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the mutual exclusion protocol contains states (C1; T2) and (T1; C2) representing the states where process 1is in its critical section and process 2 is attempting to reach its critical section and vice versa. These twostates are related by the permutation (1 2) which drives process index 1 to 2 and 2 to 1; in general thepermutation (1 2) when applied systematically to the states and transitions of M results in M again, thatis (1 2) is an automorphism of M . Aggregating states which are equivalent up to such permutations factorsout the symmetry of a system and model checking is then performed on the symmetry reduced structure {a substantial, often exponential, savings can be achieved.While symmetry reduction methods o�er great potential there are, nevertheless, several obstacles to itsmore widespread application. Firstly, it is often the case that protocols are not symmetric; they may containa high degree of symmetry in some part of their design but their global behavior is asymmetric. This canoccur, for instance, in systems with processes which are identical up to the renaming and assignment ofpriorities. The readers{writers protocol, a re�nement of the mutual exclusion protocol, is one such example.In the mutual exclusion algorithm the two processes competing for access to their critical sections are givenequal priority, in the readers{writers protocol the writer is given priority. While the global state graph ofthe readers{writers protocol is asymmetric it is symmetric in every aspect except the transition from thestate where both processes are attempting to access their critical sections.Secondly, symmetry reduction and BDD-based [Br86] symbolic model checking [Mc92] [BCMDH92] donot mix well. In the symbolic model checking paradigm, representing the symmetry reduced quotient struc-ture entails representing the BDD for the orbit relation. Unfortunately, for many important symmetrygroups, including the full symmetry group, this BDD is provably always intractably large, of size exponen-tial in the number of bits in the state space [CEFJ96].We address both these issues in this paper. Previous work on symmetry reduction de�ned the symmetryreduced structure M as the quotient structure of M induced by the equivalence relation on states �G. Twostates s and t are equivalent, s �G t i� there is an automorphism � in G which drives s to t. We relax thisrelationship by de�ning a permutation � to be a near automorphism if for every transition s! t in M either�(s) ! �(t) is in M or s is a fully symmetric state. The set of near automorphisms of M forms a group.The equivalence relation on states induced by this group de�nes a quotient structure that is bisimilar, up topermutation, with M . Therefore, even asymmetric structures can be near symmetry reduced.By further weakening the restrictions on permutations applied to structures we de�ne a notion of sub-symmetry which allows for the creation of an abstract symmetry reduced structure that simulates the originalprogram. A permutation � is a sub-automorphism of M if � drives certain \closed" subgraphs of M backinto M . This notion of sub-automorphism induces a pre-order �H on states such that s �H t i� there isa sub-automorphism � which drives a closed subgraph containing s back into M such that �(s) = t. Wethen use �H to de�ne a sub-symmetry reduced structure M�H which is simulated up to permutation by M ,thereby showing that 8CTL� [CGL94] formulae true of M�H are true of M .Finally, we consider combining symmetry with BDD-based symbolic representations of systems. It wasdemonstrated in [CEFJ96] that these two notions do not mix well. For many symmetry groups, including thefull symmetry group, the BDD for the orbit relation, that is for determining equivalence of two states undergroup action, must always be of exponential size. This orbit BDD is used to permit designation of a speci�crepresentative state for each equivalence class in the quotient structure. The orbit BDD must recognize asequivalent, say, the states (N1; N2; T3), (N1; T2; N3), and (T1; N2; N3). A speci�c, actual state is (implicitly)chosen as a representative. In the case of full symmetry, we can instead use generic representatives, forexample, (2N; 1T ), which obviates the need for representation of the orbit relation. This is accomplishedby compiling the program text of the fully symmetric program P into the program text of the symmetryreduced program P over generic states. The symmetry reduced program de�nes a structureM(P ) isomorphic(and bisimilar up to permutation) to the symmetry reduced structure M and model checking can then beperformed on M(P ). This compilation process not only obviates the need for determining the equivalenceof states under permutation but also reduces the number of bits used to represent a state in the symmetryreduced program from O(n) in the case of M to O(log n) in the case of M(P ).The remainder of the paper is organized as follows: Section 2 contains some preliminaries, Section 32



de�nes near symmetry, compilation of fully symmetric programs into symmetry reduced programs is outlinedin Section 4 and section 5 contains a brief conclusion.2 PreliminariesWe denote the set of natural numbers by N. Let I be a �nite index set [1::n] for some n 2 N, n > 0. LP isa �nite set of local propositions. Sym I is the set of permutations on index set I . M = (S;R) is a structurewhere S � LP I and R � S � S is non-empty and total. We write both (s; t) 2 R and s ! t 2 R to meanthat there is a transition from state s to state t in R. For l 2 LP , i 2 [1::n] and s 2 S we write (l; i) 2 LP�Ias li and s(i) = l (li is true at s) i� the ith element of s is l.A permutation � 2 Sym I acts on a state s 2 S in the following way: s(i) = l i� the �(i)th element of �(s)is l. � is an automorphism ofM = (S;R) i� S = f�(s) j s 2 Sg and R = f(�(s); �(t)) j (s; t) 2 Rg. A state sis said to be fully symmetric if for all � 2 Sym I, �(s) = s. The identity permutation is denoted by id . Forany M , AutM , the set of automorphisms of M , is a group. Any subgroup G of AutM , induces the followingequivalence relation, s �G t i� there exists a � 2 G such that �(s) = t. M 's symmetry reduced structure,with respect to G, M =M=�G = (S;R) is de�ned as follows: S = fs 2 S j s is the unique representative ofthe equivalence class [s]�Gg 1 and (s; t) 2 R i� (s; t) 2 R for some t 2 [t]�G [ES96][CEFJ96].In the sequel we will make use of the expressive branching time temporal logic CTL� [EH86] (c.f. [Em90]for more details). Let LP � I be the set of atomic propositions. A path formula is formed from booleancombinations (^;_;:) and nestings of atomic propositions, state formulae and the usual temporal operatorsX;G;F;U and V (the dual of U). State formulae are formed from boolean combinations of atomic propositions,state formulae and pre�xing of path formulae by path quanti�ers A and E. For example, the formulaAG:(writerC ^ readerC ) says that along all computations it is never the case that both the writer and thereader are accessing their critical sections. We write M; s j= f to denote that state s in structure M satis�esformula f and M j= f to denote that there is a state, s, in M such that M; s j= f . A formula is in positivenormal form (PNF) if the : operator appears only in front of atomic propositions. ECTL� is the sub-logicof CTL� in which every formula, when put in PNF, contains only E path quanti�ers. Similarly, ACTL� isthe sub-logic of CTL� in which every formula, when put in PNF, contains only A path quanti�ers [CGL94].When model checking formula f over M = M=�G it is required that for every maximal propositionalsub-formula g of f , and every permutation � 2 G, �(f) � f [ES96] [CEFJ96]. Symmetric CTL� (SCTL�)and its sub-logics ASCTL�, ESCTL�, de�ned below, all satisfy this requirement. The syntax of SCTL� isthe same as for CTL� except that the atomic formulae are restricted to the following: 8i : li, 9i : li, 8i : :li,9i : :li and 9i 6= j : li ^ lj . For example, AG:(9i 6= j : Ci ^ Cj) is a formula of ASCTL�.2.1 Simulation up to PermutationLet M = (S;R) and M 0 = (S0; R0) be structures de�ned over LP and I . B � S � S0 is a simulation up topermutation (c.f. [Mi71] [Pa81] [HM85] [MAV96] [ES96] [CEFJ96]) i� for all (s; s0) 2 B� there is a � 2 Sym I such that �(s) = s0 and� for all (s; t) 2 R there is a t0 such that (s0; t0) 2 R0 and (t; t0) 2 B.B � S � S0 is a bisimulation up to permutation i� for all (s; s0) 2 B the above two conditions hold and� for all (s0; t0) 2 R0 there is a t0 such that (s; t) 2 R and (t; t0) 2 B.Proposition 1 ([ES96] [CEFJ96]) Let B be a bisimulation up to permutation. For all (s; s0) 2 B and allSCTL� formulae f , M; s j= f i� M 0; s0 j= f .1s is a distinguished element of S and [s] is the set of s 2 S such that s �G s.3



Proposition 2 ([ES96] [CEFJ96]) Let B be a simulation up to permutation. For all (s; s0) 2 B and allASCTL� formulae f , M 0; s0 j= f implies M; s j= f .Proposition 3 ([ES96] [CEFJ96]) Let B be a simulation up to permutation. For all (s; s0) 2 B and allESCTL� formulae f , M; s j= f implies M 0; s0 j= f .3 Near Symmetry3.1 Near Symmetry and BisimulationLet M = (S;R) be a structure. A permutation � is a rough automorphism of M if �(S) = S and for alls ! t 2 R if �(s) ! �(t) 62 R then �(s) = s. Let RAutM = f� 2 Sym I j � is a rough automorphism ofMg.In the same way that AutM de�nes an equivalence relation �AutM , and the symmetry reduced structureM=�AutM , if RAutM is a group then �RAutM is an equivalence relation on the states of M which inducesthe rough symmetry reduced structure MRAut = M= �RAutM = (S;R). Where S is the set of uniquerepresentatives of the equivalence classes of �RAutM and s! t 2 R i� s! t 2 R for some t �RAutM t.Theorem 1 Given M = (S;R) for which RAutM is a group, then MRAut = M= �RAutM = (S;R) isbisimilar up to permutation to M = (S;R) and for all (s; s) such that s �RAutM s, and for all SCTL�formulae f , M; s j= f i� MRAut ; s j= f .Unfortunately RAutM may not be a group so we de�ne a slightly stronger concept. Let M = (S;R) bea structure. A permutation � is a near automorphism of M if �(S) = S and for all (s; t) 2 R either s is fullysymmetric or �(s)! �(t) 2 R. Let NAutM = f� 2 Sym I j � is a near automorphism of Mg2.Theorem 2 Given M = (S;R) the set NAutM is a group.Corollary 1 MNAut =M= �NAutM= (S;R) is bisimilar up to permutation to M = (S;R) and for all (s; s)such that s �NAutM s, and for all SCTL� formulae f , M; s j= f i� MNAut ; s j= f .We can apply these ideas to the readers-writers problem as given in �gure 1. The ip permutation (1 2)which drives index 1 to index 2 and vice versa is a near automorphism. This implies that the structurein the �gure has the full symmetry group, Sym I, as its group of near automorphisms (and its group ofrough automorphisms) and therefore the near symmetry reduced structure given in �gure 2 is bisimilar upto permutation to the structure in �gure 1. Model checking for safety formulae like AG:(9i 6= j : Ci ^ Cj)and liveness formulae like AG[(9i : Ti) ) AF(9i : Ci)] { which says that along all computations it is alwaysthe case that if some process is trying to enter its critical section then it is inevitable that some process enterits critical section { can then be performed on the near symmetry reduced structure MNAut instead of M .Figure 3 contains the program skeletons which generate the structure M in �gure 1. The near auto-morphisms for M can be generated directly from the program skeletons through the following observation.While the skeletons are not symmetric they are nearly symmetric in the following sense. Ignoring, for themoment, the transition T2 ! C2 that is enabled when T1 is true, the two skeletons are symmetric { the ippermutations applied to the skeletons results in the same two skeletons. The asymmetry of the transitionT2 ! C2 that is enabled when T1 is true guarantees a near symmetry of the induced Kripke structure becausethis symmetry breaking transition is only enabled from the fully symmetric state (T1; T2). In the full paperwe give a more detailed algorithm for determining near automorphisms from program skeletons.2This can be generalized: to ensure that NAutM is a group only requires that if for some � 2 NAutM , �(s) ! �(t) 62 Rthen Auts � NAutM . 4
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T1  C2Figure 2: Near Symmetry Reduced Asymmetric Readers-WritersFinally, we note that the near symmetry reduced structure MNAut = M=�NAut can be built directlyfrom the program text without building M in a manner analogous to that used to build M . Basically, theprocedure works as follows, given a state s 2 S generate each of the states t such that s! t 2 R as describedby the program text. For each t if t is equivalent to a state t 2 S then add an arc s! t to R otherwise addt to S and the arc s! t to R (see [ES96] for complete details).3.2 Sub-symmetry and SimulationGivenM = (S;R), let S0 be a subset of S. S0 is closed (with respect toM) i� for all s 2 S0 and all (s; t) 2 R,t 2 S0. Let � 2 Sym I and S0 � S be closed. � is a sub-automorphism on S0 i� f�(s) j s 2 S0g � S and forall s; t 2 S0 if s ! t 2 R then �(s) ! �(t) 2 R. Let H be the subset of Sym I � 2S such that (�; S0) 2 Hi� � is a sub-automorphism on the closed subset of S, S0. s �H t i� there is a (�; S0) 2 H such that s 2 S0and �(s) = t.Proposition 4 s �H t and t �H u implies s �H u. 5
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Figure 3: Readers-Writers Program SkeletonsProof: s �H t implies there is some closed S0 � S and � such that (�; S0) 2 H and �(s) = t. Furthermore,there is some closed S00 � S and � such that (�; S00) 2 H and �(t) = u. Consider T � S0 such that T containss and all the states reachable from s in S0. S0 closed implies such a T exists and is a closed subset of S0.�(T ) � S00 is straight forward. This implies that for all s; t 2 T , (� � �)(s) 2 S and for all (s; t) 2 R,(� ��)(s) ! (� ��)(t) 2 R which implies that ((� ��); T ) 2 H . Since (� ��)(s) = u it is the case that s �H u.2 For, t 2 S, [t]�H = ft 2 Sjt �H tg.Let M�H =M=�H= (S;R) be any structure such that� S � S and� for all s 2 S there is an s 2 S such that s 2 [s]�H and� (s; t) 2 R i� there is some t 2 [t]H such that (s; t) 2 R.Let M = (S;R) and M�H = (S;R) be structures as described above. Then let B = f(s; s) 2 S �S j s 2[s]�Hg.Theorem 3 B is a simulation up to permutation.Proof: Suppose (s; s) 2 B then s 2 [s] and there is a (�; S0) 2 H , such that �(s) = s. Suppose (s; t) 2 R.This implies that (�(s); �(t)) 2 R. By the structure of M�H this implies that there is some t such that(s; t) 2 R and �(t) �H t. But this implies that t �H t hence (t; t) 2 B. 2Corollary 2 For all ASCTL� formulae, f , and for all (s; s) 2 B, M�H ; s j= f implies M; s j= f .Proposition 5 If �H is commutative then �H is an equivalence relation.Theorem 4 Let M = (S;R) and M�H = (S;R) be as above and let �H be commutative, then B = f(s; s) 2S � Sjs 2 [s]Hg is a bisimulation up to permutation.Proof: Let (s; s) 2 B. Suppose s! t 2 R, then there is some t such that s! t 2 R and t �H t. s �H simplies s �H s which implies there is some (�; T 0) 2 H such that s 2 T 0 and �(s) = s. Hence s ! �(t)which implies t �H �(t) and therefore �(t) �H t. This implies �(t) �H t and therefore (�(t); t) 2 B. 26



Corollary 3 For all SCTL� formulae, f , and all (s; s) 2 B, M; s j= f i� M�H ; s j= fWhen �H can be determined from the program text or is given a priori then it is possible to build thesub-symmetry reduced structure M�H directly from the program text without �rst constructing M . Theprocedure is analogous to building M = M= �AutM , however, it may require some backtracking as it ispossible that a state s is generated in M�H which can then be replaced by a state s such that s �H s.4 Symmetry Reduction on Fully Symmetric ProgramsRepresenting symmetry reduced structures with BDD's is typically computationally intractable. The BDDrepresenting the orbit relation of many groups, including the full symmetry group, is of size exponential inthe number of processes or the number of bits in a state. In the sequel we show that under the assumption offull symmetry, symmetry reduction can be done e�ciently in the symbolic model checking paradigm withoutrepresentation of the orbit relation. Let k = jLP j, be the number of local states of an individual process Pi.Given a program P = ==i2[1::n]Pi, the parallel composition of n processes identical up to renaming, whichde�nes a fully symmetric Kripke structure M(P ), we compile P into a program P , in time linear in the sizeof P . P de�nes a symmetry reduced quotient structure M(P ) which is isomorphic to M(P ) except eachspeci�c representative in M(P ) is replaced by the corresponding generic representative in M(P ). M(P ) canthen be used to model checkM(P ) without having to represent the orbit relation for the symmetry group onthe states of M(P ). We have then reduced a problem of worst case size kn which is exponential in n, to oneof worst case size nk which is polynomial for any �xed number k of local states. Furthermore, the numberof bits required to symbolically represent a state has been decreased from O(n log k) in M(P ) the standardquotient to O(k logn) in M(P ) the generic quotient. We then show that in many cases the transitions in Pcan be represented by BDD's polynomial in the size of the text of P .The key idea is that a generic representative can be chosen for each of the equivalences classes of statesunder the assumption of full symmetry [ES96] [CEFJ96]. Equivalence under full symmetry means that twostates s; t 2 LP I are equivalent i� they have exactly the same number of processes in local state l for eachstate l 2 LP . Hence the generic representative needs only track the number of processes in each local stateand not any information regarding which processes are in a particular local state.Let a program P = ==i2[1::n]Pi be the parallel composition of processes P1; : : : ; Pn which are identical upto renaming. Each process is speci�ed by a program skeleton similar to the ones in �gure 3. The skeletonsgive rise to generic transitions of the processes which are speci�ed by l : g ! l0 where l; l 2 LP are localstates and g is a guard. Guards are positive boolean combinations of the following elements: 8j : lj , 8j : :lj ,9j : lj , 9j : :lj and 9j 6= j0 : lj ^ lj0 . Since the processes are identical up to renaming this syntax gives riseto fully symmetric structures. The intended meaning of li : g ! l0i is that if P is in state s, where process i isin local state li and guard g is true of s then P may transit to the state t, everywhere the same as s, exceptthat process i is in state l0i. P executes the enabled transitions { there may be multiple enabled transitionsfor a single process { non-deterministically. We further stipulate that P de�ne an initial state s0 of the formln = (l1; : : : ; ln) for some l 2 LP .Given P = ==i2[1::n]Pi with initial state ln, as above, P de�nes a Kripke structure M(P ) = (S;R; s0) asfollows: s0 = ln is the initial state, S = LPn and s ! t 2 R i� there exists a generic transition statementl : g ! l0 such that s(i) = l, t(i) = l0, g is true at s and for all i0 6= i, s(i0) = t(i0). For a Kripke structureM with an initial state s0, we say that M j= f i� M; s0 j= f . M(P ) = M(P )=�Sym I = (S;R; s0) is thesymmetry reduced quotient structure.Theorem 5 [ES96] For any SCTL� formula f , M(P ); s0 j= f i� M(P ); s0 j= f .We de�ne the symmetry reduced program P as follows: P has variables x1; : : : ; xk each of type [0::n]and we assume the existence of a bijective function � : LP ! [1::k]. Suppose each process Pi has a di�erenttransitions of the form li : g ! l0i generated by the generic transition l : g ! l0. Then P has a transitions of7



the form x�(l) > 0 ^ T (g) ! x�(l); x�(l0) := x�(l) � 1; x�(l0) + 1. The intended meaning being that if P is in astate s 2 [0::n]k where the variable x�(l) � 0 and the guard T (g) is true then P may non-deterministicallytransit to a state t 2 [0::n]k such that x�(l) has decreased by 1, x�(l0) has increased by 1 and all other variablesare unchanged.The symmetry reduced guard T (g) is derived from g as follows: T (8j : lj) =`x�(l) = n', T (8j : :lj) =`x�(l) = 0', T (9j : lj) =`x�(l) > 0', T (9j : :lj) = `x�(l) < n', T (9j 6= j0 : lj ^ lj0) =`x�(l) � 2', T (g1 _ g2) =T (g1) _ T (g2) and T (g1 ^ g2) = T (g1)^ T (g2). Finally, if the initial state of P is ln then the initial state ofP is x�(l) = n+ 1 and x�(l0) = 0 for all l0 6= l.P de�nes a Kripke structure M(P ) = (S0; R0; s00) as follows: if xi = n and for all i0 6= i, xi0 = 0 is theinitial state of P then s00(i) = n and for all i0 6= i, s00(i0) = 0, S0 = [0::n]k and R0 � S0�S0 where s! t 2 R0i� there is a transition in P , of the form x�(l) � 0^ T (g)! x�(l); x�(l0) := x�(l) � 1; x�(l0) +1 where the �(l)thelement of s is greater than 0, T (g) is true at s and for all j 2 [1::k], j = �(l) implies t(j) = s(j)�1, j = �(l0)implies t(j) = s(j) + 1 and otherwise s(j) = t(j).Theorem 6 M(P ) is bisimilar to M(P ).Corollary 4 For all SCTL� formulae f , M(P ); s00 j= f i� M(P ); s0 j= fIn the sequel we describe how S0 and R0 can be succinctly represented by BDD's. States in S0 arebe represented by tuples in [0::n]k. Such a state space can be represented by k � (log(n) + 1) booleanvariables (for ease of explanation we assume that n is a power of two). Bits b0 : : : blogn represent x1, bitsblog(n)+1 : : : b2 logn represent the variable x2, etc. Assuming that k is �xed, then generic states of S0 canbe represented in O(log n) bits. It follows that, for any type of transition relation R0 over S0, the BDDrepresenting R0 is of size at most poly(n). This should be contrasted with the size of the BDD representingthe conventional symmetry reduced quotient which has a lower bound exp(n) [CEFJ96]. But for this modelof computation we can obtain better bounds as described below.We now show that transitions of the form x�(l) � 0 ^ T (g) ! x�(l); x�(l0) := x�(l) � 1; x�(l0) + 1 can berepresented succinctly when T (g) is of a particular form. Firstly, x�(l) � 0 can be checked with a BDDof size O(log(n) + 1) since the BDD need only check that the bits (�(l) � 1) � logn : : : [�(l) � logn] � 1 arenot all 0 (false). Consider the set of atomic boolean guards fxj = n; xj = 0; xj > 0; xj < n; xj � 2g, forj 2 [1::k] and assume that T (g) is either a conjunction of atomic boolean guards or a disjunction of atomicboolean guards. For the case where T (g) is conjunctive, extend the set of atomic boolean guards to includexj > 0 ^ xj < n and xj < n ^ xj � 2.In a manner similar to the above it is possible to show that each of the extended atomic boolean guardsis representable by a BDD polynomial in the number of bits used to represent the value of the variable whichthe guard restricts. Conjunctive guard T (g) can be rewritten so that it �rst mentions only those atomicboolean guards which mention variable x1 then x2 and so on. Consider the conjunctive portion of T (g) inwhich xj occurs, for some j 2 [1::k]. It is not hard to prove, under the assumption that n � 1, that anyconjunctive combination of boolean atomic guards reduces to the constant 0 or a single instance of one ofthe extended set of conjunctive boolean guards. Since the BDD's for the separate variables in T (g) arecompletely independent they can be put together to form the BDD for T (g) which is of size additive in thesize of the BDD's for each of the separate variables and hence polynomial in the length of T (g).A similar argument can be made for the case when T (g) is disjunctive. However, in that instance theset of atomic boolean guards is extended by xj = n _ xj = 0 and xj = 0 _ xj � 2. Furthermore, arbitrarydisjunctions of the atomic boolean guards never result in the constant 0 (false) but they do result eitherin a single instance of the extended set of atomic boolean guards or the constant 1 (true). Finally, it isnot hard to see that a BDD can be built to check whether two states are related by the assignments of theform x�(l); x�(l0) := x�(l) � 1; x�(l0) + 1 which is of size polynomial in k � (log(n) + 1). The bits representingthe variable x�(l) (x�(l0)) increase (decrease) by 1 and all other variables remain unchanged. Finally, bycombining all three sections of the BDD representing a transition we see that the BDD is at most cubic in8



O(k � (log(n) + 1)) and hence polynomial in the size of the transition. These BDD's for individual programstatements can be combined to get a BDD for R0 of size poly(n). However, they combine disjunctively whichcan be advantageous in terms of possible disjunctive partitioning.When P = jji2[1::n]Pi is the synchronous composition of processes P1; : : : ; Pn a similar but slightly morecomplex translation is required. P jj, the symmetry reduced program, contains two variables x�(l) and x0�(l) foreach local state l. The generic transitions of the synchronous program P are translated in the same manner asthe generic transitions in the asynchronous case except for the following: guards refer to unprimed variableswhile the assignments are made to the primed variables. Computation then proceeds in rounds. For eachlocal state l, if the unprimed variable x�(l) has value b then up to b enabled transitions from place l { compiledtransitions with x�(l) > 0 in their guard { are executed. At the end of the round, each unprimed variable xjis set to the value of the primed variable x0j . Details will be given in the full paper.5 ConclusionMany researchers have investigated the exploitation of symmetry in to expedite veri�cation but `almost'symmetric designs have received little attention. A di�erent type of partial symmetry has been exploredin [HITZ95], without precise formalization and only in relation to preservation of reachability propertiesof petri nets. Our formalizations of rough and near symmetry are new and our use of near symmetriesof M in the reduction of M to an abstract quotient structure is new. The term partial symmetry hasbeen used for quite some time (c.f. [Ko78]) in switching theory. There, however, a system is partiallysymmetric if its group of symmetries over index set I is isomorphic to the full symmetry group of an indexset I 0 � I . This type of partial symmetry has been handled explicitly by [ES96], [CEFJ96]. [AHI98] considerspartial symmetry in a manner more analogous to our de�nition of sub-symmetry. However, they deal onlywith partial symmetries of the formula (or its automaton representation) to be model checked, rather thanreduction of the structure itself. Abstraction of M , on the other hand, has the potential to be of much morebene�t to ameliorating the state explosion problem [LP85]. We have also shown that near automorphismsare su�cient for the preservation of symmetric properties, a generalization of the results of [ES96] [CEFJ96],and we have extended these ideas to the generation of near symmetries directly from the program text.With respect to full symmetry, we have shown how to exploit the symmetry of program text withoutthe need to represent the symmetry reduced Kripke structure or the orbit relation induced by the symmetrygroup. [CEFJ96] shows BDD's representing the orbit relation of the full symmetry group are of exponentialsize. They suggested a technique to mitigate this problem using multiple representatives, but did not proveit to yield a tractable representation in general. Our technique consists in compiling the symmetric programP with Kripke structureM(P ) to a symmetry reduced program P over generic states whose structureM(P )is bisimilar up to permutation to M(P )=�Sym I .For the future, we plan on implementing a preprocessor front end to a symbolic model checking toolto take advantage of our results on full symmetry. We are also investigating extending our technique to alarger class of groups [CEJS98] for which symmetry reduction can be applied directly to program text. Withrespect to near symmetry and full symmetry we are interested in exploring the applicability of our work hereto symmetry reduction techniques which use the annotated symmetry reduced structure which preserves thetruth of all CTL� (and �-calculus) properties [ES96][ES97][ET98].Acknowledgment: The authors would like to thank Bob Kurshan for many stimulating comments anddiscussions.References[AHI98] Ajami, K., Haddad, S. and Ilie, J.-M., Exploiting Symmetry in Linear Time Temporal Logic Model Checking:One Step Beyond. In Tools and Algorithms for the Construction and Analysis of Systems, 4th InterntationalConference, ETAPS98 LNCS 1384, Springer Verlag, 1998.9
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