
E�cient Decompositional Model-Checking forRegular Timing Diagrams�Nina AmlayDept. of Computer SciencesUniversity of Texas at Austin E. Allen EmersonzDept. of Computer SciencesUniversity of Texas at Austin Kedar S. NamjoshixBell LaboratoriesLucent TechnologiesAbstractThere is a growing need to make veri�cation tools easier to use. A solution that does not requireredesigning the tool is to construct front-ends providing speci�cation notations that are close to those usedin practice. Timing diagrams are such a widely used graphical notation, one that is often more appealingthan a \linear" textual notation. This paper introduces a class of timing diagrams called Regular TimingDiagrams (RTDs). RTDs have a precise syntax and a formal semantics that is simple and correspondsto common usage. In addition, RTDs have an inherent compositional structure, which is exploited toprovide an e�cient algorithm for model-checking an RTD with respect to a system description. Thealgorithm has time complexity that is a small polynomial in the size of the diagram and linear in thesize of the structure. We demonstrate the applicability of our algorithms by verifying that a master-slavesystem satis�es its speci�cation RTDs.1 IntroductionThe design of hardware systems includes the speci�cation of timing behavior for circuit components. Inindustrial practice, this behavior is most often described graphically as timing diagrams. Timing diagramsare, however, often used informally and ambiguously { making it di�cult to use them for speci�cation andveri�cation of correct behavior. This paper addresses the growing interest in formalizing timing diagrams topermit their incorporation into automated veri�cation by providing a precise syntax and a formal semanticsthat is simple and corresponds to common usage.We introduce a class of timing diagrams called Regular Timing Diagrams (RTDs). These diagramsdescribe, over a �nite time period, changes of signal values, and precedence and timing dependencies betweensuch events, such as \signal a rises within 5 time units of signal b falling" and \signal b is low when signal arises". The time intervals are speci�ed by constants, ensuring that the diagram de�nes a regular language.A RTD, like the circuit it describes, may be either asynchronous or synchronous. A synchronous diagramincludes one or more \clocks" with �xed periods and ensures that the time interval between any pair of eventsis determined up to the clock period. The ordering between events is partial in general; such RTDs are calledambiguous. An unambiguous RTD has a total ordering on events. Since an RTD is de�ned for a �nite timeperiod, an important question that arises in de�ning the semantics is \how does an in�nite computation�This work was supported in part by NSF grants CCR 941-5496, CCR 980-4736 and SRC Contract 97-DP-388.yE-mail: namla@cs.utexas.edu URL: http://www.cs.utexas.edu/users/namlazE-mail: emerson@cs.utexas.edu URL: http://www.cs.utexas.edu/users/emersonxE-mail: kedar@research.bell-labs.com URL: http://cm.bell-labs.com/cm/cs/who/kedar1

satisfy a timing diagram ?" Fisler [13] de�nes two kinds of semantics: in the invariant semantics, the timingdiagram must be satis�ed at every state of a computation, while in the basic iterative semantics, the diagrammust be satis�ed iteratively. We introduce a generalization of the iterative semantics, in which a timingdiagram must be satis�ed at only those points of the computation that satisfy a precondition of the diagram.This permits a system to satisfy diagrams that express the correctness of di�erent aspects of its operation.For ambiguous diagrams, we further classify these semantics into a weak aspect, where a fresh linear orderingof the events is chosen for each satisfaction of the diagram, and a strong aspect, where a single linear orderis chosen that applies to each satisfaction of the diagram.The key observation that leads to e�cient Model Checking [5, 18, 6] is that timing diagrams are composi-tional (conjunctive) in nature. This can be visualized informally as the waveforms acting independently andonly interacting with other waveforms through a dependency. Rather than building a monolithic NFA or atemporal logic formula corresponding to a timing diagram, we demonstrate that it is possible to decomposea timing diagram into properties of isolated waveforms and their interactions. This results in a conjunctionof simpler properties that can be conveniently represented by a succinct 8-automaton. Furthermore, theconjunctivity can be exploited to verify smaller components of the timing diagram in isolation, avoiding theconstruction of the entire 8-automaton. A 8FA [17, 24] is a �nite state automaton that accepts an inputi� every run of the automaton along the input meets the acceptance criterion. 8FA's can be exponentiallymore succinct than NFA's (non-deterministic �nite state automata) and naturally express properties thatare conjunctive in nature. We present e�cient algorithms that convert RTDs under the various semanticsinto 8FA that are in the worst case of size cubic in the size of the diagram.The use of 8FA permits the e�cient use of the automata-theoretic language containment paradigm [25] tomodel checking. For the system M and RTD T , the veri�cation check can be cast as L(M) � L(AT), whereAT is the (small, polynomial size) 8FA for the diagram T . This is equivalent to L(M) \ :L(AT) = ;. Thecomplement language of a 8FA is accepted by an NFA with identical structure but complemented acceptancecondition. Hence, complementation (the :L(AT) term) is trivial, and the complexity of the model checkingprocedure is linear in the size of the structure and the size of the 8FA AT . In addition, it is often possibleto decompose AT itself into a conjunction of smaller 8 automata, which may be checked independently withM . It is also easy to produce a \symbolic" description of :L(AT) which may be input to a symbolic model-checker. To demonstrate the applicability of this method, we veri�ed that a master-slave memory systemsatis�es its RTD behavior using the symbolic-model checker VIS [3]. In studying the timing diagrams usedin industry, we are led to believe that RTDs are su�ciently expressive for most industrial veri�cation needs.The rest of the paper proceeds as follows. In Section 2, we give a precise syntax and semantics for RegularTiming Diagrams. Section 3 outlines the algorithms that convert RTDs into 8FA and the model-checkingprocedure. Section 4 describes how the algorithms are used with VIS for the veri�cation of a master-slavesystem. Finally, we state our conclusions and discuss related work in Section 5.2 Regular Timing Diagrams - Syntax and SemanticsA Regular Timing Diagram (RTD) is speci�ed by a number of waveforms over a set of \symbolic" valuesSV and timed dependencies between points on the waveforms. The set of symbolic values includes 1 (High),0 (Low) and X (unspeci�ed). The set SV is ordered by v , where a v b i� a = b or a = X .
2

2.1 Regular Timing Diagrams: SyntaxDe�nition 1 (RTD) A RTD is a tuple (WF ;SD ;CD), where� WF is a �nite set of waveforms over SV . A waveform A of length n is a function A : [0; n) ! SV .The ith point on A is denoted by (A; i). Informally, A(i) represents the \signal level" in the timeinterval between points (A; i) and (A; i+ 1).� SD is the set of sequential dependencies on the points of WF. Each dependency is speci�ed as(A; i) [a;bi! (B; j), where a 2 N; b 2 N [f1g, 1 � a and a � b. (The i bracket indicates either aclosed or an open interval)� CD is a collection of mutually disjoint sets of points, called concurrent dependencies. The set of initialand �nal points of the diagram form prede�ned concurrent dependencies.The syntax given above allows several de�nitions that run counter to intuition. For instance, dependenciesmay be cyclically related, or it may be possible that the precise location of a dependency is ambiguous dueto the presence of X (undetermined) parts of a waveform. These are ruled out by giving a notion of \well-formed" RTDs, which is de�ned below.De�nition 2 (Event) The events of an RTD (WF ;SD ;CD) are de�ned inductively as follows, where thealternatives are applied in the order shown.1. For every waveform A in WF, (A; 0) is an event.2. For an event (A; i) with non-X value, a change along waveform A to a non-X successor value A(j)de�nes (A; j) as an event.3. If (A; i) is a member of a concurrent dependency that contains an event, then (A; i) is an event.4. If (A; i) is an event and (A; i) =k! (B; j), then (B; j) is an event.Notice that for any input string of vectors of signal values, every event has at most one position on thestring. This \precise location" property of events is the key to our e�cient model checking algorithm. Forevery event e, it is possible to construct a small DFA we call locator(e) that accepts at the position on aninput string where the event holds. This DFA essentially encodes the sequence of applications of the rulesabove that de�ne the point e as an event.A symbolic point of an RTD is either a concurrent dependency or a singleton containing a point that isnot in any concurrent dependency. Informally, events in a symbolic point should occur simultaneously. Thesequential dependencies of an RTD induce the following ordering relation � on symbolic points : p � q i�� (A; i) 2 p and (A; i+ 1) 2 q, for points i; i+ 1 of some waveform A in WF , or� There exist e 2 p and f 2 q such that e �! f is a sequential dependency.De�nition 3 (Well-formed RTD) A RTD is well-formed i� the transitive closure of �, �+, is not re-
exive and every point of the RTD is an event. 3

2.2 Regular Timing Diagrams: SemanticsThe semantics of an RTD is a set of in�nite computations over words; each word is a vector with a value foreach waveform of the timing diagram. The set of words is denoted by �. The operator v de�ned earlieris extended to words as follows : u v w i� for each i, u(i) v w(i). A computation of the system to beveri�ed consists of an in�nite sequence of words from �. Since the syntax of a RTD describes only �nitesequences of such event-sets, a key question is the appropriate extension to in�nite computations.The prede�ned initial and �nal concurrent dependencies may be thought of as \begin" and \end" markersof the �nite sequence of events described by the RTD syntax (for instance, a \memory-read" transaction).One may thus consider an in�nite sequence to satisfy a timing diagram i� whenever the initial conditionholds, the dependencies of the diagram are satis�ed before the �nal condition. This statement, though, isstill open to many interpretations, some of which are de�ned below. We �rst de�ne what it means for atiming diagram to satisfy a �nite sequence of words.De�nition 4 (Assignment) An assignment � is a function � : SP ! [0; n), for some n, that is monotonicw.r.t. � (p � q implies �(p) < �(q)) and maps the initial point of SP to 0.Two assignments � : SP ! [0; n) and � : SP ! [0;m) are equivalent i� they order symbolic pointsidentically w.r.t. < and =. Any assignment � induces the function �̂ which maps a point (A; i) to k i�the (unique, by de�nition) symbolic point that includes (A; i) is mapped to k by �. From the de�nition, itfollows that all points in a concurrent dependency are assigned a common position.De�nition 5 (RTD satisfaction) A RTD T = (WF ;SD ;CD) is satis�ed by a �nite sequence y over �+w.r.t. an assignment � : SP ! [0; jyj) (written as y j=� T) i� the following conditions hold.� Point consistency: For every point (A; i), if �̂((A; i)) = k, then A(i) v yk(A).� Waveform consistency: Let �̂((A; i)) = k and �̂((A; i+ 1)) = l. For every j 2 [k; l), A(i) v yj(A).� Dependency consistency: For every sequential dependency e [a;bi! f , (�̂(f)� �̂(e)) 2 [a; bi.For many systems, it is the case that the initial condition for the timing diagram does not recur beforethe �nal condition holds. For such systems, we may consider the following semantics. System computationsmay be described by the expression (�+ _ (#�+$))!, where # and $ are special vectors of � representingthe begin- and end- markers respectively, and � = �nf#; $g. The sequence of the form #�+$ is called atransaction.De�nition 6 (Weak Iterative Semantics) An in�nite sequence z satis�es a RTD T under the weakiterative semantics (written as z j=w T) i� for every transaction #y$ on z, there exists an assignment �such that #y$ j=� T .De�nition 7 (Strong Iterative Semantics) An in�nite sequence z satis�es a RTD T under the strongiterative semantics (written as z j=s T) i� there exists an assignment � such that for every transaction #y$of z, there is an equivalent assignment � such that #y$ j=� T .A notable class of systems where the assumption of non-overlapping transactions does not hold is thosethat involve some measure of pipelining. We may then consider the following generalization of the weakiterative semantics. 4

De�nition 8 (Overlapping Semantics) An in�nite sequence z satis�es a RTD T under the overlappingsemantics (written as z j=o T) i� whereever # holds along z, there exists y such that #y$ is a pre�x of thesu�x computation from that point and for some assignment �, #y$ j=� T .For the rest of the paper, we consider only the weak and strong iterative semantics in detail; the algorithmfor the overlapping semantics is a slight modi�cation of that for the weak iterative semantics and has thesame complexity. We consider now an alternative formulation of De�nition 5, which forms the basis forthe \decompositional" algorithms for model checking. If #y$ satis�es the timing diagram, each event, byDe�nition 2 may be located precisely on the sequence. The key observation is that, since each dependencyconsists of precisely located events, it can be checked independently of the others. Let pt be the partialfunction that de�nes the location of events on a �nite sequence.Theorem 1 For a RTD T = (WF ;SD ;CD), and any �nite transaction z = #y$, there exists an assignment� such that z j=� T i� each of the following conditions holds:� Every event of T can be located on z and has a value consistent with that in T ; i.e., pt is total, and ifpt(z; (A; i)) = k then A(i) v zk(A).� Let pt(z; (A; i)) = k and pt(z; (A; i+ 1)) = l. For every j in [k; l), A(i) v zj(A).� For each sequential dependency e range! f , (pt(z; f)� pt(z; e)) 2 range.� For each pair of events e; f in a concurrent dependency, pt(z; e) = pt(z; f).Notice that the theorem essentially transforms the existential (9) condition of De�nition 5 into a universal(8) condition; this forms the basis for the \decompositional" check.3 Decompositional AlgorithmsTheorem 1 is fundamental to decomposing RTDs into a conjunction of properties of individual waveformsand ordering/timing restrictions on their interactions, which is the key to e�cient model-checking. In thissection, we provide algorithms that translate RTDs under both strong and weak iterative semantics into8FA. The basic iterative and overlapping semantics can be handled similarly. For clarity, we often describethe NFA for the complement language instead of the 8FA.De�nition 9 (8FA (Dual Run Automata)) A 8FA on in�nite strings A = (�; Q; �; q0;�) is comprisedof a �nite input alphabet �, a �nite state set Q, a transition relation � � Q���Q, a start state q0 and anacceptance condition �.A run r of A on input x in �! is an in�nite sequence of states of A, where r0 is an initial state, and foreach i, (ri; xi; ri+1) 2 �. A accepts x by \dual-run" acceptance according to � i� every run r on x satis�es �.For any 8FA A, let A be the NFA with the same transition relation but complemented acceptance condition:�.Theorem 2 ([17, 24]) For any 8FA A, :L8FA(A) = LNFA(A).5

3.1 RTDs under the weak iterative semanticsWe describe here the NFA that accepts the complement of the weak-iterative language of an RTD T =(WF ;SD ;CD). First, generate �nite string automata for each waveform and dependency as follows:� Waveform : If (A; i+1) is de�ned in terms of (A; i), then locator((A; i)) is extended to ensure that thesignal values up to the change of value that de�nes (A; i+ 1) are above A(i) in v order. Otherwise,locator((A; i)) is used to determine that the value at the position where (A; i) holds is above A(i) inv order.� Sequential dependency : For a sequential dependency e �! f , the automaton is a parallel compositionof locator(e) and locator(f) that accepts i� the time between the acceptance of these DFA's is within�.� Concurrent dependency : The 8FA for a concurrent dependency C checks that for a �xed event e inC and every other event f in C, locator(e) and locator(f) accept at the same position on the inputsequence.The !-NFA for the complement language operates as follows on an in�nite input sequence : it nonde-terministically \chooses" a transaction #y$ on the input, \chooses" which waveform or dependency fails tohold of the transaction, and accepts if the automaton for that entity (de�ned as given above) rejects. Noticethat the automata de�ned above are either DFA or 8FA, both of which can be trivially complemented. The8FA obtained from this NFA by complementing the acceptance condition de�nes the language of the RTDunder the weak iterative semantics. Denote this 8FA by AT . For the diagram T = (WF ;SD ;CD), let L bethe size in unary of the largest constant in SD . De�ne jT j = #points+ jSDj+ jCD j. The size of AT is cubicin jT j and L.Theorem 3 (Correctness) For any RTD T , and x 2 �!, x j=w T i� x 2 L(AT). The size of AT ispolynomial in jT j and the unary length of the largest constant in T .3.2 RTDs under the strong iterative semanticsUnder the strong iterative semantics, every transaction on an input computation has to satisfy the RTDw.r.t. a single event ordering. The NFA for the complemented language accepts a computation i�� Some transaction violates a waveform or dependency constraint. This is checked by the automatonde�ned for the weak-iterative semantics. Or,� There is a transaction and a pair of events that occur in a di�erent order from that in the �rsttransaction. This is done by an automaton that \chooses" a pair of events unordered by �+, exe-cutes the locator dfa's for these events in parallel on the �rst transaction to determine their order,then \chooses" a subsequent transaction and executes the locator dfa's for the same events on thattransaction to determine the new order, and accepts if the orders di�er.Let AT denote the 8FA obtained from this NFA by complementing the acceptance condition. The size ofAT is cubic in jT j and L for the �rst case; for the second, it is quadratic in jT j and L with a multiplicativefactor of the number of concurrent event pairs.Theorem 4 (Correctness) For any RTD T and x 2 �!, x j=s T i� x 2 L(AT). The size of the 8FA ATis polynomial in jT j and L. 6

3.3 Model CheckingThe translation of an RTD to a small 8FA implies that the language containment approach to model checkingbased on [25] gives an e�cient algorithm. We need to check that L(S) � L(AT), where S is the system tobe veri�ed and AT is the 8FA for the RTD T . This is equivalent to L(S) \ :L(AT) = ;. Complementation(the :L(AT) term) is trivial for 8FA; the complemented automaton (an NFA) has the same structure butcomplemented acceptance condition. Hence, the emptiness check can be done in time linear in the size of thestructure and a small polynomial in the size of T . The space complexity, by the results of [21], is logarithmicin the sizes of both S and T .Theorem 5 For a transition system S and a RTD T , the time complexity of model checking is linear in thesize of S and a small polynomial in the size of T and the unary size of the largest constant in T .An alternative way of utilizing the 8FA construction is to note that, for the weak iterative semantics, theautomaton essentially de�nes a language (�+ _#Vi(Li)$)!, where the Li's represent the languages of thedependencies. The lemma below shows that the !-repetition distributes over the Vi in the following sense.Lemma 1 For �nite-string languages Li (i 2 [0; n)) which are subsets of �+,(�+ _#Vi(Li)$)! = Vi(�+ _#Li$)!.By this lemma, one can construct smaller !-automata, one for each dependency, and check that thelanguage of each has an empty intersection with L(S). This is often more e�cient than the combined check,and may lead to quicker detection of any errors. We refer to this as the \decompositional" approach.4 ApplicationsWe demonstrate the use of these algorithms in the veri�cation of a master-slave memory system using themodel-checker VIS, which is based on the automata-theoretic language containment approach to modelchecking. The decompositional approach and weak iterative semantics was used.In the master-slave system (Figure 1), the master issues a read or a write instruction by asserting thecorresponding line, and the slaves respond by accessing memory and performing the operation. The masterchooses the instruction, puts the address on the address bus and then asserts the req signal. The slavewhose tag matches the address awakens, services the request, then asserts the ack line on completion. Uponreceiving the ack signal the master resets the req signal, causing the slave to reset the ack signal. Finally,the master resets the address and data buses.The master-slave system was simpli�ed by abstracting away some inessential details. First, the addressbus was simpli�ed to the tag of the slaves. Since VIS does not allow variables to be both input and output,the bidirectional data bus is represented as two 1 bit boolean variables that denote the input and outputdata buses. The simpli�ed master-slave system was designed in Verilog. For both the read (Figure 2(a)) andwrite (Figure 2(b)) cycle RTDs, we created (as Verilog modules) both the complement of the 8FA and thecomplement NFA for each dependency and waveform.The language emptiness check passed for both the ambiguous read and write RTD translations. Themaster-slave system has 61 BDD variables and 109 reachable states represented with 275 BDD nodes. Theproduct of the master-slave system all the modules for the read RTD has 169 BDD variables and a reachablestate space of 17796 states represented with 2019 BDD nodes. The product of the master-slave system withthe module for a single waveform has 70 BDD variables and a reachable state space of 110 states represented7

Master Slave Slave

Req

Ack

Addr

Read

Write

Ardy

Data

Figure 1: Master-Slave Architecturewith 330 BDD nodes. The product of the master-slave system with the module for a single dependency has70 BDD variables and a reachable state space of 390 states represented with 532 BDD nodes. These resultsshow that the decompositional procedure is indeed feasible and that the size of the system to be veri�edtogether with a single dependency automaton may not be signi�cantly larger, in terms of BDD variables,than the system itself. Since the system under veri�cation was small, the multiplicative factor of the RTDautomata is more visible.5 Conclusions and Related WorkSeveral researchers have investigated timing diagrams and their use in automated veri�cation. Boriello [2]proposes an approach to formalizing timing diagrams. Timing diagrams are described informally as regularexpressions but no speci�c details or translation algorithms are given. Many other researchers [1, 22, 19, 4]have formalized timing diagrams and translated them to other formalisms (interval logics, trigger graphsetc). Formal notions of timing diagrams are also proving to be useful in test generation and logic synthesis(cf. [23, 15, 12]).Fisler [13, 14] proposes a timing diagram syntax and semantics that allows non-regular languages, and�nds that these languages occur at all levels of the Chomsky hierarchy. The paper [14] provides a decisionprocedure that determines whether a regular language is contained in an unambiguous timing diagramlanguage, and [13] provides an algorithm that translates a certain class of timing diagrams into CTL [5].A key di�erence with our work is that while this algorithm is restricted to a subset of unambiguous timingdiagrams under the basic invariant semantics, our algorithms are de�ned for all types of diagrams underboth iterative and invariant semantics. The regular containment procedure [14] has a high complexity (inPSPACE), while our algorithms have polynomial time complexity in the diagram size.A signal contribution in this area is the work done by Damm and his colleagues at the University ofOldenburg on Symbolic Timing Diagrams (STD) [9, 20, 8, 16, 7]. STDs may be compiled into �rst-ordertemporal logic formulae which are then used for model checking. STDs are extended in [11, 10] to RTSTD's(Real-time STDs), where a translation into a timed propositional temporal logic TPTL is provided. Boththese research e�orts consider in�nite languages and ambiguity. The main di�erence with our work lies inthe fact that their translation is monolithic, in the sense that all dependencies are considered together; theremay be an exponential blowup in the size of the resulting formulae when the diagram is highly ambiguous.8

Addr

Ardy

(b)

p4p3p2p1p0

Odata

p5

Ack

Req

pfp9p8p7p6
p6p5p4p3p2p1 p7

Addr

Ardy

(a)

pfp9p8p0

Req

Idata

Read

Ack

Write

X X A X X A

Figure 2: Ambiguous RTDs for (a) Read Cycle (b) Write CycleWhile it is possible to model-check the �rst order temporal logic presented in [9, 10], the procedure is notvery e�cient.This paper presents \regular" timing diagrams (RTDs), which have a simple syntax and precise, simplesemantics that closely correspond with common usage. The key contribution is polynomial time, decomposi-tional algorithms for model checking such timing diagram speci�cations, which are based on a decompositionof the RTD semantics into properties of each waveform and the way they interact. This decomposition mayalso provide a way of composing RTDs and thereby building new RTDs hierarchically. Our algorithms gen-erate 8FA (NFA) corresponding to the RTD (the negation of the RTD). We can choose to use either the8FA (by splitting it into smaller 8FA's) or its complement NFA in verifying that a system satis�es an RTD.We have shown how our algorithms may be used in conjunction with a model-checker such as VIS, toverify systems with speci�cations formulated as RTDs. We are currently working on a tool that implementsthese translation and veri�cation algorithms. As mentioned earlier, the algorithms proposed in this papercan also be used with synchronous RTDs. In general, synchronous RTDs have less ambiguity and morestructure; thus, it is possible that more e�cient algorithms can be devised for them. Other plans for futurework include possible extensions to timing diagrams to allow for �nite repetition and ambiguity across clockcycles, overlapping semantics for pipeline systems, and other features sometimes needed in practice.Acknowledgements We would like to thank Bob Kurshan and Steven Keckler for helpful discussions andinsightful comments.References[1] C. Antoine and B. Le Go�. Timing Diagrams for Writing and Checking Logical and Behavioral Properties ofIntegrated Systems. In Correct Hardware Design Methodologies. Elsevier Sciences Publishers, 1992.[2] G. Borriello. Formalized Timing Diagrams. In EDAC92. IEEE Comput. Soc. Press, 1992.9

[3] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S. Cheng, S. Edwards, S. Khatri,Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, and T. Villa. VIS. In FMCAD,1996.[4] V. Cingel. A Graph-based Method for Timing Diagrams Representation and Veri�cation. In Correct HardwareDesign and Veri�cation Methods. Springer Verlag, 1993.[5] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons using Branching TimeTemporal Logic. In Workshop on Logics of Programs, volume 131. Springer Verlag, 1981.[6] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Veri�cation of Finite-State Concurrent Systems usingTemporal Logic. ACM Transactions on Programming Languages and Systems, 8(2), 1986.[7] W. Damm and J. Helbig. Linking Visual Formalisms: A Compositional proof System for Statecharts cased onSymbolic Timing Diagrams. In E. R. Olderog, editor, Programming Concepts, Methods and Calculi. ElsevierScience B.V. (North Holland), 1994.[8] W. Damm, H. Hunger, P. Kelb, and R. Schl�or. Using Graphical Speci�cation Languages and Symbolic ModelChecking in the Veri�cation of a Production Cell. In C. Lewerentz and T. Lindner, editors, Formal Developmentof Reactive Systems. Case Study Production Cell, LNCS 891. Springer Verlag, 1994.[9] W. Damm, B. Josko, and Rainer Schl�or. Speci�cation and Veri�cation of VHDL-based System-level HardwareDesigns. In Egon Borger, editor, Speci�cation and Validation Methods. Oxford University Press, 1994.[10] K. Feyerabend. Real-time Symbolic Timing Diagrams. Technical report, Department of Computer Science,Oldenburg University, September 1994.[11] K. Feyerabend and B. Josko. A Visual Formalism for Real Time Requirement Speci�cations. In AMASTWorkshop on Real-time systems and Concurrent and Distributed Software. Springer Verlag, 1997.[12] K. Feyerabend and R. Schl�or. Hardware synthesis from requirement speci�cations. In EURO-DAC'96 withEURO-VHDL'96. IEEE Computer Society Press, September 1996.[13] K. Fisler. A Uni�ed Approach to Hardware Veri�cation Through a Heterogeneous Logic of Design Diagrams.PhD thesis, Computer Science Department, Indiana University, August 1996.[14] K. Fisler. Containment of Regular Languages in Non-Regular Timing Diagrams Languages is Decidable. InCAV. Springer Verlag, 1997.[15] W. Grass, C. Grobe, S. Lenk, W. Tiedemann, C.D. Kloos, A. Marin, and T. Robles. Transformation of TimingDiagram Speci�cations into VHDL Code. In Conference on Hardware Description Languages, 1995.[16] J. Helbig, R. Schl�or, W. Damm, G. Doehmen, and P. Kelb. VHDL/S - Integrating Statecharts, Timing diagrams,and VHDL. Microprocessing and Microprogramming, 1996.[17] Z. Manna and A. Pnueli. Speci�cation and Veri�cation of Concurrent Programs by 8 Automata. In POPL,1987.[18] J.P. Queille and J. Sifakis. Speci�cation and Veri�cation of Concurrent Systems in CESAR. In Proc. of the 5thInternational Symposium on Programming, volume 137 of LNCS, 1982.[19] Y.S.. Ramakrishna, P.M. Melliar-Smith, L.E. Moser, L.K. Dillon, and G. Kutty. Really Visual Temporal Rea-soning. In Real-Time Systems Symposium. IEEE Publishers, 1993.[20] R. Schl�or. A Prover for VHDL-based Hardware Design. In Conference on Hardware Description Languages,1995.[21] A.P. Sistla, M. Vardi, and P. Wolper. The Complementation Problem for B�uchi Automata with Applications toTemporal Logic. TCS, 49, 1987.[22] E.M. Thurner. Proving System Properties by means of Trigger-Graph and Petri Nets. In EUROCAST. SpringerVerlag, 1996.[23] W.D. Tiedemann. Bus Protocol Conversion: from Timing Diagrams to State Machines. In EUROCAST. SpringerVerlag, 1992.[24] M. Vardi. Veri�cation of Concurrent Programs. In POPL, 1987.[25] M. Vardi and P.Wolper. An Automata-Theoretic approach to automatic program veri�cation. In LICS, 1986.10

