_ALL_COLS,
nb_alg, &A_1_dup );

while( TRUE ){
PLA_Obj_global_length( Acur, &size );
if ( 0 == ( size = min( size, nb_alg ) ) ) break;

PLA_0Obj_horz_split_2( Acur, size, &A_1,
&Acur );

PLA_Obj_horz_split_2( Bcur, size, &B_1,
&Bcur );

PLA_Obj_set_orientation( A_1, PLA_PROJ_ONTO_ROW );
PLA_Obj_set_orientation( B_1, PLA_PROJ_ONTO_ROW );

PLA_Obj_vert_split_2( A_1_dup, size, &A_1_dup_temp, PLA_DUMMY );
PLA_Obj_horz_split_2( B_1_dup, size, &B_1_dup_temp,
PLA_DUMMY );

PLA_Copy( A_1, A_1_dup_temp );
PLA_Copy( B_1, B_1_dup_temp );
Sym_AB_perform_local_part( PLA_LOWER_TRIANGULAR,

one, A_1_dup_temp, B_1_dup_temp, one, Q );

}

PLA_Obj_free( &Acur ); PLA_Obj_free( &A_1 );
PLA_Obj_free( &A_1_dup ); PLA_Obj_free( &A_1_dup_temp );
PLA_Obj_free( &Bcur ); PLA_Obj_free( &B_1 );
PLA_Obj_free( &B_1_dup ); PLA_Obj_free( &B_1_dup_temp ) ;
PLA_Obj_free( &one );

Figure 2: PLAPACK implementation of Q + Q + AT B.



