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Abstract

Communication induced checkpointing (CIC) is aeswyf rollback-recovery which allows processes tistributed
computation to take independent checkpoints witlsogteptibility to the domino effect. This stylerecovery has
been subject to an increasing interest lately nimgt of the work done is algorithmic in nature.isTipaper presents
an analysis of CIC protocols based on a prototyg@eémentation and validated simulations. For thpliaations
we studied, our results show that:

1. CIC protocols do not scale well as the number otesses increases.

2. The occurrence of forced checkpoints at randomtpaiithin the execution makes it very difficult poedict
the required amount of stable storage for a pdaticapplication run. Also, this unpredictabilityfects the
policy for placing local checkpoints and makes @IGtocols cumbersome to use in reality.

3. The benefit of autonomy in allowing processes ke tmcal checkpoints at their convenience doessaem to
hold. In all experiments, a process takes at kgése as many forced checkpoints as local, autangnones.

4. Within the class of CIC protocols, those that us®tstamping functions to delay taking a forcedotipeint to
the extent possible seem to work better than poidéabat inspect the communication and checkpaattepns
and prevent Z-cycles from forming by taking foradeckpoints as soon as possible.

5. A successful implementation of CIC requires a dyigacheckpoint placement policy for local checkpsittiat
adapts to the occurrence of forced checkpointsthaedvariations in the application communicationteraus.
Simple or static policies such as taking checkpo@tregular intervals do not seem to work well.

6. CIC protocols in general seem to work better fauagions where the communication load is low angl th
communication pattern is random. Regular, or hdaag communications make these protocols trigger t
many forced checkpoints.

We would like to stress that the results are omljdvfor the application set that we have studemt] we lay no
claim that these results would generalize to ajpliaptions. Nevertheless, we believe that theresuficient
evidence to suspect that much of the conventiomadam about these protocols is questionable.
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1. Introduction
There are three styles for implementing application-transpaoibaick-recovery in message-

passing systems, namely coordinated checkpointing, message logging, amadndcation-
induced checkpointing (CIC) [5]. Both coordinated checkpointing and messggied have
received considerable analysis in the literature [4,6,11,14,17,18,20,21,24,28], big ktttavn
about the behavior of CIC protocols. This paper presents an expeliraealgsis of these
protocols through a prototype implementation and reveals several of thie@iretical and
pragmatic characteristics.

CIC protocols are not new. The paper by Briatico et al. wasapsrthe first to describe this
style of checkpointing back in 1984 [2]. Other papers have describetior@s over their
protocol [9,13,26], or used some protocol features to simplify the impletiwentd coordinated
checkpointing [6,25]. Recently, CIC protocols have attracted an siogeanterest in the
research community, with new sophisticated protocols based on thé Zhpaty [16]. But to
our knowledge, there are no published implementation or evaluation reports of CIC.

CIC protocols piggyback special information on application messagaesnage the failure-free
operation of the processes in a distributed computation. This infonrelows the processes to
take independent checkpoints without exchanging explicit control messagasure that their
checkpoints form consistent states [3]. Furthermore, this information grtttegbrocesses from
the domino effect [22] should one or more of them fail. CIC protocelsheerefore believed to
have several advantages over other styles of rollback-recovEoyr. instance, they allow
processes considerable autonomy in deciding on when to take checkpoimtscess can thus
take a checkpoint at times when saving the state would incuath everhead [12,19]. CIC
protocols also are believed to scale up well with a larger nuofg@ocesses since they do not
require the processes to participate in a global checkpoint. Betitha price to pay for these
advantages. First, the protocol-specific information piggybackedapgplication messages
occasionally “induce” the processes to tdkeced checkpoints before they can process the
messages. Second, processes have to pay the overhead of piggybdokmation on top of
application messages, and they also need to keep several checikpastable storage. These
advantages and disadvantages are clearly qualitative and poteartjaible. A purpose of our
work is to shed some light on these issues using quantitative metrics drawn &ainsystem.



To this end, we have implemented three CIC protocols and studied theividmle These
protocols are the original one by Briatico et al [2], and twemeprotocols based on the Z-cycle
framework [1,8]. These two protocols differ in the theoretical @ggr that they adopt to
implement CIC. Generally, one can derive a CIC protocol by diegjga function that
associates a timestamp with each checkpoint, such that thdahmpssincrease in a manner
consistent with the causal order of the checkpoints [10]. Equivalemity,can derive a CIC
protocol by designing a way to prevent the occurrence of Z-cydisary et al. have proved
that the two methods are equivalent [7]. That is, for every ahgorid prevent Z-cycles there is
an equivalent time stamping function, and vice versa. Again, it is not cleaavehthie tradeoffs
involved in choosing either approach. We have therefore selectqesartative from each
style: the protocol by Hélary et al uses a time stampimgtfon [8], while the protocol by
Baldoni et al uses an algorithm to predict and prevent the formation of Z-§jtles

We examine the performance of the three protocols using twdcsyehamely the average
number of forced checkpoints a protocol causes, in addition to the traditiomang time
performance. The first metric is important because forcedkgoints negate the autonomy
advantage of CIC protocols. Also, they contribute substantiallyetpérformance and resource
overheads. A good CIC protocol therefore tries to limit theseedooheckpoints to the extent
possible. The experiments use four compute-intensive programsHeoMPB 2.3 benchmark
suite [15], which is a representative of a class of applicatimishave traditionally been the
primary users of checkpointing protocols. We then use the implemoentatpart to validate a
simulation model that we built to further study the scalability of tléopols and their behaviors
under different communication patterns.

Our results reveal several important properties of CIC pratoeosld highlight several
implementation and theoretical issues that were not addressed litetature. But we would
like to state unequivocally that while our study reports intergsesults, by no means we are
trying to make any sweeping conclusions based on it. We hope thabduwill be a first step
in investigating an area that thus far has been only subject to theoretiaatihese

The organization of this paper has a brief coverage of the threecgotin Section 2, a
description of implementation issues in Section 3, and the perfornsndg in Section 4.

Section 5 contains a brief comparison to similar work and Section 6 concludes the paper.



2. Background
This section reviews the three protocols used in the experiméonsg, &with some necessary

definitions. The description is inevitably terse and covers onlyahtirfes necessary to follow
the experimental work described later. The interested readewisl to consult the references
for full details. Readers familiar with the Z-path theory dadise in CIC protocols may wish to

move directly to Section 3.

2.1 Definitions
Local checkpoints: A process may takeal checkpoint any time during the execution. The

local checkpoints of different processes a@ coordinated to form a global consistent
checkpoint [3].
Forced checkpoints: To guard against the domino effect, a CIC prgiggybacks protocol-

specific information to application messages that processémmye. Each process examines
the information, and occasionally, is forced to take a checkpoint according to the protocol

Useless checkpoints: A useless checkpoint of a process is onélitim@ver be part of a global

consistent state [27]. In Figure 1, checkpd@ptis an example of a useless checkpoint. Useless
checkpoints are not desirable because they do not contribute to the yeafotrer system from
failures, while consume resources and cause performance overhead.

Checkpoint intervals: A checkpoint interval is the sequence of elletieen two consecutive

checkpoints in the execution of a process.
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Figure 1: A distributed computatiorC;; denotes th@" checkpoint of process.



2.2 Z-paths and Z-cycles
Z-paths: A Z-path (zigzag path) is a special sequence edsages that connects two

checkpoints. Le§ denote Lamports happen-before relation [10]. Given two local chetispoi
Cim and G, a Z-path exists betweed n and Cj, if and only if one of the following two
conditions holds:
1. m<nandi=j;or
2. There exists a sequence of messaggsi,..., m], zu 0, such that:

(@) Cim & sendi(mo);

(b) ... | < z eitherdelivery(m) and sendi(m.1) are in the same checkpoint interval, or

delivery(m) & sendy(m.1); and

(c) deliverj(my) & Gjn
wheresend; anddeliver; are communication events executed by propestn Figure 1, ffng, ny]
and jn,, mg] are examples of Z-paths.
Z-cycles: AZ-cycleis a Z-path that begins and ends with the same checkpoint. In Eiglne
Z-path jny, my, mg] is a Z-cycle that involves checkpoi@ ».

2.3 Z-cycles and CIC
CIC protocols do not take useless checkpoints. These protocols rectigatizhe creation of

useless checkpoints depends on the occurrence of specific pattemubicim processes
communicate and take checkpoints [7]. Informally, these protocalsgmeze potentially
dangerous patterns, and they break them before they occur. This intuition hésieéred in
an elegant theory based on the notion Z-cycles. A key restiisitheory is that in order for a
local checkpoint to be useless it has to be involved in a Z-cycle [7Hd&jce, to avoid useless
checkpoints it is sufficient to guarantee that no Z-path ever becanZecycle. Enforcing the
no-Z-cycle (\\ZC) condition may require that a process save additional forced chetkpoi
addition to the local checkpoints taken on its own initiative.

There are two approaches to avoiding Z-cycles. The first agipragaes a function that
associates a timestamp with each checkpoint. The protocol ngeesa through forced
checkpoints if necessary, tha} if there are two checkpoints; ,, and C;, such thatCi, & Cjn
then ts(Cj)) = ts(Ci), wherets(C) is the timestamp associated with checkpdntand (i)

consecutive local checkpoints of a process have increasing timestamps.



The second approach relies instead on preventing the formation oficspda&tkpoint and
communication patterns that may lead to the creation of a Z-cyRtetocols that follow this
approach do not adopt a specific function for associating timestawtphs checkpoints.
However, for protocols that follow this approach, there alwaystexas equivalent time
stamping function that would cause the same forced checkpoints [7].

Of the three protocols that we study in this paper, the first two adopt the first @pprbéle the
third is an instance of the second approach. We briefly review them below.

2.4 The Protocol by Briatico, Ciuffoletti and Simoncini (BCS)
In BCS, each procegs maintains a logical cloclc; that functions ag;’s checkpoint timestamp.

The timestamp is an integer variable with initial valuan@ is incremented according to the
following function:
1. Igincreases by 1 whenevartakes a local checkpoint.
2. pi piggybacks on every messaget sends a copy of the current value@f We denote the
piggybacked value as.lc.
3. Whenevep; receives a message it comparedc; with m.lc. If m.c > Ic;, thenp; setslc to
the value oin.Ic and takes a forced checkpoint before it can process the message.
The set of checkpoints having the same timestamps in differecegses is guaranteed to be a
consistent state. Therefore, this protocol guarantees that itheakvays a recovery line

corresponding to the lowest timestamp in the system, and the domino effect cannot happen.

2.5 The Protocol by Hélary, Mostefaoui, Netzer and Raynal (HMNR)
The HMNR protocol uses the observation that if checkpoints’ timgstatways increase along

a Z-path (as opposed as simply non-decreasing, as required by abbeye), then no Z-cycle

can ever form. It is thus possible to design functions that takentadpaof this observation.

Hélary et al start with the following simple scheme whicbhuld require each process to

maintain a logical clock, as in BCS, and to apply the following rules:

1. lg increases by 1 whenevgrtakes a locabr forced checkpoint.

2. Whenevelp; sends a message it piggybacks oim a copy oflc;, and we denote this value
by m.Ic as before.

3. Whenevep receives a message it comparedc; with m.lc. If m.c > Ic;, thenp; setslc to

the value ofn.lc.
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Figure 2: To checkpoint or not to checkpoint?

Then, they refine the protocol using more sophisticated observatiomecandng that processes
append more information. Figure 2, adapted from [8], shows how this stimpstamp
function can be used to decide when to take a checkpoint.ts(o@t denote the timestamp
piggybacked on message. When proces@; receives messagey, if ts(mg) < ts(my) then
certainly ts(Co o) < t5(C,1) and there is no need for a forced checkpoint.ts(ify) > ts(m),
however, deliveringmy may create the possibility of generating a Z-path along whieh t
timestamps do not increase. A straightforward way to avoidrigkisis to forcep; to take a
checkpoint before deliveringy, thereby breaking the Z-path.

It may be possible, however, fgq to avoid taking a forced checkpoint by using a more
sophisticated timestamp function. For instance, a function that @igkybon application
messages information about the logical clocks of all processgsgma processp; more
information to decide if a forced checkpoint is really necesskryigure 2 (b), ifo; knows that
the value ofp,’s local clock is at least when it is about to delivem,, then even ifts(imy) >
ts(my), p1 does not need to take a forced checkpoits @y o) < ts(my) < X < t5(C3,1).

HNMR uses this observation and more sophisticated ones to reducwirtieer of forced
checkpoints while still ensuring that the timestamps alwaysase along a Z-path [8]. They in
fact present several CIC algorithms. For our experiments, we Used the most sophisticated

one, which reduces as much as possible the number of forced checkpoints.



2.6 The Protocol by Baldoni, Quaglia and Ciciani (BQC)
The BQC protocol does not prevent forced checkpoints by using arciefpfiction to time

stamp checkpoints [1]. Rather, this protocol enforges by preventing the formation of
patterns of checkpoints and communication tmay result in the creation of a Z-cycle. In

particular, BQC prevents the creationso$pected Z-cycles.
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Figure 3: A suspect Z-cycle involving checkpoi@

Figure 3 shows the structure of a suspected Z-cycle. Irexlais\ple, procesg would take a
checkpoint before delivering messagg in order to avoid a potential Z-cycle that includes
andmy and involves checkpoirtly ;. Note that a suspected Z-cycle is not necessarily a 2-cycl
For instance, there is no Z-cycle in Figure 3 unless thereastaal Z-path starting withny, and
ending withmy, betweenC;o andCp 1. This information may or may not be available to process
pi when it receivesn,. If the information is not available, the protocol opts for sadety takes a
forced checkpoint before delivering. If the information is available, however, the protocol
refrains from taking a forced checkpoint. The actual protocol peipsag’ values on each
application message to help processes detect suspected Z-aydlsuppress them using forced
checkpoints [1]. The reference also contains a formal chamatten of the notion of suspected

Z-cycle and a proof that a protocol that prevents suspected Z-cycle @fes@iZzC) [1].



3. Implementation Issues
An implementation of CIC must deal with several pragmatueisshat are typically left out of

protocol specifications. We describe how we resolved these issues in our impliementa

3.1 Autonomy in Local Checkpoints
A stated advantages of CIC protocols is that they prevent the doniew wehile allowing

processes considerable autonomy in deciding when to take local chiskpdin efficient
implementation of CIC must therefore adopt a checkpointing policyettidoits this autonomy
and translates it into a benefit. In general, this requires awudetstanding of the application
and of the execution environment. For example, detailed knowledges apghlication may
allow processes to take checkpoints when the size of the live variables i§12yil].

In our study, we have chosen a set of compute-intensive, long-runpptigadions that have
traditionally been the main beneficiary of checkpointing protoctige have found that either
the complexity of the application program precludes investingftbe & defining a reasonable
checkpoint placement policy, or that the application structure doe®veslrpoints within the
execution where taking a checkpoint is more advantageous than othezsefoidy we have
resolved to use a probabilistic distribution to emulate what an autonapplisation would do
in deciding on where to place the local checkpoints. In addition, ave klso used the
traditional policy of taking checkpoints at regular intervals. Tiselte were identical in both
cases, and in fact the decision of how to take local checkpoinesdtaut to have no effect on
the results of our study. Indeed, one of the first conclusions tleatreached in our
implementation is that even with a deep understanding of the appigatructure, no policy
for taking local checkpoints can reasonably be adopted without congideée effect of the
forced checkpoints that occur because of communication events. For exameleymagmalysis
may decide on the execution points during which it is most “conventenschedule local
checkpoints within a particular process. But if this policy igntmedorced checkpoints, then it
is possible to schedule a local checkpoint immediately afterc@d checkpoint. In this case,
taking the local checkpoint will result in additional work and overheath mo substantial
reduction of the amount of work at risk. A more reasonable decisigrthea be to postpone
taking the local checkpoint. In any case, the autonomy of decidieg tdhtake checkpoints
seems to be limited by the occurrence of forced checkpoints dudetadtions with other

processes.



3.2 Non-blocking Checkpointing in CIC
The benefits of non-blocking checkpointing in reducing the performance awgkerbé

checkpointing protocols have been clearly established [6,14,20]. Non-blodi@cgpointing
allows the application to resume computation as soon as possible aclietule the actual
writing of the checkpoint concurrently with the application executiohe fesult is that saving
the checkpoint to stable storage does not become a bottleneck that isypeltsgion progress.
However, using non-blocking checkpointing in CIC introduces potential in¢ensiss with the
specification of the protocols. To understand why, consider the situatiere a process
takes a non-blocking checkpoint (local or forced) and then sends agess® another process
p;; assume furthermore that the CIC protocol being used reqyitedake a forced checkpoint
before deliveringn. Recall that all CIC protocols maintain the invariant that reycdes may
form and no useless checkpoint is ever taken: hence, the forced checkjppstiould never be
useless and no Z-cycles can include it. However, supposg thas after sendingn, but before
pi's checkpoint has been entirely written to stable storage. Theefaf p; makes the checkpoint
taken byp; useless, thereby violating the protocol invariant.

The problem is not just cosmetic, because several such communicedige may occur while
several non-blocking checkpoints are being written to stable stoaagerding to an
implementation of non-blocking checkpointing. Therefore, it may be pes$dyl many
checkpoints on stable storage to be rendered useless because afaluree process in the
system occurred before one or more of its checkpoints werd savstable storage. Indeed, in
situations like this, Z-cycles do form and useless checkpoints are taken.

There are two solutions to this problem. The first one blocks anyiogtgnessages from a
process until all its non-blocking checkpoints have been written itesgtorage. The messages
are buffered and released only when a process receives notificatiothe checkpointing agent
that the checkpoint has been saved. There is a penalty to pdysfonddification, but it is
preferable to disallowing non-blocking checkpointing altogetheris ibteresting to note here
that this solution shows how a pragmatic consideration may requimedification in the
protocol itself to maintain its invariant.

The second solution that we considered is to simply allow thegmtany Z-cycles to form, and
hope that the checkpoints will be written before a failure acteaiturs. In a sense, this is an

optimistic implementation of CIC, which may allow Z-cyclesféom temporarily while some

-10 -



checkpoints are being written to stable storage. If the opitmassumption holds, then the
invariant of the protocol is preserved and no useless checkpoints atakere However, if the
assumption is violated because of a failure, then some of the checkp@ihteould have
otherwise be part of the recovery line will have to be discardeéhe benefit of this optimistic
alternative is that the overhead is small and does not requinm@dhfication to the protocol as
specified. After an interesting debate among the authors,sitresolved to use the second
solution for its simplicity and because failures are supposedly raris important however for
future implementers to understand the subtle issues involved with tigengira choices

described here and how they may affect the protocol implementation.

4. Experiments and Analysis
The testbed for this study consists of four 300-MHz Pentium-Bdasrkstations connected by

a 100MB/s Ethernet. Each workstation has two processors, 512MB of, BAd/la 4GB disk
used to implement stable storage. The machines ran Solaris 2.6,eah&wss 77 and C
compilers. The testbed is part of the Egida tool [23], which inclgdpport for incremental
checkpointing and implements non-blocking checkpointing by forking ofiild process that
writes the checkpoint to stable storage. The applications under atndist of four programs
from the NPB 2.3 benchmark suite [15]. These programs represemiactoomputational
loads in fluid dynamics applications and typify the type of appbaatithat have traditionally

benefited from checkpointing; their characteristics are given in Table 1.

Application NPB Specific Info Per-Process Avg. Message Rate Exec. Time
Messages/sec KB/sec (sec)
BT Class A, 200 iterations 7 352.3 1554
CG Class B, 75 iterations 15 752.0 1508
LU Class A, 250 iterations 64 233.9 1018
SP Class A, 400 iterations 17 738.8 1350

Table 1: Characteristics of the benchmarks used in the @rpeis.
The performance metrics we report are the number of foraatkpbints that a protocol causes
and the performance overhead. We use a combination of experiments @notibtype
implementation, and then we use the prototype itself to validaienaator that we built to

further study CIC protocol under different communication patterns and environments.
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4.1 The Measured Performance of CIC Protocols
The first set of experiments consists of running each of thedpplications under the three

protocols and for two local checkpoint placement policies. The piodty triggers local
checkpoints according to an exponential distribution with a mean checkpieiral (1) set to
360 seconds, while the second policy uses the same probabilistic dstribut with the mean
checkpoint interval set to 480 seconds. Table 2 shows the resultsexiptrements. It reports
the execution time of the entire application, in addition to the peepsoaverage number of
local and forced checkpoints. For convenience, the average per-protassumber of
checkpoints is also reported. The table also reports the per-p@omsgie checkpoint size

(either local or forced).

L Number of Checkpoints : Exec. Time
Application | Protocol o Local Forced Total Avg. Ckp. Size (MB) (sec.)
aes 360 6 15 21 69.1 2181
480 4 10 14 70.2 2203
360 6 14 20 69.2 2190
BT HMNR 750 4 9 13 70.2 2187
S0 360 6 63 70 39.2 2400
Q 2480 4 a1 45 22.4 2298
acs 360 5 11 16 141 1667
480 4 9 13 175 1672
360 5 12 17 13.7 1634
CG HMNR 750 4 9 13 175 1613
S0 360 5 24 29 8.6 1752
Q 280 4 19 23 10.7 1720
acs 360 4 10 14 11.0 1150
480 3 6 9 11.2 1161
360 4 10 14 10.8 1147
LU HMNR 750 3 6 9 11.2 1175
360 4 34 38 5.7 1284
BQC 2480 3 17 20 6.9 1253
acs 360 5 11 16 21.0 1572
480 4 9 13 21.5 1583
360 5 11 16 20.8 1574
SP HMNR 750 4 9 13 21.5 1585
S0 360 5 43 28 11.6 1615
Q 480 4 33 37 11.0 1601

Table 2: Performance of three CIC protocols for two checkpuitervals and four applications.
Analysis: The results reveal a few issues. In BCS and HMNR, the number of forced chexkpoint

is essentially the same. In contrast, the BQC protocol is shawwoegnparatively larger number
of forced checkpoints when compared to the other two. To understand sba feathis, we
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examined the protocol behavior of BQC to see what is the cause of this anomatgaSdrecan

be ascribed to the communication pattern of the applications under stnege dpplications use

a common iterative structure to solve a computationally intensivegonolsl which processes

exchange partial results and resume. This leads to a communipatienn that mimics a

periodic broadcast. Under this pattern, the BQC protocol seemsado beager” in preventing

Z-cycles compared to BCS and HMNR, and also it seems that two situations occur:

1. Many suspected Z-cycles end up causing forced checkpoints withawglhadbeing a
menace.

2. It is often the case that more than one process “voluntagpéarallel to break the same
suspected Z-cycle by forcing checkpoints.

Consider Figure 4. In this example, we see propedske a forced checkpoint because of

messagers; not knowing that procegs has already broken the suspected Z-cycle (part (2) of

the figure). Similarly, proceg® takes a forced checkpoint because of messageot knowing

that procesp; has already broken the Z-cycle using checkp@int The pattern continues for a

while under the communication pattern used by the application.
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Figure 4: Anomalies in detecting suspect Z-cycles
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This result suggests that there is a disadvantage to using GiGtqis that use suspected Z-
cycles, or ones that are eager to prevent a Z-cycle fromrfgrbefore it is actually clear that
one is indeed forming. In contrast, protocols that use the timeistgiunctions seem to adopt
a lazy approach, preventing a Z-cycle from forming at the fasment that is possible, and
therefore work better.

Additionally, the results show that the stated benefit of processn@amy in placing local
checkpoints does not materialize in practice. Under the besihgtances, a process takes as
twice as many forced checkpoints as local ones. The curious mftimocess autonomy in
distributed systems where all processes become inter-dependent seems to kg groghd.

The results also point out to another serious problem with CIC protocgksneral, which is
unpredictability of the checkpointing rate. In all experiments,pite#ocols ended up taking
more checkpoints than could be anticipated based on the local distributionedktpoint
placement. For BCS and HMNR, the number of forced checkpoints wasatjg twice as
many as the number of local ones. For BQC, the ratio was worse. The ratid is @dehction
of the application, the number of processes, and the checkpoint placefmenfact that it is
unpredictable makes the protocols cumbersome to use in practieeseetis difficult to plan
ahead of time the actual stable storage requirements and the aneekpointing interval.
Contrast this with consistent checkpointing protocols where the nuaibeneckpoints and
required stable storage can be estimated with great certainty befor6hand |

The table also points to another negative aspect of using @it0Bcpls. The performance
overhead when considering the running time was relatively badingalsetween 5 to 40% of
the execution time. This anomaly is actually common in systemese the checkpoints are not
coordinated and the processes communicate frequently [6]. In ihestos, when a process
takes a local checkpoint independent of the others, it inevitably slows due to the state
saving and memory copying that occur during the checkpoint. Thusnrdelays the production
of the expected partial result that the process will send tosothethe next communication
round. As a result, the slowdown affects other processes a®weellif they are not taking
checkpoints in the meantime. The resulting slowdowns stagger qaiclyrave a cumulative
effects because of having many of these independent checkpoints occurringrentiiines [6].
Finally, we would like to note that incremental checkpointing seimsitigate some of the
effects of having to take so many checkpoints (forced or locahe résults show that the
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average per-process checkpoint size goes down as the frequency of checkpuirdeses. This
is an expected result.

In summary, lazy protocols for breaking Z-cycles based on tiemepsng are shown to perform
better than eager protocols that take forced checkpoints as stwyasispect a Z-cycle. The
unpredictability of the actual number of checkpoints to be takenedoand local) make these
protocols cumbersome to use in practice because no reasonable planmespuwtes and
checkpointing frequency can be made without understanding the applicatidn its
communication patterns. Also, it seems that any notion of a behefibwing the processes to
take independent checkpoints is thwarted by the fact that a pe@ssip taking at least twice
as many forced checkpoints than local ones. And finally, CIC pretcdwre some of the
negative performance properties of independent checkpointing when usedoutaioons where

the processes are tightly coupled and communicate frequently.

4.2 Scalability and Effects of Communication Patterns
To measure the effect of increasing the number of processt® grotocol performance, we

constructed a simulator to measure the number of forced checkpoingadh of the three
protocols. We validated the simulator using the measured number edl foheckpoints for 4
processes. We then used the simulator to estimate the numbecexd fdreckpoints under

different numbers of processors and different communication patterns.
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Figure 5: Effect of communication patterns and number of pssors on CIC protocols.

Figure 5 shows the results for the three protocols with varyiaghumber of processes in the
computation. Two different sets of measurements are reportedjrghes for a random

distribution of messages with a relatively low load, where @acbess sends an average of 10
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messages between each two consecutive local checkpoints. That issspsoao not
communicate much in this simulation and communicate with differentepses equally at
random and at random intervals. During that simulation, 119 local chetkpegre taken on
average. The second set of measurements show the same reswut#hbat different

communication pattern in which each process talks to two designaigidbars at uniform
intervals. A process sends about 500 messages between each two eneealictheckpoints.
This communication pattern is representative of those that ocaistibuted over-relaxation

algorithms.

Analysis: The results show that in general, the communication pattern straffglgts the
behavior of the CIC protocols. This is expected. But the redstisshow that CIC protocols do
not scale very well. In both cases, there is an almost lineegase in the number of forced
checkpoints per process as the number of processes increasehisFsmt tof applications, at
least, it is clear that the conventional wisdom that these pretscale better because they do
not resort to global coordination is not true. The results also shovCliBaprotocols seem to
favor random patterns of communications with low loads.

4.3 An Adaptive Local Checkpointing Policy

The results of the experiments so far suggest that a tififoyrced checkpoints occur throughout
the system as a result of one process taking a local checkgoiist.plausible that if forced
checkpoints are not taken into account, a local checkpointing policy ke tacal checkpoint
shortly after a forced checkpoint has been taken. Such a loc&poi@cadvances the recovery
point of the process by a very short amount compared to the previaes foheckpoint.
Furthermore, this local checkpoint will likely trigger moreded checkpoints in other processes,
escalating the phenomenon even further. It may be argued thastitngeoverhead can be
limited by using incremental checkpointing, and therefore thd tesckpoint will not have to
save a lot of state on stable storage if a forced checkpointeaastaken recently. But we
contend that taking a checkpoint, however small, always has an asleabsociated with it, if
only to compute the state that must be saved and arranging foogkieon-write to implement
non-blocking checkpointing. However it may be, the overhead cannot bedgndherefore,
there is very little to gain by taking this local checkpoint, w/itliere is a potential for larger
overhead.
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To fix this problem, we experimented with an adaptive local checkpgiplicy that refrains
from taking a scheduled local checkpoint if a forced checkpoint hasredaduring the last T
seconds, where T is a tunable parameter. Figure 6 shows tiengesumber of local and
forced checkpoints for the four applications and the three protocols undgr Ve report three
measurements, one with the adaptive policy disabled (T = 0), andtvdifferent values of T
(60 and 90 seconds). The table shows for each T, the number ofidciireed checkpoints

under each of the three protocols. The measurements for difeggphtations are reported

separately.
BT CG
OT=0 WMT=60 OT=90 OT=0 WMT=60 OT=90 |
70 63 30
2 24
60 25
50 20 —|19
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Figure 6: The effect of adaptive local checkpointing: Numbglocal and forced checkpoints for the 3
protocols under different values of T for the fapplications under study.
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Analysis: The results show that taking forced checkpointing into account rechecesimber of
local checkpoints that have to be taken, and in turn this reduces the nomieiced
checkpoints. The results were more pronounced for the BQC protocd. reBuilt shows two
things:

1. A successful local checkpoint placement policy must have a dyreemtent in it that takes
into account the occurrence of forced checkpoints. The simple “leheskpoint evex
seconds” does not work well.

2. A successful local checkpoint placement policy must adapt to thieapgpt communication
patterns if they change during execution. This would allow teguéncy to be reduced
during times where the communication load is heavy and frequerfoycetl checkpoints is
high, and vice versa.

Our recommendations once more outline the unpredictability that dagssr of these protocols

in practice, though they outline plausible solutions. It is perhapsh®s$sicome up with better

placement policies than the one we outlined here, but this is out of the paper’s scope.

5. Related Work
The earliest work reported on CIC is due to Briatico et al §veral variations on this protocol

were subsequently published [9,26]. Recently, there has been a graviergst in
reinvestigating these protocols using the Z-cycle framework [1,7,8]aré&/eot aware, however,

of any experimental work to investigate CIC along the linesolewed here. We would like to

point out though that two implementations of coordinated checkpointing havehgsatkéa of
time-stamping a message with the checkpointing interval as sieggey Briatico [6,23]. There

are also several experimental evaluations that were perfoomedther styles of rollback-
recovery such as message logging [4,17], and coordinated checkpointing [6,14,18,20,24,28], but
comparing these efforts with the work presented here is out of the scope of this pape

6. Conclusions
We have conducted several experiments to analyze the behavior arattengtics of

communication-induced checkpointing. We studied a class of computeivetatistributed
applications, and our results for that class show that:
1. CIC protocols that use an eager approach to preventing Z-cycletakinyg forced

checkpoints whenever they suspect the formation of a Z-cyclboamed to perform worse
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than lazy protocols that use a time stamping function to preveitlyal& at the last possible
second.

2. CIC protocols do not scale well with a larger number of procesgashave found that the
number of forced checkpoints increase almost linearly with the number of @®cess

3. A process takes at least twice as many forced checkpaniiscal ones. Therefore, the
touted benefit of autonomy of CIC protocols in allowing the processtske independent
checkpoints does not seem to materialize in practice.

4. There is a considerable unpredictability in the way CIC protdoelsve in practice. The
amount of stable storage required, performance overhead, and number efcfogckpoints
depend greatly on the number of processes, the application, and the coatiomirpattern.
This unpredictability makes the use of CIC protocols in practioee cumbersome than
other alternatives.

5. A successful placement policy of local checkpoints must be dgnamd must take into
account the occurrences of forced checkpoints, and adapt to the ¢hahgeapplication
behavior.

6. CIC protocols seem to perform best for situations where the coroatiom load is low and
the pattern is random. Regular, heavy load communication patterns seem to fare wors

Again, we would like to stress that the results are only validh®mapplication set that we have

studied, and we lay no claim that these results would generalize to all appticdtlevertheless,

we believe that there is sufficient evidence to suspect thahrof the conventional wisdom
about these protocols is questionable, and certainly there is needrmmork along the lines

we followed in this paper to investigate these protocols further.
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