Linking Theorem Proving and Model-Checking with
Well-Founded Bisimulation

Panagiotis Manolios', Kedar Namjoshi?, and Robert Sumners®

! Department of Computer Sciences, University of Texas at Austin
petel@cs.utexas.edu
2 Bell Laboratories, Lucent Technologies
kedar@research.bell-labs.com
% Department of Electrical and Computer Engineering
University of Texas at Austin
sumners@cerc.utexas.edu

Abstract. We present an approach to verification that combines the strengths of
model-checking and theorem proving. We use theorem proving to show a bisimula-
tion up to stuttering on a—potentially infinite-state—system. Our characterization
of stuttering bisimulation allows us to do such proofs by reasoning only about single
steps of the system. We present an on-the-fly method that extracts the quotient
induced by the bisimulation, for finite quotients. If our specification is a temporal
logic formula, we model-check the quotient. If our specification is a simpler system,
we use an equivalence checker to show that the quotient is stuttering bisimilar to
the simpler system. We lift the results obtained on the quotient to the original
system by showing that the original system is a branching-time refinement of the
extracted quotient.

We demonstrate our methodology by verifying the alternating bit protocol. This
protocol cannot be directly model-checked because it has an infinite-state space;
however, using the theorem prover ACL2, we show that the protocol is stuttering
bisimilar to a small finite-state system, which we model-check. We also show that
the alternating bit protocol is a refinement of a non-lossy system.

Table of Contents

Introduction

Theoretical Background

2.1 Prellminaries
2.2 Quotient Extraction
2.3 Reflnement e
Protocol

Protocol Verification

4.1 Well-Founded Equivalence Bisimulation
4.2 Quotient Extraction
4.3 Model-Checking
4.4 Bisimulation Checking

Related Work and Conclusions

1 Introduction

We propose an approach to verification that combines the strengths of the model-checking
[CE81, QS82, CES86] and the automated theorem proving (e.g., [BM79, GM93]) ap-
proaches. We use a theorem prover to reduce an infinite-state (or large finite-state) system
to a finite-state system, which we then handle using automatic methods.

The reduction amounts to proving a stuttering bisimulation [BCG88], up to properties
of interest. Two states are stuttering bisimilar if they are equivalent up to next-time free
CTL" properties (CTL*\ X). We introduce well-founded equivalence bisimulation (WEB),
a characterization of stuttering bisimulation that is based on well-founded bisimulation
[Nam97]. A proof that a relation is a WEB involves checking that each action of the
program preserves the relation. Such single step proofs can be checked by theorem provers
more readily than proofs based on the original definition of stuttering bisimulation.

A WEB induces a quotient that is equivalent (up to stuttering) with the original sys-
tem. The idea is to check the quotient, but constructing the quotient can be difficult
because determining if there is a transition between states in the quotient depends on
whether there is a transition between some pair of related states in the original system
(the number of such pairs may be infinite). Another complication is that the quotient may
be infinite-state, but the set of its reachable states may be finite. To address these two
concerns, we introduce an on-the-fly algorithm that for a large class of systems automat-
ically extracts the quotient. Once the quotient is extracted, we can model-check it or we
can use a WEB equivalence checker to compare it with another system.

We are interested in mechanical verification; by this we mean that every step in the
proof of correctness (except for meta-theory and mechanical tools) is checked mechanically.
The theorem prover we use is ACL2 [KM97]. ACL2 is an extended version of the Boyer-
Moore theorem prover [BM79]. ACL2 is based on a first-order, executable logic of total
recursive functions with induction. We have implemented a p-calculus model checker with
Biichi automata, a WEB equivalence checker, and the quotient extraction algorithm in
ACL2; this allows us to perform all of the verification in ACL2 (this is possible because
ACL2 is executable). The ACL2 files used are available upon request from the first author.

We demonstrate our approach by verifying the alternating bit protocol [BSW69]. We
chose the alternating bit protocol because it has been used as a benchmark for verification
efforts, and since this is the first paper to use WEBs for verifying systems, it makes sense
to compare our results with existing work. The alternating bit protocol has a simple de-
scription but lengthy hand proofs of correctness (e.g., [BG94]), it is infinite-state, and its
specification involves a complex fairness property. We have found it to be surprisingly dif-
ficult to verify mechanically; many previous papers verify various versions of the protocol
(e.g., [Mil90, CE81, HS96, BG96, MN95]), but all make simplifying assumptions, either
by restricting channels to be bounded buffers, by ignoring data, or by ignoring fairness
issues.

In the next section, we discuss notation and present the theoretical background, includ-
ing: the definitions of WEB, quotient structure, and refinement; related theorems are also
presented. Due to space limitations, proofs of the theorems are omitted; they will appear
in a future paper. We assume that the reader is familiar with the temporal logic CTL*
[EH86]. In Section 3, we present the ACL2 formalization of the alternating bit protocol.
In Section 4, we present the proof of correctness and in Section 5, we present concluding
remarks and comparisons to other work.

2 Theoretical Background

2.1 Preliminaries

N denotes the natural numbers, i.e., {0, 1, ... }. Function application is denoted by an infix
dot “.” and is right associative. (Qz : r : b) denotes a quantified expression, where @ is the
quantifier, ¢ the dummy, r the range of = (true if omitted), and b the body. “Such that”
and “with respect to” are abbreviated by “s.t.” and “w.r.t.”, respectively. The cardinality
of a set S is denoted by |S|. For a relation R, we write sRw instead of (s,w) € R. We write
R(S) for the image of S under R, i.e., R(S) ={y:(Jz:z € S: zRy)} and R|4 for R
restricted to the set A4, i.e., R|la = {(a,b) : (aRb) A (a € A)}. A well-founded structure is
a pair (W, <) where W is a set and < is a binary relation on W s.t. there are no infinitely
decreasing sequences on W, w.r.t. <. We abbreviate ((s < w) V (s =w)) by s < w.
From highest to lowest binding power, we have: parentheses, function application, binary
relations (e.g., sBw), equality (=) and membership (€), conjunction (A) and disjunction
(V), implication (=), and finally, binary equivalence (=). Spacing is used to reinforce
binding: more space indicates lower binding.

Definition 1 (Transition System)

A Transition System (TS) is a structure (S, —, L, I, AP), where S is a non-empty set of
states, »C S x S is the transition relation (which must be left total), AP is the set of
atomic propositions, L : S — 24 is the labeling function which maps each state to the
subset of atomic propositions that hold at that state, and I is the (non-empty) set of
initial states. We only consider transition systems with denumerable branching.

Definition 2 (Well-Founded Equivalence Bisimulation (WEB))
B is a well-founded equivalence bisimulation on TS M = (S, —, L, I, AP) iff:

1. B is an equivalence relation on S; and
. (Vs,w € S:sBw:L.s= Lw); and
3. There exists a function, rank : S x S — W, s.t. (W, <) is well-founded, and
(Vs,u,w € S:sBw A s—u:
(Fo:w = v:uBv) V
(uBw A rank.(u,u) < rank.(s,s)) V
(Fv:w —wv:sBv A rank.(u,v) < rank.(u,w)))

We will call a pair (rank, (W, <)) satisfying condition 3 in the above definition, a well-
founded witness. Note that to prove a relation is a WEB, reasoning about single steps of
— suffices.

Theorem 1 (cf. [BCG88, Nam97]) If B is a WEB on TS M and sBw, then for any
CTL*\X formula f, M,s = f iff M,w |= f.

For an equivalence relation B on TS M, a quotient structure M /B (read M “mod” B)
can be defined, whose states are the equivalence classes of B and whose transition relation
is derived from the transition relation of M. Quotient structures can be much smaller
than the original: a bisimulation with finitely many classes induces a finite quotient (of a
possibly infinite-state system).

Definition 3 (Quotient Structure)
Let M = (S,—,L,I,AP) be a TS and let B be a WEB on M. The class of state s is
denoted by [s]. The quotient M /B is the TS (S,~, L,Z, AP), where:

S={[s] : s€ S} and

L.C = L.s, for some s in C' (equivalent states have the same label); and

Z={[s] : se€l};and

The transition relation is given by: For C, D € S, C ~ D iff either

(a) C# D and (s, w:s€c CAweD:s—w),or

(b) C=Dand (Vs:s€C:(Fw:weC:s— w))

(The case distinction is needed to prevent spurious self loops in the quotient, arising
from stuttering steps in the original structure.)

Ll

Theorem 2 (cf. [Nam97]) If B is a WEB on TS M, then there is a WEB on the union
of M and M /B that relates states from M with their equivalence classes.

Corollary 1 For any CTL*\X formula f, M,s = f iff M/B,[s] = f.

2.2 Quotient Extraction

We define a class of functions which we call “representative” functions. As we will see,
representative functions allow us to extract finite quotient structures automatically.

Definition 4 (Representative Function)

Let M = (S,—,L,I,AP) be a TS and let B be a WEB on M, with well-founded witness
(rank, (W, <)). Let rep : S — S; then rep is a representative function for M w.r.t. B if for
all s,w e §:

sBw = rep.s = rep.w; and
rep.rep.s = rep.s; and

rank.(w, rep.s) < rank.(w, s); and
rank.(rep.s, rep.s) < rank.(s, s)

Ll

Theorem 3 Let rep be a representative function for TS M = (S, —, L, I, AP) w.r.t. WEB
B. Let 8" = rep(S), and let M' = (S',=, L|gr, rep(I), AP), where s Z u iff (Ju:s = v:
rep.v = u). Then M' is M /B, up to a renaming of states.

Representative functions are very useful (when they exist) because they identify states
that have all of the branching behavior of their class. They allow one to view the quotient
as a submodel of the original structure, and they are used in the following on-the-fly
algorithm for constructing quotient structures.

Given a representative function, rep, for M = (S, —, L, I, AP) w.r.t. B, one can con-
struct the quotient structure induced by B if rep(I) is finite and computable, and if for
all s € S, rep(next.s) is finite and computable, where nezt.s is the set of next states of s
(in the original structure). We start by mapping I to rep(I) and then explore the state
space, e.g., by a breadth first traversal. Given a state, s, in the induced quotient (recall
that s is also a state in the original structure), we compute the set rep(nezt.s), which is
the set of next states of s in the quotient. This process is repeated until no new states are
generated. If the set of reachable quotient states is finite, the process will terminate.

2.3 Refinement

In this section, M = (S,—,L,I,AP) and M' = (§',—',L',I')AP'). M and M' are
isomorphic if there is a bijection f: S — S’ s.t. s > w iff f.s =' fow, and f(I) =1'"M
and M’ are B-isomorphic if they are isomorphic, 8 is a subset of both AP and AP’, and

L and L' agree when restricted to 3, i.e., for any p € B,p € L.siff p € L'.f.s for all s.
We say M and M' are WEB if AP = AP' and there are WEBs on M and M' s.t. the
quotients induced are AP-isomorphic. M and M’ are 3-WEB if 3 is a subset of both AP
and AP’ and the structures obtained from M and M’ by restricting L and L' to 8 are
WEB. If M and M' are AP'-WEB, then we say that M is a refinement of M’'.

Theorem 4 (Refinement)

1. If M is a refinement of M', then any CTL*\X formula that holds in M' holds in M.
2. If M and M" are B-isomorphic, M" is a refinement of M', and AP' is a subset of 3,
M is a refinement of M'.

Note that the converse of the first part of the theorem does not hold because AP may
be a proper superset of AP’. Refinement in a branching time framework corresponds to
refining atomicity in such a way that when the variables introduced for the refinement
are hidden, the resulting system and the original system are WEB. Note that refinement
depends crucially on stuttering, as pointed out in [Lam80]. We will apply the above theo-
rem by taking an infinite-state system M and creating an isomorphic system M in which
we’ve hidden and distorted (see Section 4.2) some variables. Then we’ll take the quotient
of M" and hide the variables we’ve distorted, getting M’, which M refines.

3 Protocol

The alternating bit protocol is used to implement reliable communication over faulty
channels. We present the protocol from the view of the sender and receiver first and then
in complete detail. The sender interacts with the communication system via the register
smsg and the flag svalid. The sender can assign a message to smsg provided it is invalid,
i.e., svalid is false. The receiver interacts with the communication system via the register
rmsg and the flag rvalid. The receiver can read rmsg provided it is valid, i.e., rvalid is
not false; when read, rmsg is invalidated. Figure 1 depicts the protocol from this point of
view.

i N rvaid
svalid communication

system

Sender Receiver

smsg rmsg

Fig. 1. Protocol from sender’s and receiver’s view

The communication system consists of the flags sflag and rflag as well as the two lossy,
unbounded, and FIFO channels s2r and r2s. The idea behind the protocol is that the
contents of smsg are sent across s2r until an acknowledgment for the message is received
on r2s, at which point a new message can be transmitted. Similarly, acknowledgments for
a received message are sent across r2s until a new message is received. In order for the
receiving end to distinguish between copies of the same message and copies of different
messages, each message is tagged with sflag before being placed on s2r. When a new
message is received, rflag is assigned the value of the message tag and gets sent across
r2s; this also allows the sending end to distinguish acknowledgments. There may be an
arbitrary number of copies of a message (or an acknowledgment) on the channels, and

sflag r2s rflag

Sender | svalid rvalid | Receiver
smsg W rmsg

Fig. 2. Alternating Bit Protocol

it turns out that there are at most two distinct messages (or acknowledgments) on the
channels, hence binary flags suffice. Figure 2 depicts the protocol.

The above discussion is informal; a formal description follows, but first we discuss
notation. We have formalized the protocol and its proof in ACL2, however, for presentation
purposes we describe the formalization using standard notation. We remain faithful to the
ACL2 formalization, e.g., we do not use types: functions that appear typed are really
under-specified, but total. The concatenation operator on sequences is denoted by “:”,
but sometimes we use juxtaposition; “¢” denotes the empty sequence; head.s is the first
element of sequence s; tail.s is the sequence resulting from removing the first element from
s; |s| is the size of the sequence. Messages are pairs; info returns the first component of a
message and flag returns the second.

A state is an eight-tuple (sflag, svalid, smsg, s2r, r2s, rflag, rvalid, rmsg); state is a
predicate that recognizes states. The sflag of state s is denoted sflag.s and similarly
for the other fields. Rules are functions from states into states; they are listed in Table 1
and are of the form G — A; if A is used as a rule, it abbreviates true —+ A. Rule G — A
defines the function (As : if G.s then A.s else s). We now define the transition relation,
R: sRuw iff s is a state and w can be obtained by applying some rule to s.

We have defined the states and transition relation of the alternating bit protocol. The
states are labeled with an eight-tuple, as mentioned above. It should be clear that we can
convert this type of labeling into a labeling over atomic propositions (boolean variables)
by introducing enough—in this case an infinite number of—atomic propositions, therefore,
the alternating bit protocol defines a TS, ABP.

| Rule | Definition
Skip skip
Accept.m |—svalid — smsg, svalid := m,true

Send-msg |svalid — s2r := s2r : (smsg, sflag)
Drop-msg |s2r #e€ — s2r = tail.s2r
Get-msg [s2r # e A —rvalid —
if flag.head.s2r = rflag

then s2r = tail.s2r

else s2r,rmsg, rvalid, rflag := tail.s2r,info.head.s2r,true, flag.head.s2r
Send-ack [r2s := r2s: rflag
Drop-ack |r2s #e — r2s := tail.r2s
Get-ack [r2s ¢ —
if head.r2s = sflag

then r2s, svalid, sflag := tail.r2s,false, =sflag

else r2s := tail.r2s
Reply rvalid := false

Table 1. Rules defining the transition relation

4 Protocol Verification

We give an overview of the verification of the alternating bit protocol. ABP" is the alter-
nating bit protocol, with some variables distorted. Let 8 be the set of variables that are
not distorted; then ABP and ABP" are B-isomorphic. We define a relation B and prove
that B is an WEB on ABP". We define rep, a representative function on ABP" w.r.t.
B. We use our extraction procedure to extract the structure defined by rep. ABP' is this
structure, restricted to 3. We model-check ABP'; by Theorem 4, ABP is a refinement of
ABP' and any CTL*\X formulae that hold on ABP' also hold on ABP.

We also show that ABP' is WEB to a non-lossy protocol; in many cases such a check
is more convincing than model-checking because it shows that one system is a refinement
of another.

4.1 Well-Founded Equivalence Bisimulation

In this subsection we define a relation B and outline the ACL2 proof that B is a WEB.
We start with some definitions.

For the following definitions, a and b are sequences of length 1, a # b, and z is an
arbitrary finite sequence. The function compress acts on sequences to remove adjacent
duplicates. Formally,

compress.€ = € compress.a = a

COMPTess.aar = CoOmpress.ax compress.abr = a : compress.bzx
The predicate good-s2r recognizes sequences that define valid channel contents. Formally,
good-s2r.e = true good-s2r.ax = (a = (info.a, flag.a)) A good-s2r.x

The function s2r-state compresses the s2r field of a state, except that already received
messages at the head of s2r are ignored. Formally,

s2r-state.s = compress.relevant-s2r.(s2r.s, (rmsg.s, rflag.s))
where the function relevant-s2r is defined by:

relevant-s2r.(e,a) = € relevant-s2r.(bx,a) = bz

relevant-s2r.(ax,a) = relevant-s2r.(z, a)

The function r2s-state compresses the r2s field of a state, except that acknowledgements
at the head of r2s with a flag different from sflag are ignored. Formally,

r2s-state.s = compress.relevant-r2s.(r2s.s, sflag.s)
where the function relevant-r2s is defined by:

relevant-r2s.(e,a) = € relevant-r2s.(az,a) = az

relevant-r2s.(bz,a) = relevant-r2s.(z, a)

The main idea behind the bisimulation is to relate states that have similar compressed
channels—i.e., are equivalent under s2r-state and r2s-state—and are otherwise identical.
We define the bisimulation in terms of rule rep:

good-s2r.s2r — $2r,r2s := s2r-state, r2s-state

We now define the bisimulation relation B: sBu iff rep.s = rep.u. It is easy to
see that B is an equivalence relation. We define rank, a function on states as follows:
rank.s = |s2r.s| + |r2s.s|.

We will show that (rank, (N, <)) is a well-founded witness (to be pedantic we can
define rank so that it has two arguments, as follows: rank.(u,s) = |s2r.s| + |r2s.s|) If
sBw, sRu, and sBu, then uBw and by rule Skip, wRw, therefore, we need only concern
ourselves with the case where ~sBwu. To show B is a WEB, it suffices to show:

sBw A sRuA—-sBu = (Jv:wRv:uBvV (sBv A rank.v < rank.w))

We break up the proof (that B is a WEB) into the eight cases in Table 2 by expanding
R, i.e., by considering all the ways in which s can be related to u. The cases have the
form: Rule Lemma; when u or v appear in Lemma they abbreviate the terms Rule.s and
Rule.w, respectively. We prove the cases in ACL2.

| Rule | Lemma

Accept.m |sBw = uBwv
Send-msg|sBw A -sBu = uBv
Drop-msg|sBw A —sBu = (uBv)V (sBv A rank.v < rank.w)
Get-msg |sBw A ~sBu Au # Drop-msg.s = (uBv)V (sBv A rank.v < rank.w)
Send-ack |sBw A —-sBu = uBv
Drop-ack |sBw A—-sBu = (uBv)V (sBv A rank.v < rank.w)
Get-ack |sBw A —~sBu A u # Drop-ack.s = (uBv)V (sBv A rank.v < rank.w)
Reply sBw = wuBv
Table 2. WEB case analysis

In order to tie up the case analysis, we define a function step that takes three states,
s, u, and w as arguments. If sBu, step returns w, else if u = A.s, for A, a rule from Table 1,
step returns A.w, else step returns w. Since we proved that B is an equivalence relation,
the following theorem implies that B is a WEB (quantification is replaced by the witness
function step):

sBw A sRuAv = step.(s,u,w) = wRvA (uBvV (sBvA rank.v < rank.w))

4.2 Quotient Extraction

In this subsection we prove the following ACL2 theorems which show that rep is a repre-
sentative function satisfying the requirements of Theorem 3; hence, the quotient induced
by rep is isomorphic to the quotient w.r.t. B: sBw = rep.s = rep.w, rep.rep.s = rep.s,
and rank.rep.s < rank.s. We extract the quotient structure (induced by rep) of the al-
ternating bit protocol restricted to binary messages. In the following subsections, we use
model-checking and WEB equivalence checking to analyze this structure.

We now have enough machinery to describe how refinement is used in the verifi-
cation of the alternating bit protocol. ABP is the model of the alternating bit pro-
tocol in ACL2. ABP" is ABP with s2r, r2s relabeled by s2r-state and r2s-state, re-
spectively. B is a bisimulation on ABP" with well-founded witness (rank, (N, <)), s.t.
rank.(u,s) = |s2r.f~1.s| + |r2s.f~1.s| (f is the bijection between ABP and ABP"; recall
that rank is defined on states of ABP"). The quotient of ABP" w.r.t. B is isomorphic to
the structure induced by rep. ABP’ is this structure, with s2r and r2s hidden. It is ABP’

that we analyze in the next two subsections. By Theorem 4, ABP is a refinement of ABP’
and properties of ABP' can be lifted to ABP.

4.3 Model-Checking

We model-check the quotient extracted by the above mentioned procedure, using a u-
calculus model-checker and a fair-CTL to p-calculus translator, both written in ACL2.
We check the following formulae (written in CTL*\ X):

1. AG(sending! = A(sendingl W rmsg =1))
2. AG(receivingl = A(receivingl W deliveredl))
3. AGEF svalid (acceptance of a new message is always eventually possible)

where sendingl, receivingl, and deliveredl are abbreviations for svalid A smsg = 1,
rvalid A rmsg = 1, and —rvalid A rmsg = 1, respectively; formulae analogous
to 1 and 2 are proved for message 0. All of the above formulae hold on the extracted
structure, which is what one would expect. The property AGAF svalid (acceptance of a
new message is always eventually guaranteed), however, does not hold without further
fairness assumptions.

The liveness properties are as follows. Each property is shown under a set of fairness
assumptions on the actions of the process. These are either weak fairness (infinitely often
disabled or infinitely often executed) or strong fairness (infinitely often enabled implies
infinitely often executed).

1. AG(sendingNew! = A(sendingl U rmsg = 1)) (sendingNew! represents the
sending of a new copy of message 1): This holds under weak fairness on the Send-msg
and Reply actions, and strong fairness on the receipt of a new message by the action
Get-msg. A similar property holds for message 0.

2. AGAFsvalid: This holds under the fairness assumptions for the previous property,
along with weak fairness on the Send-ack action and strong fairness on the receipt of
a new acknowledgment by the action Get-ack.

Since the fairness conditions mention actions, we compose Biichi automata accepting
fair paths with the quotient and model-check the resulting structure on fair-CTL formu-
lae which refer both to the propositions of the quotient and the accepting states of the
automata.

We use an argument based on bisimulation to derive sufficient conditions for data-
independence [Wol86] of the protocol. These are checked in ACL2; as a consequence, the
properties shown above for the data domain {0, 1} suffice to show similar properties for
arbitrary data domains.

4.4 Bisimulation Checking

In many cases, the correctness proof is more convincing if we can show that the extracted
model is bisimilar to a model that is so simple, it is correct by inspection. In the case
of the alternating bit protocol, we can show that the extracted model is bisimilar to a
simple, non-lossy version of the protocol, presented in Table 3.

We use a WEB equivalence checker (based on the description in [BCG88]) written in
ACL2 to verify that the non-lossy protocol in Table 3 and the extracted protocol are WEB.
The main idea is that we create the disjoint union of the transition systems corresponding
to the extracted protocol and the non-lossy protocol. The algorithm will compute the

coarsest WEB on a structure; hence, if the initial states of the two systems are in the
same class, the two systems are WEB. In computing the coarsest WEB, we examine
only svalid, smsg, rvalid, and rmsg. Notice that this view is exactly the one presented in
Figure 1.

| Rule | Definition

Accept.m |-svalid — smsg, svalid := m,true

Send-msg |svalid A —rvalid A —sent — rvalid, sent,rmsg := true,true, smsg
Ready sent — swvalid, sent := false,false

Reply rvalid := false

Table 3. Rules defining the transition relation of the non-lossy protocol

5 Related Work and Conclusions

Among related work, [MN95] prove safety properties of the alternating bit protocol by
using Isabelle/HOL to prove that a hand constructed finite-state system contains all of
the traces of the alternating bit protocol and then model-check the finite-state system.
[HS96] show the correctness of an infinite-state system by using PVS to verify that a
simple manually constructed finite-state system is a conservative approximation of the
infinite-state system. The work described in this paper improves upon such methods by
(i) using a (verified) representative function to mechanically construct a quotient, and (ii)
using WEBs instead of simulations or trace containment: this allows us to check properties
exactly, i.e., if a property holds (fails) on the simple system, then it holds (fails) on the
original systern.

There are several known types of infinite-state systems (e.g., [ACD90, GS92, AJ96,
EN95]) for which the model-checking problem is decidable, but these types of systems
often turn out to be too specialized for many cases where it is possible to devise finite ab-
stractions. There have been several approaches to automatically verifying the alternating
bit protocol: safety properties of such lossy channel systems are decidable [AJ96]; however,
in order to construct automatic abstractions that demonstrate liveness properties, most
other verifications of the alternating bit protocol (e.g., [GS97]) consider channels to be
bounded.

Mechanical verification is necessary. In our case, we managed to convince ourselves
that a candidate relation was a WEB for the alternating bit protocol, even though it was
not; this became clear only when we tried to prove it mechanically.

An interesting direction for future work is to apply the methodology presented here to
the verification of other infinite-state systems (e.g., pipelined and out-of-order execution
machines and memory coherence protocols).

Acknowledgments

J Moore was always available to discuss ACL2; he also read and commented on substantial
parts of the proof script. Jun Sawada and Richard Trefler were involved in the early stages
of the project; along with Rajeev Joshi, they have read this paper and have made many
useful suggestions.

References

[ACD90]
[AJ96]
[BCGSS]
[BG94]
[BG6]
[BM79]
[BSW69]

[CES1]

[CES86]

[EHS6]
[EN95]
[GM93]
[GS92]
[GS97]

[HS96]

[KM97]

[Lam80]

[Mil90]
[MN95]

[Nam97]

[QS82]

[Wol86]

R. Alur, C. Courcoubetis, and D. Dill. Model checking for real time systems. In 5th
IEEE Symp. on Logic in Computer Science, 1990.

P.A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Informa-
tion and Computation, 127(2), 1996.

M. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures
in propositional temporal logic. Theoretical Computer Science, 59, 1988.

M.A. Bezem and J.F. Groote. A correctness proof of a one bit sliding window protocol
in mCRL. The Computer Journal, 1994.

B. Boigelot and P. Godefroid. Symbolic verification of communication protocols with
infinite state spaces using QDD’s. In Conference on Computer Aided Verification,
volume 1102 of LNCS, 1996.

R. Boyer and J. Moore. A Computational Logic. Kluwer Academic Publishers, 1979.
K.A. Barlett, R.A. Scantlebury, and P.C. Wilkinson. A note on reliable full duplex
transmission over half duplex links. In Communications of the ACM, volume 12, 1969.
E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, volume 131
of LNCS. Springer-Verlag, 1981.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic. ACM Transactions on Programming Languages
and Systems, 8(2), 1986.

E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on branch-
ing versus linear time temporal logic. JACM, 33(1):151-178, January 1986.

E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In ACM Symposium on
Principles of Programming Languages, 1995.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

S. German and A.P. Sistla. Reasoning about systems with many processes. Journal
of the ACM, 1992.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Conference
on Computer Aided Verification, volume 1254 of LNCS, 1997.

K. Havelund and N. Shankar. Experiments in theorem proving and model checking
for protocol verification. In Formal Methods Europe (FME), volume 1051 of LNCS.
Springer-Verlag, 1996.

M. Kaufmann and J S. Moore. An industrial strength theorem prover for a logic based
on Common Lisp. IEEE Transactions on Software Engineering, 23(4):203-213, April
1997.

L. Lamport. “Sometimes” is sometimes “not never”. In ACM Symposium on Principles
of Programming Languages, 1980.

R. Milner. Communication and Concurrency. Prentice-Hall, 1990.

O. Miiller and T. Nipkow. Combining model checking and deduction for I/O-
Automata. In Proceedings of TACAS, 1995.

K. S. Namjoshi. A simple characterization of stuttering bisimulation. In 17th Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
volume 1346 of LNCS, pages 284-296, 1997.

J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. of the 5th International Symposium on Programming, volume 137
of LNCS, 1982.

P. Wolper. Expressing interesting properties of programs in propositional temporal
logic. In Proceedings of the 13th ACM Symposium on Principles of Programming
Languages, pages 184-193. ACM Press, 1986.

10

