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Abstract

Communication induced checkpointing (CIC) is a style of rollback-recovery which allows processes in a distributed

computation to take independent checkpoints without susceptibility to the domino effect.  This style of recovery has

been subject to an increasing interest lately, but most of the work done is algorithmic in nature.  This paper presents

an analysis of CIC protocols based on a prototype implementation and validated simulations.  For the applications

we studied, our results show that:

1. CIC protocols do not scale well as the number of processes increases.

2. The occurrence of forced checkpoints at random points within the execution makes it very difficult to predict

the required amount of stable storage for a particular application run.  Also, this unpredictability affects the

policy for placing local checkpoints and makes CIC protocols cumbersome to use in reality.

3. The benefit of autonomy in allowing processes to take local checkpoints at their convenience does not seem to

hold.  In all experiments, a process takes at least twice as many forced checkpoints as local, autonomous ones.

4. Within the class of CIC protocols, those that use time-stamping functions to delay taking a forced checkpoint to

the extent possible seem to work better than protocols that inspect the communication and checkpoint patterns

and prevent Z-cycles from forming by taking forced checkpoints as soon as possible.

5. A successful implementation of CIC requires a dynamic checkpoint placement policy for local checkpoints that

adapts to the occurrence of forced checkpoints and the variations in the application communication patterns.

Simple or static policies such as taking checkpoints at regular intervals do not seem to work well.

6. CIC protocols in general seem to work better for situations where the communication load is low and the

communication pattern is random.  Regular, or heavy-load communications make these protocols trigger too

many forced checkpoints.

We would like to stress that the results are only valid for the application set that we have studied, and we lay no
claim that these results would generalize to all applications.  Nevertheless, we believe that there is sufficient
evidence to suspect that much of the conventional wisdom about these protocols is questionable.
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1. Introduction
There are three styles for implementing application-transparent rollback-recovery in message-

passing systems, namely coordinated checkpointing, message logging, and communication-

induced checkpointing (CIC) [5].  Both coordinated checkpointing and message logging have

received considerable analysis in the literature [4,6,11,14,17,18,20,21,24,28], but little is known

about the behavior of CIC protocols.  This paper presents an experimental analysis of these

protocols through a prototype implementation and reveals several of their theoretical and

pragmatic characteristics.

CIC protocols are not new.  The paper by Briatico et al. was perhaps the first to describe this

style of checkpointing back in 1984 [2].  Other papers have described variations over their

protocol [9,13,26], or used some protocol features to simplify the implementation of coordinated

checkpointing [6,25].  Recently, CIC protocols have attracted an increasing interest in the

research community, with new sophisticated protocols based on the Z-path theory [16].  But to

our knowledge, there are no published implementation or evaluation reports of CIC.

CIC protocols piggyback special information on application messages to manage the failure-free

operation of the processes in a distributed computation.  This information allows the processes to

take independent checkpoints without exchanging explicit control messages to ensure that their

checkpoints form consistent states [3].  Furthermore, this information protects the processes from

the domino effect [22] should one or more of them fail.  CIC protocols are therefore believed to

have several advantages over other styles of rollback-recovery.  For instance, they allow

processes considerable autonomy in deciding on when to take checkpoints.  A process can thus

take a checkpoint at times when saving the state would incur a small overhead [12,19].  CIC

protocols also are believed to scale up well with a larger number of processes since they do not

require the processes to participate in a global checkpoint.  But there is a price to pay for these

advantages.  First, the protocol-specific information piggybacked on application messages

occasionally “induce” the processes to take forced checkpoints before they can process the

messages.  Second, processes have to pay the overhead of piggybacking information on top of

application messages, and they also need to keep several checkpoints on stable storage.  These

advantages and disadvantages are clearly qualitative and potentially arguable.  A purpose of our

work is to shed some light on these issues using quantitative metrics drawn from a real system.
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To this end, we have implemented three CIC protocols and studied their behavior.  These

protocols are the original one by Briatico et al [2], and two recent protocols based on the Z-cycle

framework [1,8].  These two protocols differ in the theoretical approach that they adopt to

implement CIC.  Generally, one can derive a CIC protocol by designing a function that

associates a timestamp with each checkpoint, such that the timestamps increase in a manner

consistent with the causal order of the checkpoints [10].  Equivalently, one can derive a CIC

protocol by designing a way to prevent the occurrence of Z-cycles.  Hélary et al. have proved

that the two methods are equivalent [7].  That is, for every algorithm to prevent Z-cycles there is

an equivalent time stamping function, and vice versa.  Again, it is not clear what are the tradeoffs

involved in choosing either approach.  We have therefore selected a representative from each

style: the protocol by Hélary et al uses a time stamping function [8], while the protocol by

Baldoni et al uses an algorithm to predict and prevent the formation of Z-cycles [1].

We examine the performance of the three protocols using two metrics, namely the average

number of forced checkpoints a protocol causes, in addition to the traditional running time

performance.  The first metric is important because forced checkpoints negate the autonomy

advantage of CIC protocols.  Also, they contribute substantially to the performance and resource

overheads.  A good CIC protocol therefore tries to limit these forced checkpoints to the extent

possible.  The experiments use four compute-intensive programs from the NPB 2.3 benchmark

suite [15], which is a representative of a class of applications that have traditionally been the

primary users of checkpointing protocols.  We then use the implementation in part to validate a

simulation model that we built to further study the scalability of the protocols and their behaviors

under different communication patterns.

Our results reveal several important properties of CIC protocols and highlight several

implementation and theoretical issues that were not addressed in the literature.  But we would

like to state unequivocally that while our study reports interesting results, by no means we are

trying to make any sweeping conclusions based on it.  We hope that our work will be a first step

in investigating an area that thus far has been only subject to theoretical research.

The organization of this paper has a brief coverage of the three protocols in Section 2, a

description of implementation issues in Section 3, and the performance study in Section 4.

Section 5 contains a brief comparison to similar work and Section 6 concludes the paper.



- 4 -

2. Background
This section reviews the three protocols used in the experiments, along with some necessary

definitions.  The description is inevitably terse and covers only the features necessary to follow

the experimental work described later.  The interested reader may wish to consult the references

for full details.  Readers familiar with the Z-path theory and its use in CIC protocols may wish to

move directly to Section 3.

2.1 Definitions
Local checkpoints:  A process may take a local checkpoint any time during the execution.  The

local checkpoints of different processes are not coordinated to form a global consistent

checkpoint [3].

Forced checkpoints:  To guard against the domino effect, a CIC protocol piggybacks protocol-

specific information to application messages that processes exchange.  Each process examines

the information, and occasionally, is forced to take a checkpoint according to the protocol.

Useless checkpoints:  A useless checkpoint of a process is one that will never be part of a global

consistent state [27].  In Figure 1, checkpoint C2,2 is an example of a useless checkpoint. Useless

checkpoints are not desirable because they do not contribute to the recovery of the system from

failures, while consume resources and cause performance overhead.

Checkpoint intervals:  A checkpoint interval is the sequence of events between two consecutive

checkpoints in the execution of a process.

Figure 1: A distributed computation. Ci,j denotes the jth checkpoint of process pi.
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2.2 Z-paths and Z-cycles
Z-paths:  A Z-path (zigzag path) is a special sequence of messages that connects two

checkpoints.  Let ξ denote Lamport’s happen-before relation [10].  Given two local checkpoints

Ci,m and Cj,n, a Z-path exists between Ci,m and Cj,n if and only if one of the following two

conditions holds:

1. m < n and i = j; or

2. There exists a sequence of messages [m0, m1,…, mz], z µ 0, such that:

(a) Ci,m ξ sendi(m0);

(b) … l < z, either deliverk(ml) and sendk(ml+1) are in the same checkpoint interval, or

deliverk(ml) ξ sendk(ml+1); and

(c) deliverj(mz) ξ Cj,n

where sendi and deliveri are communication events executed by process pi.  In Figure 1, [m1, m2]

and [m1, m3] are examples of Z-paths.

Z-cycles:  A Z-cycle is a Z-path that begins and ends with the same checkpoint.  In Figure 1, the

Z-path [m4, m1, m3] is a Z-cycle that involves checkpoint C2,2.

2.3 Z-cycles and CIC
CIC protocols do not take useless checkpoints.  These protocols recognize that the creation of

useless checkpoints depends on the occurrence of specific patterns in which processes

communicate and take checkpoints [7].  Informally, these protocols recognize potentially

dangerous patterns, and they break them before they occur.  This intuition has been formalized in

an elegant theory based on the notion Z-cycles.  A key result in this theory is that in order for a

local checkpoint to be useless it has to be involved in a Z-cycle [7,16].  Hence, to avoid useless

checkpoints it is sufficient to guarantee that no Z-path ever becomes a Z-cycle.  Enforcing the

no-Z-cycle (NZC) condition may require that a process save additional forced checkpoints in

addition to the local checkpoints taken on its own initiative.

There are two approaches to avoiding Z-cycles.  The first approach uses a function that

associates a timestamp with each checkpoint.  The protocol guarantees, through forced

checkpoints if necessary, that (i) if there are two checkpoints Ci,m and Cj,n such that Ci,m ξ Cj,n

then ts(Cj,n) ≥ ts(Ci,m), where ts(C) is the timestamp associated with checkpoint C, and (ii)

consecutive local checkpoints of a process have increasing timestamps.



- 6 -

The second approach relies instead on preventing the formation of specific checkpoint and

communication patterns that may lead to the creation of a Z-cycle.  Protocols that follow this

approach do not adopt a specific function for associating timestamps with checkpoints.

However, for protocols that follow this approach, there always exists an equivalent time

stamping function that would cause the same forced checkpoints [7].

Of the three protocols that we study in this paper, the first two adopt the first approach, while the

third is an instance of the second approach.  We briefly review them below.

2.4 The Protocol by Briatico, Ciuffoletti and Simoncini (BCS)
In BCS, each process pi maintains a logical clock lci that functions as pi’s checkpoint timestamp.

The timestamp is an integer variable with initial value 0 and is incremented according to the

following function:

1. lci increases by 1 whenever pi takes a local checkpoint.

2. pi piggybacks on every message m it sends a copy of the current value of lci.  We denote the

piggybacked value as m.lc.

3. Whenever pi receives a message m, it compares lci with m.lc.  If m.lc > lci, then pi sets lci to

the value of m.lc and takes a forced checkpoint before it can process the message.

The set of checkpoints having the same timestamps in different processes is guaranteed to be a

consistent state.  Therefore, this protocol guarantees that there is always a recovery line

corresponding to the lowest timestamp in the system, and the domino effect cannot happen.

2.5 The Protocol by Hélary, Mostefaoui, Netzer and Raynal (HMNR)
The HMNR protocol uses the observation that if checkpoints’ timestamps always increase along

a Z-path (as opposed as simply non-decreasing, as required by rule (i) above), then no Z-cycle

can ever form.  It is thus possible to design functions that take advantage of this observation.

Hélary et al start with the following simple scheme which would require each process to

maintain a logical clock, as in BCS, and to apply the following rules:

1. lci increases by 1 whenever pi takes a local or forced checkpoint.

2. Whenever pi sends a message m, it piggybacks on m a copy of lci, and we denote this value

by m.lc as before.

3. Whenever pi receives a message m, it compares lci with m.lc.  If m.lc > lci, then pi sets lci to

the value of m.lc.
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Then, they refine the protocol using more sophisticated observations and requiring that processes

append more information.  Figure 2, adapted from [8], shows how this simple timestamp

function can be used to decide when to take a checkpoint.  Let ts(m) denote the timestamp

piggybacked on message m.  When process p1 receives message m0, if ts(m0) ≤ ts(m1) then

certainly ts(C0,0) ≤ ts(C2,1) and there is no need for a forced checkpoint.  If ts(m0) > ts(m1),

however, delivering m1 may create the possibility of generating a Z-path along which the

timestamps do not increase.  A straightforward way to avoid this risk is to force p1 to take a

checkpoint before delivering m0, thereby breaking the Z-path.

It may be possible, however, for p1 to avoid taking a forced checkpoint by using a more

sophisticated timestamp function.  For instance, a function that piggybacks on application

messages information about the logical clocks of all processes may give process p1 more

information to decide if a forced checkpoint is really necessary.  In Figure 2 (b), if p1 knows that

the value of p2’s local clock is at least x when it is about to deliver m0, then even if ts(m0) >

ts(m1), p1 does not need to take a forced checkpoint if ts(C0,0) ≤ ts(m1) ≤ x < ts(C2,1).

HNMR uses this observation and more sophisticated ones to reduce the number of forced

checkpoints while still ensuring that the timestamps always increase along a Z-path [8].  They in

fact present several CIC algorithms. For our experiments, we have used the most sophisticated

one, which reduces as much as possible the number of forced checkpoints.

Figure 2:  To checkpoint or not to checkpoint?

C2,1C2,0

C1,0

C0,0

C1,0

C2,0

C0,0

C2,1

C1,1

m0

m1 m1

m0

 p2

 p1

 p0

 p2

 p1

 p0



- 8 -

2.6 The Protocol by Baldoni, Quaglia and Ciciani (BQC)
The BQC protocol does not prevent forced checkpoints by using an explicit function to time

stamp checkpoints [1].  Rather, this protocol enforces NZC  by preventing the formation of

patterns of checkpoints and communication that may result in the creation of a Z-cycle.  In

particular, BQC prevents the creation of suspected Z-cycles.

Figure 3 shows the structure of a suspected Z-cycle.  In this example, process pi would take a

checkpoint before delivering message m2, in order to avoid a potential Z-cycle that includes m0

and m1 and involves checkpoint C0,1.  Note that a suspected Z-cycle is not necessarily a Z-cycle.

For instance, there is no Z-cycle in Figure 3 unless there is an actual Z-path starting with m0 and

ending with m1 between Ci,0 and C0,1.  This information may or may not be available to process

pi when it receives m2.  If the information is not available, the protocol opts for safety and takes a

forced checkpoint before delivering m2.  If the information is available, however, the protocol

refrains from taking a forced checkpoint.  The actual protocol propagates n2 values on each

application message to help processes detect suspected Z-cycles and suppress them using forced

checkpoints [1].  The reference also contains a formal characterization of the notion of suspected

Z-cycle and a proof that a protocol that prevents suspected Z-cycle also satisfies (NZC) [1].

Figure 3: A suspect Z-cycle involving checkpoint C0,1
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3. Implementation Issues
An implementation of CIC must deal with several pragmatic issues that are typically left out of

protocol specifications.  We describe how we resolved these issues in our implementation.

3.1 Autonomy in Local Checkpoints
A stated advantages of CIC protocols is that they prevent the domino effect while allowing

processes considerable autonomy in deciding when to take local checkpoints.  An efficient

implementation of CIC must therefore adopt a checkpointing policy that exploits this autonomy

and translates it into a benefit.  In general, this requires a good understanding of the application

and of the execution environment.  For example, detailed knowledge of the application may

allow processes to take checkpoints when the size of the live variables is small [12,19].

In our study, we have chosen a set of compute-intensive, long-running applications that have

traditionally been the main beneficiary of checkpointing protocols.  We have found that either

the complexity of the application program precludes investing the effort in defining a reasonable

checkpoint placement policy, or that the application structure does not reveal points within the

execution where taking a checkpoint is more advantageous than others.  Therefore, we have

resolved to use a probabilistic distribution to emulate what an autonomous application would do

in deciding on where to place the local checkpoints.  In addition, we have also used the

traditional policy of taking checkpoints at regular intervals.  The results were identical in both

cases, and in fact the decision of how to take local checkpoints turned out to have no effect on

the results of our study.  Indeed, one of the first conclusions that we reached in our

implementation is that even with a deep understanding of the applications’ structure, no policy

for taking local checkpoints can reasonably be adopted without considering the effect of the

forced checkpoints that occur because of communication events.  For example, a pre-run analysis

may decide on the execution points during which it is most “convenient” to schedule local

checkpoints within a particular process.  But if this policy ignores the forced checkpoints, then it

is possible to schedule a local checkpoint immediately after a forced checkpoint.  In this case,

taking the local checkpoint will result in additional work and overhead, with no substantial

reduction of the amount of work at risk.  A more reasonable decision may then be to postpone

taking the local checkpoint.  In any case, the autonomy of deciding when to take checkpoints

seems to be limited by the occurrence of forced checkpoints due to interactions with other

processes.
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3.2 Non-blocking Checkpointing in CIC
The benefits of non-blocking checkpointing in reducing the performance overhead of

checkpointing protocols have been clearly established [6,14,20].  Non-blocking checkpointing

allows the application to resume computation as soon as possible and to schedule the actual

writing of the checkpoint concurrently with the application execution.  The result is that saving

the checkpoint to stable storage does not become a bottleneck that impedes application progress.

However, using non-blocking checkpointing in CIC introduces potential inconsistencies with the

specification of the protocols.  To understand why, consider the situation where a process pi

takes a non-blocking checkpoint (local or forced) and then sends a message m to another process

pj; assume furthermore that the CIC protocol being used requires pj to take a forced checkpoint

before delivering m.  Recall that all CIC protocols maintain the invariant that no Z-cycles may

form and no useless checkpoint is ever taken: hence, the forced checkpoint of pj should never be

useless and no Z-cycles can include it.  However, suppose that pi fails after sending m, but before

pi’s checkpoint has been entirely written to stable storage.  The failure of pi makes the checkpoint

taken by pj useless, thereby violating the protocol invariant.

The problem is not just cosmetic, because several such communication events may occur while

several non-blocking checkpoints are being written to stable storage according to an

implementation of non-blocking checkpointing.  Therefore, it may be possible for many

checkpoints on stable storage to be rendered useless because a failure of some process in the

system occurred before one or more of its checkpoints were saved on stable storage.  Indeed, in

situations like this, Z-cycles do form and useless checkpoints are taken.

There are two solutions to this problem.  The first one blocks any outgoing messages from a

process until all its non-blocking checkpoints have been written to stable storage.  The messages

are buffered and released only when a process receives notification from the checkpointing agent

that the checkpoint has been saved.  There is a penalty to pay for this modification, but it is

preferable to disallowing non-blocking checkpointing altogether.  It is interesting to note here

that this solution shows how a pragmatic consideration may require a modification in the

protocol itself to maintain its invariant.

The second solution that we considered is to simply allow these temporary Z-cycles to form, and

hope that the checkpoints will be written before a failure actually occurs.  In a sense, this is an

optimistic implementation of CIC, which may allow Z-cycles to form temporarily while some
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checkpoints are being written to stable storage.  If the optimistic assumption holds, then the

invariant of the protocol is preserved and no useless checkpoints are ever taken.  However, if the

assumption is violated because of a failure, then some of the checkpoints that would have

otherwise be part of the recovery line will have to be discarded.  The benefit of this optimistic

alternative is that the overhead is small and does not require any modification to the protocol as

specified.  After an interesting debate among the authors, it was resolved to use the second

solution for its simplicity and because failures are supposedly rare.  It is important however for

future implementers to understand the subtle issues involved with the pragmatic choices

described here and how they may affect the protocol implementation.

4. Experiments and Analysis
The testbed for this study consists of four 300-MHz Pentium-II based workstations connected by

a 100MB/s Ethernet.  Each workstation has two processors, 512MB of RAM, and a 4GB disk

used to implement stable storage.  The machines ran Solaris 2.6, and used Sun’s f77 and C

compilers.  The testbed is part of the Egida tool [23], which includes support for incremental

checkpointing and implements non-blocking checkpointing by forking off a child process that

writes the checkpoint to stable storage.  The applications under study consist of four programs

from the NPB 2.3 benchmark suite [15].  These programs represent common computational

loads in fluid dynamics applications and typify the type of applications that have traditionally

benefited from checkpointing; their characteristics are given in Table 1.

Per-Process Avg. Message RateApplication NPB Specific Info

Messages/sec KB/sec

Exec. Time

(sec)

BT Class A, 200 iterations   7 352.3 1554

CG Class B, 75 iterations 15 752.0 1508

LU Class A, 250 iterations 64 233.9 1018

SP Class A, 400 iterations 17 738.8 1350

Table 1: Characteristics of the benchmarks used in the experiments.

The performance metrics we report are the number of forced checkpoints that a protocol causes

and the performance overhead.  We use a combination of experiments on the prototype

implementation, and then we use the prototype itself to validate a simulator that we built to

further study CIC protocol under different communication patterns and environments.
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4.1 The Measured Performance of CIC Protocols
The first set of experiments consists of running each of the four applications under the three

protocols and for two local checkpoint placement policies.  The first policy triggers local

checkpoints according to an exponential distribution with a mean checkpoint interval (µ) set to

360 seconds, while the second policy uses the same probabilistic distribution but with the mean

checkpoint interval set to 480 seconds.  Table 2 shows the results of the experiments.  It reports

the execution time of the entire application, in addition to the per-process average number of

local and forced checkpoints.  For convenience, the average per-process total number of

checkpoints is also reported.  The table also reports the per-process average checkpoint size

(either local or forced).

Number of Checkpoints
Application Protocol µ Local Forced Total Avg. Ckp. Size (MB)

Exec. Time
(sec.)

360 6 15 21 69.1 2181
BCS 480 4 10 14 70.2 2203

360 6 14 20 69.2 2190
HMNR 480 4   9 13 70.2 2187

360 6 63 70 39.2 2400

BT

BQC 480 4 41 45 42.4 2298
360 5 11 16 14.1 1667

BCS 480 4   9 13 17.5 1672
360 5 12 17 13.7 1634

HMNR 480 4   9 13 17.5 1613
360 5 24 29   8.6 1752

CG

BQC 480 4 19 23 10.7 1720
360 4 10 14 11.0 1150

BCS 480 3   6   9 11.2 1161
360 4 10 14 10.8 1147

HMNR 480 3   6   9 11.2 1175
360 4 34 38   5.7 1284

LU

BQC 480 3 17 20   6.9 1253
360 5 11 16 21.0 1572

BCS 480 4   9 13 21.5 1583
360 5 11 16 20.8 1574

HMNR 480 4   9 13 21.5 1585
360 5 43 48 11.6 1615

SP

BQC 480 4 33 37 11.0 1601

Table 2: Performance of three CIC protocols for two checkpoint intervals and four applications.

Analysis: The results reveal a few issues.  In BCS and HMNR, the number of forced checkpoints

is essentially the same.  In contrast, the BQC protocol is showing a comparatively larger number

of forced checkpoints when compared to the other two.  To understand the reason for this, we
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examined the protocol behavior of BQC to see what is the cause of this anomaly.  The reason can

be ascribed to the communication pattern of the applications under study.  These applications use

a common iterative structure to solve a computationally intensive problem in which processes

exchange partial results and resume.  This leads to a communication pattern that mimics a

periodic broadcast.  Under this pattern, the BQC protocol seems to be too “eager” in preventing

Z-cycles compared to BCS and HMNR, and also it seems that two situations occur:

1. Many suspected Z-cycles end up causing forced checkpoints without actually being a

menace.

2. It is often the case that more than one process “volunteer” in parallel to break the same

suspected Z-cycle by forcing checkpoints.

Consider Figure 4.  In this example, we see process p2 take a forced checkpoint because of

message m3, not knowing that process p1 has already broken the suspected Z-cycle (part (2) of

the figure).  Similarly, process p0 takes a forced checkpoint because of message m2, not knowing

that process p1 has already broken the Z-cycle using checkpoint C1,1.  The pattern continues for a

while under the communication pattern used by the application.

Figure 4: Anomalies in detecting suspect Z-cycles
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This result suggests that there is a disadvantage to using CIC protocols that use suspected Z-

cycles, or ones that are eager to prevent a Z-cycle from forming before it is actually clear that

one is indeed forming.  In contrast, protocols that use the time stamping functions seem to adopt

a lazy approach, preventing a Z-cycle from forming at the last moment that is possible, and

therefore work better.

Additionally, the results show that the stated benefit of process autonomy in placing local

checkpoints does not materialize in practice.  Under the best circumstances, a process takes as

twice as many forced checkpoints as local ones.  The curious notion of process autonomy in

distributed systems where all processes become inter-dependent seems to be on shaky ground.

The results also point out to another serious problem with CIC protocols in general, which is

unpredictability of the checkpointing rate.  In all experiments, the protocols ended up taking

more checkpoints than could be anticipated based on the local distribution of checkpoint

placement.  For BCS and HMNR, the number of forced checkpoints was generally twice as

many as the number of local ones.  For BQC, the ratio was worse.  The ratio in itself is a function

of the application, the number of processes, and the checkpoint placement.  The fact that it is

unpredictable makes the protocols cumbersome to use in practice, because it is difficult to plan

ahead of time the actual stable storage requirements and the mean checkpointing interval.

Contrast this with consistent checkpointing protocols where the number of checkpoints and

required stable storage can be estimated with great certainty beforehand [6].

The table also points to another negative aspect of using CIC protocols.  The performance

overhead when considering the running time was relatively bad, reaching between 5 to 40% of

the execution time.  This anomaly is actually common in systems where the checkpoints are not

coordinated and the processes communicate frequently [6].  In these situation, when a process

takes a local checkpoint independent of the others, it inevitably slows down due to the state

saving and memory copying that occur during the checkpoint.  This in turn delays the production

of the expected partial result that the process will send to others in the next communication

round.  As a result, the slowdown affects other processes as well even if they are not taking

checkpoints in the meantime.  The resulting slowdowns stagger quickly and have a cumulative

effects because of having many of these independent checkpoints occurring at different times [6].

Finally, we would like to note that incremental checkpointing seems to mitigate some of the

effects of having to take so many checkpoints (forced or local).  The results show that the
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average per-process checkpoint size goes down as the frequency of checkpointing increases. This

is an expected result.

In summary, lazy protocols for breaking Z-cycles based on time-stamping are shown to perform

better than eager protocols that take forced checkpoints as soon as they suspect a Z-cycle.  The

unpredictability of the actual number of checkpoints to be taken (forced and local) make these

protocols cumbersome to use in practice because no reasonable planning of resources and

checkpointing frequency can be made without understanding the application and its

communication patterns.  Also, it seems that any notion of a benefit of allowing the processes to

take independent checkpoints is thwarted by the fact that a process ends up taking at least twice

as many forced checkpoints than local ones.  And finally, CIC protocols share some of the

negative performance properties of independent checkpointing when used in computations where

the processes are tightly coupled and communicate frequently.

4.2 Scalability and Effects of Communication Patterns
To measure the effect of increasing the number of processes on the protocol performance, we

constructed a simulator to measure the number of forced checkpoints for each of the three

protocols.  We validated the simulator using the measured number of forced checkpoints for 4

processes.  We then used the simulator to estimate the number of forced checkpoints under

different numbers of processors and different communication patterns.

Figure 5 shows the results for the three protocols with varying the number of processes in the

computation.  Two different sets of measurements are reported, the first is for a random

distribution of messages with a relatively low load, where each process sends an average of 10

Figure 5: Effect of communication patterns and number of processors on CIC protocols.
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messages between each two consecutive local checkpoints.  That is, processes do not

communicate much in this simulation and communicate with different processes equally at

random and at random intervals.  During that simulation, 119 local checkpoints were taken on

average.  The second set of measurements show the same results but with a different

communication pattern in which each process talks to two designated neighbors at uniform

intervals.  A process sends about 500 messages between each two consecutive local checkpoints.

This communication pattern is representative of those that occur in distributed over-relaxation

algorithms.

Analysis:  The results show that in general, the communication pattern strongly affects the

behavior of the CIC protocols.  This is expected.  But the results also show that CIC protocols do

not scale very well.  In both cases, there is an almost linear increase in the number of forced

checkpoints per process as the number of processes increase.  For this set of applications, at

least, it is clear that the conventional wisdom that these protocols scale better because they do

not resort to global coordination is not true.  The results also show that CIC protocols seem to

favor random patterns of communications with low loads.

4.3 An Adaptive Local Checkpointing Policy
The results of the experiments so far suggest that a flurry of forced checkpoints occur throughout

the system as a result of one process taking a local checkpoint.  It is plausible that if forced

checkpoints are not taken into account, a local checkpointing policy may take a local checkpoint

shortly after a forced checkpoint has been taken.  Such a local checkpoint advances the recovery

point of the process by a very short amount compared to the previous forced checkpoint.

Furthermore, this local checkpoint will likely trigger more forced checkpoints in other processes,

escalating the phenomenon even further.  It may be argued that the resulting overhead can be

limited by using incremental checkpointing, and therefore the local checkpoint will not have to

save a lot of state on stable storage if a forced checkpoint has been taken recently.  But we

contend that taking a checkpoint, however small, always has an overhead associated with it, if

only to compute the state that must be saved and arranging for the copy-on-write to implement

non-blocking checkpointing.  However it may be, the overhead cannot be ignored.  Therefore,

there is very little to gain by taking this local checkpoint, while there is a potential for larger

overhead.
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To fix this problem, we experimented with an adaptive local checkpointing policy that refrains

from taking a scheduled local checkpoint if a forced checkpoint has occurred during the last T

seconds, where T is a tunable parameter.  Figure 6 shows the resulting number of local and

forced checkpoints for the four applications and the three protocols under study.  We report three

measurements, one with the adaptive policy disabled (T = 0), and two for different values of T

(60 and 90 seconds).  The table shows for each T, the number of local and forced checkpoints

under each of the three protocols.  The measurements for different applications are reported

separately.

Figure 6:  The effect of adaptive local checkpointing:  Number of local and forced checkpoints for the 3
protocols under different values of T for the four applications under study.
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Analysis:  The results show that taking forced checkpointing into account reduces the number of

local checkpoints that have to be taken, and in turn this reduces the number of forced

checkpoints.  The results were more pronounced for the BQC protocol.  This result shows two

things:

1. A successful local checkpoint placement policy must have a dynamic element in it that takes

into account the occurrence of forced checkpoints.  The simple “let us checkpoint ever x

seconds” does not work well.

2. A successful local checkpoint placement policy must adapt to the application communication

patterns if they change during execution.  This would allow the frequency to be reduced

during times where the communication load is heavy and frequency of forced checkpoints is

high, and vice versa.

Our recommendations once more outline the unpredictability that faces a user of these protocols

in practice, though they outline plausible solutions.  It is perhaps possible to come up with better

placement policies than the one we outlined here, but this is out of the paper’s scope.

5. Related Work
The earliest work reported on CIC is due to Briatico et al [2].  Several variations on this protocol

were subsequently published [9,26].  Recently, there has been a growing interest in

reinvestigating these protocols using the Z-cycle framework [1,7,8].  We are not aware, however,

of any experimental work to investigate CIC along the lines we followed here.  We would like to

point out though that two implementations of coordinated checkpointing have used the idea of

time-stamping a message with the checkpointing interval as suggested by Briatico [6,23].  There

are also several experimental evaluations that were performed on other styles of rollback-

recovery such as message logging [4,17], and coordinated checkpointing [6,14,18,20,24,28], but

comparing these efforts with the work presented here is out of the scope of this paper.

6. Conclusions
We have conducted several experiments to analyze the behavior and characteristics of

communication-induced checkpointing.  We studied a class of compute intensive distributed

applications, and our results for that class show that:

1. CIC protocols that use an eager approach to preventing Z-cycles by taking forced

checkpoints whenever they suspect the formation of a Z-cycle are bound to perform worse
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than lazy protocols that use a time stamping function to prevent a Z-cycle at the last possible

second.

2. CIC protocols do not scale well with a larger number of processes.  We have found that the

number of forced checkpoints increase almost linearly with the number of processes.

3. A process takes at least twice as many forced checkpoints as local ones.  Therefore, the

touted benefit of autonomy of CIC protocols in allowing the processes to take independent

checkpoints does not seem to materialize in practice.

4. There is a considerable unpredictability in the way CIC protocols behave in practice.  The

amount of stable storage required, performance overhead, and number of forced checkpoints

depend greatly on the number of processes, the application, and the communication pattern.

This unpredictability makes the use of CIC protocols in practice more cumbersome than

other alternatives.

5. A successful placement policy of local checkpoints must be dynamic, and must take into

account the occurrences of forced checkpoints, and adapt to the change in the application

behavior.

6. CIC protocols seem to perform best for situations where the communication load is low and

the pattern is random.  Regular, heavy load communication patterns seem to fare worse.

Again, we would like to stress that the results are only valid for the application set that we have

studied, and we lay no claim that these results would generalize to all applications.  Nevertheless,

we believe that there is sufficient evidence to suspect that much of the conventional wisdom

about these protocols is questionable, and certainly there is need for more work along the lines

we followed in this paper to investigate these protocols further.
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