Coordinated Placement and Replacement for
Large-Scale Distributed Caches *

Madhukar R. Korupolu! Michael Dahlin!

Abstract

In a large-scale information system such as a digital library or the web, a set of dis-
tributed caches can improve their effectiveness by coordinating their data placement de-
cisions. Using simulation, we examine three practical cooperative placement algorithms
including one that is provably close to optimal, and we compare these algorithms to the
optimal placement algorithm and several cooperative and non-cooperative replacement al-
gorithms. We draw five conclusions from these experiments: (1) cooperative placement
can significantly improve performance compared to local replacement algorithms particu-
larly when the size of individual caches is limited compared to the universe of objects; (2)
although the amortizing placement algorithm is only guaranteed to be within 14 times the
optimal, in practice it seems to provide an excellent approximation of the optimal; (3) in a
cooperative caching scenario, the recent greedy-dual local replacement algorithm performs
much better than the other local replacement algorithms; (4) our hierarchical-greedy-dual
replacement algorithm yields further improvements over the greedy-dual algorithm espe-
cially when there are idle caches in the system; and (5) a key challenge to coordinated
placement algorithms is generating good predictions of access patterns based on past ac-
cesses.

Keywords: Cache, cooperative, distributed, hierarchical, placement, replacement, web.

1. Introduction

Consider a large-scale distributed information system, such as a digital library or the world
wide web. Caching popular objects close to clients is a fundamental technique for improving
the performance and scalability of such a system. Caching enables requests to be satisfied by a
nearby copy and hence reduces not only the access latency but also the burden on the network

as well as the server.

!Department of Computer Science, University of Texas at Austin, Austin, TX 78712. Email:

{madhukar,dahlin}@cs.utexas.edu.
*This work was supported in part by an NSF CISE grant (CDA-9624082) and grants from Intel, Novell, and

Sun. Dahlin was also supported by an NSF CAREER grant (9733842). A preliminary version of this paper
appears in the Proceedings of the 1999 IEEE Workshop on Internet Applications, pages 62-71, July, 1999.

A powerful paradigm to improve cache effectiveness is cooperation, where caches cooperate
both in serving each other’s requests and in making storage decisions. Such cooperation is
particularly attractive in environments where machines trust one another such as within an
Internet service provider, cache service provider, or corporate intranet. In addition, cooperation
across such entities could be based on peering arrangements such as are now common for Internet
routing.

There are two orthogonal issues to cooperative caching: finding nearby copies of objects
(object location) and coordinating the caches while making storage decisions (object placement).
The object location problem has been widely studied [1, 3, 20]. Many recent studies (e.g., Sum-
mary Cache [6], Cache Digest [18], Hint Cache [19], CRISP [8] and Adaptive Web Caching [25])
also focus on the location problem, but none of these address the placement issue which is the
focus of this article.

Efficient coordinated object placement algorithms would greatly improve the effectiveness of
a given amount of cache space and are hence crucial to the performance of a cooperative caching
system. We believe that the importance of such algorithms will increase in the future as the
number of shared objects continues to grow enormously and as the Internet becomes the home
of more large multimedia objects.

In this paper we focus on the cache coordination issue and provide placement and replacement
algorithms that allow caches to coordinate storage decisions. The placement algorithms attempt
to solve the following problem: given a set of cooperating caches, the network distances between
caches, and predictions of the access rates from each cache to each object, determine where
to place each object in order to minimize the average access cost. Compared to placement
algorithms, replacement algorithms also attempt to minimize the access cost, but rather than
explicitly computing a placement based on access frequencies, they proceed by evicting objects
when cache misses occur.

Coordinated caching helps for two reasons. First, coordination allows a busy cache to utilize
a nearby idle cache [5, 7|. Second, coordination balances the improved hit time achieved by
increasing the replication of popular objects against the improved hit rate achieved by reducing
replication and storing more unique objects.

In this work, we examine an optimal placement algorithm and three practical placement
algorithms and compare them to several uncoordinated replacement algorithms (such as LFU,
LRU, greedy-dual [2, 23]) and a novel coordinated replacement algorithm. We drive this com-
parison with simulation based on both synthetic and trace workloads. The synthetic workloads
allow us to examine system behavior in a wide range of situations, and the trace allows us to
examine performance under a workload of widespread interest: web browsing.

We draw five conclusions from these experiments.

e Cooperative placement can significantly improve performance compared to local replace-

ment particularly when the size of individual caches is limited compared to the universe

of objects.

e It was established in an earlier theoretical work by Korupolu, Plaxton and Rajaraman [13]
that, under a hierarchical model for distances, the amortizing placement algorithm is al-
ways within a constant factor of the optimal. Although this earlier proof only guarantees
that the amortizing placement algorithm is within a factor of 14 of the optimal, in this
article we find that it is within 5% for a wide range of workloads. This is an important
result for two reasons. First, in systems that can generate good estimates of access fre-
quencies, amortizing placement is a practical algorithm that can be expected to provide
near-optimal performance. Second, for large-scale studies of cache coordination, amortiz-
ing placement can provide a practical “best case” baseline that can be used to evaluate
other algorithms. In addition, we find that the greedy placement algorithm, which is a
simplified version of the amortizing algorithm, also provides an excellent approximation
of the optimal even though in theory its performance can be arbitrarily worse than the

optimal.

e Previous work [2] has shown that the greedy-dual algorithm works well for stand-alone
caches. Our contribution is to examine the performance of this algorithm in cooperative
caching scenarios. We find that, for cooperative caching, it significantly outperforms other
local replacement algorithms because it includes miss costs in its replacement decisions,

thereby creating an implicit channel for coordinating the caches.

e Our hierarchical-greedy-dual replacement algorithm yields further improvements over the

greedy-dual replacement algorithm especially when there are idle caches in the system.

e A key challenge to coordinated placement algorithms is generating good predictions of

access patterns based on past accesses.

The rest of the article is organized as follows: First, Section 2 describes the algorithms we
study. Sections 3 and 4 detail our experimental results under synthetic and trace workloads,

respectively. Section 5 surveys related work, and Section 6 summarizes our conclusions.

2. Algorithms

In this section, we present several placement and replacement algorithms for coordinated caching.
We make several simplifying assumptions in order to focus on the coordination problem. One
assumption is that all the objects have the same size and are read-only. Second, we assume that
the network distances (or communication costs) between node pairs are fixed and do not change
over time. An interesting area for future work is to relax these assumptions.

In order to capture the varying degrees of locality between the nodes, we use a clustering-
based network model. This is illustrated in Figure 1 which shows a set of cooperating nodes and

a possible network-locality based clustering of these. This clustering is a natural consequence

| et A

O = O o
- O
O
O
(a) A set of cooperating caches (b) A clustering (c) The cluster tree

Figure 1: Model for network distances

of how network topologies reflect organizational and geographic realities. For example, in a
collection of universities, each node typically belongs to the department cluster which in turn
belongs to the university cluster and so on. This cluster structure can be captured using a
cluster-tree (or, a network-locality tree) as shown in the figure. The individual caches form the
leaves of this tree, and the internal nodes correspond to the clusters. A cluster C is a child of
cluster C' if C is immediately contained within C'.

Because communication between two clusters is likely to traverse the same bottleneck link
regardless of which particular nodes are conversing, we use a simple model of network distances:
each cluster has an associated diameter, and the distance between any pair of nodes is given by
the diameter of the smallest cluster that contains both of these nodes. This model is same as

the ultrametric model used by Karger et al. in [12].

2.1. Non-cooperative local algorithms

In this subsection, we outline four baseline algorithms that make all their placement or replace-

ment decisions locally without consulting any other cache.

MFU placement. The cache looks at the local access frequencies to the various objects, and

if the size of the cache is k, it stores the k most frequently used objects.

LRU replacement. When a cache miss occurs, this algorithm evicts the least recently used

object.

LFU replacement. When a cache miss occurs, this algorithm evicts the object with the least

(local) frequency of access.

Greedy-dual replacement. This is a generalization of the LRU algorithm to the case where
each object has a different fetch cost [2, 23]. The motivation behind the greedy-dual algorithm
is that the objects with larger fetch costs should stay in the cache for a longer time.

The algorithm maintains a value for each object that is currently in the cache. When an
object is fetched into the cache, its value is set to its fetch cost. When a cache miss occurs, the

object with the minimum value is evicted from the cache, and the values of all the other objects

4

in the cache are reduced by this minimum value. And if an object in the cache is accessed (or
‘touched’), then its value is restored to its fetch cost.

From an implementation point of view, it would be expensive to modify the value of each
cache object, upon each cache miss. However, this expense can be avoided by noting that it is
only the relative values, not the absolute ones, that matter [2]. In an efficient implementation,
we use an additional variable — called threshold — to track the value of the object that was last
removed from the cache. (The variable threshold is initially set to zero.) Upon a cache miss the
minimum valued object is evicted from the cache; the variable threshold is set to the value of
this object; and no other values are modified. However, when an object is touched or added, its

value is set to its fetch cost plus the threshold.

2.2. Cooperative placement algorithms

A placement assigns objects to caches without violating the cache size constraints. The cost of
a placement is defined in the natural manner: the sum over all nodes u and all objects ¥ of
the access frequency for object ¢ at node u times the distance from node u to the closest copy
of that object. The goal of a cooperative placement algorithm is to compute a placement with
minimum cost. Even though we do not explicitly minimize the network load and the server
load these would typically be low when the access cost is minimized. This is because the latter
objective would encourage objects to be stored closer to the clients, thereby reducing the load
on both the network and the server.

We study three cooperative placement algorithms. One of them is provably optimal, but
unfortunately it is impractical for scenarios with large numbers of nodes and objects. The other
two algorithms are not provably optimal, but they are much simpler and can be implemented
efficiently even in a distributed setting. Table 1 presents the notation used for describing the

placement algorithms.

2.2.1. An optimal placement algorithm

A centralized optimal algorithm for the placement problem was developed in an earlier paper [13],
using a reduction to the minimum cost flow problem. The algorithm and its proof of optimality
appear in [13], hence we do not reproduce it here. The instance of the minimum-cost flow
problem constructed by this reduction has ©(nm) vertices, where n is the number of nodes and
m is the number of objects in the system.

Since the minimum cost flow problem is computationally intensive, this optimal algorithm
incurs a high running time complexity. In particular, even the fastest known algorithm for
minimum cost flow takes at least quadratic time and hence the running time of this optimal
algorithm is at least quadratic in the product of n and m. Moreover, since the algorithm is
centralized, it requires all the frequency information to be transferred to a single node, thereby
imposing a high bandwidth requirement. These factors make this algorithm impractical for use

with large inputs, and hence our sole use for this algorithm is as a benchmark for evaluating

Input:

Set of caches and the cache sizes.

Set of objects.

Access frequencies from each cache to each object.

— Let f(u,%) denote the frequency from node u to object .

— Let f(C,v) = > ycc f(u,), denote the aggregate frequency from cluster C to
object .

Cluster tree T' with diameters for each cluster.

— Let diam(C) denote the diameter for cluster C.
— Let p(C) denote the parent of cluster C in 7.

e A maximum cost called penalty which must be paid if no cache has the object.
— Define diam(p(root)) to be penalty.
Output:
e A placement of objects among the caches.

— Represented as a set of items, where each item is a triple of the form
(objectld, cacheld, benefit).

Table 1: Notation for the placement algorithms.

other algorithms.

2.2.2. The greedy placement algorithm

This algorithm follows a natural greedy improvement paradigm, and involves a bottom-up pass
along the cluster-tree. It starts with a tentative placement in which each cache (i.e., a leaf in
the cluster-tree) picks the locally most valuable set of objects. The algorithm then proceeds up
the cluster-tree improving the placement iteratively.

In a general step, suppose we have computed the tentative placements for clusters Cy,...Cg
which constitute a larger cluster C. While computing the placement for cluster C;, the algorithm
uses the access frequency information from within that cluster only. Now at cluster C, we first
merge the tentative placements computed for subclusters C; through Cp. The placement @)
obtained by this merging is clearly a starting placement for cluster C, but it may be improved
using the information about the aggregate frequencies across different subclusters in C.

For example, there may be an object ¥ that is not chosen in any of the clusters C; through

At a leaf u

o If the size of cache at u is k, pick the k£ most frequently used objects (locally) at w.

For each such object 9, set the benefit b to f(u,) - (diam(p(u)) — diam(u)), and add
the item (1, u,b) to the local placement Q.

‘At a cluster C‘

1.

Merge. Let Q; be the placement computed for the ith child cluster of C. (We assume
that computations at the children of C, if any, were already completed.) Initialize the

placement @ to be the union of these Q;’s.

Adjust benefits. For each object ¢ that has a copy in @, pick its highest-benefit
copy (breaking ties arbitrarily), and designate it as the primary copy for . All
other copies of ¥ are secondary. Increase the benefit of the primary copy of ¢ by
f(C,)-(diam(p(C))—diam(C)). The benefits of the secondary copies are not changed.

. Value missing objects. For each @Q-missing object ¢, set value(y') to f(C,v') -

(diam(p(C)) — diam(C)). Let X be the set of all @-missing objects.

Greedy swap. Pick the highest valued object ¢’ from X, and the least benefit
item y from Q. If value(3)') is greater than the benefit(y) then swap 1’ for y and
repeat step 4. The swap step involves removing the item y from @, adding the item
(¥', cacheld(y), value(y')) to Q, and then removing ¢’ from X.

. Wind up. If C is the root cluster, then return the placement). Otherwise proceed

to the parent cluster of C.

Table 2: The greedy placement algorithm.

Cr since its access frequency within each cluster is small. But its aggregate frequency in the
larger cluster C may be large enough that the placement () can be improved by taking a copy
of object ¥ and dropping a less beneficial item — for example, an item which is replicated many
times or whose aggregate access frequency within the cluster C' is not as high. To determine
such useful swaps, we calculate a benefit for each item in) and a wvalue for each object not in
Q). (Such objects are said to be Q-missing.)

The value of a Q)-missing object is C’s aggregate access frequency for that object times the
cost of leaving the cluster C to fetch that object. The latter quantity is the difference between
the diameter of the parent cluster of C and that of the cluster C itself.

The benefit of an item z in placement (), on the other hand, corresponds to the increase in
the cost of the placement when the item x is dropped. Benefits are computed in a bottom-up
manner. Each subcluster C; calculates a local benefit for each item in its placement. After the
merge step, the parent cluster C updates the benefits as follows. For each object that has one
or more copies in (), we pick the copy with the highest local benefit as the primary copy, and
call all other copies as secondary copies. The benefits of the secondary copies are not changed,
but the benefit of the primary copy is increased by C’s aggregate access frequency to the object
times the cost of leaving the cluster C. The intuition is that among all the copies of an object,
the primary copy will be the last one to be removed from @, and its removal will increase the
cost of the placement by the above amount.

Once the benefits and values have been computed, we use a simple greedy swapping phase
to improve the placement). While there is a ()-missing object ¢ whose value is more than
the least beneficial item x in @), we remove z from) and substitute a copy of ¥. This phase
terminates when the benefit of each item in () is higher than the value of each ()-missing object.

This swapping phase concludes the computation for cluster C, and the algorithm proceeds
to the parent cluster of C iteratively.

In fact, the presentation of this algorithm in [13] involves two passes through the network
locality tree: a bottom-up pass that computes a pseudo-placement, and a top-down pass that
refines this pseudo-placement to a placement. However, we note that the notion of pseudo-
placement was essential only for proving the performance guarantees but not for correctness.
Hence, here we gave an equivalent one-pass description avoiding the notion of pseudo-placement
and highlighting the ease of implementation. Table 2 summarizes this simpler one-pass descrip-
tion by giving separate pseudocodes for the leaf computations and the internal node computa-
tions.

Although this greedy algorithm looks simple and promising, it is shown in [13] that its
worst-case performance can be arbitrarily far from the optimal. However, we conjecture that

such worst-case examples occur rarely and that the algorithm would perform well in practice.

At a leaf u

e Same as in the greedy algorithm, except that we also set the potential ¢ to zero.

| At a cluster C|

1. Merge. Same as in the greedy algorithm, except that we also initialize the potential

¢ to the sum of the potentials ¢1, ... ¢, computed by the children of u.
2. Adjust benefits. Same as in the greedy algorithm.

3. Value missing objects. Same as in the greedy algorithm, except that we also

initialize A to the sum of the values of all the @-missing objects.

4. Amortized swap. Similar to the greedy swap, except that the potential ¢ is used

to reduce the benefits of certain secondary items.

(a) Pick the highest valued (Q-missing) object ¥’ from X, and the least benefit

primary and secondary items (y, and y, respectively) from Q.

(b) If value(y)') > min(benefit(yp), benefit(y;) — ¢), then depending on which of the
latter two terms is smaller perform one of the following two swap operations

and then repeat step (4).
o If benefit(yp,) < benefit(ys) — ¢, then swap ¢’ for y, and adjust A.

The swap step involves removing the item y, from @, adding the item
(¢, cacheld(yp), value(y)')) to @, and then removing ¢’ from X. The vari-
able A is set to A — value(¢') + benefit(yp).

e Otherwise, swap ' for y,, reduce the potential ¢, and adjust variable A.
As before, the swap step involves removing the item y, from @), adding the
item (¢, cacheld(ys), value(y)')) to @, and then removing ' from X. The

potential ¢ is set to max(0,¢ — benefit(y,)) while the variable A is set to
A — value(y").

5. Update potential. Add A to ¢.

6. Wind up. If C is the root cluster, then return the placement). Otherwise proceed

to the parent cluster of C.

Table 3: The amortizing placement algorithm.

2.2.3. The amortizing placement algorithm

The worst-case analysis indicates that a drawback of the greedy algorithm is the following: A
single secondary copy of some object may prevent the swapping in of several missing objects,
one at each level of the cluster tree. Though the benefit of the secondary copy is larger than
the value of each such missing object, on the whole it might be much less than the sum of all
these values put together.

To circumvent this problem, the greedy algorithm is augmented with an amortization step
using a potential function. The potential function accumulates the values of all the missing
objects, and the accumulated potential is then used to reduce the benefits of certain secondary
items thereby accelerating their removal from the placement. Table 3 summarizes this improved
algorithm.

It is proved in [13] that the above amortizing placement algorithm is always within a constant
factor of the optimal. The constant factor is about 13.93. However, this factor is still large for
practical purposes. We conjecture that, in practice, this algorithm will be much closer to the
optimal.

Note that the above description of the greedy and the amortizing placement algorithms is
still centralized. For example, all the computation at the last level of recursion is performed at
the single node corresponding to the root of the network-locality tree. This induces a centralized
bottleneck at this node. However, such bottlenecks can be avoided by mapping the computation
of each internal node to the leaves in its subtree in a load-balanced manner. For details about

such a scalable distributed implementation, please see [13].

2.3. A cooperative replacement algorithm

Our experiments in Section 3 show that, in a cooperative scenario, the greedy-dual algorithm
performs much better than the other local replacement algorithms. This is because even though
the greedy-dual algorithm makes entirely local decisions, its value structure enables some implicit
coordination with other caches. In particular, an object that is fetched from a nearby cache
has a smaller value than an object that is fetched from afar. Hence the former object would
be evicted from the cache first, thus reducing unnecessary replication among nearby caches.
However, this limited degree of coordination does not exploit all the benefits of cooperation.
For example, the idle caches are not exploited by nearby busy caches.

Hence we devise hierarchical-greedy-dual, a cooperative replacement algorithm that not only
preserves the implicit coordination offered by greedy-dual but also enables busy caches to utilize
nearby idle caches.

In this algorithm, each individual cache runs the local greedy-dual algorithm using the ef-
ficient implementation described in Section 2.1. Recall that the local greedy-dual algorithm
maintains a value for each object in the cache, and upon a cache miss, it evicts the object with
the minimum value. In our hierarchical generalization, the evicted object is then “passed up”

to the parent cluster for possible inclusion in one of its caches. When a cluster C receives an

10

evicted object ¥ from one of its child clusters, it first checks to see if there is any other copy of
1 among its caches. If not, it picks the minimum valued object ¥’ among all the objects cached
in C. Then the following simple admission control test is used to determine if 9 should replace
', If the copy of 1 was used more recently than the copy of ¥', then v replaces ¢’ and the new
evicted object 9 is recursively passed on to the parent cluster of C. Otherwise, the object 9
itself is recursively passed on to the parent cluster of C.

From our experiments, we learned that the particular admission control test described above
is crucial for obtaining good performance. This is because an important purpose of the admission
control test is to prevent rarely-accessed objects from jumping from cache to cache without ever
leaving the system. Such objects typically have a high fetch cost since no other (nearby) cache
stores them, and hence any fetch-cost based admission control test would repeatedly reinsert such
objects even after they are evicted by individual caches. This can result in worse performance
than even the local greedy-dual algorithm. We avoid this problem by maintaining a last-use
timestamp on every object in the cache. With this timestamp based admission control strategy,
rarely used objects are eventually released from the system.

For a practical implementation, algorithm would use data-location directories [6, 8, 18, 19] to
determine if other copies exist in the subtree, and would use randomized [5] or deterministic [7]

strategies to approximate the selection of .

3. Performance evaluation on synthetic workloads

This section explores the performance of the above algorithms under a range of synthetic work-
loads. These workloads allow us to explore a broader range of system behavior than trace
workloads. In addition, because the synthetic workloads are small enough be tractable under
the optimal algorithm, we can compare our algorithms to the optimal placement.

This section first describes our methodology in detail and then shows the results of our
experiments. These results support the first four conclusions listed in Section 1. For the sake
of brevity and for ease of reference, throughout the rest of this article, we use the phrase
GreedyPlace (resp., AmortPlace, MFUPlace, GreedyDual, HrcGreedyDual) as a shorthand for
the greedy placement (resp., amortizing placement, MFU placement, greedy-dual, hierarchical-

greedy-dual) algorithm.

3.1. Methodology

We simulate a collection of caches that include a directory system, such as the ones provided
by Hint Cache [19], Summary Cache [6], Cache Digests [18] or CRISP [8], so that caches can
send each local miss directly to the nearest cache or server that has the data. For the placement
algorithms MFUPlace, GreedyPlace, AmortPlace, and Optimal, we compute the initial data
placement according to the algorithm under simulation, and the data remain in their initial
caches throughout the run. For the replacement algorithms LFU, LRU, GreedyDual, and Hrc-

GreedyDual, we begin with empty caches, and for each request we modify the cache contents as

11

Parameter | Meaning Default Value

L Number of levels 3

D Degree of each internal node 3

A Diameter growth factor 4

C Cache size percentage 20% (synthetic only)
m No. of local objects per node 25 (synthetic only)

T Sharing parameter 0.75 (synthetic only)
PAT Access pattern Uniform (synthetic only)
I Idle cache factor 1

Table 4: Default system parameters.

dictated by the replacement algorithm. In that case, we use an initial warm-up phase to prime
the caches before gathering statistics.

We parameterize the network architecture and workload along a number of axes. The pa-
rameters are defined in detail in the following two subsections. Table 4 summarizes the default

values for these parameters.

3.1.1. Network architecture

Recall from Section 2 that the distances between the cache nodes are completely specified once
the network-locality tree and the cluster diameters are given. We create an L-level network-
locality tree with the degree of each internal node being D. The root is considered to be at
level L and the leaves are at level zero. The cluster diameters are captured by A, the diameter
growth factor. The diameter for a cluster at level 7 is A\, and the cost of leaving the root cluster
is AL+

Because all objects have the same size, it suffices to express the size of a cache in terms
of the number of objects it can hold. We set all cache sizes to be the same, using a single
parameter C which is called the cache size percentage. Specifically, the cache size at a node is

set to C'M*/100, where M* is the average number of objects accessed by the node.

3.1.2. Workload

As observed in Section 1, an important parameter for the performance of cooperative strategies
is the degree of similarity of interests among nearby nodes. At one extreme, there is total
similarity (all nodes access the same set of shared objects with the same frequencies) while
at the other extreme there is absolutely no similarity (each node accesses its own set of local
objects).

Our synthetic workload models such sharing by creating m objects for each cluster in the
network. This pattern could represent a hierarchical organization where some objects are lo-

cal to an individual, some to a group, some to a department, and some of organization-wide

12

