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Abstract

We define Parameterized Real-Time Computation Tree Logic (PRTCTL), which allows quan-
titative temporal specifications to be parameterized over the natural numbers. Parameterized
quantitative specifications are quantitative specifications in which concrete timing information
has been abstracted away. Such abstraction allows designers to specify quantitative restrictions
on the temporal ordering of events without having to use specific timing information from the
model. A model checking algorithm for the logic is given which is polynomial for any fixed num-
ber of parameters. A subclass of formulae are identified for which the model checking problem
is linear in the length of the formula and size of the structure. PRTCTL is generalized to allow
quantitative reasoning about the number of occurrences of atomic events.

1 Introduction

Pnueli [Pn77] pioneered the use of temporal logic as a language for describing the behavior of
reactive systems [HP85]. Qualitative temporal logics, PLTL [Pn77] and CTL [CES81] for example,
express properties of the temporal ordering of events without, in general, a regard for any quantita-
tive measure on the elapsed time between the occurrences of the events. Real-time temporal logics
([JM86] [AH89] [ACDI0] [EMSS92]) and more generally quantitative logics ([BEH95] [BEH95a]
[BBEL96] [ET97] c.f. [CCMMH94|) cater for the expression of quantitative bounds on the occur-
rence of events. Such logics allow operators of the form AFS5P meaning that inevitably event P
will occur within five time steps. The use of constants, 5 in this case, can be problematic, requiring
detailed knowledge of the specific timing information of a design — design information which may
change frequently as the design moves towards completion.

Parameterization of quantitative specifications is a type of abstraction which allows the system
designer to express quantitative information which is valid over an entire design process. For
example, it may not be known exactly what the delay is between when a process sends a request
for a resource and when the server receives the request, but it is expected that it takes no more
than twice that amount of time for the requester to receive the grant for the resource from the
server. This type of specification can be expressed in Parameterized Real-Time Computation Tree
Logic (PRTCTL) as

Vz[AG(request = AF="receive) = AG(request = AF<*“grant)]
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This says that for any natural number z if it takes at most = steps for a request to be received by
the server then it takes at most 2 - x steps for the requester to receive the grant from the server.
This is much different than the purely qualitative CTL specification

AG(request = AFreceive) = AG(request = AFgrant)

which simply says that if it is inevitable that requests are received, then it is inevitable that requests
are granted. Furthermore, the use of parameterization has obviated the need for specifying exactly
how long it takes for requests to be received.

While PRTCTL allows parameterization over all natural numbers we show that the model checking
problem [CES81] (c.f. [QS82]) for this logic can be reduced to checking a finite number of instances
of the parameterized formula. The number of instances depends on the size of the model to be
checked. This leads to a model checking algorithm of time complexity O(|M|¥*1|f|) where k is the
number of parameters in f, | M| is the size of M and |f| is the size of f. For a large class of formulae
this complexity can be lowered to linear in the size of the formula and the size of the structure.

A PRTCTL formula is monotone in parameter x, if when put in positive normal form, x appears
either exclusively in modalities of the form U=® or F=® or exclusively in GS=* modalities. A formula
is monotone if it is monotone in all its parameters. We show that the model checking problem for
monotone formulae can be solved in time O(|M||f]).

We also describe an algorithm for solving the PRTCTL model checking problem over timed struc-
tures. A discrete timed structure allows transitions to be labeled with natural numbers. We show
that if m is the largest transition label then PRTCTL formulae f with k parameters can be model
checked on timed structure M in time O((m|M|)*|M|?|f]) .

PRTCTL, and indeed most quantitative logics, are designed for the expression of quantitative prop-
erties concerning the number of transitions or the number of time units represented by transitions
until the occurrence of an event. However, these logics cannot naturally express quantitative mea-
sures on the number of occurrences of independent events. We define and give model checking
algorithms for General Parameterized CTL, GPCTL, (c.f. [JM86] [BEH95] [BEH95a] [BBEL96|
[YMW97] [ET97]) which allows quantitative parameterization over the occurrence of events. For
example, AFS37€quest rosponse says that it is inevitable that a response will be issued before more
than 4 occurrences of request. JzAG(request = AFS¥TeUetresponse) says that there is a bound
on the number of requests which will be issued before a response is seen, something that is not
guaranteed by the formula AG(request = AFresponse).

There have been numerous models of computation proposed for the modeling of real-time systems
(see [AH92] for a survey). Such models tend to be extensions of Kripke structures which add
resettable clocks (or timers) and transitions labeled with time values from discrete or dense time
domains. These more sophisticated models are in many circumstances more accurate models of
real-time systems than the simpler structures. However, for many systems the appropriate level of
abstraction for verification of temporal properties is often the conventional Kripke structure. For
example, an interleaving model of true concurrency is a realistic assumption for many on-board
embedded systems. Since hardware may be quite limited, there is often a single multiprogrammed
processor on which sequential processes are running concurrently when viewed at a sufficient level
of granularity. We argue only that it may be necessary and useful to verify quantitative temporal
properties of the less sophisticated models of computation.

The rest of the paper is organized as follows. In the next section PRTCTL is defined and given a
semantics. Section 3 gives model checking algorithms for the logic and for the monotone subclass



of formulae. Section 4 extends the logic and model checking algorithms to timed models of com-
putation. Section 5 contains a discussion of GPCTL and model checking algorithms for that logic.
Finally, section 6 contains a short conclusion and comparison with other work.

2 PRTCTL

This section contains a description of the logic PRTCTL and its related logics CTL, RTCTL and
vRTCTL. vRTCTL is used only as a convenience for generating the formulae of PRTCTL. We
use N to denote the set of natural numbers and AP to denote a finite set of atomic proposi-

tions. CTL is the set of formulae formed from the boolean operators A, — and temporal modalities
AU, AF,AG,EU, EF,EG. For more details we refer to [Em90].

To formulate the logic RTCTL superscripts of the form < n, for n € N are allowed over the path
operators U and G. For example AG=°P is a formula of RTCTL. vVRTCTL extends RTCTL by al-
lowing variables and linear combinations of variables and constants in the superscripts. AG=>2t¥P,
for example, is a formula of vVRTCTL.

PRTCTL formulae are formed as follows: Let f(z) be a formula of vRTCTL or PRTCTL in which
the variable = appears free and let a € N. Then Vaf(z), Vo < af(z), Jzf(z) and Jz < af(z) are
formulae of PRTCTL.

A formula is in positive normal form (PNF) iff = operators appear only in front of atomic propo-
sitions and the only boolean operators are A and V.

Sentences, formulae with no free variables, of the above logics are given semantics relative to Kripke
structures. A Kripke structure M is a tuple (S, R, L) where S is a set of states, R C S x S (such
that R is left total) is the transition relation and L : S — 24P is the labeling function. ¢ = sps7 . . .
is a (full) path in M iff for all i € N, s; € S and (s;,s;+1) € R. M,s |= f denotes that state s in
structure M satisfies formula f. M |= f signifies that there is some state s in S such that M, s |= f.
I= for CTL is the usual definition of branching time operators over structures; see [Em92] for more
details.

RTCTL modalities are given semantics by the following recursive rules.

e M,s |= AfUS"g iff for all paths o = sg... such that so = s, there exists an i < n such that
M,s; =g and forall j <i, M,s; |= f.

e M,s = AG="f iff for all paths 0 = s ... such that s = s, and for all i < n, M, s; = f.

e M,s = EfUS"g iff there exists a path o = sg... such that sp = s, there exists an i < n such
that M,s; =g and for all j <, M,s; |= f.

e M,s = EGS"f iff there exists a path 0 = s¢... such that sg = s, and for alli < n, M, s; = f.
Finally, for formulae of PRTCTL the following are added to the definition of |=.

o M,s EVaf(x) iff for all n € N, M, s |= f(n).

o M,s Ve <af(z)iff for all n < a, M,s |= f(n).

e M, s |= Jxf(x) iff there exists n € N such that M, s = f(n).



o M,s = dz < af(zx) iff there exists n < a such that M,s = f(n).

Proposition 1 Let Qz < af(z) be a sentence of PRTCTL where a € N and Q is either V or
1. M,s =V < af(z) iff M,s = fFO)ANF(L)A...A f(a) and M,s = Fz < af(x) iff M,s =
fO)V ) V...V f(a).

Proposition 1 shows that PRTCTL formulae whose quantifiers range over finite sets can be seen as
shorthands for RTCTL formulae. In the sequel f(0)A f(I)A...A f(a) (f(O)V f(1)V...V f(a)) will
sometimes be abbreviated by Anc(o.a1f(7) (Vne[o..q)f(n)). The following proposition shows that
the set of PRTCTL sentences is semantically closed under negation.

Proposition 2 Let f be a PRTCTL sentence. There is a sentence f' such that for all M =
(S,R,L) and s € S, M,s = f iff M,s |~ f'.

3 Model Checking PRTCTL

CTL and RTCTL can both be model checked in time O(|M]||f|). Below we show that the model
checking problem for PRTCTL is decidable and give an algorithm for solving the problem. The
algorithm runs in time O(|M |*+1|f|) where k is the number of distinct parameters in f. Thus for any
fixed number of parameters the problem is polynomial in the size of the formula and the structure.
In practice, we expect that most useful formulae will have only one or two parameters and thus
the algorithms can be said to be efficient. Below, the model checking problem for parameterized
formulae is reduced to a finite state problem by showing that M,s = Vaf(z) (M,s = Jzf(z))
can be determined by checking only a finite set of instances of the form M, s = f(a) where a is a
natural number no bigger than the size of M.

Theorem 1 Let M = (S,R,L) be a finite Kripke structure and Qnxy, ... Qoxof(xo,...zy,) be
a PRTCTL sentence. M,s = Qnayn...Qoxof(zo,...zn) iff M,s = Qnrn < |S]...Qozo <
S| (20, - - zn).

Proof: By induction on the number of quantifiers. If f has no quantifiers then the theorem holds
vacuously.

M,s = Ven1Qnen - .- Qozof(xo, ... ¢p,xns1) iff foralla € Ny M, s = Quay, - .. Qozof (2o, ... Ty, a)
iff foralla € N M,s = Qpzn, < |S|...Qozxo < |S|f(2,...2xn,a). This formula can be interpreted
as a short hand for a set of formulae where the quantifiers are replaced by A and V. For any
(an,---,a0) € |S|**! it was shown [EMSS92] that for any a > |S|, M,s & f(ao,---,an,a) iff
M,s = f(ag,...,an,|S]). Sofor all a € N M,s E Qpzn, < |S]...Qozo < |S|f(o,...2n,a) iff
M,s ): Vni1 < |S|ann < |S| - Qozp < |S|f(x0’---xn,xn+1)'

M,s = 3xp11QnTn ... Qoxo f(xo,.. .2y, Tpt1) iff there exists a € N such that M,s |= Qpzyp ...
Qoxo f(zo,...,xn,a) iff there exists a € N M, s = Qnxy, < |S]... Qo o< |S|f(xo,...,2zn,a). This
formula can be interpreted as a short hand for a set of formulae where the quantifiers are replaced
by A and V. For any (ay,-..,ap) € |S|"™! it was shown that if a > |S|, M, s |= f(ao,---,an,a) iff
M,s = f(ao,-..,an,|S|). So there exists a € N M,s |= Qnzn < |S|... Qozo < |S|f(xo,...2n,a)
iff M,s = 3Jepi1 < |S|Qnzn < |S]... Qoxo < |S|f(zo,...Tn,Tpt1). O



The above theorem shows how to replace Vo by Vo < |S| and 3z by 3z < |S|. In fact, the theorem
can be strengthened to replace Vo < a (Jz < a) by Vo < |S| (3= < |S|) whenever |S| < a.
[EMSS92] showed that any formula f of RTCTL can be model checked in time O(|M||f|). This
leads immediately to the following corollary. In the sequel we show how the complexity can be
substantially reduced for monotone formulae.

Corollary 1 Given M = (S,R,L) and PRTCTL formula f with k parameters, the model checking
problem, does M = f, can be solved in time O(|M|F|M]||f|).

Proposition 3 f(x) is a vRTCTL formula in positive normal form whose only parameter is x, M
s a structure and s is a state in M.

e If the only parameterized operators in f(x) are EUS® and AUS® then M, s = f(0) iff for all
v < IS), M, s = f(z).

e If the only parameterized operators in f(x) are EUS® and AUS® then M, s = f(|S|) iff there
exists © < |S|, M,s = f(x).

e If the only parameterized operators in f(x) are EGS® and AGS® then M, s |= f(|S|) iff for all
z <[S], M,s = f().

e If the only parameterized operators in f(z) are EGS® and AG=® then M, s = f(|0]) iff there
exists © < |S|, M,s = f(x).

Theorem 2 Let Qozo ... Qnznf(zo,...,zn) be a PRTCTL formula in positive normal form, and
M a structure. If for all i € [0..n], the only parameterized operators mentioning x; are either all
US%i or all GS%, then M |= Qoxo ... Quanf(zo,...,2n) iff M = f(ao,...,a,) where fori € [0..n],
a; =0 if Q; =V and x; only appears in U operators; a; = 0 if Q; = 3 and x; only appears in G
operators; a; = |M| if Q; =V and x; only appears in G operators; a; = |M| if Q; = 3 and z; only
appears in U operators.

Theorem 2 immediately gives rise to the following corollary.

Corollary 2 Given M = (S, R, L) and monotone PRTCTL formula f, the model checking problem
‘does M = f’ can be solved in time O(|M||f]).

4 Timed Structures

Timed (Kripke) structures enhance the structures of the previous sections by labeling the transitions
between states by integer values. For example, (s,a,t) € R if there is a transition from state s to
state ¢ taking a time units. M = (S, R, L) is as before except that R C S x N x S. In the sequel we
will make a clear distinction between timed and untimed structures. CTL modalities have exactly
the same meaning in timed and untimed structures; that is, these modalities are oblivious to the
arc labels. Defined below are the relevant timed modalities for RTCTL where s is a state in the
timed structure M and n € N. In particular, note that EFS" modalities cannot be defined in terms
of EX as is the case with CTL, RTCTL (c.f. [EMSS92] [AH92] [CES81]). Because A modalities can
be seen to be shorthands for E modalities we leave out any explicit mention of them.



o M, s EfUS'"g iff there is a path o = sgnysy ... in M such that sp = s and for some ¢ € N,
M,s; g, > 5-1nj <nandforall j <i, M,s; = f.

e M,s = EG="g iff there is a path ¢ = sgnys; ... in M such that 2o = s and for all i € N, if
i—1mj <nthen M,z |=g.

The following proposition shows that the model checking problem for timed modalities can be
reduced to modalities whose quantities are no bigger than the length of the longest simple path in
the structure M.

Proposition 4 (c.f. [EMSS92]) Let M = (S, R, L) be a timed structure with finite state set S. Let
c = |S|max({m € N|(s,m,t) € R}).

o M,s=EfUSCq iff for alln € N, n > ¢, M,s |= EfUS"g .

e M,s = EG=¢q iff for alln € N, n > ¢, M, s = EG="g.

Next, we show that the model checking problem for timed modalities can be solved efficiently in
discrete timed structures.

Theorem 3 Given timed structure M = (S,R,L) and a € N, the model checking problem ‘does
M = EpUS9q’ can be solved in time O(|M|?) L.

Theorem 4 Given timed structure M = (S,R,L) and a € N, the model checking problem ‘does
M = EG=%’ can be solved in time O(|M]).

The following corollaries are a direct consequence of the model checking complexity of the algorithms
for checking individual modalities and the semantics of parameterized formulae.

Corollary 3 Given timed structure M = (S,R,L) such that m is the largest natural number
labeling a transition in M, and PRTCTL sentence f with k parameters, the model checking problem,
does M = f, can be solved in O((m|M|)*|M|?|f]).

Corollary 4 Given timed structure M = (S,R,L), such that m is the largest natural number
labeling a transition in M, and monotone PRTCTL sentence f, the model checking problem, does
M = f, can be solved in time O(|M|?|f]).

5 Event Sensitive Parametric Reasoning

Previously, the parameters of PRTCTL formulae referred to the passage of time only through a
measure of the number of transitions in a path. Each transition represented some unit of time. It
is often useful to be able to count the number of events, such as the number of times proposition
p occurs along a path. To this end, we enhance PRTCTL formulae with the ability to refer to

' A more detailed analysis shows that this problem can be solved in time O(|R| + |S|logm) for m the largest
transition label (c.f. [AMOTS88][CLR90]).



independent events or propositions. For example, AF=4send

response occurs before more than 5 occurrences of send.

response says that along all futures

Let p € AP, n € N and x € Var. An atomic expression ae is of the form < n-p or < z-p. Our
methods outlined in the sequel are sufficient to handle arbitrary boolean combinations over AP in
place of p; however, for simplicity we only discuss the expressions as defined below. An expression
e is either an atomic expression or any positive boolean combination of expressions. Formulae of
General Parametric CTL (GPCTL) are any formulae of PRTCTL combined with the modalities
EU¢, AU¢, EG® and AG® for any expression e. Semantics over untimed structures M = (S, R, L) are
given for these new operators as follows.

e M,s = EfU¢q iff there is a path 0 = s¢... such that s = sp and there is an i € N such that
M,s; =g, forall j <i, M,s; = f and sp...s,-1 Fe.

e M,s |= AfU¢q iff for all paths 0 = sg... such that s = s¢, there is an i € N such that
M,s; =g, forall j <i, M,s; = f and sg...s,1 Fe.

e M,s = EG®f iff there is a path o = s¢... such that s = s¢ and for all an i € N such that
So...8i-1Fe M,s;i = f.

e M, s = AGef iff for all paths o = s ... such that s = sg, for all i € N such that sy ...s;_1 =€,
M78i ): f

® S0...8y < n-p iff there are no more than n, positions, i, i € [0..m] such that p € L(s;).
® 50...SmEe Vel iff so...8;m Fegorsy...s,m = er.

® 50...SmEegNeriff so...8, Feo and sq...8, = e1.

We use e(z) to refer to an expression in which the variable x appears. Given e(z), and n € N then
e(n) refers to the expression every where the same except that  has every where been replaced
by n. Below we show that satisfaction of event quantified modalities can also be restricted to
consideration of simple paths.

Proposition 5 Let M = (S,R,L), s € S and let n > |S| then the following hold.
o M,s =EfucMg iff M, s = EfUelShy.
o M,s =EEG™f iff M, s |= EGe(SDf,
o M,s = AfUc™g iff M,s = Afuelshg,
o M,s =AGM f iff M,s = AGe(SD £,
Model checking for atomic event quantitative modalities can be done in a completely analogous

manner to model checking timing properties, hence we have the following theorems. Let p,q,r € AP
and n € N.

Theorem 5 The model checking problem ‘does M, s |= EQUS"Pr’ can be solved in time O(|M]).
The model checking problem ‘does M, s |= EGS"Pq’ can be solved in time O(|M]).



However, for more complex modalities the problem becomes decidedly more complex.

Theorem 6 Let e be an expression with no variables. The model checking problem ‘does M,s =
EpU¢q’ is NP-complete. The model checking problem ‘does M,s |= EG®p’ is NP-complete.

The following theorem and corollaries are a direct consequence of the semantics of parameterization
and the previous proposition.

Theorem 7 Let M = (S,R, L) be a finite structure and Qpxy, ... Qoxof(zo,...z,) be a GPCTL
sentence. M, s = Qpap ... Qoxof(To,...xn) iff M,s = Qunan < |S|...Qoxo < |S|f(2o,. .. zpn).

Corollary 5 Given M = (S,R,L) and GPCTL formula f with k parameters and atomic expo-
nents, the model checking problem ‘does M |= f’ can be solved in O(|M|*|M||f]).

Corollary 6 Given M = (S,R,L) and GPCTL formula f, the model checking problem ‘does
M = f’ can be solved in O(|M|IH1|f)).

Next we apply our results about monotone formulae to the GPCTL model checking problem.

Proposition 6 f(x) is a GPCTL sub-formula in positive normal form, with no quantifiers, M is
a structure and s is a state in M.

o If the only parameterized operators in f(x) are EUS® and AU®) then M, s = f(0) iff for all
z <[S], M,s = f().

o If the only parameterized operators in f(z) are EUS®) and AU®(®) then M, s |= f(|S|) iff there
exists © < |S|, M,s = f(x).

o If the only parameterized operators in f(z) are EGE® and AG*®) then M,s = f(|S|) iff for
all z < |S|, M,s = f(z).

e If the only parameterized operators in f(x) are EGE®) and AGE®) then M, s |= f(|0|) iff there
exists © < |S|, M,s = f(x).

Theorem 8 Let Qoxg ... Qnxnf(wo,-..,zy) be a GPCTL formula in positive normal form, and M
a structure. If for alli € [0..n], the only parameterized operators mentioning x; are either all yel=i)
or all G&@) | then M |= Qoxo...Qunf(o,...,2n) iff M = f(ag,...,an) where for i € [0..n],
a; =0 if Q; =V and x; only appears in U operators; a; = 0 if Q; = 3 and x; only appears in G
operators; a; = |M| if Q; =Y and x; only appears in G operators; a; = |M| if Q; = 3 and x; only
appears in U operators.

Corollary 7 Given M = (S, R, L) and monotone GPCTL formula f with atomic superscripts, the
model checking problem, ‘does M |= f’ can be solved in time O(|M]||f]).



6 Conclusion

We have presented PRTCTL, a parameterized quantitative temporal logic, and given an efficient
model checking algorithm for a large subclass of the logic. PRTCTL is an extension to RTCTL that
allows the expression of abstract quantitative formulae which cannot be expressed in the standard
quantitative logics without parameterization.

[AHV93] shows that parametric reasoning is possible for a restricted class of parameterized timed
automata, although the general problem is undecidable. There, the parameterization is given
directly in terms of the automaton definition. [Wa96] defines PTCTL, a parametric version of TCTL
[ACD90] and uses PTCTL to characterize the parameter valuations for which a timed automaton
will satisfy the instantiated TCTL formula. This characterization is given in terms of a set of linear
equations. [Wa96] shows that this parametric timing analysis problem is solvable in time double
exponential in the size of the timed automaton or structure. Our approach has been to work with
a more restrictive type of structure and a different kind of parameterized formula. Specifically,
we do not allow the use of resettable clocks or arcs labeled with elements of a dense domain in
the definition of structures but we do allow quantification over parameter values, something which
is not allowed in PTCTL. With these differences we are able to show a substantial improvement
in complexity and give a more standard model checking approach to the problem of evaluating
parameterized formulae over structures. We note that our approach is amenable to recovering
instantiations of the parameters for which the formula holds in the structure, if such exist (c.f.
[AHV93] [Wa96]).

Finally we have given algorithms for PRTCTL over timed structures and GPCTL over untimed
structures. Our analysis of PRTCTL draws directly from and enhances [EMSS92|, particularly
theorem 3. We have shown that the GPCTL model checking problem is NP-complete even for the
case when there are no parameters. However, for sentences with only atomic superscripts and a
fixed k£ number of parameters, the GPCTL model checking problem is solvable in time polynomial
in the size of the structure. Our work differs from that of [YMW97] in that our logic makes no use of
so called freeze quantifiers (JACD90] [AH89]). Freeze quantification is a type of local quantification
whereas the parameterization used here is a global quantification. There does not seem to be
an obvious translation from PRTCTL into TCTL but this remains an interesting open question.
The fact that GPCTL can express quantitative properties of independent actions differentiates this
logic from many others in the literature. Along any computation the number of occurrences of each
event must be monotonically non-decreasing but they may each may increase at their own rate.
This type of independence is not allowed in either [YMW97] or in [ACD90] although the exact
restrictions are somewhat different in the two papers. The logics defined here are not as general as
those that combine the full power of Presberger arithmetic with temporal logics but they also avoid
the increased complexity for model checking associated with the added power [BEH95] [BEH95a].
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