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Ameliorating the State Explosion ProblemPublication No.Kedar Sharad Namjoshi, Ph.D.The University of Texas at Austin, 1998Supervisor: E. Allen EmersonSystems that maintain an ongoing interaction with their environment, such asOperating Systems Network Protocols and Microcontrollers, are commonplace. Thecomplexity of these systems necessitates a rigorous veri�cation of correct behavior.Automatic veri�cation methods such asModel Checking, while theoretically e�cient,su�er in practice from the large state space of these systems, a phenomenon calledState Explosion. State explosion often arises when verifying systems parameterizedby the number of component processes, and single systems with large data domains.The main contribution of this dissertation is in the development of abstractionmethods that serve to ameliorate the state explosion problem for such systems.The �rst part of the dissertation presents abstractions for interesting classesof parameterized systems that reduce the in�nite family of instances to a �nite-statesystem, while exactly preserving correctness properties. For parameterized ring sys-tems with a synchronizing token, it su�ces to examine a few small instances inorder to determine the correctness of every instance of the system. The method isapplicable to protocols such as mutual exclusion and Milner's Cycler. Somewhatsurprisingly, the veri�cation problem is undecidable even if the token carries a singlevii



bit of information. For parameterized synchronous systems, an exact abstractionreduces the parameterized system to a �nite \abstract" graph. This abstractionmethod is applied to the veri�cation of the SAE-J1850 industrial standard bus arbi-tration protocol. We also present a general algorithm schema from which algorithmsfor model-checking several types of in�nite-state systems can be derived.The second part of the dissertation presents a proof technique for showingthat two programs are equivalent up to \stuttering" (repetition) of states. Stutteringarises when comparing programs that are at di�erent levels of abstraction. The newformulation replaces the global reasoning of earlier techniques with local reasoning,which considerably simpli�es abstraction proofs. This new formulation is used inconjunction with a theorem prover to verify a data abstraction for the alternating-bitprotocol.
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Chapter 1
Introduction

\What is now proved was once only imagin'd"{ William Blake.The Marriage of Heaven and Hell, 1790-93.Systems that maintain an ongoing interaction with their environment arecommonplace. Examples of such computer systems include Operating Systems,Network Protocols and micro-controllers. In a landmark paper [Pnueli 77], Pnueliargued that Temporal Logic is the appropriate formalism for reasoning about thecorrectness of such \reactive" systems. At about the same time, Hoare [Hoare 78]and Milner [Milner 80] introduced the process calculi CSP and CCS, which providean alternative means of specifying and verifying such systems.The essential di�erence between reactive systems and the class of sequentialterminating programs is the property of non-termination. While non-terminationof a sequential program usually indicates an error it is the essential feature of areactive system, which enables the system to maintain a continuous interactionwith its environment. Thus, the input-output semantics of terminating programs isinappropriate for reasoning about reactive systems. Methods for reasoning about1



reactive systems thus rely on in�nite objects, such as computations or computationtrees, to de�ne the semantics of these systems.Proof systems for demonstrating correctness of reactive systems are presentedfor temporal logic in [CM 88, MP 92] and for the process calculus view in [Hoare 85,Milner 90]. While proof systems have the advantages of generality in speci�cationand exibility in proof, the complexity of proofs for a large system makes it di�cultto use this method. Automated theorem provers (cf. [BM 79, HS 96]) may be usedto assist with simpli�cation and proof management, but it still requires substantialhuman e�ort to carry out a proof with a mechanical theorem prover.Model Checking [CE 81] arose from the insight that many interesting systemshave a �nite number of states, hence the truth of a temporal correctness formula oversuch a system can be determined by a recursive graph search procedure based on thestructure of the formula. In the past decade, Model Checking has been applied tothe veri�cation of several circuit designs and protocols [BCMDH 90, McMillan 92].Correctness properties are typically expressed in the branching temporal logic CTL,for which the model-checking algorithm has time complexity linear in the size ofthe structure and the formula (linear temporal logics have model-checking timecomplexity that is exponential in the formula size [SC 85, LP 85]). In the processcalculus framework, algorithms have been developed for checking various types ofsimilarity between �nite-state process [KS 90, PT 87, GV 90].An interesting and useful feature of most model-checking algorithms is thegeneration of counter-examples if the desired property does not hold of the system.This has led to widespread use of Model Checking as a veri�cation method. Al-though model-checking algorithms have time complexity that is linear in the sizeof the structure, the size of the structure (i.e., the number of states) may itself beexponential in the size of its description as a program. For instance, a program withn Boolean variables may have a reachable state space of size 2n. This phenomenon,2



referred to as State Explosion, is the main obstacle to the application of ModelChecking and other automatic veri�cation methods. Currently, the best model-checker implementations can handle programs with at most a few hundred Booleanvariables. In addition, the restriction to systems with a �nite number of states ex-cludes a number of interesting types of systems, such as distributed protocols, fromthe purview of Model Checking.This dissertation presents approaches towards solving both problems. The�rst part of the dissertation deals with the problem of verifying, fully automatically,parameterized protocols and other types of in�nite-state systems. The second partof the dissertation presents a new formulation of similarity between systems, whichis used to reduce large structures to similar small ones. The techniques appliedin both cases reduce large structures to smaller ones while preserving a number ofproperties of interest. The contributions of this dissertation are discussed in detailin the following section.1.1 Overview of the DissertationA large part of this dissertation is concerned with determining conditions underwhich the veri�cation problem for parameterized systems is decidable. Model Check-ing, being a procedure de�ned over �nite-state systems, cannot be used directlyto verify parameterized protocols. Most protocols for distributed systems, multi-processors and computer networks are, however, parameterized by the number ofprocesses taking part in the protocol and correctness is desired for every instanceof the protocol. Thus, a large and interesting class of problems is excluded fromthe purview of Model Checking. The current practice is to use Model Checking todetermine correctness of a few instances of a parameterized protocol. This approachhas a strong similarity to testing, and all of the disadvantages that go with it. Onthe other hand, automated veri�cation of a parameterized system is undecidable3



in general [AK 86]. One is thus faced with a dilemma: it seems desirable to havean automated procedure for verifying complex parameterized protocols, but such aprocedure cannot exist in general. The approach put forward in this dissertationis to identify classes of parameterized systems for which the veri�cation problem isdecidable. Algorithms for two such classes are presented in Chapters 3 and 4. Thesealgorithms have been used to verify protocols for mutual exclusion, Milner's Cyclerprotocol, and the SAE-J1850 industry standard bus protocol, whose veri�cation isdescribed in Chapter 5.While the systems considered are quite di�erent, the algorithms developedfor parameterized veri�cation have a strong similarity with other algorithms for themodel-checking of in�nite-state systems. This similarity is explored in Chapter 6,where a general procedure for the veri�cation of in�nite-state systems is proposedand analyzed.Besides parameterized protocols, a common source of state explosion is sys-tems that have a large data domain. It is often the case that the control ow of thesystem is largely independent of the data. Such a \data insensitivity" property for aparticular system is shown by demonstrating that a particular equivalence relationbetween data values is a bisimulation. In Chapter 7, we present a new de�nition ofbisimulation under stuttering of states, a concept that is often needed for proofs ofdata insensitivity, and in equivalence proofs between systems at di�erent levels ofabstraction. The new de�nition replaces existing global proof methods with a localproof rule, which simpli�es proofs considerably and facilitates the use of mechanicaltheorem provers in automating such proofs.In the rest of this section we discuss in some detail the main contributionsof the dissertation and their relevance to the general problem of ameliorating stateexplosion. These results have been published in [EN 95], [EN 96], [Namjoshi 97],[EN 98] and [EN 98a]. 4



1.1.1 Parameterized Token RingsConcurrent processes are often connected in a unidirectional ring structure, whereprocesses communicate by passing a token with associated information. Usually,correctness properties are expected to hold independent of the size of the ring. Weshow that if the processes use the token only as a signal, the task of checking manyimportant types of correctness properties for rings of all sizes can be reduced tochecking these properties for rings of sizes at most a small cuto�. These resultsare applied to automatically verify all instances of a mutual exclusion protocol andMilner's Cycler protocol. We also show that the task of checking correctness of ringsof all sizes is undecidable even if the token carries a single bit of information. Thisdelineates rather sharply the boundary between decidability and undecidability ofautomatic veri�cation of token-ring systems, while also providing a simpler proofof the undecidability of veri�cation for parameterized systems. These results arepresented in detail in Chapter 3 and �rst appeared in [EN 95].1.1.2 Parameterized Synchronous SystemsWe consider here a parameterized system formed of a single control process and anarbitrary number of user processes. Both processes may test the control process stateand the presence of user processes occupying a speci�c local state. We show thatthe task of checking properties of such a parameterized system is decidable for thesynchronous computation model, but undecidable, even for invariance properties,for the interleaving model of computation.The algorithm for the synchronous model constructs an exact �nite-staterepresentation of all instances of the system and performs a special model-checkingprocedure on it. This procedure works in space polynomial in the size of the input,which is the sum of the sizes of the control and user process descriptions. Weprove that this is optimal in a complexity-theoretic sense, by showing that the5



veri�cation problem is PSPACE-complete in general, even for invariance properties.These results are presented in Chapter 4.This algorithm has been applied in the veri�cation of a parameterized, indus-trial standard bus protocol (SAE-J1850). The SAE-J1850 protocol is an automobileindustry standard protocol for data transmission between units connected by a singlewire bus. Units may attempt transmission concurrently; the heart of the protocolis a distributed, on-the-y arbitration mechanism that must ensure a unique result.We have modeled this protocol and veri�ed its correctness for an arbitrary numberof units, using the algorithms described above and additional abstraction results.This work is described in Chapter 5 and will appear in [EN 98a].1.1.3 Model Checking In�nite-State SystemsA variety of systems, including parameterized protocols, real-time automata, com-munication protocols and Petri Nets generate an in�nite state space. Althoughdeciding if a general temporal logic formula holds of a system with an in�nite statespace is undecidable, decidability results have been obtained for many cases, espe-cially for parameterized protocols and real-time automata. We present a generaltechnique for model-checking linear temporal logic speci�cations for in�nite-statesystems, which is based on a generalization of the Karp-Miller construction forPetri Nets. Many known decidability results for the veri�cation of in�nite-statesystems can be derived uniformly from this technique; this is an indication that thetechnique may be widely applicable.We demonstrate the application of this general technique to the problem ofverifying parameterized broadcast protocols, a class that includes many protocolsfor maintaining cache coherency in multiprocessor systems. A number of correct-ness properties of a parameterized invalidation-based cache coherency algorithm areestablished automatically by the application of this procedure. These results will6



be published in [EN 98].1.1.4 Abstraction by QuotientingOne of the most common situations that lead to state explosion is the veri�cation ofprograms with large data domains. It is frequently the case that the control behaviorof such a system is only weakly dependent on the actual data values. Demonstratingsuch a proposition usually involves showing that an equivalence relation on datavalues is a bisimulation. Such a relation is often a bisimulation only up to �nitestuttering (repetition) of state propositions. Stuttering also arises in other contexts;especially when showing equivalence of two systems at di�erent levels of abstraction,which may entail mapping a single step in one system to a sequence of steps in theother. We present a simple new formulation of stuttering bisimulation, in terms ofa ranking function over a well-founded set. It has the pleasant property that, likestrong bisimulation [Milner 90], it requires checking only single transitions. Thislocal property of the de�nition, which is in strong contrast to earlier global de�nitions,leads to shorter and simpler proofs of bisimulation. In addition, it facilitates the useof automated theorem provers in demonstrating the correctness of such bisimulationproofs. In Chapter 7, we present this new formulation, and show its equivalence to anearlier formulation of [BCG 88]. We also present some examples that demonstrateits utility for proving equivalence between systems, and for data abstraction. Theseresults were �rst presented in [Namjoshi 97].
7



Chapter 2
Preliminaries

This chapter contains de�nitions of various concepts that are used throughout thisthesis. They include the syntax and semantics of various temporal logics, automataon in�nite structures, and structural correspondences such as bisimulation and sim-ulation. These de�nitions are modi�ed as necessary in subsequent chapters. Wealso give a short description of two approaches to Model Checking : by �xpointevaluation [CE 81, EL 86], and using automata theory [VW 86].2.1 NotationQuanti�ed expressions are written in the format (Qx : r : p), where Q is the quan-ti�er (e.g., 9;8;min;max ), x the bound variable, r the range, and p the expressionbeing quanti�ed [DS 90]. When the range of x is clear from the context, it maybe dropped, in which case the quanti�ed expression has the form (Qx :: p). Setsde�ned by set comprehension are written in the format fxjP (x)g, which representsthe set of all elements x for which the predicate P holds. The powerset of a set Sis denoted by P(S). For a binary relation R, we often write s R t for readability inplace of (s; t) 2 R. 8



Proofs are often given in the calculational style [DS 90]. A proof in thisformat is constructed out of the following basic unit :Pop ( hint justifying P op Q )QThe binary operator op is a transitive relation on the expressions, which allowsthe chaining together (using transitivity) of a number of such proof units. Typicaloperators are ) (implies), ( (follows-from), i� (if-and-only-if), and �.2.2 Labeled Transition SystemsThe types of structures over which temporal logics are interpreted are called LabeledTransition Systems (LTS's) [Keller 76]. Informally, a LTS is a directed graph, whereeach vertex (a state) is labeled with the atomic propositions true at that state, andeach edge (an action) is labeled with an action symbol.De�nition 2.1 (LTS) A Labeled Transition System (or LTS) A is a structure(Q;�; �; �; L; I) where� Q is a non-empty set of states,� � is a transition (or action) alphabet, possibly containing the distinguishedsymbol � (the silent action),� � � Q� ��Q is the transition relation,� � : Q ! L is a labelling function on the states, with the condition that if(s; �; t) 2 � then �(s) = �(t).� L is a non-empty set of labels, 9



� I � Q is the set of initial states.For clarity, we write s a!At instead of (s; a; t) 2 �. We write s A!t for (9a :a 2 � : s a!At). The subscript A is often elided when a speci�c structure is underconsideration. A path � of A (with length(�) states) is a (�nite or in�nite) sequenceof states such that for every i such that i + 1 < length(�), �i A!�i+1. A fullpathis a maximal path; i.e., either it is in�nite or the last state has no successor. Acomputation is a path that starts at an initial state of A.The semantics of most temporal logics do not take edge labels into account.They are de�ned over a special kind of LTS known as a Kripke structure.De�nition 2.2 (Kripke Structure) A Kripke Structure is de�ned by a structure(Q; �; �;AP; I), where� Q is a non-empty set of states,� � � Q�Q is the transition relation,� � : Q! P(AP ) is a labelling function on the states,� AP is a non-empty set of atomic propositions,� I � Q is the set of initial states.Sometimes, fairness constraints are added to an LTS. We consider the sim-plest form of a fair LTS.De�nition 2.3 (Fair LTS) A fair LTS is a structure (A;F ) where A is a LTSand F is a subset of the states of A. A computation of a fair LTS is a computationof A where a state from F appears in�nitely often.
10



2.2.1 LTS CompositionThe parallel composition of two LTS's A = (QA;�A; �A; �A; LA; IA) and B =(QB ;�B ; �B ; �B ; LB ; IB), such that LA \ LB = ;, is de�ned with respect to asynchronizer structure � = (�A;�B ;�), where �A � �Anf�g, �B � �Bnf�g, and� : �A ! �B is a bijection. Informally, the sets in the synchronizer represent theactions that the processes synchronize on. The composition, denoted by A k� B,de�nes the LTS AB = (QAB;�AB ; �AB ; �AB ; LAB ; IAB) :1. QAB = QA �QB,2. �AB = (�A [ �B)n(�A [ �B),3. �AB is de�ned by :(s; t) a!AB(u; v) i�(a) a 62 �A ^ s a!Au ^ t = v (a move by A only), or(b) a 62 �B ^ t a!Bv ^ s = u (a move by B only), or(c) a = � ^ (9b :: s b!Au ^ t �b!Bv) (a synchronized move)4. �AB(s; t) = �A(s) [ �B(t),5. LAB = LA [ LB, and6. q0AB = IA � IB.It is easily shown that k is associative. It is also symmetric up to strong bisimulation.2.2.2 LTS ProjectionFor two LTS's A = (QA;�A; �A; �A; LA; IA) and B = (QB ;�B ; �B ; �B ; LB ; IB),composed to form C = A k B, the projection of C on A is de�ned as the LTS CjAgiven by CjA = (Q;�; �; �; L; I), where 11



1. Q = QC ,2. � = �A,3. � is de�ned by :s a!t i�(a) a 2 �A ^ s a!Ct, or(b) a = � ^ (9b : b 2 �B : s b!Ct)4. �(s) = �C(s) \ LA,5. L = LA, and6. I = IC .The e�ect of projecting on to A is just to elide the labels on actions performedby the B-component, replacing them with the silent action � .2.3 Automata on In�nite StringsA B�uchi automaton B is given by a structure (Q;�; �; q0; F ), where Q is a �nite setof states, � is a �nite alphabet, � � Q � � � Q is the transition relation, q0 isthe initial state, and F is a non-empty subset of accepting states. B�uchi automatarecognize in�nite strings over �. A run r of B over an in�nite string w is a functionr : N ! Q such that r(0) = q0, and (r(i); wi; r(i + 1)) 2 � for every i 2 N. Letinf(r) = fqjjr�1(q)j = !g denote the states from Q that appear in�nitely often in r.A run r is accepting i� inf(r) \ F 6= ;; i.e., a state from F appears in�nitely oftenalong r. A word w is accepted by the automaton i� there is an accepting run overw. The language of B, L(B), is the set of words accepted by it.B�uchi automata are used to specify temporal correctness properties. Propo-sitional linear temporal formulae can be translated into equivalent B�uchi automata12



(cf. [Thomas 90]). We sometimes adopt the automata-theoretic approach to ModelChecking [VW 86], in which the negation of the correctness property is expressed bya B�uchi automaton B, and every computation of an LTS A satis�es the correctnessproperty i� the set of computations of the \product" C = B �A is empty.2.3.1 Products with B�uchiAutomataLet A be the LTS (S;�; �; �; L; I), and let B be a B�uchi automaton (Q;L; �; q0; F ).Their product, denoted B �A, is a fair LTS (A0; F 0), where :1. S0 = Q� S,2. �0 = �,3. ((b; s); a; (c; t)) 2 �0 i� (s; a; t) 2 � and (b; �(s); c) 2 �,4. �0(b; s) = (b; �(s)),5. L0 = Q� L,6. I 0 = fq0g � I, and7. F 0 = f(b; s)jb 2 F; s 2 Sg.2.4 Temporal Logics and their SemanticsWe will de�ne the syntax and semantics of the Full Branching Time Logic CTL�.The other logics considered (CTL and LTL) are sublogics of CTL�, and will be de�nedas such.CTL� (read as \Computation Tree Logic - star") [EH 82] derives its expressivepower from the freedom of combining modalities which quantify over paths and themodalities which quantify states along a particular path. These modalities areA;E;F;G;Xs; and Uw (\for all futures", \for some future", \sometime", \always",13



\strong next-time", and \weak until", respectively), and they are allowed to appearin virtually arbitrary combinations. Formally, we inductively de�ne a class of stateformulas (true or false of states) and a class of path formulas (true or false of paths),which is the least set of formulas satisfying :(S1) Any atomic proposition P is a state formula.(S2) If p; q are state formulas, then so are p ^ q and :p.(S3) If p is a path formula then Ep is a state formula.(P1) Any state formula p is also a path formula.(P2) If p; q are path formulas, then so are p ^ q and :p.(P3) If p; q are path formulas then so are Xsp and pUwq.The semantics of a formula is de�ned with respect to a Kripke StructureM = (S;R; �;AP; I). We write M; s j= p (M;x j= p) to mean that state formula p(path formula p) is true in structure M at state s (of fullpath x, resp.). When Mis understood, we write simply s j= p (x j= p). We de�ne j= inductively using theconvention that x denotes a fullpath and xi denotes the su�x fullpath starting atthe ith position in x, provided i < length(x). For a state s :(S1) s j= P i� P 2 �(s) for atomic proposition P(S2) s j= p ^ q i� s j= p and s j= q,s j= :p i� not (s j= p)(S3) s j= Ep i� for some fullpath x starting at s, x j= pFor a fullpath x :(P1) x j= p i� x0 j= p, for any state formula p14



(P2) x j= p ^ q i� x j= p and x j= q,x j= :p i� not (x j= p)(P3) x j= Xsp i� x1 is de�ned and x1 j= p,x j= (p Uw q) i� (8i : i < jxj : (8j : j � i : xj j= :q)) xi j= p).We say that state formula p is valid, and write j= p, if, for every structureM and every state s in M , it is the case that M; s j= p. We say that state formulap is satis�able i� for some structure M and some state s in M , it is the case thatM; s j= p. In this case we also say that M de�nes a model of p. We de�ne validityand satis�ability for path formulas similarly.Other connectives can then be de�ned as abbreviations in the usual way:p_ q � :(:p^:q), p) q � :p_ q, p, q � (p) q)^ (q ) p), Ap � :E:p, Gp� p Uw false, and Fp � :G: p. Further operators may also be de�ned as follows:Xwp � :Xs:p is the weak next-time,pUsq � (pUwq) ^ Fq is the strong until,1Fp � GFXsp means in�nitely often p,1Gp �FGXsp means almost everywhere p,inf � GXstrue means the path is in�nite, and�n � FXwfalse means the path is �nite.Sublogics of CTL� are de�ned either by restrictions on the operators allowed,or by restrictions on the ways in which the operators may be combined.LTL (Linear Temporal Logic) [Pnueli 77] is obtained by leaving out (S2) and(S3), and by rede�ning M; s j= f to be true i� for every fullpath x that starts at s,M;x j= f .ACTL� is the subset of CTL� where in each formula, every occurrence of Ais under an even number of negations, and every occurrence of E is under an oddnumber of negations. The dual logic is known as ECTL�.CTL�nX is obtained by leaving out the operator Xs. This makes the logic15



insensitive to stuttering (�nite repetitions of the same state).CTL (Computation Tree Logic) is obtained by restricting the kinds of pathformulas possible. The new rules are :(S1) Any atomic proposition P is a state formula.(S2) If p; q are state formulas, then so are p ^ q, :p.(S3) If p is a path formula then Ep is a state formula.(P1) Any state formula p is also a path formula.(P2) If p; q are path formulas then so are Xsp and pUwq.The rules ensure that path quanti�ers are always associated with a uniquetemporal operator. Thus, AG(p) AFq) is a CTL formula, while AG(p) Fq) is not.CTL� itself is a sublogic of the �-calculus, which is de�ned as the least set offormulas that satisfy :� Any atomic proposition P , and any variable symbol Z is a formula.� If p; q are formulas, then so are p ^ q, :p.� If p is a formula, then EXp is a formula.� If p is a formula, then (�Z :: p) is a formula.The paper by Emerson [Emerson 90] contains a detailed survey of these logicsand comparisons of their expressive power.2.4.1 Indexed LogicsFor systems that are formed by the composition of many similar systems, it is of-ten the case that the correctness properties are of the form : \for every process P16



holds", or \for every pair of processes P holds". To express these properties con-cisely, it is convenient to use an indexed proposition set and quanti�cation over theindex set [RS 85, BCG 89]. Quanti�ed properties are represented here in the formV�x:R(�x) f(�x), where �x is a non-empty list of bound names, R is an expression denot-ing the range of these names, and f is a temporal logic formula with propositionsindexed by these names. For example, mutual exclusion among a collection of n pro-cesses is expressed by Vi;j:i 6=j AG(:(Ci ^ Cj)), where Ck is an indexed propositiondenoting the condition that process k is in its critical region.The interpretation of an indexed formula is performed with respect to anindex set A over a Kripke Structure M = (S;R;L;AP; I), where AP may be par-titioned into \global" propositions GP and indexed local propositions, LP �A. Inthis structure, M; s j= V�x :R(�x) f(�x) i� for every vector of values �a over Aj�xj suchthat R(�a) holds, M; s j= f(�a). The interpretation of other connectives is as de�nedearlier.2.5 Model CheckingModel Checking [CE 81] (cf. [QS 82]) is an algorithmic procedure for determiningthe truth of a temporal formula over a �nite-state system. For the logic CTL, thisprocedure uses the �xpoint formulation of CTL operators. For instance, the operatorE(fUg) may be expressed as (�Z :: g_(f ^EXZ)). Fixpoint evaluation may be doneusing the Knaster-Tarski theorem [Tarski 55], by which the set of states de�ning aleast �xpoint (�Z : f(Z)) can be computed as (S i :: f i(;)), where the range ofi is over the ordinals that are at most the cardinal number of the structure. For�nite-state systems, this computation terminates in at most n iterations, where nis the number of states. This procedure for CTL has been extended to the logicsFairCTL and the �-calculus [EL 86].An alternative view of Model Checking uses automata [VW 86]. Here, the17



set of structures satisfying a formula f is encoded using a �nite automaton, Af .This may be done using either automata on in�nite strings or automata on in�nitetrees. If the string approach is taken, then Model Checking reduces to the problemof determining whether every computation of M is a computation accepted by Af ,i.e., L(M) � L(Af ). This language inclusion problem may be decided in PSPACE .For the tree approach, Model Checking can be phrased as M 2 L(Af ), which is amembership problem. The complexity of determining membership depends on theacceptance conditions of the tree automaton [EJ 88].The model-checking approach has by now been applied to a wide variety oflogics such as branching-time logics [CE 81, QS 82, EL 86] and linear-time logic[LP 85], and to a variety of programming models such as �nite-state programs[CE 81, QS 82] and real-time systems [ACD 90].2.6 Equivalences on Transition SystemsThe notions of simulation [Milner 71] and bisimulation [Park 81, Milner 90] are thebasic ways of comparing the structure of transition systems. There are severalvariants; an important one being bisimulation under stuttering (�nite repetition) ofstate labelings [BCG 88, dNV 90, Milner 90].We present here the three main notions cited above. For simplicity, thede�nitions are with respect to a single structure; comparisons between structurescan be reduced to this case by forming a single structure that is the disjoint unionof the structures. In the following, let A = (Q;�; �; �; L; I) be a LTS.De�nition 2.4 (Simulation) A relation R � Q�Q is a simulation relation on Ai� for any s; t such that s R t,1. �(s) = �(t),2. (8a; u : s a!Au : (9v : t a!Av : u R v)).18



This concept can be formulated in other ways. A alternative formulationis the following : R is a simulation relation i� R � F (R), where F is a functionmapping relations to relations that is de�ned by the the two items above. It isstraightforward to show that F is monotone over the complete lattice of relationson the LTS; hence, by the Knaster-Tarski theorem [Tarski 55], it has a greatest�xpoint. This is the greatest simulation relation on the LTS. If s R t for somesimulation relation R, we say that s simulates t. Equivalently, s simulates t i� (s; t)is in the greatest simulation relation.Theorem 2.1 The greatest simulation relation is reexive and transitive.For total transition systems, there is a nice connection between the logicaland structural properties of the transition system; the �rst of many such connectionsto be discussed here.Theorem 2.2 For a total, �nite-branching Kripke structure M , if s simulates t,then for every ACTL� formula f , M; s j= f implies that M; t j= f .De�nition 2.5 (Bisimulation [Park 81]) A relation R � Q�Q is a bisimulationrelation on A i� it is symmetric, and for any s; t such that s R t,1. �(s) = �(t),2. (8a; u : s a!Au : (9v : t a!Av : u R v)).Note that the only additional requirement here, over the simulation relationde�nition, is that R be symmetric. This concept can also be formulated as thefollowing : R is a bisimulation relation i� R � F (R), where F is a function mappingrelations to relations that is de�ned by the the two items above. It is straightforwardto show that F is monotone over the complete lattice of relations on the LTS; hence,by the Knaster-Tarski theorem [Tarski 55], it has a greatest �xpoint. This is the19



greatest bisimulation relation on the LTS. If s R t for some bisimulation relationR, we say that s is bisimilar to t. Equivalently, s is bisimilar to t i� (s; t) is in thegreatest bisimulation relation.Theorem 2.3 [Milner 90] The greatest bisimulation relation is an equivalence re-lation. The connection between bisimulation and CTL� is stronger than that forsimulation.Theorem 2.4 [HM 85, BCG 88] For a �nite-branching Kripke structure M , s isbisimilar to t i� for every CTL� formula f , M; s j= f i� M; t j= f .The de�nition above is often referred to as \strong bisimulation" since itrequires that single actions are matched by bisimilar states. This is often too re-strictive a notion, especially when stuttering (repetition of the same state) and �(silent) actions are introduced by hiding details of processes. To take such stutteringinto account, several variants of bisimulation have been proposed [BCG 88, dNV 90,Milner 90]. We present here the de�nition of stuttering bisimulation, modi�ed fromthe original de�nition in [BCG 88] which applies only to �nite total structures.De�nition 2.6 (Stuttering Bisimulation) A relation R � S � S is a stutteringbisimulation on A i� R is symmetric and for every s; t such that s R t,1. �(s) = �(t),2. (8� : fp(s; �) : (9� : fp(t ; �) : matchR(�; �))).where fp(s; �) is true i� � is a fullpath starting at s (�0 = s), and matchR(�; �) istrue i� � and � can be divided into an equal number of non-empty, �nite, segmentssuch that any pair of states from segments with the same index is in the relation R.The formal de�nition of match is given below:20



Let INC be the set of strictly increasing sequences of natural numbers start-ing at 0. Precisely, INC = f� j � : N ! N ^ �(0) = 0 ^ (8i : i 2 N :�(i) < �(i + 1))g. Let � be a path, and � a member of INC : For i 2 N, letintv(i; �; �) = [�(i);min(�(i + 1); length(�))). The ith segment of � w.r.t. �,seg(i; �; �), is de�ned by the sequence of states of � with indices in intv(i; �; �).Let � and �, under partitions � and � respectively, correspond w.r.t. R i�they are subdivided into the same number of segments, and any pair of states insegments with the same index are related by R. Precisely, corrB((�; �); (�; �)) �(8i : i 2 N : intv(i; �; �) 6= ; � intv(i; �; �) 6= ; ^ (8m;n : m 2 intv(i; �; �) ^ n 2intv(i; �; �) : (�m; �n) 2 R))).Paths � and � match i� there exist partitions that make them correspond.Precisely, matchR(�; �) � (9�; � : �; � 2 INC : corrR((�; �); (�; �))).It can be shown, applying the Knaster-Tarski theorem, that the greateststuttering bisimulation exists.Theorem 2.5 The greatest stuttering bisimulation is an equivalence relation.Theorem 2.6 [BCG 88] For a �nite-branching Kripke structure M , if s is stutter-ing bisimilar to t, then for every CTL�nX formula f , M; s j= f i� M; t j= f .Recall that CTL�nX is the sublogic of CTL� that is insensitive to stuttering.Many qualitative properties of systems can be expressed using CTL�nX; e.g., ab-sence of starvation (AG(trying ) AFcritical)) and mutual exclusion (AG(:(critical0^critical1 ))).
21



Chapter 3
Reasoning about Rings

3.1 IntroductionThe ring is one of the most useful ways for structuring systems of concurrentlyexecuting processes. Well known examples include protocols for mutual exclusion,leader election, scheduling, and the dining philosophers problem. These have twofeatures in common : the individual processes of the ring are isomorphic (i.e., the\code" of one process can be transformed into that of another by a simple renam-ing), and the desired correctness properties are expected to be satis�ed by instancesof arbitrary size. The protocols are thus parameterized by the number of processes.The usual method of verifying that such a parameterized system satis�es a speci-�cation is by a direct proof by hand [CM 88, MP 94] which requires considerableingenuity and can, in practice, be done only for reasonably simple protocols.In this chapter we show that for any system of many isomorphic processesorganized in a ring which communicate through a token used as a signal, a propertyholds for every instance of the system i� it holds for instances up to a small cuto�size. Thus, for systems composed of isomorphic �nite state processes, a fully auto-mated technique, such as Model Checking [CE 81, CES 86] may be applied for the22



veri�cation of the parameterized system.The logic in which correctness properties are expressed is the branching timelogic CTL� without the next-time operator X, which we denote by CTL�nX [BCG 89].The semantics of this logic is presented in Chapter 2. Formulas of this logic are insen-sitive to \stuttering" (repeated occurrences of the same state). Since the formulashave to hold for rings of various sizes, it seems reasonable to make them free ofnext-time requirements, which in general vary among rings of various sizes. It is,however, possible to handle a \next-action by process i" modality.Correctness properties of parameterized systems are typically expressed asproperties in an indexed temporal logic. Chapter 2 contains a description of thesyntax and semantics of such logics. We consider several types of indexed tem-poral properties, where the temporal modalities are from CTL�nX. For instance,mutual exclusion can be expressed as Vi ;j :i 6=j AG:(criticali ^ criticalj ), and absenceof starvation by Vi AG(tryingi ) criticali ). The results for speci�c types of indexedformulas are as follows, where g is a quanti�er-free formula of indexed CTL�nX.� Vi g(i) has a cuto� of 2.� Vi g(i; i + 1) has a cuto� of 3.� Vi;j:i 6=j g(i; j) has a cuto� of 4.� Vi;j:i 6=j g(i; i + 1; j) has a cuto� of 5.The rotational symmetry of the ring plays an important role in the proofsof these results. It allows us to reduce the check of an indexed formula such asVi g(i), which ranges over all possible process indices in an instance of the system,to that of one with a particular index, say g(0). We then establish the existence ofa correspondence between the state transition graphs of an instance of the systemwith n processes, and one with the number of processes equal to the cuto�. The23



correspondence established is for the projection of the state transition graph onthe particular process index; the symmetry then allows us to establish the result.The main observation of the correspondence proof is that a segment of the ring notcontaining any observable processes (e.g., for Vi g(i), one not containing process 0)has behaviour similar to that of a single process.Section 3.2 de�nes the notation and constructions we need. Section 3.3 con-tains the de�nition of the system model. We prove the main results in Section 3.4.Section 3.5 contains applications of these results to two protocols. Section 3.7 con-tains a discussion of related work. The technical details of proofs are provided inSection 3.8.3.2 PreliminariesEach process in the ring is modeled as a Labeled Transition System (LTS). Chapter2 contains the precise de�nition of LTS's and of operators on LTS's such as compo-sition and projection. To compare the instances of the ring system, we use a notionof equivalence under stuttering that is simpler than the original de�nition that isreproduced in Chapter 3.2. In Section 3.8, we show that the new de�nition gives riseto the same greatest solution as the original one; thus, they enjoy many commonproperties.3.2.1 Block BisimulationLet A be an LTS, A = (Q;�; �; �; L; I). Let � be an equivalence relation on Q.MAXF�(s) is the set of �nite paths of the form �; v, where � begins at s (�0 = s),every state in � is in the same �-class as s ((8i : i < length:� : �i � s)), and v is ina di�erent class :(v � s). MAXI�(s) is the set of all fullpaths �, where � beginsat s and every state in � is in the same �-class as s.24



De�nition 3.1 (Block Bisimulation) Let � be an equivalence relation on Q, andlet h be a bijection on AP . A relation B on Q is a block bisimulation on A w.r.t.(�; h) i�1. B is symmetric,2. B is monotonic w.r.t. � : For any s; t; u; v if (s; t) 2 B, s � u, and t � v,then (u; v) 2 B.3. Whenever (s; t) 2 B then(a) h(�(s)) = �(t),(b) (8�; v : �; v 2 MAXF�(s) : (9�; w : �;w 2 MAXF�(t) : vBw))(c) (8� : � 2MAXI�(s) :(9� : � 2 MAXI�(t) : length(�) = ! � length(�) = !)) �The term \block" bisimulation is used as the de�nition essentially comparespaths consisting of states in the same �-class (block). In order to compare twoLTS's A and B, form the disjoint union C of A and B and de�ne a bisimulation onC. For a formula f , let h(f) be the formula obtained by replacing each propositionP of f by h(P ). The following theorem is shown in Section 3.8 :Theorem 3.1 Let B be a block bisimulation on LTS A w.r.t. (�; h). If (s; t) 2 B,then for any formula f of CTL�nX, A; s j= f i� A; t j= h(f). �We say that states s and t are block equivalent, if there is some block bisim-ulation on A that includes the pair (s; t). We write A � B, for LTS's A and B i�every initial state in A has a block bisimilar initial state of B and vice-versa.
25



3.2.2 Group Theoretic notionsSome simple notation from Group Theory is needed to de�ne the symmetries ofstructures. For an natural number n, let [n] represent the set fx j 0 � x � n� 1g.Let Sym I be the full symmetry group on the index set I. Let Cn be the permutationgroup of rotations on a ring of size n. For groups C and D, we write C � D to meanthat C is a subgroup of D. Clearly, Cn � Sym[n].For a formula f indexed over a set I, Aut f = f�j� 2 Sym I ^ �(f) � fg.For an LTG M composed of n processes in parallel, where the states are indexedby [n], Aut M is the group of permutations in Sym [n] that when applied to everystate and transition ofM , mapM to an isomorphic copy [ES 93]. Abusing notationslightly, we de�ne Aut s for a state s to be the set of permutations that when appliedto s, map it to itself.3.3 System ModelInformally, the token passing model is de�ned by the following :� Initially, a nondeterministically chosen process has the unique token.� A process has two types of transitions : those that are enabled only if theprocess has the token, and others which can be enabled without the processpossessing the token. We let the system evolve according to pure nondeter-minism; i.e., no fairness constraint is assumed.� The process with the token must eventually transmit it in a clockwise direction.Formally, individual processes of a ring are constructed from a templateprocess T , which is an LTS de�ned by :1. The set of states, Q�B. The boolean component indicates possession of thetoken. 26



2. The set of actions, �, which is partitioned into �f , the set of \free" actions,�d, the set of \token dependent" actions, and fsnd ; rcvg, the set of tokentransfer actions.3. The transition relation �, where� For every (q; b) a!(q0; b0) 2 �,(a) a 2 �f ) b � b0 (A free transition cannot change possession.)(b) a 2 �d ) b ^ b0 (A token dependent transition can execute only ifthe process possesses the token.)(c) a = rcv ) :b ^ b0 (A receive establishes possession of the token.)(d) a = snd ) b ^ :b0 (A send revokes possession of the token.)� For every (q; b) such that (q0; false) a!(q; b) 2 �, a = rcv . (The onlypossible initial action is a receive.)� rcv and snd actions alternate along every path in T .� � is total in the �rst component. (The process is nonterminating)4. The set of propositions is Q � B, and the labelling function is the identityfunction.5. The initial state is (q0; false).For a �nite-state template process, it is possible to check the conditions on� automatically, by model-checking a certain CTL formula.An individual process Ki (i 2 [n]; n � 1) in an instance of the system with nprocesses is de�ned by Ki = �i(T ), where �i is the re-labelling de�ned by the actionrenamings frcv i=rcv ; snd i+1=sndg [ fai=a : a 2 �f [ �dg and the state renamingssi=s for every state s. The instance is de�ned by Ring(n) = K0 k K1 k : : : kKn�1 k Dn, where Dn is the initial token distribution process that synchronizes27



with a non-deterministically chosen Ki to pass it the token. For each compositionKi k Ki+1, the synchronized actions are snd i+1 and rcv i+1 (all arithmetic in a ringof size n is done modulo n). Let M(n) denote the LTS induced by Ring(n). Fora set of indices I � [n], we let M(n) #I denote the projection of M(n) on to theprocesses indexed by I. For a set P of propositions indexed by [n], PI denotes thesubset that is indexed with elements from I.De�nition 3.2 (Ring Intervals) Let [i : j]n denote the indices on the clockwisesegment from i to j on a ring of size n. Precisely, [i : j]n = fi + k j k 2 [n] ^(8l : l < k : i + l 6= j)gg. Addition is modulo n. Let [i : j)n = [i : j]n � fjg,(i : j]n = [i : j]nnfig, and (i : j)n = [i : j]nnfi; jg. Note that from the de�nitions,(i : i)n, [i : i)n, and (i : i]n are all empty. �3.4 Property speci�c abstractionsWe show here that for speci�c types of properties, it su�ces to consider instancesof size at most a small cuto� size in order to show that the property holds for allinstances.The properties that we consider are of the forms Vi g(i), Vi;j:i 6=j g(i; j), andVi;j:i 6=j g(i; i + 1; j). In each case, we �rst show by symmetry arguments, that ineach instance of size n, it is su�cient to instantiate the quanti�er Vi with someprocess index, say 0. We then prove that a system of size greater than the cuto�size satis�es this smaller formula i� the system of cuto� size does. This is shown byexhibiting a block bisimulation between the large and the small system, using thefollowing key theorem.Theorem 3.2 (Reduction Theorem) Let I � [n], and J � [k] be sets of indicessuch that there is a bijection h : I ! J such that for any i; j 2 I,1. i � j i� h:i � h:j, and 28



2. (i : j)n 6= ; i� (h(i) : h(j))k 6= ;.Then M(n) #I is block equivalent to M(k) #J .Proof. Let hA be the derived renaming function for indexed actions from M(n)de�ned by hA(ai) = ah(i). Let hP be the derived renaming function for indexedpropositions from M(n) de�ned by hP (Pi) = Ph(i). We de�ne a relation that is ablock bisimulation on M(n) and M(k) w.r.t. hP .For a state s of M(i), let tok i(s) be the index of the process that possessesthe token in state s. Let Rnk be the relation between states of M(n) and M(k),de�ned as follows:s Rnk t i�1. The local states of Dn in s and Dk in t are identical (recall that Dn is theinitial token distribution process),2. hP (�(s) #I) = �(t) #J ,3. (8i : i 2 I : tokn:s = i � tokk:t = h:i), and4. (8i; j : i; j 2 I : tokn(s) 2 (i : j)n � tokk(t) 2 (h(i) : h(j))k).The relation Rnn is similar but for (2), which is modi�ed to �(s) #I= �(t) #I .De�ne the relation � to be Rnn [ Rkk. Let B = Rnk [ Rkn. B is symmetric. It isstraightforward to check that � is an equivalence relation, and that B is monotonicw.r.t. �. Section 3.8 contains the proof that B is a block bisimulation w.r.t. (�; hP ).Informally, the bisimulation treats states as equivalent if corresponding pro-cesses (w.r.t. h) in I and J have the same local state (conditions 1,2), the token isat some process in I i� it is at the corresponding process in J (condition 3), andthe token is in between two processes in I i� it is in between the correspondingprocesses in J (condition 4). �29



3.4.1 Properties of the form Vi g(i)Properties of the form Vi g(i) refer to properties that every individual process ina system of processes must satisfy. They are typically used to specify progressrequirements, as in absence of starvation (Vi AG(tryingi ) criticali )). We show �rstthat for a symmetric system, it is possible to reduce this property to its instantiationwith a single index. The following lemma is a re�nement of one in [ES 93].Lemma 3.1 If A is the LTS of a system with n isomorphic processes, Cn � Aut A,and the start state q0 is symmetric (i.e Aut q0 = Sym [n]) then, A; q0 j= Vi g(i) i�A; q0 j= g(0).Proof.(LHS ) RHS) This is immediate from the de�nition of j=.(LHS ( RHS)A; q0 j= g(0)) ( � is a permutation )(8� : � 2 Aut A : �(A); �(q0) j= g(�(0)))i� ( �(A) = A as � 2 Aut A, �(q0) = q0, as q0 is symmetric )(8� : � 2 Aut A : A; q0 j= g(�(0)))) ( as Cn � Aut A )(8� : � 2 Cn : A; q0 j= g(�(0)))) ( The cyclic shifts in Cn drive 0 to i for every i 2 [n] )(8i : i 2 [n] : A; q0 j= g(i))i� ( by de�nition )A; q0 j= Vi g(i)�
30



Theorem 3.3 Let f be a formula of the form Vi g(i), where g(i) is a CTL�nXformula that refers only to propositions indexed by i. Then, (8n : n � 2 : M(n); q0nj=f � M(2); q02 j= f).Proof.For any n � 2,M(n); q0n j= fi� ( the initial state is symmetric, lemma 3.1 )M(n); q0n j= g(0)i� ( as g(0) refers only to propositions indexed by 0 )M(n) #f0g; q0n j= g(0)i� ( By Theorem 3.2, M(n) #f0g and M(2) #f0g are block equivalent)M(2) #f0g; q02 j= g(0)i� ( as g(0) refers only to propositions indexed by 0 )M(2); q02 j= g(0)i� ( by lemma 3.1 )M(2); q02 j= f�3.4.2 Properties of the form Vi g(i; i + 1)Formulas with the form Vi g(i; i+ 1) can express properties of neighboring pairs ofprocesses. For instance, the exclusion property for the Dining Philosophers problemmay be expressed as Vi AG(:(eatingi ^ eatingi+1 )). By a proof analogous to thatfor Lemma 3.1, we have the following lemma.Lemma 3.2 If A is the global state transition graph of a system with n isomorphicprocesses, Cn � Aut A, and the start state q0 is symmetric, then A; q0 j= Vi g(i; i+1)i� A; q0 j= g(0; 1). �31



We have to take into account the various situations that process K0 and K1can be in. Intuitively, either K0 or K1 can be given the token initially, or some otherprocess could be assigned the token. This suggests that a three process system maybe su�cient. And in fact we have, by an argument analogous to that for Theorem3.3,Theorem 3.4 Let f be a formula of the form Vi g(i; i + 1), where g(i; i + 1) is aCTL�nX formula. Then, (8n : n � 3 :M(n); q0n j= f � M(3); q03 j= f) �3.4.3 Properties of the form Vi;j:i 6=j g(i; j)We consider next formulas of the form Vi;j:i 6=j g(i; j). These are used to expressproperties that involve distinct pairs of processes. Mutual exclusion, for instance,can be written as Vi;j:i 6=j AG(:(criticali ^ criticalj )).Lemma 3.3 If A is the LTS of a system with n isomorphic processes, Cn � Aut A,and the start state q0 is symmetric then,A; q0 j= Vi;j:i 6=j g(i; j) i� A; q0 j= Vjj 6=0 g(0; j).Proof.(LHS ) RHS) This is immediate from the de�nition of j=.(LHS ( RHS)A; q0 j= Vjj 6=0 g(0; j)) ( � is a permutation )(8� : � 2 Aut A : �(A); �(q0) j= Vjj 6=�(0) g(�(0); j))i� ( �(A) = A as � 2 Aut A, �(q0) = q0, as q0 is symmetric )(8� : � 2 Aut A : A; q0 j= Vjj 6=�(0) g(�(0); j))) ( as Cn � Aut A )(8� : � 2 Cn : A; q0 j= Vjj 6=�(0) g(�(0); j))32



) ( The cyclic shifts in Cn drive 0 to i for every i 2 [n] )(8i : i 2 [n] : A; q0 j= Vjj 6=i g(i; j))i� ( by de�nition )A; q0 j= Vi;j:i 6=j g(i; j)� From this lemma, we need to consider only the pairs of processes (0; j), suchthat j 6= 0. Applying the Reduction Theorem, we obtain the following theorem :Theorem 3.5 For any n � 4,1. M(n) #(0;1)�M(4) #(0;1),2. M(n) #(0;n�1)�M(4) #(0;3), and3. M(n) #(0;j)�M(4) #(0;2), for j 62 f0; 1; n � 1g.Proof. Let h : [n] ! [4] be de�ned by h(0) = 0, h(1) = 1, h(n � 1) = 3, andh(j) = 2, for j 62 f0; 1; n � 1g. Each of the claims above follows from Theorem 3.2by observing that h restricted to the pairs mentioned in each claim is a bijectionthat satis�es both preconditions of the theorem. �Corollary 3.1 For any n � 4, and a formula g(i; j) of CTL�nX,1. M(n); q0n j= g(0; 1) i� M(4); q04 j= g(0; 1),2. M(n); q0n j= g(0; n � 1) i� M(4); q04 j= g(0; 3), and3. M(n); q0n j= g(0; j) i� M(4); q04 j= g(0; 2), for j 62 f0; 1; n � 1g.Proof. The corollary follows from Theorems 3.1 and 3.5. �The main theorem results from applying this corollary:Theorem 3.6 Let f be a formula of the form Vi;j:i 6=j g(i; j), where g(i; j) is aCTL�nX formula. Then, (8n : n � 4 :M(n); q0n j= f � M(4); q04 j= f). �33



Proof.For any n � 4,M(n); q0n j= fi� ( the initial state is symmetric, lemma 3.3 )M(n); q0n j= Vjj 6=0 g(0; j)i� ( splitting up the formula )M(n); q0n j= g(0; 1) ^M(n); q0n j= g(0; n � 1)^M(n); q0n j= Vjj 62f0;1;n�1g g(0; j)i� ( by corollary 3.2 )M(4); q04 j= g(0; 1) ^M(4); q04 j= g(0; 3)^M(4); q04 j= g(0; 2)i� ( recombining the formula )M(4); q04 j= Vjj 6=0 g(0; j)i� ( by lemma 3.3 )M(4); q04 j= f� As a particular case, the formula Vi;j:i 6=j AG:(criticali ^ criticalj), whichexpresses mutual exclusion, can be checked in a 4-process system.3.4.4 Properties of the form Vi;j:i 6=j g(i; i + 1; j)Properties of the form Vi;j:i 6=j g(i; i+1; j) are used to express global properties thatindicate the relationship between a pair of neighboring processes and an arbitraryprocess. An example of such a property is presented in Section 3.5.Lemma 3.4 If A is the LTS of a system with n isomorphic processes, n > 1.Cn � Aut A, and the start state q0 is symmetric, then, A; q0 j= Vi;j:i 6=j g(i; i + 1; j)i� A; q0 j= Vjj 6=0 g(0; 1; j). 34



Proof.(LHS ) RHS) This is immediate from the de�nition of j=.(LHS ( RHS)A; q0 j= Vjj 6=0 g(0; 1; j)) ( � is a permutation )(8� : � 2 Aut A : �(A); �(q0) j= Vjj 6=�(0) g(�(0); �(1); j))i� ( �(A) = A as � 2 Aut A, �(q0) = q0, as q0 is symmetric )(8� : � 2 Aut A : A; q0 j= Vjj 6=�(0) g(�(0); �(1); j))) ( as Cn � Aut A )(8� : � 2 Cn : A; q0 j= Vjj 6=�(0) g(�(0); �(1); j))) ( The cyclic shifts in Cn drive 0 to i for every i 2 [n] )(8i : i 2 [n] : A; q0 j= Vjj 6=i g(i; i + 1; j))i� ( by de�nition )A; q0 j= Vi;j:i 6=j g(i; i + 1; j)� From this lemma, we need to consider only the triples of process indices ofthe form (0; 1; j), such that j 6= 0. Application of the Reduction Theorem leads tothe following theorem.Theorem 3.7 For any n � 5,1. M(n) #(0;1)�M(5) #(0;1),2. M(n) #(0;1;2)�M(5) #(0;1;2),3. M(n) #(0;1;n�1)�M(5) #(0;1;4), and4. M(n) #(0;1;j)�M(5) #(0;1;3), for j 62 f0; 1; 2; n � 1g.Proof. De�ne h : [n] ! [5] by h(0) = 0, h(1) = 1, h(2) = 2, h(n � 1) = 3, andh(j) = 3, for j 62 f0; 1; 2; n� 1g. Each of the claims above follows from Theorem 3.235



by observing that h restricted to the pairs mentioned in each claim is a bijectionthat satis�es both preconditions of the theorem. �Corollary 3.2 For any n � 5 and any formula g(i; i + 1; j) of CTL�nX,1. M(n); q0n j= g(0; 1; 1) i� M(5); q05 j= g(0; 1; 1),2. M(n); q0n j= g(0; 1; 2) i� M(5); q05 j= g(0; 1; 2),3. M(n); q0n j= g(0; 1; n � 1) i� M(5); q05 j= g(0; 1; 4), and4. M(n); q0n j= g(0; 1; j) i� M(5); q05 j= g(0; 1; 3), for j 62 f0; 1; 2; n � 1g.Proof. The corollary follows from Theorems 3.1 and 3.7. �Theorem 3.8 Let f be a formula of the form Vi;j:i 6=j g(i; i+1; j), where g(i; i+1; j)is a CTL�nX formula. Then, (8n : n � 5;M(n); q0n j= f � M(5); q05 j= f). �Proof.For any n � 5,M(n); q0n j= fi� ( the initial state is symmetric, lemma 3.4 )M(n); q0n j= Vjj 6=0 g(0; 1; j)i� ( splitting up the formula )M(n); q0n j= g(0; 1) ^M(n); q0n j= g(0; 1; 2)^M(n); q0n j= g(0; 1; n � 1) ^M(n); q0n j= Vjj 62f0;1;2;n�1g g(0; j)i� ( by corollary 3.2 )M(5); q05 j= g(0; 1) ^M(5); q05 j= g(0; 1; 2)^M(5); q05 j= g(0; 1; 4) ^M(5); q05 j= g(0; 1; 3)i� ( recombining the formula )M(5); q05 j= Vjj 6=0 g(0; 1; j) 36
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Figure 3.1: Mutual Exclusion Protocol Template.i� ( by lemma 3.4 )M(5); q05 j= f�3.5 ApplicationsTo illustrate the use of the results, we look at two protocols, one for distributed mu-tual exclusion protocol [WL 89] and (a slight variation on) Milner's Cycler Protocol[Milner 90].3.5.1 Distributed Mutual ExclusionThe template process for the protocol in [WL 89] is given in Fig. 3.1. Initially, everyprocess is in state S0. Here � is used to indicate a local action. It is easily checked37
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Figure 3.2: Cycler Protocol Template.that the process description satis�es the conditions for the token passing model (cf.Section 3.3). So properties such as� If a process requests the token, it will receive it. Vi AG(S0i ) AF(S1i))� Every trying process eventually enters its critical section.Vi AG(S0i ) AF(S2i _ S4i))can be checked using a 2-process system by theorem 3.3. Mutual exclusion, i.eVi;j:i 6=j AG:(S3i ^ S3j) can be checked in a 4-process system by Theorem 3.6.3.5.2 Milner's Cycler ProtocolThe template process for the protocol in [Milner 90] is given in Fig. 3.2. The initialstate is S3. The correctness properties are as follows:38



� Along every computation, a0; a1 : : : an�1 must be performed cyclically, startingwith whichever process is enabled �rst. The following formula expresses thecyclic order. This has a cuto� of 5, by theorem 3.8.Vi;j:i 6=j AG (ai ) AXA((:ai ^ :aj) U ai+1))Vi;j:i 6=j AG (:(ai ^ aj))� Every process performs ai and bi alternately. The following formula expressesthis property and can be checked in a 2-process system by Theorem 3.3.Vi AG((ai ) :ai U bi) ^ (bi ) :bi U ai))These formulas are de�ned with atomic propositions referring to actions instead ofstates, but it is easily seen that the results apply to such formulas as well, as theblock bisimulation of Theorem 3.2 matches computation paths with respect to non-�actions.3.6 Undecidability on RingsApt and Kozen [AK 86] show that determining if a temporal property holds forall instances of a parameterized network is undecidable, by a reduction from thenon-halting problem for Turing machines. The essential idea is to have a ring ofsize n simulate the computation of a Turing machine for n steps. Suzuki [Suzuki 88]proved a sharper result by showing that the undecidability holds even when theindividual programs are �nite-state and the ring is unidirectional.We give a simpler proof of this result, that also delineates sharply the bound-ary between decidable and undecidable token-ring systems. The proof is by a reduc-tion from the non-halting problem for 2-counter machines. We show that undecid-ability arises even if the token takes values from a binary domain. The decidabilityresults in this chapter hold for a token with a single value. Thus the information39



carrying capacity of the token de�nes the boundary between decidability and unde-cidability.A 2-counter machine [Minsky 61] has four types of instructions : an incre-ment and decrement for each counter, a zero-test, and a halt instruction. Thehalting problem for 2-counter machines is known to be undecidable. We reduce thisproblem to the parameterized model-checking problem by using a ring of size n tosimulate n steps of a 2-counter machine. W.l.o.g., we suppose that the 2-countermachine ignores its input tape, and initially has both counter values equal to zero.Each counter is implemented in unary by a single bit in each node of the ring.The bit takes values fup; downg with the number of up's in the global state givingthe value of the counter. Each node runs a copy of the same program. Initiallya single node is chosen nondeterministically, by giving it the token. That nodeexecutes the program of the 2-counter machine. A counter increment is done bycirculating a token with an increment instruction. The node with a down bit forthat counter that �rst receives this token changes its bit to up, then forwards thetoken with a \neutral" value. The decrement of a counter value occurs in a similarway (by changing the �rst up to down). The test for zero is done by circulating thetoken with value \zero"; if it is received by a process which has the correspondingbit set to up, then the token value is changed to \non-zero". If the increment tokenreturns without the neutral value, this implies that the value of that counter is n,so the process simulating the 2-counter machine enters a \dead" state, which hasno outgoing transitions.This simple simulation uses seven values for the token : increment and decre-ment instructions for each counter, zero/non-zero values, and a neutral value. Wecan reduce this value domain to a binary one by encoding each of these values inunary. A processes passes one of these values to its neighbor by sending its unarycode to the neighbor as a sequence of tokens with value 1. The neighbor accumu-40



lates the unary count on receiving such tokens, but retransmits them with value 0,which returns to the code sender, without e�ecting any change on the local states ofthe processes in between. This unary transmission is terminated by sending a tokenwith value 0 to the neighbor.Consider the property Vi(initially tokeni ) AG:halti ), which expresses thecondition that the node executing the 2-counter machine program does not reach ahalt state. If the 2-counter machine halts, then it must do so in n steps, for somen, so by the simulation, this property is false for a ring of size at least n. If it doesnot halt, then this property is true for rings of all sizes. Thus, the property is truefor all instances i� the machine does not halt. Hence, parameterized veri�cation isundecidable, speci�cally co-RE.3.7 Related Work and ConclusionsAmong related work, [AK 86, Suzuki 88] show that the problem of automaticallychecking a speci�cation for every instance of a parameterized system is in generalundecidable. Positive results include those of Clarke, Grumberg and Browne [CG 87,BCG 89]; however, their method requires the manual construction of bisimulationsor that of a closure process which represents computations of an arbitrary number ofprocesses. [KM 89] and [WL 89] introduce the related notion of a process invariant.All these methods rely on human ingenuity to manually construct a suitable processclosure or invariant. [GS 92] use automata-theoretic methods to construct processclosures for processes connected in a complete network, and use them to establishsingle index properties. Multi-index properties can be indirectly catered for, but thecomplexity then becomes multi-exponential. In any case, this does not provide analgorithm for ring networks. Vernier [Vernier 93] has developed a model-checkingalgorithm for a class of parameterized systems, however, the complexity is high.The closest results are those of Shtadler and Grumberg [SG 89], who use41



a network grammar to specify a communication topology, and those of [LSY 94]which deal with ring networks of Petri nets. [SG 89] show that if certain su�cientconditions are satis�ed, then every network generated by the grammar satis�es spec-i�cations written in linear-time temporal logic. The su�ciency check, however, mayrequire time exponential in the size of an individual process. [LSY 94] containsanother (exponential-time) su�ciency test which is used to show that certain pa-rameterized protocols on rings satisfy a single-index linear-time speci�cation. Thishas recently been extended to show global safety properties in [CGJ 95].The advantage of the approach presented here is that, to check whether aring comprised of isomorphic processes satis�es a speci�cation for all instances, it isboth necessary and su�cient to check only the small rings of size less than or equalto the cuto�. This result is independent of the actual program executing on eachprocess in the ring, provided that it follows the token-passing discipline. The ring ofsize equal to the cuto� is analogous to a closure process, but is trivial to construct.In addition, the result holds even if the transition graph of the templateprocess is not �nite, provided that it is �nite-branching. If it is �nite, then an au-tomated tool such as SMV [McMillan 92], or the Concurrency Workbench [CPS 89]can be used to model-check the desired property for the small ring. This check canbe done in time polynomial in the size of a process.An interesting problem to consider is whether there are conditions underwhich a similar result holds for systems with multiple-valued tokens. The simplicityof the 2-counter machine simulation suggests that imposing syntactic restrictionswill not lead to decidability, unless coupled with some semantic constraints.
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3.8 Technical Details3.8.1 Proof of Theorem 3.2Theorem 3.2 Let I � [n], and J � [k] be sets of indices such that there is abijection h : I ! J such that for any i; j 2 I,1. i � j i� h:i � h:j, and2. (i : j)n 6= ; i� (h(i) : h(j))k 6= ;.Then M(n) #I is block equivalent to M(k) #J .Proof. Let hA be the derived renaming function for indexed actions from M(n)de�ned by hA(ai) = ah(i). Let hP be the derived renaming function for indexedpropositions from M(n) de�ned by hP (Pi) = Ph(i). We de�ne a relation that is ablock bisimulation on M(n) and M(k) w.r.t. hP .For a state s of M(i), let tok i(s) be the index of the process that possessesthe token in state s. Let Rnk be the relation between states of M(n) and M(k),de�ned as follows:s Rnk t i�1. The local states of Dn in s and Dk in t are identical,2. h(�(s) #I) = �(t) #J ,3. (8i : i 2 I : tokn:s = i � tokk:t = h:i), and4. (8i; j : i; j 2 I : tokn(s) 2 (i : j)n � tokk(t) 2 (h(i) : h(j))k).The relation Rnn is similar but for (2), which is modi�ed to �(s) #I= �(t) #I .De�ne the relation � to be Rnn [ Rkk. Let B = Rnk [ Rkn. B is symmetric. It isstraightforward to check that � is an equivalence relation, and that B is monotonicw.r.t. �. We show below that B is a block bisimulation w.r.t. (�; hP ).43



Suppose sBt and s is a state inM(n), and t is a state inM(k). By de�nitionof B, hP (�(s) #I) = �(t) #J ,1. s is the initial state of M(n).The only enabled action is the token transfer to some process i. As sBt,t is the initial state of M(k), hence the token transfer action is enabled at t. Ifi 2 I, let the transfer from t be to process h(i). Otherwise, there is a pair k; l ofindices in I such that i 2 (k : l), and (k : l) does not contain an index in I. AssBt, (h(k) : h(l)) 6= ;, so let the transfer from t be to some process with index in(h(k) : h(l)). It is straightforward to check that the resulting states are related.These single step transitions are the only sequences in MAXF�(s).2. s is not the initial state of M(n).(a) Let �; v be a sequence starting at s, that is in MAXF�(s). Hence v 6� s, and bythe de�nition of �, this must be because of either a local move by some process inI, or a token sent from some process in I, or because of a token received by someprocess in I.� The action is an internal move, or a send of the token, by process i. As processh(i) has the same local state, the same move can be performed at that process,and the resulting states are related by B. Note that the token is at process ii� it is at process h(i) in t. This creates the matching sequence �;w.� The action is a receipt of the token by process i from process i � 1, for i 2 I(arithmetic is modulo n). As sBt, the token in t is not at process h(i). Hence,if process h(i)�1 is ready to send the token, the receive action may be executedat process h(i).Otherwise, the token is in the interval (h(j) : h(i)), for some j. As the processwith the token must eventually reach a blocking send action, and processeswithout the token reach a blocking receive action, there is a sequence of events,�, starting at state t, such that after �, the token is at process h(i)� 1, which44



is blocked on a send action. At this point, the token may be transferred toprocess h(i) and the system moves to state w. Note that every state along �is related to t by �, and w 6� t; hence, �;w is a member of MAXF�(t). The�nal state w is related to v.(b) The other case, that of in�nite sequences from s that are in MAXI�(s), doesnot arise because every process alternates between send and receive actions. Thisinduces the token to move from one process to the next. Thus, the token eventu-ally either reaches or leaves a process in I, which induces a change to a state notequivalent to s.The proof above is for the case where s is a state in M(n) and t a state inM(k). A similar proof shows the other case. It follows that B is a block bisimulationw.r.t. (�; hP ) between M(n) #I and M(k) #J . Notice that this proof shows alsothat the non-� actions are matched by B up to h. �3.8.2 Block BisimulationLet A be an LTS, A = (Q;�; R; �; L; q0). [BCG 88] de�ne stuttering bisimulationonly over �nite state systems. Their de�nition can be generalized to the following :De�nition 3.3 (Stuttering Bisimulation) A relation B on A is a stutteringbisimulation i� B is symmetric, and for any s; t such that sBt,1. �(s) = �(t), and2. For every fullpath � starting at s, there is a fullpath � starting at t such that� matches � by B.where fullpaths � and � match by B i� they can be partitioned into an equal numberof segments such that, for each segment number i, every state in the ith segment of� is related by B to every state in the ith segment of �. The formal de�nition of\match" is given below : 45



Matching pathsLet INC be the set of strictly increasing sequences of natural numbers start-ing at 0. Precisely, INC = f� j � : N ! N ^ �(0) = 0 ^ (8i i 2 N )�(i) < �(i + 1))g. Let � be a path, and � a member of INC : For i 2 N, letintv(i; �; �) = [�(i);min(�(i + 1); length(�))). The ith segment of � w.r.t. �,seg(i; �; �), is de�ned by the sequence of states of � with indices in intv(i; �; �).Let � and �, under partitions � and � respectively, correspond w.r.t. stutter-ing bisimulation B i� they are subdivided into the same number of segments, andany pair of states in segments with the same index are related by B. Precisely,corrB((�; �); (�; �)) � (8i : i 2 N : intv(i; �; �) 6= ; � intv(i; �; �) 6= ; ^(8m;n : m 2 intv(i; �; �) ^ n 2 intv(i; �; �) : (�m; �n) 2 B)).Paths � and � match i� there exist partitions that make them correspond.Precisely, matchB(�; �) � (9�; � : �; � 2 INC : corrB((�; �); (�; �))). �It can be shown, using the Knaster-Tarski theorem with the above de�ni-tion (as in [Milner 90]), that the greatest stuttering bisimulation exists, and is anequivalence relation. Two states are stuttering equivalent i� there is a stutteringbisimulation that includes the pair.Theorem 3.3 Let B be a block bisimulation w.r.t. (�; id). Then B is also astuttering bisimulation.Proof. B is symmetric by (1) of Defn. 3.1. Let (s; t) be an arbitrary pair in B.Then, �(s) = �(t) by 3(a). Consider any fullpath � starting at s. If � 2 MAXI�(s),then by 3(c) of Defn. 3.1, there is a fullpath � starting at t such that � 2 MAXI�(t),which is in�nite if and only if � is in�nite. So � and � may be partitioned intothe same number of segments, which by (2), consist of states related by B. If� 62 MAXI�(s), there is a maximal pre�x �0 of � with a following state v such that�; v 2 MAXF�(s). By 3(b), there is a �nite path �0; v in MAXF�(t) such that(u; v) 2 B. �0 and �0 form a pair of matching segments, and (u; v) the start of a46



new pair of corresponding segments. Continuing in this manner, one can inductivelyde�ne a fullpath � starting at t, and partitions of � and � such that � and � matchw.r.t. B. Hence, B is a stuttering bisimulation. �Theorem 3.4 Let B be the greatest stuttering bisimulation. Then B is a blockbisimulation w.r.t. (B; id).Proof. The greatest stuttering bisimulation is an equivalence relation; hence condi-tions (1) and (2) of the block bisimulation de�nition are satis�ed. Let (s; t) be an ar-bitrary pair in B. As �(s) = �(t), by (1) of Defn. 3.3, it follows that id(�(s)) = �(t).Consider a path � in MAXIB(s). As � is a fullpath, by (2) of Defn. 3.3,there is a fullpath � starting at t such that � matches � w.r.t. B. This implies that� is in MAXIB(t) as B is an equivalence, and � satis�es condition 3(c) of Defn. 3.1.Consider a �nite path �; v in MAXFB(s). Let  be a fullpath starting at v.As �;  is a fullpath starting at s, by 2(b) of Defn. 3.3, there is a matching fullpath� starting at t. As :(vBs), :(vBt) holds. Let i be the �rst position along � suchthat vB�i holds. Hence, i > 0, and �[0::i) consists of states related to t by B. So�[0::i] is a member of MAXFB(t), and satis�es condition 3(b) of Defn. 3.1. Hence,B is a block bisimulation w.r.t. (B; id). �3.8.3 Proof of Theorem 3.1Theorem 3.1 Let B be a block bisimulation on LTS A w.r.t. (�; h). If (s; t) 2 B,then for any formula f of CTL�nX, A; s j= f i� A; t j= h(f). �Proof.The proof is by structural induction on formulas of CTL�nX.Basis : f 2 AP .M; s j= f 47



i� ( de�nition )f 2 �(s)i� ( h is a bijection on AP )h(f) 2 h(�(s))i� ( condition 3(a) of Defn. 3.1 )h(f) 2 �(t)i� ( de�nition )M; t j= h(f)Inductive case : If f has the form g0 ^ g1 or :g, then the proof follows directly fromthe inductive hypothesis. Consider the case where f has the form Eg, for a pathformula g.M; s j= Egi� ( de�nition )(9� : fp(�) ^ �0 = s :M;� j= g)i� ( by following proof )(9� : fp(�) ^ �0 = t :M; � j= h(g))i� ( de�nition )M; t j= Eh(g)i� ( de�nition )M; t j= h(f)To justify the second step of the proof above, suppose � is a fullpath startingat s. As (s; t) 2 B, by Defn. 3.1 and a simple inductive argument involving 3(b)and 3(c), there is a fullpath � starting at t such that � and � may be partitioned intothe same number of non-empty segments, where the initial states of correspondingsegments are related by B, and states within each segment are in the same �-class. Since initial states of corresponding segments are related by B, from the48



monotonicity of B w.r.t. � (property (2)), every pair of states from correspondingsegments is in B. Hence, by the inductive claim, states related by B agree on thetruth value of sub-formulas of g.Let � and � be such that they can be partitioned as described above. Thenested inductive claim is that for any path formula g such that states related byB agree on the truth values of sub-formulas of g modi�ed by h, M;� j= g i�M; � j= h(g).Basis : g is a state formula. As �0B�0, the claim follows from the nested inductionhypothesis.Inductive case : The proof when g has the form g0 ^ g1 or :g0 follows directly fromthe induction hypothesis. Consider the case where g has the form g0Ug1.M;� j= g0Ug1i� ( de�nition )(9i :M;�i j= g1 ^ (8j : j < i :M;�j j= g0))i� ( � and � have matching partitions; inductive hypothesis )(9k :M; �k j= h(g1) ^ (8l : l < k :M;�l j= h(g0)))i� ( de�nition )M; � j= h(g0)Uh(g1)i� ( de�nition )M; � j= h(g0Ug1)The second step in the proof follows from the observation that since the paths match,for any position i on one path, in the �rst position k on the corresponding segmentof the other path is such that the su�x paths starting at i and k match, and for eachsu�x path starting at position l < k, there is a matching path from some positionj < i. Hence, the induction hypothesis can be applied to these su�xes. �
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Chapter 4
Veri�ying ParameterizedSynchronous Systems

4.1 IntroductionIn this chapter, we consider a class of systems where similar processes execute syn-chronously. Such systems arise typically in hardware; for instance, a bus with somedistinguished processes and an arbitrary number of identical processors connectedto it. For these systems we show decidability of the parameterized model-checkingproblem (PMCP). This decidability result has a di�erent avor than the one in theprevious chapter as the cuto� size is strongly dependent on the formula while inthe previous result, the cuto� is dependent only on the form of quanti�cation andnot the formula itself. Previous work on the PMCP is oriented, with the exceptionof [KM 89], towards the interleaving composition model. [GS 92] and [EN 95] pro-vide algorithms for some classes of parameterized systems, while other techniques[Lubachevsky 84, SG 89, KM 89, WL 89, Vernier 93, CGJ 95] have only a limiteddegree of automation.The approach presented here is fully automated. The class of synchronous50



systems is speci�ed by a control and a user process. Each instance of the systemconsists of a single copy of the control and an arbitrary number of copies of theuser processes. The system is thus parameterized by the number of user processes.Processes are speci�ed by �nite state programs expressed as transition graphs, whereguards on each transition may check both the local control process state as well ascertain predicates on the global state. The correctness properties are expressed inan indexed propositional branching temporal logic, and are of the following types:1. Over the control process : formulas of the form Ah and Eh, where h is a linear-time formula with atomic propositions over control process states, and someglobal predicates.2. Over all user processes: Vi Ah(i) and Vi Eh(i), where h(i) is a linear-timeformula with atomic propositions over control process states, and over userprocess states indexed with i, along with some global predicates.3. Over every distinct pair of user processes : Vi;j:i 6=j Ah(i; j) andVi;j:i 6=j Eh(i; j),where h(i; j) is a linear-time formula with atomic propositions over controlprocess states, and over user process states indexed with either i or j, alongwith some global predicates.We show that the PMCP for the �rst type of formulas is decidable for thisclass of systems, and is PSPACE-complete . This decidability result is based on con-structing a �nite abstract graph in which every computation of every size instanceof the system is represented by some path in the graph. However, the abstract graphmay have \bad" paths that do not correspond to computations of any size instance.The heart of the algorithm is a method for identifying good paths in the abstractgraph. The space used by the algorithm is polynomial in the size of the control anduser processes. We prove that this is optimal in a complexity-theoretic sense byshowing that the problem is PSPACE-hard , even for invariance properties. Using51



symmetry arguments, the veri�cation task for the other types of formulas reduces toa veri�cation task of the �rst type for a modi�ed system. The algorithm for safetyproperties has been implemented using the SMV veri�cation system [McMillan 92]and used for the veri�cation of an industrial bus protocol [SAE 92]. Our initial ex-perimental results indicate that the algorithm should be useful in practice. Chapter5 describes this veri�cation in detail.Section 4.2 de�nes the system model and the logic used for expressing cor-rectness properties. Section 4.3 describes the abstract graph representation, andSection 4.4 the algorithm for formulas of type (1). Section 4.5 shows the reductionof the PMCP for formulas of types (2) and (3) to the PMCP for formulas of type(1). The implementation of the algorithm, and its application to the SAE-J1850bus arbitration protocol is described briey in Section 4.6, and in detail in the fol-lowing chapter. Section 4.7 generalizes these results to the case of properties thatare \almost universal"; i.e., they hold for all but a �nite number of processes. InSection 4.8 we present complexity-theoretic lower bounds on the problem. Section4.9 concludes the chapter with a discussion of related work.4.2 The system model and logicWe refer to the collection of system instances formed by control process C andcopies of a generic user process U as a (C;U) family. The control and user processesare speci�ed as �nite-state transition graphs. For such a graph A, let SA denoteits set of states, RA its transition relation, and �A its initial state. For simplicity,we consider only graphs with a single initial state; the results carry over with onlyminor modi�cations for graphs with a set of initial states. The transition relation ofthese graphs is total. It is often convenient to specify only some of the transitionsout of a state; but, in such a situation, there is an implied self-loop on that statewhich has as its guard the negation of the disjunction of the guards on the speci�ed52



DiBi LKAi CiKLLKL CK LKKLKI AB DL KKIi(9i :: Ai _Bi):(9i :: Ii)
Figure 4.1: A Control-User System : Control, User and the ith User Processes.transitions.The system instance of size n is a synchronous parallel composition of C withn copies of process U , and is denoted as C k Un = C k U1 k U2 k : : : k Un. Ui isthe ith copy of U , which is obtained from U by uniformly subscripting the statesof U with i as shown in the example system in Fig. 4.1. In this example, C hasinitial state K, and U has initial state I. Atomic propositions are identi�ed withstate names.Thus, for any i; j, Ui and Uj are isomorphic up to re-indexing. Transitionsin both C and Ui are labeled with guards. Every guard is a boolean combination ofglobal predicates of the form (9i :: E(i)), where E(i) is a boolean expression formedfrom atomic propositions over the states of C and Ui. There are two interestingspecial cases : (a) The guards in Ui involve only propositions over states of C.The control process may then be viewed as controlling the execution of the userprocesses. (b) The control process is a copy of the user process, and can be writtenas U0. Then C k Un is isomorphic to Un+1. Our method applies in general, butoften �nds interesting application in these special cases.Gn denotes the global state transition graph of the instance of size n. A states of Gn is written as an (n+ 1)-tuple, where s(0) is the local state of C and s(i) isthe local state of Ui (for i 2 [1::n]). The initial state of Gn is (�C ; (�U )1; : : : ; (�U )n).53



A transition (s; t) is in Gn i�1. A transition of C from s(0) to t(0) is enabled in s, and2. For all i 2 [1::n], a transition of Ui from s(i) to t(i) is enabled in s.where a transition in a process is said to be enabled in a global state i� the corre-sponding guard is true when evaluated in that global state. Gn; s j= (9i :: E(i))i� for some k 2 [1::n], E(k) is true given the propositions that hold at s(0) (thecontrol state), and s(k) (the state of process Uk). Boolean operators are han-dled in the standard manner. For a global state s, and state a 2 SU , we let#a(s) = jfi j i 2 [1::n] ^ s(i) = aigj (#a(s) is the number of user processes withlocal state a of the generic user process).LTL is the standard propositional linear temporal logic built up from atomicpropositions, boolean connectives, and temporal operators G (always), F (sometime),X (next time), and U (until) [Pnueli 77]. CTL� is a branching temporal logic whichextends LTL by allowing the path quanti�ers A (for all fullpaths) and E (for somefullpath). Many interesting correctness properties of parameterized systems can beexpressed in one of the following forms:1. Over the control process : formulas of the form Ah and Eh, where h is alinear-time formula with atomic propositions over control process states,2. Over all user processes: Vi Ah(i) , and Vi Eh(i), where h(i) is a linear-timeformula with global predicates as the atomic propositions.3. Over all distinct pairs of user processes : Vi;j:i 6=j Ah(i; j), and Vi;j:i 6=j Eh(i; j),where h(i; j) is a linear-time formula with global predicates as the atomicpropositions.The formal semantics of these logics is de�ned in the usual way [Emerson 90,BCG 88, ES 95]. We write M; s j= f to mean that formula f is true in struc-54



ture M at state s. In the previous chapter, we considered formulas without thenext-time operator, X. The use of the next-time operator is not problematic hereas the system model is that of synchronous execution. Another di�erence with theresults in the previous chapter is that those hold for quanti�ed CTL�nX formulas,while these are for CTL� formulas with a single outermost path quanti�er.4.3 The abstract modelFor a given (C;U) family, we construct an abstract process A that includes allcomputations of every size instance of the family. An abstract state (c; S) representsany concrete state where the control process is in local state c, and only the localuser states in the set S are occupied by some process. Transitions from a state (c; S)in the abstract graph represent transitions enabled from the global states that arerepresented by (c; S). Each such transition has a label which indicates the moves ofprocesses between local states. Each label is a non-empty relation on SU .Formally, let � = P(SU � SU)nf;g be the set of edge labels. A is de�ned bya labeled transition graph, where1. SA = SC � (P(SU )nf;g) is the set of states,2. RA � SA � �� SA is the set of transitions,3. �A = (�C ; f�Ug) is the initial state.To make the correspondence between global and abstract states precise, wede�ne families of abstraction functions f�ig, f ig, where �n : SGn ! SA maps aconcrete state in the instance of size n to an abstract state, and  n : SGn �SGn ! �maps a concrete transition in the instance of size n to a transition label. For a states 2 SGn , �n(s) = (s(0); fa j #a(s) > 0g). For a pair (s; t),  n(s; t) = f(a; b) j (9i :i 2 [1::n] : s(i) = ai ^ t(i) = bi)g. The abstract state (c; S) represents every s in Gnfor which (c; S) = �n(s). 55



We postulate a �xed total ordering of the user states (i.e., elements of SU).For any subset S of SU , let ord (S) denote the vector obtained by sorting S un-der this ordering. For a guard g, and state (c; S) of A, we de�ne (c; S) jj � g asGjSj; (c; ord (S)) j= g.Proposition 4.1 Let s be a state in Gn and t a state in Gm such that �n(s) = �n(t).For any guard g, Gn; s j= g i� Gm; t j= g.Proof. A guard expression is a boolean combination of global predicates which areof the form (9i :: E(i)). We show the equivalence when the guard expression is aglobal predicate. The proof for boolean operations is straightforward.Gn; s j= (9i :: E(i))i� ( de�nition )(9i : i 2 [1::n] : E(s(0); s(i)))i� ( �n(s) = �n(t) implies s(0) = t(0) and user states in s and t are identical )(9j : j 2 [1::m] : E(t(0); t(j)))i� ( de�nition )Gm; t j= (9i :: E(i))Corollary 4.1 For any n, and any s 2 Gn, if (c; S) = �n(s), then for every guardexpression g, Gn; s j= g i� (c; S) jj � g.Proof.(c; S) jj � gi� ( de�nition )GjSj; (c; ord (S)) j= gi� ( �jSj((c; ord (S))) = �n(s); Lemma 4.1 )Gn; s j= g� 56



The set of transitions is de�ned as follows: A tuple ((c; S);X; (d; T )) 2 RAi� 1. (9p : c p!d 2 RC : (c; S) jj � p) (A transition from c to d is enabled for thecontrol process),2. (8a; b : (a; b) 2 X : a 2 S ^ b 2 T ^ (9q : a q!b 2 RU : (c; S) jj � q)). (For everypair (a; b) in X, there is an enabled transition from a to b in the user process).3. X is total on S, and X�1 is total on T , (Every state in S has a successor inT , and every state in T has a predecessor in S).De�nition 4.1 (Abstract Path) A path in A is a sequence starting at a state,with alternating states and transition labels such that for every s; t 2 SA and X 2 �,sXt occurs in the sequence only if (s;X; t) 2 RA. �De�ne a family of functions fig such that n maps from paths in Gn topaths in A by (n(�))2i = �n(�i) and (n(�))2i+1 =  n(�i; �i+1) for all i 2 N. Thefollowing proposition has a straightforward proof, by induction on the length of thepath. The complete proof is given in Section 4.10.Proposition 4.2 For every path � in Gn, n(�) is a path in A.It follows from Proposition 4.2 that if A satis�es a linear temporal formulaover all paths, then so does every size instance of the family. However, if the formulais false for some path in A, it does not follow that it is false for some instance, asthe path may not have a corresponding path in some instance. Paths which havethis property are called \good".De�nition 4.2 (Good Paths) A path � in A is good i� (9n; � : � 2 Gn : n(�) =�). �57



De�nition 4.3 (State Covering) A state t in Gm covers a state s in Gn i� �n(s)= �m(t), and for every a 2 U , #a(t) � #a(s).De�nition 4.4 (Path Covering) A path � in Gm covers a path � in Gn i� m(�) =n(�), and for every k 2 N, a 2 U , #a(�k) � #a(�k). �Lemma 4.1 State covering is a simulation relation.Proof. Let s, t be global states in Gn and Gm respectively, such that t covers s,and let s!u. Since �n(s) = �m(t), by Proposition 4.1, guards in s and t evaluateto the same value. Hence, the transitions that are enabled at s are also enabledat t. For user states a; b, let kab be the number of processes that move from localstate a to local state b in the transition from s to u. Let xab = kab + �ab, where�ab = #a(t)�#a(s), if b is the �rst (w.r.t. the total order on user states) state forwhich kab > 0, otherwise let �ab = 0. Clearly, xab � kab, and xab = 0 i� kab = 0.Let v be any successor of t on the same control transition as that from s to u, andfor which xab of the processes in state a in t move to state b in v. As for any a,#a(v) = �bxba, it follows that #a(v) � #a(u) and #a(v) = 0 i� #a(u) = 0. Thus,v covers u, and is a successor of t by the same transitions that change s to u. �From this lemma, we can conclude that if � is a path starting at s, and tcovers s, there is a path � starting at t such that � covers �. It also follows thatevery path in Gn has a covering path in Gm, for m � n, as one can �nd a coveringstate in Gm for the �rst state of the path. The following lemma shows that statecovering is also a backwards simulation.Lemma 4.2 State covering is a backwards simulation relation.Proof. Let u; v be global states in Gn and Gm respectively such that v covers u.Let s be such that s!u, i.e., s is a predecessor of u. We will show that there is apredecessor t of v such that t covers s. Construct t as follows:58



The control state of t is the control state of s. For local states a; b, let kab bethe number of processes that move from local state a to local state b in the transitionfrom s to u, and let xab be the corresponding number (to be determined) for themove from t to v.Let xab = kab +�ab. The added number, �ab, is #b(v) �#b(u), if a is thesmallest (in the total order on user states) for which kab > 0, otherwise it is 0. Itfollows that xab � kab, and xab = 0 i� kab = 0. Let t be a state such that t(0) = s(0),and �bxab of the user processes are in local state a. Clearly, �m(t) = �n(s); hence,from Proposition 4.1, the local transitions enabled at s are also enabled at t. Let xabprocesses change from local state a in t to local state b in v by the same transitionas in the change from s to u. Hence, t covers s, and is a predecessor of v by thesame global transition that changes s to u. �The structural lemmas above have the following important consequence:Theorem 4.1 Every �nite path of A is good.Proof. The proof is by induction on the number of states in the path. Suppose thepath is a single state s. Let s = (c; S). For the state r = (c; ord (S)), �jSj(r) = s. Sothe claim is true of paths with one state.Assume inductively that the claim holds for all paths with at most m states,for m � 1. Let � be a path with m + 1 states. Then, � may be written as sX�0,where �0 has length m. By the inductive hypothesis, for some n0, there is a path�0 2 Gn0 such that n0(�0) = �0. Let u be the �rst state in �0, and let s = (c; S).Let w be the state where w(0) = c, and for every local user state a, #a(w) =jfbj(a; b) 2 Xgj. Let k be the number of processes in w. As �k(w) = s, by Corollary4.1, the guards enabled at s are also enabled at w. Hence there is a successor x ofw such that x(0) = u(0) and for any (a; b) 2 X, a single process moves from state ain w to state b in x. So, �k(x) = �k(u). Let y be a state such that y(0) = u(0), and59



for every a, #a(y) = max (#a(u);#a(x)). Thus, y covers both x and u. By Lemma4.2, y has a predecessor z that covers w, and  n(z; y) = X. By Lemma 4.1, thereis a path � from y that covers �0. Hence, the path z; � is a path in an instance thatmaps to �. �4.4 Verifying properties of the control processThe properties of the control process are of the form Ah or Eh, where h is a linear-time temporal formula with atomic propositions that are either global predicates ofthe form (9i :: E(i)), or are propositions over the states of C. To model-check sucha property, we follow the automata-theoretic approach of [VW 86] : To determineif M; �M j= Eh, construct a B�uchi automaton Bh for h, and check that the languageof the product B�uchi automaton ofM and Bh is non-empty (cf. [LP 85]). B acceptsa computation � labeled with propositions over states of C i� there is a run of Bon � such that a \green" (i.e., accepting) state of B is entered in�nitely often. Thecheck for the property Ah is easily reduced to that for the earlier case by notingthat M; �M j= Ah i� M; �M 6j= E:h.De�nition 4.5 (Universal property) A property is universal i� it is true forevery size instance of the parameterized system.To determine if Ah is universal, we model-check it over the abstract graph, byconstructing a B�uchi automaton B for :h, and forming the product B�uchi automatonM of A and B. An accepting path in M is one which starts in an initial state, andalong which a green state occurs in�nitely often. For a path � in M, let �A be itsprojection on A. A path in M is good i� its projection on A is a good path in A.Theorem 4.2 Formula Ah is not universal i� there is an accepting good path inM. 60



Proof. Suppose � is an accepting good path in M. As �A is good, for some n,there is a path � in Gn such that n(�) = �A. By the de�nition of n, � matches �Aon both the valuation of global predicates and the states of C, and is hence acceptedby B. Therefore, Ah is false in Gn and thus is not universal.In the other direction, if Ah is not universal, then for some n, there is a path� in Gn from the initial state that is accepted by B. From Lemma 4.2, n(�) isa path in A, which is good by construction. By the de�nition of n, � and n(�)match on both the valuation of global predicates and the states of C. Hence, thereis a run of B on n(�) that forms an accepting good path in M. �4.4.1 Model-Checking Safety PropertiesFor safety properties, we can replace B�uchi automata with automata over �nitestrings. The acceptance condition is modi�ed so that a �nite path is accepting i�it ends in an accepting state of the automaton. From theorem 4.1, we can concludethat such a path exists in an instance i� an accepting state is reachable in theabstract graph M. The reachability test can be performed in space logarithmicin the size of M; i.e., in polynomial space in the size of the user process. Thecheck for liveness properties requires the use of B�uchi acceptance conditions, andthe algorithms presented in the next part of this section.4.4.2 Model-Checking Liveness PropertiesFor liveness properties, we have to check if an in�nite path in M is accepting andgood. The following lemmas provide the basis for a PSPACE algorithm to checkuniversality. For a cycle � in M, we say that � is good i� the in�nite path �! isgood.Lemma 4.3 There is an accepting good path in M i� there are �nite paths � and� in M, such that 61



1. � is a path from the initial state to a green state s, and2. � is a good cycle starting at s. �Proof.(LHS ) RHS) Let � be an accepting good path in M. Hence, for some n, there isa path � in Gn such that n(�) = �A. As � is accepted by B, so is �, hence thereexists a path �1 to a green state, and a cycle �2 from that green state in Gn � B,such that �1 � �!2 is an accepting run of B on Gn 1. Let � be the path in M that �1maps to (by extending the mappings � and  to include automaton states), and �the cycle in M that �2 maps to. � and � satisfy the conditions above.(RHS ) LHS) By Lemma 4.1, �A is good. Hence, for some k, there is a path �1 inGk such that k(�1) = �A. As � is a good cycle, for some l, there is an in�nite path�2 in Gl such that l(�2) = �!A. The rest of the proof uses the simulation lemmasproved earlier to \patch together" these paths, which are in di�erent size structures.Let u be the last state on �1, and v be the �rst state on �2. De�ne the statew so that w has the same control state as v (and hence, as u), and for every userlocal state a, #a(w) = max (#a(u);#a(v)). Hence, w covers both u and v. ByLemma 4.1, there is a path �2 from w that covers �2, and by Lemma 4.2, there isa path �1 to w that covers �1. As �1 starts at an initial state of Gk, �1 starts at aninitial state of Gn, where n be the number of processes in w. Let � = �1 � �2. As �2covers �2, it has the same sequence of control states, so there is an accepting run ofB on �. Hence, n(�) is an accepting good path in M. �Intuitively, a cycle inM is good if, starting at some global state which mapsto a state in the cycle, there is no transition in that cycle that causes the countof processes in a speci�c local state to be \drained" (i.e., strictly decreased) as thesequence of transitions along the cycle is repeatedly executed. For example, a self-1� concatenates two strings deleting a copy of a common end state, if any. e.g., ba � ac = bac,while ba;ac = baac. 62



(K; fIg)N0 X0 = f(I;A); (I;B)g N1(L; fA;Bg) N2(K; fC;Dg)X1 = f(A;C); (A;D); (B;D)gX2 = f(A;C); (B;D)gX3 = f(C;A); (D;B)gFigure 4.2: A portion of the Abstract Graph for the example system.loop with the transition label f(a; b)g (a 6= b) forces a transfer of at least one processin local state a to local state b, so it decreases the count of processes in state a withevery execution of the transition, while a self-loop with label f(a; b); (b; a)g does not.Notice that in the latter case, there is a cycle a! b! a in the graph of transitionlabel. This presence of cycles in transition labels that do not cause draining is theintuition behind the characterization of good cycles of M that follows.To determine if such loops are present in a cycle of M, we resolve it intoa \threaded graph" (cf. [ES 95]) which shows explicitly which local user state inan abstract state is driven into which other local user state in the next abstractstate. This information is obtained from the transition label. The threaded graphis de�ned below:De�nition 4.6 (Threaded Graph) Let � be a �nite path in M with m states,m > 1. Let the ith state of � be called si�1, and the ith transition be called Xi�1.For a state s = ((c; S); u) of M (u is the automaton state), let ustates(s) = S.De�ne H� to be the following graph :V (H�) = f(x; i) j i 2 [0::m� 1] ^ x 2 ustates(si )gE(H�) = f((x; i); (y; i + 1)) j i 2 [0::m� 1) ^ (x; y) 2 XigIf � is a cycle, then s0 = sm�1. De�ne T� to be the \threaded" graph where V (T�) =V (H�), and E(T�) = E(H�)[ f((x;m � 1); (x; 0)) j x 2 ustates(s0 )g.63



(A; 0)(B; 0) (C; 1)(D; 1) (A; 2)(B; 2) (A; )(B; 0) (C; 1)(D; 1) (A; 2)(B; 2)Figure 4.3: Threaded graphs for the cycles X1;X3 and X2;X3 respectively.Note that the threaded graph has a total transition relation, as both the controland user processes have total transition relations.A graph is empty i� its edge set is empty. For any directed graph G, letsccd(G) be the graph representing the decomposition of G into its maximal stronglyconnected components (scc's).V (sccd(G)) = fC j C is a maximal strongly connected component of GgE (sccd(G)) = f(C ;D) j (9s : s 2 C ^ t 2 D : (s; t) 2 E (G))gWe refer to vertices of sccd(G) as max-scc's. It is a fact that sccd(G) isacyclic for any graph G. A max-scc C is said to be above another max-scc D i�there is a path in sccd(G) from C to D. �Fig. 4.3 shows the threaded graphs for the cycles N1X1!N2 X3! N1 andN1X2!N2 X3! N1 in Fig. 4.2. From Theorem 4.3, one can conclude that the �rstcycle is bad while the second is good.Theorem 4.3 � is a good cycle in M i� sccd(T�) is empty.Proof Sketch.(LHS ) RHS): Let m be the number of states in �. Suppose that sccd(T�)is not empty. Hence, there are max-scc's C and D such that some pair of vertices(x; i) in C and (y; j) in D is connected in T�. For any n, consider an in�nite path64



� in Gn such that n(�) = �!A. We say that process l in component F at �k i�(a; k mod m) 2 F , where �k(l) = al.Starting with the ith transition in �, at every mth successive transition, atleast one of the processes in C, say one with index l, must change its local statefrom xl to yl. Thus, the count of processes in components above D decreases at eachsuch step. As the max-scc decomposition is acyclic, this number cannot increase insubsequent steps. As � is in�nite, eventually the number of processes in componentsabove D must become negative, which is impossible. Hence, no in�nite path canmap to �.(RHS ) LHS): Suppose that sccd(T�) is empty. For each max-scc of T�,construct a tour in T� that includes each edge in that component at least once. Foreach user state a, let occa be the number of occurrences of the vertex (a; 0) in thetour for its max-scc. Let n = �aocca. We will construct a path � in Gn such thatn(�) = �!A. The idea behind the construction is to allot a set of processes for eachconstructed tour, and to ensure that each transition of a process is along the tourthat it is allotted to.The inductive assertion is that at the ith step (i < m), a path � has beenconstructed such that n(�) is the pre�x of �A up to the ith state, and if s is the laststate of �, then #a(s) is the number of occurrences of (a; i) in the set of constructedtours. This is possible for i = 0 from the de�nition of n above. Suppose that the ithtransition on �A is labeled byX, and that inductively, the assertion is true for the ithstate on �A. For each pair (a; b) in X, there is an edge from (a; i) to (b; i+1) in thethreaded graph, which is therefore part of some tour. By the inductive assumption,there is, in state s, a bijection between processes in local state a and outgoing edgesfrom (a; i). Construct state t from s by performing a transition from a to b for everyprocess associated with the edge (a; b) of X and the same transition among controlstates that is present in the abstract graph. Such a transition must be enabled by65



the abstract graph de�nition. By this construction, �n(t) is the (i + 1)st state of�A, and for every local state b, the number of processes in local state b in t is thenumber of occurrences of (b; i+1) in the set of tours. Thus, the inductive assertionholds for the path �; t.Hence, after m steps, the �nal state �m�1 is a permutation of the �rst state�0. Repeating the construction for k times, for some k � n, produces a path � withlast state identical to the �rst, such that n(�) = �kA. Thus, n(�!) = �!A. Hence, �is a good cycle. �The previous theorem appears to imply that the entire cycle needs to bestored in order to determine its threaded graph decomposition so that the test for\goodness" can be performed. We show that this is not the case; only a boundedamount of information needs to be stored. In addition, this information about thecycle can be collected during an incremental traversal of the cycle, which is crucialto the PSPACE algorithm presented later.For a �nite path � withm states in A de�ne � to be the relation over SU�SUwhere (a; b) 2 � i� there is a path from (a; 1) to (b;m) in H�. We say that relationR is cyclic i� every edge in the graph of R lies on a cycle.Lemma 4.4 For a cycle � in M, sccd(T�) is empty i� � is cyclic. �(LHS ) RHS) Suppose that sccd(T�) is empty. For any (a; b) 2 �, there is a pathfrom (a; 0) to (b;m � 1) in H�. As sccd(T�) is empty, this path is entirely withinsome component C. Since this is strongly connected, for some k, there is a path from(b;m�1) to (a; 0) in C of the form (b;m�1); (b; 0); : : : ; (c1;m�1); (c1; 0); : : : ; (ck; 0),with ck = a. This implies that (b; c1) 2 �, and (ci; ci+1) 2 � for i 2 [1::k� 1]. Hence,there is a cycle containing the edge (a; b) in the graph of �.(RHS ) LHS) Suppose that sccd(T�) is not empty. So there exist components Cand D such that for some x; y, (x; i) 2 C, (y; j) 2 D, and ((x; i); (y; j)) 2 E(G�).For some a, there is a path from (a; 0) to (x; i), and for some b, a path from (y; j) to66



(b;m�1), as the threaded graph has a total transition relation. Thus, � contains thepair (a; b). Since � is cyclic, (a; b) lies on a cycle in the graph of �. This cycle mustcorrespond to a cycle in the max-scc decomposition of T�, which is a contradiction.�Theorem 4.4 Formula Ah is not universal i� there is a �nite path in M from aninitial state to a green state and a cycle � from that state such that � is cyclic.Proof. Follows from Theorem 4.2 and 4.3 and Lemma 4.4. �Let L be the maximum length of a guard in C and U processes. Note thatL � jCj+ jU j.Theorem 4.5 There is a nondeterministic algorithm to decide if a temporal prop-erty over computations of C is not universal that uses space O(jSU j2 +log(jSC jjSBj)+L). The algorithm uses space logarithmic in the size of M.Proof. By Theorem 4.4, a property Ah is not universal i� there is a �nite pathin M to a green state and a following cycle � from that state such that � is cyclic.The algorithm \guesses" a path to a green state, and a cycle � from it, recordingonly the current state ofM, and � for the pre�x � of � that has been examined. As(�;X; s) = � �X, (� is relational composition) � can be computed incrementally.Recording a state ofM takes space (log(jSC jjSBj) + jSU j). Computing a suc-cessor state can be done in space proportional to (log jSB j+ log jSC j+ log jSU j+ L)(as this requires checking if (c; S) jj� p for guards p). Storing � takes space jSU j2, andchecking if � is cyclic can be done deterministically within the same space bound.Thus, the overall space usage is O(jSU j2 + log(jSC jjSBj) + L). �Remark 4.1 There are two special cases where the algorithm can be optimized.If the user processes are deterministic, every cycle � in M is good (as T� must beempty). If the correctness property is a safety property, the algorithm need check67



only �nite accepting paths, which are good by Lemma 4.1. In both cases, the checkfor good cycles can be eliminated, which is a substantial saving. �A reduction from a generic PSPACE Turing Machine shows that checking ifAG:accept is not universal is PSPACE-hard . Section 4.8 contains the details of thisproof. The following theorems follow.Theorem 4.6 Deciding if a property over computations of C is not universal iscomplete for PSPACE .Corollary 4.2 Deciding if a property over computations of C is universal is com-plete for PSPACE .Proof Sketch. Follows from the previous theorem, as co-PSPACE = PSPACE . �The algorithm given above for determining if a property is not universal isnondeterministic and uses polynomial space. Using Savitch's construction, there isa deterministic algorithm with time complexity O(2k(jSU j2+log(jSC jjSBj)+L)2) for somek. We present below a \natural" deterministic algorithm with the same worst casetime complexity in jSU j. Let K = jSMj � 2jSU j2 . The algorithm follows from thisobservation:Proposition 4.3 If � is a �nite path in M from s to t of length greater than K,then there is a path � from s to t in M of length at most K such that � = �.Proof. De�ne an equivalence relation on states s of � by si � sj i� si = sj andX0 �X1 � : : : �Xi�1 = X0 �X1 � : : : �Xj�1. Clearly there are at mostK equivalenceclasses. So if the length of � is greater than K, there must be distinct indices i andj such that i < j and si � sj. Then the path � formed by appending the su�x fromsj to the pre�x up to si is a path inM that is shorter than the path �, and is suchthat � = �. Repeating this construction a �nite number of times produces a path �with the desired properties. �68



Theorem 4.7 There is a deterministic algorithm to determine if a property is notuniversal with exponential worst case time complexity in jSU j.From Theorem 4.4, the algorithm has to check that there is a �nite path inM from an initial state to a green state and a cycle � from that state such that � iscyclic. From Proposition 4.3, it su�ces look for cycles of length at most K. Giventhe transition relation of M, the algorithm uses iterative squaring to construct atransition relation R such that (s; t) 2 R i� there is a path of length at most Kfrom s to t in M. Next, the algorithm uses depth-�rst search to search for a pathfrom an initial to a green state, and a self loop on that state such that the labelassociated with the self loop is cyclic.The iterative squaring requires log(K ) = O(jSU j3 ) steps. Each squaringstep requires time T = O(24jSU j2) in jSU j. Thus, the overall time complexity isT � log(K ), which is exponential in jSU j. �This result justi�es the claim made in the introduction that cuto�s on thenumber of processes depend on the formula (here, the automaton) structure. Sinceonly cycles of bounded length, and paths of bounded length leading to the cycleneed be considered, the proof of Lemma 4.3 implies that the instance that containsthe corresponding accepting path is of a size that is a function of this bound. So ifall instances up to the cuto� do not contain a path accepted by the automaton, nolarger instance can contain such a path; thus all larger instances are correct.4.5 Symmetry reductionLet � be a permutation over the set f1 : : : ng. For a state s in Gn, the permutedstate �(s) is de�ned by (�(s))(0) = s(0), and for every i 2 [1::n]; (�(s))(i) = ai i�s(��1(i)) = a��1(i). For example, the state (c; u1; v2; w3) under the permutation� = f(1 ! 2); (2 ! 3); (3 ! 1)g becomes (c; w1; u2; v3). As �n(�(s)) = �n(s), from69



Proposition 4.1, the truth value of any guard is the same in both s and �(s). Hencethere is complete symmetry among the user processes in any size instance of a (C;U)family, and the PMCP for formulas of type (2) and (3) reduces that for formulas oftype (1). The following lemmas are based on those in [ES 93, CFJ 93] (cf. [ID 93])Let f(i) be a CTL� formula with propositions over the states of C and over thestates of U indexed with i, and let f(i; j) be a CTL� formula with propositions overthe states of C and over the states of U indexed with either i or j.Lemma 4.5 For n � 1, Gn; �Gn j= Vi f(i) i� Gn; �Gn j= f(1).Lemma 4.6 For n � 2, Gn; �Gn j= Vi;j:i 6=j f(i; j) i� Gn; �Gn j= f(1; 2).Let C�� U be the process where a copy of the user process is \merged" intothe control in the following manner. Let SC��U = SC �SU�, and (c; u)p�^q�! (d; v) 2RC��U i� c p!d 2 RC and u q!v 2 RU� , where for any guard p, p� is p with everyglobal predicate (9i :: E(i)) replaced with E(�) _ (9i :: E(i)).Theorem 4.8 A property of the form Vi Ah(i) is universal for a (C;U) family i�Ah(�) is universal for the control process in the family (C �� U;U).Theorem 4.9 A property of the form Vi;j:i 6=j Ah(i; j) is universal for a (C;U) fam-ily i� Ah(�; �) is universal for the control process in the family (((C��U)��U); U).4.6 ApplicationsWe have implemented this algorithm to verify a bus arbitration protocol based on theSAE J1850 draft standard [SAE 92] for automobile applications. This is a protocolwhere many micro-controllers can transmit symbols along a shared single-wire bus.As a consequence of this restriction, symbols are encoded by the width of a pulse.Nodes on the bus may begin transmitting di�erent messages simultaneously; only70



the node with the highest priority message should complete transmission after thearbitration process. Symbol 0 has priority over symbol 1, and priority between mes-sages over the alphabet f0; 1g is determined lexicographically. The micro-controllersare modeled as user processes, and the bus as the control process.We implemented the PMCP algorithm presented here by generating SMV[McMillan 92] code to describe the abstract process transitions, given a descriptionof the next-state relation of a user and control processes. The correctness propertyhas both a safety and a progress component. For the safety property, we are ableto simplify the implementation as described following Theorem 4.5. The progressproperty holds on the abstract graph, and as the abstract graph simulates eachindividual instances, it follows that the property holds of all instances.The SAE-J1850 protocol is quite complex, as it has to take into accountnondeterministic, but bounded, delays that may occur at a micro-controller whenit is sensing a bus state transition. The protocol has the maximum delay as aparameter, in addition to the number of processes. We were able to show, by anabstraction mapping, that, for n processes, the protocol with maximum delay 2 istrace equivalent to that with a higher delay. This allows us to focus on the numberof processes as the single parameter, with the maximum delay being �xed at 2.For this system, each user process has about 180 states, while the control processtogether with the automaton for the property has about 400 states. This impliesthat the abstract graph is represented with about 200 boolean variables describingan abstract state, as each abstract state includes a subset of user states. Despite thislarge number of variables, veri�cation of the correctness properties over the abstractgraph took less than a minute on an Intel Pentium running at 200 MHz with 32 MBof memory. We emphasize that this establishes correctness of the bus protocol foran arbitrary number of attached micro-controllers. The following chapter containsa detailed description of this protocol and its veri�cation.71



4.7 Almost universal propertiesIn Section 4, we considered the question of whether a property is universal, i.e., truefor every size instance of a (C;U) family. However, it is possible that a property isnot true of all instances, but of almost every instance (i.e., all but a �nite numberof instances). We say that such a property is almost everywhere true. Similarly, aproperty that is false of almost every instance is called almost everywhere false2.We showed in Section 4 that a property of the form Ah is not universal i�there is an accepting good path in M. To generalize this result, we de�ne anotherproperty of paths in A.De�nition 4.7 (Real Path) A path � in A is real i� (18n (9� : � 2 Gn : n(�) =�)). (18 is read as \for all but a �nite number") �Lemma 4.7 Every path (�nite or in�nite) in A is real i� it is good.Proof. The direction from left to right follows from the de�nitions. So suppose �is a good path in A. Hence, for some n, there is a path � in Gn such that n(�) = �.By the Simulation Lemma (Lemma 4.1), for every n0 � n, there is a path � 2 Gn0that covers �. By de�nition of a covering path, n0(�) = �. So in every instance ofsize at least n, there is a path which maps to �. Hence, � is real. �Let a path in M be real i� the projection of the path on A is real. We getthis analogue to Theorem 4.2:Theorem 4.10 Formula Ah is almost everywhere false i� there is an accepting realpath in M.Proof. Suppose � is an accepting real path in M. As �A is real, for almost everyn, there is a path in Gn that matches �A on the sequence of states of C, and is henceaccepted by B. Therefore, Ah is false of almost every instance.2A similar notion, almost always satis�ability, is considered by [ESr 90] when synthesizing amany process program that satis�es a temporal speci�cation.72



In the other direction, if Ah is almost everywhere false, then for some n,there is a path � in Gn from the initial state that is accepted by B. From Lemma4.2, n(�) is a path in A, which is good by construction, and hence real by Lemma4.7. The sequence of states of C in n(�) is the same as in �; hence, there is a runof B on n(�) that forms an accepting real path in M. �Corollary 4.3 Formula Ah is almost everywhere false i� Ah is not universal.Proof. By Theorem 4.2, Ah is not universal i� there is an accepting good path inM. As good paths are real by Lemma 4.7, the claim follows from Theorem 4.10. �This is a strong result, as it implies that if Ah is false of some instance, thenit is false in almost every instance. The following theorem shows the interesting factthat almost everywhere truth and falsity are complementary, which is not true ingeneral.Theorem 4.11 Formula Ah is almost everywhere false i� Ah is not almost every-where true.Proof. Suppose that Ah is not almost everywhere true. Then for some n, there isa path � in Gn from an initial state that is accepted by B. From Proposition 4.2,� = n(�) is a path in A that has the same sequence of states of C as does �, andhence is accepted by B. By construction, � is good, and hence it is real by Lemma4.7. The accepting run of B on � de�nes an accepting real path in M. Hence, byTheorem 4.10, Ah is almost everywhere false. The other direction holds triviallyfrom the de�nitions. �4.8 Hardness Results4.8.1 PSPACE completenessTheorem 4.12 Deciding universality is complete for PSPACE .73



Proof. A PSPACE algorithm for the PMCP is presented in Theorem 4.5. To showPSPACE hardness, suppose that M is a deterministic machine operating in spacepolynomial in the size of its input. Without loss of generality, assume that there isa k, such that on every input x, M uses exactly jxjk space.Given M and input x, we construct processes C and U such that the (C;U)family simulates the computation of M on x. First, construct machine N such thatN ignores its input, prints x on the work tape, and simulates M on x. By usinga binary valued mark at each tape cell that is toggled on writing to the cell, N isguaranteed not to over-write a tape cell with the same symbol on a transition.The control process simulates N , while the user processes simulate individualwork tape cells. The process C has a counter head with range [0::jxjk) that maintainsthe current head position of N . The initial state of C is the initial state of N , withhead = 0 . Each user process chooses a state representing a position on the tape.The symbol stored in each user process is initially blank.In the initial state, C checks, using global predicates, that there is at leastone user process at each tape position in the range [0::jxjk). If this is true, C thenproceeds to simulate N . A transition �(p; a) = (q; b;D) of N is simulated by C withthe following (we write the transitions in a guarded command language for clarity)::change ^ state = p ^ (9i : positioni = head : symboli = a) �!change := true; tosymbol := b[] change ^ state = p ^ :(9i : positioni = head : symboli = a) �!change := false; state := q;head := head+Dwhile U has the following transitionchangeC ^ tapeposition = headC ^ symbol = a ^ tosymbolC = b �!symbol := bInformally, for every move �(p; a) = (q; b;D) of N , C �rst sets its tosymbol tob, then every process with tape position head sets the new value of its stored symbolto b, after which C changes its head value. For this last step to execute after the74



second one, it is important that a 6= b. This is ensured by the marking disciplinegiven above.In any instance of the family, every computation where there is initiallyat least one user process at each tape position simulates the computation of N ;otherwise, C enters a deadlock state, and the computation deadlocks. Let theproperty to be veri�ed be AG :accept. If x 2 L(M), then N enters an acceptingstate. For any instance of size at least jxjk, there is an initial state where each tapecell is assigned to some user process; hence, there is a computation that accepts, sothe property is false. If x 62 L(M), then N does not enter an accepting state, soevery computation of each instance does not contain an accepting state; hence, theproperty is true of all instances. Thus, x 2 L(M) i� AG :accept is not universal.All the constructions can be performed in LOGSPACE. Thus, deciding if a temporalproperty over computations of C is not universal is PSPACE-complete . Note thatthe property used in the proof is a simple invariance property, and the controlprocess is deterministic. �4.8.2 Undecidability for interleaving semanticsWe show that assuming the process structure for C and U described earlier, butwith an interleaving parallel composition operator, the simplest form of the PMCP,i.e with type (1) formulas, is undecidable. Essentially, this is so because the 8quanti�cation can be used to simulate the zero-testing actions of a two-countermachine.The main idea (cf. [GS 92]) is that C and U are constructed such thatC k Un simulates the given deterministic two counter machine (henceforth, 2CM)for at least n steps. The control process executes the program of the 2CM, while theuser processes simulate the two counters. The counters are represented in unary,and each copy of the user process has su�cient storage for one bit of each counter,75



and some additional boolean ags. Initially, all the ags are false, and all bits areset to 0.For clarity, we have expressed the simulation in a guarded command format.The control process simulates the instructions of the 2CM with an explicit programcounter (PC), used to implement sequential execution in the guarded commandmodel. An outline of the 2CM simulation follows.1. Zero Testing : The zero?(x ) test (x names a counter) is simulated byPC = current ^ :(9i :: xi = 1 ) �!zero(x ) := true; inc(PC )[] PC = current ^ (9i :: xi = 1 ) �!zero(x ) := false; inc(PC )2. Increment Counter x : This is done by a four way handshake protocol betweenC and one of the U processes that has x = 0. The code for C is :PC = current ^ :reset ^ :incr(x ) ^ (9i :: xi = 0 ) �!incr(x ) := true[] PC = current ^ incr(x ) ^ (9i :: DoneIncr(x )i) �!incr(x ) := false; reset := true[] PC = current ^ reset ^ :(9i :: DoneIncr(x )i ) �!reset := false; inc(PC )The code for a U process is as follows :x = 0 ^ incr(x )C ^ :(9i :: DoneIncr(x )i) �!x := 1 ;DoneIncr(x ) := true[] DoneIncr(x ) ^ resetC �!DoneIncr(x ) := falseNotice that if an increment is not possible because all process bits are set to1, the control process will deadlock.3. Decrement Counter x : The simulation is similar to that for increment.Note that both C and U are deterministic. The non-halting property for Ccan be expressed as AG:Halt . 76



Theorem 4.13 The PMCP is undecidable even in the simplest case in an inter-leaving computation model. More precisely, it is co-RE.Proof. The simulation of a non-halting 2CM will, for any instance, either deadlockor execute the program forever, never reaching the Halt state. Thus, along everycomputation in every instance of size n, G:halt holds, hence AG:Halt is universal.Conversely, a halting 2CM halts in k steps, for some value of k, and the simulationwill enter a halt state, so AG:Halt is not universal. It follows that the 2CM doesnot halt i� AG:Halt is universal, so the PMCP is co-RE. �4.9 Conclusions and Related WorkA variety of positive results on the PMCP have been obtained previously. All ofthem, however, possess certain limitations, which is perhaps not surprising since thePMCP is undecidable in general (cf. [AK 86],[Suzuki 88]). Many of these methodsare only partially automated, requiring human ingenuity to construct, e.g., a processinvariant or a closure process (cf. [CG 87, BCG 89, KM 89, WL 89]). Some couldbe fully automated but do not appear to have a clearly de�ned class of protocols onwhich they are guaranteed to succeed (cf. [SG 89], [Vernier 93], [CGJ 95]).Abstract graphs (for asynchronous systems) are considered in [ESr 90] forsynthesis, [Vernier 93] for automatic but incomplete veri�cation, and in [CG 87],where they are called process closures. Interestingly, [CG 87] show (in our notation)that if, for some k, C k Uk k A is appropriately bisimilar to C k Uk+1 k A,then it su�ces to model-check instances of size at most k to solve the PMCP.However, they do not show that such a cuto� k always exists, and their method isnot guaranteed to be complete. Pong and Dubois [PD 95] propose a similar abstractgraph construction for veri�cation of safety properties of cache coherence protocols.They consider a synchronous model with broadcast actions. Although sound forveri�cation, their method appears to be incomplete. Lubachevsky [Lubachevsky 84]77



makes an interesting early report of the use of an abstract graph similar to a \regiongraph" for parameterized asynchronous programs using Fetch-and-Add primitives;however, while it caters for (partial) automation, the completeness of the method isnot established and it is not clear that it can be made fully automatic.Our approach, in contrast, is a fully automated, sound and complete one(i.e., always generates a correct \yes" or \no" answer to the PMCP). Another suchapproach appears in [GS 92]. They also consider systems with a single controlprocess and an arbitrary number of user processes, but with asynchronous CCS-type interactions. Unfortunately, their algorithm has exponential space (doubleexponential time) worst case complexity.Our framework thus di�ers from [GS 92] in these signi�cant respects: (a)the parallel composition operator is synchronous; (b) we permit guards with \ev-erywhere" quanti�cation (i.e., of the form (8i :: E(i))); (c) it is more tractable(PSPACE vs. EXPSPACE )3. Partial synchrony can also be handled in our frame-work. These factors permit us to represent a wider range of concurrent systems.For example, the bus protocol described in Section 4.6 relies on the ability to testeverywhere predicates, which are not permitted in [GS 92]. There is a noteworthylimitation in the modeling power of our present framework. Because of the coveringproperty (Lemma 4.1), an algorithm for mutual exclusion cannot be implemented inour model (cf. [GS 92]'s control process-free model), even with the control process.4.10 Technical DetailsProposition 4.2 For every path � in Gn, n(�) is a path in A.Proof. The proof is by induction on the number of states in �. If � has a single3On the other hand, for their model of computation with all user processes but no controlprocess, there is a polynomial time algorithm [GS 92]. We believe that our PSPACE completenessresult is not an insurmountable barrier to practical utility, given BDD-based implementations, assuggested in section 4.6. 78



state s, n(�) = �n(s), which is a path in A.Assume inductively that the claim is true for all paths of length at most m,with m � 1. Consider a path � of length m+1. Then � maybe written as �t. Let sbe the last state in �. Let X =  n(s; t), �n(s) = (c; S), and �n(t) = (d; T ). As thereis a transition from s to t in Gn, there is an enabled transition with guard p for thecontrol process. Furthermore, from Proposition 4.1 (c; S) jj� p. From the de�nitionof  n, X is total on S, and X�1 is total on T . For any (a; b) in X, ai = s(i) andbi = t(i) for some i, so there is an enabled transition with guard q from ai to bi inUi, and (c; S) jj � q.Thus, (�n(s);  n(s; t); �n(t)) 2 RA. By the inductive hypothesis, n(�) is apath in A ending at the state �n(s), so n(�) is a path in A. Thus, the claim istrue of all �nite paths in Gn, hence it is true for all in�nite paths, as an in�nitecomputation of the system is the unique limit of its �nite pre�xes. �Lemma 4.5 For n � 1, Gn; �Gn j= Vi f(i) i� Gn; �Gn j= f(1).Proof. The left-to-right direction follows directly from the de�nition of Vi. For theother direction, if Gn; �Gn j= f(1), then �(Gn); �(�Gn) j= f(�(1)) for any permutation� over f1::ng. As the system exhibits complete symmetry among the user processes,�(Gn) = Gn, and �(�Gn) = �Gn . Hence Gn; �Gn j= f(�(1)) for any permutation �.Choosing �'s appropriately, we have that Gn; �Gn j= f(i) for all i 2 [1::n]. Hence,Gn; �Gn j= Vi f(i) holds. �For a computation � of (C �� U) k Un, let �̂ be the corresponding computa-tion of C k Un+1), formed by considering the copy of U in (C �� U) as a separateprocess.Proposition 4.4 The families (C �� U;U) and (C;U) are related in the followingway:(a) For every computation � in (C �� U) k Un, �̂ is a computation in C k Un+1.79



(b) For n � 1, for every computation � in C k Un+1, there is a computation � in(C �� U) k Un such that �̂ = �.Theorem 4.8 A property of the form Vi Ah(i) is universal for a (C;U) family i�Ah(0) is universal for the control process in the family (C �� U;U).Proof. Suppose Vi Ah(i) is universal for the (C;U) family. From Lemma 4.5, forn � 1, Gn j= Vi Ah(i) i� Gn j= Ah(1), thus, Ah(1) is universal. By Proposition4.4(a), Ah(�) is universal for the control process in the family (C �� U;U). Theargument for the other direction is analogous, and uses proposition 4.4(b). �
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Chapter 5
Veri�cation of a BusArbitration Protocol

5.1 IntroductionIn the previous chapter, we presented an algorithm for the veri�cation of parame-terized synchronous systems. While the problem is decidable, it was shown to bePSPACE-complete in the size of the system description. This complexity bound maymake it appear that the algorithm is unlikely to be useful in practice. We presenta case study on the veri�cation of an parameterized industrial standard protocol.The protocol is called the SAE-J1850 protocol [SAE 92], and is an automobile in-dustry standard for transmitting data between various sensors and controllers in anautomobile. The system consists of a single-wire bus, to which several controllers(units) are attached. Since the bus is a single wire, symbols 0 and 1 are transmittedby encoding them by both the length and the value of a bus pulse. For instance, a0 may be sent with either a long high or a short low pulse.Several units may transmit concurrently; the protocol incorporates a dis-tributed, on-the-y arbitration mechanism which ensures that only the units trans-81



mitting the highest priority message succeed. Priority between messages (stringsover f0;1g) is determined by lexicographic order, given that the symbol 0 has pri-ority over the symbol 1. The protocol is correct if it ensures that the arbitrationmechanism functions correctly. We should note here that the protocol as describedin [SAE 92] has other higher-level functionality, which we have not considered, inorder to concentrate our attention on the core arbitration question. The protocol isfurther complicated by the presence of arbitrary, but bounded delays in the unitswhile detecting a change in the bus state. These delays have an electrical origin;they arise from delays in the detection circuitry, and the presence of di�erent biasvoltages at the units. To accommodate these delays, \long" and \short" are actu-ally time intervals, whose length is proportional to the maximum delay. Thus theprotocol is parameterized both by the maximum delay, and by the number of unitstaking part in it.The veri�cation of the protocol proceeds by two applications of abstraction,one for each parameter. The �rst abstraction theorem shows a delay independenceproperty of the protocol : an instance of the protocol with n processes and maximumdelay � is correct i� the instance with n units and maximum delay 2 is correct. Thus,correctness need be proved only for the family of instances with maximum delay 2.The second abstraction uses the algorithm in [EN 96] to handle the parameterizationover the number of units in a fully automated manner; the algorithm constructs a�nite \abstract graph", which represents the entire family of instances exactly, overwhich properties can be model-checked. A simple version of this protocol, withoutthe complexity introduced by the delays, was veri�ed in [EN 96]. The modeling ofthe delay not only introduces complexity into the behavior of the units, but alsointroduces additional parameterization into the protocol, which is dealt with by thedelay independence theorem.The success of this e�ort leads us to believe that careful speci�cation of the82



computational model underlying other protocols will expose constraints that canbe utilized, as in this case, for developing decision procedures for large classes ofprotocols. It also exposes a dire need for developing and popularizing notation forexpressing such protocols. Remarkably, the SAE-J1850 document does not containa succinct protocol description; the development of such a description was a majorcomponent of this project. The successful veri�cation of the protocol using symbolicmethods, despite the theoretical result on PSPACE-completeness of the procedureused [EN 96], is reason to believe that fully automated parameterized veri�cation isfeasible for reasonably sized protocols.The rest of the chapter is structured as follows: Section 5.2 describes the vari-ous components of the protocol in more detail. Section 5.3 discusses the abstractionsused for handling the parameterizations. In Section 5.4, we describe the implemen-tation of the [EN 96] algorithm, and its application to this protocol. Section 5.5concludes the chapter and provides comparisons with related work.5.2 Protocol DescriptionThe SAE-J1850 protocol is a data transfer protocol over a single wire bus, whichis intended to be used for communication between various sensors and controllersin an automobile. The restriction to a single wire bus reduces wiring complexity.An instance of the parameterized system consists of several units connected to asingle bus. The operation of the protocol can be described at the \interface" and\implementation" levels.At the interface level, the units communicate by broadcasting messages (se-quences of symbols from the set f0;1g) over the bus. Units may transmit concur-rently; arbitration takes place during transmission. The arbitration mechanism isde�ned in terms of priority among symbols; the symbol 0 has higher priority than 1.The priority order among symbols is extended to messages by lexicographic order-83



Length Trmin Txmin Txmax TrmaxShort 2:5� 3:5� 4:5� 5:5�Long 6:5� 7:5� 8:5� 9:5�Figure 5.1: Interval Lengthsing. The key correctness property of this protocol is that the arbitration mechanismworks as follows : whenever several units are sending messages concurrently, themessage with the highest priority is placed on the bus.At the implementation level, since the bus is a single wire, symbols are en-coded by pulses of di�ering length and the bus value during the pulse. For instance,the 0 symbol is encoded by either a \long" high pulse, or by a \short" low pulse.The high and low states on the bus are referred to as Dominant and Passive re-spectively in the SAE-J1850 document [SAE 92], so we will use this terminology inthe rest of the chapter. The state of the bus is an \or" of the bus states desired bythe units. The protocol is further complicated by non-deterministic, but boundeddelays in the units while detecting a change in bus value. This delay is caused eitherby bias voltages, or by delays in the detection circuitry. To account for these de-lays, \long" and \short" are not �xed numbers, but are instead non-empty intervals,whose length is proportional to the maximum delay parameter, which we term �.We will continue to use the symbolic names \long" and \short". There arefour parameters associated with a symbolic length l : Txmin(l);Trmin(l); Txmax (l);Trmax (l). Their values are based on a nominal value Tnom(l) and are given by theformulae : Txmin(l) = Tnom(l) � �=2;Txmax (l) = Tnom(l) + �=2, Trmin(l) =Tnom(l)�3�=2;Trmax (l) = Tnom(l)+3�=2. Tnom(l) is itself proportional to �.Tnom(Long) = 8 ��, and Tnom(Short) = 4 ��. The values are given explicitly inthe table below:Note that the interval [Txmin(l);Txmax (l)] is properly contained in the in-84



terval [Trmin(l);Trmax (l)], and that the least Long value exceeds the largest Shortvalue by �. The core of the protocol is the following procedure followed by eachunit to transmit a symbol with symbolic length l at a bus value of b (e.g., 0 as aShort , Passive pulse). At the entry to this procedure, request = b; localbus = b, andcounter = 1.Informally, the procedure above attempts to maintain the bus at value b forTxmin(l) time units. If this attempt succeeds, then it attempts to change the busvalue to :b within Txmax (l) time units, so as to terminate the pulse. If that fails,then the procedure switches to a Passive request, and waits for some other unit tochange the bus value. As the names indicate, [Trmin(l);Trmax (l)] is the intervalfor successful \reception" of the symbol, while Txmin(l) and Txmax (l) are the timebounds for attempting \transmission" of the symbol. 0 is encoded as either a ShortPassive pulse or as a Long Dominant pulse, while 1 is encoded by the other twocombinations. The asymmetry between Passive and Dominant is used to enforcethe priority order 1 � 0.5.2.1 Correctness PropertiesThe correctness property is stated informally in the protocol document [SAE 92] as:Whenever several units are transmitting messages concurrently, the message withthe highest priority is the one placed on the bus.This property can be stated precisely in CTL as follows: Consider n unitsconnected to the bus, indexed by i, (i 2 [1; n]). LetM(k) denote the set of messagestrings (over f0;1g) of length k. For each i in [1; n], let msgi denote the �xedmessage string that is associated with unit i. Let B denote the message that istransmitted on the bus (this may be de�ned as an auxiliary variable that recordssymbols as they are transmitted on the bus). Let tri be a boolean auxiliary variablethat records if unit i is transmitting. Let max be the function that determines the85



var localbus (* the bus value perceived by the unit *)var request (* the bus value desired by the unit at the next cycle *)var counter (* the number of cycles elapsed for this transmission *)docounter 2 [0;Trmin(l)) �!if localbus = b �!request ; counter := b; counter + 1[] localbus 6= b �!counter := 1; signal FAILURE(* pulse too short *)�[] counter 2 [Trmin(l);Txmin(l)) �!if localbus 6= b �!counter := 1; signal SUCCESS[] localbus = b �!request ; counter := b; counter + 1�[] counter 2 [Txmin(l);Txmax(l)) �!if localbus 6= b �!counter := 1; signal SUCCESS[] localbus = b �!request := :b�[] counter 2 [Txmax (l);Trmax (l)] �!if localbus 6= b �!counter := 1; signal SUCCESS[] localbus = b �!request ; counter := Passive ; counter + 1�[] counter > Trmax (l) �!signal FAILURE (* pulse too long *)odFigure 5.2: Algorithm to transmit a symbol with length l and bus value b.
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maximum message of a set of messages, according to the lexicographic priority �on messages. If the set is empty, max has value �, the empty string. The followingCTL formula expresses the property above:(C0) (8m : m 2M(k) : AG(maxT = m ^B = �) A(B � mUB = m))),where maxT = maxfi : i 2 [1; n] ^ tri : msgigThis expression is of �nite length for �xed k. Veri�cation of this property fora �xed k requires adding state to each unit to store message contents, which makesthe state space intractably large. To solve this problem, we modify the environmentof the protocol so that the message sent by a unit is generated on the y. At anystate, let sent i denote the message sent by a unit. The modi�ed correctness propertyis as follows :(C1) AG(maxS = � ^B = � ) AG(B = maxS )), where maxS = maxfi : i 2[1; n] ^ tri : sent igInformally, this property states that starting at any state where both themessage on the bus and that at the units is empty, at any point of time the messageon the bus is equal to the lexicographic maximum of the messages sent by thecurrently transmitting units. This implies that B must increase (lexicographically)as long as there is a transmitting unit.While the new environment is simpler, the statement of the property stillinvolves several unbounded auxiliary variables. Instead of checking this property,which refers to the history of a computation, we check several properties that dealwith the transmission of a single symbol. We show in Lemma 5.1 that their con-junction implies (C1). The statement of these properties requires some auxiliarypropositions : insym holds at states where B = � or the state is at least � timeunits from the last bus state change; E0sender holds i� there is a transmitting unitwith current symbol 0; E1sender holds i� there is a transmitting unit with currentsymbol 1. 87



Let before(x ) � A(insymU(insym ^ x )), at(x ) � A(insymU(:insym ^ x )),and after(x ) � A(insymU(:insymU(insym ^ x ))). Informally, before(x) holds i� xis true at some point before the next bus change, at(x) holds i� x is true at thefollowing bus change, and after (x) holds i� x is true just after the bus change iscomplete.A stable state on an execution sequence is one where B = �, or the state isat � time units after the last bus value change. By the protocol de�nition, in thisstate every unit perceives the new bus value. A stable state is the �rst state forwhich insym is true after a bus change.(C2a) In any global state where symbol transmission is in progress, and thereis a unit sending 0, the next bus value is 0. In CTL, this is speci�ed asAG(insym ^ E0sender ) at(value = 0))(C2b) In any global state where symbol transmission is in progress, if thereis a unit sending 1, and no unit sending 0, the next bus value is 1.AG(insym ^ :E0sender ^ E1sender ) at(value = 1))The properties above are global properties. The following are properties ofevery unit, expressed in an indexed temporal logic (cf. [RS 85],[BCG 89]):(C2c) In any global state where symbol transmission is in progress, everyunit transmitting 0 succeeds, and continues to transmit until the next insym state.Vi AG(insym ^ tri ^ (symi = 0)) after (tri ))(C2d) In any global state where symbol transmission is in progress, andthere is a unit sending 0, every unit transmitting 1 fails before the bus symbol isdetermined.Vi AG(insym ^ E0sender ^ tri ^ (symi = 1)) before(:tri ))(C2e) In any global state where symbol transmission is in progress and thereis no unit sending 0, every unit transmitting 1 succeeds, and continues to transmituntil the next insym state. 88



Vi AG(insym ^ :E0sender ^ tri ^ (symi = 1)) after (tri ))Lemma 5.1 Properties (C2a)-(C2e) imply Property (C1).Proof.We show by induction on the number of stable states on any computationfrom a state with B = � and maxS = � (the 0th stable state) that the followingproperty holds:(IH) At the the kth stable state, B is the maximum of the messages sentby units that were transmitting at the start of previous stable bus state if k > 0,otherwise it is �. Every transmitting unit has sent B.Basis : k = 0. The message on the bus as well as the message at everytransmitting unit are both �, so the claim holds.Inductive step : Assume that (IH) holds at the kth stable state. If someunit transmits 0 at this state, by (C2a) the next symbol on the bus is 0. By (C2c),any unit transmitting 0 is transmitting at the next stable state. By (C2d), all unitstransmitting 1 fail before the next stable state.If some unit transmits 1at this state and no unit transmits 0, then by (C2b),the next bus symbol is 1, and by (C2e) every unit transmitting 1 is still transmittingat the next stable state. By (IH), at the kth stable state, all units transmit thelexicographic maximum among the sent messages, hence, at the next stable state,the value of B is still the maximum among the messages sent. In either case, theinductive hypothesis holds. �5.3 AbstractionsThe procotol as described is parameterized by both the maximum delay parameter�, and the number of units N . Let P (N;�) stand for the instance of the protocolwith N units and delay �. This parameterization makes the protocol in�nite-state,89



hence Model Checking cannot be applied directly to determine its correctness. Weapply two abstractions that reduce the protocol to an equivalent �nite-state system.The �rst abstraction demonstrates a delay insensitivity property of the protocol : forevery N , P (N;�) is correct i� P (N; 2) is correct. Hence, protocol correctness needbe checked only for the set of instances with maximum delay 2. However, this isstill a parameterized, in�nite-state protocol. This parameterization can be handledwith the algorithm presented in [EN 96]. This algorithm abstracts away the numberof units, constructing a �nite \abstract graph", which encodes all instances of thesystem. Model Checking the abstract graph created by this unit is thus equivalentto checking the doubly parameterized SAE-J1850 protocol. Experimental detailsare presented in the following section.5.3.1 Delay InsensitivityAs noted in the protocol description, the timing parameters are proportional to theparameter �. In an underlying dense time model, each test of a clock variable x isof the form x 2 hl ��; r ��i (the angled brackets indicate either a open or a closedend to the interval), and each reset of x is of the form x := choosehl � �; r � �i,which assigns to x a nondeterministically chosen value from the interval. It is thenstraightforward to show that if the intervals hl��; r��i are changed to hl; ri (dividingthrough by �), the resulting un-parameterized system has the same computationsw.r.t. the non-clock variables as the original one. This is so since global stateswith identical non-clock values and clocks related by scaling with � are bisimilar.This class of systems thus forms a decidable instance of parameterized real-timereasoning (cf. [AHV 93]).Since our model of the bus system is over integer time (each transition takes1 time unit), we cannot use this result. The protocol, however, satis�es additionalproperties that make a similar reduction possible. We show that any execution of90



P (n; d) (d even and at least 2) can be simulated by an execution of P (n; 2), in thesense that the sequence of symbols on the bus is the same.Lemma 5.2 Let � be an execution of P (n; d) (d even and at least 2). Let l be thesymbolic length of the time interval between successive stable bus states in �. Then1. Every unit sending a symbol with a di�erent length is aborted by the start ofthe next stable state, and2. Every unit sending a symbol with the same length is transmitting at the startof the next stable state. �Theorem 5.1 Let � be an execution of P (n; d) (d even and at least 2) from a stablestate. There is an execution  of P (n; 2) such that the sequence of symbols on thebus is identical in � and .Proof.We construct  inductively. For each i, i ends in the ith stable state,the symbols on the bus in i and in the subsequence of � up to and includingthe ith stable state are identical, and the local states of corresponding units inthe ith stable states are the same except for, possibly, the counter values. Thecounter values, must however, satisfy the relationship : for any pair of units p, q,counter p � counter q in the ith stable state in � implies that counter p � counter qin the ith stable state in .Let 0 equal �0. Let p be the unit that determines the bus change thatresults in the (i+1)st stable state. For a Passive to Dominant change, p is the �rstunit to request a Dominant bus state, and for a Dominant to Passive change, p isthe last unit to request a Passive bus state. At each stable state, all units begintransmission of their symbol with request identical to the current bus value. Thus,the change by unit p can occur only at counterp = Txmin(l), where l is the lengththat p sends its symbol at. Txmin(l) = (a=2) ��, for some a.91



The order of counter values is the same in the ith stable state in . As thecounter value in each unit does not decrease until a bus change or a termination oftransmission, in every execution starting at the ith stable state in , unit p still isone of the units that determine the bus change. As the change of bus state occurs atthe same multiple of �, the symbolic length, and hence the symbol on the bus is thesame. From the previous Lemma, the units un-aborted at the (i+1)st stable statesin  and � are the same. There exists a execution where within � units after thebus change, counter values for unaborted units are chosen in the order of countervalues at the (i+ 1)th stable state of �. Hence, the inductive hypothesis holds. �We obtain the following theorem as a corollary:Theorem 5.2 (Delay Insensitivity) P (n; d) is correct for every even d, d � 2,i� P (n; 2) is correct.Proof.The direction from left to right follows by instantiating d with 2. For thedirection from right to left, note that if P (n; d) is incorrect for some d, then it con-tains a computation where the sequence of symbols on the bus is not the maximumof the sent messages. By the previous theorem, this computation can be simulatedby one in P (n; 2), so P (n; 2) is incorrect. �Proof of Lemma 5.2:Note that at a stable state, all units have the same requested bus state,although they may be transmitting di�erent symbols with di�ering lengths. In theinterval between stable states, for any pair of units p; q, jcounter p � counter qj � �.(i) The length of the interval is Long. Let p be the unit determining the newsymbol. As the bus change occurs when p's counter value equals Txmin(Long),Txmin(Long) � � � counter q � Txmin(Long) + �, for any unit q, i.e.,6:5� � counter q � 8:5�.If q sends a symbol by a short pulse, as Trmax (Short) < 6:5�, q aborts by92



the time that the bus changes state. If q sends by a long pulse, its counter valueremains in the interval [Trmin(Long);Trmax (Long)] up to the next stable state, bywhich time the new bus state is perceived by q.(ii) The length of the interval is Short. Let p be the unit determining the newsymbol. As the bus change occurs when p's counter value equals Txmin(Short),Txmin(Short ) � � � counter q � Txmin(Short ) + �, for any unit q, i.e.,2:5� � counter q � 4:5�.If q sends by a long pulse, then as Trmin(Long) = 6:5�, q aborts by thenext stable state (which occurs in the interval [3:5�; 5:5�]). If q sends by a shortpulse, its counter value remains in the interval [Trmin(Short);Trmax (Short )] up tothe next stable state, by which time the new bus state is perceived by q.Hence, every unit sending a di�erent length aborts, and every unit sendinga symbol with the same length is live at the next stable state. �5.3.2 Many-Process Veri�cationThe delay insensitivity theorem (Theorem 5.2) shows that it is both necessary andsu�cient to check every instance with delay 2 in order to check correctness forinstances over all other delay values. While this eliminates consideration of thedelay parameter, the reduced system is still in�nite-state, as it is parameterized bythe number of units taking part in the protocol.Veri�cation of this parameterized system can be carried out fully automat-ically using the algorithm described in [EN 96]. This algorithm is based on a syn-chronous control-user model, where the instances of the parameterized system con-sist of a �xed control process C, and many copies of a �xed user process U . Then-process instance can thus be described by C k U1 k : : : k Un, where k denotessynchronous composition. In the SAE-J1850 protocol, the control process modelsthe behavior of the bus, while the user process models the behavior of a single93



unit, together with some machinery for modeling the delays in detecting bus valuechanges.The algorithm of [EN 96] constructs a �nite-state \abstract graph" for sucha control-user parameterized system which is an abstraction of the entire family ofinstances. The states of the abstract graph record only the state of the controlprocess, and for each local user state, whether there exists at least one user processin that state. The Lemma below gives a way of checking safety properties of thefamily. Liveness properties may be checked in two ways : (a) As the abstract graphsimulates every instance, if the liveness property holds of the abstract graph, then itholds of the family, (b) An algorithm is provided in [EN 96] for exactly determiningwhether the liveness property holds of every instance.Lemma 5.3 [EN 96] The abstract graph simulates every instance of the family.Every �nite path in the abstract graph corresponds to a �nite computation of someinstance.The paper also shows how to check properties of the form Vi Ag(i) by reduc-ing them, using symmetry arguments (cf. [ES 93],[CFJ 93]) to checking a propertyAg(0) of the control process in a modi�ed control-user system, which has the sameuser process, but has C 0 = C k U as the new control process.5.4 Implementation DetailsThe behavior of the bus and the units as speci�ed in the protocol is coded as aSMV [McMillan 92] program. The transition relation of the abstract graph is gen-erated automatically by a program which takes the speci�cation of control and userprocesses (in C), and generates SMV code describing the transition relation of theabstract graph. This is done by enumerating the reachable local states for a singleuser process, then generating each transition of the abstract graph by inspection of94



the local transitions in the unit. States of the abstract graph are represented bysubsets of the local user state space. Each subset indicates the presence of at leastone user process in that local state, as discussed in the previous section. Thus, fora local user transition s �! t, the corresponding abstract graph transition adds tas a member of a abstract state following one that has s as a member.For the singly parameterized system with � = 2, each unit has 254 reachablestates; thus, the number of Boolean variables needed to encode an abstract stateis also 254 (subsets are encoded as a boolean membership vector). The correctnessproperties C2(a) - C2(e) were checked together on the abstract graph. Since someof these properties are liveness properties, they were checked on the abstract graphusing the fact that it simulates every instance. Every property succeeds on theabstract graph, so that we can infer that properties C2(a) - C2(e) hold of theparameterized system with delay 2, which by Theorem 5.2 implies that they hold ofthe completely parameterized system. By Lemma 5.1, this implies that the desiredcorrectness property, (C1), holds of the completely parameterized system. We didnot have to invoke the potentially expensive but exact method for checking livenessproperties.These checks take about 8 MB and 35 seconds on an Intel Pentium 133 with32 MB of main memory. Conjunctive partitioning of the transition relation and pre-computation of the reachable states (the strongest invariant) is used. 24 iterationsare needed to compute the reachable state space. Incidentally, checking a 15 unitinstance takes roughly the same amount of time but less space.5.5 Conclusions and Related WorkVeri�cation of parameterized systems is often done by hand, or with the help of amechanical theorem prover (cf. [CM 88], [MP 92], [HS 96]). Several methods havebeen proposed that, to various degrees, automate this veri�cation process. Meth-95



ods based on manual construction of a process invariant are proposed in [CG 87],[SG 89], [KM 89], [WL 89], [LSY 94], and have been applied for the veri�cation ofthe Gigamax cache consistency protocol in [McMillan 92]. These constructions havebeen partially automated in [RS 93], [CGJ 95] (cf. [Vernier 93],[PD 95],[ID 96]);however, as the general problem is undecidable [AK 86], it is not in general possi-ble to obtain a �nite-state process invariant. For classes of parameterized systemsobeying certain constraints, [GS 92], [EN 95], [EN 96] give algorithms (i.e., decisionprocedures) for model-checking the parameterized system. These papers demon-strate the methods on simple veri�cation examples; we believe that our case studyis one of the few examples of veri�cation of a large and complex parameterized pro-tocol. It is likely that the delay insensitivity theorem is an instance of a generaltheorem for such types of systems; given such a theorem, the veri�cation of thisprotocol could be indeed fully automated.We believe that careful speci�cation of the computational model underlyingother protocols will expose constraints that can be utilized, as in this case, fordeveloping decision procedures for large classes of protocols. There is also a need fordeveloping and popularizing notations for expressing such protocols. Remarkably, inthe SAE-J1850 document (over 100 pages), there is no succinct protocol description;the description given in Section 5.2 had to be culled from the entire text. Thesuccessful veri�cation of the protocol, despite the theoretical result on PSPACE-completeness of the procedure [EN 96], is reason to believe that fully automatedparameterized veri�cation is feasible for reasonably sized protocols.
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Chapter 6
On Model Checking In�niteState Systems

6.1 IntroductionModel Checking refers to a collection of algorithms for automatically checking tem-poral properties of �nite state systems [CE 81, QS 82, CES 86, LP 85]. ModelChecking is well established as a veri�cation method in large part because it is fullyautomated, and because most model checking algorithms produce a counter-exampleif the correctness property does not hold of the system. Inspired by the success ofModel Checking, there is now increased attention to developing such algorithms andprocedures for in�nite state systems.This e�ort is motivated by two tasks : the veri�cation of systems parameter-ized by the number of processes, such as distributed protocols, and the veri�cationof a �xed set of processes communicating over unbounded channels. Such systemsare commonplace and generate an in�nite state space, in the �rst case from thein�nite number of instances, each with a �xed number of processes, and in the sec-ond case from the unboundedness of the communication channels. State explosion,97



the limiting factor to the practical application of Model Checking algorithms, oftenarises in such parameterized systems for large instances. Thus, a solution for thegeneral problem also helps ameliorate state explosion.Algorithms are known for model-checking many types of in�nite-state sys-tems: Petri Nets [Esparza 94], asynchronous parameterized protocols [GS 92], timedautomata [AD 91], hybrid systems [Henzinger 95], parameterized token-ring proto-cols [EN 95] and parameterized synchronous protocols [EN 96]. For other types ofsystems, semi-algorithmic procedures have been proposed [PD 95, ID 96, BG 96,BGWW 97].In an interesting recent paper [ACJT 96] (cf. [Finkel 90]), it is pointed outthat programs in these formalisms induce \well-quasi-ordered" (wqo ) transition sys-tems. This condition, together with additional properties, is shown to make themodel-checking of safety properties decidable. The question of deciding generalliveness properties is, however, left open. The algorithm for safety properties in[ACJT 96] computes EF bad as a �xpoint, i.e., in a \backward" direction, start-ing with the set of states where bad holds. More recently, [KMMPS 97] exploresthe use of automata as representations for in�nite sets of states in general �xpointcomputations.Many of the known algorithms, however, are based on a \forward" search,starting with the set of initial states [GS 92, Esparza 94, BG 96, EN 96]. Algorithmsbased on quotients w.r.t. a bisimulation equivalence [AD 91, Henzinger 95] are alsoforward searches as the incremental computation of the quotient structure proceedsin a forward direction.In this chapter, we propose a new type of \covering graph" constructionas a general method of forward search for Model Checking. The covering graphconstruction for Petri Nets is developed by Karp and Miller [KM 69], where it is usedto decide covering and boundedness questions. Finkel [Finkel 90] generalized this98



construction to arbitrary deterministic wqo systems to decide the same properties.We show that neither the well-quasi-ordering, nor the restriction to deter-ministic systems is necessary for checking safety properties. The essential feature ofthe covering graph construction is the use of a simulation preorder on the in�nitestate space. The simulation relation is used to detect potentially in�nite paths,and \compress" them by replacing the path with the least upper bound (w.r.t. thesimulation preorder) of the set of states occurring on the path. We prove that eachnode of the covering graph has an associated set of reachable states, which makesit possible to model-check safety properties. For liveness properties, well-quasi-ordering of the simulation relation has an important consequence : we show thatthere is a �nite witness for the satisfaction of Eh formulas, where h is a linear-timetemporal property. The �nite witness can be searched for in the covering graph,given an algorithm for determining if a strongly connected component is \good";i.e., has the \tail" of the witness path embedded in it. Both results apply to generalnon-deterministic systems, thus providing a framework under which to explore thedecidability of model-checking for non-deterministic in�nite-state systems.Although termination is not guaranteed in general (cf. [Finkel 90]), many ofthe forward search algorithms [AD 91, GS 92, EN 96] can be developed in a simple,uniform fashion from the new construction. Furthermore, the construction exposesthe key ideas common to these algorithms and other procedures [PD 95, BG 96].Despite the wide variety among these formalisms, these model-checking proceduresare based on common high-level ideas. This is a strong indication that the cover-ing graph construction is appropriate for analysis of in�nite-state systems, even forcomputation models that are Turing-powerful for which termination cannot be guar-anteed. We also consider the new application domain of parameterized broadcastprotocols. The new approach is illustrated on the veri�cation of an invalidation-based (MESI ) cache coherency protocol, which is shown, fully automatically, to99



satisfy correctness properties for an arbitrary number of processes.The rest of the chapter is structured as follows. Section 6.2 contains pre-liminaries; Section 6.3 introduces the covering graph construction and the model-checking procedure for safety properties. Section 6.4 deals with liveness proper-ties. In Section 6.5, we describe how many known algorithms may be derived uni-formly from the construction, and introduce the application domain of parameter-ized broadcast protocols. Section 6.6 concludes the chapter with a discussion ofrelated work and future directions. Some technical lemmas are presented in Section6.7.6.2 PreliminariesIn�nite-state systems are represented as Labeled Transition Systems and linear tem-poral properties by automata on in�nite strings. This section contains the de�nitionsof these concepts and their basic properties. Quanti�ed expressions are written inthe format (Qx : r : p), where Q is the quanti�er, x the bound variable, r the range,and p the expression being quanti�ed. The powerset of a set S is denoted by P(S).6.2.1 Quasi orders and Partial ordersA binary relation � on set S is said to be a quasi-order (or preorder) if it is reexiveand transitive. The pair (S;�) is called a preset (for preordered set). If � issymmetric it is an equivalence relation, and if it is antisymmetric it is a partialorder and (S;�) is called a poset.In a poset (S;�), an element c is an upper bound of a subset X i� (8x : x 2X : x � c). The least upper bound (lub) of X, if it exists, is the upper bound ofX that is the minimum w.r.t. � among the set of upper bounds of X. A subsetX is directed i� any pair of elements in X has an upper bound in X. A a functionC : N ! S is a chain i� for every i 2 N, C(i) � C(i + 1). The set of elements of100



a chain C, Ĉ, equals fC(i)ji 2 Ng. The poset is a complete partial order (cpo) i�every directed subset has a least upper bound.De�nition 6.1 (Well-Partial-Order, wpo ) For a poset(S;�), � is a well-partial-order i� for every in�nite sequence � of elements of S,there exist positions i; j 2N such that i < j and �i � �j.A preorder (S;�) is a well-quasi-order i� the induced partial order is a wpo .Proposition 6.1 (cf. [Fraisse 86]) For a preset (S;�), � is a wqo i� every in�nitesequence of elements of S contains an in�nite sub-sequence that is a chain.6.2.2 Ordered transition systemsLabeled transition systems (LTS's) are de�ned in Chapter 2. We will work withLTS's that have a �nite number of actions and where the state labels are derivedfrom a �nite set of atomic propositions, AP . The label of each state is a subset ofAP ; i.e., the propositions true at that state. Such an LTS is written as a structure(S;�; R; I; AP;L). We write s a!t instead of (s; a; t) 2 R, s!t for (9a : a 2 � : s a!t),s �!t if t is reachable from s, and s +!t if t is reachable in at least one step from s.For sequences of symbols from �, the function : P(S)! P(S) is de�ned recursivelyby �(X) = X, a(X) = ftj(9s : s 2 X : s a!t)g, and �; a(X) = a(�(X)). Informally,�(X) is the set of states reachable from states in X by performing the actions of �in order.De�nition 6.2 (Simulation) A relation � on S is a simulation on A i� for anystates s; t such that s� t, L(s) = L(t), and for every a; u such that s a!u, there is vsuch that t a!v and u� v.De�nition 6.3 (Ordered LTS) The pair (A;�) is called an ordered LTS i� � isa simulation on A and a wqo on S. 101



Several important ways of specifying systems give rise to ordered LTS's:1. Finite LTS's with the identity preorder, as any in�nite path contains a repeatedstate.2. Vector Addition Systems (VAS) [KM 69], as the component-wise ordering ofvectors over Nk (the state space of a VAS), given by u � v i� (8i : i 2 [0; k) :ui � vi), is a wpo .3. Petri Nets and Vector addition systems with states (VASS) [Reisig 85] areequivalent to VAS's.4. Real-Time Automata [AD 91], as the bisimulation equivalence on clock valueshas �nite index.5. Finite state machines communicating over restricted FIFO channels [FR 88]or lossy channels [AJ 93], as the orderings on channel words are wqo 's.6. Parameterized protocols [GS 92, EN 96], where the state space is encodedeither as a VASS [GS 92] or by constraints [EN 96].B�uchi automata (see Chapter 2) are used to specify temporal correctnessproperties. Propositional linear temporal formulae can be translated into equivalentB�uchi automata (cf. [Thomas 90]). We adopt the automata-theoretic approachto Model Checking [VW 86], in which the negation of the correctness property isexpressed by a B�uchi automaton B, and every computation of an LTS A satis�esthe correctness property i� the set of computations of the \product" C = B � A isempty. Given a simulation preorder � on A, de�ne �0 on C by (b; s) �0 (c; t) i�b = c and s � t.Proposition 6.2 If (A;�) is an ordered LTS, then (C;�0) is an ordered fair LTS.Proposition 6.3 Accepting runs of B over A correspond to computations of C.102



6.3 Model-Checking Safety PropertiesThe negation of a linear-time safety property can be expressed as an automaton on�nite strings, instead of a B�uchi automaton. The system satis�es the safety propertyi� no �nite path of the system is accepted by the automaton, which holds i� in thecombined system there is no path to an accepting state.The Karp-Miller construction for Petri Nets [KM 69] is a sophisticated ver-sion of the naive reachability procedure. The key idea is to \compress" paths thatare potentially in�nite, using a simulation preorder. We develop below a new gen-eralization of the Karp-Miller construction geared towards Model Checking.We work with an LTS A = (S;�; R; I; AP;L), where � and AP are both�nite. As � and AP are �nite, one can augment the edge labeling to ��AP , wheres(a;l)! t in the new labeling i� s a!t and L(t) = l. This relabeling induces the followinglabeling property : For any subset X of states, and a new action label (a; l), states in(a; l)(X) have identical state labels. For the rest of the paper, the system is assumedto have the labeling property.Let a uniform subset of S be a set where any two members have the samestate label. The set of uniform subsets of S is denoted by U(S). The label of auniform subset X, denoted by �(X), is the common label of its members if the setis non-empty and a special value ? if the set is empty. Let v be a relation on U(S)with the following properties :1. v is a pre-order, such that if X v Y then �(X) = �(Y ). Let � denote theequivalence generated by v. I.e., X � Y i� X v Y and Y v X.2. For any action symbol a, a is monotonic w.r.t. v. I.e., for any X;Y , X v Yimplies a(X) v a(Y ).3. (U(S)= �;v) is a complete partial order (it cpo ).4. For any chain C over U(S), lub Ĉ � S Ĉ.103



5. For any s and any uniform subset X, if s 2 X then fsg v X. If (A;�) is anordered LTS and fsg v X, there exists t 2 X such that s � t.Lemma 6.1 X � Y implies a(X) � a(Y ).Lemma 6.2 Let C and D be chains such that for every i in N, C(i) � D(i). Thenlub Ĉ � lub D̂.The proofs of these Lemmas are quite straightforward and are deferred tothe appendix.6.3.1 The Covering Graph ProcedureThe procedure constructs a covering graph incrementally. Each node n of the graphis labeled by a non-empty uniform subset, which is denoted by L(n). The subsets areusually in�nite so, in practice, �nite representations and methods of manipulatingsuch representations are needed. We describe some such representations in Section6.5; the properties of the algorithm are independent of the representation method.The function rep maps a uniform subset to its representative, so that for anysubset X, rep(X) � X. The graph is constructed by the following nondeterministicprocedure. New is the set of unexamined (node, edge label) pairs.
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Begin� Choose a �nite partition of the set of initial states into uniform subsets.For each set X in the partition, an initial node n of the covering graphis created with L(n) = rep(X). For each a 2 �, add (n; a) to New .� Repeat the following process as long as New is non-empty :Choose and remove a pair (n; a) from New . Let Y = a(L(n)). If Y 6� ;,perform these actions in order:(Cover) If there is a nodem such that Y v L(m) : make m the a-successorof n.(Limit) If there is a predecessor k of n on a path , with L(k) = Z, suchthat L(n) � (Z) and Z v Y :Let � = ; a. De�ne C by C(i) = �i(Z) for i 2 N. Create a nodem labeled with rep(W ) as the a-successor of n, whereW = lub Ĉ.For each a 2 �, add (m;a) to New .(Step) Create a node m labeled with rep(Y ) as the a-successor of n. Foreach a 2 �, add (m;a) to New .End The Covering Graph Construction Procedure.In the second alternative, note that �0(Z) = Z v Y � �1(Z). From thisinitial condition and the monotonicity of � (property (2) of v), it follows thatC is indeed a chain, and by property (3), lub's of chains exist. The constructionprocedure is nondeterministic, so several possible covering graphs may be generated.The theorems below hold for every such graph.Theorem 6.1 For every node n, there is a non-empty reachable set of states R105



such that L(n) � R.Proof. We prove that this property is an invariant of the procedure. It holds ofthe initial nodes by their de�nition and the property of rep.Assume that the property holds at the beginning of an iteration. Let (n; a)be the choice from New .(1) The �rst alternative is taken. As the set of nodes of the covering graphis not changed, the invariant holds.(2) The second alternative is taken and a new node is added with labelrep(W ). From the invariant, there is a non-empty, reachable subset of states R suchthat Z � R. So for the new node m,rep(W )� ( by de�nition of C and property of rep )lub f�i(Z)ji 2 Ng� ( from Lemma 6.1 �i(Z) � �i(R); Lemma 6.2)lub f�i(R)ji 2 Ng� ( property (4) of v )Sf�i(R)ji 2 NgSf�i(R)ji 2 Ng is a set of reachable states by de�nition, and is non-emptyas it has R as a subset.(3) The third alternative is taken and a new node is added with label rep(Y ).From the invariant, there is a non-empty reachable subset of states R such thatL(n) � R. So for the new node m,rep(Y )� ( by property of rep )Y 106



� ( by de�nition of Y )a(L(n))� ( from Lemma 6.1 )a(R)a(R) is a reachable set of states as R is reachable. As Y 6� ;, a(R) is non-empty. �De�nition 6.4 (Covering simulation) Let � be the relation de�ned betweenthe LTS A and the covering graph by s � n � fsg v L(n).Theorem 6.2 Every Covering Graph simulates the underlying LTS by � .Proof.Suppose s� n and L(n) = X. By property (1) of v, L(s) = �(X). Let t beany state such that s a!t. Then t 2 a(fsg), hence a(fsg) is non-empty. By property(5) of v, ftg v a(fsg). By property (2) of v, a(fsg) v a(X). As ftg v a(X),a(X) 6� ;, so n has a successor m on action a.An invariant of the procedure is that for any edge (k; a; l) in the graph,a(L(k)) v L(l). It follows that a(fsg) v L(m), so ftg v L(m) and t�m. This provesthat � is a simulation relation. �Several choices for v have the necessary properties:� v is the subset relation.� Let � be a simulation relation on the LTS that is a pre-order. Then, X v Y ,de�ned as (8s : s 2 X : (9y : y 2 Y : x � y)), is a pre-order that satis�es theconditions.
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� The same preorder restricted to directed subsets, is appropriate for determin-istic LTS's. For non-deterministic LTS's, a stronger form of directedness isneeded, which is discussed in Section 6.7.Theorem 6.3 (Model-Checking Safety Properties) There is a reachable ac-cepting state of the combined system i� there is a covering graph node labeled asaccepting.Proof.For any reachable accepting state s, by Theorem 6.2, there is a node n inthe covering graph such that fsg v L(n). As �(fsg) = �(L(n)) by property (1) ofv, n is an accepting node.Conversely, by Theorem 6.1, for every reachable node n of the CoveringGraph, there is a non-empty reachable subset R such that L(n) � R. By property(1) of v, �(L(n)) = �(R), so that every state in R is accepting. �6.4 Model-Checking Liveness PropertiesChecking if a �nite-state fair LTS has a computation is straightforward : theNLOGSPACE algorithm searches for a \looping" path of the form s0 �!s �!s, wheres is a fair state (cf. [SVW 87]). The following theorem shows that the concept ofa �nite \looping" path is easily extended to the concept of a �nite \self-covering"path for an ordered fair in�nite-state system. Put di�erently, ordered fair LTS'shave a �nite witness for non-emptiness of the set of computations, even though theLTS may have an in�nite number of states.De�nition 6.5 (Self-covering fair path) A self covering fair path in an orderedfair LTS (A;F;�) is a �nite path of the form s �!t +!u, where s is an initial state,t � u, and t 2 F . 108



For the rest of this section, let (A;�) be an ordered LTS, and B a B�uchiautomaton. Let C represent the product of B and A.Theorem 6.4 There is an accepting run of B on A i� there is a self-covering fairpath in C.Proof.()) By Proposition 6.2, C is an ordered fair LTS, with the induced preorder�0 de�ned by (b; s) �0 (c; t) i� b = c and s � t.Let � be an accepting run of B over A. From Proposition 6.3, � is a com-putation of C. As B is �nite-state, some accepting state b from B appears in�nitelyoften along �. Let � be the in�nite subsequence of � obtained by retaining thosestates with automaton component b.As C is ordered, by Proposition 6.1, � has an in�nite subsequence  that isa chain w.r.t. �0. Thus, there exist distinct states t; u on � such that t �0 u andt is a fair state. Since t is reachable from the initial state s of �, s �!t +!u forms aself-covering fair path in C.(() Let s x!t y!u be a self covering fair path in C. As t �0 u and �0 isa simulation, for some v, u y!v with u �0 v. Continuing in this manner, de�ne anin�nite path labeled by y! from w0 = t, where for every i, wi y!wi+1 and wi �0 wi+1.As w0 is a fair state, and w0 �0 wi for every i, it follows from the de�nition of C thateach wi is a fair state. Hence the sequence of transitions x; y! induces an in�nitepath from s that is in�nitely often fair. By Proposition 6.3 this computation is anaccepting run of B on A. �Theorem 6.4, when combined with the automata theoretic approach to ModelChecking [VW 86], transforms the Model Checking problem for an ordered LTS todetermining if a self-covering fair path exists in the ordered fair LTS formed by theproduct of the LTS with the B�uchi automaton for the negation of the correctnessproperty. 109



De�nition 6.6 (Positive sequence) A �nite sequence of transitions � of A iscalled positive for s i� (9t : s �!t : s � t). An ordered LTS has the positive pathproperty i� whenever � is positive for s, for any u such that s � u, there exist vand j such that j > 0, u �!v, �j is positive for v, and v is fair if u is fair.Note that every VASS has the positive path property. Any sequence � thatis positive for a state s has non-negative vector sum. Hence, for every u such thats � u, � is positive for u; i.e., j = 1 and u = v in the de�nition above.De�nition 6.7 (Good SCC) A strongly connected component (SCC) of the cov-ering graph is good i� it contains a fair node n such that there is a �nite path inthe component from n which is positive for a state s such that s � n.Theorem 6.5 For any �nite covering graph of C, any self-covering fair path in Cinduces a good SCC in the covering graph.Proof.Let s �!t �!u be a self covering path in C. As t � u, � is a positive path fort. Consider an in�nite path � labeled with �! starting at t (such a path exists;cf. the proof of Theorem 6.4). Let m be a node in the covering graph such thatt � m (m exists from Theorem 6.2). By Theorem 6.2, �! induces an in�nite path �through the covering graph from m. Consider the set of nodes of the covering graphoccurring on � after each pre�x �i for i 2 N. Since the covering graph is �nite, thereis a repeated node n in this set. Let m�l!n�k!n be the pre�x of � up to the secondoccurrence of n. Let u be the state on � after the pre�x �l. From these de�nitionsu � n, hence n is a fair node of the covering graph. From the construction of �,�k is positive for u. The cycle induced by �k in the covering graph from n de�nesa good SCC of the covering graph. �110



Theorem 6.6 If C has the positive path property, then a good SCC in the coveringgraph induces a self-covering fair path in C.Proof. Let n be the state in a good SCC from which there is a �nite path � thatis positive for a state s such that s � n. From Theorem 6.1, there is a non-emptyreachable set of states R such that L(n) � R. By the de�nition of � and thetransitivity of v, fsg v R.By Property (5) of v, there is a state t in R such that s � t. By the positivepath property, there exist u; j such that t �!u and �j (j > 0) is positive for u, whichimplies that there is a state v such that u�j!v with u � v. Since t is fair, so is u.Since t is reachable from some initial state w, w �!t �!u +!v forms a self-covering fairpath in C. �Speci�c choices for the simulation relation, and the representation of subsetsfor the construction are discussed in the following section. To check if a propertyspeci�ed by a B�uchi automaton B for its negation holds for an ordered LTS A, onemust1. De�ne the product C = B �A.2. Pick an appropriate relation v, and construct a �nite covering graph.3. As the covering graph simulates C, one may determine if the property holds bychecking it on the covering graph. If this fails, an algorithmic test to determineif an SCC of the covering graph is good is required, provided that C has thepositive path property.Theorem 6.7 (Model-Checking Liveness Properties) Let A be an orderedLTS and B be a B�uchi automaton for the negation of the correctness property suchthat B�A has a �nite covering graph. If B�A has the positive path property, A iscorrect i� the covering graph does not contain a good SCC.111



6.5 Applications6.5.1 Parameterized SystemsMany distributed protocols are speci�ed as a system parameterized by the numberof instances of identical processes. The processes are usually �nite-state so thateach instance is �nite, but there is an in�nite number of instances whose disjointunion forms an in�nite-state system. Model-checking a parameterized system isundecidable in general [AK 86].A commonly studied type is a control-user system, where each instance con-tains a single copy of the control process and a speci�ed number of user processcopies. A state of an instance is represented by a vector, with the �rst componentbeing the control state and the other components indicating the number of userprocesses in each user state. Vectors are ordered by the usual component-wise par-tial ordering. For the parameterized systems studied in [GS 92] and [EN 96], thisordering is a simulation relation. In [GS 92] the parameterized system is modeledby a VASS and the Model Checking algorithm is based on Racko�'s [Racko� 78]near-optimal algorithm for detecting self-covering paths. As the covering graphconstruction is e�ective for VASS's, it provides an alternative algorithm, althoughof higher worst-case complexity. In [EN 96] a synchronous composition operationis de�ned, which makes it impossible to model the system as a VASS. The analysisis performed with a �nite \abstract graph" which is, in fact, a specialization of thecovering graph construction presented in this paper.In both cases, it is possible to recognize good SCC's algorithmically. For thereduction to a VASS, Racko�'s procedure [Racko� 78] may be used. The algorithmfor detecting good SCC's in [EN 96] uses a threading construction, which resolvesa cycle in the covering graph into \threads" that indicate how processes move fromone local state to another. Analysis of this threaded cycle can determine whetherthe cycle represents a positive path for a state covered by the initial node.112



It is usually the case that correctness properties for parameterized systemsare of the forms : \every process i satis�es f(i)" or \every distinct pair of processes(i; j) satis�es f(i; j)". Such properties may be reduced to checking properties of thecontrol process of a modi�ed system using symmetry results from [ES 93, CFJ 93].Broadcast ProtocolsThe broadcast model is appropriate for analyzing bus-based hardware protocols suchas those for cache coherency. For simplicity, we consider protocols where the statechange in response to a broadcast is deterministic.The system is de�ned as a control-user system with an interleaving com-position rule. As in [GS 92, EN 96], the global state is represented by a vector.Local transitions of a process and synchronizations between pairs of processes canbe represented as vector additions [GS 92], while broadcast moves are representedas matrix transforms. For instance, consider a broadcast speci�ed by� The broadcast send (a!) : s a!!t, and� The corresponding deterministic broadcast receptions (a?) :sa?!u, ta?!u, and ua?!s.This synchronized broadcast action may be represented by a set of simultaneousequations de�ning the number of processes in each local state after the broadcast.For a global state G, let G:s represent the number of processes in local state s inG. For a transition from G to H with the broadcast action speci�ed above, theequations are : H:s = G:u;H:t = 1;H:u = (G:s � 1) + G:t. Informally, the singleprocess that broadcasts moves from s to t; the processes receiving in state s move tostate u. Such transformations may in general be represented by H = T (G), whereT (X) = M(X) + C for a 0-1 matrix M with unit vectors as columns. M has thisspecial structure as each state occurs on the r.h.s. in exactly one equation. For113



local transitions and pairwise synchronizations M is the identity matrix, so that Treduces to a vector addition. The guard of a transform is given by the conjunctionof terms x > 0 for each variable x that is decremented by the transform; e.g., theguard for the transform above is s > 0. The usual component-wise ordering onvectors is easily shown to be a simulation relation for such transforms.Lemma 6.3 For any matrix M of the form above, there exist m;n 2 N such thatm < n and Mm =Mn.Proof. For matrices M;N of this type, every column of MN is a column of M .Thus every column of M i, for any i > 0, is a column of M . Since there are only�nitely many distinct arrangements of columns of M into matrices of the same size,there must exist m;n such that m < n and Mm =Mn. �With this Lemma, we can devise an e�ective procedure for computing thelub's of the chains that arise in the covering graph construction. Let T (X) =M(X) +C be a transform and v a vector. For any i, T i(X) equals (using distribu-tivity of matrix application over vector sum) M i(X) + �j2[0;i)M j(C). Let m;n beas in the lemma above, and let � = n�m. For any k, Mm+k�� =Mm. Hence, fori = m+ k ��, T i(X) equals Mm(X) + �j2[0;m)M j(C) + k � �j2[m;n)M j(C).Now suppose v is a vector such that v � T (v). The set fT i(v)ji 2 Ng formsa chain (with T 0(v) = v). The set fT i(v)ji 2 N ^ (i mod � � m)g is an in�nitesubchain of this chain, so it has the same lub . By the argument above, this set equalsfu + k � wjk 2 Ng, where u = Mm(v) + �j2[0;m)M j(C), and w = �j2[m;n)M j(C).For the non-! components of v the values in w must be non-negative, as the setis a chain. The representation of the lub is given by changing ui to !, for every isuch that wi is �nite and non-zero. This procedure generalizes the standard limitconstruction for VASS's (where M is the identity, so m = 0; n = 1, which impliesthat u = v and w = C.). 114
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Figure 6.1: The MESI protocolThe protocol in Fig. 6.1 is a variation on the MESI protocol for cachecoherency. We have modeled the synchronization mechanisms of a single address(cache line), ignoring the data stored at the address. The covering graph of Fig. 6.2has initial state (0; 0; 0; !) representing the set of initial states of the parameterizedsystem, which has an arbitrary number of processes in state I. The covering graphmay be used to prove several invariants of the protocol for every instance. Forinstance the readers-writers exclusion of S (shared) andM (modi�ed) states, whichmay be written as AG(#M � #S = 0). Similarly mutual exclusion holds betweenthe M and E states, in that AG(#M +#E � 1).Pong and Dubois [PD 95] have analyzed several cache coherency protocolswith an abstraction that keeps track of whether there is zero or at least one process ina given local state. The abstraction loses information in the sense that a violation ofa safety property in the abstract graph is not necessarily a violation in the concretesystem. The covering graph construction, however, is exact by Theorem 6.3.115
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6.5.2 Real-Time SystemsIn the parameterized systems discussed above, the equivalence relation induced bythe simulation partial order does not have �nite index. For some classes of systems,such as real-time and hybrid systems [AD 91, Henzinger 95], there is a bisimulationor simulation equivalence of �nite index. In this case, the function rep of the coveringgraph procedure may be chosen so that rep(X), for a subsetX of equivalent states, isthe equivalence class that the states in X belong to. With this de�nition, since thereis a �nite number of equivalence classes, the covering graph construction terminates.In [BCG 89, EN 95], a method for veri�cation of parameterized systems isproposed, which is to set up a family of bisimulations fBnjn � mg between instancesof size n � m and the instance of size m. If this is possible, then the correctnessproperty holds of all instances i� it holds on instances of sizes at most m. Clearly,B = Sn�mBn is a bisimulation over the family of instances. In these papers, B isalso an equivalence relation, and by the properties of Bn above, has �nite index.6.5.3 Communication protocols[FR 88] consider systems of processes communicating with FIFO channels. Theyshow that if the set of channel contents considered as words over an alphabet arepre�xes of u; v� for some words u; v, a �nite covering graph can be constructedfor the protocol so that boundedness of channel contents and deadlock-freedom aredecidable. Using the results in this paper, general safety properties of the �nitestate control for these protocols are also decidable. A related approach for dealingwith communication protocols is proposed in [BG 96], where sets of reachable statesare represented by deterministic automata over �nite words.
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6.6 Related Work and ConclusionsAmong related work, Finkel [Finkel 90] generalizes the construction of Karp andMiller to wqo deterministic systems to solve boundedness and covering questions. Asnoted in the introduction, to ensure the relevant properties of every covering graphneither the restriction to deterministic systems nor the wqo property is essential.Brad�eld and Stirling [BS 90, Brad�eld 92] use a tableau-based procedure fordetermining whether a �-calculus property holds of an in�nite-state system. Theyconsider the use of the Karp-Miller graph for checking Petri Nets. As noted in[Brad�eld 92], a property which is true of the Petri Net may not hold over a Karp-Miller graph for the Petri Net. The method presented here avoids this problem byadopting the automata theoretic approach and constructing the covering graph ofthe product of the system with the property automaton.[ACJT 96] propose an interesting approach to the decidability of safety prop-erties and the liveness property AFp for ordered LTS's. This is based on an abstractinterpretation of the in�nite state space in terms of upward closed subsets. Usingtheir procedure, they can derive uniformly algorithms for deciding safety propertiesof many types of systems. It is not, however, possible to derive methods for decidinggeneral liveness properties from their procedure.Solutions to the problem of model-checking systems with in�nite state spacesare the key to extending the applicability of model-checking procedures to param-eterized systems, real-time systems, and communication protocols. General ap-proaches to the problem have not been very well-studied, although many decid-ability results for speci�c classes are known. This paper provides such a unifyingframework by demonstrating that a covering graph construction generates a graphwhich if �nite, allows the checking of safety properties. In addition, we show thatthe decidability of general liveness properties in wqo systems, is linked to an al-gorithm for deciding the existence of �nite self-covering fair paths. The covering118



graph may be used to search for such paths. We also show that many of the knowndecidability results for in�nite-state systems can be cast in these terms. This is astrong indication that the covering graph construction is appropriate for the anal-ysis of in�nite-state systems. We also consider a new application domain, that ofparameterized broadcast protocols, and indicate how to apply the construction inthis domain. This application is demonstrated on an invalidation based cache co-herency protocol. These results, we hope, will motivate further applications of thisprocedure to a wide class of systems.6.7 Technical DetailsLemma 6.1 X � Y implies â(X) � â(Y ).Proof. a(X) � a(Y )i� ( de�nition of � )a(X) v a(Y ) ^ a(Y ) v a(X)( ( property (2) of v )X v Y ^ Y v Xi� ( de�nition of � )X � Y�Lemma 6.2 Let C and D be chains such that for every i in N, C(i) � D(i). Thenlub Ĉ � lub D̂.Proof.For any Z, 119



lub Ĉ v Z) ( de�nition of lub ; transitivity of v )(8i : i 2 N : C(i) v Z)) ( D(i) v C(i) for every i in N; transitivity of v )(8i : i 2 N : D(i) v Z)) ( de�nition of lub )lub D̂ v ZFrom this proof, and the reexivity ofv, we can conclude that lub Ĉ v lub D̂.A symmetric proof establishes the other direction. Hence, lub Ĉ � lub D̂. �6.7.1 Strongly Directed SetsIn Section 6.4, several choices for the preorder v are discussed. While X v Y ,de�ned as (8s : s 2 X : (9y : y 2 Y : x � y)), is a preorder on directed subsets, itdoes not satisfy all the conditions on v. In particular, for an action a, and directedsubset X, a(X) may not be directed, if the LTS is nondeterministic. To satisfy thiscondition, we need to strengthen the directedness property.De�nition 6.8 (Dominance relation) A relation � on S2 � S (S is the set ofstates of the LTS A) is a dominance relation i� for any ((s; t); u) 2 �,1. s � u and t � u, (u is an upper bound for s and t)2. (8s0; t0; a : s a!s0 ^ t a!t0 : (9u0 : u a!u0 : ((s0; t0); u0) 2 �)).As the conditions are monotone in �, there is a greatest dominance relation bythe Knaster-Tarski theorem. We say that u dominates (s; t) i� ((s; t); u) is in thegreatest dominance relation.De�nition 6.9 (Strongly directed set) A subset X of S is strongly directed i�for any pair of states s; t in X, there is a state u in X such that u dominates (s; t).120



Any strongly directed set is directed. For a system where there is at mostone outgoing edge with a given edge label, any directed set is strongly directed. Fora non-deterministic system, we can show the following theorem:Lemma 6.3 If X is strongly directed, then a(X) is strongly directed.Proof.Let x; y be an arbitrary pair of states in a(X). By de�nition, there exist u; vin X such that u a!x and v a!y holds. Since X is strongly directed, there is w in Xthat dominates the pair (u; v). By the de�nition of dominance, there is z such thatw a!z and z dominates the pair (x; y). Hence, z is in a(X) and dominates (x; y).Since x; y is an arbitrary pair of states, it follows that a(X) is strongly directed. �
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Chapter 7
Abstraction under Stuttering

7.1 IntroductionShowing equivalence between two systems at di�erent levels of abstraction may entailmapping a single step in one system to a sequence of steps in the other, which isde�ned with a greater amount of detail. For instance, a compiler may transform thesingle assignment statement \x := x�10+2" to several low-level instructions. Whenproving correctness of the compiler, the single assignment statement step is matchedwith a sequence of low-level steps, in which the value of x remains unchanged untilthe �nal step. If the program state is de�ned by the values of program variables, thenthe intermediate steps introduce a �nite repetition of the same state, a phenomenoncalled \stuttering" by Lamport [Lamport 80]. Stuttering arises in various contexts,especially as a result of operations that hide information, or re�ne actions to a �nergrain of atomicity.In [BCG 88, dNV 90], bisimulations that take into account such \stuttering"are de�ned. It is shown in [BCG 88] that states related by a stuttering bisimulationsatisfy the same formulas of the powerful branching temporal logic CTL� [EH 82]that do not use the next-time operator, X. Although these de�nitions are well122



suited to showing the relationship with CTL�, they are di�cult to use in proofs ofbisimulation, as they often require one to exhibit a �nite, but unbounded sequenceof transitions to match a single transition; thus introducing a number of proofobligations.Determining whether an equivalence relation on a system is a bisimulation ofsome kind is important for abstraction. If the equivalence relation has �nite index(i.e., �nitely many equivalence classes), then a quotient system may be formed, wherethe new macro-states are equivalence classes, and two macro-states are related i�there exist states in each macro-state that are related in the original system. Asu�cient condition for the quotient to be bisimilar to the original system is that therelation is a bisimulation on the original system. This implies in turn that propertiespreserved by the bisimulation may be model-checked on the smaller, �nite quotientstructure instead of the original large structure. Examples of the application of thisgeneral idea may be found in the theory of Symmetry Reduction [ES 93, CFJ 93],Real-Time Automata [AD 91] and Data Independence [Wolper 86, HB 95]. Thekinds of temporal properties that are preserved depends on the kind of bisimulationused. For strong bisimulation, general �-calculus properties are preserved, whilefor weaker notions of bisimulation such as stuttering bisimulation, properties in thenext-time-free sublogic of CTL� are preserved.The main contribution here is a simple alternative formulation of bisimu-lation under stuttering, called well-founded bisimulation, because is based on thereduction of a rank function over a well-founded set. The new formulation hasthe pleasant property that, like strong bisimulation [Milner 90], it can be checkedby considering single transitions only. This substantially reduces the number ofproof obligations, which is highly desirable in applications to in�nite state systemssuch as communication protocols with unbounded channels or parameterized proto-cols, where checks of candidate relations are often performed by hand or with the123



assistance of a mechanical theorem prover. We demonstrate the use of the new for-mulation with some non-trivial examples that have in�nite state spaces and exhibitunbounded stuttering.The use of rank functions and well-founded sets is inspired by their use inreplacing operational arguments for termination of do-od loops with a proof rulethat is checked for a single generic iteration (cf. [AO 92]). To the best of ourknowledge, this is the �rst use of such concepts in a bisimulation de�nition. Itseems possible that the ideas here are applicable to other forms of bisimulationunder stuttering, such as weak bisimulation [Milner 90], and branching bisimulation[GW 89]. We have chosen to focus on stuttering bisimulation because of its closeconnection to CTL�.The chapter is structured as follows: Section 7.2 contains the de�nition ofstuttering bisimulation from [BCG 88], and the de�nition of well-founded bisimula-tion. The equivalence of the two formulations is shown in Section 7.3. Applicationsof the well-founded bisimulation proof rule to the alternating bit protocol and token-ring protocols are presented in Section 7.4, together with a new quotient constructionfor stuttering bisimulation equivalences. The chapter concludes with a discussion ofrelated work and future directions.7.2 PreliminariesWe de�ne bisimulations over Kripke structures instead of LTS's, Because of ourinterest in preservation of CTL�nX properties. The results are valid for LTS's as well,under the constraint that stuttering is modeled with � actions. Kripke Structures(KS) are represented by the tuple (S;!; �; I; AP ), where S is a set of states, ! �S�S is the transition relation, AP is the set of atomic propositions, � : S ! P(AP )is the labelling function, that maps each state to the subset of atomic propositionsthat hold at the state, and I is the set of initial states. We write s!t instead of124



(s; t) 2 !. We only consider Kripke Structures with denumerable branching, i.e.,where for every state s, jft j s!tgj is at most !.Stuttering Bisimulation is de�ned in Chapter 2; however, we repeat the def-inition here for completeness.De�nition 7.1 (Stuttering Bisimulation (cf. [BCG 88])1) Let A be a KripkeStructure of the form (S;!; �; I; AP ). A relation B � S � S is a stuttering bisim-ulation on A i� B is symmetric, and for every s; t such that (s; t) 2 B,1. �(s) = �(t),2. (8� : fp(s; �) : (9� : fp(t ; �) : matchB (�; �))).where fp(s; �) is true i� � is a path starting at s, which is either in�nite, or its laststate has no successors w.r.t. !. matchB (�; �) is true i� � and � can be dividedinto an equal number of non-empty, �nite, segments such that any pair of statesfrom segments with the same index is in the relation B. The formal de�nition ofmatch is given in Chapter 2. States s and t are stuttering bisimilar i� there is astuttering bisimulation relation B for which (s; t) 2 B.Examples:
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States a and c are not stuttering bisimilar in structures L and M , but theyare in structure N . Indeed, L; c j= AF P , but L; a 6j= AF P . Structure M shows125



that stuttering bisimulation distinguishes between deadlock (state c) and divergence(state a) : M; c 6j= EX true, butM;a j= EX true 2. The dotted lines show a stutteringbisimulation on structure N .� Our alternative formulation is based on a simple idea from program seman-tics: we de�ne a mapping from states to a well-founded set, and require, roughly,that the mapping decrease with each stuttering step. Thus, each stuttering seg-ment is forced to be of �nite length, which makes it possible to construct matchingfullpaths from related states.De�nition 7.2 (Well-Founded Bisimulation)) Let A = (S;!; �; I; AP ) be aKS. Let rank : S � S � S ! W be a total function, where (W;�) is well-founded3.A relation B � S � S is a well-founded bisimulation on A w.r.t. rank i� B issymmetric, andFor every s; t such that (s; t) 2 B,1. �(s) = �(t)2. (8u : s!u :(9v : t!v : (u; v) 2 B) _ (a)((u; t) 2 B ^ rank (u; u; t) � rank (s; s; t)) _ (b)((u; t) 62 B ^ (9v : t!v : (s; v) 2 B ^ rank(u; s; v) � rank (u; s; t)))) (c)Notice that if W is a singleton, then clauses (b) and (c) are not applicable, so B isa strong bisimulation.The intuition behind this de�nition is that when (s; t) 2 B and s!u, eitherthere is a matching transition from t (clause (2a)), or (u; t) 2 B (clause (2b)) - in2The [dNV 90] formulation of stuttering bisimulation considers states a and c of N to be bisim-ilar. The di�erence between our formulations is only in the treatment of deadlock vs. divergencein non-total structures.3(W;�) is well-founded i� there is no in�nite subset fa:i j i 2 Ng of W that is a strictlydecreasing chain, i.e. where for all i 2 N, ai+1 � ai.126



which case the rank decreases, allowing (2b) to be applied only a �nite number oftimes - or (u; t) 62 B, in which case (by clause (2c)), there must be a successor v of tsuch that (s; v) 2 B. As the rank decreases at each application of (2c), clause (2c)can be applied only a �nite number of times. Hence, eventually, a state related tou by B is reached. Theorem 7.1 (soundness) is proved along these lines.7.3 Equivalence of the two formulationsThe equivalence of the two formulations is laid out in the following theorems.Theorem 7.1 (Soundness) Any well-founded bisimulation on a KS is a stutteringbisimulation.Proof.Let B be a well-founded bisimulation on a KS A, w.r.t. a function rank anda well-founded structure (W;�).Let (s; t) be an arbitrary pair in B. Then, �(s) = �(t), by clause (1) of thewell-founded bisimulation de�nition. We show that if � is a fullpath starting at s,then there is a fullpath � starting at t such that matchB(�; �) holds. In the following,we use the symbol ';' for concatenation of �nite paths, and � for concatenation withremoval of duplicate state. For example, aa; ab = aaab, and aa � ab = aab.We construct � inductively. For the base case, �0 = t. Inductively assumethat after i steps, i � 0, � has been constructed to the point where it matches apre�x  of � such that the end states of  and � mark the beginning of the ithsegments. Let u be the last state of  and v be the last state of �. By the inductivehypothesis, (u; v) 2 B.If � ends at u, then u has no successor states. Let � be any fullpath startingat v. Since u has no successors, a simple induction using (2b) shows that for everystate x in �, (x; u) is in B. Each application of (2b) strictly decreases rank along127



�, hence � must be �nite. The fullpath � � � is a �nite fullpath matching the �nitefullpath �.If � does not end at u, let w be the successor of u in �. As (u; v) 2 B,(i) If (2a) holds, there is a successor x of v such that (w; x) 2 B. Let w andx mark the beginning of a new segment. Extend � to �;x, which matches ;w. Theinduction step is proved. Otherwise,(ii) If (2a) does not hold, but (2b) does, then (w; v) 2 B. Let � be the longestpre�x of the su�x of � starting at u such that for every state a in �, (a; v) 2 B, andonly (2b) holds for (a; v) w.r.t. a!b for every successive pair of states a; b in �. �has at least one pair, as u;w is a pre�x of �.� cannot be in�nite, as by (2b), for each successive pair a; b in �, rank (b; b; v)� rank (a; a; v), so the rank decreases strictly in the well-founded set. Let y be thelast state of �. If � terminates at y, the argument given earlier applies. Otherwise,y has a successor y0 in �, but as � is maximal, either (2a) or (2c) must apply for(y; v) 2 B w.r.t. y!y0. (2c) cannot apply, as then there is a successor x of v suchthat (y; x) 2 B, which contradicts the properties of �.Hence (2a) must apply. Let x be the successor of v such that (y0; x) 2 B. Lety0 and x mark the beginning of a new segment, and extend � to �;x, which matches( � �); y0.(iii) If (2c) is the only clause that holds of (u; v) w.r.t. u!w, let � be a �nitepath maximal w.r.t. pre�x ordering such that � starts at v, and for every successivepair of states a; b in �, (u; a) 2 B, only (2c) is applicable w.r.t. u!w, and b is thesuccessor of a given by the application of (2c).Such a maximal �nite path exists as, otherwise, there is an in�nite path � sat-isfying the conditions above. By (2c), for successive states a; b in �, rank (w; u; b) �rank (w; u; a); so there is an in�nite strictly decreasing chain in (W;�), which contra-dicts the well-foundedness of (W;�). Let x be the last state in �. Then (u; x) 2 B,128



and as � is maximal, either (2a) or (2b) holds of (u; x) w.r.t. u!w. So x 6= v. (2b)cannot hold, as then (w; x) is in B; but then (2a) would hold for the predecessor ofx in �. Hence (2a) holds; so x has a successor z for which (w; z) 2 B. Let w andz mark the beginning of a new segment, and extend � to (� � �); z, which matches;w. The induction step is shown in either case.The inductive argument shows that successively longer pre�xes of � havesuccessively longer matching �nite paths, which are totally ordered by pre�x order.Hence, if � is in�nite, the limit of these matching paths is an in�nite path from twhich matches � using the partitioning into �nite non-empty segments constructedin the proof. �It is also desirable to have completeness : that for every stuttering bisimu-lation, there is a rank function over a well-founded set which gives rise to a well-founded bisimulation.Theorem 7.2 (Completeness) For any stuttering bisimulation B on a KS A,there is a well-founded structure (W;�) and corresponding function rank such thatB is a well-founded bisimulation on A w.r.t. rank .� Let A = (S;!; �; I; AP ). The well-founded set W is de�ned as the productW0�W1 of two well-founded sets, with the new ordering being lexicographic order.The de�nitions of the well-founded sets W0 and W1, and associated functions rank 0and rank 1 are given below. Informally, rank 0(a; b) measures the height of a �nite-depth computation tree rooted at a, whose states are related to b but not to anysuccessor of b. rank 1(a; b; c) measures the shortest �nite path from c that matchesb and ends in a state related to the successor a of b.De�nition of (W0;�0) and rank 0 129



For a pair (s; t) of states of A, construct a tree, tree(s; t), by the following(possibly non-e�ective) procedure, which is based on clause (2b) of the de�nition ofwell-founded bisimulation:1. The tree is empty if the pair (s; t) is not in B. Otherwise,2. s is the root of the tree. The following invariant holds of the construction:For any node y of the current tree, (y; t) 2 B, and if y is not a leaf node, thenfor every child z of y in the tree, z is a successor of y in A, and there is nosuccessor v of t in A such that (z; v) 2 B.3. For a leaf node y, and any successor z of y in A, if (z; t) 2 B, but there is nosuccessor v of t in A such that (z; v) 2 B, then add z as a child of y in thetree. If no such successor exists for y, then terminate the branch at y.Repeat step 3 for every leaf node on an unterminated branch.Lemma 7.1 tree(s; t) is well-founded.Proof.Suppose to the contrary that there is an in�nite branch �, which is thereforea fullpath, starting at s. Let u be the successor of s on �, and let �0 be the fullpaththat is the su�x of � starting at u.By construction of the tree, for every state x on �0, (x; t) 2 B, and for everysuccessor v of t, (x; v) 62 B. However, as (u; t) 2 B, there must be a fullpath �starting at t for which matchB(�0; �) holds. Let w be the successor of t on �. Fromthe de�nition of match , for some x on �0, (x;w) 2 B. This is a contradiction. Hence,every branch of the tree must be of �nite length. �Since tree(s; t) is well-founded, it can be assigned an ordinal height using astandard bottom-up assignment technique for well-founded trees : assign the emptytree height 0, and any non-empty tree T the ordinal sup fheight(S) + 1 j S � Tg,130



where S � T holds i� S is a strict subtree of T . Let rank 0(s; t) equal the height oftree(s; t). As trees with countable branching need only countable ordinals as heights,let W0 be the set of countable ordinals, ordered by the inclusion order 2.Lemma 7.2 If tree(s; t) is non-empty, and u is a child of s in the tree, thenrank 0(u; t) �0 rank 0(s; t).Proof.From the construction, tree(u; t) is the subtree of tree(s; t) rooted at node u;hence its height is strictly smaller. �De�nition of (W1;�1) and rank 1Let W1 = N, the set of natural numbers, and let �1 be the usual order < onN. The de�nition of rank 1 is as follows : For a tuple (u; s; t) of states of A,1. If (s; t) 2 B, s!u, (u; t) 62 B, and for every successor v of t, (u; v) 62 B,then rank 1(u; s; t) is the length of the shortest initial segment that matches samong all matching fullpaths s;� and �, where � starts at u, and � starts att. Precisely,rank 1(u; s; t) = (min �; �; �; � : fp(t; �) ^ fp(u; �) ^ �; � 2 INC^corr ((s;�; �); (�; �)) : jseg0(�; �)j)As (s; t) 2 B, and s!u, there exist matching fullpaths s;� and �, with �starting at u and � starting at t. As (u; t) 62 B, and no successor of t matchesu, under any partition � of any fullpath � that matches a fullpath s;�, theinitial segment, seg0(�; �), matches s, and must contain at least two states: tand some successor of t. Thus, rank 1(u; s; t) is de�ned, and is at least 2.2. Otherwise, rank1(u; s; t) = 0.� 131



Theorem 7.2 (Completeness) For any stuttering bisimulation B on KS A, thereis a well-founded set (W;�) and corresponding function rank such that B is a well-founded bisimulation on A w.r.t. rank .Proof.Let W = W0 �W1. The ordering � on W is the lexicographic ordering onW0 �W1, i.e., (a; b) � (c; d) � (a �0 c) _ (a = c ^ b �1 d). De�ne rank (u; s; t) =(rank0(u; t); rank 1(u; s; t)). W is well-founded, and rank is a total function. Wehave to show that B is a well-founded bisimulation w.r.t. rank . Let (s; t) 2 B.1. �(s) = �(t), from the de�nition of stuttering bisimulation.2. Let u be any successor of s. If there is no successor v of t such that (u; v) 2 B,consider the following cases:� (u; t) 2 B : As no successor of t is related to u by B, u is a child ofs in tree(s; t), and by Lemma 7.2, rank 0(u; t) �0 rank 0(s; t). Hence,rank (u; u; t) � rank (s; s; t).� (u; t) 62 B : As no successor of t is related to u by B, rank 1(u; s; t)is non-zero. Let fullpath � starting at t and partition � \witness" thevalue of rank 1(u; s; t). Let v be the successor of t in the initial seg-ment seg :0(�; �). This successor exists, as the length of the segment isat least 2. rank 1(u; s; v) is at most rank 1(u; s; t)� 1, so rank 1(u; s; v) �1rank 1(u; s; t).As no successor of t is related by B to u, (u; v) 62 B, so rank 0(u; v) = 0.As (u; t) 62 B, rank 0(u; t) = 0. Since rank is de�ned by lexicographicordering, rank(u; s; v) � rank (u; s; t).Hence, one of (2a),(2b) or (2c) holds for (s; t) 2 B w.r.t. s!u. �132



For a Kripke Structure that is �nite-branching (every state has �nitely manysuccessor states), tree(s; t) for any s; t is a �nite, �nitely-branching tree; so its heightis a natural number. Hence, W0 = N.Proposition 7.1 For a �nite-branching Kripke Structure, W = N�N.�Theorem 7.3 (Main) Let A be a Kripke Structure. A relation B on A is a stut-tering bisimulation i� B is a well-founded bisimulation w.r.t. some rank function.Proof.The claim follows immediately from Theorems 7.1 and 7.2. �For simplicity, the de�nitions are structured so that a bisimulation is a sym-metric relation. The main theorem holds for bisimulations that are not symmetric,but the de�nition of rank has to be modi�ed slightly, to take the direction of match-ing (by B or by B�1) into account.7.4 ApplicationsThe de�nition of a well-founded bisimulation is, by Theorem 7.3, in itself a simpleproof rule for determining if a relation is indeed a bisimulation up to stuttering.In this section, we look at several applications of this proof rule. We outline theproofs of well-founded bisimulation for the alternating bit protocol from [Milner 90],and a class of token-ring protocols studied in [EN 95]. We also present a newquotient construction for a well-founded bisimulation that is an equivalence. Inall of these applications, the construction of the appropriate well-founded set andranking function is quite straightforward. We believe that this is the case in otherapplications of stuttering bisimulation as well.
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7.4.1 The Alternating Bit ProtocolA version of the alternating bit protocol is given in [Milner 90], which we followclosely. The protocol has four entities : Sender and Replier processes, and message(Trans) and acknowledgement (Ack) channels. Messages and acknowledgements aretagged with bits 0 and 1 alternately. For simplicity, message contents are ignored;both channels are sequences of bits. For a sequence of values �, let order(�) representthe sequence resulting from removing duplicates from c, and let count(�) be a vectorof the numbers of duplicate bits. Vectors are compared component-wise if they havethe same length. For example, order(0 3 ; 1 2 ) = 0 ; 1 , count(0 3 ; 1 2 ) = (3; 2), andcount(1 5 ) = (5 ).The proposed WF bisimulation B relates states s and t i�1. The local states of the sender and replier processes are identical in s and t,and2. For the channel Trans from sender to replier, order(Trans(s); rmsg(s)) =order(Trans(t); rmsg(t)), where rmsg(u) is the message stored at the replierprocess in state u, and3. For the channel Ack from replier to sender, order(Ack(s);:sag(s)) =order(Ack(t);:sag(t)), where sag(u) is the ag used by the sender to tagthe next outgoing message.Note that the number of duplicate messages is abstracted away.Let �(s) = (count(Trans(s); rmsg(s)); count(Ack(s);:sag(s))), and de�nerank (u; s; t) as (�(s); �(t)). The operations of the protocol are sending a bit orreceiving a bit on either channel, and duplicating or deleting a bit on either channel,along with a skip action. For the sending, receiving and deleting actions, it isstraightforward to verify that B is a WF bisimulation w.r.t. rank . The rank functionis used, for instance, at a receive action in s with msg(s) = b and Trans(s) = a1 ,134



while the same channel in the corresponding state t has contents am; bn (n > 1).The receive action at s results in a state u with channel content hi and rmsg(u) = a ,while the same action at t results in a state v with channel content am; bn�1 andrmsg(v) = b. So u and v are unrelated but v is related to s, and rank (u; s; v) <rank (u; s; t) (cf. clause (2c)).The duplication action at a state s may not have a corresponding duplicationaction at a related state t if the message being duplicated is not present in thechannel at t (although it must then have been received, from the de�nition of B).For example, s has rmsg(s) = b and Trans(s) = bn (n � 1), while t has rmsg(s) = band Trans(s) = hi. However, the skip action can be executed from t, which matchesthe state after the duplication.The example exhibits unbounded stuttering. With the original formulationsof stuttering bisimulation, one would have to construct a computation of length nfrom state t to match the receive action from state s. This is typically done by arecursive de�nition of the matching computation; so the proof of matching is done byan induction on n which introduces a number of proof obligations, and complicatesthe proof. In contrast, with the new formulation, one need consider only a singletransition from t.Although the bisimulation B is an equivalence, it has an in�nite number ofequivalence classes. For the protocol, however, the initial state has empty channelsand it is possible to show that, although the reachable state space is still in�nite, thereachable states of the protocol have channels with order values of length at most2. Thus, B induces a �nite partition of the reachable state space. This fact can beexploited to model-check the properties of the protocol, as described subsequentlyin Section 7.4.3.
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7.4.2 Simple Token-Ring ProtocolsIn [EN 95] (cf. [BCG 89]), stuttering bisimulation is used to show that for token-rings of similar processes, a small cuto� size ring is equivalent to one of any largersize. [EN 95] shows that the computation trees of process 0 in rings of size 2 and ofsize n, n � 2, are stuttering bisimilar. It follows that a property over process 0 istrue of all sizes of rings i� it is true of the ring of size 2. From symmetry arguments(cf. [ES 93, CFJ 93]), a property holds of all processes i� it holds for process 0.This result and its extensions are presented in Chapter 3.The proof given in that paper uses the [BCG 88] de�nition and is quitelengthy; we indicate here how to use well-founded bisimulation. Although the proofcan be simpli�ed in the manner indicated in Chapter 3, that requires introducing aspecialized form of bisimulation under stuttering. Here, we use well-founded bisim-ulation, which, as shown earlier, is equivalent to the earlier de�nition of stutteringbisimulation.Each process in the system alternates between blocking receive and sendtoken transfer actions, with a �nite number of local steps in between. For an n-process system with state space Sn, de�ne �n : Sn ! N2 as the function given by�n(s) = (i; j) where, in state s, if process m has the token, then i = (n�m) mod nis the distance of of the token from process 0, and j is the sum over processes ofthe maximum number of steps of each process from its local state to the �rst tokentransfer action. The tuples are ordered lexicographically. Let the rank function berank (u; s; t) = (�m(s); �n(t)), where s and t are states in instances with m and nprocesses respectively. Let the relation B be de�ned by (s; t) 2 B i� the local stateof process 0 is identical in s and t.It is straightforward to verify that B is a well-founded bisimulation w.r.t.rank . The rank function is used in the situation where the token is received byprocess 0 by a move from state s to state u; however, the reception action is not136



enabled for process 0 in a state t related to s by B. In this case, some move of aprocess other than 0 is enabled at t, and results in a state v that reduces �n, andhence the rank, either by a transfer of the token to the next process, or by reducingthe number of steps to the �rst token transfer action. The next state v is related tos by B (cf. clause (2c) of the de�nition).7.4.3 Quotient StructuresFor a bisimulation B on KS A that is an equivalence relation, a quotient structureA=B (read as A \mod" B) can be de�ned, where the states are equivalence classes(w.r.t. B) of states of A, and the new transition relation is derived from the transi-tion relation of A. Quotient structures are usually much smaller than the original;a bisimulation with �nitely many classes induces a �nite quotient, as is the case inthe examples given in the previous sections.Let A = (S;!; �; I; AP ) be a KS, and B be a well-founded bisimulation onA w.r.t. a rank function �, that is an equivalence relation on S. The equivalenceclass of a state s is denoted by [s]. De�ne A=B as the KS (S;;;�;I; AP ) where:� S = f[s] j s 2 Sg� The transition relation is given by : For C;D 2 S, C ; D i� either1. C 6= D, and (9s; t : s 2 C ^ t 2 D : s!t), or2. C = D, and (8s : s 2 C : (9t : t 2 C : s!t)).The distinction between the two cases is made in order to prevent spuriousself-loops in the quotient, arising from stuttering steps in the original.� The labelling function is given by �(C) = �(s), for some s in C. (states in anequivalence class have the same label)� The set of initial states, I, equals f[s] j s 2 Ig.137



Theorem 7.4 A is stuttering bisimilar to A=B.Proof.Form the disjoint union of the KS's A and A=B. The bisimulation on thisstructure relates states of A and A=B as follows : (a; b) 2 R i� [a] = b _ [b] = a.Let sw : S ! S (read \state witness") be a partial function, de�ned at Conly when C ; C does not hold. When de�ned, v = sw(C) is such that v 2 C,but no successor of v w.r.t. ! is in C. Such a v exists by the de�nition of ;.Let ew : S2 ! S2 (read \edge witness") be a partial function, de�ned at (D;C) i�C ; D. When de�ned, (v; u) = ew(D;C) is such that u 2 C; v 2 D, and u!v.Let rank be a function de�ned on W [ f?g (? is a new element unrelatedto any elements of W ) by : If u; s 2 S, and sw(C) is de�ned, then rank (u; s; C) =�(u; s; sw (C)). If D;C 2 S and s 2 S, then rank (D;C; s) = �(ew(D;C); s), ifew(D;C) is de�ned. Otherwise, rank (a; b; c) = ?.Let (a; b) 2 R. From the de�nition of R, a and b have the same label.� a 2 S : For clarity, we rename (a; b) to (s; C). By the de�nition of R, C = [s].Let s!u. If [s] ; [u], then there is a successor D = [u] of C such that(u;D) 2 R, and clause (2a) holds.If the edge from [s] to [u] is absent, then [s] must equal [u], and sw (C) isde�ned. Let x = sw(C). As (s; x) 2 B, and (u; x) 2 B, but x has nosuccessors to match u, clause (2b) holds for B, i.e., �(u; u; x) � �(s; s; x). Byde�nition of rank , rank (u; u;C) � rank (s; s; C), so (2b) holds for R.� a 2 S : For clarity, we rename (a; b) to (C; s). Let C ; D. Let (y; x) =ew(D;C). As x!y, and (x; s) 2 B, there are three cases to consider :1. There is a successor u of s such that (y; u) 2 B. Then [y] = [u], so(D;u) 2 R, and (2a) holds. 138



2. (y; s) 2 B. Then [y] = [x], so C = D. As C ; D, and s 2 C, s has asuccessor u such that u 2 C; hence (D;u) is in R and (2a) holds.3. (y; s) 62 B and there exists u such that s!u, (x; u) 2 B, and �(y; x; u)� �(y; x; s). Hence, (C; u) 2 R, and rank (D;C; u) � rank (D;C; s). Soclause (2c) holds. �7.5 Related Work and ConclusionsOther formulations of bisimulation under stuttering have been proposed; however,they too involve reasoning about �nite, but unbounded sequences of transitions.Examples include branching bisimulation [GW 89], divergence sensitive stuttering[dNV 90], and weak bisimulation [Milner 90]. We believe that it is possible to char-acterize branching bisimulation in a manner similar to our characterization of stut-tering bisimulation, given the close connection between the two that is pointed outin [dNV 90]. An interesting question is whether a similar characterization can beshown for weak bisimulation [Milner 90].Many proof rules for temporal properties are based on well-foundedness ar-guments, especially those for termination of programs under fairness constraints(cf. [GFMdR 83, Francez 86, AO 92]). Vardi [Vardi 87], and Klarlund and Kozen[KK 91] develop such proof rules for very general types of linear temporal proper-ties. Our use of well-foundedness arguments for de�ning a bisimulation appears tobe new, and, we believe, of intrinsic mathematical interest. The motivation in eachof these instances is the same : to replace reasoning about unbounded or in�nitepaths with reasoning about single transitions.Earlier de�nitions of stuttering bisimulation are di�cult to apply to largeproblems essentially because of the di�culty of reasoning about unbounded stutter-139



ing paths. Our new characterization, which replaces such reasoning with reasoningabout single steps, makes proofs of equivalence under stuttering easier to demon-strate and understand. In the example applications, it was quite straightforward todetermine an appropriate well-founded set and rank function. Indeed, rank func-tions are implicit in proofs that use the earlier formulations. As the examplesdemonstrate, using rank functions explicitly leads to proofs that are shorter andwhich can be carried out with the assistance of a mechanical theorem prover.
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Chapter 8
Conclusions and Future Work

8.1 SummaryThis dissertation has as its goal the identi�cation of methods to ameliorate the e�ectof state explosion in automated veri�cation procedures. Common types of systemsthat exhibit state explosion include those that are parameterized by the numberof component processes and those with a large data domain and a relatively smallcontrol component which is largely independent of the data. This dissertation isfocussed on methods of verifying such types systems with a view to reducing stateexplosion. The contributions of this dissertation are summarized below.For two types of parameterized systems, token-rings with a synchronizing to-ken and synchronous control-user systems, we show that the model-checking prob-lem is decidable for interesting types of indexed speci�cation formulas. We alsogive tight bounds on the complexity of these algorithms, and delineate the borderbetween decidability and undecidability of the veri�cation task. In both cases, thedecidability follows from abstractions that establishes an exact correspondence be-tween every member of the in�nite family of instances of the parameterized systemand a �nite abstract graph. These algorithms have been applied to the veri�cation141



of an industrial standard bus protocol, the SAE-J1850 protocol.Reviewing this earlier work, it becomes apparent that there are many simi-larities between the abstractions used here and those applied elsewhere for the au-tomated veri�cation of other types of in�nite-state systems, such as Petri Nets. Acontribution of this dissertation is the development of a general framework for model-checking in�nite-state systems, which exposes these similarities. This framework hasbeen utilized in developing a semi-algorithmic procedure for model-checking param-eterized broadcast protocols. This procedure terminates in the case of a simpleMESI invalidation-based cache consistency protocol and produces a �nite graph,over which safety properties of the protocol are determined to hold for the entirefamily of instances.Systems with a large data domain, and a control component that is largelyindependent of the data are quite commonplace. Examples include FIFO bu�ers,instruction pipelines, and many cache coherency protocols. A common technique forverifying such data-insensitive systems is to develop abstractions that partition thedata domain into large equivalence classes, such that the control component has thesame behavior for equivalent data items. To correctly preserve control propertiesbetween the original and abstracted system, however, the abstraction has to beshown to be a bisimulation. Often, the bisimulation is insensitive to the stuttering(�nite repetition) of state propositions. A contribution of this dissertation is asimple, local proof method to show bisimulation under stuttering, which is provedto be equivalent to known global proof methods. This method is used to prove abisimulation that reduces an in�nite-state alternating bit protocol to a �nite stateabstraction that preserves relevant properties of the protocol.
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8.2 Future Work8.2.1 Veri�cation of Parameterized SystemsThe work presented in this dissertation provides some preliminary answers to thedi�cult question of devising algorithms for the veri�cation of parameterized sys-tems. The systems presented here are all characterized syntactically. A topic forfuture research is to develop algorithms for systems that are characterized seman-tically. For such an algorithm to be usable, the conditions characterizing a classmust be kept simple, as they will have to be be checked by a hand proof or withthe assistance of a mechanical theorem prover. Invariants or other safety propertieson the communication patterns between processes may be the appropriate type ofcondition to utilize.8.2.2 Data AbstractionA general technique for data abstraction is to show that a proposed abstraction is abisimulation on the state space. Applying this in practice, however, is a di�cult task.Some of the complexity comes from global de�nitions of bisimulation as opposed tolocal ones; an issue that is addressed in this work. Another source of di�culty isthe question of coming up with a candidate relation. Some of this di�culty maybe alleviated by identifying a class of programs that can be suitably annotated sothat an automatic procedure can develop candidate abstractions. For instance, anannotation that separates data components from control, and identi�es the mathe-matical operations performed on the data would be very useful. Automated theoremprovers such as PVS [HS 96] or Nqthm [BM 79] may be used to aid the proof ofcorrectness of proposed abstractions. This is one direction in which the di�eringstrengths of the Model Checking and automated theorem proving approaches maybe combined to good e�ect. 143



8.2.3 CompositionalityGiven that the problem of model-checking using succinct representations is PSPACE-hard [GW 83], it is unlikely that these algorithms can handle the large state spacesof most programs. Thus compositional methods for veri�cation are of prime impor-tance. Many of the compositional methods that have been proposed use assume-guarantee rules, which are often quite complex in order to prevent circular reasoning.It is thus desirable to search for simple compositional methods; perhaps, those thatuse the communication structure of the composition to simplify proof obligations.Dijkstra [Dijkstra 76] demonstrates e�ectively the manner in which rules forveri�cation may be turned into heuristics for guiding the design of programs thatare correct by construction. In a similar vein, the restrictions on systems that willbe needed in order to make the above approaches work e�ectively may in turn aidthe design of such systems.
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