
Coordinated Placement and Replacement forLarge-Scale Distributed Caches �Madhukar R. Korupolu1 Michael Dahlin1AbstractIn a large-scale information system such as a digital library or the web, a set of dis-tributed caches can improve their e�ectiveness by coordinating their data placement de-cisions. Using simulation, we examine three practical cooperative placement algorithmsincluding one that is provably close to optimal, and we compare these algorithms to theoptimal placement algorithm and several cooperative and non-cooperative replacement al-gorithms. We draw �ve conclusions from these experiments: (1) cooperative placementcan signi�cantly improve performance compared to local replacement algorithms particu-larly when the size of individual caches is limited compared to the universe of objects; (2)although the amortizing placement algorithm is only guaranteed to be within 14 times theoptimal, in practice it seems to provide an excellent approximation of the optimal; (3) in acooperative caching scenario, the recent greedy-dual local replacement algorithm performsmuch better than the other local replacement algorithms; (4) our hierarchical-greedy-dualreplacement algorithm yields further improvements over the greedy-dual algorithm espe-cially when there are idle caches in the system; and (5) a key challenge to coordinatedplacement algorithms is generating good predictions of access patterns based on past ac-cesses.Keywords: Cache, cooperative, distributed, hierarchical, placement, replacement, web.1. IntroductionConsider a large-scale distributed information system, such as a digital library or the worldwide web. Caching popular objects close to clients is a fundamental technique for improvingthe performance and scalability of such a system. Caching enables requests to be satis�ed by anearby copy and hence reduces not only the access latency but also the burden on the networkas well as the server.1Department of Computer Science, University of Texas at Austin, Austin, TX 78712. Email:fmadhukar,dahling@cs.utexas.edu.�This work was supported in part by an NSF CISE grant (CDA-9624082) and grants from Intel, Novell, andSun. Dahlin was also supported by an NSF CAREER grant (9733842). A preliminary version of this paperappears in the Proceedings of the 1999 IEEE Workshop on Internet Applications, pages 62{71, July, 1999.

A powerful paradigm to improve cache e�ectiveness is cooperation, where caches cooperateboth in serving each other's requests and in making storage decisions. Such cooperation isparticularly attractive in environments where machines trust one another such as within anInternet service provider, cache service provider, or corporate intranet. In addition, cooperationacross such entities could be based on peering arrangements such as are now common for Internetrouting.There are two orthogonal issues to cooperative caching: �nding nearby copies of objects(object location) and coordinating the caches while making storage decisions (object placement).The object location problem has been widely studied [1, 3, 20]. Many recent studies (e.g., Sum-mary Cache [6], Cache Digest [18], Hint Cache [19], CRISP [8] and Adaptive Web Caching [25])also focus on the location problem, but none of these address the placement issue which is thefocus of this article.E�cient coordinated object placement algorithms would greatly improve the e�ectiveness ofa given amount of cache space and are hence crucial to the performance of a cooperative cachingsystem. We believe that the importance of such algorithms will increase in the future as thenumber of shared objects continues to grow enormously and as the Internet becomes the homeof more large multimedia objects.In this paper we focus on the cache coordination issue and provide placement and replacementalgorithms that allow caches to coordinate storage decisions. The placement algorithms attemptto solve the following problem: given a set of cooperating caches, the network distances betweencaches, and predictions of the access rates from each cache to each object, determine whereto place each object in order to minimize the average access cost. Compared to placementalgorithms, replacement algorithms also attempt to minimize the access cost, but rather thanexplicitly computing a placement based on access frequencies, they proceed by evicting objectswhen cache misses occur.Coordinated caching helps for two reasons. First, coordination allows a busy cache to utilizea nearby idle cache [5, 7]. Second, coordination balances the improved hit time achieved byincreasing the replication of popular objects against the improved hit rate achieved by reducingreplication and storing more unique objects.In this work, we examine an optimal placement algorithm and three practical placementalgorithms and compare them to several uncoordinated replacement algorithms (such as LFU,LRU, greedy-dual [2, 23]) and a novel coordinated replacement algorithm. We drive this com-parison with simulation based on both synthetic and trace workloads. The synthetic workloadsallow us to examine system behavior in a wide range of situations, and the trace allows us toexamine performance under a workload of widespread interest: web browsing.We draw �ve conclusions from these experiments.� Cooperative placement can signi�cantly improve performance compared to local replace-ment particularly when the size of individual caches is limited compared to the universe2

of objects.� It was established in an earlier theoretical work by Korupolu, Plaxton and Rajaraman [13]that, under a hierarchical model for distances, the amortizing placement algorithm is al-ways within a constant factor of the optimal. Although this earlier proof only guaranteesthat the amortizing placement algorithm is within a factor of 14 of the optimal, in thisarticle we �nd that it is within 5% for a wide range of workloads. This is an importantresult for two reasons. First, in systems that can generate good estimates of access fre-quencies, amortizing placement is a practical algorithm that can be expected to providenear-optimal performance. Second, for large-scale studies of cache coordination, amortiz-ing placement can provide a practical \best case" baseline that can be used to evaluateother algorithms. In addition, we �nd that the greedy placement algorithm, which is asimpli�ed version of the amortizing algorithm, also provides an excellent approximationof the optimal even though in theory its performance can be arbitrarily worse than theoptimal.� Previous work [2] has shown that the greedy-dual algorithm works well for stand-alonecaches. Our contribution is to examine the performance of this algorithm in cooperativecaching scenarios. We �nd that, for cooperative caching, it signi�cantly outperforms otherlocal replacement algorithms because it includes miss costs in its replacement decisions,thereby creating an implicit channel for coordinating the caches.� Our hierarchical-greedy-dual replacement algorithm yields further improvements over thegreedy-dual replacement algorithm especially when there are idle caches in the system.� A key challenge to coordinated placement algorithms is generating good predictions ofaccess patterns based on past accesses.The rest of the article is organized as follows: First, Section 2 describes the algorithms westudy. Sections 3 and 4 detail our experimental results under synthetic and trace workloads,respectively. Section 5 surveys related work, and Section 6 summarizes our conclusions.2. AlgorithmsIn this section, we present several placement and replacement algorithms for coordinated caching.We make several simplifying assumptions in order to focus on the coordination problem. Oneassumption is that all the objects have the same size and are read-only. Second, we assume thatthe network distances (or communication costs) between node pairs are �xed and do not changeover time. An interesting area for future work is to relax these assumptions.In order to capture the varying degrees of locality between the nodes, we use a clustering-based network model. This is illustrated in Figure 1 which shows a set of cooperating nodes anda possible network-locality based clustering of these. This clustering is a natural consequence3

(a) A set of cooperating caches (b) A clustering (c) The cluster treeFigure 1: Model for network distancesof how network topologies reect organizational and geographic realities. For example, in acollection of universities, each node typically belongs to the department cluster which in turnbelongs to the university cluster and so on. This cluster structure can be captured using acluster-tree (or, a network-locality tree) as shown in the �gure. The individual caches form theleaves of this tree, and the internal nodes correspond to the clusters. A cluster C is a child ofcluster C 0 if C is immediately contained within C 0.Because communication between two clusters is likely to traverse the same bottleneck linkregardless of which particular nodes are conversing, we use a simple model of network distances:each cluster has an associated diameter, and the distance between any pair of nodes is given bythe diameter of the smallest cluster that contains both of these nodes. This model is same asthe ultrametric model used by Karger et al. in [12].2.1. Non-cooperative local algorithmsIn this subsection, we outline four baseline algorithms that make all their placement or replace-ment decisions locally without consulting any other cache.MFU placement. The cache looks at the local access frequencies to the various objects, andif the size of the cache is k, it stores the k most frequently used objects.LRU replacement. When a cache miss occurs, this algorithm evicts the least recently usedobject.LFU replacement. When a cache miss occurs, this algorithm evicts the object with the least(local) frequency of access.Greedy-dual replacement. This is a generalization of the LRU algorithm to the case whereeach object has a di�erent fetch cost [2, 23]. The motivation behind the greedy-dual algorithmis that the objects with larger fetch costs should stay in the cache for a longer time.The algorithm maintains a value for each object that is currently in the cache. When anobject is fetched into the cache, its value is set to its fetch cost. When a cache miss occurs, theobject with the minimum value is evicted from the cache, and the values of all the other objects4

in the cache are reduced by this minimum value. And if an object in the cache is accessed (or`touched'), then its value is restored to its fetch cost.From an implementation point of view, it would be expensive to modify the value of eachcache object, upon each cache miss. However, this expense can be avoided by noting that it isonly the relative values, not the absolute ones, that matter [2]. In an e�cient implementation,we use an additional variable { called threshold { to track the value of the object that was lastremoved from the cache. (The variable threshold is initially set to zero.) Upon a cache miss theminimum valued object is evicted from the cache; the variable threshold is set to the value ofthis object; and no other values are modi�ed. However, when an object is touched or added, itsvalue is set to its fetch cost plus the threshold.2.2. Cooperative placement algorithmsA placement assigns objects to caches without violating the cache size constraints. The cost ofa placement is de�ned in the natural manner: the sum over all nodes u and all objects ofthe access frequency for object at node u times the distance from node u to the closest copyof that object. The goal of a cooperative placement algorithm is to compute a placement withminimum cost. Even though we do not explicitly minimize the network load and the serverload these would typically be low when the access cost is minimized. This is because the latterobjective would encourage objects to be stored closer to the clients, thereby reducing the loadon both the network and the server.We study three cooperative placement algorithms. One of them is provably optimal, butunfortunately it is impractical for scenarios with large numbers of nodes and objects. The othertwo algorithms are not provably optimal, but they are much simpler and can be implementede�ciently even in a distributed setting. Table 1 presents the notation used for describing theplacement algorithms.2.2.1. An optimal placement algorithmA centralized optimal algorithm for the placement problem was developed in an earlier paper [13],using a reduction to the minimum cost ow problem. The algorithm and its proof of optimalityappear in [13], hence we do not reproduce it here. The instance of the minimum-cost owproblem constructed by this reduction has �(nm) vertices, where n is the number of nodes andm is the number of objects in the system.Since the minimum cost ow problem is computationally intensive, this optimal algorithmincurs a high running time complexity. In particular, even the fastest known algorithm forminimum cost ow takes at least quadratic time and hence the running time of this optimalalgorithm is at least quadratic in the product of n and m. Moreover, since the algorithm iscentralized, it requires all the frequency information to be transferred to a single node, therebyimposing a high bandwidth requirement. These factors make this algorithm impractical for usewith large inputs, and hence our sole use for this algorithm is as a benchmark for evaluating5

Input:� Set of caches and the cache sizes.� Set of objects.� Access frequencies from each cache to each object.{ Let f(u;) denote the frequency from node u to object .{ Let f(C;) = Pu2C f(u;), denote the aggregate frequency from cluster C toobject .� Cluster tree T with diameters for each cluster.{ Let diam(C) denote the diameter for cluster C.{ Let p(C) denote the parent of cluster C in T .� A maximum cost called penalty which must be paid if no cache has the object.{ De�ne diam(p(root)) to be penalty .Output:� A placement of objects among the caches.{ Represented as a set of items, where each item is a triple of the form(objectId; cacheId; benefit).Table 1: Notation for the placement algorithms.other algorithms.2.2.2. The greedy placement algorithmThis algorithm follows a natural greedy improvement paradigm, and involves a bottom-up passalong the cluster-tree. It starts with a tentative placement in which each cache (i.e., a leaf inthe cluster-tree) picks the locally most valuable set of objects. The algorithm then proceeds upthe cluster-tree improving the placement iteratively.In a general step, suppose we have computed the tentative placements for clusters C1; : : : Ckwhich constitute a larger cluster C. While computing the placement for cluster Ci, the algorithmuses the access frequency information from within that cluster only. Now at cluster C, we �rstmerge the tentative placements computed for subclusters C1 through Ck. The placement Qobtained by this merging is clearly a starting placement for cluster C, but it may be improvedusing the information about the aggregate frequencies across di�erent subclusters in C.For example, there may be an object that is not chosen in any of the clusters C1 through6

At a leaf u� If the size of cache at u is k, pick the k most frequently used objects (locally) at u.For each such object , set the bene�t b to f(u;) � (diam(p(u))� diam(u)), and addthe item (; u; b) to the local placement Q.At a cluster C1. Merge. Let Qi be the placement computed for the ith child cluster of C. (We assumethat computations at the children of C, if any, were already completed.) Initialize theplacement Q to be the union of these Qi's.2. Adjust bene�ts. For each object that has a copy in Q, pick its highest-bene�tcopy (breaking ties arbitrarily), and designate it as the primary copy for . Allother copies of are secondary . Increase the bene�t of the primary copy of byf(C;)�(diam(p(C))�diam(C)). The bene�ts of the secondary copies are not changed.3. Value missing objects. For each Q-missing object 0, set value(0) to f(C; 0) �(diam(p(C)) � diam(C)). Let X be the set of all Q-missing objects.4. Greedy swap. Pick the highest valued object 0 from X, and the least bene�titem y from Q. If value(0) is greater than the benefit(y) then swap 0 for y andrepeat step 4. The swap step involves removing the item y from Q, adding the item(0; cacheId(y); value(0)) to Q, and then removing 0 from X.5. Wind up. If C is the root cluster, then return the placement Q. Otherwise proceedto the parent cluster of C.Table 2: The greedy placement algorithm.

7

Ck since its access frequency within each cluster is small. But its aggregate frequency in thelarger cluster C may be large enough that the placement Q can be improved by taking a copyof object and dropping a less bene�cial item { for example, an item which is replicated manytimes or whose aggregate access frequency within the cluster C is not as high. To determinesuch useful swaps, we calculate a bene�t for each item in Q and a value for each object not inQ. (Such objects are said to be Q-missing.)The value of a Q-missing object is C's aggregate access frequency for that object times thecost of leaving the cluster C to fetch that object. The latter quantity is the di�erence betweenthe diameter of the parent cluster of C and that of the cluster C itself.The bene�t of an item x in placement Q, on the other hand, corresponds to the increase inthe cost of the placement when the item x is dropped. Bene�ts are computed in a bottom-upmanner. Each subcluster Ci calculates a local bene�t for each item in its placement. After themerge step, the parent cluster C updates the bene�ts as follows. For each object that has oneor more copies in Q, we pick the copy with the highest local bene�t as the primary copy, andcall all other copies as secondary copies. The bene�ts of the secondary copies are not changed,but the bene�t of the primary copy is increased by C's aggregate access frequency to the objecttimes the cost of leaving the cluster C. The intuition is that among all the copies of an object,the primary copy will be the last one to be removed from Q, and its removal will increase thecost of the placement by the above amount.Once the bene�ts and values have been computed, we use a simple greedy swapping phaseto improve the placement Q. While there is a Q-missing object whose value is more thanthe least bene�cial item x in Q, we remove x from Q and substitute a copy of . This phaseterminates when the bene�t of each item in Q is higher than the value of each Q-missing object.This swapping phase concludes the computation for cluster C, and the algorithm proceedsto the parent cluster of C iteratively.In fact, the presentation of this algorithm in [13] involves two passes through the networklocality tree: a bottom-up pass that computes a pseudo-placement, and a top-down pass thatre�nes this pseudo-placement to a placement. However, we note that the notion of pseudo-placement was essential only for proving the performance guarantees but not for correctness.Hence, here we gave an equivalent one-pass description avoiding the notion of pseudo-placementand highlighting the ease of implementation. Table 2 summarizes this simpler one-pass descrip-tion by giving separate pseudocodes for the leaf computations and the internal node computa-tions.Although this greedy algorithm looks simple and promising, it is shown in [13] that itsworst-case performance can be arbitrarily far from the optimal. However, we conjecture thatsuch worst-case examples occur rarely and that the algorithm would perform well in practice.
8

At a leaf u� Same as in the greedy algorithm, except that we also set the potential � to zero.At a cluster C1. Merge. Same as in the greedy algorithm, except that we also initialize the potential� to the sum of the potentials �1; : : : �k, computed by the children of u.2. Adjust bene�ts. Same as in the greedy algorithm.3. Value missing objects. Same as in the greedy algorithm, except that we alsoinitialize � to the sum of the values of all the Q-missing objects.4. Amortized swap. Similar to the greedy swap, except that the potential � is usedto reduce the bene�ts of certain secondary items.(a) Pick the highest valued (Q-missing) object 0 from X, and the least bene�tprimary and secondary items (yp and ys respectively) from Q.(b) If value(0) > min(bene�t(yp); bene�t(ys)��), then depending on which of thelatter two terms is smaller perform one of the following two swap operationsand then repeat step (4).� If bene�t(yp) < bene�t(ys) � �, then swap 0 for yp and adjust �.The swap step involves removing the item yp from Q, adding the item(0; cacheId(yp); value(0)) to Q, and then removing 0 from X. The vari-able � is set to �� value(0) + bene�t(yp).� Otherwise, swap 0 for ys, reduce the potential �, and adjust variable �.As before, the swap step involves removing the item ys from Q, adding theitem (0; cacheId(ys); value(0)) to Q, and then removing 0 from X. Thepotential � is set to max(0; � � benefit(ys)) while the variable � is set to�� value(0).5. Update potential. Add � to �.6. Wind up. If C is the root cluster, then return the placement Q. Otherwise proceedto the parent cluster of C.Table 3: The amortizing placement algorithm.
9

2.2.3. The amortizing placement algorithmThe worst-case analysis indicates that a drawback of the greedy algorithm is the following: Asingle secondary copy of some object may prevent the swapping in of several missing objects,one at each level of the cluster tree. Though the bene�t of the secondary copy is larger thanthe value of each such missing object, on the whole it might be much less than the sum of allthese values put together.To circumvent this problem, the greedy algorithm is augmented with an amortization stepusing a potential function. The potential function accumulates the values of all the missingobjects, and the accumulated potential is then used to reduce the bene�ts of certain secondaryitems thereby accelerating their removal from the placement. Table 3 summarizes this improvedalgorithm.It is proved in [13] that the above amortizing placement algorithm is always within a constantfactor of the optimal. The constant factor is about 13:93. However, this factor is still large forpractical purposes. We conjecture that, in practice, this algorithm will be much closer to theoptimal.Note that the above description of the greedy and the amortizing placement algorithms isstill centralized. For example, all the computation at the last level of recursion is performed atthe single node corresponding to the root of the network-locality tree. This induces a centralizedbottleneck at this node. However, such bottlenecks can be avoided by mapping the computationof each internal node to the leaves in its subtree in a load-balanced manner. For details aboutsuch a scalable distributed implementation, please see [13].2.3. A cooperative replacement algorithmOur experiments in Section 3 show that, in a cooperative scenario, the greedy-dual algorithmperforms much better than the other local replacement algorithms. This is because even thoughthe greedy-dual algorithmmakes entirely local decisions, its value structure enables some implicitcoordination with other caches. In particular, an object that is fetched from a nearby cachehas a smaller value than an object that is fetched from afar. Hence the former object wouldbe evicted from the cache �rst, thus reducing unnecessary replication among nearby caches.However, this limited degree of coordination does not exploit all the bene�ts of cooperation.For example, the idle caches are not exploited by nearby busy caches.Hence we devise hierarchical-greedy-dual, a cooperative replacement algorithm that not onlypreserves the implicit coordination o�ered by greedy-dual but also enables busy caches to utilizenearby idle caches.In this algorithm, each individual cache runs the local greedy-dual algorithm using the ef-�cient implementation described in Section 2.1. Recall that the local greedy-dual algorithmmaintains a value for each object in the cache, and upon a cache miss, it evicts the object withthe minimum value. In our hierarchical generalization, the evicted object is then \passed up"to the parent cluster for possible inclusion in one of its caches. When a cluster C receives an10

evicted object from one of its child clusters, it �rst checks to see if there is any other copy of among its caches. If not, it picks the minimum valued object 0 among all the objects cachedin C. Then the following simple admission control test is used to determine if should replace 0. If the copy of was used more recently than the copy of 0, then replaces 0 and the newevicted object 0 is recursively passed on to the parent cluster of C. Otherwise, the object itself is recursively passed on to the parent cluster of C.From our experiments, we learned that the particular admission control test described aboveis crucial for obtaining good performance. This is because an important purpose of the admissioncontrol test is to prevent rarely-accessed objects from jumping from cache to cache without everleaving the system. Such objects typically have a high fetch cost since no other (nearby) cachestores them, and hence any fetch-cost based admission control test would repeatedly reinsert suchobjects even after they are evicted by individual caches. This can result in worse performancethan even the local greedy-dual algorithm. We avoid this problem by maintaining a last-usetimestamp on every object in the cache. With this timestamp based admission control strategy,rarely used objects are eventually released from the system.For a practical implementation, algorithm would use data-location directories [6, 8, 18, 19] todetermine if other copies exist in the subtree, and would use randomized [5] or deterministic [7]strategies to approximate the selection of 0.3. Performance evaluation on synthetic workloadsThis section explores the performance of the above algorithms under a range of synthetic work-loads. These workloads allow us to explore a broader range of system behavior than traceworkloads. In addition, because the synthetic workloads are small enough be tractable underthe optimal algorithm, we can compare our algorithms to the optimal placement.This section �rst describes our methodology in detail and then shows the results of ourexperiments. These results support the �rst four conclusions listed in Section 1. For the sakeof brevity and for ease of reference, throughout the rest of this article, we use the phraseGreedyPlace (resp., AmortPlace, MFUPlace, GreedyDual, HrcGreedyDual) as a shorthand forthe greedy placement (resp., amortizing placement, MFU placement, greedy-dual, hierarchical-greedy-dual) algorithm.3.1. MethodologyWe simulate a collection of caches that include a directory system, such as the ones providedby Hint Cache [19], Summary Cache [6], Cache Digests [18] or CRISP [8], so that caches cansend each local miss directly to the nearest cache or server that has the data. For the placementalgorithms MFUPlace, GreedyPlace, AmortPlace, and Optimal, we compute the initial dataplacement according to the algorithm under simulation, and the data remain in their initialcaches throughout the run. For the replacement algorithms LFU, LRU, GreedyDual, and Hrc-GreedyDual, we begin with empty caches, and for each request we modify the cache contents as11

Parameter Meaning Default ValueL Number of levels 3D Degree of each internal node 3� Diameter growth factor 4C Cache size percentage 20% (synthetic only)m No. of local objects per node 25 (synthetic only)r Sharing parameter 0.75 (synthetic only)PAT Access pattern Uniform (synthetic only)I Idle cache factor 1Table 4: Default system parameters.dictated by the replacement algorithm. In that case, we use an initial warm-up phase to primethe caches before gathering statistics.We parameterize the network architecture and workload along a number of axes. The pa-rameters are de�ned in detail in the following two subsections. Table 4 summarizes the defaultvalues for these parameters.3.1.1. Network architectureRecall from Section 2 that the distances between the cache nodes are completely speci�ed oncethe network-locality tree and the cluster diameters are given. We create an L-level network-locality tree with the degree of each internal node being D. The root is considered to be atlevel L and the leaves are at level zero. The cluster diameters are captured by �, the diametergrowth factor. The diameter for a cluster at level i is �i, and the cost of leaving the root clusteris �L+1.Because all objects have the same size, it su�ces to express the size of a cache in termsof the number of objects it can hold. We set all cache sizes to be the same, using a singleparameter C which is called the cache size percentage. Speci�cally, the cache size at a node isset to CM�=100, where M� is the average number of objects accessed by the node.3.1.2. WorkloadAs observed in Section 1, an important parameter for the performance of cooperative strategiesis the degree of similarity of interests among nearby nodes. At one extreme, there is totalsimilarity (all nodes access the same set of shared objects with the same frequencies) whileat the other extreme there is absolutely no similarity (each node accesses its own set of localobjects).Our synthetic workload models such sharing by creating m objects for each cluster in thenetwork. This pattern could represent a hierarchical organization where some objects are lo-cal to an individual, some to a group, some to a department, and some of organization-wide12

