
Linking Theorem Proving and Model-Checking withWell-Founded BisimulationPanagiotis Manolios1, Kedar Namjoshi2, and Robert Sumners31 Department of Computer Sciences, University of Texas at Austinpete@cs.utexas.edu2 Bell Laboratories, Lucent Technologieskedar@research.bell-labs.com3 Department of Electrical and Computer EngineeringUniversity of Texas at Austinsumners@cerc.utexas.eduAbstract. We present an approach to veri�cation that combines the strengths ofmodel-checking and theorem proving. We use theorem proving to show a bisimula-tion up to stuttering on a|potentially in�nite-state|system. Our characterizationof stuttering bisimulation allows us to do such proofs by reasoning only about singlesteps of the system. We present an on-the-
y method that extracts the quotientinduced by the bisimulation, for �nite quotients. If our speci�cation is a temporallogic formula, we model-check the quotient. If our speci�cation is a simpler system,we use an equivalence checker to show that the quotient is stuttering bisimilar tothe simpler system. We lift the results obtained on the quotient to the originalsystem by showing that the original system is a branching-time re�nement of theextracted quotient.We demonstrate our methodology by verifying the alternating bit protocol. Thisprotocol cannot be directly model-checked because it has an in�nite-state space;however, using the theorem prover ACL2, we show that the protocol is stutteringbisimilar to a small �nite-state system, which we model-check. We also show thatthe alternating bit protocol is a re�nement of a non-lossy system.

Table of Contents1 Introduction 12 Theoretical Background 22.1 Preliminaries . 22.2 Quotient Extraction . 32.3 Re�nement . 33 Protocol 44 Protocol Veri�cation 64.1 Well-Founded Equivalence Bisimulation . 64.2 Quotient Extraction . 74.3 Model-Checking . 84.4 Bisimulation Checking . 85 Related Work and Conclusions 9

1 IntroductionWe propose an approach to veri�cation that combines the strengths of the model-checking[CE81, QS82, CES86] and the automated theorem proving (e.g., [BM79, GM93]) ap-proaches. We use a theorem prover to reduce an in�nite-state (or large �nite-state) systemto a �nite-state system, which we then handle using automatic methods.The reduction amounts to proving a stuttering bisimulation [BCG88], up to propertiesof interest. Two states are stuttering bisimilar if they are equivalent up to next-time freeCTL� properties (CTL�nX). We introduce well-founded equivalence bisimulation (WEB),a characterization of stuttering bisimulation that is based on well-founded bisimulation[Nam97]. A proof that a relation is a WEB involves checking that each action of theprogram preserves the relation. Such single step proofs can be checked by theorem proversmore readily than proofs based on the original de�nition of stuttering bisimulation.A WEB induces a quotient that is equivalent (up to stuttering) with the original sys-tem. The idea is to check the quotient, but constructing the quotient can be di�cultbecause determining if there is a transition between states in the quotient depends onwhether there is a transition between some pair of related states in the original system(the number of such pairs may be in�nite). Another complication is that the quotient maybe in�nite-state, but the set of its reachable states may be �nite. To address these twoconcerns, we introduce an on-the-
y algorithm that for a large class of systems automat-ically extracts the quotient. Once the quotient is extracted, we can model-check it or wecan use a WEB equivalence checker to compare it with another system.We are interested in mechanical veri�cation; by this we mean that every step in theproof of correctness (except for meta-theory and mechanical tools) is checked mechanically.The theorem prover we use is ACL2 [KM97]. ACL2 is an extended version of the Boyer-Moore theorem prover [BM79]. ACL2 is based on a �rst-order, executable logic of totalrecursive functions with induction. We have implemented a �-calculus model checker withB�uchi automata, a WEB equivalence checker, and the quotient extraction algorithm inACL2; this allows us to perform all of the veri�cation in ACL2 (this is possible becauseACL2 is executable). The ACL2 �les used are available upon request from the �rst author.We demonstrate our approach by verifying the alternating bit protocol [BSW69]. Wechose the alternating bit protocol because it has been used as a benchmark for veri�catione�orts, and since this is the �rst paper to use WEBs for verifying systems, it makes senseto compare our results with existing work. The alternating bit protocol has a simple de-scription but lengthy hand proofs of correctness (e.g., [BG94]), it is in�nite-state, and itsspeci�cation involves a complex fairness property. We have found it to be surprisingly dif-�cult to verify mechanically; many previous papers verify various versions of the protocol(e.g., [Mil90, CE81, HS96, BG96, MN95]), but all make simplifying assumptions, eitherby restricting channels to be bounded bu�ers, by ignoring data, or by ignoring fairnessissues.In the next section, we discuss notation and present the theoretical background, includ-ing: the de�nitions of WEB, quotient structure, and re�nement; related theorems are alsopresented. Due to space limitations, proofs of the theorems are omitted; they will appearin a future paper. We assume that the reader is familiar with the temporal logic CTL�[EH86]. In Section 3, we present the ACL2 formalization of the alternating bit protocol.In Section 4, we present the proof of correctness and in Section 5, we present concludingremarks and comparisons to other work. 1

2 Theoretical Background2.1 PreliminariesN denotes the natural numbers, i.e., f0; 1; : : :g. Function application is denoted by an in�xdot \." and is right associative. hQx : r : bi denotes a quanti�ed expression, where Q is thequanti�er, x the dummy, r the range of x (true if omitted), and b the body. \Such that"and \with respect to" are abbreviated by \s.t." and \w.r.t.", respectively. The cardinalityof a set S is denoted by jSj. For a relation R, we write sRw instead of hs; wi 2 R. We writeR(S) for the image of S under R, i.e., R(S) = fy : h9x : x 2 S : xRyig and RjA for Rrestricted to the set A, i.e., RjA = fha; bi : (aRb) ^ (a 2 A)g. A well-founded structure isa pair hW;�i where W is a set and � is a binary relation on W s.t. there are no in�nitelydecreasing sequences on W , w.r.t. �. We abbreviate ((s � w) _ (s = w)) by s 4 w.From highest to lowest binding power, we have: parentheses, function application, binaryrelations (e.g., sBw), equality (=) and membership (2), conjunction (^) and disjunction(_), implication ()), and �nally, binary equivalence (�). Spacing is used to reinforcebinding: more space indicates lower binding.De�nition 1 (Transition System)A Transition System (TS) is a structure hS;!; L; I; AP i, where S is a non-empty set ofstates, !� S � S is the transition relation (which must be left total), AP is the set ofatomic propositions, L : S ! 2AP is the labeling function which maps each state to thesubset of atomic propositions that hold at that state, and I is the (non-empty) set ofinitial states. We only consider transition systems with denumerable branching.De�nition 2 (Well-Founded Equivalence Bisimulation (WEB))B is a well-founded equivalence bisimulation on TS M = hS;!; L; I; AP i i�:B is an equivalence relation on S; and1. h8s; w 2 S : sBw : L:s = L:wi; and2. There exists a function; rank : S � S !W; s.t. hW;�i is well-founded, and3. h8s; u; w 2 S : sBw ^ s! u :h9v : w ! v : uBvi _(uBw ^ rank :(u; u) � rank :(s; s)) _h9v : w ! v : sBv ^ rank :(u; v) � rank :(u;w)iiWe will call a pair hrank ; hW;�ii satisfying condition 3 in the above de�nition, a well-founded witness. Note that to prove a relation is a WEB, reasoning about single steps of! su�ces.Theorem 1 (cf. [BCG88, Nam97]) If B is a WEB on TS M and sBw, then for anyCTL�nX formula f , M; s j= f i� M;w j= f .For an equivalence relation B on TS M , a quotient structureM=B (readM \mod" B)can be de�ned, whose states are the equivalence classes of B and whose transition relationis derived from the transition relation of M . Quotient structures can be much smallerthan the original: a bisimulation with �nitely many classes induces a �nite quotient (of apossibly in�nite-state system).De�nition 3 (Quotient Structure)Let M = hS;!; L; I; AP i be a TS and let B be a WEB on M . The class of state s isdenoted by [s]. The quotient M=B is the TS hS;;;L; I; AP i, where:2

1. S = f[s] : s 2 Sg; and2. L:C = L:s, for some s in C (equivalent states have the same label); and3. I = f[s] : s 2 Ig; and4. The transition relation is given by: For C;D 2 S, C ; D i� either(a) C 6= D and h9s; w : s 2 C ^ w 2 D : s! wi, or(b) C = D and h8s : s 2 C : h9w : w 2 C : s! wii(The case distinction is needed to prevent spurious self loops in the quotient, arisingfrom stuttering steps in the original structure.)Theorem 2 (cf. [Nam97]) If B is a WEB on TS M , then there is a WEB on the unionof M and M=B that relates states from M with their equivalence classes.Corollary 1 For any CTL�nX formula f , M; s j= f i� M=B; [s] j= f .2.2 Quotient ExtractionWe de�ne a class of functions which we call \representative" functions. As we will see,representative functions allow us to extract �nite quotient structures automatically.De�nition 4 (Representative Function)Let M = hS;!; L; I; AP i be a TS and let B be a WEB on M , with well-founded witnesshrank ; hW;�ii. Let rep : S ! S; then rep is a representative function forM w.r.t. B if forall s; w 2 S:1. sBw � rep:s = rep:w; and2. rep:rep:s = rep:s; and3. rank :(w; rep :s) 4 rank :(w; s); and4. rank :(rep:s; rep:s) 4 rank :(s; s)Theorem 3 Let rep be a representative function for TSM = hS;!; L; I; AP i w.r.t. WEBB. Let S0 = rep(S), and let M 0 = hS0;�; LjS0 ; rep(I); AP i, where s� u i� h9v : s! v :rep:v = ui. Then M 0 is M=B, up to a renaming of states.Representative functions are very useful (when they exist) because they identify statesthat have all of the branching behavior of their class. They allow one to view the quotientas a submodel of the original structure, and they are used in the following on-the-
yalgorithm for constructing quotient structures.Given a representative function, rep, for M = hS;!; L; I; AP i w.r.t. B, one can con-struct the quotient structure induced by B if rep(I) is �nite and computable, and if forall s 2 S; rep(next :s) is �nite and computable, where next :s is the set of next states of s(in the original structure). We start by mapping I to rep(I) and then explore the statespace, e.g., by a breadth �rst traversal. Given a state, s, in the induced quotient (recallthat s is also a state in the original structure), we compute the set rep(next :s), which isthe set of next states of s in the quotient. This process is repeated until no new states aregenerated. If the set of reachable quotient states is �nite, the process will terminate.2.3 Re�nementIn this section, M = hS;!; L; I; AP i and M 0 = hS0;!0; L0; I 0; AP 0i. M and M 0 areisomorphic if there is a bijection f : S ! S0 s.t. s ! w i� f:s !0 f:w, and f(I) = I 0. Mand M 0 are �-isomorphic if they are isomorphic, � is a subset of both AP and AP 0, and3

L and L0 agree when restricted to �, i.e., for any p 2 �; p 2 L:s i� p 2 L0:f:s for all s.We say M and M 0 are WEB if AP = AP 0 and there are WEBs on M and M 0 s.t. thequotients induced are AP -isomorphic. M and M 0 are �-WEB if � is a subset of both APand AP 0 and the structures obtained from M and M 0 by restricting L and L0 to � areWEB. If M and M 0 are AP 0-WEB, then we say that M is a re�nement of M 0.Theorem 4 (Re�nement)1. If M is a re�nement of M 0, then any CTL�nX formula that holds in M 0 holds in M .2. If M and M 00 are �-isomorphic, M 00 is a re�nement of M 0, and AP 0 is a subset of �,M is a re�nement of M 0.Note that the converse of the �rst part of the theorem does not hold because AP maybe a proper superset of AP 0. Re�nement in a branching time framework corresponds tore�ning atomicity in such a way that when the variables introduced for the re�nementare hidden, the resulting system and the original system are WEB. Note that re�nementdepends crucially on stuttering, as pointed out in [Lam80]. We will apply the above theo-rem by taking an in�nite-state systemM and creating an isomorphic systemM 00 in whichwe've hidden and distorted (see Section 4.2) some variables. Then we'll take the quotientof M 00 and hide the variables we've distorted, getting M 0, which M re�nes.3 ProtocolThe alternating bit protocol is used to implement reliable communication over faultychannels. We present the protocol from the view of the sender and receiver �rst and thenin complete detail. The sender interacts with the communication system via the registersmsg and the
ag svalid . The sender can assign a message to smsg provided it is invalid,i.e., svalid is false. The receiver interacts with the communication system via the registerrmsg and the
ag rvalid . The receiver can read rmsg provided it is valid, i.e., rvalid isnot false; when read, rmsg is invalidated. Figure 1 depicts the protocol from this point ofview.
communication

 systemsmsg rmsg

ReceiverSender
rvalidsvalidFig. 1. Protocol from sender's and receiver's viewThe communication system consists of the
ags s
ag and r
ag as well as the two lossy,unbounded, and FIFO channels s2r and r2s . The idea behind the protocol is that thecontents of smsg are sent across s2r until an acknowledgment for the message is receivedon r2s , at which point a new message can be transmitted. Similarly, acknowledgments fora received message are sent across r2s until a new message is received. In order for thereceiving end to distinguish between copies of the same message and copies of di�erentmessages, each message is tagged with s
ag before being placed on s2r . When a newmessage is received, r
ag is assigned the value of the message tag and gets sent acrossr2s ; this also allows the sending end to distinguish acknowledgments. There may be anarbitrary number of copies of a message (or an acknowledgment) on the channels, and4

rmsg

rvalid

rflag

Receiver

smsg

svalid

sflag

Sender

r2s

s2rFig. 2. Alternating Bit Protocolit turns out that there are at most two distinct messages (or acknowledgments) on thechannels, hence binary
ags su�ce. Figure 2 depicts the protocol.The above discussion is informal; a formal description follows, but �rst we discussnotation. We have formalized the protocol and its proof in ACL2, however, for presentationpurposes we describe the formalization using standard notation. We remain faithful to theACL2 formalization, e.g., we do not use types: functions that appear typed are reallyunder-speci�ed, but total. The concatenation operator on sequences is denoted by \:",but sometimes we use juxtaposition; \�" denotes the empty sequence; head :s is the �rstelement of sequence s; tail :s is the sequence resulting from removing the �rst element froms; jsj is the size of the sequence. Messages are pairs; info returns the �rst component of amessage and
ag returns the second.A state is an eight-tuple hs
ag ; svalid ; smsg ; s2r ; r2s ; r
ag ; rvalid ; rmsgi; state is apredicate that recognizes states. The s
ag of state s is denoted s
ag :s and similarlyfor the other �elds. Rules are functions from states into states; they are listed in Table 1and are of the form G ! A; if A is used as a rule, it abbreviates true ! A. Rule G ! Ade�nes the function (�s : if G:s then A:s else s). We now de�ne the transition relation,R: sRw i� s is a state and w can be obtained by applying some rule to s.We have de�ned the states and transition relation of the alternating bit protocol. Thestates are labeled with an eight-tuple, as mentioned above. It should be clear that we canconvert this type of labeling into a labeling over atomic propositions (boolean variables)by introducing enough|in this case an in�nite number of|atomic propositions, therefore,the alternating bit protocol de�nes a TS, ABP .Rule De�nitionSkip skipAccept.m :svalid ! smsg ; svalid := m; trueSend-msg svalid ! s2r := s2r : hsmsg ; s
agiDrop-msg s2r 6= � ! s2r := tail :s2rGet-msg s2r 6= � ^ :rvalid !if
ag .head .s2r = r
agthen s2r := tail :s2relse s2r ; rmsg ; rvalid ; r
ag := tail :s2r ; info:head :s2r ; true;
ag :head :s2rSend-ack r2s := r2s : r
agDrop-ack r2s 6= � ! r2s := tail :r2sGet-ack r2s 6= � !if head .r2s = s
agthen r2s ; svalid ; s
ag := tail :r2s ; false;:s
agelse r2s := tail .r2sReply rvalid := falseTable 1. Rules de�ning the transition relation5

4 Protocol Veri�cationWe give an overview of the veri�cation of the alternating bit protocol. ABP 00 is the alter-nating bit protocol, with some variables distorted. Let � be the set of variables that arenot distorted; then ABP and ABP 00 are �-isomorphic. We de�ne a relation B and provethat B is an WEB on ABP 00. We de�ne rep, a representative function on ABP 00 w.r.t.B. We use our extraction procedure to extract the structure de�ned by rep. ABP 0 is thisstructure, restricted to �. We model-check ABP 0; by Theorem 4, ABP is a re�nement ofABP 0 and any CTL�nX formulae that hold on ABP 0 also hold on ABP .We also show that ABP 0 is WEB to a non-lossy protocol; in many cases such a checkis more convincing than model-checking because it shows that one system is a re�nementof another.4.1 Well-Founded Equivalence BisimulationIn this subsection we de�ne a relation B and outline the ACL2 proof that B is a WEB.We start with some de�nitions.For the following de�nitions, a and b are sequences of length 1, a 6= b, and x is anarbitrary �nite sequence. The function compress acts on sequences to remove adjacentduplicates. Formally,compress :� = � compress :a = acompress :aax = compress :ax compress :abx = a : compress :bxThe predicate good-s2r recognizes sequences that de�ne valid channel contents. Formally,good-s2r :� = true good-s2r :ax = (a = hinfo:a;
ag :ai) ^ good-s2r :xThe function s2r-state compresses the s2r �eld of a state, except that already receivedmessages at the head of s2r are ignored. Formally,s2r-state:s = compress :relevant-s2r :(s2r :s; hrmsg :s; r
ag :si)where the function relevant-s2r is de�ned by:relevant-s2r :(�; a) = � relevant-s2r :(bx; a) = bxrelevant-s2r :(ax; a) = relevant-s2r :(x; a)The function r2s-state compresses the r2s �eld of a state, except that acknowledgementsat the head of r2s with a
ag di�erent from s
ag are ignored. Formally,r2s-state:s = compress :relevant-r2s :(r2s :s; s
ag :s)where the function relevant-r2s is de�ned by:relevant-r2s :(�; a) = � relevant-r2s :(ax; a) = axrelevant-r2s :(bx; a) = relevant-r2s :(x; a)The main idea behind the bisimulation is to relate states that have similar compressedchannels|i.e., are equivalent under s2r-state and r2s-state|and are otherwise identical.We de�ne the bisimulation in terms of rule rep:good-s2r :s2r ! s2r ; r2s := s2r-state; r2s-state6

We now de�ne the bisimulation relation B: sBu i� rep:s = rep:u. It is easy tosee that B is an equivalence relation. We de�ne rank , a function on states as follows:rank :s = js2r :sj+ jr2s :sj.We will show that hrank ; hN; <ii is a well-founded witness (to be pedantic we cande�ne rank so that it has two arguments, as follows: rank :(u; s) = js2r :sj + jr2s :sj) IfsBw, sRu, and sBu, then uBw and by rule Skip, wRw, therefore, we need only concernourselves with the case where :sBu. To show B is a WEB, it su�ces to show:sBw ^ sRu ^ :sBu) h9v : wRv : uBv _ (sBv ^ rank :v < rank:w)iWe break up the proof (that B is a WEB) into the eight cases in Table 2 by expandingR, i.e., by considering all the ways in which s can be related to u. The cases have theform: Rule Lemma; when u or v appear in Lemma they abbreviate the terms Rule.s andRule.w, respectively. We prove the cases in ACL2.Rule LemmaAccept :m sBw) uBvSend-msg sBw ^ :sBu) uBvDrop-msg sBw ^ :sBu) (uBv) _ (sBv ^ rank :v < rank:w)Get-msg sBw ^ :sBu ^ u 6= Drop-msg :s) (uBv) _ (sBv ^ rank :v < rank:w)Send-ack sBw ^ :sBu) uBvDrop-ack sBw ^ :sBu) (uBv) _ (sBv ^ rank :v < rank:w)Get-ack sBw ^ :sBu ^ u 6= Drop-ack :s) (uBv) _ (sBv ^ rank :v < rank:w)Reply sBw) uBvTable 2. WEB case analysisIn order to tie up the case analysis, we de�ne a function step that takes three states,s; u; and w as arguments. If sBu, step returns w, else if u = A:s, for A, a rule from Table 1,step returns A:w, else step returns w. Since we proved that B is an equivalence relation,the following theorem implies that B is a WEB (quanti�cation is replaced by the witnessfunction step):sBw ^ sRu ^ v = step:(s; u; w)) wRv ^ (uBv _ (sBv ^ rank :v < rank:w))4.2 Quotient ExtractionIn this subsection we prove the following ACL2 theorems which show that rep is a repre-sentative function satisfying the requirements of Theorem 3; hence, the quotient inducedby rep is isomorphic to the quotient w.r.t. B: sBw � rep:s = rep:w, rep:rep:s = rep:s,and rank :rep:s � rank :s. We extract the quotient structure (induced by rep) of the al-ternating bit protocol restricted to binary messages. In the following subsections, we usemodel-checking and WEB equivalence checking to analyze this structure.We now have enough machinery to describe how re�nement is used in the veri�-cation of the alternating bit protocol. ABP is the model of the alternating bit pro-tocol in ACL2. ABP 00 is ABP with s2r , r2s relabeled by s2r-state and r2s-state, re-spectively. B is a bisimulation on ABP 00 with well-founded witness hrank ; hN; <ii, s.t.rank :(u; s) = js2r :f�1:sj+ jr2s :f�1:sj (f is the bijection between ABP and ABP 00; recallthat rank is de�ned on states of ABP 00). The quotient of ABP 00 w.r.t. B is isomorphic tothe structure induced by rep. ABP 0 is this structure, with s2r and r2s hidden. It is ABP 07

that we analyze in the next two subsections. By Theorem 4, ABP is a re�nement of ABP 0and properties of ABP 0 can be lifted to ABP .4.3 Model-CheckingWe model-check the quotient extracted by the above mentioned procedure, using a �-calculus model-checker and a fair-CTL to �-calculus translator, both written in ACL2.We check the following formulae (written in CTL�nX):1. AG(sending1) A(sending1 W rmsg = 1))2. AG(receiving1) A(receiving1 W delivered1))3. AGEF svalid (acceptance of a new message is always eventually possible)where sending1 , receiving1 , and delivered1 are abbreviations for svalid ^ smsg = 1,rvalid ^ rmsg = 1, and :rvalid ^ rmsg = 1, respectively; formulae analogousto 1 and 2 are proved for message 0. All of the above formulae hold on the extractedstructure, which is what one would expect. The property AGAF svalid (acceptance of anew message is always eventually guaranteed), however, does not hold without furtherfairness assumptions.The liveness properties are as follows. Each property is shown under a set of fairnessassumptions on the actions of the process. These are either weak fairness (in�nitely oftendisabled or in�nitely often executed) or strong fairness (in�nitely often enabled impliesin�nitely often executed).1. AG(sendingNew1) A(sending1 U rmsg = 1)) (sendingNew1 represents thesending of a new copy of message 1): This holds under weak fairness on the Send-msgand Reply actions, and strong fairness on the receipt of a new message by the actionGet-msg. A similar property holds for message 0.2. AGAF svalid : This holds under the fairness assumptions for the previous property,along with weak fairness on the Send-ack action and strong fairness on the receipt ofa new acknowledgment by the action Get-ack.Since the fairness conditions mention actions, we compose B�uchi automata acceptingfair paths with the quotient and model-check the resulting structure on fair-CTL formu-lae which refer both to the propositions of the quotient and the accepting states of theautomata.We use an argument based on bisimulation to derive su�cient conditions for data-independence [Wol86] of the protocol. These are checked in ACL2; as a consequence, theproperties shown above for the data domain f0; 1g su�ce to show similar properties forarbitrary data domains.4.4 Bisimulation CheckingIn many cases, the correctness proof is more convincing if we can show that the extractedmodel is bisimilar to a model that is so simple, it is correct by inspection. In the caseof the alternating bit protocol, we can show that the extracted model is bisimilar to asimple, non-lossy version of the protocol, presented in Table 3.We use a WEB equivalence checker (based on the description in [BCG88]) written inACL2 to verify that the non-lossy protocol in Table 3 and the extracted protocol are WEB.The main idea is that we create the disjoint union of the transition systems correspondingto the extracted protocol and the non-lossy protocol. The algorithm will compute the8

coarsest WEB on a structure; hence, if the initial states of the two systems are in thesame class, the two systems are WEB. In computing the coarsest WEB, we examineonly svalid , smsg , rvalid , and rmsg . Notice that this view is exactly the one presented inFigure 1. Rule De�nitionAccept.m :svalid ! smsg ; svalid := m; trueSend-msg svalid ^ :rvalid ^ :sent ! rvalid ; sent ; rmsg := true; true; smsgReady sent ! svalid ; sent := false; falseReply rvalid := falseTable 3. Rules de�ning the transition relation of the non-lossy protocol
5 Related Work and ConclusionsAmong related work, [MN95] prove safety properties of the alternating bit protocol byusing Isabelle/HOL to prove that a hand constructed �nite-state system contains all ofthe traces of the alternating bit protocol and then model-check the �nite-state system.[HS96] show the correctness of an in�nite-state system by using PVS to verify that asimple manually constructed �nite-state system is a conservative approximation of thein�nite-state system. The work described in this paper improves upon such methods by(i) using a (veri�ed) representative function to mechanically construct a quotient, and (ii)using WEBs instead of simulations or trace containment: this allows us to check propertiesexactly, i.e., if a property holds (fails) on the simple system, then it holds (fails) on theoriginal system.There are several known types of in�nite-state systems (e.g., [ACD90, GS92, AJ96,EN95]) for which the model-checking problem is decidable, but these types of systemsoften turn out to be too specialized for many cases where it is possible to devise �nite ab-stractions. There have been several approaches to automatically verifying the alternatingbit protocol: safety properties of such lossy channel systems are decidable [AJ96]; however,in order to construct automatic abstractions that demonstrate liveness properties, mostother veri�cations of the alternating bit protocol (e.g., [GS97]) consider channels to bebounded.Mechanical veri�cation is necessary. In our case, we managed to convince ourselvesthat a candidate relation was a WEB for the alternating bit protocol, even though it wasnot; this became clear only when we tried to prove it mechanically.An interesting direction for future work is to apply the methodology presented here tothe veri�cation of other in�nite-state systems (e.g., pipelined and out-of-order executionmachines and memory coherence protocols).AcknowledgmentsJ Moore was always available to discuss ACL2; he also read and commented on substantialparts of the proof script. Jun Sawada and Richard Tre
er were involved in the early stagesof the project; along with Rajeev Joshi, they have read this paper and have made manyuseful suggestions. 9

References[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model checking for real time systems. In 5thIEEE Symp. on Logic in Computer Science, 1990.[AJ96] P.A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Informa-tion and Computation, 127(2), 1996.[BCG88] M. Browne, E.M. Clarke, and O. Grumberg. Characterizing �nite Kripke structuresin propositional temporal logic. Theoretical Computer Science, 59, 1988.[BG94] M.A. Bezem and J.F. Groote. A correctness proof of a one bit sliding window protocolin mCRL. The Computer Journal, 1994.[BG96] B. Boigelot and P. Godefroid. Symbolic veri�cation of communication protocols within�nite state spaces using QDD's. In Conference on Computer Aided Veri�cation,volume 1102 of LNCS, 1996.[BM79] R. Boyer and J. Moore. A Computational Logic. Kluwer Academic Publishers, 1979.[BSW69] K.A. Barlett, R.A. Scantlebury, and P.C. Wilkinson. A note on reliable full duplextransmission over half duplex links. In Communications of the ACM, volume 12, 1969.[CE81] E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletonsusing branching time temporal logic. In Workshop on Logics of Programs, volume 131of LNCS. Springer-Verlag, 1981.[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state con-current systems using temporal logic. ACM Transactions on Programming Languagesand Systems, 8(2), 1986.[EH86] E. A. Emerson and J. Y. Halpern. \Sometimes" and \not never" revisited: on branch-ing versus linear time temporal logic. JACM, 33(1):151{178, January 1986.[EN95] E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In ACM Symposium onPrinciples of Programming Languages, 1995.[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem provingenvironment for higher order logic. Cambridge University Press, 1993.[GS92] S. German and A.P. Sistla. Reasoning about systems with many processes. Journalof the ACM, 1992.[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Conferenceon Computer Aided Veri�cation, volume 1254 of LNCS, 1997.[HS96] K. Havelund and N. Shankar. Experiments in theorem proving and model checkingfor protocol veri�cation. In Formal Methods Europe (FME), volume 1051 of LNCS.Springer-Verlag, 1996.[KM97] M. Kaufmann and J S. Moore. An industrial strength theorem prover for a logic basedon Common Lisp. IEEE Transactions on Software Engineering, 23(4):203{213, April1997.[Lam80] L. Lamport. \Sometimes" is sometimes \not never". InACM Symposium on Principlesof Programming Languages, 1980.[Mil90] R. Milner. Communication and Concurrency. Prentice-Hall, 1990.[MN95] O. M�uller and T. Nipkow. Combining model checking and deduction for I/O-Automata. In Proceedings of TACAS, 1995.[Nam97] K. S. Namjoshi. A simple characterization of stuttering bisimulation. In 17th Con-ference on Foundations of Software Technology and Theoretical Computer Science,volume 1346 of LNCS, pages 284{296, 1997.[QS82] J.P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent systems inCESAR. In Proc. of the 5th International Symposium on Programming, volume 137of LNCS, 1982.[Wol86] P. Wolper. Expressing interesting properties of programs in propositional temporallogic. In Proceedings of the 13th ACM Symposium on Principles of ProgrammingLanguages, pages 184{193. ACM Press, 1986.
10

