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Abstract

We discuss the design and implementatioiiEgifda, an object-oriented toolkit designed to support
transparent rollback-recovery. Egida exports a simple specificationdgeghat can be used to express
arbitrary rollback recovery protocols. From this specification, Egidaraatically synthesizes an imple-
mentation of the specified protocol by glueing together the approptijgets from an available library
of “building blocks”. Egida is extensible and facilitates rapid implektaéon of rollback recovery pro-
tocols with minimal programming effort. We have integrated Egidth he MPICH implementation of
the MPI standard. Existing MPI applications can take advantage of Egttiawy any modifications:
fault-tolerance is achieved transparently—all that is needed is a simpltkrefithe MPI application
with Egida. We demonstrate Egida’s versatility both as a testbed as vwagll @svironment for develop-
ing new protocols by generating a few message logging protocols aheéng their performance with
a set of NAS benchmarks on a network of workstations.

1 Introduction

Building reliable distributed application is complex. Ajgation developers not only have to worry about
the intricacies of their applications, but also have to usided the subtleties of distributed fault-tolerance.
Over the past decade, toolkits such as lIsis [2], Horus [27], Bransis [8] have addressed this issue by
providing higher level primitives for implementing fautilerant broadcasting and group communication.
These primitives are well-suited for implementing fadlkerance protocols based on active replication, de-
sirable for mission-critical applications that require thighest degree of availability and the capability to
tolerate arbitrary failures.
As distributed computing becomes commonplace, howeverpwigg humber of non mission-critical

applications are emerging. For instance, parallel sdiegpplications that used to be run on supercomputers

can be executed on a distributed cluster of servers. Fag tgdications, fault-tolerance is highly desirable,



but only if it can be provided with low-overhead in terms ofldted resources and execution time. Log-
based rollback recovery protocols—such as checkpointidgn@essage logging—provide an attractive low-
overhead solution for building non-critical distributeplpdications that can tolerate crash failures.

In this paper, we discuss the design and implementatidfgiafa, an object-oriented toolkit designed to
support transparent rollback recovery for low-overheadtflerance. Rather than providing monolithic
implementations of a set of protocols, we build Egida aroarithrary of objects that implement a set of
functionalities that are at the core of all log-based rakbeecovery protocols and define a grammar for
configuring protocols from the library of objects. Our apmb has several advantages. First, it promotes
extensibility and flexibility by allowing multiple implenm¢ations of each of the core functionalities. Sec-
ond, it facilitates rapid implementation of rollback reeoy protocols with minimal programming effort by
gluing together objects from the available library of birilgl blocks. This enables application developers
to experiment with different protocols and then use the bia¢ ¢losely matches the requirements of their
application. Finally, Egida enables designers of fauktfimce protocols to develop new rollback recovery
protocols by combining different implementations of theecfunctionalities in novel ways.

Our approach of configuring protocols from basic buildingdik is similar to the one used in other
systems—for instance, in xkernel [14] for networking paaits, and in Horus [27] and Cactus [12] for
distributed computing and group membership protocols. él@n to our knowledge, Egida is the first
application of this approach to rollback recovery protscol

We have integrated Egida with the MPICH implementation efffessage Passing Interface (MPI) stan-
dard [30]. This enables existing MPI applications to takeaatihge of Egida without any modifications.
Conversely, the performance of rollback recovery prowaan now be evaluated using a large set of de-
manding applications.

This paper is organized as follows. In Section 2, we provid&ief overview of log-based rollback
recovery protocols. In Section 3, we identify the set fumudiities that are at the core of all log-based
rollback recovery protocols, and present a grammar forhggiting these protocols from its core compo-
nents. Section 4 describes the architecture of Egida. @ebtdescribes the implementation of Egida, its
integration with the MPICH library [10, 11], and an evalaatiof a set of rollback recovery protocols using
the NAS benchmark suite [6]. Section 6 presents the relatadt,vand finally, Section 7 summarizes our

contributions.



2 Flavors of Log-based Rollback Recovery

Log-based rollback recovery protocols—such as checkipgirsind message logging—provide a low-overhead
solution for building distributed applications that t@e¥ crash failures. These protocols come in several
flavors. Checkpoints can be independent, coordinated,doiced by specific patterns of communication.
Logging can be pessimistic, optimistic, or causal. Pessionprotocols [3, 15, 23] allow processes to com-
municate only from recoverable states. These protocolsremfthis condition by synchronously logging
to stable storage any information critical for recoverydoefletting processes communicate. Optimistic
protocols [7, 16, 17, 29, 32, 34] allow processes to comnaiaiwith other processes even from states that
are not yet recoverable. These protocols guarantee thed gtates will eventually become recoverable,
but only if no failures occur. Failures may indeed render s@tates permanently unrecoverable, forcing
the rollback of any process that depends on such statesalGaosocols [1, 9] weaken the condition im-
posed by pessimistic protocols and allow the possibiligt #n state from which a process communicates
may become unrecoverable because of a failure, but only doneect process depends on that state. This
is enforced by appending to all communication the infororatiecessary to recover the state from which
the communication originates. This information is regkchin the volatile memory of the processes that
causally depend [18] on the originating state. Hence, ¢gustocols never roll back correct processes, but

do not require synchronous writes to stable storage.

3 Deconstructing Log-Based Rollback-Recovery Protocols

The diversity of rollback-recovery protocols reflects thenogeneity in the requirements of applications.
For instance, applications that don't interact frequentiyh the external environment and can tolerate
rollback of correct processes may use pure checkpointirgptimistic protocols. Pessimistic and causal
protocols are better suited for applications in which comitation with the environment is frequent and
rollbacks are unacceptable; pessimistic protocols arerpesl when fast and simple recovery is required.
Applications that instead demand minimal overhead durailgre-free executions would use causal or op-
timistic protocols. A closer look at these protocols, hoareveveals that behind this diversity lies a simple
event-driven structure that all these protocols share ladall protocols are interested in the same set of
“relevant” events. In this section we identify such evemtd present a language that can be used to specify

a protocol in terms of which actions it takes in response th edi these events.



3.1 Log-based Rollback-Recovery Protocols as Event-Drive n Programs

There are five types of events that are relevant to all logdasliback recovery protocols. These are: (1)
non-deterministic events, (2) dependency-generatingtsv€3) output-commit events, (4) checkpointing

events, and (5) failure-detection events.

1. Non-deterministic events A non-deterministic event is an event whose outcome maggséor dif-
ferent executions of the same program. For example, a medstiger event is often non-deterministic
since its outcome depends on many factors, including psoeeiseduling, routing, and flow control.
Thus, a recovering process may not produce the same run egowery even if the same set of

messages are sent to it.

If a non-deterministic event cannot be replayed during teovery of a process, all correct pro-
cesses whose state depends on that unrecoverable evernbamadied back. These processes are
calledorphans. The information necessary to reproduce the results of dhedeterministic events is
called the event'sleterminant. Restoring the system to a consistent state while limithegextent of
rollbacks depends on the ability of the rollback-recovergtqcol to replay the determinants of the
non-deterministic events executed by the failed procdsskse crashing. Hence, determinants must
be saved to stable storage so that they are available dwanyery. In practice, different protocols

choose different ways to log determinants and rely on differmplementations of stable storage.

2. Dependency-generating eventsThese events can increase the number of processes thatidape
the non-deterministic events executed by a process. Fonggain message-passing applications, a
message-send event is a dependency-generating evenit sianecreate dependencies between non-
deterministic events executed by the sender and the stttte ofceiver. If the sender fails and any of

those non-deterministic events is unrecoverable, therettever becomes an orphan.

To enable orphan detection and appropriate rollback, kgt recovery protocols typically append to
application messages information (such as logical clot8$¢r vector clocks [20]) that tracks these
dependencies. In addition, to speedup the replay of namuétistic events, it may be desirable
to log some information on executing a dependency-gemgravent. For instance, in sender-based

message-logging protocols processes log the content bfreassage they send.

3. Output-commit events These events can make the external environment depend aorhkdeterministic

events executed by a process.



Since itis not reasonable to expect the external envirohioenll back in response to a process crash,
log-based rollback recovery protocols invodgtput commit procedures that write synchronously to
stable storage the determinants of all non-determinisents that precede the communication with
the external environment, thus making them recoverablpeBding on how determinants are logged,

this procedure may require coordination among processes.

4. Checkpointing events These events instruct the protocols to write to stableag®the state of one
or more processes. These event can either be transparbgetdpylication (e.g. a signal from a timer
indicating that some pre-determined time has elapsed 8iedast checkpoint) or be explicitly driven

by the application.

Checkpoints can be coordinated, independent, or comntioridaduced. Processes may checkpoint
their state incrementally, and checkpoints can be saveaditesstorage either synchronously or asyn-

chronously.

5. Failure-detection events These events are generated on detecting the failure of on®@ pro-

cesses.

In response to these events, faulty processes must beedstastored to a previously checkpointed
state and rolled forward. In turn, correct orphan process®g need to be detected and rolled back.
Different protocols implement different strategies toledl the determinants to be replayed during

recovery and to detect and rollback orphans.

Implementing a specific protocol therefore amounts to sielgthe set of actions performed in response
to each relevant event. We now show how a simple language earsdd to specify these choices. In

Section 4 we show how protocols can be automatically syizbestarting from these specifications.

3.2 Specifying Design Choices in Rollback-Recovery Protoc ols

Figure 1 shows a simple language that can be used to spetiipaio-recovery protocols. The language

reflects the discussion of the previous section. A protadefined in terms the actions it takes in response
to non-deterministic events, dependency generating gveuatput commit events, checkpointing events and
failure-detection events. To define a protocol completelynecessary to instantiate a set of variables which

specify, for instance, the set of non-deterministic evethis form of their determinant, the implementation



of stable storage, etc. Figure 2 shows a set of represantastantiations of these variables used in several
existing protocols.

Figure 3 illustrates how the language can be used to speecifp® Strom, and Yemini's sender-based
pessimistic protocol [33], Damani and Garg’s optimistiotprol [7], and a hybrid protocol we have recently
developed that combines causal logging with asynchrorexesiver-based logging to stable storage in order
to speed up crash recovery [26]. Our language, however, e€aisdd for more than just specifying existing
recovery protocols. Once deconstructing rollback-repoyeotocols becomes possible, it is then easy to
reassemble the fundamental components in novel ways tinaiésv protocols. An example is given in
Figure 4 , which shows a specification of a sender-basedmpistisi message-logging protocol that tolerates
f concurrent failures and implements stable storage byoapig data in the volatile memory of processes.
In this protocol, which to our knowledge has not appearechanliterature, a process executing a non-
deterministic event broadcasts the corresponding detamhio the other processes and does not send any

application message until it has received at Igaastknowledgments to its broadcast.

4 The Architecture of Egida

Figure 1 defines the structure of log-based rollback regopeotocols, while the variables in Figure 2
identify the building blocks which when incorporated inteetprotocol structure yield different rollback
recovery protocols. Egida instantiates these buildinghddn a modular, object-oriented architecture. We
begin this section by describing the functionality of eachdole and the interfaces it exports. We then
explain how these modules are invoked in response to evedth@v they can be composed to synthesize

rollback-recovery protocols.

4.1 Module Definitions and Interfaces

Egida defines the following modules:

EventHandler: Handles the five types of relevant events defined in Sectiohh&. methods exported by

this module are event-dependent.

Determinant: Creates the determinants for each non-deterministic eltegxports a single methore-

ateDeterminant.



Protocol

(non- det - event - st nt)

(out put-conmi t -event -stnt)

(event -l i st)
(dep- gen-event - st nt)

(I oggi ng-stnt)
(event-info-Ilist)
(pi ggyback- st nt)
(pb-val ue-1ist)
(ckpt -stnt)

(recovery-stnt)

(recovery-get-det-stnt)
(or phan- det ecti on-stnt)
(rol | back-stnt)

(rb-1o0ggi ng-stnt)
(rb-ckpt-stnt)

Notational Conventions
(x)
(y)

(Z)opt
a

o~ o~ o~ o~~~

non- det - event - st nt )*

out put - commi t - event - st nt )*
dep- gen-event - st nt)*
ckpt-stnt ),y
recovery-stmt),y,

event) :
determinant

{
{
{
{
{
{

(determinant-structure)

Log (how-to-log) on (stable-storage))
output-commit-proto) output commit on (event -1 i st)
event) | (event), (event - | i st)

event) :

pi ggyback-stnt) | (I oggi ng-stnt) |

pi ggyback- st nt)(l oggi ng-stnt)

Log (event -i nfo-1i st) (how-to-log) on (where-to-log)
(event-info) | (event-info), (event -i nfo-1i st)
Piggyback (pb- val ue-1i st)

(pb-value) | (pb-value), (pb- val ue- i st)

(ckpt-proto) checkpoint (how-to-ckpt) on (stable-storage)
Implementation : (ckpt-impl)
(recovery-get-det-stnt),y

(or phan-det ecti on-stnt ),y

(rol | back-stnt )
Protocol to retrieve determinants
Protocol to detect orphans :
On rollback :

(rb-1o0ggi ng-stnt) | (rb-ckpt-stnt)
Log (event -i nfo-1i st) on (stable-storage)
Take independent checkpoint on (stable-storage)

: (recovery-get-det-proto)
(orphan-detection-proto)

means thax is a production rule

means thay is a variable that has to be mapped
to a specific value

means thafz ) is an optional statement

means thaa is a keyword

Figure 1 : A grammar for specifying rollback-recovery protocols.



(event) := send| receive| read| write
(determinant-structure) := {source, sesn, dest, désn
(output-commit-proto) := independent co-ordinated
(event-info) := determinan{ message
(how-to-log) := synchronously asynchronously
(where-to-log) := (stable-storage) | (volatile-storage)
(volatile-storage) := local disk| volatile memory of self
(stable-storage) := local disk| NFS disk| volatile memory of processes
(pb-value) := vector clock| logical clock|
determinant§ (dependency matrikstability matrix| stability vectof) ¢
(ckpt-proto) := independent co-ordinated communication-induced
(how-to-ckpt

)
)
(ckpt-impl)
)
)

synchronously asynchronously

full | incremental

centralized| distributed

:= broadcast logical clockexchange vector clock

(recovery-get-det-proto
(orphan-detection-proto

Figure 2 : Representative instantiations for the variables defingdé grammar shown in Figure 1.

HowToOutputCommit: Determines how to save the information necessary to redbeesystem to the

state in which an output commit event is executed. It exppaimgle methodDutputCommit.

LogEventDeterminant: Saves the determinants of non-deterministic events tdesttbrage. It exports

four methods: (1).0g, (2) Retrieve, (3) Flush, and (4)GarbageCollect.

LogEventinfo: Logs data associated with an event. It exports the samddogsr as théogEventDeter-

minant module.
HowToLog: Determines how logged information is accessed. It expamdsethodsRead andWrite.

WhereToLog: Directs requests for accessing the logs to the appropriate 6f storage. It exports the

same methods da$owTolLog.

StableStorage: Implements stable storage for determinants and data assdaivith an event. It also

exports two methodfRead andWrite.

VolatileStorage: Implements volatile storage for determinants and datecagsol with an event. It exports

the same methods &ableStorage.



Specifying Bacon, Strom and Yemini's sender-based pessamhessage logging protocol

/% comment : (non-det-event-stmt) */
receive
determinant {source, sesn, dest, désn
Log determinant synchronously on NFS disk

/*commrent : (dep-gen-event-stmt)} x/
send
Log message synchronously on volatile memory of self

/*x comment : (ckpt-stmt)} %/
Independent checkpoint asynchronously on NFS disk
Implementation : incremental

Specifying Damani and Garg’'s optimistic message loggimmgqzol

/*x comment : (non-det-event-stmt) */
receive
determinant {source, sesn, dest, désn
Log determinant asynchronously on NFS disk

{conment : (output-commmit-event-stmt)}
Co-ordinated output commit on write

/% comment : (dep-gen-event-stmt) %/
send
Piggyback vector clock
Log message synchronously on volatile memory of self

/% comment : (recovery-stmt) %/
Protocol to detect orphans : broadcast logical clock
On rollback: Log determinant, message on NFS disk

Specifying hybrid causal message logging protocol

/% comment : (non-det-event-stmt) */
receive
determinant {source, sesn, dest, désn
Log determinant, data asynchronously on NFS disk

/*x comment : (dep-gen-event-stmt) %/
send
Piggyback determinants
Log message synchronously on volatile memory of self

/* comment : (recovery-stmt) x/
Protocol to retrieve determinants : centralized

Figure 3 : Example specifications of existing protocols



/*x comment : (non-det-event-stmt) x/
receive
determinant {source, sesn, dest, désn
Log determinant synchronously on volatile memory of preess

/% comment : (dep-gen-event-stmt) %/
send

Log message synchronously on volatile memory of self
/x comment : (ckpt-stmt) %/
Independent checkpoint asynchronously on NFS disk
Implementation : incremental

Figure 4 : Specification of a novel sender-based pessimistic prbtoco

PiggybackLogging: Piggybacks onto application messages the informationssacg to track dependen-
cies among process states and, in the case of causal loggipgnds the non-stable determinants
logged by the message sender. It also processes, and ipajgpedogs the piggybacked information.

This module exports two method&etPiggyback andProcessPiggyback.

PiggybackCheckpointing: Piggybacks the information necessary to track the depeigeamong check-
points. It also processes piggybacked information, andpfa@priate triggers a checkpoint. It exports

the same methods &ggybackLogging.

Checkpoint: Implements the checkpointing protocol. It exports two rod#) TakeCheckpoint and Re-
storeFromCheckpoint.

HowToCheckpoint: Determines how the checkpoint information is accessecdplrs two methoddkead

andWrite.

CollectDeterminants: Collects determinants during recovery. It exports a simgithod,RetrieveDeter-

minants.

OrphanDetection: Implements the protocol for orphan detection. It exporténgls methodDetectOr-
phans.

4.2 Module Invocation

Figure 5 shows the dependency graph for the modules inteablincSection 4.1. In addition to the modules

discussed in Section 4.1, it shows four other modules:
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PiggybackCheckpointing ) PiggybackLogging
GetPiggyback OrphanDetection GetPiggyback CollectDeterminants
ProcessPiggyback DetectOrphans ProcessPiggyback RetrieveDeterminants
T 1 A T
API ’
FailureDetector
Event Handler
_ | HowToOutputCommit
l - OutputCommit
Checkpoint
TakeCheckpoint
RestoreFromCheckpoint
y Y Determinant
LogEventinfo LogEventDeterminant CreateDeterminant
Log Log
Retrieve Retrieve
Flush Flush
GarbageCollect GarbageCollect
' : HowToLog
HowToCheckpoint Read !
Read Write
Write ¢
WhereToLog
Read
Write
¥ \
StableStorage VolatileStorage
> Read Read
Write Write

Figure 5: The architecture of Egida
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1. An API module that intercepts application-level calls to relévarents and invokes the appropriate

handler exported by theventHandler.

2. A Timer module that enables Egida to specify the intervals at whitlert interrupts need to be
generated to perform periodic actions, such as checkpgirgnd flushing of volatile logs to stable

storage.

3. A FailureDetector module that implements a protocol for detecting processhemand triggers the

appropriate recovery mechanisms throughBkentHandler.
4. A Network module that invokes a method BffentHandler to process incoming messages.

To illustrate the interactions among Egida’s module, we@nétwo examples that show how this depen-

dency graph is traversed in response to specific events.

Example 1 Handling a Send event for a causal logging protocol (see [1):

The API module intercepts the Send event and invokes the corresgphdndler inEventHandler. The
handler in this example performs three tasks: (1) it savesviolatile log kept by sender the content of the
message being sent; (2) it retrieves the set of non-stabdendi@ants from the log kept by the server; (3) it

piggybacks these determinants on the application messabseads the message to the destination.

1. To save the content of the message in the sender’s vdiagiléhe handler invokes theog method
of LogEventinfo. Log in turn invokes théAfrite method ofHowToLog, which invokes théAfite of

WhereTolLog, which finally invokes tha\rite method exported byolatileStorage.

2. To obtain the determinants to piggyback, the handlerkiesdheGetPiggyback method ofPiggy-
backLogging. This method identifies the non-stable determinants anskas/ theRetrieve method
of LogEventDeterminant. Retrieve in turn invokes theRead method ofHowToLog, which invokes
the Read of WhereToLog, which finally invokes theRead of VolatileStorage and, if necessary, of
StableStorage. These methods return the requested determinants whicheargpassed up through

the call chain back t&etPiggyback.

3. The event handler then piggybacks the determinants tagpkication message and invokes the send

function in the transport layér [ |

1As we will see in Section 5, in our current implementation piggybacked determinants are sent in a separate message in
order to avoid unnecessary data copying.
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Example 2 Handling a Send event to the external environment for the optimistic protocol of Damani and
Garg (see [7):

The APl module intercepts the send event and invokes the correspphdndler inEventHandler. The
handler in this example invokes the output commit procegiuigr to sending the message. The output
commit procedure in turn performs two tasks: (1) it flushestable storage the determinants of all the
non-deterministic events executed by the process priohdgcsend to the external environment, thereby
making them recoverable; and (2) it initiates a co-ordidaiatput commit operation to ensure that all the

non-deterministic events that causally precede the senckaoverable.

1. To perform output commit, the handler invokes @aputCommit method ofHowToOutputCommit.

The OutputCommit methods performs the following two tasks:

(&) To perform a local output commiQutputCommit invokes theFlush method ofLogEventDe-
terminant. Flush then invokes thé\rite method ofHowTolLog, which invokes theéAkite of

WhereToLog, which finally invokes thé\rite method exported b$tableStorage.

(b) To perform a co-ordinated output comn@iitputCommit sends a message to all other processes
requesting an output commit. On receiving this messagd\éteork module invokes the ap-
propriate handler ifcventHandler, which in turn invokes th®utputCommit method ofHow-
ToOutputCommit2. The OutputCommit method then invokes the same sequence of methods as

in (a).

2. The handler sends the application message to the exesviabnment. |

4.3 Synthesizing Protocols through Module Composition

Egida allows the co-existence of multiple implementatifamgach of the modules introduced in Section 4.1.
Hence, to synthesize a protocol, one must select a specjieimentation of each module. Egida maintains
a binding between the values for the variables on the lefdtste of Figure 2 and their corresponding
implementations. Therefore, synthesizing a protocol ireguprocessing the specification along with this
binding information to initialize the modules to their appriate implementations. It is easy to extend

Egida to recognize new implementations of modules; as nmoptementations of a module functionality

2Note that theOutputCommit method exported by the instance of tHewToOutputCommit module invoked by the handler
for processing network messages performs only a local botpumit.

13



become available, the specification language can be extdndsimply (1) adding a new value to the right
hand side of the corresponding variable in Figure 2, andg@stering with Egida the binding between the

new value and its corresponding implementation.

5 Implementation and Experience

5.1 Implementation Status

Egida contains multiple implementations for each modui®duced in Section 4.1. Each module is defined
as a C++ class. The classes we have implemented so far aomcegpthe values on the right hand side of
Figure 2.

To make Egida available to a large number of applicationshawe integrated Egida with MPICH [10,
11], a freely available, portable implementation of the MPMlessage Passing Interface) standard 1.1.
MPICH has a two-layer architecture: the upper layer expbtid’s application programming interface
(API), while the lower layer contains platform-specific re@ge-passing libraries. For our testbed environ-
ment consisting of a network of workstations connected bytrernet, MPICH's lower layer is imple-
mented using the p4 library [4].

To integrate Egida with MPICH, we replaced in the MPICH'’s eplayer all the send and receive calls to
p4 with corresponding calls to Egida’s API; modules in Egidaurn invoke the message passing operations
of p4. To prevent data copying, MPICH messages and the irdtiompiggybacked by Egida are transmitted
separately. We also modified p4 to handle socket errors tuar avhenever processes fail and to allow a re-
covering process to establish socket connections withuthéving processes. Our implementation provides
transparent fault-tolerance to MPI applications—onlyrape re-link of the application with Egida and our

modified MPICH library is necessary.

5.2 Evaluating Message Logging Protocols

We have used Egida to compare the performance of five messggmd protocols—the four protocols
described in Figures 3 and 4 and a receiver-based pessirpistiocol. We compare the performance of
these protocols with respect to: (1) the overhead imposetidse protocols during failure-free executions,

and (2) the time taken to restore a process to its pre-crashesl
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Application || NPB Specific Info || Per Process Avg. Message Ratg Exec. Time
Messages/sec. KB/sec. (sec.)
BT Class A 7 352.3 1530
CG Class B 15 752.0 1516
LU Class B 26 150.3 4017
SP Class B 7 540.9 4530

Table 1: Characteristics of the benchmarks used in the experiments

5.2.1 Experimental Setting

To compare the performance of the five message logging migtowe use four long-running compute-
intensive applications from the NPB2.3 benchmark suitecligped by NASA's Numerical Aerodynamic
Simulation program [6]. These benchmarks are derived fromputational fluid dynamics codes; the
characteristics of these benchmarks are shown in Table 1.

We conducted our experiments using a cluster of four Penrtiased workstations connected by a lightly-
loaded 100Mb/s Ethernet. Each workstation contains tweN8Bi2 Pentium-2 processors, 512 MBytes of
memory, 4 GB disk, and runs Solaris 2.6. For all the expertmesach workstation executes a single
application process. Stable storage is provided by an NESdilver. Checkpoints are taken five minutes
apart and are saved to stable storage asynchronously. \\ét ¢t iterative nature of the applications, and
induce failures after a process has completed a pre-detedmumber of iterations. This ensures that the
amount of lost computation that has to be reproduced by aeeiog process is the same for all protocols.

The NPB benchmarks, MPICH library, and Egida , respectjwegre compiled using SUN’s f77, C, and
C++ compilers with the optimization flag “—O”. The resultpoeted in this paper are with a 95% confidence

interval obtained by averaging the results of at least fims.ru
5.2.2 Performance Results

Failure-free Performance

Table 2 shows the failure-free execution times as well astheehead—relative to the application execution
times reported in Table 1—imposed by the three pessimistitopols. Table 3 shows the corresponding
results for the optimistic and hybrid causal protocols.

As expected, the pessimistic protocols impose a higheréiree overhead as compared to the optimistic

and hybrid causal protocols, and among the pessimistiogots, the receiver-based protocol imposes the
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Receiver-based Sender-based (Disk) Sender-based (Vol. Memory)
Application || Exec. Time | % Overhead| Exec. Time | % Overhead| Exec. Time| % Overhead
(sec.) (sec.) (sec.)
BT 2068 33.1% 1692 8.9% 1602 3.1%
CG 3157 109.4% 1888 25.2% 1790 18.7%
LU 8599 114.1% 5960 48.4% 7243 80.3%
SP 5795 27.9% 4986 10.1% 5240 15.7%

Table 2: Failure-free results for the three variations of pessimimessage logging protocols with a check-
point interval of 5 min.

Application Optimistic Hybrid Causal
Exec. Time | % Overhead| Exec. Time | % Overhead
(sec.) (sec.)
BT 1573 1.2% 1580 1.7%
CG 1720 14.1% 1733 14.9%
LU 4345 8.2% 4644 15.6%
SP 4626 2.1% 4636 2.3%

Table 3: Failure-free results for optimistic and hybrid causal sag® logging protocols with a checkpoint
interval of 5 min. In both protocols, a process flushes itatiel logs to disk once every minute.

highest overhead. The difference in the performance betteetwo sender-based pessimistic protocols is
application-dependent. The performance of the protoailithplements stable storage in volatile memory
depends heavily on the responsiveness with which acknowledts are returned. This, however, depends
on the message frequency and the size of messages excharggulibation processes.

The optimistic and hybrid protocols perform comparablyimiyifailure-free execution, except for the)
application where optimistic significantly outperformsbnigl. This is because the overhead of processing
the piggybacked is higher for causal protocols than forroistic; applications, such dsU, with high

message frequency amplify this difference.

Recovery Performance

Table 4 compares the time taken by the five protocols to rest@rocess to its pre-crashed state forGlge
benchmark with different number of concurrent failures.
When f = 1, protocols that never rollback correct processes provadedrash recovery. Wheh> 1,

the dominant factor in determining performanceavigere the recovery information is logged:
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Pessimistic Optimistic || Hybrid Causal

f || Receiver-based| Sender-based Sender-based
(Disk) (Vol. Memory)
(sec.) (sec.) (sec.) (sec.) (sec.)
1 146.2 168.8 170.2 160.0 169.4
2 146.9 176.4 177.3 161.6 198.8
3 147.3 197.6 198.8 161.4 200.7

Table 4: The recovery performance of the various protocols forGBebenchmark ag is varied

e In receiver-based logging, the recovering process hasfix mfethe information needed during re-
covery; it can use that prefix to quickly roll-forward and iargllel collect the missing data from the

remaining processes.

¢ In sender-based protocols, messages are stored only iertlders’ volatile memory and are lost if
the sender fails. Consequently, whenever a recoveringepsoigeeds to acquire one of these missing
messages, it stops rolling forward, waiting for the sendeetover to the point at which the message

is regenerated and resent. THigp-and-go effect becomes significant with increasefifi25].

The performance of the optimistic protocol is nearly unetffe by increase irf. For the hybrid causal
protocol, due to asynchronous logging of messages, theologsable storage contain only a prefix of the
messages that have to be replayed. A recovering processseatheailogged information for replay and
in parallel collect the missing data. However, when> 1, the stop-and-go effect occurs after the log is

replayed and consequently, the cost of recovery margiiradhgases withy.

6 Related Work

The literature contains several systems that have beegn@esto provide transparent fault-tolerance using
rollback-recovery. They include libckpt [22], Fail-saf&/ [19], MIST [5], Co-check [31], Manetho [9]
and libft [13]. As opposed to Egida , however, these systemsi@signed to support only a specific check-
pointing or message-logging protocol.

Egida emphasis on code reusability and extensibility ie glesent in the recently-introduced OTEC
simulator [24]. OTEC's object-oriented design providessalegree of code reusability and can be used to
compare the performance of different checkpointing andwexy protocols, but only through simulations.

The run-time system for rollback-recovery that is closeggida in terms of extensibility is RENEW [21], a
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system that provides a framework for implementing and etalg different checkpointing protocols. How-
ever, RENEW'’s architecture does not contain reusable caemie for faciltating the automatic synthesis of
arbitrary rollback-recovery protocols.

Egida ’s architecture, which allows to generate protoacamfa library of basic building blocks, is similar
to the one used in other systems—for instance, in xkerngl firdnetworking protocols, in Horus [27]
and Cactus [12] for distributed computing and group mentfjerprotocols, and in COMERA [35] and
Quarterware [28] for communications middleware. Howetgeour knowledge, Egida is the first application

of this approach to rollback recovery protocols.

7 Concluding Remarks

We have presented the design and implementatidegifa, an object-oriented toolkit designed to support
transparent rollback recovery. Egida exports a simpleipation language that can be used to express
arbitrary rollback recovery protocols. From this specifima Egida authomatically synthesizes an imple-
mentation of the specified protocol by glueing together {hy@repriate objects from an available library of
“building blocks".

We have implemented a prototype of Egida and integratedtit thie MPICH implementation of the
Message Passing Interface (MPI) standard. Through EgidR, adplications can be made fault-tolerant
without any modifications. Conversely, Egida allows to gttlie robustness and performance of different
rollback-recovery protocols with respect to a large seteshdnding applications.

Our early experience with the prototype suggests that Bgieltensible, flexible, and facilitates rapid im-
plementations of rollback-recovery protocols with minimppeogramming effort. We expect that the design
of Egida will evolve as we gain more experience specifying emplementing different rollback recovery

protocols.
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