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Abstract

We discuss the design and implementation ofEgida, an object-oriented toolkit designed to support
transparent rollback-recovery. Egida exports a simple specification language that can be used to express
arbitrary rollback recovery protocols. From this specification, Egida automatically synthesizes an imple-
mentation of the specified protocol by glueing together the appropriate objects from an available library
of “building blocks”. Egida is extensible and facilitates rapid implementation of rollback recovery pro-
tocols with minimal programming effort. We have integrated Egida with the MPICH implementation of
the MPI standard. Existing MPI applications can take advantage of Egida without any modifications:
fault-tolerance is achieved transparently—all that is needed is a simple re-link of the MPI application
with Egida. We demonstrate Egida’s versatility both as a testbed as well asan environment for develop-
ing new protocols by generating a few message logging protocols and evaluating their performance with
a set of NAS benchmarks on a network of workstations.

1 Introduction

Building reliable distributed application is complex. Application developers not only have to worry about

the intricacies of their applications, but also have to understand the subtleties of distributed fault-tolerance.

Over the past decade, toolkits such as Isis [2], Horus [27], and Transis [8] have addressed this issue by

providing higher level primitives for implementing fault-tolerant broadcasting and group communication.

These primitives are well-suited for implementing fault-tolerance protocols based on active replication, de-

sirable for mission-critical applications that require the highest degree of availability and the capability to

tolerate arbitrary failures.

As distributed computing becomes commonplace, however, a growing number of non mission-critical

applications are emerging. For instance, parallel scientific applications that used to be run on supercomputers

can be executed on a distributed cluster of servers. For these applications, fault-tolerance is highly desirable,
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but only if it can be provided with low-overhead in terms of dedicated resources and execution time. Log-

based rollback recovery protocols—such as checkpointing and message logging—provide an attractive low-

overhead solution for building non-critical distributed applications that can tolerate crash failures.

In this paper, we discuss the design and implementation ofEgida, an object-oriented toolkit designed to

support transparent rollback recovery for low-overhead fault-tolerance. Rather than providing monolithic

implementations of a set of protocols, we build Egida arounda library of objects that implement a set of

functionalities that are at the core of all log-based rollback recovery protocols and define a grammar for

configuring protocols from the library of objects. Our approach has several advantages. First, it promotes

extensibility and flexibility by allowing multiple implementations of each of the core functionalities. Sec-

ond, it facilitates rapid implementation of rollback recovery protocols with minimal programming effort by

gluing together objects from the available library of building blocks. This enables application developers

to experiment with different protocols and then use the one that closely matches the requirements of their

application. Finally, Egida enables designers of fault-tolerance protocols to develop new rollback recovery

protocols by combining different implementations of the core functionalities in novel ways.

Our approach of configuring protocols from basic building blocks is similar to the one used in other

systems—for instance, in xkernel [14] for networking protocols, and in Horus [27] and Cactus [12] for

distributed computing and group membership protocols. However, to our knowledge, Egida is the first

application of this approach to rollback recovery protocols.

We have integrated Egida with the MPICH implementation of the Message Passing Interface (MPI) stan-

dard [30]. This enables existing MPI applications to take advantage of Egida without any modifications.

Conversely, the performance of rollback recovery protocols can now be evaluated using a large set of de-

manding applications.

This paper is organized as follows. In Section 2, we provide abrief overview of log-based rollback

recovery protocols. In Section 3, we identify the set functionalities that are at the core of all log-based

rollback recovery protocols, and present a grammar for synthesizing these protocols from its core compo-

nents. Section 4 describes the architecture of Egida. Section 5 describes the implementation of Egida, its

integration with the MPICH library [10, 11], and an evaluation of a set of rollback recovery protocols using

the NAS benchmark suite [6]. Section 6 presents the related work, and finally, Section 7 summarizes our

contributions.
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2 Flavors of Log-based Rollback Recovery

Log-based rollback recovery protocols—such as checkpointing and message logging—provide a low-overhead

solution for building distributed applications that tolerate crash failures. These protocols come in several

flavors. Checkpoints can be independent, coordinated, or induced by specific patterns of communication.

Logging can be pessimistic, optimistic, or causal. Pessimistic protocols [3, 15, 23] allow processes to com-

municate only from recoverable states. These protocols enforce this condition by synchronously logging

to stable storage any information critical for recovery before letting processes communicate. Optimistic

protocols [7, 16, 17, 29, 32, 34] allow processes to communicate with other processes even from states that

are not yet recoverable. These protocols guarantee that these states will eventually become recoverable,

but only if no failures occur. Failures may indeed render some states permanently unrecoverable, forcing

the rollback of any process that depends on such states. Causal protocols [1, 9] weaken the condition im-

posed by pessimistic protocols and allow the possibility that a state from which a process communicates

may become unrecoverable because of a failure, but only if nocorrect process depends on that state. This

is enforced by appending to all communication the information necessary to recover the state from which

the communication originates. This information is replicated in the volatile memory of the processes that

causally depend [18] on the originating state. Hence, causal protocols never roll back correct processes, but

do not require synchronous writes to stable storage.

3 Deconstructing Log-Based Rollback-Recovery Protocols

The diversity of rollback-recovery protocols reflects the heterogeneity in the requirements of applications.

For instance, applications that don’t interact frequentlywith the external environment and can tolerate

rollback of correct processes may use pure checkpointing oroptimistic protocols. Pessimistic and causal

protocols are better suited for applications in which communication with the environment is frequent and

rollbacks are unacceptable; pessimistic protocols are preferred when fast and simple recovery is required.

Applications that instead demand minimal overhead during failure-free executions would use causal or op-

timistic protocols. A closer look at these protocols, however, reveals that behind this diversity lies a simple

event-driven structure that all these protocols share and that all protocols are interested in the same set of

“relevant” events. In this section we identify such events and present a language that can be used to specify

a protocol in terms of which actions it takes in response to each of these events.
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3.1 Log-based Rollback-Recovery Protocols as Event-Drive n Programs

There are five types of events that are relevant to all log-based rollback recovery protocols. These are: (1)

non-deterministic events, (2) dependency-generating events, (3) output-commit events, (4) checkpointing

events, and (5) failure-detection events.

1. Non-deterministic events: A non-deterministic event is an event whose outcome may change for dif-

ferent executions of the same program. For example, a message deliver event is often non-deterministic

since its outcome depends on many factors, including process scheduling, routing, and flow control.

Thus, a recovering process may not produce the same run upon recovery even if the same set of

messages are sent to it.

If a non-deterministic event cannot be replayed during the recovery of a process, all correct pro-

cesses whose state depends on that unrecoverable event mustbe rolled back. These processes are

calledorphans. The information necessary to reproduce the results of the non-deterministic events is

called the event’sdeterminant. Restoring the system to a consistent state while limiting the extent of

rollbacks depends on the ability of the rollback-recovery protocol to replay the determinants of the

non-deterministic events executed by the failed processesbefore crashing. Hence, determinants must

be saved to stable storage so that they are available during recovery. In practice, different protocols

choose different ways to log determinants and rely on different implementations of stable storage.

2. Dependency-generating events: These events can increase the number of processes that depend on

the non-deterministic events executed by a process. For example, in message-passing applications, a

message-send event is a dependency-generating event sinceit can create dependencies between non-

deterministic events executed by the sender and the state ofthe receiver. If the sender fails and any of

those non-deterministic events is unrecoverable, then thereceiver becomes an orphan.

To enable orphan detection and appropriate rollback, log-based recovery protocols typically append to

application messages information (such as logical clocks [18] or vector clocks [20]) that tracks these

dependencies. In addition, to speedup the replay of non-deterministic events, it may be desirable

to log some information on executing a dependency-generating event. For instance, in sender-based

message-logging protocols processes log the content of each message they send.

3. Output-commit events: These events can make the external environment depend on the non-deterministic

events executed by a process.
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Since it is not reasonable to expect the external environment to roll back in response to a process crash,

log-based rollback recovery protocols invokeoutput commit procedures that write synchronously to

stable storage the determinants of all non-deterministic events that precede the communication with

the external environment, thus making them recoverable. Depending on how determinants are logged,

this procedure may require coordination among processes.

4. Checkpointing events: These events instruct the protocols to write to stable storage the state of one

or more processes. These event can either be transparent to the application (e.g. a signal from a timer

indicating that some pre-determined time has elapsed sincethe last checkpoint) or be explicitly driven

by the application.

Checkpoints can be coordinated, independent, or communication induced. Processes may checkpoint

their state incrementally, and checkpoints can be saved to stable storage either synchronously or asyn-

chronously.

5. Failure-detection events: These events are generated on detecting the failure of one or more pro-

cesses.

In response to these events, faulty processes must be restarted, restored to a previously checkpointed

state and rolled forward. In turn, correct orphan processesmay need to be detected and rolled back.

Different protocols implement different strategies to collect the determinants to be replayed during

recovery and to detect and rollback orphans.

Implementing a specific protocol therefore amounts to selecting the set of actions performed in response

to each relevant event. We now show how a simple language can be used to specify these choices. In

Section 4 we show how protocols can be automatically synthesized starting from these specifications.

3.2 Specifying Design Choices in Rollback-Recovery Protoc ols

Figure 1 shows a simple language that can be used to specify rollback-recovery protocols. The language

reflects the discussion of the previous section. A protocol is defined in terms the actions it takes in response

to non-deterministic events, dependency generating events, output commit events, checkpointing events and

failure-detection events. To define a protocol completely,it is necessary to instantiate a set of variables which

specify, for instance, the set of non-deterministic events, the form of their determinant, the implementation
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of stable storage, etc. Figure 2 shows a set of representative instantiations of these variables used in several

existing protocols.

Figure 3 illustrates how the language can be used to specify Bacon, Strom, and Yemini’s sender-based

pessimistic protocol [33], Damani and Garg’s optimistic protocol [7], and a hybrid protocol we have recently

developed that combines causal logging with asynchronous receiver-based logging to stable storage in order

to speed up crash recovery [26]. Our language, however, can be used for more than just specifying existing

recovery protocols. Once deconstructing rollback-recovery protocols becomes possible, it is then easy to

reassemble the fundamental components in novel ways to obtain new protocols. An example is given in

Figure 4 , which shows a specification of a sender-based pessimistic message-logging protocol that toleratesf concurrent failures and implements stable storage by replicating data in the volatile memory of processes.

In this protocol, which to our knowledge has not appeared in the literature, a process executing a non-

deterministic event broadcasts the corresponding determinant to the other processes and does not send any

application message until it has received at leastf acknowledgments to its broadcast.

4 The Architecture of Egida

Figure 1 defines the structure of log-based rollback recovery protocols, while the variables in Figure 2

identify the building blocks which when incorporated into the protocol structure yield different rollback

recovery protocols. Egida instantiates these building blocks in a modular, object-oriented architecture. We

begin this section by describing the functionality of each module and the interfaces it exports. We then

explain how these modules are invoked in response to events and how they can be composed to synthesize

rollback-recovery protocols.

4.1 Module Definitions and Interfaces

Egida defines the following modules:

EventHandler: Handles the five types of relevant events defined in Section 3.The methods exported by

this module are event-dependent.

Determinant: Creates the determinants for each non-deterministic event. It exports a single method,Cre-

ateDeterminant.
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Protocol := hnon-det-event-stmti�houtput-commit-event-stmti�hdep-gen-event-stmti�hckpt-stmtiopthrecovery-stmtiopthnon-det-event-stmti := heventi :
determinant : hdeterminant-structureihLog hhow-to-logi on hstable-storageiiopthoutput-commit-event-stmti := houtput-commit-protoi output commit on hevent-listihevent-listi := heventi j heventi; hevent-listihdep-gen-event-stmti := heventi :hpiggyback-stmti j hlogging-stmti jhpiggyback-stmtihlogging-stmtihlogging-stmti := Log hevent-info-listi hhow-to-logi on hwhere-to-logihevent-info-listi := hevent-infoi j hevent-infoi; hevent-info-listihpiggyback-stmti := Piggyback hpb-value-listihpb-value-listi := hpb-valuei j hpb-valuei; hpb-value-listihckpt-stmti := hckpt-protoi checkpoint hhow-to-ckpti on hstable-storagei
Implementation : hckpt-implihrecovery-stmti := hrecovery-get-det-stmtiopthorphan-detection-stmtiopthrollback-stmtiopthrecovery-get-det-stmti := Protocol to retrieve determinants : hrecovery-get-det-protoihorphan-detection-stmti := Protocol to detect orphans : horphan-detection-protoihrollback-stmti := On rollback :hrb-logging-stmti j hrb-ckpt-stmtihrb-logging-stmti := Log hevent-info-listi on hstable-storageihrb-ckpt-stmti := Take independent checkpoint on hstable-storagei

Notational Conventions:hxi means thatx is a production rulehyi means thaty is a variable that has to be mapped

to a specific valuehziopt means thathzi is an optional statement

a means thata is a keyword

Figure 1 : A grammar for specifying rollback-recovery protocols.
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heventi := sendj receivej readj writehdeterminant-structurei := fsource, sesn, dest, desnghoutput-commit-protoi := independentj co-ordinatedhevent-infoi := determinantj messagehhow-to-logi := synchronouslyj asynchronouslyhwhere-to-logi := hstable-storagei j hvolatile-storageihvolatile-storagei := local diskj volatile memory of selfhstable-storagei := local diskj NFS diskj volatile memory of processeshpb-valuei := vector clockj logical clockj
determinantsh; hdependency matrixj stability matrixj stability vectoriiopthckpt-protoi := independentj co-ordinatedj communication-inducedhhow-to-ckpti := synchronouslyj asynchronouslyhckpt-impli := full j incrementalhrecovery-get-det-protoi := centralizedj distributedhorphan-detection-protoi := broadcast logical clockj exchange vector clock

Figure 2 : Representative instantiations for the variables defined in the grammar shown in Figure 1.

HowToOutputCommit: Determines how to save the information necessary to recoverthe system to the

state in which an output commit event is executed. It exportsa single method,OutputCommit.

LogEventDeterminant: Saves the determinants of non-deterministic events to stable storage. It exports

four methods: (1)Log, (2) Retrieve, (3) Flush, and (4)GarbageCollect.

LogEventInfo: Logs data associated with an event. It exports the same interfaces as theLogEventDeter-

minant module.

HowToLog: Determines how logged information is accessed. It exports two methods,Read andWrite.

WhereToLog: Directs requests for accessing the logs to the appropriate form of storage. It exports the

same methods asHowToLog.

StableStorage: Implements stable storage for determinants and data associated with an event. It also

exports two methods,Read andWrite.

VolatileStorage: Implements volatile storage for determinants and data associated with an event. It exports

the same methods asStableStorage.
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Specifying Bacon, Strom and Yemini’s sender-based pessimistic message logging protocol=� comment: hnon-det-event-stmti �=
receive:

determinant :fsource, sesn, dest, desng
Log determinant synchronously on NFS disk=�comment: hdep-gen-event-stmtig �=

send:
Log message synchronously on volatile memory of self=� comment: hckpt-stmtig �=

Independent checkpoint asynchronously on NFS disk
Implementation : incremental

Specifying Damani and Garg’s optimistic message logging protocol=� comment: hnon-det-event-stmti �=
receive:

determinant :fsource, sesn, dest, desng
Log determinant asynchronously on NFS diskfcomment: houtput-commmit-event-stmtig

Co-ordinated output commit on write=� comment: hdep-gen-event-stmti �=
send:

Piggyback vector clock
Log message synchronously on volatile memory of self=� comment: hrecovery-stmti �=

Protocol to detect orphans : broadcast logical clock
On rollback: Log determinant, message on NFS disk

Specifying hybrid causal message logging protocol=� comment: hnon-det-event-stmti �=
receive:

determinant :fsource, sesn, dest, desng
Log determinant, data asynchronously on NFS disk=� comment: hdep-gen-event-stmti �=

send:
Piggyback determinants
Log message synchronously on volatile memory of self=� comment: hrecovery-stmti �=

Protocol to retrieve determinants : centralized

Figure 3 : Example specifications of existing protocols
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=� comment: hnon-det-event-stmti �=
receive:

determinant :fsource, sesn, dest, desng
Log determinant synchronously on volatile memory of processes=� comment: hdep-gen-event-stmti �=

send:
Log message synchronously on volatile memory of self=� comment: hckpt-stmti �=

Independent checkpoint asynchronously on NFS disk
Implementation : incremental

Figure 4 : Specification of a novel sender-based pessimistic protocol

PiggybackLogging: Piggybacks onto application messages the information necessary to track dependen-

cies among process states and, in the case of causal logging,appends the non-stable determinants

logged by the message sender. It also processes, and if appropriate logs the piggybacked information.

This module exports two methods:GetPiggyback andProcessPiggyback.

PiggybackCheckpointing: Piggybacks the information necessary to track the dependencies among check-

points. It also processes piggybacked information, and if appropriate triggers a checkpoint. It exports

the same methods asPiggybackLogging.

Checkpoint: Implements the checkpointing protocol. It exports two methods, TakeCheckpoint and Re-

storeFromCheckpoint.

HowToCheckpoint: Determines how the checkpoint information is accessed. It exports two methods,Read

andWrite.

CollectDeterminants: Collects determinants during recovery. It exports a singlemethod,RetrieveDeter-

minants.

OrphanDetection: Implements the protocol for orphan detection. It exports a single method,DetectOr-

phans.

4.2 Module Invocation

Figure 5 shows the dependency graph for the modules introduced in Section 4.1. In addition to the modules

discussed in Section 4.1, it shows four other modules:
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Determinant
CreateDeterminant

Read
Write

VolatileStorage

LogEventInfo
Log
Retrieve
Flush
GarbageCollect

Read
Write

StableStorage

HowToLog
Read
Write

Read
Write

WhereToLog

HowToCheckpoint
Read
Write

Checkpoint

TakeCheckpoint
RestoreFromCheckpoint

LogEventDeterminant
Log
Retrieve
Flush
GarbageCollect

HowToOutputCommit
OutputCommit

CollectDeterminants
RetrieveDeterminants

OrphanDetection

DetectOrphans
GetPiggyback
ProcessPiggyback

PiggybackCheckpointing

GetPiggyback
ProcessPiggyback

PiggybackLogging

FailureDetector

API

Timer
Event Handler

Network

Figure 5 : The architecture of Egida
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1. An API module that intercepts application-level calls to relevant events and invokes the appropriate

handler exported by theEventHandler.

2. A Timer module that enables Egida to specify the intervals at which timer interrupts need to be

generated to perform periodic actions, such as checkpointing and flushing of volatile logs to stable

storage.

3. A FailureDetector module that implements a protocol for detecting process crashes and triggers the

appropriate recovery mechanisms through theEventHandler.

4. A Network module that invokes a method ofEventHandler to process incoming messages.

To illustrate the interactions among Egida’s module, we present two examples that show how this depen-

dency graph is traversed in response to specific events.

Example 1 Handling a Send event for a causal logging protocol (see [1]):

TheAPI module intercepts the Send event and invokes the corresponding handler inEventHandler. The

handler in this example performs three tasks: (1) it saves ina volatile log kept by sender the content of the

message being sent; (2) it retrieves the set of non-stable determinants from the log kept by the server; (3) it

piggybacks these determinants on the application message and sends the message to the destination.

1. To save the content of the message in the sender’s volatilelog, the handler invokes theLog method

of LogEventInfo. Log in turn invokes theWrite method ofHowToLog, which invokes theWrite of

WhereToLog, which finally invokes theWrite method exported byVolatileStorage.

2. To obtain the determinants to piggyback, the handler invokes theGetPiggyback method ofPiggy-

backLogging. This method identifies the non-stable determinants and invokes theRetrieve method

of LogEventDeterminant. Retrieve in turn invokes theRead method ofHowToLog, which invokes

the Read of WhereToLog, which finally invokes theRead of VolatileStorage and, if necessary, of

StableStorage. These methods return the requested determinants which arethen passed up through

the call chain back toGetPiggyback.

3. The event handler then piggybacks the determinants to theapplication message and invokes the send

function in the transport layer1.

1As we will see in Section 5, in our current implementation thepiggybacked determinants are sent in a separate message in
order to avoid unnecessary data copying.
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Example 2 Handling a Send event to the external environment for the optimistic protocol of Damani and

Garg (see [7]):

TheAPI module intercepts the send event and invokes the corresponding handler inEventHandler. The

handler in this example invokes the output commit procedureprior to sending the message. The output

commit procedure in turn performs two tasks: (1) it flushes tostable storage the determinants of all the

non-deterministic events executed by the process prior to the send to the external environment, thereby

making them recoverable; and (2) it initiates a co-ordinated output commit operation to ensure that all the

non-deterministic events that causally precede the send are recoverable.

1. To perform output commit, the handler invokes theOutputCommit method ofHowToOutputCommit.

TheOutputCommit methods performs the following two tasks:

(a) To perform a local output commit,OutputCommit invokes theFlush method ofLogEventDe-

terminant. Flush then invokes theWrite method ofHowToLog, which invokes theWrite of

WhereToLog, which finally invokes theWrite method exported byStableStorage.

(b) To perform a co-ordinated output commit,OutputCommit sends a message to all other processes

requesting an output commit. On receiving this message, theNetwork module invokes the ap-

propriate handler inEventHandler, which in turn invokes theOutputCommit method ofHow-

ToOutputCommit2. TheOutputCommit method then invokes the same sequence of methods as

in (a).

2. The handler sends the application message to the externalenvironment.

4.3 Synthesizing Protocols through Module Composition

Egida allows the co-existence of multiple implementationsfor each of the modules introduced in Section 4.1.

Hence, to synthesize a protocol, one must select a specific implementation of each module. Egida maintains

a binding between the values for the variables on the left hand side of Figure 2 and their corresponding

implementations. Therefore, synthesizing a protocol requires processing the specification along with this

binding information to initialize the modules to their appropriate implementations. It is easy to extend

Egida to recognize new implementations of modules; as more implementations of a module functionality

2Note that theOutputCommit method exported by the instance of theHowToOutputCommit module invoked by the handler
for processing network messages performs only a local output commit.
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become available, the specification language can be extended by simply (1) adding a new value to the right

hand side of the corresponding variable in Figure 2, and (2) registering with Egida the binding between the

new value and its corresponding implementation.

5 Implementation and Experience

5.1 Implementation Status

Egida contains multiple implementations for each module introduced in Section 4.1. Each module is defined

as a C++ class. The classes we have implemented so far correspond to the values on the right hand side of

Figure 2.

To make Egida available to a large number of applications, wehave integrated Egida with MPICH [10,

11], a freely available, portable implementation of the MPI(Message Passing Interface) standard 1.1.

MPICH has a two-layer architecture: the upper layer exportsMPI’s application programming interface

(API), while the lower layer contains platform-specific message-passing libraries. For our testbed environ-

ment consisting of a network of workstations connected by anEthernet, MPICH’s lower layer is imple-

mented using the p4 library [4].

To integrate Egida with MPICH, we replaced in the MPICH’s upper layer all the send and receive calls to

p4 with corresponding calls to Egida’s API; modules in Egidain turn invoke the message passing operations

of p4. To prevent data copying, MPICH messages and the information piggybacked by Egida are transmitted

separately. We also modified p4 to handle socket errors that occur whenever processes fail and to allow a re-

covering process to establish socket connections with the surviving processes. Our implementation provides

transparent fault-tolerance to MPI applications—only a simple re-link of the application with Egida and our

modified MPICH library is necessary.

5.2 Evaluating Message Logging Protocols

We have used Egida to compare the performance of five message logging protocols—the four protocols

described in Figures 3 and 4 and a receiver-based pessimistic protocol. We compare the performance of

these protocols with respect to: (1) the overhead imposed bythese protocols during failure-free executions,

and (2) the time taken to restore a process to its pre-crashedstate.
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Application NPB Specific Info Per Process Avg. Message Rate Exec. Time
Messages/sec. KB/sec. (sec.)

BT Class A 7 352.3 1530
CG Class B 15 752.0 1516
LU Class B 26 150.3 4017
SP Class B 7 540.9 4530

Table 1 : Characteristics of the benchmarks used in the experiments

5.2.1 Experimental Setting

To compare the performance of the five message logging protocols, we use four long-running compute-

intensive applications from the NPB2.3 benchmark suite developed by NASA’s Numerical Aerodynamic

Simulation program [6]. These benchmarks are derived from computational fluid dynamics codes; the

characteristics of these benchmarks are shown in Table 1.

We conducted our experiments using a cluster of four Pentium-based workstations connected by a lightly-

loaded 100Mb/s Ethernet. Each workstation contains two 300-MHz Pentium-2 processors, 512 MBytes of

memory, 4 GB disk, and runs Solaris 2.6. For all the experiments, each workstation executes a single

application process. Stable storage is provided by an NFS file server. Checkpoints are taken five minutes

apart and are saved to stable storage asynchronously. We exploit the iterative nature of the applications, and

induce failures after a process has completed a pre-determined number of iterations. This ensures that the

amount of lost computation that has to be reproduced by a recovering process is the same for all protocols.

The NPB benchmarks, MPICH library, and Egida , respectively, were compiled using SUN’s f77, C, and

C++ compilers with the optimization flag “–O”. The results reported in this paper are with a 95% confidence

interval obtained by averaging the results of at least five runs.

5.2.2 Performance Results

Failure-free Performance

Table 2 shows the failure-free execution times as well as theoverhead—relative to the application execution

times reported in Table 1—imposed by the three pessimistic protocols. Table 3 shows the corresponding

results for the optimistic and hybrid causal protocols.

As expected, the pessimistic protocols impose a higher failure-free overhead as compared to the optimistic

and hybrid causal protocols, and among the pessimistic protocols, the receiver-based protocol imposes the
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Receiver-based Sender-based (Disk) Sender-based (Vol. Memory)
Application Exec. Time % Overhead Exec. Time % Overhead Exec. Time % Overhead

(sec.) (sec.) (sec.)
BT 2068 33.1% 1692 8.9% 1602 3.1%
CG 3157 109.4% 1888 25.2% 1790 18.7%
LU 8599 114.1% 5960 48.4% 7243 80.3%
SP 5795 27.9% 4986 10.1% 5240 15.7%

Table 2 : Failure-free results for the three variations of pessimistic message logging protocols with a check-
point interval of 5 min.

Application Optimistic Hybrid Causal
Exec. Time % Overhead Exec. Time % Overhead

(sec.) (sec.)
BT 1573 1.2% 1580 1.7%
CG 1720 14.1% 1733 14.9%
LU 4345 8.2% 4644 15.6%
SP 4626 2.1% 4636 2.3%

Table 3 : Failure-free results for optimistic and hybrid causal message logging protocols with a checkpoint
interval of 5 min. In both protocols, a process flushes its volatile logs to disk once every minute.

highest overhead. The difference in the performance between the two sender-based pessimistic protocols is

application-dependent. The performance of the protocol that implements stable storage in volatile memory

depends heavily on the responsiveness with which acknowledgments are returned. This, however, depends

on the message frequency and the size of messages exchanged by application processes.

The optimistic and hybrid protocols perform comparably during failure-free execution, except for theLU

application where optimistic significantly outperforms hybrid. This is because the overhead of processing

the piggybacked is higher for causal protocols than for optimistic; applications, such asLU , with high

message frequency amplify this difference.

Recovery Performance

Table 4 compares the time taken by the five protocols to restore a process to its pre-crashed state for theCG

benchmark with different number of concurrent failures.

Whenf = 1, protocols that never rollback correct processes provide fast crash recovery. Whenf > 1,

the dominant factor in determining performance iswhere the recovery information is logged:
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Pessimistic Optimistic Hybrid Causalf Receiver-based Sender-based Sender-based
(Disk) (Vol. Memory)

(sec.) (sec.) (sec.) (sec.) (sec.)
1 146.2 168.8 170.2 160.0 169.4
2 146.9 176.4 177.3 161.6 198.8
3 147.3 197.6 198.8 161.4 200.7

Table 4 : The recovery performance of the various protocols for theCG benchmark asf is varied� In receiver-based logging, the recovering process has a prefix of the information needed during re-

covery; it can use that prefix to quickly roll-forward and in parallel collect the missing data from the

remaining processes.� In sender-based protocols, messages are stored only in the senders’ volatile memory and are lost if

the sender fails. Consequently, whenever a recovering process needs to acquire one of these missing

messages, it stops rolling forward, waiting for the sender to recover to the point at which the message

is regenerated and resent. Thisstop-and-go effect becomes significant with increase inf [25].

The performance of the optimistic protocol is nearly unaffected by increase inf . For the hybrid causal

protocol, due to asynchronous logging of messages, the logson stable storage contain only a prefix of the

messages that have to be replayed. A recovering process can use the logged information for replay and

in parallel collect the missing data. However, whenf > 1, the stop-and-go effect occurs after the log is

replayed and consequently, the cost of recovery marginallyincreases withf .

6 Related Work

The literature contains several systems that have been designed to provide transparent fault-tolerance using

rollback-recovery. They include libckpt [22], Fail-safe PVM [19], MIST [5], Co-check [31], Manetho [9]

and libft [13]. As opposed to Egida , however, these systems are designed to support only a specific check-

pointing or message-logging protocol.

Egida emphasis on code reusability and extensibility is also present in the recently-introduced OTEC

simulator [24]. OTEC’s object-oriented design provides some degree of code reusability and can be used to

compare the performance of different checkpointing and recovery protocols, but only through simulations.

The run-time system for rollback-recovery that is closest to Egida in terms of extensibility is RENEW [21], a
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system that provides a framework for implementing and evaluating different checkpointing protocols. How-

ever, RENEW’s architecture does not contain reusable components for faciltating the automatic synthesis of

arbitrary rollback-recovery protocols.

Egida ’s architecture, which allows to generate protocols from a library of basic building blocks, is similar

to the one used in other systems—for instance, in xkernel [14] for networking protocols, in Horus [27]

and Cactus [12] for distributed computing and group membership protocols, and in COMERA [35] and

Quarterware [28] for communications middleware. However,to our knowledge, Egida is the first application

of this approach to rollback recovery protocols.

7 Concluding Remarks

We have presented the design and implementation ofEgida, an object-oriented toolkit designed to support

transparent rollback recovery. Egida exports a simple specification language that can be used to express

arbitrary rollback recovery protocols. From this specification, Egida authomatically synthesizes an imple-

mentation of the specified protocol by glueing together the appropriate objects from an available library of

“building blocks”.

We have implemented a prototype of Egida and integrated it with the MPICH implementation of the

Message Passing Interface (MPI) standard. Through Egida, MPI applications can be made fault-tolerant

without any modifications. Conversely, Egida allows to study the robustness and performance of different

rollback-recovery protocols with respect to a large set of demanding applications.

Our early experience with the prototype suggests that Egidais extensible, flexible, and facilitates rapid im-

plementations of rollback-recovery protocols with minimal programming effort. We expect that the design

of Egida will evolve as we gain more experience specifying and implementing different rollback recovery

protocols.
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