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Abstract

It is often the case that systems are “nearly” symmetric; they exhibit symmetry in a part of their
description but are nevertheless globally asymmetric. We formalize a notion of near symmetry and show
how to obtain the benefits of symmetry reduction when applied to asymmetric systems which are nearly
symmetric. We show that the near symmetry reduced system is bisimilar (up to permutation) to the
original system. By further relaxing our notion of near symmetry we show how to generate a reduced
structure from an asymmetric program such that the program simulates (up to permutation) the reduced
structure.

In the symbolic model checking paradigm, representing the symmetry reduced quotient structure
entails representing the BDD for the orbit relation. Unfortunately, for many important symmetry groups,
including the full symmetry group, this BDD is provably always intractably large, of size exponential in
the number of bits in the state space. In contrast, under the assumption of full symmetry, we show that it
is possible to reduce a textual program description of a symmetric system to a textual program description
of the symmetry reduced system. This obviates the need for building the BDD representation of the
orbit relation on the program states under the symmetry group. We establish that the BDD representing
the reduced program is provably small, essentially polynomial in the number of bits in the state space
of the original program.

1 Introduction

Model checking [CE81] (c.f. [QS82] [LP85] [CES86]) is an algorithmic method for determining whether a
finite state system M satisfies a temporal logic formula f. Lichtenstein and Pnueli [LP85] have argued
that in practice the complexity of model checking will be dominated by |M]|, the size of M. Unfortunately,
|M| may be exponentially larger than the textual description of M. For example, a system comprised of n
identical processes running in parallel, each of which has 3 local states, may have 3™ reachable states.

Symmetry reduction is an abstraction technique which endeavors to substantially ameliorate this state
explosion problem by exploiting the fact that many computer systems are symmetric in their design and
implementation (c.f. [JR91] [ID96] [ES96] [CEFJ96] [HITZ95] [MAV96] [ES97] [GS97] [ET98] [AHIO8]). Such
symmetry can be seen to be a form of redundancy from the standpoint of model checking temporal logic
formulae. The state graph M, of many synchronization and coordination protocols which are the parallel
composition of n processes identical up to renaming, often exhibits considerable symmetry. For example,
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the mutual exclusion protocol contains states (C1,T>) and (T3, Cs) representing the states where process 1
is in its critical section and process 2 is attempting to reach its critical section and vice versa. These two
states are related by the permutation (1 2) which drives process index 1 to 2 and 2 to 1; in general the
permutation (1 2) when applied systematically to the states and transitions of M results in M again, that
is (1 2) is an automorphism of M. Aggregating states which are equivalent up to such permutations factors
out the symmetry of a system and model checking is then performed on the symmetry reduced structure —
a substantial, often exponential, savings can be achieved.

While symmetry reduction methods offer great potential there are, nevertheless, several obstacles to its
more widespread application. Firstly, it is often the case that protocols are not symmetric; they may contain
a high degree of symmetry in some part of their design but their global behavior is asymmetric. This can
occur, for instance, in systems with processes which are identical up to the renaming and assignment of
priorities. The readers—writers protocol, a refinement of the mutual exclusion protocol, is one such example.
In the mutual exclusion algorithm the two processes competing for access to their critical sections are given
equal priority, in the readers—writers protocol the writer is given priority. While the global state graph of
the readers—writers protocol is asymmetric it is symmetric in every aspect except the transition from the
state where both processes are attempting to access their critical sections.

Secondly, symmetry reduction and BDD-based [Br86] symbolic model checking [Mc92] [BCMDH92] do
not mix well. In the symbolic model checking paradigm, representing the symmetry reduced quotient struc-
ture entails representing the BDD for the orbit relation. Unfortunately, for many important symmetry
groups, including the full symmetry group, this BDD is provably always intractably large, of size exponen-
tial in the number of bits in the state space [CEFJ96].

We address both these issues in this paper. Previous work on symmetry reduction defined the symmetry
reduced structure M as the quotient structure of M induced by the equivalence relation on states =g. Two
states s and t are equivalent, s =¢ ¢ iff there is an automorphism 7 in G which drives s to t. We relax this
relationship by defining a permutation 7 to be a near automorphism if for every transition s — ¢ in M either
7w(s) — m(t) is in M or s is a fully symmetric state. The set of near automorphisms of M forms a group.
The equivalence relation on states induced by this group defines a quotient structure that is bisimilar, up to
permutation, with M. Therefore, even asymmetric structures can be near symmetry reduced.

By further weakening the restrictions on permutations applied to structures we define a notion of sub-
symmetry which allows for the creation of an abstract symmetry reduced structure that simulates the original
program. A permutation 7 is a sub-automorphism of M if 7 drives certain “closed” subgraphs of M back
into M. This notion of sub-automorphism induces a pre-order <y on states such that s <g t iff there is
a sub-automorphism 7 which drives a closed subgraph containing s back into M such that n(s) = t. We
then use <y to define a sub-symmetry reduced structure HS » which is simulated up to permutation by M,
thereby showing that VCTL* [CGL94] formulae true of M < are true of M.

Finally, we consider combining symmetry with BDD-based symbolic representations of systems. It was
demonstrated in [CEFJ96] that these two notions do not mix well. For many symmetry groups, including the
full symmetry group, the BDD for the orbit relation, that is for determining equivalence of two states under
group action, must always be of exponential size. This orbit BDD is used to permit designation of a specific
representative state for each equivalence class in the quotient structure. The orbit BDD must recognize as
equivalent, say, the states (N1, N2, T3), (N1,T5, N3), and (11, N2, N3). A specific, actual state is (implicitly)
chosen as a representative. In the case of full symmetry, we can instead use generic representatives, for
example, (2N, 1T'), which obviates the need for representation of the orbit relation. This is accomplished
by compiling the program text of the fully symmetric program P into the program text of the symmetry
reduced program P over generic states. The symmetry reduced program defines a structure M (P) isomorphic
(and bisimilar up to permutation) to the symmetry reduced structure M and model checking can then be
performed on M (P). This compilation process not only obviates the need for determining the equivalence
of states under permutation but also reduces the number of bits used to represent a state in the symmetry

reduced program from O(n) in the case of M to O(logn) in the case of M (P).

The remainder of the paper is organized as follows: Section 2 contains some preliminaries, Section 3



defines near symmetry, compilation of fully symmetric programs into symmetry reduced programs is outlined
in Section 4 and section 5 contains a brief conclusion.

2 Preliminaries

We denote the set of natural numbers by N. Let I be a finite index set [1..n] for some n € N, n > 0. LP is
a finite set of local propositions. Sym T is the set of permutations on index set I. M = (S, R) is a structure
where S C LPT and R C S x S is non-empty and total. We write both (s,t) € R and s — ¢t € R to mean
that there is a transition from state s to state t in R. Forl € LP, i € [1..n] and s € S we write (I,i) € LP x I
as l; and s(7) =1 (I; is true at s) iff the ith element of s is [.

A permutation 7 € Sym T acts on a state s € S in the following way: s(i) = [ iff the 7 (¢)th element of 7 (s)
is I. 7 is an automorphism of M = (S, R) iff S = {n(s) | s € S} and R = {(n(s),n(¢t)) | (s,t) € R}. A state s
is said to be fully symmetric if for all 7 € Sym Z, n(s) = s. The identity permutation is denoted by id. For
any M, AutM , the set of automorphisms of M, is a group. Any subgroup G of AutM, induces the following
equivalence relation, s =g ¢ iff there exists a 7 € G such that n(s) = ¢t. M’s symmetry reduced structure,
with respect to G, M = M /=, = (S, R) is defined as follows: S = {5 € S | 5 is the unique representative of
the equivalence class [s]=.} ! and (3,7) € R iff (5,t) € R for some t € [f|=, [ES96][CEFJ96].

In the sequel we will make use of the expressive branching time temporal logic CTL* [EH86] (c.f. [Em90]
for more details). Let LP x I be the set of atomic propositions. A path formula is formed from boolean
combinations (A, V, ) and nestings of atomic propositions, state formulae and the usual temporal operators
X, G, F,U and V (the dual of U). State formulae are formed from boolean combinations of atomic propositions,
state formulae and prefixing of path formulae by path quantifiers A and E. For example, the formula
AG—(writerC A readerC) says that along all computations it is never the case that both the writer and the
reader are accessing their critical sections. We write M, s |= f to denote that state s in structure M satisfies
formula f and M = f to denote that there is a state, s, in M such that M,s |= f. A formula is in positive
normal form (PNF) if the — operator appears only in front of atomic propositions. ECTL* is the sub-logic
of CTL* in which every formula, when put in PNF, contains only E path quantifiers. Similarly, ACTL* is
the sub-logic of CTL* in which every formula, when put in PNF, contains only A path quantifiers [CGL94].

When model checking formula f over M = M/ =¢ it is required that for every maximal propositional
sub-formula g of f, and every permutation 7 € G, n(f) = f [ES96] [CEFJ96]. Symmetric CTL* (SCTL*)
and its sub-logics ASCTL*, ESCTL*, defined below, all satisfy this requirement. The syntax of SCTL* is
the same as for CTL* except that the atomic formulae are restricted to the following: Vi : {;, 3i : [;, Vi : =l;,
i : =l and i # j: [; Alj. For example, AG—(3i # j : C; A Cj) is a formula of ASCTL*.

2.1 Simulation up to Permutation

Let M = (S,R) and M' = (S', R') be structures defined over LP and I. B C S x S’ is a simulation up to
permutation (c.f. [Mi71] [Pa81] [HM85] [MAV96] [ES96] [CEFJ96)) iff for all (s,s’) € B

e there is a m € Sym T such that n(s) = s’ and
e for all (s,t) € R there is a t’' such that (s',¢') € R’ and (¢,t') € B.
B C S x S'is a bisimulation up to permutation iff for all (s,s’) € B the above two conditions hold and

e for all (s',¢') € R there is a t' such that (s,t) € R and (¢,¢') € B.

Proposition 1 ([ES96] [CEFJY6]) Let B be a bisimulation up to permutation. For all (s,s") € B and all
SCTL* formulae f, M,s |= f iff M',s' = f.

1

§ is a distinguished element of S and [s] is the set of s € S such that s =g 5.



Proposition 2 ([ES96] [CEFJ96]) Let B be a simulation up to permutation. For all (s,s') € B and all
ASCTL* formulae f, M',s' \= f implies M,s |= f.

Proposition 3 ([ES96] [CEFJ96]) Let B be a simulation up to permutation. For all (s,s") € B and all
ESCTL* formulae f, M,s |= f implies M',s" |= f.

3 Near Symmetry

3.1 Near Symmetry and Bisimulation

Let M = (S, R) be a structure. A permutation 7 is a rough automorphism of M if n(S) = S and for all
s—=teRif n(s) = w(t) € R then n(s) =s. Let RAutM = {m € Sym Z | 7 is a rough automorphism of
In the same way that AutM defines an equivalence relation = g4¢7, and the symmetry reduced structure
M/ =autm, if RAutM is a group then =grayar is an equivalence relation on the states of M which induces
the rough symmetry reduced structure M gays = M/ =gpauimr = (S, R). Where S is the set of unique
representatives of the equivalence classes of =gauens and 5 -t € Riff 5 — t € R for some t =g ayen L.

Theorem 1 Given M = (S,R) for which RAutM is a group, then Mpaw = M/ =gpautm = (g,ﬁ) 18
bisimilar up to permutation to M = (S,R) and for all (s,3) such that s =rautm 3, and for all SCTL"
formulae f, M, s |= f iff Mpaut,S = f.

Unfortunately RAutM may not be a group so we define a slightly stronger concept. Let M = (S, R) be
a structure. A permutation 7 is a near automorphism of M if 7(S) = S and for all (s,t) € R either s is fully
symmetric or 7(s) — 7(t) € R. Let NAutM = {m € Sym T | 7 is a near automorphism of M }2.

Theorem 2 Given M = (S, R) the set NAutM is a group.

Corollary 1 M yaut = M/ =nawm= (S, R) is bisimilar up to permutation to M = (S, R) and for all (s,3)
such that s =nautm S, and for all SCTL* formulae f, M,s = f iff M Naut,S E f-

We can apply these ideas to the readers-writers problem as given in figure 1. The flip permutation (1 2)
which drives index 1 to index 2 and vice versa is a near automorphism. This implies that the structure
in the figure has the full symmetry group, Sym Z, as its group of near automorphisms (and its group of
rough automorphisms) and therefore the near symmetry reduced structure given in figure 2 is bisimilar up
to permutation to the structure in figure 1. Model checking for safety formulae like AG—(3i # j : C; A Cj)
and liveness formulae like AG[(3i : T;) = AF(3i : C;)] — which says that along all computations it is always
the case that if some process is trying to enter its critical section then it is inevitable that some process enter
its critical section — can then be performed on the near symmetry reduced structure M y4.¢ instead of M.

Figure 3 contains the program skeletons which generate the structure M in figure 1. The near auto-
morphisms for M can be generated directly from the program skeletons through the following observation.
While the skeletons are not symmetric they are nearly symmetric in the following sense. Ignoring, for the
moment, the transition To — Cs that is enabled when T3 is true, the two skeletons are symmetric — the flip
permutations applied to the skeletons results in the same two skeletons. The asymmetry of the transition
T> — C5 that is enabled when 77 is true guarantees a near symmetry of the induced Kripke structure because
this symmetry breaking transition is only enabled from the fully symmetric state (71,7%). In the full paper
we give a more detailed algorithm for determining near automorphisms from program skeletons.

2This can be generalized: to ensure that NAutM is a group only requires that if for some m € NAutM, w(s) — =n(t) € R
then Auts O NAutM.



Reader: Process 1
Writer: Process 2

N -- Non-Trying
T -- Trying
C -- Critical Section

Figure 1: Asymmetric Readers-Writers

N1 N2

Figure 2: Near Symmetry Reduced Asymmetric Readers-Writers

Finally, we note that the near symmetry reduced structure Mpyaw =M / =Nawt can be built directly
from the program text without building M in a manner analogous to that used to build M. Basically, the
procedure works as follows, given a state 3 € S generate each of the states ¢ such that 5 — ¢ € R as described
by the program text. For each ¢ if ¢ is equivalent to a state f € S then add an arc 5 — ¢ to R otherwise add
t to S and the arc 3 — £ to R (see [ES96] for complete details).

3.2 Sub-symmetry and Simulation

Given M = (S, R), let S’ be a subset of S. S’ is closed (with respect to M) iff for all s € S’ and all (s,t) € R,
te S Letme Sym T and S’ C S be closed. = is a sub-automorphism on S’ iff {w(s) | s € S’} C S and for
all s,t € §"if s — t € R then n(s) — w(t) € R. Let H be the subset of Sym T x 2% such that (7,S') € H
iff 7 is a sub-automorphism on the closed subset of S, S’. s <y ¢ iff there is a (7, S") € H such that s € §’
and 7(s) =t.

Proposition 4 s <g t and t <g u implies s <y u.
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Writer Skeleton

Figure 3: Readers-Writers Program Skeletons

Proof: s <g t implies there is some closed S’ C S and 7 such that (7, S’) € H and 7(s) = ¢. Furthermore,
there is some closed S C S and ¢ such that (¢,S"”) € H and ¢(t) = u. Consider T' C S’ such that T contains
s and all the states reachable from s in S’. S’ closed implies such a T exists and is a closed subset of S'.
w(T) C S" is straight forward. This implies that for all s,t € T, (¢ - 7)(s) € S and for all (s,t) € R,
(¢-m)(s) = (¢-m)(t) € R which implies that ((¢-7),T) € H. Since (¢-m)(s) = u it is the case that s <g u.
O

For,t € S, [Z]gH ={te S|t <yt}

Let M<, = M/<u= (S, R) be any structure such that
e SC S and

e for all s € S there is an § € S such that s € [§]<y and

e (3,7) € R iff there is some t € [f]y such that (5,t) € R.

Let M = (S,R) and M <,, = (5, R) be structures as described above. Then let B = {(s,5) € Sx S | s €
[Sl<u}.

Theorem 3 B is a simulation up to permutation.

Proof: Suppose (s,3) € B then s € [3] and there is a (7, S") € H, such that 7(s) = 3. Suppose (s,t) € R.
This implies that (7(s),7(t)) € R. By the structure of M<,, this implies that there is some ¢ such that
(5,t) € R and w(t) <g t. But this implies that ¢ <g ¢ hence (¢,) € B. O
Corollary 2 For all ASCTL* formulae, f, and for all (s,3) € B, M<,,,s = f implies M,s |= f.

Proposition 5 If <pg is commutative then <y is an equivalence relation.

Theorem 4 Let M = (S, R) and M<,, = (S, R) be as above and let <g be commutative, then B = {(s,3) €
S x S|s € [S]u} is a bisimulation up to permutation.

Proof: Let (s,3) € B. Suppose 3 — t € R, then there is some ¢ such that 5 -t € Rand t <g t. s <y 3
implies § <y s which implies there is some (¢,T') € H such that 3 € T' and ¢(5) = s. Hence s — ¢(t)
which implies ¢t <g ¢(¢) and therefore ¢(t) <y ¢. This implies ¢(¢t) <g t and therefore (¢(t),t) € B. O



Corollary 3 For all SCTL* formulae, f, and all (s,3) € B, M,s |= f iff M<,,,5 = f

When <p can be determined from the program text or is given a prior: then it is possible to build the
sub-symmetry reduced structure MS » directly from the program text without first constructing M. The
procedure is analogous to building M = M/ =a,:m, however, it may require some backtracking as it is
possible that a state s is generated in MSH which can then be replaced by a state 5 such that s <g 5.

4 Symmetry Reduction on Fully Symmetric Programs

Representing symmetry reduced structures with BDD’s is typically computationally intractable. The BDD
representing the orbit relation of many groups, including the full symmetry group, is of size exponential in
the number of processes or the number of bits in a state. In the sequel we show that under the assumption of
full symmetry, symmetry reduction can be done efficiently in the symbolic model checking paradigm without
representation of the orbit relation. Let k = |LP|, be the number of local states of an individual process P;.
Given a program P = //;c1..nF;, the parallel composition of n processes identical up to renaming, which
defines a fully symmetric Kripke structure M (P), we compile P into a program P, in time linear in the size
of P. P defines a symmetry reduced quotient structure M (P) which is isomorphic to M (P) except each
specific representative in M (P) is replaced by the corresponding generic representative in M (P). M(P) can
then be used to model check M (P) without having to represent the orbit relation for the symmetry group on
the states of M (P). We have then reduced a problem of worst case size k™ which is exponential in 7, to one
of worst case size n* which is polynomial for any fixed number & of local states. Furthermore, the number
of bits required to symbolically represent a state has been decreased from O(nlogk) in M (P) the standard
quotient to O(klogn) in M (P) the generic quotient. We then show that in many cases the transitions in P
can be represented by BDD’s polynomial in the size of the text of P.

The key idea is that a generic representative can be chosen for each of the equivalences classes of states
under the assumption of full symmetry [ES96] [CEFJ96]. Equivalence under full symmetry means that two
states s,t € LPT are equivalent iff they have exactly the same number of processes in local state [ for each
state [ € LP. Hence the generic representative needs only track the number of processes in each local state
and not any information regarding which processes are in a particular local state.

Let a program P = //;c(1..)P; be the parallel composition of processes P, ..., P, which are identical up
to renaming. Each process is specified by a program skeleton similar to the ones in figure 3. The skeletons
give rise to generic transitions of the processes which are specified by [ : ¢ — I' where [,] € LP are local
states and g is a guard. Guards are positive boolean combinations of the following elements: Vj : I, Vj : —l;,
3j:1;,3j - —lj and 35 # j' : I; Alj. Since the processes are identical up to renaming this syntax gives rise
to fully symmetric structures. The intended meaning of [; : g — I} is that if P is in state s, where process i is
in local state [; and guard g is true of s then P may transit to the state ¢, everywhere the same as s, except
that process 7 is in state I}. P executes the enabled transitions — there may be multiple enabled transitions
for a single process — non-deterministically. We further stipulate that P define an initial state sy of the form
" =(ly,...,l,) for some [ € LP.

Given P = //ic1..n)P; with initial state [", as above, P defines a Kripke structure M (P) = (S, R, so) as
follows: sg = ™ is the initial state, S = LP™ and s — ¢ € R iff there exists a generic transition statement
[:g—1'such that s(i) =1, t(i) = ', g is true at s and for all i’ # ¢, s(i') = t(i'). For a Kripke structure
M with an initial state sg, we say that M = f iff M,so = f. M(P) = M(P)/=sym 7 = (S, R, s0) is the
symmetry reduced quotient structure.

Theorem 5 [ES96] For any SCTL* formula f, M(P),so |= f iff M(P),so = f.

We define the symmetry reduced program P as follows: P has variables z1,...,z; each of type [0..n]
and we assume the existence of a bijective function ¢ : LP — [1..k]. Suppose each process P; has a different
transitions of the form I; : ¢ — I generated by the generic transition [ : ¢ — I’. Then P has a transitions of



the form z,;) > 0A T (g) — 2,0y, 7.1y = 2,) — 1,2,y + 1. The intended meaning being that if Pisin a
state s € [0..n]" where the variable z,;) > 0 and the guard 7 (g) is true then P may non-deterministically
transit to a state ¢ € [0..n]* such that z,(;) has decreased by 1, z,(;r) has increased by 1 and all other variables
are unchanged.

The symmetry reduced guard 7 (g) is derived from g as follows: T(Vj : l;) =‘z,) = n’, T(Vj : -l;) =
‘T =0, T3j ) =2,y >0, T(3j:=ly) =‘z,0) <0, TEF AT L AN) =200 22, T(q1V g2) =
T(g1) VT (g2) and T (g1 Ag2) = T (g1) AT (g2). Finally, if the initial state of P is {" then the initial state of

Pisz,g=n+1andz,) =0 forall I’ £1.

P defines a Kripke structure M (P) = (§', R, s))) as follows: if z; = n and for all i’ # 4, zy = 0 is the
initial state of P then s (i) = n and for all i’ # 4, s{(i') =0, S’ = [0..n]* and R’ C S’ x S’ where s =t € R’
iff there is a transition in P, of the form T,y > OANT(g) = 2,0y, T, 1) = T,q) — L, 2,7y + 1 where the ¢(I)th
element of s is greater than 0, 7 (g) is true at s and for all j € [1..k], j = ¢(I) implies ¢(j) = s(j) — 1, j = ¢(I")
implies ¢(j) = s(j) + 1 and otherwise s(j) = t(j).

Theorem 6 M (P) is bisimilar to M (P).

Corollary 4 For all SCTL* formulae f, M(P),s, = f iff M(P),s0 = f

In the sequel we describe how S’ and R’ can be succinctly represented by BDD’s. States in S’ are
be represented by tuples in [0..n]*. Such a state space can be represented by k - (log(n) + 1) boolean
variables (for ease of explanation we assume that n is a power of two). Bits b ...biogn represent xp, bits
bog(n)+1 - - - D210g n T€DTesent the variable zz, etc. Assuming that k is fixed, then generic states of S’ can
be represented in O(logn) bits. It follows that, for any type of transition relation R’ over S', the BDD
representing R’ is of size at most poly(n). This should be contrasted with the size of the BDD representing
the conventional symmetry reduced quotient which has a lower bound ezp(n) [CEFJ96]. But for this model
of computation we can obtain better bounds as described below.

We now show that transitions of the form z,;) > 0A T (g) = z,q),2Z,qr) = 2,q) — L, z,q1) + 1 can be
represented succinctly when 7(g) is of a particular form. Firstly, x,;) > 0 can be checked with a BDD
of size O(log(n) + 1) since the BDD need only check that the bits (¢(I) — 1) - logn...[¢(I) - logn] — 1 are
not all 0 (false). Consider the set of atomic boolean guards {z; = n,z; = 0,z; > 0,z; < n,z; > 2}, for
J € [1..k] and assume that 7 (g) is either a conjunction of atomic boolean guards or a disjunction of atomic
boolean guards. For the case where 7 (g) is conjunctive, extend the set of atomic boolean guards to include
z; >0Az; <nandz; <nAz; >2.

In a manner similar to the above it is possible to show that each of the extended atomic boolean guards
is representable by a BDD polynomial in the number of bits used to represent the value of the variable which
the guard restricts. Conjunctive guard 7 (g) can be rewritten so that it first mentions only those atomic
boolean guards which mention variable z; then z2 and so on. Consider the conjunctive portion of 7 (g) in
which z; occurs, for some j € [L..k]. It is not hard to prove, under the assumption that n > 1, that any
conjunctive combination of boolean atomic guards reduces to the constant 0 or a single instance of one of
the extended set of conjunctive boolean guards. Since the BDD’s for the separate variables in 7 (g) are
completely independent they can be put together to form the BDD for 7 (g) which is of size additive in the
size of the BDD’s for each of the separate variables and hence polynomial in the length of 7 (g).

A similar argument can be made for the case when 7 (g) is disjunctive. However, in that instance the
set of atomic boolean guards is extended by z; =nV z; = 0 and ; = 0V x; > 2. Furthermore, arbitrary
disjunctions of the atomic boolean guards never result in the constant 0 (false) but they do result either
in a single instance of the extended set of atomic boolean guards or the constant 1 (true). Finally, it is
not hard to see that a BDD can be built to check whether two states are related by the assignments of the
form z,(;y, .1y = @,y — 1,2,y + 1 which is of size polynomial in & - (log(n) + 1). The bits representing
the variable z,() (z,)) increase (decrease) by 1 and all other variables remain unchanged. Finally, by
combining all three sections of the BDD representing a transition we see that the BDD is at most cubic in



O(k - (log(n) + 1)) and hence polynomial in the size of the transition. These BDD’s for individual program
statements can be combined to get a BDD for R’ of size poly(n). However, they combine disjunctively which
can be advantageous in terms of possible disjunctive partitioning.

When P = |[;jg[1..,)P; is the synchronous composition of processes Pi, ..., P, a similar but slightly more
complex translation is required. ?‘ |, the symmetry reduced program, contains two variables z,(;) and z:(l) for
each local state [. The generic transitions of the synchronous program P are translated in the same manner as
the generic transitions in the asynchronous case except for the following: guards refer to unprimed variables
while the assignments are made to the primed variables. Computation then proceeds in rounds. For each
local state [, if the unprimed variable z,(;) has value b then up to b enabled transitions from place [ — compiled
transitions with z,;) > 0 in their guard — are executed. At the end of the round, each unprimed variable z;
is set to the value of the primed variable 17"7 Details will be given in the full paper.

5 Conclusion

Many researchers have investigated the exploitation of symmetry in to expedite verification but ‘almost’
symmetric designs have received little attention. A different type of partial symmetry has been explored
in [HITZ95], without precise formalization and only in relation to preservation of reachability properties
of petri nets. Our formalizations of rough and near symmetry are new and our use of near symmetries
of M in the reduction of M to an abstract quotient structure is new. The term partial symmetry has
been used for quite some time (c.f. [Ko78]) in switching theory. There, however, a system is partially
symmetric if its group of symmetries over index set I is isomorphic to the full symmetry group of an index
set I' C I. This type of partial symmetry has been handled explicitly by [ES96], [CEFJ96]. [AHI9g] considers
partial symmetry in a manner more analogous to our definition of sub-symmetry. However, they deal only
with partial symmetries of the formula (or its automaton representation) to be model checked, rather than
reduction of the structure itself. Abstraction of M, on the other hand, has the potential to be of much more
benefit to ameliorating the state explosion problem [LP85]. We have also shown that near automorphisms
are sufficient for the preservation of symmetric properties, a generalization of the results of [ES96] [CEF J96],
and we have extended these ideas to the generation of near symmetries directly from the program text.

With respect to full symmetry, we have shown how to exploit the symmetry of program text without
the need to represent the symmetry reduced Kripke structure or the orbit relation induced by the symmetry
group. [CEFJ96] shows BDD’s representing the orbit relation of the full symmetry group are of exponential
size. They suggested a technique to mitigate this problem using multiple representatives, but did not prove
it to yield a tractable representation in general. Our technique consists in compiling the symmetric program
P with Kripke structure M (P) to a symmetry reduced program P over generic states whose structure M (P)
is bisimilar up to permutation to M (P)/=sym z-

For the future, we plan on implementing a preprocessor front end to a symbolic model checking tool
to take advantage of our results on full symmetry. We are also investigating extending our technique to a
larger class of groups [CEJS98] for which symmetry reduction can be applied directly to program text. With
respect to near symmetry and full symmetry we are interested in exploring the applicability of our work here
to symmetry reduction techniques which use the annotated symmetry reduced structure which preserves the
truth of all CTL* (and p-calculus) properties [ES96][ES97|[ET98].

Acknowledgment: The authors would like to thank Bob Kurshan for many stimulating comments and
discussions.

References

[AHI98] Ajami, K., Haddad, S. and Ilie, J.-M., Exploiting Symmetry in Linear Time Temporal Logic Model Checking:
One Step Beyond. In Tools and Algorithms for the Construction and Analysis of Systems, 4th Interntational
Conference, ETAPS98 LNCS 1384, Springer Verlag, 1998.



[BCMDH92]
[Br86)

[CES1]

[CEJS98]

[CES86]

[CEFJ96]

(CGLY4|
[Em90]
[EHS6]

[ES96]

[ES97]

[ET98]
(GS97]
[HITZ95)
[HM85)
[ID96]
[JR91]
[Ko78]
[LP85)
[MAV96]
[Mi71]
[Mc92]
[Pa8l]

[QS82]

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L. and Hwang, L. J., Symbolic Model Checking: 102°
states and beyond. In Information and Computation, 98(2):142-170, June, 1992.

Bryant, R. E., Graph-Based Algorithms for Boolean Function Manipulation. In IEEE Transactions on Com-
puters, Vol. C-35, No. 8 (August, 1986), pp. 677-691.

Clarke, E. M., and Emerson, E. A., Design and Verification of Synchronization Skeletons using Branching Time
Temporal Logic, Logics of Programs Workshop, IBM Yorktown Heights, New York, Springer LNCS no. 131., pp.
52-71, May 1981.

Clarke, E. M., Emerson, E. A., Jha, S. and Sistla A. P., Symmetry Reductions in Model Checking. In Computer
Aided Verification, 10th International Conference LNCS 1427, Springer- Verlag, 1998.

Clarke, E. M., Emerson, E. A., and Sistla, A. P., Automatic Verification of Finite State Concurrent System
Using Temporal Logic, 10th ACM Symp. on Principles of Prog. Lang., Jan. 83; journal version appears in ACM
Trans. on Prog. Lang. and Sys., vol. 8, no. 2, pp. 244-263, April 1986.

Clarke, E. M., Filkorn, T., and Jha, S., Exploiting Symmetry in Temporal Logic Model Checking. In Fifth
International Conference on Computer Aided Verification, Crete, Greece, June 1993. Journal version appears
as: Clarke, E. M., Enders, R. Filkorn, T. and Jha, S., Exploiting Symmetry in Temporal Logic Model Checking.
In Formal Methods in System Design, Kluwer, vol. 9, no. 1/2, August 1996.

Clarke, E. M., Grumberg, O. and Long, D. E., Model Checking and Abstraction. In Transactions on Programming
Languages and Systems ACM, vol 16, no. 5, 1994.

E. Allen Emerson, Temporal and Modal Logic. In J. van Leeuwen editor Handbook of Theoretical Computer
Science vol. B, Elsevier Science Publishing, 1990.

Emerson, E. A., and Halpern, J. Y., ‘Sometimes’ and ‘Not Never’ Revisited: On Branching versus Linear Time
Temporal Logic, JACM, vol. 33, no. 1, pp. 151-178, Jan. 86.

Emerson, E. A. and Sistla, A. P., Symmetry and Model Checking. In Fifth International Conference on Computer
Aided Verification, Crete, Greece, June 1993. Journal Version appeared in Formal Methods in System Design,
Kluwer, vol. 9, no. 1/2, August 1996.

Emerson, E. A. and Sistla, A. P., Utilizing Symmetry when Model Checking under Fairness Assumptions.
In Seventh International Conference on Computer Aided Verification Springer-Verlag, 1995. Journal version,
TOPLAS 19(4): 617-638 (1997).

Emerson, E. A. and Trefler, R. J., Model Checking Real-Time Properties of Symmetric Systems. In Mathematical
Foundations of Computer Science, 23rd International Symposium LNCS 1450, Springer-Verlag, 1998.

Gyuris, V. and Sistla, A. P., On-the-Fly Model checking under Fairness that Exploits Symmetry. In Proceedings
of the 9th International Conference on Computer Aided Verification, Haifa, Israel, 1997.

Haddad, S., Ilie, J.M., Taghelit, M. and Zouari, B., Symbolic Reachability Graph and Partial Symmetries. In
Application and Theory of Petri Nets 1995, Springer-Verlag, LNCS 935, 1995.

Hennessy, M., Milner, R., Algebraic Laws for Nondeterminism and Concurrency. In Journal of the ACM, Vol
32, no. 1, January, 1985, pp 137-161.

Ip, C-W. N, Dill, D. L., Better Verification through Symmetry. In Proc. 11th International Symposium on
Computer Hardware Description Languages(CHDL), April, 1993. Journal version appeared in Formal Methods
in System Design, Kluwer, vol. 9, no. 1/2, August 1996.

Jensen, K. and Rozenberg, G. (eds.), High-Level Petri Nets: Theory and Application, Springer- Verlag, 1991.
Kohavi, Zvi, Switching and Finite Automata Theory, second edition, McGraw-Hill Book Company, New York,
1978.

Lichtenstein, O., and Pnueli, A., Checking That Finite State Concurrent Programs Satisfy Their Linear Speci-
fications, POPLS85, pp. 97-107, Jan. 85.

Michel, F., Azema, P. and Vernadat, F., Permutable Agents in Process Algebra. In Tools and Algorithms for
the Construction and Analysis of Systems, 96, Springer Verlag, LNCS 1055, 1996.

Milner, R., An Algebraic Definition of Simulations Between Programs. In Proceedings of the Second International
Joint Conference on Artificial Intelligence, British Computer Society, 1971, pp 481-489.

McMillan, K. L., Symbolic Model Checking: An Approach to the State Ezplosion Problem, Ph.D. Thesis, Carnegie
Mellon University, 1992.

Park, D., Concurrency and Automata on Infinite Sequences. In Theoretical Computer Science: 5th GI-
Conference, Karlsruhe, Springer-Verlag, LNCS 104, pp 167-183, 1981.

Queille, J. P., and Sifakis, J., Specification and verification of concurrent programs in CESAR, Proc. 5th Int.
Symp. Prog., Springer LNCS no. 137, pp. 195-220, 1982.

10



