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Systems that maintain an ongoing interaction with their environment, such as
Operating Systems Network Protocols and Microcontrollers, are commonplace. The
complexity of these systems necessitates a rigorous verification of correct behavior.
Automatic verification methods such as Model Checking, while theoretically efficient,
suffer in practice from the large state space of these systems, a phenomenon called
State Ezplosion. State explosion often arises when verifying systems parameterized
by the number of component processes, and single systems with large data domains.
The main contribution of this dissertation is in the development of abstraction
methods that serve to ameliorate the state explosion problem for such systems.

The first part of the dissertation presents abstractions for interesting classes
of parameterized systems that reduce the infinite family of instances to a finite-state
system, while ezactly preserving correctness properties. For parameterized ring sys-
tems with a synchronizing token, it suffices to examine a few small instances in
order to determine the correctness of every instance of the system. The method is
applicable to protocols such as mutual exclusion and Milner’s Cycler. Somewhat

surprisingly, the verification problem is undecidable even if the token carries a single

vil



bit of information. For parameterized synchronous systems, an exact abstraction
reduces the parameterized system to a finite “abstract” graph. This abstraction
method is applied to the verification of the SAE-J1850 industrial standard bus arbi-
tration protocol. We also present a general algorithm schema from which algorithms
for model-checking several types of infinite-state systems can be derived.

The second part of the dissertation presents a proof technique for showing
that two programs are equivalent up to “stuttering” (repetition) of states. Stuttering
arises when comparing programs that are at different levels of abstraction. The new
formulation replaces the global reasoning of earlier techniques with local reasoning,
which considerably simplifies abstraction proofs. This new formulation is used in
conjunction with a theorem prover to verify a data abstraction for the alternating-bit

protocol.
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Chapter 1

Introduction

“What is now proved was once only imagin’d”
- William Blake.
The Marriage of Heaven and Hell, 1790-93.

Systems that maintain an ongoing interaction with their environment are
commonplace. Examples of such computer systems include Operating Systems,
Network Protocols and micro-controllers. In a landmark paper [Pnueli 77], Pnueli
argued that Temporal Logic is the appropriate formalism for reasoning about the
correctness of such “reactive” systems. At about the same time, Hoare [Hoare 78]
and Milner [Milner 80] introduced the process calculi CSP and CCS, which provide
an alternative means of specifying and verifying such systems.

The essential difference between reactive systems and the class of sequential
terminating programs is the property of non-termination. While non-termination
of a sequential program usually indicates an error it is the essential feature of a
reactive system, which enables the system to maintain a continuous interaction
with its environment. Thus, the input-output semantics of terminating programs is

inappropriate for reasoning about reactive systems. Methods for reasoning about



reactive systems thus rely on infinite objects, such as computations or computation
trees, to define the semantics of these systems.

Proof systems for demonstrating correctness of reactive systems are presented
for temporal logic in [CM 88, MP 92] and for the process calculus view in [Hoare 85,
Milner 90]. While proof systems have the advantages of generality in specification
and flexibility in proof, the complexity of proofs for a large system makes it difficult
to use this method. Automated theorem provers (cf. [BM 79, HS 96]) may be used
to assist with simplification and proof management, but it still requires substantial
human effort to carry out a proof with a mechanical theorem prover.

Model Checking [CE 81] arose from the insight that many interesting systems
have a finite number of states, hence the truth of a temporal correctness formula over
such a system can be determined by a recursive graph search procedure based on the
structure of the formula. In the past decade, Model Checking has been applied to
the verification of several circuit designs and protocols [BCMDH 90, McMillan 92].
Correctness properties are typically expressed in the branching temporal logic CTL,
for which the model-checking algorithm has time complexity linear in the size of
the structure and the formula (linear temporal logics have model-checking time
complexity that is exponential in the formula size [SC 85, LP 85]). In the process
calculus framework, algorithms have been developed for checking various types of
similarity between finite-state process [KS 90, PT 87, GV 90].

An interesting and useful feature of most model-checking algorithms is the
generation of counter-examples if the desired property does not hold of the system.
This has led to widespread use of Model Checking as a verification method. Al-
though model-checking algorithms have time complexity that is linear in the size
of the structure, the size of the structure (i.e., the number of states) may itself be
exponential in the size of its description as a program. For instance, a program with

n Boolean variables may have a reachable state space of size 2". This phenomenon,



referred to as State Ezplosion, is the main obstacle to the application of Model
Checking and other automatic verification methods. Currently, the best model-
checker implementations can handle programs with at most a few hundred Boolean
variables. In addition, the restriction to systems with a finite number of states ex-
cludes a number of interesting types of systems, such as distributed protocols, from
the purview of Model Checking.

This dissertation presents approaches towards solving both problems. The
first part of the dissertation deals with the problem of verifying, fully automatically,
parameterized protocols and other types of infinite-state systems. The second part
of the dissertation presents a new formulation of similarity between systems, which
is used to reduce large structures to similar small ones. The techniques applied
in both cases reduce large structures to smaller ones while preserving a number of
properties of interest. The contributions of this dissertation are discussed in detail

in the following section.

1.1 Overview of the Dissertation

A large part of this dissertation is concerned with determining conditions under
which the verification problem for parameterized systems is decidable. Model Check-
ing, being a procedure defined over finite-state systems, cannot be used directly
to verify parameterized protocols. Most protocols for distributed systems, multi-
processors and computer networks are, however, parameterized by the number of
processes taking part in the protocol and correctness is desired for every instance
of the protocol. Thus, a large and interesting class of problems is excluded from
the purview of Model Checking. The current practice is to use Model Checking to
determine correctness of a few instances of a parameterized protocol. This approach
has a strong similarity to testing, and all of the disadvantages that go with it. On

the other hand, automated verification of a parameterized system is undecidable



in general [AK 86]. One is thus faced with a dilemma: it seems desirable to have
an automated procedure for verifying complex parameterized protocols, but such a
procedure cannot exist in general. The approach put forward in this dissertation
is to identify classes of parameterized systems for which the verification problem is
decidable. Algorithms for two such classes are presented in Chapters 3 and 4. These
algorithms have been used to verify protocols for mutual exclusion, Milner’s Cycler
protocol, and the SAE-J1850 industry standard bus protocol, whose verification is
described in Chapter 5.

While the systems considered are quite different, the algorithms developed
for parameterized verification have a strong similarity with other algorithms for the
model-checking of infinite-state systems. This similarity is explored in Chapter 6,
where a general procedure for the verification of infinite-state systems is proposed
and analyzed.

Besides parameterized protocols, a common source of state explosion is sys-
tems that have a large data domain. It is often the case that the control flow of the
system is largely independent of the data. Such a “data insensitivity” property for a
particular system is shown by demonstrating that a particular equivalence relation
between data values is a bisimulation. In Chapter 7, we present a new definition of
bisimulation under stuttering of states, a concept that is often needed for proofs of
data insensitivity, and in equivalence proofs between systems at different levels of
abstraction. The new definition replaces existing global proof methods with a local
proof rule, which simplifies proofs considerably and facilitates the use of mechanical
theorem provers in automating such proofs.

In the rest of this section we discuss in some detail the main contributions
of the dissertation and their relevance to the general problem of ameliorating state
explosion. These results have been published in [EN 95|, [EN 96|, [Namjoshi 97],
[EN 98] and [EN 98a].



1.1.1 Parameterized Token Rings

Concurrent processes are often connected in a unidirectional ring structure, where
processes communicate by passing a token with associated information. Usually,
correctness properties are expected to hold independent of the size of the ring. We
show that if the processes use the token only as a signal, the task of checking many
important types of correctness properties for rings of all sizes can be reduced to
checking these properties for rings of sizes at most a small cutoff. These results
are applied to automatically verify all instances of a mutual exclusion protocol and
Milner’s Cycler protocol. We also show that the task of checking correctness of rings
of all sizes is undecidable even if the token carries a single bit of information. This
delineates rather sharply the boundary between decidability and undecidability of
automatic verification of token-ring systems, while also providing a simpler proof
of the undecidability of verification for parameterized systems. These results are

presented in detail in Chapter 3 and first appeared in [EN 95].

1.1.2 Parameterized Synchronous Systems

We consider here a parameterized system formed of a single control process and an
arbitrary number of user processes. Both processes may test the control process state
and the presence of user processes occupying a specific local state. We show that
the task of checking properties of such a parameterized system is decidable for the
synchronous computation model, but undecidable, even for invariance properties,
for the interleaving model of computation.

The algorithm for the synchronous model constructs an exact finite-state
representation of all instances of the system and performs a special model-checking
procedure on it. This procedure works in space polynomial in the size of the input,
which is the sum of the sizes of the control and user process descriptions. We

prove that this is optimal in a complexity-theoretic sense, by showing that the



verification problem is PSPACE-complete in general, even for invariance properties.
These results are presented in Chapter 4.

This algorithm has been applied in the verification of a parameterized, indus-
trial standard bus protocol (SAE-J1850). The SAE-J1850 protocol is an automobile
industry standard protocol for data transmission between units connected by a single
wire bus. Units may attempt transmission concurrently; the heart of the protocol
is a distributed, on-the-fly arbitration mechanism that must ensure a unique result.
We have modeled this protocol and verified its correctness for an arbitrary number
of units, using the algorithms described above and additional abstraction results.

This work is described in Chapter 5 and will appear in [EN 98a].

1.1.3 Model Checking Infinite-State Systems

A variety of systems, including parameterized protocols, real-time automata, com-
munication protocols and Petri Nets generate an infinite state space. Although
deciding if a general temporal logic formula holds of a system with an infinite state
space is undecidable, decidability results have been obtained for many cases, espe-
cially for parameterized protocols and real-time automata. We present a general
technique for model-checking linear temporal logic specifications for infinite-state
systems, which is based on a generalization of the Karp-Miller construction for
Petri Nets. Many known decidability results for the verification of infinite-state
systems can be derived uniformly from this technique; this is an indication that the
technique may be widely applicable.

We demonstrate the application of this general technique to the problem of
verifying parameterized broadcast protocols, a class that includes many protocols
for maintaining cache coherency in multiprocessor systems. A number of correct-
ness properties of a parameterized invalidation-based cache coherency algorithm are

established automatically by the application of this procedure. These results will



be published in [EN 98].

1.1.4 Abstraction by Quotienting

One of the most common situations that lead to state explosion is the verification of
programs with large data domains. It is frequently the case that the control behavior
of such a system is only weakly dependent on the actual data values. Demonstrating
such a proposition usually involves showing that an equivalence relation on data
values is a bisimulation. Such a relation is often a bisimulation only up to finite
stuttering (repetition) of state propositions. Stuttering also arises in other contexts;
especially when showing equivalence of two systems at different levels of abstraction,
which may entail mapping a single step in one system to a sequence of steps in the
other.

We present a simple new formulation of stuttering bisimulation, in terms of
a ranking function over a well-founded set. It has the pleasant property that, like
strong bisimulation [Milner 90], it requires checking only single transitions. This
local property of the definition, which is in strong contrast to earlier global definitions,
leads to shorter and simpler proofs of bisimulation. In addition, it facilitates the use
of automated theorem provers in demonstrating the correctness of such bisimulation
proofs. In Chapter 7, we present this new formulation, and show its equivalence to an
earlier formulation of [BCG 88]. We also present some examples that demonstrate
its utility for proving equivalence between systems, and for data abstraction. These

results were first presented in [Namjoshi 97].



Chapter 2

Preliminaries

This chapter contains definitions of various concepts that are used throughout this
thesis. They include the syntax and semantics of various temporal logics, automata
on infinite structures, and structural correspondences such as bisimulation and sim-
ulation. These definitions are modified as necessary in subsequent chapters. We
also give a short description of two approaches to Model Checking : by fixpoint
evaluation [CE 81, EL 86], and using automata theory [VW 86].

2.1 Notation

Quantified expressions are written in the format (Qz : r : p), where Q is the quan-
tifier (e.g., 3,V, min, maz), x the bound variable, r the range, and p the expression
being quantified [DS 90]. When the range of x is clear from the context, it may
be dropped, in which case the quantified expression has the form (Qz :: p). Sets
defined by set comprehension are written in the format {z|P(z)}, which represents
the set of all elements « for which the predicate P holds. The powerset of a set S
is denoted by P(S). For a binary relation R, we often write s R t for readability in
place of (s,t) € R.



Proofs are often given in the calculational style [DS 90]. A proof in this

format is constructed out of the following basic unit :

P
op ( hint justifying P op Q )
Q

The binary operator opis a transitive relation on the expressions, which allows
the chaining together (using transitivity) of a number of such proof units. Typical

operators are = (implies), < (follows-from), iff (if-and-only-if), and <.

2.2 Labeled Transition Systems

The types of structures over which temporal logics are interpreted are called Labeled
Transition Systems (LTS’s) [Keller 76]. Informally, a LTS is a directed graph, where
each vertex (a state) is labeled with the atomic propositions true at that state, and

each edge (an action) is labeled with an action symbol.

Definition 2.1 (LTS) A Labeled Transition System (or LTS) A is a structure
(Q,%,0,\, L, I) where

e () is a non-empty set of states,

Y is a transition (or action) alphabet, possibly containing the distinguished

symbol T (the silent action),

0 CQ X X xQ is the transition relation,

A Q — L s a labelling function on the states, with the condition that if
(s,7,t) € § then A(s) = A(¢).

e L is a non-empty set of labels,



e I C Q is the set of initial states.

For clarity, we write s— 4t instead of (s,a,t) € §. We write s3¢ for (Ja :
a €Y :5%4t). The subscript A is often elided when a specific structure is under
consideration. A path o of A (with length(c) states) is a (finite or infinite) sequence
of states such that for every ¢ such that ¢ + 1 < length(o), Uiiai“. A fullpath
is a maximal path; i.e., either it is infinite or the last state has no successor. A
computation is a path that starts at an initial state of A.

The semantics of most temporal logics do not take edge labels into account.

They are defined over a special kind of LTS known as a Kripke structure.

Definition 2.2 (Kripke Structure) A Kripke Structure is defined by a structure
(Qa 67 )‘7 AP, I), where

e () is a non-empty set of states,

6 C Q x Q s the transition relation,

A:Q — P(AP) is a labelling function on the states,

e AP is a non-empty set of atomic propositions,

I C Q s the set of initial states.

Sometimes, fairness constraints are added to an LTS. We consider the sim-

plest form of a fair LTS.

Definition 2.3 (Fair LTS) A fair LTS is a structure (A, F) where A is a LTS
and F is a subset of the states of A. A computation of a fair LTS is a computation

of A where a state from F appears infinitely often.

10



2.2.1 LTS Composition

The parallel composition of two LTS’s A = (Qa,%4,04,A4,L4,l4) and B =
(@B,%B,0B,\B, Lp,IB), such that Ly N Lg = 0, is defined with respect to a
synchronizer structure I' = (I'4,I'g,), where 'y C ¥4\{7}, 's C ¥p\{7}, and
“: 'y — I'p is a bijection. Informally, the sets in the synchronizer represent the

actions that the processes synchronize on. The composition, denoted by A |r B,

defines the LTS AB = (QABaEABaéABa)\ABaLABaIAB) :

l. QaB = Qa X @B,
2. Y = (B4 UXB)\(T'4UTR),

3. dap is defined by :

(s, t)&AB(u, v) iff

(a) a €T 4 AsS uAt=uv (amove by A only), or
(b) a €T AtSpv A s =u (a move by B only), or

(c) a=7A(Fb:: 55 qu A t—B>Bv) (a synchronized move)
4. AaB(s,t) = Aa(s) UAg(t),
5. Lap =LasULpg, and
6. qu =14 xIp.

It is easily shown that || is associative. It is also symmetric up to strong bisimulation.

2.2.2 LTS Projection

For two LTS’s A = (QA,EA,(SA,)\A,LA,IA) and B = (QB,EB,(sB,)\B,LB,IB),
composed to form C' = A || B, the projection of C on A is defined as the LTS C|4
given by Cl4 = (Q, 2,0, A, L, I), where

11



1. Q@ =Qc,
2. ¥ =3y,
3. ¢ is defined by :
st iff
(a) a € B4 AsSct, or

(b) a=7A(Fb:be Xp:s—ct)

4. A(s) = Ac(s) N Ly,

The effect of projecting on to A is just to elide the labels on actions performed

by the B-component, replacing them with the silent action 7.

2.3 Automata on Infinite Strings

A Biichi automaton B is given by a structure (Q, X, d, qo, F'), where Q is a finite set
of states, X is a finite alphabet, § C Q X X X @ is the transition relation, qq is
the initial state, and F' is a non-empty subset of accepting states. Bichiautomata
recognize infinite strings over ¥. A run r of B over an infinite string w is a function
r : N — @ such that »(0) = qo, and (r(7),w;,7(i + 1)) € § for every i € N. Let
inf(r) = {q||r~*(¢)| = w} denote the states from @ that appear infinitely often in 7.
A run r is accepting iff inf(r) N F # 0; i.e., a state from F appears infinitely often
along r. A word w is accepted by the automaton iff there is an accepting run over
w. The language of B, L(B), is the set of words accepted by it.

Biichi automata are used to specify temporal correctness properties. Propo-

sitional linear temporal formulae can be translated into equivalent Biichi automata

12



(cf. [Thomas 90]). We sometimes adopt the automata-theoretic approach to Model
Checking [VW 86], in which the negation of the correctness property is expressed by
a Buchiautomaton B, and every computation of an LTS A satisfies the correctness

property iff the set of computations of the “product” C = B x A is empty.

2.3.1 Products with Biichi Automata

Let A be the LTS (S,%,6,\,L,I), and let B be a Biichiautomaton (Q, L, p, qo, F).
Their product, denoted B x A, is a fair LTS (A4', F'), where :

1. =Q xS,

2. Y =3,

3. ((b,9),a,(c,t)) € 8 iff (s,a,t) € § and (b, A(s),c) € p,
4. N(b,s) = (b, A(s)),

5. ' =Q x L,

6. I' ={qo} x I, and

7. F'={(b,s)|be F,s € S}.

2.4 Temporal Logics and their Semantics

We will define the syntax and semantics of the Full Branching Time Logic CTL*.
The other logics considered (CTL and LTL) are sublogics of CTL*, and will be defined
as such.

CTL* (read as “Computation Tree Logic - star”) [EH 82] derives its expressive
power from the freedom of combining modalities which quantify over paths and the
modalities which quantify states along a particular path. These modalities are

A E,F,G, X, and U, (“for all futures”, “for some future”, “sometime”, “always”,
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“strong next-time”, and “weak until”, respectively), and they are allowed to appear
in virtually arbitrary combinations. Formally, we inductively define a class of state
formulas (true or false of states) and a class of path formulas (true or false of paths),

which is the least set of formulas satisfying :

(S1) Any atomic proposition P is a state formula.

(S2) If p, q are state formulas, then so are p A ¢ and —p.
(S3) If p is a path formula then Ep is a state formula.
(P1) Any state formula p is also a path formula.

(P2) If p, q are path formulas, then so are p A ¢ and —p.
(P3) If p, q are path formulas then so are X;p and pU,q.

The semantics of a formula is defined with respect to a Kripke Structure
M = (S,R,\,AP,I). We write M,s = p (M,z = p) to mean that state formula p
(path formula p) is true in structure M at state s (of fullpath z, resp.). When M
is understood, we write simply s = p (z |= p). We define |= inductively using the
convention that x denotes a fullpath and z¢ denotes the suffix fullpath starting at

the ith position in «, provided i < length(z). For a state s :
(S1) s = P iff P € A(s) for atomic proposition P

(S2) sEpAqiff s pand s = g,
s = —p iff not (s = p)

(S3) s = Ep iff for some fullpath z starting at s, z = p
For a fullpath = :

(P1l) z |= piff 29 = p, for any state formula p
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(P2) 2 =pAgiffz = pand z |= g,
z = —p iff not (z = p)

(P3) z |= X,p iff 2! is defined and 2! |= p,
z = (pUyq) iﬁ'(Vi:i<|x|:(Vj:j§j;xj |=—'q):>xi):p)_

We say that state formula p is valid, and write |= p, if, for every structure
M and every state s in M, it is the case that M, s = p. We say that state formula
p is satisfiable iff for some structure M and some state s in M, it is the case that
M, s = p. In this case we also say that M defines a model of p. We define validity
and satisfiability for path formulas similarly.

Other connectives can then be defined as abbreviations in the usual way:
pVqg = ~(=pA—q),p=q = pVg,peq = (p=q) A (¢=p), Ap = ~E-p, Gp
= p Uy false, and Fp = — G—p. Further operators may also be defined as follows:

Xwp = X is the weak next-time,

pUsq = (pUywq) A Fq is the strong until,

oFop = GFX;p means infinitely often p,

o(?p = FGX,p means almost everywhere p,

inf = GXstrue means the path is infinite, and

fin = FX, false means the path is finite.

Sublogics of CTL* are defined either by restrictions on the operators allowed,
or by restrictions on the ways in which the operators may be combined.

LTL (Linear Temporal Logic) [Pnueli 77] is obtained by leaving out (S2) and
(S3), and by redefining M, s |= f to be true iff for every fullpath x that starts at s,
M,z = f.

ACTL* is the subset of CTL* where in each formula, every occurrence of A
is under an even number of negations, and every occurrence of E is under an odd
number of negations. The dual logic is known as ECTL*.

CTL*\X is obtained by leaving out the operator X;. This makes the logic
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insensitive to stuttering (finite repetitions of the same state).
CTL (Computation Tree Logic) is obtained by restricting the kinds of path

formulas possible. The new rules are :

(S1) Any atomic proposition P is a state formula.

(S2) If p, q are state formulas, then so are p A ¢, —p.
(S3) If p is a path formula then Ep is a state formula.
(P1) Any state formula p is also a path formula.

(P2) If p, q are path formulas then so are X;p and pU,q.

The rules ensure that path quantifiers are always associated with a unique
temporal operator. Thus, AG(p = AFgq) is a CTL formula, while AG(p = Fq) is not.
CTL* itself is a sublogic of the p-calculus, which is defined as the least set of

formulas that satisfy :
e Any atomic proposition P, and any variable symbol Z is a formula.
e If p, g are formulas, then so are p A ¢, —p.
e If p is a formula, then EXp is a formula.
e If p is a formula, then (uZ :: p) is a formula.
The paper by Emerson [Emerson 90] contains a detailed survey of these logics

and comparisons of their expressive power.

2.4.1 Indexed Logics

For systems that are formed by the composition of many similar systems, it is of-

ten the case that the correctness properties are of the form : “for every process P
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holds”, or “for every pair of processes P holds”. To express these properties con-
cisely, it is convenient to use an indexed proposition set and quantification over the
index set [RS 85, BCG 89]. Quantified properties are represented here in the form
Nz R(z) f(Z), where Z is a non-empty list of bound names, R is an expression denot-
ing the range of these names, and f is a temporal logic formula with propositions
indexed by these names. For example, mutual exclusion among a collection of n pro-

cesses is expressed by A AG(—(C; A Cj)), where C}, is an indexed proposition

ijii#]
denoting the condition that process k is in its critical region.

The interpretation of an indexed formula is performed with respect to an
index set A over a Kripke Structure M = (S, R, L, AP,I), where AP may be par-
titioned into “global” propositions GP and indexed local propositions, LP x A. In
this structure, M,s |= Az gz f(Z) iff for every vector of values @ over Al such

that R(a) holds, M, s |= f(a). The interpretation of other connectives is as defined

earlier.

2.5 Model Checking

Model Checking [CE 81] (cf. [QS 82]) is an algorithmic procedure for determining
the truth of a temporal formula over a finite-state system. For the logic CTL, this
procedure uses the fixpoint formulation of CTL operators. For instance, the operator
E(fUg) may be expressed as (uZ :: gV (f AEXZ)). Fixpoint evaluation may be done
using the Knaster-Tarski theorem [Tarski 55|, by which the set of states defining a
least fixpoint (uZ : f(Z)) can be computed as (|Ji :: fi(0)), where the range of
¢ is over the ordinals that are at most the cardinal number of the structure. For
finite-state systems, this computation terminates in at most n iterations, where n
is the number of states. This procedure for CTL has been extended to the logics
FairCTL and the p-calculus [EL 86).

An alternative view of Model Checking uses automata [VW 86]. Here, the
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set of structures satisfying a formula f is encoded using a finite automaton, Ay.
This may be done using either automata on infinite strings or automata on infinite
trees. If the string approach is taken, then Model Checking reduces to the problem
of determining whether every computation of M is a computation accepted by Ay,
ie., L(M) C L(Ay). This language inclusion problem may be decided in PSPACE .
For the tree approach, Model Checking can be phrased as M € L(Ay), which is a
membership problem. The complexity of determining membership depends on the
acceptance conditions of the tree automaton [EJ 88].

The model-checking approach has by now been applied to a wide variety of
logics such as branching-time logics [CE 81, QS 82, EL 86] and linear-time logic
[LP 85], and to a variety of programming models such as finite-state programs

[CE 81, QS 82] and real-time systems [ACD 90].

2.6 Equivalences on Transition Systems

The notions of simulation [Milner 71] and bisimulation [Park 81, Milner 90] are the
basic ways of comparing the structure of transition systems. There are several
variants; an important one being bisimulation under stuttering (finite repetition) of
state labelings [BCG 88, dNV 90, Milner 90].

We present here the three main notions cited above. For simplicity, the
definitions are with respect to a single structure; comparisons between structures
can be reduced to this case by forming a single structure that is the disjoint union

of the structures. In the following, let A = (Q,%,6,\, L, I) be a LTS.

Definition 2.4 (Simulation) A relation R C Q x Q is a simulation relation on A

ioff for any s,t such that s R t,

2. (Va,u:s54u: (Fv:t5 40 u Rv)).
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This concept can be formulated in other ways. A alternative formulation
is the following : R is a simulation relation iff R C F(R), where F' is a function
mapping relations to relations that is defined by the the two items above. It is
straightforward to show that F' is monotone over the complete lattice of relations
on the LTS; hence, by the Knaster-Tarski theorem [Tarski 55|, it has a greatest
fixpoint. This is the greatest simulation relation on the LTS. If s R ¢ for some
simulation relation R, we say that s simulates t. Equivalently, s simulates ¢ iff (s, t)

is in the greatest simulation relation.
Theorem 2.1 The greatest simulation relation is reflexive and transitive.

For total transition systems, there is a nice connection between the logical
and structural properties of the transition system; the first of many such connections

to be discussed here.

Theorem 2.2 For a total, finite-branching Kripke structure M, if s simulates t,

then for every ACTL* formula f, M,s |= f implies that M,t |= f.

Definition 2.5 (Bisimulation [Park 81]) A relation R C Q@xQ is a bistmulation

relation on A iff it is symmetric, and for any s,t such that s R t,

2. (Va,u:s5%4u: (Ju:tS0:u Rv)).

Note that the only additional requirement here, over the simulation relation
definition, is that R be symmetric. This concept can also be formulated as the
following : R is a bisimulation relation iff R C F(R), where F is a function mapping
relations to relations that is defined by the the two items above. It is straightforward
to show that F' is monotone over the complete lattice of relations on the L'T'S; hence,

by the Knaster-Tarski theorem [Tarski 55], it has a greatest fixpoint. This is the
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greatest bisimulation relation on the LTS. If s R ¢ for some bisimulation relation
R, we say that s is bisimilar to t. Equivalently, s is bisimilar to ¢ iff (s,¢) is in the

greatest bisimulation relation.

Theorem 2.3 [Milner 90] The greatest bisimulation relation is an equivalence re-

lation.

The connection between bisimulation and CTL* is stronger than that for

simulation.

Theorem 2.4 [HM 85, BCG 88] For a finite-branching Kripke structure M, s is
bisimilar to t iff for every CTL* formula f, M,s = f iff M,t |= f.

The definition above is often referred to as “strong bisimulation” since it
requires that single actions are matched by bisimilar states. This is often too re-
strictive a notion, especially when stuttering (repetition of the same state) and 7
(silent) actions are introduced by hiding details of processes. To take such stuttering
into account, several variants of bisimulation have been proposed [BCG 88, ANV 90,
Milner 90]. We present here the definition of stuttering bisimulation, modified from

the original definition in [BCG 88] which applies only to finite total structures.

Definition 2.6 (Stuttering Bisimulation) A relation R C S x S is a stuttering

bisimulation on A iff R is symmetric and for every s,t such that s R t,

2. (Vo :fp(s,o):(36: fp(t,0) : matchpr(c,d))).

where fp(s,o) is true iff o is a fullpath starting at s (o9 = s), and matchg(o,0) is
true iff o and § can be divided into an equal number of non-empty, finite, segments
such that any pair of states from segments with the same index is in the relation R.

The formal definition of match is given below:
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Let INC be the set of strictly increasing sequences of natural numbers start-
ing at 0. Precisely, INC = {m# | 7 : N - NA#®0) =0A (Vi : i € N :
7(i) < w(i +1))}. Let o be a path, and 7 a member of INC. For i € N, let
intv(i,0,m) = [w(i), min(w(i + 1),length(c))). The ith segment of o w.r.t. m,
seg(i,0, ), is defined by the sequence of states of o with indices in intv(i, o, ).

Let o and J, under partitions 7 and & respectively, correspond w.r.t. R iff
they are subdivided into the same number of segments, and any pair of states in
segments with the same index are related by R. Precisely, corrg((o,n),(6,€)) =
(Vi:i €N :intv(i,o,m) #0 = intv(i,6,€) # 0 A (Ym,n : m € intv(i,o,7) An €
intv(i,6,€) : (om, dn) € R))).

Paths o and ¢ match iff there exist partitions that make them correspond.
Precisely, matchg(o,0) = (In,& : 7,& € INC : corrg((o, ), (6,€))).

It can be shown, applying the Knaster-Tarski theorem, that the greatest

stuttering bisimulation exists.
Theorem 2.5 The greatest stuttering bisimulation is an equivalence relation.

Theorem 2.6 [BCG 88/ For a finite-branching Kripke structure M, if s is stutter-
ing bisimilar to t, then for every CTL*\X formula f, M,s = f iff M,t = f.

Recall that CTL*\X is the sublogic of CTL* that is insensitive to stuttering.
Many qualitative properties of systems can be expressed using CTL*\X; e.g., ab-
sence of starvation (AG(trying = AF critical)) and mutual exclusion (AG(—(criticaly

Acriticaly))).
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Chapter 3

Reasoning about Rings

3.1 Introduction

The ring is one of the most useful ways for structuring systems of concurrently
executing processes. Well known examples include protocols for mutual exclusion,
leader election, scheduling, and the dining philosophers problem. These have two
features in common : the individual processes of the ring are isomorphic (i.e., the
“code” of one process can be transformed into that of another by a simple renam-
ing), and the desired correctness properties are expected to be satisfied by instances
of arbitrary size. The protocols are thus parameterized by the number of processes.
The usual method of verifying that such a parameterized system satisfies a speci-
fication is by a direct proof by hand [CM 88, MP 94] which requires considerable
ingenuity and can, in practice, be done only for reasonably simple protocols.

In this chapter we show that for any system of many isomorphic processes
organized in a ring which communicate through a token used as a signal, a property
holds for every instance of the system iff it holds for instances up to a small cutoff
size. Thus, for systems composed of isomorphic finite state processes, a fully auto-

mated technique, such as Model Checking [CE 81, CES 86] may be applied for the
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verification of the parameterized system.

The logic in which correctness properties are expressed is the branching time
logic CTL* without the nezxt-time operator X, which we denote by CTL*\X [BCG 89].
The semantics of this logic is presented in Chapter 2. Formulas of this logic are insen-
sitive to “stuttering” (repeated occurrences of the same state). Since the formulas
have to hold for rings of various sizes, it seems reasonable to make them free of
next-time requirements, which in general vary among rings of various sizes. It is,
however, possible to handle a “next-action by process ¢’ modality.

Correctness properties of parameterized systems are typically expressed as
properties in an indexed temporal logic. Chapter 2 contains a description of the
syntax and semantics of such logics. We consider several types of indexed tem-
poral properties, where the temporal modalities are from CTL*\X. For instance,

mutual exclusion can be expressed as /\ AG—(critical; N critical;), and absence

VRE]
of starvation by A, AG(trying; = critical;). The results for specific types of indexed

formulas are as follows, where ¢ is a quantifier-free formula of indexed CTL*\X.

A; 9(¢) has a cutoff of 2.

N; 9(i,3 4+ 1) has a cutoff of 3.
® Nij.izj9(i,7) has a cutoff of 4.
® Nijizj9(i,i+1,7) has a cutoff of 5.

The rotational symmetry of the ring plays an important role in the proofs
of these results. It allows us to reduce the check of an indexed formula such as
A\; 9(2), which ranges over all possible process indices in an instance of the system,
to that of one with a particular index, say g(0). We then establish the existence of
a correspondence between the state transition graphs of an instance of the system

with n processes, and one with the number of processes equal to the cutoff. The
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correspondence established is for the projection of the state transition graph on
the particular process index; the symmetry then allows us to establish the result.
The main observation of the correspondence proof is that a segment of the ring not
containing any observable processes (e.g., for /\; g(¢), one not containing process 0)
has behaviour similar to that of a single process.

Section 3.2 defines the notation and constructions we need. Section 3.3 con-
tains the definition of the system model. We prove the main results in Section 3.4.
Section 3.5 contains applications of these results to two protocols. Section 3.7 con-
tains a discussion of related work. The technical details of proofs are provided in

Section 3.8.

3.2 Preliminaries

Each process in the ring is modeled as a Labeled Transition System (LTS). Chapter
2 contains the precise definition of LTS’s and of operators on LTS’s such as compo-
sition and projection. To compare the instances of the ring system, we use a notion
of equivalence under stuttering that is simpler than the original definition that is
reproduced in Chapter 3.2. In Section 3.8, we show that the new definition gives rise
to the same greatest solution as the original one; thus, they enjoy many common

properties.

3.2.1 Block Bisimulation

Let A be an LTS, A = (Q,%,,\,L,I). Let = be an equivalence relation on Q.
MAXF (s) is the set of finite paths of the form o;v, where o begins at s (o9 = s),
every state in o is in the same ~-class as s ((Vi : i < length.o : 0; = s)), and v is in
a different class —(v ~ s). MAXI(s) is the set of all fullpaths o, where o begins

at s and every state in o is in the same =-class as s.
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Definition 3.1 (Block Bisimulation) Let~ be an equivalence relation on Q, and

let h be a bijection on AP. A relation B on @ is a block bisimulation on A w.r.t.

(=, h) if
1. B is symmetric,

2. B is monotonic w.r.t. ~ : For any s,t,u,v if (s,t) € B, s 8 u, and t = v,

then (u,v) € B.
3. Whenever (s,t) € B then

(a) h(A(s)) = A(2),
(b) Vo,v:o;v € MAXF(s) : (30, w : 6;w € MAXF(t) : vBw))
(c) (Vo:0€ MAXI(s):

(30 : 6 € MAXI(t) : length(§) = w = length(o) = w))

0

The term “block” bisimulation is used as the definition essentially compares
paths consisting of states in the same ~-class (block). In order to compare two
LTS’s A and B, form the disjoint union C' of A and B and define a bisimulation on
C. For a formula f, let h(f) be the formula obtained by replacing each proposition
P of f by h(P). The following theorem is shown in Section 3.8 :

Theorem 3.1 Let B be a block bisimulation on LTS A w.r.t. (=,h). If (s,t) € B,
then for any formula f of CTL*\X, A,s = f iff A, t = h(f). O

We say that states s and t are block equivalent, if there is some block bisim-
ulation on A that includes the pair (s,t). We write A ~ B, for LTS’s A and B iff

every initial state in A has a block bisimilar initial state of B and vice-versa.
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3.2.2 Group Theoretic notions

Some simple notation from Group Theory is needed to define the symmetries of
structures. For an natural number n, let [n] represent the set {x |0 < z < n —1}.
Let Sym I be the full symmetry group on the index set I. Let C,, be the permutation
group of rotations on a ring of size n. For groups C and D, we write C < D to mean
that C is a subgroup of D. Clearly, C,, < Sym/|n].

For a formula f indexed over a set I, Aut f = {n|m € Sym I A=n(f) = f}.
For an LTG M composed of n processes in parallel, where the states are indexed
by [n], Aut M is the group of permutations in Sym [n] that when applied to every
state and transition of M, map M to an isomorphic copy [ES 93]. Abusing notation
slightly, we define Aut s for a state s to be the set of permutations that when applied

to s, map it to itself.

3.3 System Model

Informally, the token passing model is defined by the following :
e Initially, a nondeterministically chosen process has the unique token.

e A process has two types of transitions : those that are enabled only if the
process has the token, and others which can be enabled without the process
possessing the token. We let the system evolve according to pure nondeter-

minism; i.e., no fairness constraint is assumed.
e The process with the token must eventually transmit it in a clockwise direction.

Formally, individual processes of a ring are constructed from a template

process T, which is an LTS defined by :

1. The set of states, @@ x B. The boolean component indicates possession of the

token.
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2. The set of actions, 3, which is partitioned into Xy, the set of “free” actions,
Y4, the set of “token dependent” actions, and {snd,rcv}, the set of token

transfer actions.

3. The transition relation §, where

e For every (¢,b)>(¢',b') €4,
(a) a € Xy = b = b (A free transition cannot change possession.)
(b) a € 5 = bA b (A token dependent transition can execute only if
the process possesses the token.)
(c) a=rcv = —b A b (A receive establishes possession of the token.)
(d) a = snd = bA b (A send revokes possession of the token.)

e For every (q,b) such that (¢°, false)%(q,b) € 6, a = rcv. (The only

possible initial action is a receive.)
e rcv and snd actions alternate along every path in 7.

e J is total in the first component. (The process is nonterminating)

4. The set of propositions is ¢} x B, and the labelling function is the identity

function.

5. The initial state is (¢°, false).

For a finite-state template process, it is possible to check the conditions on
0 automatically, by model-checking a certain C'TL formula.

An individual process K; (i € [n],n > 1) in an instance of the system with n
processes is defined by K; = 7;(T"), where 7; is the re-labelling defined by the action
renamings {rcv;/rcv, snd;;1/snd} U {a;/a: a € ¥y U X4} and the state renamings
si/s for every state s. The instance is defined by Ring(n) = Ky || K1 || ... |

K,_1 || Dp, where D, is the initial token distribution process that synchronizes
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with a non-deterministically chosen K; to pass it the token. For each composition
K; || Kit+1, the synchronized actions are snd;y; and rcv;1; (all arithmetic in a ring
of size n is done modulo n). Let M(n) denote the LTS induced by Ring(n). For
a set of indices I C [n], we let M(n) | denote the projection of M(n) on to the
processes indexed by I. For a set P of propositions indexed by [n], P; denotes the

subset that is indexed with elements from I.

Definition 3.2 (Ring Intervals) Let [i : j], denote the indices on the clockwise
segment from i to j on a ring of size n. Precisely, [i : jl, = {i+k | k € [n] A
(M1l <k:i+l+#j)}}. Addition is modulo n. Let [i : j), = [i : jln — {j},
(i :7]n =10 :7]n\{2}, and (i : j)n = [i : 7]n\{¢,7}. Note that from the definitions,

(¢:0)p, [t:0)n, and (i : i], are all empty. O

3.4 Property specific abstractions

We show here that for specific types of properties, it suffices to consider instances
of size at most a small cutoff size in order to show that the property holds for all
instances.

The properties that we consider are of the forms A, g(i), /\i,j:i# g(i,7), and
/\i,j:i#g(i,i + 1,7). In each case, we first show by symmetry arguments, that in
each instance of size n, it is sufficient to instantiate the quantifier /\; with some
process index, say 0. We then prove that a system of size greater than the cutoff
size satisfies this smaller formula iff the system of cutoff size does. This is shown by
exhibiting a block bisimulation between the large and the small system, using the

following key theorem.

Theorem 3.2 (Reduction Theorem) Let I C [n], and J C [k] be sets of indices

such that there is a bijection h : I — J such that for any i,5 € I,
1. i<jiff hi <h.j, and
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2. (i:9)n # 0 uf (h(i) : h(3))k # 0.

Then M(n) |1 is block equivalent to M (k) .

Proof. Let h4 be the derived renaming function for indexed actions from M(n)
defined by h4(a;) = ap(i)- Let kY be the derived renaming function for indexed
propositions from M (n) defined by h¥(P;) = Pp(i)- We define a relation that is a
block bisimulation on M(n) and M (k) w.r.t. hY.

For a state s of M (i), let tok;(s) be the index of the process that possesses
the token in state s. Let R, be the relation between states of M(n) and M(k),
defined as follows:

s R tiff

1. The local states of D, in s and Dy, in t are identical (recall that D, is the

initial token distribution process),
2. BP(A\(s) b1) = A(t) L7,
3. (Vi:iel: toky.s =1 = toky.t = h.i), and
4. (Vi,j i 1,5 € Iz tokn(s) € (12 j)n = tokp(t) € (h(1) : h(j))k)-

The relation Ry, is similar but for (2), which is modified to A(s) J;= A(¢) |;.
Define the relation = to be R,, U Rg;. Let B = R, U Ryy,. B is symmetric. It is
straightforward to check that ~ is an equivalence relation, and that B is monotonic
w.r.t. =~. Section 3.8 contains the proof that B is a block bisimulation w.r.t. (~, h¥).

Informally, the bisimulation treats states as equivalent if corresponding pro-
cesses (w.r.t. h) in I and J have the same local state (conditions 1,2), the token is
at some process in I iff it is at the corresponding process in J (condition 3), and
the token is in between two processes in [ iff it is in between the corresponding

processes in J (condition 4).
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3.4.1 Properties of the form A, g(7)

Properties of the form A, g(i) refer to properties that every individual process in
a system of processes must satisfy. They are typically used to specify progress
requirements, as in absence of starvation (A; AG(trying; = critical;)). We show first
that for a symmetric system, it is possible to reduce this property to its instantiation

with a single index. The following lemma is a refinement of one in [ES 93].

Lemma 3.1 If A is the LTS of a system with n isomorphic processes, C, = Aut A,
and the start state ¢° is symmetric (i.e Aut ¢° = Sym [n]) then, A,q° = N\, 9(i) iff
A,4° = 9(0).

Proof.
(LHS = RHS) This is immediate from the definition of |=.
(LHS < RHS)

4,¢ = 9(0)

= ( 7 is a permutation )
(Vr: € Aut A: w(A),7(¢°) = g(m(0)))

iff (7(A) = Aaswe Aut A, 1(q°) = ¢°, as ¢° is symmetric )
(Vm: me Aut A: A, ¢° = g(w(0)))

= (asCp < Aut A)
(Vr: meCp: A,q° = g(n(0)))

= ( The cyclic shifts in C,, drive 0 to i for every i € [n] )
(Vizi€[n]:4,¢° Fg(i)

iff ( by definition )
A, ¢ = Nig(i)
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Theorem 3.3 Let f be a formula of the form \;g(i), where g(i) is a CTL*\X
formula that refers only to propositions indezed by i. Then, (Vn:n >2: M(n),qdE

f=M2),¢Ef).
Proof.

For any n > 2,
M(n),q) = f

iff ( the initial state is symmetric, lemma 3.1 )
M(n), g5 = 9(0)

iff ( as g(0) refers only to propositions indexed by 0 )
M(n) Loy, 4n = 9(0)

iff ( By Theorem 3.2, M(n) |{oy and M(2) |0} are block equivalent)
M(2) L3, 43 = 9(0)

iff (‘as g(0) refers only to propositions indexed by 0 )
M(2), 45 = 9(0)

iff ( by lemma 3.1 )
M(2),88 k= f

t

3.4.2 Properties of the form A, g(i,i+ 1)

Formulas with the form A, g(7,7 + 1) can express properties of neighboring pairs of
processes. For instance, the exclusion property for the Dining Philosophers problem
may be expressed as /\; AG(—(eating; A eating;;1)). By a proof analogous to that

for Lemma 3.1, we have the following lemma.

Lemma 3.2 If A is the global state transition graph of a system with n isomorphic

processes, Cn, < Aut A, and the start state ¢° is symmetric, then A,q° = N\, g(i,i+1)
iff A, ¢° = g(0,1). O
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We have to take into account the various situations that process Ky and K;
can be in. Intuitively, either Ky or K; can be given the token initially, or some other
process could be assigned the token. This suggests that a three process system may
be sufficient. And in fact we have, by an argument analogous to that for Theorem

3.3,

Theorem 3.4 Let f be a formula of the form A, g(i,i + 1), where g(i,i + 1) is a
CTL*\X formula. Then, (Yn:n >3:M(n),¢d Ef = M(3),45 = f) O

3.4.3 Properties of the form A, ..., 9(i,J)

We consider next formulas of the form /\i,j:iijg(i7 7). These are used to express
properties that involve distinct pairs of processes. Mutual exclusion, for instance,

can be written as /\ AG(—(critical; N critical;)).

1,J:1#]

Lemma 3.3 If A is the LTS of a system with n isomorphic processes, C,, = Aut A,

and the start state ¢° is symmetric then,

A q° = /\i,j;i;éj g9(i,7) if A, q° = /\jj;ﬁo 9(0, 7).

Proof.
(LHS = RHS) This is immediate from the definition of |=.
(LHS < RHS)

= ( 7 is a permutation )

(Vr: me Aut A: w(4),7(¢°) Njjzn(0)9(m(0), 7))
iff (m(A) = A as e Aut A, 7(¢°) = ¢°, as ¢° is symmetric )

(Vm: meAut A: A" = Ajj¢ﬂ-(0) 9(7(0),4))
= (asCp < Aut A)

(Vm: mely: A,q0 = Ajj?fw(o)g(w(o)’j))
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= ( The cyclic shifts in C,, drive 0 to ¢ for every i € [n] )

(Vi 11 € [n] : A,qo ): /\jj;éig(iaj))
iff ( by definition )

A, q° = /\i,j;i;éj 9(i,7)

From this lemma, we need to consider only the pairs of processes (0, j), such

that j # 0. Applying the Reduction Theorem, we obtain the following theorem :
Theorem 3.5 For any n > 4,

1. M(n) Lo~ M(4) Lo,

2. M(n) i/(O,nfl)N M(4) ¢(0,3)7 and

8. M(n) Lo~ M(4) oz, for j €{0,1,n —1}.

Proof. Let h : [n] — [4] be defined by h(0) = 0, k(1) = 1, h(n — 1) = 3, and
h(j) = 2, for j & {0,1,n — 1}. Each of the claims above follows from Theorem 3.2
by observing that h restricted to the pairs mentioned in each claim is a bijection

that satisfies both preconditions of the theorem. O
Corollary 3.1 For any n >4, and a formula ¢(i,j) of CTL*\X,

1. M(n),qn I= 9(0,1) iff M(4), 4§ |= 9(0,1),

2. M(n),qn = 9(0,n — 1) iff M(4), 43 = 9(0,3), and

3. M(n),qn = 9(0,5) ff M(4), 4] |= 9(0,2), for j & {0,1,n —1}.

Proof. The corollary follows from Theorems 3.1 and 3.5. U

The main theorem results from applying this corollary:

Theorem 3.6 Let f be a formula of the form /\i,j:i;éj g(i,7), where g(i,7) is a
CTL*\X formula. Then, (Vn:n>4:M(n),qd = f = M(4),q] = f). O
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Proof.

For any n > 4,
M(n>7 qg |: f

iff ( the initial state is symmetric, lemma 3.3 )
M(n),q |= /\jj;éo 9(0,4)

iff ( splitting up the formula )
M(n),qp &= 9(0,1) A M(n), g, k= g(0,n — 1)A
M(n), qn /\jjg{O,l,n—l}g(()?j)

iff ( by corollary 3.2 )
M(4),q4 = 9(0,1) A M(4), 44 = 9(0,3)A
M(4), 43 = 9(0,2)

iff ( recombining the formula )
M(4), 4} = /\jj;éO 9(0,7)

iff ( by lemma 3.3 )
M(4)7 qg |: f

As a particular case, the formula A AG~(critical; A criticalj), which

§,:i]
expresses mutual exclusion, can be checked in a 4-process system.

3.4.4 Properties of the form A, .. .g(i,i+1,7)

Properties of the form A g(i,i+1, j) are used to express global properties that

1,J:17#]
indicate the relationship between a pair of neighboring processes and an arbitrary

process. An example of such a property is presented in Section 3.5.

Lemma 3.4 If A is the LTS of a system with n isomorphic processes, n > 1.
Cn = Aut A, and the start state ¢° is symmetric, then, A,q¢° |= /\i,j:z‘;«éj g(i,i+1,79)
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Proof.
(LHS = RHS) This is immediate from the definition of |=.
(LHS < RHS)

A7 qO |: /\]];éo g(o7 17])

= ( 7 is a permutation )

(Vr: 7 Aut A: 7(4),7(8°) = Ay o) 9(7(0), 7(1),9))
iff (m(A) = A as 7€ Aut A, 7(¢°) = ¢°, as ¢° is symmetric )

(VT&' M~ Aut A : A,qo |: /\1]757,(0) 9(77(0)777(1)7]))
= (asCp < Aut A)

(Vr: melCh: A = /\jj;én(o)g(ﬂ-(o)vﬂ-(l)’j))
= ( The cyclic shifts in C,, drive 0 to i for every i € [n] )

(Vizien]:Aq" | Nj96i+1,75))
iff ( by definition )

A,0° B Nz 9 i+ 1,5)

From this lemma, we need to consider only the triples of process indices of
the form (0,1, ), such that j # 0. Application of the Reduction Theorem leads to

the following theorem.
Theorem 3.7 For any n > 5,
1. M(n) Lo~ M(5) Lo,
2. M(n) ¢(0,1,2)N M(5) ¢(0,1,2),
8. M(n) Lo1,n-1)~ M(5) Lo,1,4), and
4. M(n) Lo~ M(5) Lo,.,3), for j €{0,1,2,n — 1}.

Proof. Define h : [n] — [5] by h(0) =0, k(1) =1, h(2) = 2, h(n — 1) = 3, and
h(j) =3, for j € {0,1,2,n—1}. Each of the claims above follows from Theorem 3.2
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by observing that h restricted to the pairs mentioned in each claim is a bijection

that satisfies both preconditions of the theorem. O
Corollary 3.2 For any n > 5 and any formula g(i,i + 1, j) of CTL*\X,

1. M(n),qp = 9(0,1,1) iff M(5),45 = 9(0,1,1),

2. M(n),qp = 9(0,1,2) iff M(5),q5 = 9(0,1,2),

3. M(n),qn =9(0,1,n — 1) off M(5), 42 = 9(0,1,4), and

4. M(n), qy = 9(0,1,5) iff M(5),45 = 9(0,1,3), for j & {0,1,2,n — 1}.
Proof. The corollary follows from Theorems 3.1 and 3.7. U

Theorem 3.8 Let f be a formula of the form \; ;.. .; 9(i,i+1,j), where g(i,i+1,j)
is a CTL*\X formula. Then, (Vn:n >5,M(n),¢d = f = M(5),¢) = f). O

Proof.

For any n > 5,
M(n),qn = f
iff ( the initial state is symmetric, lemma 3.4 )
iff ( splitting up the formula )
M(n),qp = 9(0,1) A M(n), g, |= 9(0,1,2)A
M(n>7 qg |: g(o7 17 n— 1) A M(n)7 qg |: /\jjg{ovl,zvn—l} g(ovj)
iff ( by corollary 3.2 )
M(5),48 = 9(0,1) A M(5), 43 k= 9(0,1,2)A
M(5),43 = 9(0,1,4) A M(5), 43 = 9(0,1,3)
iff ( recombining the formula )
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Figure 3.1: Mutual Exclusion Protocol Template.

iff ( by lemma 3.4 )
M(5)7 qg |: f

3.5 Applications

To illustrate the use of the results, we look at two protocols, one for distributed mu-
tual exclusion protocol [WL 89] and (a slight variation on) Milner’s Cycler Protocol
[Milner 90].

3.5.1 Distributed Mutual Exclusion

The template process for the protocol in [WL 89] is given in Fig. 3.1. Initially, every

process is in state SO. Here € is used to indicate a local action. It is easily checked
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Figure 3.2: Cycler Protocol Template.

that the process description satisfies the conditions for the token passing model (cf.

Section 3.3). So properties such as
e If a process requests the token, it will receive it. A; AG(S0; = AF(S1;))

e Every trying process eventually enters its critical section.

/\i AG(S0; = AF(S2; Vv S4)))

can be checked using a 2-process system by theorem 3.3. Mutual exclusion, i.e

Ni jiizj AG(S3; A S3;) can be checked in a 4-process system by Theorem 3.6.

3.5.2 Milner’s Cycler Protocol

The template process for the protocol in [Milner 90] is given in Fig. 3.2. The initial

state is S3. The correctness properties are as follows:
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e Along every computation, ag, a; . .. a, 1 must be performed cyclically, starting
with whichever process is enabled first. The following formula expresses the

cyclic order. This has a cutoff of 5, by theorem 3.8.

/\7/7]2#] AG (ai = AXA((—IG,Z A _laj> U ai+1)>
N jiizj AG (m(a; A aj))

e Every process performs a; and b; alternately. The following formula expresses

this property and can be checked in a 2-process system by Theorem 3.3.
/\i AG((G,Z = —a; U bl) A (bz = -b; U az))

These formulas are defined with atomic propositions referring to actions instead of
states, but it is easily seen that the results apply to such formulas as well, as the
block bisimulation of Theorem 3.2 matches computation paths with respect to non-7

actions.

3.6 Undecidability on Rings

Apt and Kozen [AK 86] show that determining if a temporal property holds for
all instances of a parameterized network is undecidable, by a reduction from the
non-halting problem for Turing machines. The essential idea is to have a ring of
size n simulate the computation of a Turing machine for n steps. Suzuki [Suzuki 88]
proved a sharper result by showing that the undecidability holds even when the
individual programs are finite-state and the ring is unidirectional.

We give a simpler proof of this result, that also delineates sharply the bound-
ary between decidable and undecidable token-ring systems. The proof is by a reduc-
tion from the non-halting problem for 2-counter machines. We show that undecid-
ability arises even if the token takes values from a binary domain. The decidability

results in this chapter hold for a token with a single value. Thus the information
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carrying capacity of the token defines the boundary between decidability and unde-
cidability.

A 2-counter machine [Minsky 61] has four types of instructions : an incre-
ment and decrement for each counter, a zero-test, and a halt instruction. The
halting problem for 2-counter machines is known to be undecidable. We reduce this
problem to the parameterized model-checking problem by using a ring of size n to
simulate n steps of a 2-counter machine. W.lo.g., we suppose that the 2-counter
machine ignores its input tape, and initially has both counter values equal to zero.

Each counter is implemented in unary by a single bit in each node of the ring.
The bit takes values {up, down} with the number of up’s in the global state giving
the value of the counter. Each node runs a copy of the same program. Initially
a single node is chosen nondeterministically, by giving it the token. That node
executes the program of the 2-counter machine. A counter increment is done by
circulating a token with an increment instruction. The node with a down bit for
that counter that first receives this token changes its bit to up, then forwards the
token with a “neutral” value. The decrement of a counter value occurs in a similar
way (by changing the first up to down). The test for zero is done by circulating the
token with value “zero”; if it is received by a process which has the corresponding
bit set to up, then the token value is changed to “non-zero”. If the increment token
returns without the neutral value, this implies that the value of that counter is n,
so the process simulating the 2-counter machine enters a “dead” state, which has
no outgoing transitions.

This simple simulation uses seven values for the token : increment and decre-
ment instructions for each counter, zero/non-zero values, and a neutral value. We
can reduce this value domain to a binary one by encoding each of these values in
unary. A processes passes one of these values to its neighbor by sending its unary

code to the neighbor as a sequence of tokens with value 1. The neighbor accumu-
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lates the unary count on receiving such tokens, but retransmits them with value 0,
which returns to the code sender, without effecting any change on the local states of
the processes in between. This unary transmission is terminated by sending a token
with value 0 to the neighbor.

Consider the property A;(initially_token; = AG—halt;), which expresses the
condition that the node executing the 2-counter machine program does not reach a
halt state. If the 2-counter machine halts, then it must do so in n steps, for some
n, so by the simulation, this property is false for a ring of size at least n. If it does
not halt, then this property is true for rings of all sizes. Thus, the property is true
for all instances iff the machine does not halt. Hence, parameterized verification is

undecidable, specifically co-RE.

3.7 Related Work and Conclusions

Among related work, [AK 86, Suzuki 88] show that the problem of automatically
checking a specification for every instance of a parameterized system is in general
undecidable. Positive results include those of Clarke, Grumberg and Browne [CG 87,
BCG 89]; however, their method requires the manual construction of bisimulations
or that of a closure process which represents computations of an arbitrary number of
processes. [KM 89] and [WL 89] introduce the related notion of a process invariant.
All these methods rely on human ingenuity to manually construct a suitable process
closure or invariant. [GS 92] use automata-theoretic methods to construct process
closures for processes connected in a complete network, and use them to establish
single index properties. Multi-index properties can be indirectly catered for, but the
complexity then becomes multi-exponential. In any case, this does not provide an
algorithm for ring networks. Vernier [Vernier 93] has developed a model-checking
algorithm for a class of parameterized systems, however, the complexity is high.

The closest results are those of Shtadler and Grumberg [SG 89], who use
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a network grammar to specify a communication topology, and those of [LSY 94]
which deal with ring networks of Petri nets. [SG 89] show that if certain sufficient
conditions are satisfied, then every network generated by the grammar satisfies spec-
ifications written in linear-time temporal logic. The sufficiency check, however, may
require time exponential in the size of an individual process. [LSY 94| contains
another (exponential-time) sufficiency test which is used to show that certain pa-
rameterized protocols on rings satisfy a single-index linear-time specification. This
has recently been extended to show global safety properties in [CGJ 95].

The advantage of the approach presented here is that, to check whether a
ring comprised of isomorphic processes satisfies a specification for all instances, it is
both necessary and sufficient to check only the small rings of size less than or equal
to the cutoff. This result is independent of the actual program executing on each
process in the ring, provided that it follows the token-passing discipline. The ring of
size equal to the cutoff is analogous to a closure process, but is trivial to construct.

In addition, the result holds even if the transition graph of the template
process is not finite, provided that it is finite-branching. If it is finite, then an au-
tomated tool such as SMV [McMillan 92], or the Concurrency Workbench [CPS 89]
can be used to model-check the desired property for the small ring. This check can
be done in time polynomial in the size of a process.

An interesting problem to consider is whether there are conditions under
which a similar result holds for systems with multiple-valued tokens. The simplicity
of the 2-counter machine simulation suggests that imposing syntactic restrictions

will not lead to decidability, unless coupled with some semantic constraints.
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3.8 Technical Details

3.8.1 Proof of Theorem 3.2

Theorem 3.2 Let I C [n], and J C [k] be sets of indices such that there is a

bijection h : I — J such that for any i,5 € I,
1. i<jiff hi<hyj, and

2. (i:9)n # 0 f (h(i) : h(§))k # 0.

Then M(n) |1 is block equivalent to M (k) |.

Proof. Let h* be the derived renaming function for indexed actions from M (n)
defined by h4(a;) = ap(i)- Let kY be the derived renaming function for indexed
propositions from M (n) defined by h¥(P;) = Pp(i)- We define a relation that is a
block bisimulation on M (n) and M (k) w.r.t. hY.

For a state s of M (i), let tok;(s) be the index of the process that possesses
the token in state s. Let R, be the relation between states of M(n) and M(k),
defined as follows:

s R tiff
1. The local states of D, in s and Dy in ¢t are identical,
2. h(A(s) 1) = A(t) 41,
3. (Vi:iel: toky.s =1 = toky.t = h.i), and
4. (Vi,j 4,5 € 1:toky(s) € (1 :5)n = toky(t) € (h(7) : h(5))k)-

The relation Ry, is similar but for (2), which is modified to A(s) J;= A(¢) |;.
Define the relation =~ to be R, U Rg;. Let B = R, U Ry,. B is symmetric. It is
straightforward to check that ~ is an equivalence relation, and that B is monotonic

w.r.t. ~. We show below that B is a block bisimulation w.r.t. (=, h%).
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Suppose sBt and s is a state in M (n), and t is a state in M (k). By definition
of B, hP(A(s) 11) = A() b,
1. s is the initial state of M(n).

The only enabled action is the token transfer to some process i. As sBt,
t is the initial state of M(k), hence the token transfer action is enabled at ¢. If
i € I, let the transfer from ¢ be to process h(i). Otherwise, there is a pair k,[ of
indices in I such that ¢ € (k : [), and (k : I) does not contain an index in I. As
sBt, (h(k) : h(l)) # 0, so let the transfer from ¢t be to some process with index in
(h(k) : h(l)). It is straightforward to check that the resulting states are related.
These single step transitions are the only sequences in MAXF(s).
2. s is not the initial state of M (n).
(a) Let o;v be a sequence starting at s, that is in MAXF . (s). Hence v % s, and by
the definition of =, this must be because of either a local move by some process in
I, or a token sent from some process in I, or because of a token received by some

process in [.

e The action is an internal move, or a send of the token, by process i. As process
h(?) has the same local state, the same move can be performed at that process,
and the resulting states are related by B. Note that the token is at process ¢

iff it is at process h(¢) in ¢t. This creates the matching sequence §; w.

e The action is a receipt of the token by process ¢ from process ¢ — 1, for ¢ € I
(arithmetic is modulo n). As sBt, the token in ¢ is not at process h(i). Hence,
if process h(i)—1 is ready to send the token, the receive action may be executed

at process h(i).

Otherwise, the token is in the interval (h(j) : (7)), for some j. As the process
with the token must eventually reach a blocking send action, and processes
without the token reach a blocking receive action, there is a sequence of events,

0, starting at state ¢, such that after 0, the token is at process h(i) — 1, which
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is blocked on a send action. At this point, the token may be transferred to
process h(i) and the system moves to state w. Note that every state along §
is related to ¢t by ~, and w % t; hence, J;w is a member of MAXF . (t). The

final state w is related to v.

(b) The other case, that of infinite sequences from s that are in MAXI(s), does
not arise because every process alternates between send and receive actions. This
induces the token to move from one process to the next. Thus, the token eventu-
ally either reaches or leaves a process in I, which induces a change to a state not
equivalent to s.

The proof above is for the case where s is a state in M (n) and ¢ a state in
M (k). A similar proof shows the other case. It follows that B is a block bisimulation
w.r.t. (~,hP) between M(n) |; and M(k) };. Notice that this proof shows also

that the non-7 actions are matched by B up to h. O

3.8.2 Block Bisimulation

Let A be an LTS, A = (Q,%, R, \,L,¢°%). [BCG 88] define stuttering bisimulation

only over finite state systems. Their definition can be generalized to the following :

Definition 3.3 (Stuttering Bisimulation) A relation B on A is a stuttering

bisimulation iff B is symmetric, and for any s,t such that sBt,
1. X(s) = A(t), and

2. For every fullpath o starting at s, there is a fullpath § starting at t such that
o matches § by B.

where fullpaths o and § match by B iff they can be partitioned into an equal number
of segments such that, for each segment number 7, every state in the ¢th segment of
o is related by B to every state in the ith segment of 4. The formal definition of

“match” is given below :
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Matching paths

Let INC be the set of strictly increasing sequences of natural numbers start-
ing at 0. Precisely, INC = {m | # : N - NA#(0) = 0A(Vii e N =
m(i) < w(i +1))}. Let o be a path, and m a member of INC. For i € N, let
intv(i,0,m) = [w(¢), min(w(i + 1), length(c))). The ith segment of o w.r.t. m,
seg(i,0,m), is defined by the sequence of states of o with indices in intv(i, o, ).

Let o and §, under partitions 7 and £ respectively, correspond w.r.t. stutter-
ing bisimulation B iff they are subdivided into the same number of segments, and
any pair of states in segments with the same index are related by B. Precisely,
corrg((o,m),(6,€)) = (Vi : i1 € N : intv(i,o,n) # 0 = intv(i,6,€) # 0 A
(Vm,n:m € intv(i,0,7) An € intv(i,0,) : (om,dn) € B)).

Paths o and ¢ match iff there exist partitions that make them correspond.
Precisely, matchp(o,6) = (Im, & 7, € INC : corrg((o, ), (9,£))). O

It can be shown, using the Knaster-Tarski theorem with the above defini-
tion (as in [Milner 90]), that the greatest stuttering bisimulation exists, and is an
equivalence relation. Two states are stuttering equivalent iff there is a stuttering

bisimulation that includes the pair.

Theorem 3.3 Let B be a block bisimulation w.r.t. (=,id). Then B is also a

stuttering bisimulation.

Proof. B is symmetric by (1) of Defn. 3.1. Let (s,t) be an arbitrary pair in B.
Then, A(s) = A(t) by 3(a). Consider any fullpath o starting at s. If 0 € MAXI.,(s),
then by 3(c) of Defn. 3.1, there is a fullpath J starting at ¢ such that § € MAXI (),
which is infinite if and only if o is infinite. So ¢ and § may be partitioned into
the same number of segments, which by (2), consist of states related by B. If
o & MAXI,(s), there is a maximal prefix ¢’ of o with a following state v such that
o;v € MAXF(s). By 3(b), there is a finite path §';v in MAXF . (t) such that

(u,v) € B. ¢' and ¢’ form a pair of matching segments, and (u,v) the start of a

46



new pair of corresponding segments. Continuing in this manner, one can inductively
define a fullpath § starting at ¢, and partitions of o and ¢ such that o and § match

w.r.t. B. Hence, B is a stuttering bisimulation. U

Theorem 3.4 Let B be the greatest stuttering bisimulation. Then B s a block

bisimulation w.r.t. (B,id).

Proof. The greatest stuttering bisimulation is an equivalence relation; hence condi-
tions (1) and (2) of the block bisimulation definition are satisfied. Let (s,t) be an ar-
bitrary pair in B. As A(s) = A(t), by (1) of Defn. 3.3, it follows that id(A(s)) = A(¢).

Consider a path o in MAXIg(s). As o is a fullpath, by (2) of Defn. 3.3,
there is a fullpath § starting at ¢ such that o matches § w.r.t. B. This implies that
d is in MAXIg(t) as B is an equivalence, and J satisfies condition 3(c) of Defn. 3.1.

Consider a finite path o;v in MAXF g(s). Let v be a fullpath starting at v.
As ;7 is a fullpath starting at s, by 2(b) of Defn. 3.3, there is a matching fullpath
J starting at t. As —(vBs), =(vBt) holds. Let i be the first position along § such
that vBJ; holds. Hence, ¢ > 0, and 46[0..7) consists of states related to ¢t by B. So
4]0..7] is a member of MAXF p(t), and satisfies condition 3(b) of Defn. 3.1. Hence,
B is a block bisimulation w.r.t. (B, id). O

3.8.3 Proof of Theorem 3.1

Theorem 3.1 Let B be a block bisimulation on LTS A w.r.t. (=,h). If (s,t) € B,
then for any formula f of CTL*\X, A,s = f iff A, t = h(f). O

Proof.
The proof is by structural induction on formulas of CTL*\X.
Basis : f € AP.

M,s
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iff ( definition )
feA(s)

iff ( h is a bijection on AP )
h(f) € h(A(s))

iff ( condition 3(a) of Defn. 3.1 )
h(f) € A(t)

iff ( definition )
M,t = h(f)

Inductive case : If f has the form gy A g1 or —g, then the proof follows directly from

the inductive hypothesis. Consider the case where f has the form Eg, for a path

formula g.

M,s = Eg
iff ( definition )

(G0 fo(o) Ao =5+ M,o = g)
iff ( by following proof )

(30 fp(8) A By = t - M, 5 = h(g))
iff ( definition )

Mt = Eh(g)
iff ( definition )

M.t E h(f)

To justify the second step of the proof above, suppose o is a fullpath starting
at s. As (s,t) € B, by Defn. 3.1 and a simple inductive argument involving 3(b)
and 3(c), there is a fullpath J starting at ¢ such that o and § may be partitioned into
the same number of non-empty segments, where the initial states of corresponding
segments are related by B, and states within each segment are in the same ~-

class. Since initial states of corresponding segments are related by B, from the
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monotonicity of B w.r.t. = (property (2)), every pair of states from corresponding
segments is in B. Hence, by the inductive claim, states related by B agree on the
truth value of sub-formulas of g.

Let o and § be such that they can be partitioned as described above. The
nested inductive claim is that for any path formula g such that states related by
B agree on the truth values of sub-formulas of g modified by h, M,oc = ¢ iff
M, é = h(g).

Basis : ¢ is a state formula. As 0qBJy, the claim follows from the nested induction
hypothesis.
Inductive case : The proof when g has the form gg A g1 or —gg follows directly from

the induction hypothesis. Consider the case where g has the form goUg;.

M, o = goUgy
iff ( definition )
(Fi: Mot l=g1 A(Vj:j<i: Mol = go))
iff ( o and ¢ have matching partitions; inductive hypothesis )
(3k : M, 6% = h(g1) A (VI:1 < k:M,o" = h(g)))
iff ( definition )
M, 4 |= h(go)Uh(g1)
iff ( definition )
M, 6 |= h(goUgi)

The second step in the proof follows from the observation that since the paths match,
for any position ¢ on one path, in the first position k£ on the corresponding segment
of the other path is such that the suffix paths starting at ¢ and &£ match, and for each
suffix path starting at position [ < k, there is a matching path from some position

j < i. Hence, the induction hypothesis can be applied to these suffixes. [l
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Chapter 4

Verifiying Parameterized

Synchronous Systems

4.1 Introduction

In this chapter, we consider a class of systems where similar processes execute syn-
chronously. Such systems arise typically in hardware; for instance, a bus with some
distinguished processes and an arbitrary number of identical processors connected
to it. For these systems we show decidability of the parameterized model-checking
problem (PMCP). This decidability result has a different flavor than the one in the
previous chapter as the cutoff size is strongly dependent on the formula while in
the previous result, the cutoff is dependent only on the form of quantification and
not the formula itself. Previous work on the PMCP is oriented, with the exception
of [KM 89], towards the interleaving composition model. [GS 92] and [EN 95] pro-
vide algorithms for some classes of parameterized systems, while other techniques
[Lubachevsky 84, SG 89, KM 89, WL 89, Vernier 93, CGJ 95] have only a limited
degree of automation.

The approach presented here is fully automated. The class of synchronous
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systems is specified by a control and a user process. Each instance of the system
consists of a single copy of the control and an arbitrary number of copies of the
user processes. The system is thus parameterized by the number of user processes.
Processes are specified by finite state programs expressed as transition graphs, where
guards on each transition may check both the local control process state as well as
certain predicates on the global state. The correctness properties are expressed in

an indexed propositional branching temporal logic, and are of the following types:

1. Over the control process : formulas of the form Ah and Eh, where h is a linear-
time formula with atomic propositions over control process states, and some

global predicates.

2. Over all user processes: A\, Ah(i) and A;Eh(¢), where h(i) is a linear-time
formula with atomic propositions over control process states, and over user

process states indexed with ¢, along with some global predicates.

3. Over every distinct pair of user processes : A Ah(i,j) and A\ En(i, j),

ez ,j:9F£]
where h(i,j) is a linear-time formula with atomic propositions over control
process states, and over user process states indexed with either ¢ or j, along

with some global predicates.

We show that the PMCP for the first type of formulas is decidable for this
class of systems, and is PSPACE-complete . This decidability result is based on con-
structing a finite abstract graph in which every computation of every size instance
of the system is represented by some path in the graph. However, the abstract graph
may have “bad” paths that do not correspond to computations of any size instance.
The heart of the algorithm is a method for identifying good paths in the abstract
graph. The space used by the algorithm is polynomial in the size of the control and
user processes. We prove that this is optimal in a complexity-theoretic sense by

showing that the problem is PSPACE-hard , even for invariance properties. Using
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symmetry arguments, the verification task for the other types of formulas reduces to
a verification task of the first type for a modified system. The algorithm for safety
properties has been implemented using the SMV verification system [McMillan 92]
and used for the verification of an industrial bus protocol [SAE 92]. Our initial ex-
perimental results indicate that the algorithm should be useful in practice. Chapter
5 describes this verification in detail.

Section 4.2 defines the system model and the logic used for expressing cor-
rectness properties. Section 4.3 describes the abstract graph representation, and
Section 4.4 the algorithm for formulas of type (1). Section 4.5 shows the reduction
of the PMCP for formulas of types (2) and (3) to the PMCP for formulas of type
(1). The implementation of the algorithm, and its application to the SAE-J1850
bus arbitration protocol is described briefly in Section 4.6, and in detail in the fol-
lowing chapter. Section 4.7 generalizes these results to the case of properties that
are “almost universal”; i.e., they hold for all but a finite number of processes. In
Section 4.8 we present complexity-theoretic lower bounds on the problem. Section

4.9 concludes the chapter with a discussion of related work.

4.2 The system model and logic

We refer to the collection of system instances formed by control process C and
copies of a generic user process U as a (C,U) family. The control and user processes
are specified as finite-state transition graphs. For such a graph A, let S4 denote
its set of states, R4 its transition relation, and ¢4 its initial state. For simplicity,
we consider only graphs with a single initial state; the results carry over with only
minor modifications for graphs with a set of initial states. The transition relation of
these graphs is total. It is often convenient to specify only some of the transitions
out of a state; but, in such a situation, there is an implied self-loop on that state

which has as its guard the negation of the disjunction of the guards on the specified
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=(Fi =2 ;)

Figure 4.1: A Control-User System : Control, User and the ith User Processes.

transitions.

The system instance of size n is a synchronous parallel composition of C' with
n copies of process U, and is denoted as C || U" = C || Uy || Uz || ... || Un. U; is
the ith copy of U, which is obtained from U by uniformly subscripting the states
of U with ¢ as shown in the example system in Fig. 4.1. In this example, C' has
initial state K, and U has initial state I. Atomic propositions are identified with
state names.

Thus, for any ¢,j, U; and U; are isomorphic up to re-indexing. Transitions
in both C and U; are labeled with guards. Every guard is a boolean combination of
global predicates of the form (3i :: £(i)), where £(7) is a boolean expression formed
from atomic propositions over the states of C and U;. There are two interesting
special cases : (a) The guards in U; involve only propositions over states of C.
The control process may then be viewed as controlling the execution of the user
processes. (b) The control process is a copy of the user process, and can be written
as Up. Then C || U™ is isomorphic to U™, Our method applies in general, but
often finds interesting application in these special cases.

G, denotes the global state transition graph of the instance of size n. A state
s of Gy, is written as an (n + 1)-tuple, where s(0) is the local state of C' and s(7) is

the local state of U; (for ¢ € [1..n]). The initial state of G, is (vc, (¢v)1,- -, (¢tU)n)-
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A transition (s,t) is in G, iff
1. A transition of C from s(0) to ¢(0) is enabled in s, and
2. For all i € [1..n], a transition of U; from s(¢) to ¢(¢) is enabled in s.

where a transition in a process is said to be enabled in a global state iff the corre-
sponding guard is true when evaluated in that global state. G,,s |= (30 = £(i))
iff for some k € [1..n], £(k) is true given the propositions that hold at s(0) (the
control state), and s(k) (the state of process Uy). Boolean operators are han-
dled in the standard manner. For a global state s, and state a € Sy, we let
#a(s) = [{i|i € [L.n] A s(i) = a;}| (#a(s) is the number of user processes with
local state a of the generic user process).

LTL is the standard propositional linear temporal logic built up from atomic
propositions, boolean connectives, and temporal operators G (always), F (sometime),
X (next time), and U (until) [Pnueli 77]. CTL* is a branching temporal logic which
extends LTL by allowing the path quantifiers A (for all fullpaths) and E (for some
fullpath). Many interesting correctness properties of parameterized systems can be

expressed in one of the following forms:

1. Over the control process : formulas of the form Ah and Eh, where h is a

linear-time formula with atomic propositions over control process states,

2. Over all user processes: \; Ah(i) , and A, Eh(i), where h(i) is a linear-time

formula with global predicates as the atomic propositions.

3. Over all distinct pairs of user processes : \; ;.,.; Ah(7, 7), and A\, ;... ER(i, j),
where h(i,j) is a linear-time formula with global predicates as the atomic

propositions.

The formal semantics of these logics is defined in the usual way [Emerson 90,

BCG 88, ES 95]. We write M,s = f to mean that formula f is true in struc-
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ture M at state s. In the previous chapter, we considered formulas without the
next-time operator, X. The use of the next-time operator is not problematic here
as the system model is that of synchronous execution. Another difference with the
results in the previous chapter is that those hold for quantified CTL*\X formulas,

while these are for CTL* formulas with a single outermost path quantifier.

4.3 The abstract model

For a given (C,U) family, we construct an abstract process A that includes all
computations of every size instance of the family. An abstract state (c, S) represents
any concrete state where the control process is in local state ¢, and only the local
user states in the set S are occupied by some process. Transitions from a state (¢, S)
in the abstract graph represent transitions enabled from the global states that are
represented by (c,S). Each such transition has a label which indicates the moves of
processes between local states. Each label is a non-empty relation on Sy .
Formally, let A = P(Sy x Sy)\{0} be the set of edge labels. A is defined by

a labeled transition graph, where
1. Sq4=Sc x (P(Su)\{0}) is the set of states,
2. Ry C S4x A xSy is the set of transitions,

3. ta = (tc,{tw}) is the initial state.

To make the correspondence between global and abstract states precise, we
define families of abstraction functions {¢;}, {¢i}, where ¢, : Sg, — S maps a
concrete state in the instance of size n to an abstract state, and ¢y, : Sg, X Sg,, = A
maps a concrete transition in the instance of size n to a transition label. For a state
s € Sg,, dn(s) = (s(0),{a | #a(s) > 0}). For a pair (s,t), ¥n(s,t) = {(a,b) | (Fi:
i €[l.n] : s(2) = a; At(i) = b;)}. The abstract state (c, S) represents every s in G,
for which (¢, S) = ¢n(s).
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We postulate a fixed total ordering of the user states (i.e., elements of S).
For any subset S of Sy, let ord(S) denote the vector obtained by sorting S un-

der this ordering. For a guard g, and state (¢, S) of A, we define (¢, S)|| — g as
g|S\7 (C, OT’d(S)) ): g-

Proposition 4.1 Let s be a state in G, and t a state in Gy, such that ¢n(s) = Pn(t).

For any guard g, Gn, s = g iff Gm,t = g

Proof. A guard expression is a boolean combination of global predicates which are
of the form (3¢ :: £(i)). We show the equivalence when the guard expression is a

global predicate. The proof for boolean operations is straightforward.

Gn,s E (3= E(7))
iff ( definition )
(Fi:iel.n]:E(s(0),s(i)))
iff ( dn(s) = ¢y (t) implies s(0) = ¢(0) and user states in s and ¢ are identical )
(3):§ € [Lam] : £(40), £(7)))
iff ( definition )
Gm,t = (Fi:: E(7))

Corollary 4.1 For any n, and any s € Gy, if (¢, S) = ¢n(s), then for every guard
expression g, Gn,s |= g if (¢,5) ]| — g
Proof.
(C, S) || -9
iff ( definition )
Gis|, (¢, 0rd(S)) = g
iff ( ¢1s1((c, 0rd(S))) = ¢n(s); Lemma 4.1 )
Gn,s =g
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The set of transitions is defined as follows: A tuple ((¢,S), X, (d,T)) € Ra
iff

1. (3p: cBd € Re: (¢,S)|| — p) (A transition from ¢ to d is enabled for the

control process),

2. (Va,b:(a,b) e X:a€ SAbeTA(3g:a>be Ry : (¢,9)||— q)). (For every

pair (a,b) in X, there is an enabled transition from a to b in the user process).

3. X is total on S, and X ! is total on 7', (Every state in S has a successor in

T, and every state in 7" has a predecessor in S).

Definition 4.1 (Abstract Path) A path in A is a sequence starting at a state,
with alternating states and transition labels such that for every s,t € Sy and X € A,

sXt occurs in the sequence only if (s, X,t) € Ra. O

Define a family of functions {v;} such that -, maps from paths in G, to
paths in A by (7,(0))2i = ¢n(0i) and (7, (0))2i+1 = ¥n(04,0441) for all i € N. The
following proposition has a straightforward proof, by induction on the length of the

path. The complete proof is given in Section 4.10.
Proposition 4.2 For every path o in G, v,(0) is a path in A.

It follows from Proposition 4.2 that if A satisfies a linear temporal formula
over all paths, then so does every size instance of the family. However, if the formula
is false for some path in A, it does not follow that it is false for some instance, as
the path may not have a corresponding path in some instance. Paths which have

this property are called “good”.

Definition 4.2 (Good Paths) A path p in A is good iff (3n,0:0 € Gy : Vp(0) =

p). O
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Definition 4.3 (State Covering) A state t in G, covers a state s in Gy, iff ()
= ¢m(t), and for every a € U, #a(t) > #a(s).

Definition 4.4 (Path Covering) A path ¢ in G, covers a path o in Gy, iff ym () =
(o), and for every k € N, a € U, #a(dy) > #a(og). O

Lemma 4.1 State covering is a simulation relation.

Proof. Let s, t be global states in G, and G, respectively, such that t covers s,
and let s—u. Since ¢n(s) = ¢ (t), by Proposition 4.1, guards in s and ¢ evaluate
to the same value. Hence, the transitions that are enabled at s are also enabled
at t. For user states a,b, let kg, be the number of processes that move from local
state a to local state b in the transition from s to u. Let x4 = kgp + Agp, Where
Ay = #a(t) — #a(s), if b is the first (w.r.t. the total order on user states) state for
which k.5 > 0, otherwise let Ay, = 0. Clearly, xqp > kgp, and zqp = 0 iff kgp = 0.
Let v be any successor of ¢t on the same control transition as that from s to u, and
for which x4, of the processes in state a in ¢t move to state b in v. As for any a,
#a(v) = Xpxpg, it follows that #a(v) > #a(u) and #a(v) = 0 iff #a(u) = 0. Thus,
v covers u, and is a successor of ¢ by the same transitions that change s to w. U

From this lemma, we can conclude that if o is a path starting at s, and ¢
covers s, there is a path § starting at ¢ such that & covers o. It also follows that
every path in G, has a covering path in G,,, for m > n, as one can find a covering
state in G,, for the first state of the path. The following lemma shows that state

covering is also a backwards simulation.
Lemma 4.2 State covering is a backwards simulation relation.

Proof. Let u,v be global states in G, and G,, respectively such that v covers .
Let s be such that s—u, i.e., s is a predecessor of u. We will show that there is a

predecessor t of v such that ¢ covers s. Construct t as follows:
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The control state of ¢ is the control state of s. For local states a, b, let kg, be
the number of processes that move from local state a to local state b in the transition
from s to u, and let x4, be the corresponding number (to be determined) for the
move from ¢ to v.

Let xqp = kap + Agp. The added number, Ay, is #b(v) — #b(u), if a is the
smallest (in the total order on user states) for which kg, > 0, otherwise it is 0. It
follows that gy > kap, and x4y = 0 iff kg = 0. Let ¢ be a state such that ¢(0) = s(0),
and Xpzep of the user processes are in local state a. Clearly, ¢, (t) = ¢, (s); hence,
from Proposition 4.1, the local transitions enabled at s are also enabled at ¢t. Let x4
processes change from local state a in ¢t to local state b in v by the same transition
as in the change from s to u. Hence, t covers s, and is a predecessor of v by the

same global transition that changes s to u.

The structural lemmas above have the following important consequence:
Theorem 4.1 FEvery finite path of A is good.

Proof. The proof is by induction on the number of states in the path. Suppose the
path is a single state s. Let s = (c, S). For the state r = (c, ord(S5)), ¢|5/(r) = s. So
the claim is true of paths with one state.

Assume inductively that the claim holds for all paths with at most m states,
for m > 1. Let p be a path with m + 1 states. Then, p may be written as sXp/,
where p’ has length m. By the inductive hypothesis, for some n', there is a path
8" € Gy such that v,/ (d') = p'. Let u be the first state in ¢’, and let s = (¢, S).

Let w be the state where w(0) = ¢, and for every local user state a, #a(w) =
|{b|(a,b) € X}|. Let k be the number of processes in w. As ¢r(w) = s, by Corollary
4.1, the guards enabled at s are also enabled at w. Hence there is a successor = of
w such that z(0) = u(0) and for any (a,b) € X, a single process moves from state a

in w to state b in z. So, ¢r(z) = ¢r(u). Let y be a state such that y(0) = u(0), and
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for every a, #a(y) = maz(#a(u),#a(z)). Thus, y covers both = and u. By Lemma
4.2; y has a predecessor z that covers w, and ¥,(z,y) = X. By Lemma 4.1, there
is a path § from y that covers ¢’. Hence, the path z;d is a path in an instance that

maps to p. U

4.4 Verifying properties of the control process

The properties of the control process are of the form Ah or Eh, where h is a linear-
time temporal formula with atomic propositions that are either global predicates of
the form (3i :: £(¢)), or are propositions over the states of C. To model-check such
a property, we follow the automata-theoretic approach of [VW 86] : To determine
if M,y |= Eh, construct a Biichi automaton By, for h, and check that the language
of the product Biichi automaton of M and By, is non-empty (cf. [LP 85]). B accepts
a computation o labeled with propositions over states of C' iff there is a run of B
on o such that a “green” (i.e., accepting) state of B is entered infinitely often. The
check for the property Ah is easily reduced to that for the earlier case by noting
that M,y = Ah iff M, upr = E=h.

Definition 4.5 (Universal property) A property is universal iff it is true for

every size instance of the parameterized system.

To determine if Ah is universal, we model-check it over the abstract graph, by
constructing a Buchi automaton B for —h, and forming the product Biichi automaton
M of A and B. An accepting path in M is one which starts in an initial state, and
along which a green state occurs infinitely often. For a path § in M, let §4 be its

projection on A. A path in M is good iff its projection on A is a good path in A.

Theorem 4.2 Formula Ah is not universal iff there is an accepting good path in

M.
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Proof. Suppose § is an accepting good path in M. As d4 is good, for some n,
there is a path o in G, such that v,(p) = d 4. By the definition of v,, o matches d4
on both the valuation of global predicates and the states of C, and is hence accepted
by B. Therefore, Ah is false in G,, and thus is not universal.

In the other direction, if Ah is not universal, then for some n, there is a path
o in G, from the initial state that is accepted by B. From Lemma 4.2, v,(o) is
a path in A, which is good by construction. By the definition of v,, o and v,(o)
match on both the valuation of global predicates and the states of C. Hence, there

is a run of B on 7, (o) that forms an accepting good path in M. O

4.4.1 Model-Checking Safety Properties

For safety properties, we can replace Biichi automata with automata over finite
strings. The acceptance condition is modified so that a finite path is accepting iff
it ends in an accepting state of the automaton. From theorem 4.1, we can conclude
that such a path exists in an instance iff an accepting state is reachable in the
abstract graph M. The reachability test can be performed in space logarithmic
in the size of M; i.e., in polynomial space in the size of the user process. The
check for liveness properties requires the use of Biichi acceptance conditions, and

the algorithms presented in the next part of this section.

4.4.2 Model-Checking Liveness Properties

For liveness properties, we have to check if an infinite path in M is accepting and
good. The following lemmas provide the basis for a PSPACE algorithm to check
universality. For a cycle § in M, we say that ¢ is good iff the infinite path §“ is
good.

Lemma 4.3 There is an accepting good path in M iff there are finite paths o and
B in M, such that
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1. « s a path from the initial state to a green state s, and

2. B is a good cycle starting at s. O

Proof.
(LHS = RHS) Let p be an accepting good path in M. Hence, for some n, there is
a path o in G, such that v,(0) = pa. As p is accepted by B, so is o, hence there
exists a path J; to a green state, and a cycle ds from that green state in G, x B,
such that d; o % is an accepting run of B on G, !. Let a be the path in M that §;
maps to (by extending the mappings ¢ and 9 to include automaton states), and g
the cycle in M that d2 maps to. a and 3 satisfy the conditions above.
(RHS = LHS) By Lemma 4.1, a4 is good. Hence, for some k, there is a path o7 in
Gy, such that yx(01) = aq. As B is a good cycle, for some [, there is an infinite path
oy in G; such that y;(o2) = 4. The rest of the proof uses the simulation lemmas
proved earlier to “patch together” these paths, which are in different size structures.
Let u be the last state on o1, and v be the first state on 2. Define the state
w so that w has the same control state as v (and hence, as u), and for every user
local state a, #a(w) = maz(#a(u),#a(v)). Hence, w covers both u and v. By
Lemma 4.1, there is a path J» from w that covers o3, and by Lemma 4.2, there is
a path §; to w that covers o;. As §; starts at an initial state of G, o1 starts at an
initial state of G,, where n be the number of processes in w. Let § = §; 0 d2. As §o
covers o9, it has the same sequence of control states, so there is an accepting run of
B on §. Hence, v,(d) is an accepting good path in M. O
Intuitively, a cycle in M is good if, starting at some global state which maps
to a state in the cycle, there is no transition in that cycle that causes the count
of processes in a specific local state to be “drained” (i.e., strictly decreased) as the

sequence of transitions along the cycle is repeatedly executed. For example, a self-

o concatenates two strings deleting a copy of a common end state, if any. e.g., ba o ac = bac,

while ba; ac = baac.
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X1 = {(A,C),(A,D),(B,D)}
No N1 N>

Yo =LA LB Xz = {(4,0),(B. D)}
(K.41}) (L.{a,B}) | X2={40).(5, (K.{C.D})

X3 = {(07 A):(DvB)}

Figure 4.2: A portion of the Abstract Graph for the example system.

loop with the transition label {(a,b)} (a # b) forces a transfer of at least one process
in local state a to local state b, so it decreases the count of processes in state a with
every execution of the transition, while a self-loop with label {(a, b), (b,a)} does not.
Notice that in the latter case, there is a cycle @ — b — a in the graph of transition
label. This presence of cycles in transition labels that do not cause draining is the
intuition behind the characterization of good cycles of M that follows.

To determine if such loops are present in a cycle of M, we resolve it into
a “threaded graph” (cf. [ES 95]) which shows explicitly which local user state in
an abstract state is driven into which other local user state in the next abstract
state. This information is obtained from the transition label. The threaded graph

is defined below:

Definition 4.6 (Threaded Graph) Let § be a finite path in M with m states,
m > 1. Let the ith state of 6 be called s;—1, and the ith transition be called X;_1.
For a state s = ((¢,S),u) of M (u is the automaton state), let ustates(s) = S.
Define Hg to be the following graph :

V(Hs) = {(z,i) | i € [0..m — 1] Az € ustates(s;)}

B(Hs) = {((2,1), (i + 1)) | € [0m — 1) A (2, ) € X3}

If 6 is a cycle, then sg = $py,—1. Define Ts to be the “threaded” graph where V(Ts) =
V(Hs), and E(Ts) = E(Hs)U {((z,m — 1),(z,0)) | * € ustates(sp)}.
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Figure 4.3: Threaded graphs for the cycles X7; X3 and X»; X3 respectively.

Note that the threaded graph has a total transition relation, as both the control
and user processes have total transition relations.

A graph is empty iff its edge set is empty. For any directed graph G, let
sccd(G) be the graph representing the decomposition of G into its maximal strongly
connected components (scc’s).

V(sced(G)) ={C | C is a mazimal strongly connected component of G}

E(sccd(G)) ={(C,D)|(Fs:s€ CAteD:(st)c E(G))}

We refer to vertices of sccd(G) as max-scc’s. It is a fact that sced(G) is
acyclic for any graph G. A max-scc C is said to be above another max-scc D iff
there is a path in sccd(G) from C to D. O

Fig. 4.3 shows the threaded graphs for the cycles ngNg )ﬁ; N1 and
N1£§N2 )& N7 in Fig. 4.2. From Theorem 4.3, one can conclude that the first

cycle is bad while the second is good.
Theorem 4.3 § is a good cycle in M iff sccd(Ts) is empty.

Proof Sketch.
(LHS = RHS): Let m be the number of states in §. Suppose that sccd(T5)
is not empty. Hence, there are max-scc’s C' and D such that some pair of vertices

(z,i) in C and (y,j) in D is connected in Ty. For any n, consider an infinite path

64



o in G, such that v,(0) = 0%. We say that process [ in component F' at oy, iff
(a,k mod m) € F, where oy(l) = a;.

Starting with the ¢th transition in o, at every mth successive transition, at
least one of the processes in C, say one with index [, must change its local state
from x; to y;. Thus, the count of processes in components above D decreases at each
such step. As the max-scc decomposition is acyclic, this number cannot increase in
subsequent steps. As ¢ is infinite, eventually the number of processes in components
above D must become negative, which is impossible. Hence, no infinite path can
map to 4.

(RHS = LHS): Suppose that sccd(Ts) is empty. For each max-scc of Ty,
construct a tour in Ty that includes each edge in that component at least once. For
each user state a, let occ, be the number of occurrences of the vertex (a,0) in the
tour for its max-scc. Let n = ¥,0cc,. We will construct a path o in G, such that
Yn(0) = 6%4. The idea behind the construction is to allot a set of processes for each
constructed tour, and to ensure that each transition of a process is along the tour
that it is allotted to.

The inductive assertion is that at the ith step (i < m), a path o has been
constructed such that 7, (o) is the prefix of 6 4 up to the ith state, and if s is the last
state of o, then #a(s) is the number of occurrences of (a,7) in the set of constructed
tours. This is possible for ¢ = 0 from the definition of n above. Suppose that the ¢th
transition on é 4 is labeled by X, and that inductively, the assertion is true for the ith
state on 0 4. For each pair (a,b) in X, there is an edge from (a,?) to (b,i+ 1) in the
threaded graph, which is therefore part of some tour. By the inductive assumption,
there is, in state s, a bijection between processes in local state a and outgoing edges
from (a,i). Construct state ¢ from s by performing a transition from a to b for every
process associated with the edge (a,b) of X and the same transition among control

states that is present in the abstract graph. Such a transition must be enabled by
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the abstract graph definition. By this construction, ¢,(t) is the (i + 1)st state of
04, and for every local state b, the number of processes in local state b in t is the
number of occurrences of (b,i + 1) in the set of tours. Thus, the inductive assertion
holds for the path o;¢.

Hence, after m steps, the final state o, 1 is a permutation of the first state
0p. Repeating the construction for & times, for some k < n, produces a path o with
last state identical to the first, such that v, (o) = 6%. Thus, v,(c*) = §4. Hence, &
is a good cycle. 0

The previous theorem appears to imply that the entire cycle needs to be
stored in order to determine its threaded graph decomposition so that the test for
“goodness” can be performed. We show that this is not the case; only a bounded
amount of information needs to be stored. In addition, this information about the
cycle can be collected during an incremental traversal of the cycle, which is crucial
to the PSPACE algorithm presented later.

For a finite path o with m states in A define @ to be the relation over Sy x Sy
where (a,b) € @ iff there is a path from (a,1) to (b,m) in H,. We say that relation

R is cyclic iff every edge in the graph of R lies on a cycle.
Lemma 4.4 For a cycle § in M, sccd(Ts) is empty iff 6 is cyclic. O

(LHS = RHS) Suppose that sccd(Tjs) is empty. For any (a,b) € §, there is a path
from (a,0) to (b,m — 1) in Hy. As sced(Ts) is empty, this path is entirely within
some component C. Since this is strongly connected, for some k, there is a path from
(b,m—1) to (a,0) in C of the form (b, m—1); (b,0);...; (c1,m—1);(c1,0);...;(cx,0),
with ¢ = a. This implies that (b,c;) € 0, and (c;, ;1) € 9 for i € [L..k — 1]. Hence,
there is a cycle containing the edge (a,b) in the graph of 4.

(RHS = LHS) Suppose that sccd(Ty) is not empty. So there exist components C
and D such that for some z,y, (z,7) € C, (y,j) € D, and ((z,7),(y,j)) € E(Gs).

For some a, there is a path from (a,0) to (z,), and for some b, a path from (y, j) to
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(b, m—1), as the threaded graph has a total transition relation. Thus, J contains the
pair (a,b). Since 0 is cyclic, (a,b) lies on a cycle in the graph of . This cycle must
correspond to a cycle in the max-scc decomposition of Ty, which is a contradiction.

g

Theorem 4.4 Formula Ah is not universal iff there is a finite path in M from an

initial state to a green state and a cycle § from that state such that § is cyclic.

Proof. Follows from Theorem 4.2 and 4.3 and Lemma 4.4. U
Let L be the maximum length of a guard in C' and U processes. Note that
L <|C|+|U].

Theorem 4.5 There is a nondeterministic algorithm to decide if a temporal prop-
erty over computations of C is not universal that uses space O(|Sy|? +log(|Sc||S5|)

+L). The algorithm uses space logarithmic in the size of M.

Proof. By Theorem 4.4, a property Ah is not universal iff there is a finite path
in M to a green state and a following cycle § from that state such that ¢ is cyclic.
The algorithm “guesses” a path to a green state, and a cycle ¢ from it, recording
only the current state of M, and p for the prefix p of 4 that has been examined. As
(p; X;s) =poX, (ois relational composition) § can be computed incrementally.
Recording a state of M takes space (log(|S¢||S8|) + |Sv|). Computing a suc-
cessor state can be done in space proportional to (log|Sg| + log|Sc| + log|Sy| + L)
(as this requires checking if (¢, S) || — p for guards p). Storing d takes space |Sy|2, and
checking if § is cyclic can be done deterministically within the same space bound.

Thus, the overall space usage is O(|Sy|? + log(|Sc||Ss|) + L). O

Remark 4.1 There are two special cases where the algorithm can be optimized.
If the user processes are deterministic, every cycle ¢ in M is good (as Ty must be

empty). If the correctness property is a safety property, the algorithm need check
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only finite accepting paths, which are good by Lemma 4.1. In both cases, the check

for good cycles can be eliminated, which is a substantial saving. 0

A reduction from a generic PSPACE Turing Machine shows that checking if
AG—accept is not universal is PSPACE-hard . Section 4.8 contains the details of this

proof. The following theorems follow.

Theorem 4.6 Deciding if a property over computations of C is not universal is

complete for PSPACE .

Corollary 4.2 Deciding if a property over computations of C' is universal is com-

plete for PSPACE .

Proof Sketch. Follows from the previous theorem, as co-PSPACE = PSPACE . [

The algorithm given above for determining if a property is not universal is
nondeterministic and uses polynomial space. Using Savitch’s construction, there is
a deterministic algorithm with time complexity O(2~(Su/*+leg(|SclIS5)+L)*) for some
k. We present below a “natural” deterministic algorithm with the same worst case
time complexity in |[Sy|. Let K = |Syq| x 21501, The algorithm follows from this

observation:

Proposition 4.3 If p is a finite path in M from s to t of length greater than K,
then there is a path & from s to t in M of length at most K such that p = 6.

Proof. Define an equivalence relation on states s of p by s; = s; iff s; = s; and

XooX10...0X; 1=XpoX;0...0X; ;. Clearly there are at most K equivalence
classes. So if the length of p is greater than K, there must be distinct indices ¢ and
J such that ¢ < j and s; = s;. Then the path n formed by appending the suffix from
s;j to the prefix up to s; is a path in M that is shorter than the path p, and is such
that 7 = p. Repeating this construction a finite number of times produces a path §

with the desired properties. [l
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Theorem 4.7 There is a deterministic algorithm to determine if a property is not

universal with exponential worst case time complexity in |Sy|.

From Theorem 4.4, the algorithm has to check that there is a finite path in
M from an initial state to a green state and a cycle § from that state such that ¢ is
cyclic. From Proposition 4.3, it suffices look for cycles of length at most K. Given
the transition relation of M, the algorithm uses iterative squaring to construct a
transition relation R such that (s,t) € R iff there is a path of length at most K
from s to ¢t in M. Next, the algorithm uses depth-first search to search for a path
from an initial to a green state, and a self loop on that state such that the label
associated with the self loop is cyclic.

The iterative squaring requires log(K) = O(|Sy|®) steps. Each squaring
step requires time T = O(245v1°) in |Sy|. Thus, the overall time complexity is
T % log(K), which is exponential in |Sy|. O

This result justifies the claim made in the introduction that cutoffs on the
number of processes depend on the formula (here, the automaton) structure. Since
only cycles of bounded length, and paths of bounded length leading to the cycle
need be considered, the proof of Lemma 4.3 implies that the instance that contains
the corresponding accepting path is of a size that is a function of this bound. So if
all instances up to the cutoff do not contain a path accepted by the automaton, no

larger instance can contain such a path; thus all larger instances are correct.

4.5 Symmetry reduction

Let m be a permutation over the set {1...n}. For a state s in G,, the permuted
state m(s) is defined by (7(s))(0) = s(0), and for every ¢ € [1..n], (7(s))(¢) = a; iff
s(n71(i)) = ar-1(;). For example, the state (c,ur,v2,ws) under the permutation

7={(1—2),(2—3),(3 = 1)} becomes (¢, w1, uz,v3). As ¢p(m(s)) = ¢n(s), from
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Proposition 4.1, the truth value of any guard is the same in both s and 7 (s). Hence
there is complete symmetry among the user processes in any size instance of a (C,U)
family, and the PMCP for formulas of type (2) and (3) reduces that for formulas of
type (1). The following lemmas are based on those in [ES 93, CFJ 93] (cf. [ID 93])
Let f(i) be a CTL* formula with propositions over the states of C' and over the
states of U indexed with 4, and let f(¢,7) be a CTL* formula with propositions over

the states of C' and over the states of U indexed with either ¢ or j.
Lemma 4.5 Forn > 1, Gy, g, = N\; f(&) iff Gn, g, = f(1).
Lemma 4.6 Forn 2 27 gn7 LG, ): /\z,]z;é] f(%]) Zﬁ gny LG, |: f(]" 2)

Let C' <o U be the process where a copy of the user process is “merged” into
the control in the following manner. Let Sc.y = S¢ x Sy, and (¢, u)’ A (d,v) €

(67

Reoq,u iff c¢%d e Re and ubv € Ry, , where for any guard p, p® is p with every

global predicate (3i :: £(7)) replaced with £(a) V (Ji :: £(7)).

Theorem 4.8 A property of the form \; Ah(i) is universal for a (C,U) family iff

Ah(a) is universal for the control process in the family (C <, U,U).

Theorem 4.9 A property of the form \; ;. .; Ah(i, j) is universal for a (C,U) fam-

ily iff Ah(c, B) is universal for the control process in the family (((C'<aU)<gU),U).

4.6 Applications

We have implemented this algorithm to verify a bus arbitration protocol based on the
SAE J1850 draft standard [SAE 92] for automobile applications. This is a protocol
where many micro-controllers can transmit symbols along a shared single-wire bus.
As a consequence of this restriction, symbols are encoded by the width of a pulse.

Nodes on the bus may begin transmitting different messages simultaneously; only
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the node with the highest priority message should complete transmission after the
arbitration process. Symbol 0 has priority over symbol 1, and priority between mes-
sages over the alphabet {0,1} is determined lexicographically. The micro-controllers
are modeled as user processes, and the bus as the control process.

We implemented the PMCP algorithm presented here by generating SMV
[McMillan 92] code to describe the abstract process transitions, given a description
of the next-state relation of a user and control processes. The correctness property
has both a safety and a progress component. For the safety property, we are able
to simplify the implementation as described following Theorem 4.5. The progress
property holds on the abstract graph, and as the abstract graph simulates each
individual instances, it follows that the property holds of all instances.

The SAE-J1850 protocol is quite complex, as it has to take into account
nondeterministic, but bounded, delays that may occur at a micro-controller when
it is sensing a bus state transition. The protocol has the maximum delay as a
parameter, in addition to the number of processes. We were able to show, by an
abstraction mapping, that, for n processes, the protocol with maximum delay 2 is
trace equivalent to that with a higher delay. This allows us to focus on the number
of processes as the single parameter, with the maximum delay being fixed at 2.
For this system, each user process has about 180 states, while the control process
together with the automaton for the property has about 400 states. This implies
that the abstract graph is represented with about 200 boolean variables describing
an abstract state, as each abstract state includes a subset of user states. Despite this
large number of variables, verification of the correctness properties over the abstract
graph took less than a minute on an Intel Pentium running at 200 MHz with 32 MB
of memory. We emphasize that this establishes correctness of the bus protocol for
an arbitrary number of attached micro-controllers. The following chapter contains

a detailed description of this protocol and its verification.
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4.7 Almost universal properties

In Section 4, we considered the question of whether a property is universal, i.e., true
for every size instance of a (C,U) family. However, it is possible that a property is
not true of all instances, but of almost every instance (i.e., all but a finite number
of instances). We say that such a property is almost everywhere true. Similarly, a
property that is false of almost every instance is called almost everywhere false?.
We showed in Section 4 that a property of the form Ah is not universal iff
there is an accepting good path in M. To generalize this result, we define another

property of paths in A.

Definition 4.7 (Real Path) A path p in A is real iff (Ovon (Jo:0€Gp:mm(o)=
p))- (OVO is read as “for all but a finite number”) O

Lemma 4.7 Every path (finite or infinite) in A is real iff it is good.

Proof. The direction from left to right follows from the definitions. So suppose p
is a good path in A. Hence, for some n, there is a path o in G, such that v,(c) = p.
By the Simulation Lemma (Lemma 4.1), for every n’ > n, there is a path § € G,
that covers o. By definition of a covering path, 7,/(d) = p. So in every instance of
size at least n, there is a path which maps to p. Hence, p is real. [l

Let a path in M be real iff the projection of the path on A is real. We get

this analogue to Theorem 4.2:

Theorem 4.10 Formula Ah is almost everywhere false iff there is an accepting real

path in M.

Proof. Suppose ¢ is an accepting real path in M. As 4 is real, for almost every
n, there is a path in G,, that matches d 4 on the sequence of states of C, and is hence

accepted by B. Therefore, Ah is false of almost every instance.

2A similar notion, almost always satisfiability, is considered by [ESr 90] when synthesizing a
many process program that satisfies a temporal specification.

72



In the other direction, if Ah is almost everywhere false, then for some n,
there is a path o in G, from the initial state that is accepted by B. From Lemma
4.2, v,(0) is a path in A, which is good by construction, and hence real by Lemma
4.7. The sequence of states of C' in ~,(c) is the same as in o; hence, there is a run

of B on 7,(o) that forms an accepting real path in M. O
Corollary 4.3 Formula Ah is almost everywhere false iff Ah is not universal.

Proof. By Theorem 4.2, Ah is not universal iff there is an accepting good path in
M. As good paths are real by Lemma 4.7, the claim follows from Theorem 4.10. O

This is a strong result, as it implies that if Ah is false of some instance, then
it is false in almost every instance. The following theorem shows the interesting fact
that almost everywhere truth and falsity are complementary, which is not true in

general.

Theorem 4.11 Formula Ah is almost everywhere false iff Ah is not almost every-

where true.

Proof. Suppose that Ah is not almost everywhere true. Then for some n, there is
a path o in G, from an initial state that is accepted by B. From Proposition 4.2,
d = yn(0) is a path in A4 that has the same sequence of states of C' as does o, and
hence is accepted by B. By construction, ¢ is good, and hence it is real by Lemma
4.7. The accepting run of B on § defines an accepting real path in M. Hence, by
Theorem 4.10, Ah is almost everywhere false. The other direction holds trivially

from the definitions. O

4.8 Hardness Results

4.8.1 PSPACE completeness

Theorem 4.12 Deciding universality is complete for PSPACE .

73



Proof. A PSPACE algorithm for the PMCP is presented in Theorem 4.5. To show
PSPACE hardness, suppose that M is a deterministic machine operating in space
polynomial in the size of its input. Without loss of generality, assume that there is
a k, such that on every input x, M uses exactly |z|* space.

Given M and input x, we construct processes C and U such that the (C,U)
family simulates the computation of M on x. First, construct machine N such that
N ignores its input, prints & on the work tape, and simulates M on x. By using
a binary valued mark at each tape cell that is toggled on writing to the cell, N is
guaranteed not to over-write a tape cell with the same symbol on a transition.

The control process simulates N, while the user processes simulate individual
work tape cells. The process C has a counter head with range [0..|z|*) that maintains
the current head position of V. The initial state of C' is the initial state of N, with
head = 0. Each user process chooses a state representing a position on the tape.
The symbol stored in each user process is initially blank.

In the initial state, C checks, using global predicates, that there is at least
one user process at each tape position in the range [0..|z|*). If this is true, C then
proceeds to simulate N. A transition §(p,a) = (¢,b, D) of N is simulated by C' with

the following (we write the transitions in a guarded command language for clarity):

—ichange A state = p A (3i : position; = head : symbol; = a) —
change := true; tosymbol := b
[| change A state = p A —=(3i : position; = head : symbol; = a) —
change := false; state := q; head := head + D

while U has the following transition

changec N tapeposition = headc A symbol = a A tosymbolc = b — symbol := b

Informally, for every move 6(p,a) = (q,b, D) of N, C first sets its tosymbol to
b, then every process with tape position head sets the new value of its stored symbol

to b, after which C' changes its head value. For this last step to execute after the
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second one, it is important that a # b. This is ensured by the marking discipline
given above.

In any instance of the family, every computation where there is initially
at least one user process at each tape position simulates the computation of IV;
otherwise, C' enters a deadlock state, and the computation deadlocks. Let the
property to be verified be AG —accept. If © € L(M), then N enters an accepting
state. For any instance of size at least |z|¥, there is an initial state where each tape
cell is assigned to some user process; hence, there is a computation that accepts, so
the property is false. If ¢ ¢ L(M), then N does not enter an accepting state, so
every computation of each instance does not contain an accepting state; hence, the
property is true of all instances. Thus, z € L(M) iff AG —accept is not universal.
All the constructions can be performed in LOGSPACE. Thus, deciding if a temporal
property over computations of C is not universal is PSPACE-complete . Note that
the property used in the proof is a simple invariance property, and the control

process is deterministic. [l

4.8.2 Undecidability for interleaving semantics

We show that assuming the process structure for C' and U described earlier, but
with an interleaving parallel composition operator, the simplest form of the PMCP,
i.e with type (1) formulas, is undecidable. Essentially, this is so because the V
quantification can be used to simulate the zero-testing actions of a two-counter
machine.

The main idea (cf. [GS 92]) is that C and U are constructed such that
C || U™ simulates the given deterministic two counter machine (henceforth, 2CM)
for at least n steps. The control process executes the program of the 2CM, while the
user processes simulate the two counters. The counters are represented in unary,

and each copy of the user process has sufficient storage for one bit of each counter,
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and some additional boolean flags. Initially, all the flags are false, and all bits are
set to 0.

For clarity, we have expressed the simulation in a guarded command format.
The control process simulates the instructions of the 2CM with an explicit program
counter (PC), used to implement sequential execution in the guarded command

model. An outline of the 2CM simulation follows.

1. Zero Testing : The zero?(z) test (z names a counter) is simulated by

PC = current A —~(3i :: o, = 1) —>zero(z) = true; inc(PC)

[ PC = current A (3i::z; = 1) —zero(z) := false; inc(PC)

2. Increment Counter x : This is done by a four way handshake protocol between

C and one of the U processes that has £ = 0. The code for C' is :

PC = current A —reset A —incer(z) A (Ji iz = 0) —
incr(z) = true
[| PC = current Aincr(z) A (3i :: Donelncr(z);) —
incr(z) := false; reset := true
[| PC = current A reset A =(3i :: Donelner(z);) —

reset := false; inc(PC)

The code for a U process is as follows :

z = 0 Aincr(z)c A —(3i :: Donelner(z);) — := 1; Donelncr(z) := true

[| Donelncr(z) A resetc — Donelncr(z) := false

Notice that if an increment is not possible because all process bits are set to

1, the control process will deadlock.
3. Decrement Counter z : The simulation is similar to that for increment.

Note that both C' and U are deterministic. The non-halting property for C
can be expressed as AG—Halt.
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Theorem 4.13 The PMCP is undecidable even in the simplest case in an inter-

leaving computation model. More precisely, it is co-RE.

Proof. The simulation of a non-halting 2CM will, for any instance, either deadlock
or execute the program forever, never reaching the Halt state. Thus, along every
computation in every instance of size n, G—halt holds, hence AG—Halt is universal.
Conversely, a halting 2CM halts in & steps, for some value of k, and the simulation
will enter a halt state, so AG—Halt is not universal. It follows that the 2CM does
not halt iff AG—Halt is universal, so the PMCP is co-RE. 0

4.9 Conclusions and Related Work

A variety of positive results on the PMCP have been obtained previously. All of
them, however, possess certain limitations, which is perhaps not surprising since the
PMCP is undecidable in general (cf. [AK 86],[Suzuki 88]). Many of these methods
are only partially automated, requiring human ingenuity to construct, e.g., a process
invariant or a closure process (cf. [CG 87, BCG 89, KM 89, WL 89]). Some could
be fully automated but do not appear to have a clearly defined class of protocols on
which they are guaranteed to succeed (cf. [SG 89], [Vernier 93], [CGJ 95]).
Abstract graphs (for asynchronous systems) are considered in [ESr 90] for
synthesis, [Vernier 93] for automatic but incomplete verification, and in [CG 87],
where they are called process closures. Interestingly, [CG 87] show (in our notation)
that if, for some k, C || U* || A is appropriately bisimilar to C | U**! || A4,
then it suffices to model-check instances of size at most k to solve the PMCP.
However, they do not show that such a cutoff & always exists, and their method is
not guaranteed to be complete. Pong and Dubois [PD 95] propose a similar abstract
graph construction for verification of safety properties of cache coherence protocols.
They consider a synchronous model with broadcast actions. Although sound for

verification, their method appears to be incomplete. Lubachevsky [Lubachevsky 84]
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makes an interesting early report of the use of an abstract graph similar to a “region
graph” for parameterized asynchronous programs using Fetch-and-Add primitives;
however, while it caters for (partial) automation, the completeness of the method is
not established and it is not clear that it can be made fully automatic.

Our approach, in contrast, is a fully automated, sound and complete one
(i.e., always generates a correct “yes” or “no” answer to the PMCP). Another such
approach appears in [GS 92]. They also consider systems with a single control
process and an arbitrary number of user processes, but with asynchronous CCS-
type interactions. Unfortunately, their algorithm has exponential space (double
exponential time) worst case complexity.

Our framework thus differs from [GS 92] in these significant respects: (a)
the parallel composition operator is synchronous; (b) we permit guards with “ev-
erywhere” quantification (i.e., of the form (Vi :: £(7))); (c) it is more tractable
(PSPACE vs. EXPSPACE )3. Partial synchrony can also be handled in our frame-
work. These factors permit us to represent a wider range of concurrent systems.
For example, the bus protocol described in Section 4.6 relies on the ability to test
everywhere predicates, which are not permitted in [GS 92]. There is a noteworthy
limitation in the modeling power of our present framework. Because of the covering
property (Lemma 4.1), an algorithm for mutual exclusion cannot be implemented in

our model (cf. [GS 92]’s control process-free model), even with the control process.

4.10 Technical Details
Proposition 4.2 For every path o in Gy, y,(0) is a path in A.

Proof. The proof is by induction on the number of states in o. If ¢ has a single

30n the other hand, for their model of computation with all user processes but no control
process, there is a polynomial time algorithm [GS 92]. We believe that our PSPACE completeness
result is not an insurmountable barrier to practical utility, given BDD-based implementations, as
suggested in section 4.6.
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state s, vn(0) = ¢n(s), which is a path in A.

Assume inductively that the claim is true for all paths of length at most m,
with m > 1. Consider a path o of length m + 1. Then o maybe written as pt. Let s
be the last state in p. Let X = ¢, (s,t), ¢n(s) = (¢, S), and ¢ (t) = (d,T"). As there
is a transition from s to ¢t in G,, there is an enabled transition with guard p for the
control process. Furthermore, from Proposition 4.1 (¢, S) || — p. From the definition
of 1, X is total on S, and X ! is total on 7. For any (a,b) in X, a; = s(i) and
b; = t(i) for some i, so there is an enabled transition with guard ¢ from a; to b; in
Ui, and (¢, S) || — ¢.

Thus, (¢n(8), ¥Vn(s,t), pn(t)) € R4. By the inductive hypothesis, v,(p) is a
path in A ending at the state ¢,(s), so y,(o) is a path in A. Thus, the claim is
true of all finite paths in G,, hence it is true for all infinite paths, as an infinite

computation of the system is the unique limit of its finite prefixes. O

Lemma 4.5 Forn > 1, Gy, g, E N; f(&) iff Gn, g, = F(1).

Proof. The left-to-right direction follows directly from the definition of ;. For the
other direction, if G, g, |= f(1), then 7(G,,), 7(¢g,) E f(m(1)) for any permutation
mover {1..n}. As the system exhibits complete symmetry among the user processes,
7(Gn) = Gn, and 7(g,) = tg,. Hence Gy, ig, = f(m(1)) for any permutation 7.
Choosing 7's appropriately, we have that G,,tg, = f(7) for all ¢ € [1..n]. Hence,
Gn,tg, = /\; f(i) holds. O

For a computation n of (C' <q U) || U™, let 7 be the corresponding computa-
tion of C || U™*!), formed by considering the copy of U in (C <, U) as a separate

process.

Proposition 4.4 The families (C <o U,U) and (C,U) are related in the following

way:
(a) For every computation 1 in (C <o U) || U™, % is a computation in C || U™FL.
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(b) For n > 1, for every computation o in C || UL, there is a computation n in

(C < U) || U™ such that ) = o.

Theorem 4.8 A property of the form A, Ah(i) is universal for a (C,U) family iff
Ah(0) is universal for the control process in the family (C <, U,U).

Proof. Suppose A, Ah(i) is universal for the (C,U) family. From Lemma 4.5, for
n > 1, G, E \;AR(i) iff G, | Ah(1), thus, Ah(1l) is universal. By Proposition
4.4(a), Ah(a) is universal for the control process in the family (C <, U,U). The

argument for the other direction is analogous, and uses proposition 4.4(b). O
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Chapter 5

Verification of a Bus

Arbitration Protocol

5.1 Introduction

In the previous chapter, we presented an algorithm for the verification of parame-
terized synchronous systems. While the problem is decidable, it was shown to be
PSPACE-complete in the size of the system description. This complexity bound may
make it appear that the algorithm is unlikely to be useful in practice. We present
a case study on the verification of an parameterized industrial standard protocol.
The protocol is called the SAE-J1850 protocol [SAE 92}, and is an automobile in-
dustry standard for transmitting data between various sensors and controllers in an
automobile. The system consists of a single-wire bus, to which several controllers
(units) are attached. Since the bus is a single wire, symbols 0 and 1 are transmitted
by encoding them by both the length and the value of a bus pulse. For instance, a
0 may be sent with either a long high or a short low pulse.

Several units may transmit concurrently; the protocol incorporates a dis-

tributed, on-the-fly arbitration mechanism which ensures that only the units trans-
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mitting the highest priority message succeed. Priority between messages (strings
over {0,1}) is determined by lexicographic order, given that the symbol 0 has pri-
ority over the symbol 1. The protocol is correct if it ensures that the arbitration
mechanism functions correctly. We should note here that the protocol as described
in [SAE 92] has other higher-level functionality, which we have not considered, in
order to concentrate our attention on the core arbitration question. The protocol is
further complicated by the presence of arbitrary, but bounded delays in the units
while detecting a change in the bus state. These delays have an electrical origin;
they arise from delays in the detection circuitry, and the presence of different bias
voltages at the units. To accommodate these delays, “long” and “short” are actu-
ally time ¢ntervals, whose length is proportional to the maximum delay. Thus the
protocol is parameterized both by the maximum delay, and by the number of units
taking part in it.

The verification of the protocol proceeds by two applications of abstraction,
one for each parameter. The first abstraction theorem shows a delay independence
property of the protocol : an instance of the protocol with n processes and maximum
delay A is correct iff the instance with n units and maximum delay 2 is correct. Thus,
correctness need be proved only for the family of instances with maximum delay 2.
The second abstraction uses the algorithm in [EN 96] to handle the parameterization
over the number of units in a fully automated manner; the algorithm constructs a
finite “abstract graph”, which represents the entire family of instances exactly, over
which properties can be model-checked. A simple version of this protocol, without
the complexity introduced by the delays, was verified in [EN 96]. The modeling of
the delay not only introduces complexity into the behavior of the units, but also
introduces additional parameterization into the protocol, which is dealt with by the
delay independence theorem.

The success of this effort leads us to believe that careful specification of the
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computational model underlying other protocols will expose constraints that can
be utilized, as in this case, for developing decision procedures for large classes of
protocols. It also exposes a dire need for developing and popularizing notation for
expressing such protocols. Remarkably, the SAE-J1850 document does not contain
a succinct protocol description; the development of such a description was a major
component of this project. The successful verification of the protocol using symbolic
methods, despite the theoretical result on PSPACE-completeness of the procedure
used [EN 96], is reason to believe that fully automated parameterized verification is
feasible for reasonably sized protocols.

The rest of the chapter is structured as follows: Section 5.2 describes the vari-
ous components of the protocol in more detail. Section 5.3 discusses the abstractions
used for handling the parameterizations. In Section 5.4, we describe the implemen-
tation of the [EN 96| algorithm, and its application to this protocol. Section 5.5

concludes the chapter and provides comparisons with related work.

5.2 Protocol Description

The SAE-J1850 protocol is a data transfer protocol over a single wire bus, which
is intended to be used for communication between various sensors and controllers
in an automobile. The restriction to a single wire bus reduces wiring complexity.
An instance of the parameterized system consists of several units connected to a
single bus. The operation of the protocol can be described at the “interface” and
“implementation” levels.

At the interface level, the units communicate by broadcasting messages (se-
quences of symbols from the set {0,1}) over the bus. Units may transmit concur-
rently; arbitration takes place during transmission. The arbitration mechanism is
defined in terms of priority among symbols; the symbol 0 has higher priority than 1.

The priority order among symbols is extended to messages by lexicographic order-
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Length | Trmin | Tzmin | Tzmaz | Trmax
Short | 2.5A 3.5A 4.5A 5.5A
Long 6.5A 7.5A 8.5A 9.5A

Figure 5.1: Interval Lengths

ing. The key correctness property of this protocol is that the arbitration mechanism
works as follows : whenever several units are sending messages concurrently, the
message with the highest priority is placed on the bus.

At the implementation level, since the bus is a single wire, symbols are en-
coded by pulses of differing length and the bus value during the pulse. For instance,
the 0 symbol is encoded by either a “long” high pulse, or by a “short” low pulse.
The high and low states on the bus are referred to as Dominant and Passtve re-
spectively in the SAE-J1850 document [SAE 92], so we will use this terminology in
the rest of the chapter. The state of the bus is an “or” of the bus states desired by
the units. The protocol is further complicated by non-deterministic, but bounded
delays in the units while detecting a change in bus value. This delay is caused either
by bias voltages, or by delays in the detection circuitry. To account for these de-
lays, “long” and “short” are not fixed numbers, but are instead non-empty intervals,
whose length is proportional to the maximum delay parameter, which we term A.

We will continue to use the symbolic names “long” and “short”. There are
four parameters associated with a symbolic length I : Tzmin(l), Trmin(l), Tzmaz (1),
Trmaz(l). Their values are based on a nominal value Tnom(l) and are given by the
formulae : Tzmin(l) = Tnom(l) — A/2, Temaz(l) = Tnom(l) + A/2, Trmin(l) =
Trnom(l) —3A/2, Trmaz(l) = Tnom(l)+3A/2. Tnom(l) is itself proportional to A.
Tnom(Long) = 8 x A, and Tnom(Short) = 4 x A. The values are given explicitly in
the table below:

Note that the interval [Tzmin(l), Tzmaz(l)] is properly contained in the in-
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terval [Trmin(l), Trmaz ()], and that the least Long value exceeds the largest Short
value by A. The core of the protocol is the following procedure followed by each
unit to transmit a symbol with symbolic length [ at a bus value of b (e.g., 0 as a
Short, Passive pulse). At the entry to this procedure, request = b, localbus = b, and
counter = 1.

Informally, the procedure above attempts to maintain the bus at value b for
Tzmin(l) time units. If this attempt succeeds, then it attempts to change the bus
value to —b within Tzmaz(l) time units, so as to terminate the pulse. If that fails,
then the procedure switches to a Passive request, and waits for some other unit to
change the bus value. As the names indicate, [Trmin(l), Trmaz(l)] is the interval
for successful “reception” of the symbol, while Tzmin(l) and Tzmaz(l) are the time
bounds for attempting “transmission” of the symbol. 0 is encoded as either a Short
Passive pulse or as a Long Dominant pulse, while 1 is encoded by the other two
combinations. The asymmetry between Passive and Dominant is used to enforce

the priority order 1 < 0.

5.2.1 Correctness Properties

The correctness property is stated informally in the protocol document [SAE 92] as:
Whenever several units are transmaitting messages concurrently, the message with
the highest priority is the one placed on the bus.

This property can be stated precisely in CTL as follows: Consider n units
connected to the bus, indexed by i, (i € [1,n]). Let M(k) denote the set of message
strings (over {0,1}) of length k. For each i in [1,n], let msg; denote the fixed
message string that is associated with unit ;. Let B denote the message that is
transmitted on the bus (this may be defined as an auxiliary variable that records
symbols as they are transmitted on the bus). Let ¢r; be a boolean auxiliary variable

that records if unit ¢ is transmitting. Let maxz be the function that determines the
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var localbus (* the bus value perceived by the unit *)
var request (* the bus value desired by the unit at the next cycle *)
var counter (* the number of cycles elapsed for this transmission *)
do
counter € [0, Trmin(l)) —
if
localbus = b —>request, counter := b, counter + 1
[| localbus # b — counter := 1; signal FAILURE(* pulse too short *)
fi
[| counter € [Trmin(l), Txmin(l)) —
if
localbus # b — counter := 1; signal SUCCESS
[| localbus = b —request, counter := b, counter + 1
fi
[| counter € [Tzmin(l), Trmaz(l)) —
if
localbus # b — counter := 1; signal SUCCESS
[| localbus = b — request := —b
fi
[| counter € [Tzmaz(l), Trmaz(l)] —
if
localbus # b — counter := 1; signal SUCCESS
[| localbus = b —request, counter := Passive, counter + 1
fi
[| counter > Trmaz(l) — signal FAILURE (* pulse too long *)
od

Figure 5.2: Algorithm to transmit a symbol with length [ and bus value b.
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maximum message of a set of messages, according to the lexicographic priority <
on messages. If the set is empty, maz has value €, the empty string. The following
CTL formula expresses the property above:

(CO) (Vm :m € M(k) : AG(mazT = m A B =¢€= A(B 2 mUB =m))),
where mazT = maz{i: i € [1,n] Atr; : msg;}

This expression is of finite length for fixed k. Verification of this property for
a fixed k requires adding state to each unit to store message contents, which makes
the state space intractably large. To solve this problem, we modify the environment
of the protocol so that the message sent by a unit is generated on the fly. At any
state, let sent; denote the message sent by a unit. The modified correctness property
is as follows :

(C1l) AG(mazS = e AN B = € = AG(B = mazS)), where mazS = maz{i: i €
[1,n] Atr; : sent;}

Informally, this property states that starting at any state where both the
message on the bus and that at the units is empty, at any point of time the message
on the bus is equal to the lexicographic maximum of the messages sent by the
currently transmitting units. This implies that B must increase (lexicographically)
as long as there is a transmitting unit.

While the new environment is simpler, the statement of the property still
involves several unbounded auxiliary variables. Instead of checking this property,
which refers to the history of a computation, we check several properties that deal
with the transmission of a single symbol. We show in Lemma 5.1 that their con-
junction implies (C1). The statement of these properties requires some auxiliary
propositions : insym holds at states where B = € or the state is at least A time
units from the last bus state change; E0sender holds iff there is a transmitting unit
with current symbol 0; Elsender holds iff there is a transmitting unit with current

symbol 1.
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Let before(z) = A(insymU(insym A z)), at(z) = A(insymU(—insym A z)),
and after(z) = A(insymU(—insymU(insym A z))). Informally, before(x) holds iff =
is true at some point before the next bus change, at(z) holds iff z is true at the
following bus change, and after(z) holds iff « is true just after the bus change is
complete.

A stable state on an execution sequence is one where B = ¢, or the state is
at A time units after the last bus value change. By the protocol definition, in this
state every unit perceives the new bus value. A stable state is the first state for
which insym is true after a bus change.

(C2a) In any global state where symbol transmission is in progress, and there
is a unit sending 0, the next bus value is 0. In CTL, this is specified as

AG(insym A EOsender = at(value = 0))

(C2b) In any global state where symbol transmission is in progress, if there
is a unit sending 1, and no unit sending 0, the next bus value is 1.

AG(insym A —E0sender N\ Elsender = at(value = 1))

The properties above are global properties. The following are properties of
every unit, expressed in an indexed temporal logic (cf. [RS 85],[BCG 89)):

(C2c) In any global state where symbol transmission is in progress, every
unit transmitting 0 succeeds, and continues to transmit until the next insym state.

N; AG(insym A tr; A (sym; = 0) = after(tr;))

(C2d) In any global state where symbol transmission is in progress, and
there is a unit sending 0, every unit transmitting 1 fails before the bus symbol is
determined.

N, AG(insym A EOsender A tr; A\ (sym; = 1) = before(—tr;))

(C2e) In any global state where symbol transmission is in progress and there
is no unit sending 0, every unit transmitting 1 succeeds, and continues to transmit

until the next insym state.
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N, AG(insym A ~EOsender A tr; A (sym; = 1) = after(tr;))
Lemma 5.1 Properties (C2a)-(C2e) imply Property (C1).

Proof.

We show by induction on the number of stable states on any computation
from a state with B = € and mazS = € (the Oth stable state) that the following
property holds:

(IH) At the the kth stable state, B is the maximum of the messages sent
by units that were transmitting at the start of previous stable bus state if & > 0,
otherwise it is €. Every transmitting unit has sent B.

Basis : £k = 0. The message on the bus as well as the message at every
transmitting unit are both €, so the claim holds.

Inductive step : Assume that (IH) holds at the kth stable state. If some
unit transmits 0 at this state, by (C2a) the next symbol on the bus is 0. By (C2c),
any unit transmitting 0 is transmitting at the next stable state. By (C2d), all units
transmitting 1 fail before the next stable state.

If some unit transmits 1at this state and no unit transmits 0, then by (C2b),
the next bus symbol is 1, and by (C2e) every unit transmitting 1 is still transmitting
at the next stable state. By (IH), at the kth stable state, all units transmit the
lexicographic maximum among the sent messages, hence, at the next stable state,
the value of B is still the maximum among the messages sent. In either case, the

inductive hypothesis holds. U

5.3 Abstractions

The procotol as described is parameterized by both the maximum delay parameter
A, and the number of units N. Let P(N,A) stand for the instance of the protocol

with NV units and delay A. This parameterization makes the protocol infinite-state,
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hence Model Checking cannot be applied directly to determine its correctness. We
apply two abstractions that reduce the protocol to an equivalent finite-state system.
The first abstraction demonstrates a delay insensitivity property of the protocol : for
every N, P(N,A) is correct iff P(IV,2) is correct. Hence, protocol correctness need
be checked only for the set of instances with maximum delay 2. However, this is
still a parameterized, infinite-state protocol. This parameterization can be handled
with the algorithm presented in [EN 96]. This algorithm abstracts away the number
of units, constructing a finite “abstract graph”, which encodes all instances of the
system. Model Checking the abstract graph created by this unit is thus equivalent
to checking the doubly parameterized SAE-J1850 protocol. Experimental details

are presented in the following section.

5.3.1 Delay Insensitivity

As noted in the protocol description, the timing parameters are proportional to the
parameter A. In an underlying dense time model, each test of a clock variable z is
of the form = € (I« A,r x A) (the angled brackets indicate either a open or a closed
end to the interval), and each reset of = is of the form z := choose(l x A ;r * A),
which assigns to x a nondeterministically chosen value from the interval. It is then
straightforward to show that if the intervals (IxA, r+xA) are changed to (I, r) (dividing
through by A), the resulting un-parameterized system has the same computations
w.r.t. the non-clock variables as the original one. This is so since global states
with identical non-clock values and clocks related by scaling with A are bisimilar.
This class of systems thus forms a decidable instance of parameterized real-time
reasoning (cf. [AHV 93)).

Since our model of the bus system is over integer time (each transition takes
1 time unit), we cannot use this result. The protocol, however, satisfies additional

properties that make a similar reduction possible. We show that any execution of
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P(n,d) (d even and at least 2) can be simulated by an execution of P(n,2), in the

sense that the sequence of symbols on the bus is the same.

Lemma 5.2 Let o be an execution of P(n,d) (d even and at least 2). Let | be the

symbolic length of the time interval between successive stable bus states in o. Then

1. Every unit sending a symbol with a different length is aborted by the start of

the next stable state, and

2. Every unit sending a symbol with the same length is transmitting at the start

of the next stable state. O

Theorem 5.1 Let o be an execution of P(n,d) (d even and at least 2) from a stable
state. There is an execution v of P(n,2) such that the sequence of symbols on the

bus is identical in o and 7.

Proof.

We construct v inductively. For each i, v4; ends in the ¢th stable state,
the symbols on the bus in 7; and in the subsequence of o up to and including
the ith stable state are identical, and the local states of corresponding units in
the ¢th stable states are the same except for, possibly, the counter values. The
counter values, must however, satisfy the relationship : for any pair of units p, g,
counter, < counter, in the ith stable state in o implies that counter, < counter,
in the ¢th stable state in 7.

Let v9 equal og. Let p be the unit that determines the bus change that
results in the (¢ 4 1)st stable state. For a Passive to Dominant change, p is the first
unit to request a Dominant bus state, and for a Dominant to Passive change, p is
the last unit to request a Passive bus state. At each stable state, all units begin
transmission of their symbol with request identical to the current bus value. Thus,
the change by unit p can occur only at counter, = Tzmin(l), where [ is the length

that p sends its symbol at. Tzmin(l) = (a/2) * A, for some a.
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The order of counter values is the same in the ith stable state in . As the
counter value in each unit does not decrease until a bus change or a termination of
transmission, in every execution starting at the ith stable state in ~, unit p still is
one of the units that determine the bus change. As the change of bus state occurs at
the same multiple of A, the symbolic length, and hence the symbol on the bus is the
same. From the previous Lemma, the units un-aborted at the (i + 1)st stable states
in v and o are the same. There exists a execution where within A units after the
bus change, counter values for unaborted units are chosen in the order of counter
values at the (i + 1)th stable state of o. Hence, the inductive hypothesis holds. [

We obtain the following theorem as a corollary:

Theorem 5.2 (Delay Insensitivity) P(n,d) is correct for every even d, d > 2,
iff P(n,2) is correct.

Proof.

The direction from left to right follows by instantiating d with 2. For the
direction from right to left, note that if P(n,d) is incorrect for some d, then it con-
tains a computation where the sequence of symbols on the bus is not the maximum
of the sent messages. By the previous theorem, this computation can be simulated
by one in P(n,2), so P(n,2) is incorrect. O

Proof of Lemma 5.2:

Note that at a stable state, all units have the same requested bus state,
although they may be transmitting different symbols with differing lengths. In the
interval between stable states, for any pair of units p, g, |counter, — countery| < A.

(i) The length of the interval is Long. Let p be the unit determining the new
symbol. As the bus change occurs when p’s counter value equals Tzmin(Long),

Tzmin(Long) — A < counterqy < Tzmin(Long) + A, for any unit g, ie.,
6.5A < counter, < 8.5A.

If ¢ sends a symbol by a short pulse, as Trmaz(Short) < 6.5A, g aborts by
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the time that the bus changes state. If ¢ sends by a long pulse, its counter value
remains in the interval [ Trmin(Long), Trmaz (Long)] up to the next stable state, by
which time the new bus state is perceived by gq.

(ii) The length of the interval is Short. Let p be the unit determining the new
symbol. As the bus change occurs when p’s counter value equals Tzmin(Short),

Txmin(Short) — A < countery < Txmin(Short) + A, for any unit g, ie.,
2.5A < countery < 4.5A.

If ¢ sends by a long pulse, then as Trmin(Long) = 6.5A, g aborts by the
next stable state (which occurs in the interval [3.5A,5.5A]). If ¢ sends by a short
pulse, its counter value remains in the interval [ Trmin(Short), Trmaz (Short)] up to
the next stable state, by which time the new bus state is perceived by g.

Hence, every unit sending a different length aborts, and every unit sending

a symbol with the same length is live at the next stable state. O

5.3.2 Many-Process Verification

The delay insensitivity theorem (Theorem 5.2) shows that it is both necessary and
sufficient to check every instance with delay 2 in order to check correctness for
instances over all other delay values. While this eliminates consideration of the
delay parameter, the reduced system is still infinite-state, as it is parameterized by
the number of units taking part in the protocol.

Verification of this parameterized system can be carried out fully automat-
ically using the algorithm described in [EN 96]. This algorithm is based on a syn-
chronous control-user model, where the instances of the parameterized system con-
sist of a fixed control process C, and many copies of a fixed user process U. The
n-process instance can thus be described by C || Uy || ... | U,, where || denotes
synchronous composition. In the SAE-J1850 protocol, the control process models

the behavior of the bus, while the user process models the behavior of a single
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unit, together with some machinery for modeling the delays in detecting bus value
changes.

The algorithm of [EN 96] constructs a finite-state “abstract graph” for such
a control-user parameterized system which is an abstraction of the entire family of
instances. The states of the abstract graph record only the state of the control
process, and for each local user state, whether there exists at least one user process
in that state. The Lemma below gives a way of checking safety properties of the
family. Liveness properties may be checked in two ways : (a) As the abstract graph
simulates every instance, if the liveness property holds of the abstract graph, then it
holds of the family, (b) An algorithm is provided in [EN 96| for exactly determining

whether the liveness property holds of every instance.

Lemma 5.3 [EN 96/ The abstract graph simulates every instance of the family.
Every finite path in the abstract graph corresponds to a finite computation of some

mstance.

The paper also shows how to check properties of the form A; Ag(i) by reduc-
ing them, using symmetry arguments (cf. [ES 93],[CFJ 93]) to checking a property
Ag(0) of the control process in a modified control-user system, which has the same

user process, but has C' = C || U as the new control process.

5.4 Implementation Details

The behavior of the bus and the units as specified in the protocol is coded as a
SMV [McMillan 92] program. The transition relation of the abstract graph is gen-
erated automatically by a program which takes the specification of control and user
processes (in C), and generates SMV code describing the transition relation of the
abstract graph. This is done by enumerating the reachable local states for a single

user process, then generating each transition of the abstract graph by inspection of
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the local transitions in the unit. States of the abstract graph are represented by
subsets of the local user state space. Each subset indicates the presence of at least
one user process in that local state, as discussed in the previous section. Thus, for
a local user transition s — ¢, the corresponding abstract graph transition adds ¢
as a member of a abstract state following one that has s as a member.

For the singly parameterized system with A = 2, each unit has 254 reachable
states; thus, the number of Boolean variables needed to encode an abstract state
is also 254 (subsets are encoded as a boolean membership vector). The correctness
properties C2(a) - C2(e) were checked together on the abstract graph. Since some
of these properties are liveness properties, they were checked on the abstract graph
using the fact that it simulates every instance. Every property succeeds on the
abstract graph, so that we can infer that properties C2(a) - C2(e) hold of the
parameterized system with delay 2, which by Theorem 5.2 implies that they hold of
the completely parameterized system. By Lemma 5.1, this implies that the desired
correctness property, (C1), holds of the completely parameterized system. We did
not have to invoke the potentially expensive but exact method for checking liveness
properties.

These checks take about 8 MB and 35 seconds on an Intel Pentium 133 with
32 MB of main memory. Conjunctive partitioning of the transition relation and pre-
computation of the reachable states (the strongest invariant) is used. 24 iterations
are needed to compute the reachable state space. Incidentally, checking a 15 unit

instance takes roughly the same amount of time but less space.

5.5 Conclusions and Related Work

Verification of parameterized systems is often done by hand, or with the help of a
mechanical theorem prover (cf. [CM 88], [MP 92], [HS 96]). Several methods have

been proposed that, to various degrees, automate this verification process. Meth-
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ods based on manual construction of a process invariant are proposed in [CG 87],
[SG 89], [KM 89], [WL 89], [LSY 94|, and have been applied for the verification of
the Gigamax cache consistency protocol in [McMillan 92]. These constructions have
been partially automated in [RS 93], [CGJ 95] (cf. [Vernier 93],[PD 95],[ID 96));
however, as the general problem is undecidable [AK 86], it is not in general possi-
ble to obtain a finite-state process invariant. For classes of parameterized systems
obeying certain constraints, [GS 92], [EN 95], [EN 96| give algorithms (i.e., decision
procedures) for model-checking the parameterized system. These papers demon-
strate the methods on simple verification examples; we believe that our case study
is one of the few examples of verification of a large and complex parameterized pro-
tocol. It is likely that the delay insensitivity theorem is an instance of a general
theorem for such types of systems; given such a theorem, the verification of this
protocol could be indeed fully automated.

We believe that careful specification of the computational model underlying
other protocols will expose constraints that can be utilized, as in this case, for
developing decision procedures for large classes of protocols. There is also a need for
developing and popularizing notations for expressing such protocols. Remarkably, in
the SAE-J1850 document (over 100 pages), there is no succinct protocol description;
the description given in Section 5.2 had to be culled from the entire text. The
successful verification of the protocol, despite the theoretical result on PSPACE-
completeness of the procedure [EN 96|, is reason to believe that fully automated

parameterized verification is feasible for reasonably sized protocols.
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Chapter 6

On Model Checking Infinite
State Systems

6.1 Introduction

Model Checking refers to a collection of algorithms for automatically checking tem-
poral properties of finite state systems [CE 81, QS 82, CES 86, LP 85]. Model
Checking is well established as a verification method in large part because it is fully
automated, and because most model checking algorithms produce a counter-example
if the correctness property does not hold of the system. Inspired by the success of
Model Checking, there is now increased attention to developing such algorithms and
procedures for infinite state systems.

This effort is motivated by two tasks : the verification of systems parameter-
ized by the number of processes, such as distributed protocols, and the verification
of a fixed set of processes communicating over unbounded channels. Such systems
are commonplace and generate an infinite state space, in the first case from the
infinite number of instances, each with a fixed number of processes, and in the sec-

ond case from the unboundedness of the communication channels. State explosion,
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the limiting factor to the practical application of Model Checking algorithms, often
arises in such parameterized systems for large instances. Thus, a solution for the
general problem also helps ameliorate state explosion.

Algorithms are known for model-checking many types of infinite-state sys-
tems: Petri Nets [Esparza 94|, asynchronous parameterized protocols [GS 92], timed
automata [AD 91], hybrid systems [Henzinger 95|, parameterized token-ring proto-
cols [EN 95] and parameterized synchronous protocols [EN 96]. For other types of
systems, semi-algorithmic procedures have been proposed [PD 95, ID 96, BG 96,
BGWW 97].

In an interesting recent paper [ACJT 96] (cf. [Finkel 90]), it is pointed out
that programs in these formalisms induce “well-quasi-ordered” (wgo ) transition sys-
tems. This condition, together with additional properties, is shown to make the
model-checking of safety properties decidable. The question of deciding general
liveness properties is, however, left open. The algorithm for safety properties in
[ACJT 96] computes EF bad as a fixpoint, i.e., in a “backward” direction, start-
ing with the set of states where bad holds. More recently, [KMMPS 97] explores
the use of automata as representations for infinite sets of states in general fixpoint
computations.

Many of the known algorithms, however, are based on a “forward” search,
starting with the set of initial states [GS 92, Esparza 94, BG 96, EN 96]. Algorithms
based on quotients w.r.t. a bisimulation equivalence [AD 91, Henzinger 95] are also
forward searches as the incremental computation of the quotient structure proceeds
in a forward direction.

In this chapter, we propose a new type of “covering graph” construction
as a general method of forward search for Model Checking. The covering graph
construction for Petri Nets is developed by Karp and Miller [KM 69], where it is used

to decide covering and boundedness questions. Finkel [Finkel 90] generalized this
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construction to arbitrary deterministic wqo systems to decide the same properties.
We show that neither the well-quasi-ordering, nor the restriction to deter-
ministic systems is necessary for checking safety properties. The essential feature of
the covering graph construction is the use of a simulation preorder on the infinite
state space. The simulation relation is used to detect potentially infinite paths,
and “compress” them by replacing the path with the least upper bound (w.r.t. the
simulation preorder) of the set of states occurring on the path. We prove that each
node of the covering graph has an associated set of reachable states, which makes
it possible to model-check safety properties. For liveness properties, well-quasi-
ordering of the simulation relation has an important consequence : we show that
there is a finite witness for the satisfaction of Eh formulas, where h is a linear-time
temporal property. The finite witness can be searched for in the covering graph,
given an algorithm for determining if a strongly connected component is “good”;
i.e., has the “tail” of the witness path embedded in it. Both results apply to general
non-deterministic systems, thus providing a framework under which to explore the
decidability of model-checking for non-deterministic infinite-state systems.
Although termination is not guaranteed in general (cf. [Finkel 90]), many of
the forward search algorithms [AD 91, GS 92, EN 96] can be developed in a simple,
uniform fashion from the new construction. Furthermore, the construction exposes
the key ideas common to these algorithms and other procedures [PD 95, BG 96].
Despite the wide variety among these formalisms, these model-checking procedures
are based on common high-level ideas. This is a strong indication that the cover-
ing graph construction is appropriate for analysis of infinite-state systems, even for
computation models that are Turing-powerful for which termination cannot be guar-
anteed. We also consider the new application domain of parameterized broadcast
protocols. The new approach is illustrated on the verification of an invalidation-

based (MESI) cache coherency protocol, which is shown, fully automatically, to
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satisfy correctness properties for an arbitrary number of processes.

The rest of the chapter is structured as follows. Section 6.2 contains pre-
liminaries; Section 6.3 introduces the covering graph construction and the model-
checking procedure for safety properties. Section 6.4 deals with liveness proper-
ties. In Section 6.5, we describe how many known algorithms may be derived uni-
formly from the construction, and introduce the application domain of parameter-
ized broadcast protocols. Section 6.6 concludes the chapter with a discussion of
related work and future directions. Some technical lemmas are presented in Section

6.7.

6.2 Preliminaries

Infinite-state systems are represented as Labeled Transition Systems and linear tem-
poral properties by automata on infinite strings. This section contains the definitions
of these concepts and their basic properties. Quantified expressions are written in
the format (Qx : 7 : p), where Q is the quantifier,  the bound variable, r the range,

and p the expression being quantified. The powerset of a set S is denoted by P(S).

6.2.1 Quasi orders and Partial orders

A binary relation < on set S is said to be a quasi-order (or preorder) if it is reflexive
and transitive. The pair (S5, <) is called a preset (for preordered set). If < is
symmetric it is an equivalence relation, and if it is antisymmetric it is a partial
order and (S, <) is called a poset.

In a poset (5, <), an element c is an upper bound of a subset X iff (Vo : z €
X : z = ¢). The least upper bound (lub) of X, if it exists, is the upper bound of
X that is the minimum w.r.t. < among the set of upper bounds of X. A subset
X is directed iff any pair of elements in X has an upper bound in X. A a function

C : N — S is a chain iff for every ¢ € N, C(i) < C(i + 1). The set of elements of
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a chain C, C, equals {C(i)|i € N}. The poset is a complete partial order (cpo) iff

every directed subset has a least upper bound.

Definition 6.1 (Well-Partial-Order, wpo) For a poset
(S, =), = is a well-partial-order iff for every infinite sequence o of elements of S,

there exist positions 1,57 € N such that i < j and o; < oj.
A preorder (5, <) is a well-quasi-order iff the induced partial order is a wpo.

Proposition 6.1 (cf. [Fraisse 86]) For a preset (S, <), < is a wqo iff every infinite

sequence of elements of S contains an infinite sub-sequence that is a chain.

6.2.2 Ordered transition systems

Labeled transition systems (LTS’s) are defined in Chapter 2. We will work with
LTS’s that have a finite number of actions and where the state labels are derived
from a finite set of atomic propositions, AP. The label of each state is a subset of
AP; i.e., the propositions true at that state. Such an LTS is written as a structure
(S,%,R,I,AP, L). We write s—>t instead of (s, a,t) € R, s—t for (Ja:a € & : s-5t),
st if t is reachable from s, and st if ¢ is reachable in at least one step from s.
For sequences of symbols from 3, the function : P(S) — P(S) is defined recursively
by € X) = X, a(X) = {t|(3s: s € X : s5t)}, and @ a(X) = a(@(X)). Informally,
a(X) is the set of states reachable from states in X by performing the actions of «

in order.

Definition 6.2 (Simulation) A relation <1 on S is a simulation on A iff for any
states s,t such that s <A t, L(s) = L(t), and for every a,u such that su, there is v

such that t->v and u < v.

Definition 6.3 (Ordered LTS) The pair (A, =) is called an ordered LTS iff < is

a simulation on A and a wgoon S.
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Several important ways of specifying systems give rise to ordered LTS’s:

1. Finite LTS’s with the identity preorder, as any infinite path contains a repeated

state.

2. Vector Addition Systems (VAS) [KM 69], as the component-wise ordering of
vectors over N¥ (the state space of a VAS), given by u < v iff (Vi : i € [0,k) :

u; < v;), is a wpo .

3. Petri Nets and Vector addition systems with states (VASS) [Reisig 85] are

equivalent to VAS’s.

4. Real-Time Automata [AD 91], as the bisimulation equivalence on clock values

has finite index.

5. Finite state machines communicating over restricted FIFO channels [FR 88]

or lossy channels [AJ 93], as the orderings on channel words are wqo’s.

6. Parameterized protocols [GS 92, EN 96], where the state space is encoded
either as a VASS [GS 92] or by constraints [EN 96].

Biichiautomata (see Chapter 2) are used to specify temporal correctness
properties. Propositional linear temporal formulae can be translated into equivalent
Biichiautomata (cf. [Thomas 90]). We adopt the automata-theoretic approach
to Model Checking [VW 86], in which the negation of the correctness property is
expressed by a Biichiautomaton B, and every computation of an LTS A satisfies
the correctness property iff the set of computations of the “product” C = B x A is
empty. Given a simulation preorder < on A, define <’ on C by (b,s) =<' (¢, t) iff

b=cand s <t
Proposition 6.2 If (A, <) is an ordered LTS, then (C,=') is an ordered fair LTS.
Proposition 6.3 Accepting runs of B over A correspond to computations of C.
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6.3 Model-Checking Safety Properties

The negation of a linear-time safety property can be expressed as an automaton on
finite strings, instead of a Biichi automaton. The system satisfies the safety property
iff no finite path of the system is accepted by the automaton, which holds iff in the
combined system there is no path to an accepting state.

The Karp-Miller construction for Petri Nets [KM 69] is a sophisticated ver-
sion of the naive reachability procedure. The key idea is to “compress” paths that
are potentially infinite, using a simulation preorder. We develop below a new gen-
eralization of the Karp-Miller construction geared towards Model Checking.

We work with an LTS A = (S,%,R,I, AP, L), where ¥ and AP are both
finite. As ¥ and AP are finite, one can augment the edge labeling to ¥ x AP, where

(a.0)

l
st in the new labeling iff s-%¢ and L(t) = [. This relabeling induces the following

labeling property : For any subset X of states, and a new action label (a,l), states in
W(X ) have identical state labels. For the rest of the paper, the system is assumed
to have the labeling property.

Let a uniform subset of S be a set where any two members have the same
state label. The set of uniform subsets of S is denoted by U(S). The label of a
uniform subset X, denoted by A(X), is the common label of its members if the set

is non-empty and a special value L if the set is empty. Let C be a relation on U(S)

with the following properties :

1. C is a pre-order, such that if X C Y then A(X) = A(Y). Let = denote the
equivalence generated by C. e, X Y if X CY and Y C X.

2. For any action symbol a, @ is monotonic w.r.t. C. Le., for any X, Y, X C Y

implies a(X) Ca(Y).
3. (U(S)] =~,C) is a complete partial order (it cpo).
4. For any chain C over U(S), lub C ~|JC.
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5. For any s and any uniform subset X, if s € X then {s} C X. If (4, <) is an

ordered LTS and {s} C X, there exists t € X such that s <t.
Lemma 6.1 X =Y implies a(X) =~ a(Y).

Lemma 6.2 Let C and D be chains such that for every i in N, C(i) = D(i). Then
lub C ~ lub D.

The proofs of these Lemmas are quite straightforward and are deferred to

the appendix.

6.3.1 The Covering Graph Procedure

The procedure constructs a covering graph incrementally. Each node n of the graph
is labeled by a non-empty uniform subset, which is denoted by L(n). The subsets are
usually infinite so, in practice, finite representations and methods of manipulating
such representations are needed. We describe some such representations in Section
6.5; the properties of the algorithm are independent of the representation method.

The function rep maps a uniform subset to its representative, so that for any
subset X, rep(X) ~ X. The graph is constructed by the following nondeterministic

procedure. New is the set of unexamined (node, edge label) pairs.
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Begin

e Choose a finite partition of the set of initial states into uniform subsets.
For each set X in the partition, an initial node n of the covering graph

is created with L(n) = rep(X). For each a € ¥, add (n,a) to New.

e Repeat the following process as long as New is non-empty :

Choose and remove a pair (n,a) from New. Let Y =a(L(n)). Y %0,

perform these actions in order:

(Cover) If there is a node m such that Y C L(m) : make m the a-successor

of n.

(Limit) If there is a predecessor k of n on a path 7, with L(k) = Z, such
that L(n) = 7(Z) and ZC Y :
Let 8 = v;a. Define C by C(i) = 3i(Z) for i € N. Create a node
m labeled with rep(WW') as the a-successor of n, where W = lub C.
For each a € X, add (m,a) to New.

(Step) Create a node m labeled with rep(Y') as the a-successor of n. For

each a € X, add (m,a) to New.

End

The Covering Graph Construction Procedure.

In the second alternative, note that 8°(Z) = Z C Y ~ (!(Z). From this
initial condition and the monotonicity of 3 (property (2) of C), it follows that
C is indeed a chain, and by property (3), lub’s of chains exist. The construction
procedure is nondeterministic, so several possible covering graphs may be generated.

The theorems below hold for every such graph.

Theorem 6.1 For every node n, there is a non-empty reachable set of states R
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such that L(n) = R.

Proof. We prove that this property is an invariant of the procedure. It holds of
the initial nodes by their definition and the property of rep.

Assume that the property holds at the beginning of an iteration. Let (n,a)
be the choice from New.

(1) The first alternative is taken. As the set of nodes of the covering graph
is not changed, the invariant holds.

(2) The second alternative is taken and a new node is added with label
rep(W'). From the invariant, there is a non-empty, reachable subset of states R such

that Z ~ R. So for the new node m,

rep(W)
~ ( by definition of C and property of rep )
lub {Bi(Z)]i € N}
~ ( from Lemma 6.1 §i(Z) ~ B‘(R); Lemma 6.2)
lub {#(R)]i € N}
~ ( property (4) of C )
U{B'(R)|i € N}

U{B(R)|i € N} is a set of reachable states by definition, and is non-empty
as it has R as a subset.

(3) The third alternative is taken and a new node is added with label rep(Y').
From the invariant, there is a non-empty reachable subset of states R such that

L(n) = R. So for the new node m,

rep(Y)
~ ( by property of rep )
Y
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~ ( by definition of Y )
a(L(n))
~ ( from Lemma 6.1 )

a(R)

a(R) is a reachable set of states as R is reachable. As Y % 0, a(R) is non-

empty. O

Definition 6.4 (Covering simulation) Let < be the relation defined between

the LTS A and the covering graph by s < n = {s} C L(n).
Theorem 6.2 Every Covering Graph simulates the underlying LTS by <1 .

Proof.

Suppose s <in and L(n) = X. By property (1) of C, L(s) = A(X). Let t be
any state such that s¢. Then t € a({s}), hence @({s}) is non-empty. By property
(5) of C, {t} C a({s}). By property (2) of C, a({s}) C a(X). As {t} C a(X),
a(X) % 0, so n has a successor m on action a.

An invariant of the procedure is that for any edge (k,a,l) in the graph,
a(L(k)) C L(I). It follows that a({s}) C L(m), so {¢t} C L(m) and ¢ <m. This proves
that < is a simulation relation. 0

Several choices for C have the necessary properties:
e [ is the subset relation.

e Let < be a simulation relation on the LTS that is a pre-order. Then, X C Y,
defined as (Vs:s € X : (Jy:y €Y : z <y)), is a pre-order that satisfies the

conditions.
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e The same preorder restricted to directed subsets, is appropriate for determin-
istic LT'S’s. For non-deterministic LTS’s, a stronger form of directedness is

needed, which is discussed in Section 6.7.

Theorem 6.3 (Model-Checking Safety Properties) There is a reachable ac-
cepting state of the combined system iff there is a covering graph node labeled as

accepting.

Proof.

For any reachable accepting state s, by Theorem 6.2, there is a node n in
the covering graph such that {s} C L(n). As A({s}) = A(L(n)) by property (1) of
C, n is an accepting node.

Conversely, by Theorem 6.1, for every reachable node n of the Covering
Graph, there is a non-empty reachable subset R such that L(n) ~ R. By property
(1) of C, A(L(n)) = A(R), so that every state in R is accepting. O

6.4 Model-Checking Liveness Properties

Checking if a finite-state fair LTS has a computation is straightforward : the
NLOGSPACE algorithm searches for a “looping” path of the form sogsgs, where
s is a fair state (cf. [SVW 87]). The following theorem shows that the concept of
a finite “looping” path is easily extended to the concept of a finite “self-covering”
path for an ordered fair infinite-state system. Put differently, ordered fair LTS’s
have a finite witness for non-emptiness of the set of computations, even though the

LTS may have an infinite number of states.

Definition 6.5 (Self-covering fair path) A self covering fair path in an ordered
fair LTS (A, F, =) is a finite path of the form si>ti>u, where s is an wnitial state,

t<u, andt € F.
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For the rest of this section, let (A, <) be an ordered LTS, and B a Biichi

automaton. Let C represent the product of B and A.

Theorem 6.4 There is an accepting run of B on A iff there is a self-covering fair

path in C.

Proof.

(=) By Proposition 6.2, C is an ordered fair LTS, with the induced preorder
=<' defined by (b,s) <' (¢,t) iff b=c and s < t.

Let o be an accepting run of B over A. From Proposition 6.3, ¢ is a com-
putation of C. As B is finite-state, some accepting state b from B appears infinitely
often along o. Let § be the infinite subsequence of o obtained by retaining those
states with automaton component b.

As C is ordered, by Proposition 6.1, § has an infinite subsequence vy that is
a chain w.r.t. =<'. Thus, there exist distinct states ¢,u on § such that ¢ <’ v and
t is a fair state. Since t is reachable from the initial state s of o, s5t5y forms a
self-covering fair path in C.

(<) Let s>t%u be a self covering fair path in C. As ¢t <’ u and <’ is
a simulation, for some v, uv with u <’ v. Continuing in this manner, define an
infinite path labeled by y“ from wg = t, where for every i, wiiwi+1 and w; <" wii1.
As wy is a fair state, and wy <’ w; for every 1, it follows from the definition of C that
each w; is a fair state. Hence the sequence of transitions x;y“ induces an infinite
path from s that is infinitely often fair. By Proposition 6.3 this computation is an
accepting run of B on A. g

Theorem 6.4, when combined with the automata theoretic approach to Model
Checking [VW 86|, transforms the Model Checking problem for an ordered LTS to
determining if a self-covering fair path exists in the ordered fair LTS formed by the

product of the LTS with the Buchiautomaton for the negation of the correctness

property.
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Definition 6.6 (Positive sequence) A finite sequence of transitions o of A is
called positive for s iff (3t : s>t : s < t). An ordered LTS has the positive path
property iff whenever o is positive for s, for any u such that s < u, there exist v

and j such that j >0, u=v, o7 is positive for v, and v is fair if u is fair.

Note that every VASS has the positive path property. Any sequence o that
is positive for a state s has non-negative vector sum. Hence, for every u such that

s = u, o is positive for u; i.e., j = 1 and u = v in the definition above.

Definition 6.7 (Good SCC) A strongly connected component (SCC) of the cov-
ering graph is good uff it contains a fair node n such that there is a finite path in

the component from n which is positive for a state s such that s < n.

Theorem 6.5 For any finite covering graph of C, any self-covering fair path in C
induces a good SCC in the covering graph.

Proof.

Let s—t->u be a self covering path in C. As t < u, o is a positive path for

Consider an infinite path p labeled with o“ starting at ¢ (such a path exists;
cf. the proof of Theorem 6.4). Let m be a node in the covering graph such that
t <1 m (m exists from Theorem 6.2). By Theorem 6.2, 0“ induces an infinite path 7
through the covering graph from m. Consider the set of nodes of the covering graph
occurring on 7 after each prefix ¢ for i € N. Since the covering graph is finite, there
is a repeated node n in this set. Let mina—’;n be the prefix of n up to the second
occurrence of n. Let u be the state on p after the prefix o!. From these definitions
u < n, hence n is a fair node of the covering graph. From the construction of p,

k

o¥ is positive for u. The cycle induced by o* in the covering graph from n defines

a good SCC of the covering graph. 0
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Theorem 6.6 If C has the positive path property, then a good SCC in the covering

graph induces a self-covering fair path in C.

Proof. Let n be the state in a good SCC from which there is a finite path o that
is positive for a state s such that s << n. From Theorem 6.1, there is a non-empty
reachable set of states R such that L(n) ~ R. By the definition of <1 and the
transitivity of C, {s} C R.

By Property (5) of C, there is a state ¢ in R such that s < t. By the positive
path property, there exist u, j such that t->u and 7 (j > 0) is positive for u, which
implies that there is a state v such that ua—jw with 4 < v. Since t is fair, so is u.
Since t is reachable from some initial state w, wtSubo forms a self-covering fair
path in C. U

Specific choices for the simulation relation, and the representation of subsets
for the construction are discussed in the following section. To check if a property
specified by a Buchiautomaton B for its negation holds for an ordered LTS A, one

must
1. Define the product C = B x A.
2. Pick an appropriate relation C, and construct a finite covering graph.

3. As the covering graph simulates C, one may determine if the property holds by
checking it on the covering graph. If this fails, an algorithmic test to determine
if an SCC of the covering graph is good is required, provided that C has the
positive path property.

Theorem 6.7 (Model-Checking Liveness Properties) Let A be an ordered
LTS and B be a Buchi automaton for the negation of the correctness property such
that B X A has a finite covering graph. If B x A has the positive path property, A is

correct iff the covering graph does not contain a good SCC.
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6.5 Applications

6.5.1 Parameterized Systems

Many distributed protocols are specified as a system parameterized by the number
of instances of identical processes. The processes are usually finite-state so that
each instance is finite, but there is an infinite number of instances whose disjoint
union forms an infinite-state system. Model-checking a parameterized system is
undecidable in general [AK 86].

A commonly studied type is a control-user system, where each instance con-
tains a single copy of the control process and a specified number of user process
copies. A state of an instance is represented by a vector, with the first component
being the control state and the other components indicating the number of user
processes in each user state. Vectors are ordered by the usual component-wise par-
tial ordering. For the parameterized systems studied in [GS 92] and [EN 96], this
ordering is a simulation relation. In [GS 92] the parameterized system is modeled
by a VASS and the Model Checking algorithm is based on Rackoff’s [Rackoff 78]
near-optimal algorithm for detecting self-covering paths. As the covering graph
construction is effective for VASS’s, it provides an alternative algorithm, although
of higher worst-case complexity. In [EN 96] a synchronous composition operation
is defined, which makes it impossible to model the system as a VASS. The analysis
is performed with a finite “abstract graph” which is, in fact, a specialization of the
covering graph construction presented in this paper.

In both cases, it is possible to recognize good SCC’s algorithmically. For the
reduction to a VASS, Rackoff’s procedure [Rackoff 78] may be used. The algorithm
for detecting good SCC’s in [EN 96] uses a threading construction, which resolves
a cycle in the covering graph into “threads” that indicate how processes move from
one local state to another. Analysis of this threaded cycle can determine whether

the cycle represents a positive path for a state covered by the initial node.
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It is usually the case that correctness properties for parameterized systems
are of the forms : “every process i satisfies f(i)” or “every distinct pair of processes
(i,7) satisfies f(i,7)”. Such properties may be reduced to checking properties of the

control process of a modified system using symmetry results from [ES 93, CFJ 93].

Broadcast Protocols

The broadcast model is appropriate for analyzing bus-based hardware protocols such
as those for cache coherency. For simplicity, we consider protocols where the state
change in response to a broadcast is deterministic.

The system is defined as a control-user system with an interleaving com-
position rule. As in [GS 92, EN 96], the global state is represented by a vector.
Local transitions of a process and synchronizations between pairs of processes can
be represented as vector additions [GS 92], while broadcast moves are represented

as matrix transforms. For instance, consider a broadcast specified by
e The broadcast send (a!) : si!nf, and

e The corresponding deterministic broadcast receptions (a?) :

a? a? a?
s—u, t—u, and u—s.

This synchronized broadcast action may be represented by a set of simultaneous
equations defining the number of processes in each local state after the broadcast.
For a global state G, let G.s represent the number of processes in local state s in
G. For a transition from G to H with the broadcast action specified above, the
equations are : H.s = G.u; H.t = 1;Hu = (G.s — 1) + G.t. Informally, the single
process that broadcasts moves from s to ¢; the processes receiving in state s move to
state u. Such transformations may in general be represented by H = T'(G), where
T(X) = M(X)+ C for a 0-1 matrix M with unit vectors as columns. M has this

special structure as each state occurs on the r.h.s. in exactly one equation. For
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local transitions and pairwise synchronizations M is the identity matrix, so that T’
reduces to a vector addition. The guard of a transform is given by the conjunction
of terms x > 0 for each variable x that is decremented by the transform; e.g., the
guard for the transform above is s > 0. The usual component-wise ordering on

vectors is easily shown to be a simulation relation for such transforms.

Lemma 6.3 For any matric M of the form above, there exist m,n € N such that

m<mn and M™ = M".

Proof. For matrices M, N of this type, every column of M N is a column of M.
Thus every column of M?, for any i > 0, is a column of M. Since there are only
finitely many distinct arrangements of columns of M into matrices of the same size,
there must exist m,n such that m < n and M™ = M™. [l

With this Lemma, we can devise an effective procedure for computing the
lub’s of the chains that arise in the covering graph construction. Let T'(X) =
M(X) + C be a transform and v a vector. For any 4, T%(X) equals (using distribu-
tivity of matrix application over vector sum) M¥(X) + E]-E[O,i)Mj(C). Let m,n be
as in the lemma above, and let A = n — m. For any k, M™F*2 = M™. Hence, for
i=m+k*A, TX) equals M™(X) + Zjciom)yM?(C) + k * Zjcimn)M?(C).

Now suppose v is a vector such that v < T'(v). The set {T%(v)|i € N} forms
a chain (with 7%(v) = v). The set {T%(v)|[i € N A (i mod A = m)} is an infinite
subchain of this chain, so it has the same lub . By the argument above, this set equals
{u + k * w|k € N}, where u = M™(v) + E]-E[O,m)Mj(C), and w = Eje[m,n)Mj(C)'
For the non-w components of v the values in w must be non-negative, as the set
is a chain. The representation of the lub is given by changing u; to w, for every ¢
such that w; is finite and non-zero. This procedure generalizes the standard limit
construction for VASS’s (where M is the identity, so m = 0,n = 1, which implies

that u =v and w = C.).
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write-invalidate?, read? write-invalidate?

read, read?

write-invalidate?

write-invalidate? write-invalidate!

read

read

write M

write

Figure 6.1: The MESI protocol

The protocol in Fig. 6.1 is a variation on the MESI protocol for cache
coherency. We have modeled the synchronization mechanisms of a single address
(cache line), ignoring the data stored at the address. The covering graph of Fig. 6.2
has initial state (0,0, 0,w) representing the set of initial states of the parameterized
system, which has an arbitrary number of processes in state I. The covering graph
may be used to prove several invariants of the protocol for every instance. For
instance the readers-writers exclusion of S (shared) and M (modified) states, which
may be written as AG(#M x #S = 0). Similarly mutual exclusion holds between
the M and FE states, in that AG(#M + #E < 1).

Pong and Dubois [PD 95] have analyzed several cache coherency protocols
with an abstraction that keeps track of whether there is zero or at least one process in
a given local state. The abstraction loses information in the sense that a violation of
a safety property in the abstract graph is not necessarily a violation in the concrete

system. The covering graph construction, however, is exact by Theorem 6.3.
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read,write

Figure 6.2: The covering graph. State vector has the form (M, E, S, I).
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6.5.2 Real-Time Systems

In the parameterized systems discussed above, the equivalence relation induced by
the simulation partial order does not have finite index. For some classes of systems,
such as real-time and hybrid systems [AD 91, Henzinger 95], there is a bisimulation
or simulation equivalence of finite index. In this case, the function rep of the covering
graph procedure may be chosen so that rep(X), for a subset X of equivalent states, is
the equivalence class that the states in X belong to. With this definition, since there
is a finite number of equivalence classes, the covering graph construction terminates.

In [BCG 89, EN 95|, a method for verification of parameterized systems is
proposed, which is to set up a family of bisimulations { B,|n > m} between instances
of size n > m and the instance of size m. If this is possible, then the correctness
property holds of all instances iff it holds on instances of sizes at most m. Clearly,
B = Uan B, is a bisimulation over the family of instances. In these papers, B is

also an equivalence relation, and by the properties of B,, above, has finite index.

6.5.3 Communication protocols

[FR 88] consider systems of processes communicating with FIFO channels. They
show that if the set of channel contents considered as words over an alphabet are
prefixes of u;v* for some words u,v, a finite covering graph can be constructed
for the protocol so that boundedness of channel contents and deadlock-freedom are
decidable. Using the results in this paper, general safety properties of the finite
state control for these protocols are also decidable. A related approach for dealing
with communication protocols is proposed in [BG 96], where sets of reachable states

are represented by deterministic automata over finite words.
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6.6 Related Work and Conclusions

Among related work, Finkel [Finkel 90| generalizes the construction of Karp and
Miller to wqo deterministic systems to solve boundedness and covering questions. As
noted in the introduction, to ensure the relevant properties of every covering graph
neither the restriction to deterministic systems nor the wqo property is essential.

Bradfield and Stirling [BS 90, Bradfield 92] use a tableau-based procedure for
determining whether a p-calculus property holds of an infinite-state system. They
consider the use of the Karp-Miller graph for checking Petri Nets. As noted in
[Bradfield 92], a property which is true of the Petri Net may not hold over a Karp-
Miller graph for the Petri Net. The method presented here avoids this problem by
adopting the automata theoretic approach and constructing the covering graph of
the product of the system with the property automaton.

[ACJT 96] propose an interesting approach to the decidability of safety prop-
erties and the liveness property AFp for ordered LTS’s. This is based on an abstract
interpretation of the infinite state space in terms of upward closed subsets. Using
their procedure, they can derive uniformly algorithms for deciding safety properties
of many types of systems. It is not, however, possible to derive methods for deciding
general liveness properties from their procedure.

Solutions to the problem of model-checking systems with infinite state spaces
are the key to extending the applicability of model-checking procedures to param-
eterized systems, real-time systems, and communication protocols. General ap-
proaches to the problem have not been very well-studied, although many decid-
ability results for specific classes are known. This paper provides such a unifying
framework by demonstrating that a covering graph construction generates a graph
which if finite, allows the checking of safety properties. In addition, we show that
the decidability of general liveness properties in wqosystems, is linked to an al-

gorithm for deciding the existence of finite self-covering fair paths. The covering
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graph may be used to search for such paths. We also show that many of the known
decidability results for infinite-state systems can be cast in these terms. This is a
strong indication that the covering graph construction is appropriate for the anal-
ysis of infinite-state systems. We also consider a new application domain, that of
parameterized broadcast protocols, and indicate how to apply the construction in
this domain. This application is demonstrated on an invalidation based cache co-
herency protocol. These results, we hope, will motivate further applications of this

procedure to a wide class of systems.

6.7 Technical Details
Lemma 6.1 X =Y implies a(X) = a(Y).

Proof.

iff ( definition of ~ )
X=rY
U

Lemma 6.2 Let C and D be chains such that for every i in N, C(i) = D(i). Then
lub C ~ lub D.

Proof.

For any Z,
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lub C C Z

= ( definition of lub ; transitivity of C )
(Vi:ie N:C(i) C 2)

= ( D(i) C C(i) for every ¢ in N; transitivity of C )
(Vi:i e N:D(i) C Z)

= ( definition of lub )

lubDC Z

From this proof, and the reflexivity of C, we can conclude that lub C C lub D.

A symmetric proof establishes the other direction. Hence, lub C ~ lub D. O

6.7.1 Strongly Directed Sets

In Section 6.4, several choices for the preorder C are discussed. While X C Y,
defined as (Vs:s € X : (Jy:y € Y : ¢ < y)), is a preorder on directed subsets, it
does not satisfy all the conditions on C. In particular, for an action a, and directed
subset X, a(X) may not be directed, if the LTS is nondeterministic. To satisfy this

condition, we need to strengthen the directedness property.

Definition 6.8 (Dominance relation) A relation © on S? x S (S is the set of
states of the LTS A) is a dominance relation iff for any ((s,t),u) € ©,

1. s 2u and t X u, (u is an upper bound for s and t)
2. (Vs ta:s5s AtS (T uu : ((8,1),u) € ©)).

As the conditions are monotone in ©, there is a greatest dominance relation by
the Knaster-Tarski theorem. We say that u dominates (s,t) iff ((s,t),u) is in the

greatest dominance relation.

Definition 6.9 (Strongly directed set) A subset X of S is strongly directed iff

for any pair of states s,t in X, there is a state u in X such that u dominates (s,t).
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Any strongly directed set is directed. For a system where there is at most
one outgoing edge with a given edge label, any directed set is strongly directed. For

a non-deterministic system, we can show the following theorem:
Lemma 6.3 If X is strongly directed, then a(X) is strongly directed.

Proof.

Let x,y be an arbitrary pair of states in @a(X). By definition, there exist u, v
in X such that vz and vy holds. Since X is strongly directed, there is w in X
that dominates the pair (u,v). By the definition of dominance, there is z such that
w2z and z dominates the pair (x,y). Hence, z is in @(X) and dominates (z,v).

Since z,y is an arbitrary pair of states, it follows that @(X) is strongly directed. O
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Chapter 7

Abstraction under Stuttering

7.1 Introduction

Showing equivalence between two systems at different levels of abstraction may entail
mapping a single step in one system to a sequence of steps in the other, which is
defined with a greater amount of detail. For instance, a compiler may transform the
single assignment statement “z := x*10+2” to several low-level instructions. When
proving correctness of the compiler, the single assignment statement step is matched
with a sequence of low-level steps, in which the value of  remains unchanged until
the final step. If the program state is defined by the values of program variables, then
the intermediate steps introduce a finite repetition of the same state, a phenomenon
called “stuttering” by Lamport [Lamport 80]. Stuttering arises in various contexts,
especially as a result of operations that hide information, or refine actions to a finer
grain of atomicity.

In [BCG 88, ANV 90], bisimulations that take into account such “stuttering”
are defined. It is shown in [BCG 88] that states related by a stuttering bisimulation
satisfy the same formulas of the powerful branching temporal logic CTL* [EH 82]

that do not use the next-time operator, X. Although these definitions are well
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suited to showing the relationship with CTL*, they are difficult to use in proofs of
bisimulation, as they often require one to exhibit a finite, but unbounded sequence
of transitions to match a single transition; thus introducing a number of proof
obligations.

Determining whether an equivalence relation on a system is a bisimulation of
some kind is important for abstraction. If the equivalence relation has finite index
(i.e., finitely many equivalence classes), then a quotient system may be formed, where
the new macro-states are equivalence classes, and two macro-states are related iff
there exist states in each macro-state that are related in the original system. A
sufficient condition for the quotient to be bisimilar to the original system is that the
relation is a bisimulation on the original system. This implies in turn that properties
preserved by the bisimulation may be model-checked on the smaller, finite quotient
structure instead of the original large structure. Examples of the application of this
general idea may be found in the theory of Symmetry Reduction [ES 93, CFJ 93],
Real-Time Automata [AD 91] and Data Independence [Wolper 86, HB 95]. The
kinds of temporal properties that are preserved depends on the kind of bisimulation
used. For strong bisimulation, general p-calculus properties are preserved, while
for weaker notions of bisimulation such as stuttering bisimulation, properties in the
next-time-free sublogic of CTL* are preserved.

The main contribution here is a simple alternative formulation of bisimu-
lation under stuttering, called well-founded bisimulation, because is based on the
reduction of a rank function over a well-founded set. The new formulation has
the pleasant property that, like strong bisimulation [Milner 90], it can be checked
by considering single transitions only. This substantially reduces the number of
proof obligations, which is highly desirable in applications to infinite state systems
such as communication protocols with unbounded channels or parameterized proto-

cols, where checks of candidate relations are often performed by hand or with the
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assistance of a mechanical theorem prover. We demonstrate the use of the new for-
mulation with some non-trivial examples that have infinite state spaces and exhibit
unbounded stuttering.

The use of rank functions and well-founded sets is inspired by their use in
replacing operational arguments for termination of do-od loops with a proof rule
that is checked for a single generic iteration (cf. [AO 92]). To the best of our
knowledge, this is the first use of such concepts in a bisimulation definition. It
seems possible that the ideas here are applicable to other forms of bisimulation
under stuttering, such as weak bisimulation [Milner 90], and branching bisimulation
[GW 89]. We have chosen to focus on stuttering bisimulation because of its close
connection to CTL*.

The chapter is structured as follows: Section 7.2 contains the definition of
stuttering bisimulation from [BCG 88|, and the definition of well-founded bisimula-
tion. The equivalence of the two formulations is shown in Section 7.3. Applications
of the well-founded bisimulation proof rule to the alternating bit protocol and token-
ring protocols are presented in Section 7.4, together with a new quotient construction
for stuttering bisimulation equivalences. The chapter concludes with a discussion of

related work and future directions.

7.2 Preliminaries

We define bisimulations over Kripke structures instead of LTS’s, Because of our
interest in preservation of CTL*\X properties. The results are valid for LT'S’s as well,
under the constraint that stuttering is modeled with 7 actions. Kripke Structures
(KS) are represented by the tuple (S,—,\, I, AP), where S is a set of states, — C
S x S is the transition relation, AP is the set of atomic propositions, A : S — P(AP)
is the labelling function, that maps each state to the subset of atomic propositions

that hold at the state, and I is the set of initial states. We write s—t instead of
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(s,t) € —. We only consider Kripke Structures with denumerable branching, i.e.,
where for every state s, |{t | s—t}| is at most w.
Stuttering Bisimulation is defined in Chapter 2; however, we repeat the def-

inition here for completeness.

Definition 7.1 (Stuttering Bisimulation (cf. [BCG 88])!) Let A be a Kripke
Structure of the form (S,—, A\, I, AP). A relation B C S x S is a stuttering bisim-

ulation on A iff B is symmetric, and for every s,t such that (s,t) € B,

2. Vo : fp(s,0) : (30 : fp(t,0) : matchg(o,9))).

where fp(s, o) is true iff o is a path starting at s, which is either infinite, or its last
state has no successors w.r.t. —. matchp(c,d) is true iff o and § can be divided
into an equal number of non-empty, finite, segments such that any pair of states
from segments with the same index is in the relation B. The formal definition of
match is given in Chapter 2. States s and t are stuttering bisimilar iff there is a
stuttering bisimulation relation B for which (s,t) € B.

Examples:

&

o Q@ O
Q@ (©)e Qg P
20 i

Structure L Structure M Structure N

States a and ¢ are not stuttering bisimilar in structures L and M, but they

are in structure N. Indeed, L,c = AF P, but L,a [~ AF P. Structure M shows
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that stuttering bisimulation distinguishes between deadlock (state ¢) and divergence
(state a) : M, c = EX true, but M, a |= EX true 2. The dotted lines show a stuttering
bisimulation on structure N.
O

Our alternative formulation is based on a simple idea from program seman-
tics: we define a mapping from states to a well-founded set, and require, roughly,
that the mapping decrease with each stuttering step. Thus, each stuttering seg-
ment is forced to be of finite length, which makes it possible to construct matching

fullpaths from related states.

Definition 7.2 (Well-Founded Bisimulation)) Let A = (S,—,\,I, AP) be a
KS. Let rank : S x S x S — W be a total function, where (W, <) is well-founded®.
A relation B C S x S is a well-founded bisimulation on A w.r.t. rank iff B is
symmetric, and

For every s,t such that (s,t) € B,

2. (Vu:s—u:

(Fv:t—v: (u,v) € B)V (a)
((u,t) € B A rank(u,u,t) < rank(s,s,t)) V (b)
((u,t) € BA(Ju:t—v: (s,v) € BArank(u,s,v) < rank(u, s,t)))) (c)

Notice that if W is a singleton, then clauses (b) and (c) are not applicable, so B is
a strong bisimulation.
The intuition behind this definition is that when (s,t) € B and s—u, either

there is a matching transition from ¢ (clause (2a)), or (u,t) € B (clause (2b)) - in

*The [dNV 90] formulation of stuttering bisimulation considers states a and ¢ of N to be bisim-
ilar. The difference between our formulations is only in the treatment of deadlock vs. divergence
in non-total structures.

3(W, <) is well-founded iff there is no infinite subset {a.i | i € N} of W that is a strictly
decreasing chain, i.e. where for all t € N, ait1 < a;.
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which case the rank decreases, allowing (2b) to be applied only a finite number of
times - or (u,t) € B, in which case (by clause (2c)), there must be a successor v of ¢
such that (s,v) € B. As the rank decreases at each application of (2c), clause (2c)
can be applied only a finite number of times. Hence, eventually, a state related to

u by B is reached. Theorem 7.1 (soundness) is proved along these lines.

7.3 Equivalence of the two formulations
The equivalence of the two formulations is laid out in the following theorems.

Theorem 7.1 (Soundness) Any well-founded bisimulation on a KS is a stuttering

bisimulation.

Proof.

Let B be a well-founded bisimulation on a KS A, w.r.t. a function rank and
a well-founded structure (W, <).

Let (s,t) be an arbitrary pair in B. Then, A(s) = A(t), by clause (1) of the
well-founded bisimulation definition. We show that if o is a fullpath starting at s,
then there is a fullpath ¢ starting at ¢ such that matchp(o,d) holds. In the following,
we use the symbol ’;’ for concatenation of finite paths, and o for concatenation with
removal of duplicate state. For example, aa; ab = aaab, and aa o ab = aab.

We construct § inductively. For the base case, dyp = t. Inductively assume
that after ¢ steps, ¢ > 0, § has been constructed to the point where it matches a
prefix v of o such that the end states of v and J mark the beginning of the ith
segments. Let u be the last state of v and v be the last state of §. By the inductive
hypothesis, (u,v) € B.

If o ends at u, then w has no successor states. Let £ be any fullpath starting
at v. Since u has no successors, a simple induction using (2b) shows that for every

state = in &, (z,u) is in B. Each application of (2b) strictly decreases rank along
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¢, hence ¢ must be finite. The fullpath § o £ is a finite fullpath matching the finite
fullpath o.

If o does not end at u, let w be the successor of v in 0. As (u,v) € B,

(i) If (2a) holds, there is a successor = of v such that (w,z) € B. Let w and
x mark the beginning of a new segment. Extend ¢ to §; z, which matches ;w. The
induction step is proved. Otherwise,

(ii) If (2a) does not hold, but (2b) does, then (w,v) € B. Let p be the longest
prefix of the suffix of o starting at u such that for every state a in p, (a,v) € B, and
only (2b) holds for (a,v) w.r.t. a—b for every successive pair of states a;b in p. p
has at least one pair, as u;w is a prefix of p.

p cannot be infinite, as by (2b), for each successive pair a; b in p, rank(b, b, v)
< rank(a,a,v), so the rank decreases strictly in the well-founded set. Let y be the
last state of p. If o terminates at y, the argument given earlier applies. Otherwise,
y has a successor 3’ in o, but as p is maximal, either (2a) or (2c) must apply for
(y,v) € B w.r.t. y—y'. (2¢) cannot apply, as then there is a successor z of v such
that (y,x) € B, which contradicts the properties of p.

Hence (2a) must apply. Let z be the successor of v such that (y',z) € B. Let
y' and = mark the beginning of a new segment, and extend 0 to §; z, which matches
(vopr)y'

(iii) If (2c) is the only clause that holds of (u,v) w.r.t. u—w, let 7 be a finite
path maximal w.r.t. prefix ordering such that 7 starts at v, and for every successive
pair of states a;b in 7, (u,a) € B, only (2¢) is applicable w.r.t. u—w, and b is the
successor of a given by the application of (2c).

Such a maximal finite path exists as, otherwise, there is an infinite path ¢ sat-
isfying the conditions above. By (2c), for successive states a;b in &, rank(w, u,b) <
rank(w, u,a); so there is an infinite strictly decreasing chain in (W, <), which contra-

dicts the well-foundedness of (W, <). Let « be the last state in 7. Then (u,z) € B,
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and as 7 is maximal, either (2a) or (2b) holds of (u,z) w.r.t. u—w. So = # v. (2b)
cannot hold, as then (w, z) is in B; but then (2a) would hold for the predecessor of
x in 7.

Hence (2a) holds; so = has a successor z for which (w,z) € B. Let w and
z mark the beginning of a new segment, and extend ¢ to (§ o 7); z, which matches
v w.

The induction step is shown in either case.

The inductive argument shows that successively longer prefixes of o have
successively longer matching finite paths, which are totally ordered by prefix order.
Hence, if ¢ is infinite, the limit of these matching paths is an infinite path from ¢
which matches o using the partitioning into finite non-empty segments constructed
in the proof. O

It is also desirable to have completeness : that for every stuttering bisimu-
lation, there is a rank function over a well-founded set which gives rise to a well-

founded bisimulation.

Theorem 7.2 (Completeness) For any stuttering bisimulation B on a KS A,
there is a well-founded structure (W, <) and corresponding function rank such that
B is a well-founded bisimulation on A w.r.t. rank.

g

Let A= (S,—,\, I, AP). The well-founded set W is defined as the product
Wy x W7 of two well-founded sets, with the new ordering being lexicographic order.
The definitions of the well-founded sets Wy and W1, and associated functions rank
and rank; are given below. Informally, ranko(a,b) measures the height of a finite-
depth computation tree rooted at a, whose states are related to b but not to any
successor of b. rankq(a,b,c) measures the shortest finite path from ¢ that matches
b and ends in a state related to the successor a of b.

Definition of (W), <o) and rank,
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For a pair (s,t) of states of A, construct a tree, tree(s,t), by the following
(possibly non-effective) procedure, which is based on clause (2b) of the definition of

well-founded bisimulation:
1. The tree is empty if the pair (s,t) is not in B. Otherwise,

2. s is the root of the tree. The following invariant holds of the construction:
For any node y of the current tree, (y,t) € B, and if y is not a leaf node, then
for every child z of y in the tree, z is a successor of y in A, and there is no

successor v of ¢t in A such that (z,v) € B.

3. For a leaf node y, and any successor z of y in A, if (z,t) € B, but there is no
successor v of ¢t in A such that (z,v) € B, then add z as a child of y in the

tree. If no such successor exists for y, then terminate the branch at y.

Repeat step 3 for every leaf node on an unterminated branch.
Lemma 7.1 tree(s,t) is well-founded.

Proof.

Suppose to the contrary that there is an infinite branch o, which is therefore
a fullpath, starting at s. Let u be the successor of s on o, and let ¢’ be the fullpath
that is the suffix of o starting at w.

By construction of the tree, for every state z on o', (z,t) € B, and for every
successor v of t, (z,v) € B. However, as (u,t) € B, there must be a fullpath ¢
starting at ¢ for which matchg(o’,d) holds. Let w be the successor of ¢t on §. From
the definition of match, for some z on o', (z,w) € B. This is a contradiction. Hence,
every branch of the tree must be of finite length. 0

Since tree(s,t) is well-founded, it can be assigned an ordinal height using a
standard bottom-up assignment technique for well-founded trees : assign the empty

tree height 0, and any non-empty tree 7' the ordinal sup {height(S)+ 1| S < T},
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where S < T holds iff S is a strict subtree of T'. Let ranky(s,t) equal the height of
tree(s,t). As trees with countable branching need only countable ordinals as heights,

let Wy be the set of countable ordinals, ordered by the inclusion order €.

Lemma 7.2 If tree(s,t) is non-empty, and u is a child of s in the tree, then

rankg(u,t) <o ranko(s,t).

Proof.

From the construction, tree(u,t) is the subtree of tree(s,t) rooted at node u;
hence its height is strictly smaller. U
Definition of (W1, <;) and rank;

Let W7 = N, the set of natural numbers, and let <; be the usual order < on

N. The definition of rank; is as follows : For a tuple (u, s,t) of states of A,

1. If (s,t) € B, s—u, (u,t) € B, and for every successor v of ¢, (u,v) € B,
then ranki(u, s,t) is the length of the shortest initial segment that matches s
among all matching fullpaths s; o and §, where o starts at u, and ¢ starts at

t. Precisely,

ranki(u, s,t) = (min 0,&, 0,7 : fp(t,0) A fp(u,0) Am, & € INCA
CO’I"’I"((S;O’, 7T)7(57§)) : |S€g0(5,§)|)

As (s,t) € B, and s—u, there exist matching fullpaths s;o and 6, with o
starting at w and J starting at ¢. As (u,t) € B, and no successor of ¢t matches
u, under any partition ¢ of any fullpath § that matches a fullpath s;o, the
initial segment, segy(6, &), matches s, and must contain at least two states: ¢

and some successor of t. Thus, rankq(u, s, t) is defined, and is at least 2.

2. Otherwise, ranki(u,s,t) = 0.
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Theorem 7.2 (Completeness) For any stuttering bisimulation B on KS A, there
is a well-founded set (W, <) and corresponding function rank such that B is a well-

founded bisimulation on A w.r.t. rank.

Proof.

Let W = Wy x Wi. The ordering < on W is the lexicographic ordering on
Wy x Wy, ie., (a,b) < (¢,d) = (a <o ¢) V (@ = ¢ Ab <3 d). Define rank(u,s,t) =
(ranko(u, t), ranky(u, s,t)). W is well-founded, and rank is a total function. We

have to show that B is a well-founded bisimulation w.r.t. rank. Let (s,t) € B.
1. A(s) = A(t), from the definition of stuttering bisimulation.

2. Let u be any successor of s. If there is no successor v of ¢ such that (u,v) € B,

consider the following cases:

e (u,t) € B : As no successor of t is related to uw by B, u is a child of
s in tree(s,t), and by Lemma 7.2, ranko(u,t) <o ranko(s,t). Hence,
rank(u,u,t) < rank(s,s,t).

e (u,t) € B : As no successor of t is related to u by B, ranki(u,s,t)
is non-zero. Let fullpath § starting at ¢t and partition & “witness” the
value of ranki(u,s,t). Let v be the successor of ¢ in the initial seg-
ment seg.0(d,£). This successor exists, as the length of the segment is
at least 2. rankq(u,s,v) is at most ranki(u, s,t) — 1, so ranky(u,s,v) <1
ranki(u, s, t).

As no successor of ¢ is related by B to u, (u,v) € B, so ranky(u,v) = 0.
As (u,t) € B, ranko(u,t) = 0. Since rank is defined by lexicographic

ordering, rank(u, s,v) < rank(u,s,t).

Hence, one of (2a),(2b) or (2c) holds for (s,t) € B w.r.t. s—u.
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For a Kripke Structure that is finite-branching (every state has finitely many
successor states), tree(s,t) for any s, t is a finite, finitely-branching tree; so its height

is a natural number. Hence, Wy = N.

Proposition 7.1 For a finite-branching Kripke Structure, W = N x N.
O

Theorem 7.3 (Main) Let A be a Kripke Structure. A relation B on A is a stut-

tering bisimulation iff B is a well-founded bisimulation w.r.t. some rank function.

Proof.
The claim follows immediately from Theorems 7.1 and 7.2. U
For simplicity, the definitions are structured so that a bisimulation is a sym-
metric relation. The main theorem holds for bisimulations that are not symmetric,
but the definition of rank has to be modified slightly, to take the direction of match-

ing (by B or by B~!) into account.

7.4 Applications

The definition of a well-founded bisimulation is, by Theorem 7.3, in itself a simple
proof rule for determining if a relation is indeed a bisimulation up to stuttering.
In this section, we look at several applications of this proof rule. We outline the
proofs of well-founded bisimulation for the alternating bit protocol from [Milner 90],
and a class of token-ring protocols studied in [EN 95]. We also present a new
quotient construction for a well-founded bisimulation that is an equivalence. In
all of these applications, the construction of the appropriate well-founded set and
ranking function is quite straightforward. We believe that this is the case in other

applications of stuttering bisimulation as well.
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7.4.1 The Alternating Bit Protocol

A version of the alternating bit protocol is given in [Milner 90], which we follow
closely. The protocol has four entities : Sender and Replier processes, and message
(Trans) and acknowledgement (Ack) channels. Messages and acknowledgements are
tagged with bits 0 and 1 alternately. For simplicity, message contents are ignored;
both channels are sequences of bits. For a sequence of values o, let order (o) represent
the sequence resulting from removing duplicates from ¢, and let count(c) be a vector
of the numbers of duplicate bits. Vectors are compared component-wise if they have
the same length. For example, order(0%;1%) = 0;1, count(0°;1%) = (3,2), and
count(1°) = (5).

The proposed WF bisimulation B relates states s and ¢ iff

1. The local states of the sender and replier processes are identical in s and ¢,

and

2. For the channel Trans from sender to replier, order(Trans(s);rmsg(s)) =
order(Trans(t); rmsg(t)), where rmsg(u) is the message stored at the replier

process in state u, and

3. For the channel Ack from replier to sender, order(Ack(s); —sflag(s)) =
order(Ack(t); —sflag(t)), where sflag(u) is the flag used by the sender to tag

the next outgoing message.

Note that the number of duplicate messages is abstracted away.

Let a(s) = (count(Trans(s); rmsg(s)), count(Ack(s); —sflag(s))), and define
rank(u, s,t) as (a(s), a(t)). The operations of the protocol are sending a bit or
receiving a bit on either channel, and duplicating or deleting a bit on either channel,
along with a skip action. For the sending, receiving and deleting actions, it is
straightforward to verify that B is a WF bisimulation w.r.t. rank. The rank function

is used, for instance, at a receive action in s with msg(s) = b and Trans(s) = a’,
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while the same channel in the corresponding state ¢ has contents a™;b" (n > 1).
The receive action at s results in a state u with channel content () and rmsg(u) = a,
while the same action at ¢ results in a state v with channel content a™;b" ! and
rmsg(v) = b. So u and v are unrelated but v is related to s, and rank(u,s,v) <
rank(u, s,t) (cf. clause (2c)).

The duplication action at a state s may not have a corresponding duplication
action at a related state t if the message being duplicated is not present in the
channel at ¢ (although it must then have been received, from the definition of B).
For example, s has rmsg(s) = b and Trans(s) = b™ (n > 1), while ¢ has rmsg(s) = b
and Trans(s) = (). However, the skip action can be executed from ¢, which matches
the state after the duplication.

The example exhibits unbounded stuttering. With the original formulations
of stuttering bisimulation, one would have to construct a computation of length n
from state ¢ to match the receive action from state s. This is typically done by a
recursive definition of the matching computation; so the proof of matching is done by
an induction on n which introduces a number of proof obligations, and complicates
the proof. In contrast, with the new formulation, one need consider only a single
transition from t.

Although the bisimulation B is an equivalence, it has an infinite number of
equivalence classes. For the protocol, however, the initial state has empty channels
and it is possible to show that, although the reachable state space is still infinite, the
reachable states of the protocol have channels with order values of length at most
2. Thus, B induces a finite partition of the reachable state space. This fact can be
exploited to model-check the properties of the protocol, as described subsequently

in Section 7.4.3.
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7.4.2 Simple Token-Ring Protocols

In [EN 95] (cf. [BCG 89]), stuttering bisimulation is used to show that for token-
rings of similar processes, a small cutoff size ring is equivalent to one of any larger
size. [EN 95] shows that the computation trees of process 0 in rings of size 2 and of
size n, n > 2, are stuttering bisimilar. It follows that a property over process 0 is
true of all sizes of rings iff it is true of the ring of size 2. From symmetry arguments
(cf. [ES 93, CFJ 93]), a property holds of all processes iff it holds for process 0.
This result and its extensions are presented in Chapter 3.

The proof given in that paper uses the [BCG 88] definition and is quite
lengthy; we indicate here how to use well-founded bisimulation. Although the proof
can be simplified in the manner indicated in Chapter 3, that requires introducing a
specialized form of bisimulation under stuttering. Here, we use well-founded bisim-
ulation, which, as shown earlier, is equivalent to the earlier definition of stuttering
bisimulation.

Each process in the system alternates between blocking receive and send
token transfer actions, with a finite number of local steps in between. For an n-
process system with state space Sy, define a,, : S,, — N? as the function given by
an(s) = (i,7) where, in state s, if process m has the token, then i = (n —m) mod n
is the distance of of the token from process 0, and j is the sum over processes of
the maximum number of steps of each process from its local state to the first token
transfer action. The tuples are ordered lexicographically. Let the rank function be
rank(u, s,t) = (am(s),an(t)), where s and ¢ are states in instances with m and n
processes respectively. Let the relation B be defined by (s,t) € B iff the local state
of process 0 is identical in s and t.

It is straightforward to verify that B is a well-founded bisimulation w.r.t.
rank. The rank function is used in the situation where the token is received by

process 0 by a move from state s to state u; however, the reception action is not
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enabled for process 0 in a state t related to s by B. In this case, some move of a
process other than 0 is enabled at ¢, and results in a state v that reduces ay,, and
hence the rank, either by a transfer of the token to the next process, or by reducing
the number of steps to the first token transfer action. The next state v is related to

s by B (cf. clause (2c) of the definition).

7.4.3 Quotient Structures

For a bisimulation B on KS A that is an equivalence relation, a quotient structure
A/B (read as A “mod” B) can be defined, where the states are equivalence classes
(w.r.t. B) of states of A, and the new transition relation is derived from the transi-
tion relation of A. Quotient structures are usually much smaller than the original;
a bisimulation with finitely many classes induces a finite quotient, as is the case in
the examples given in the previous sections.

Let A= (S,—,\, I, AP) be a KS, and B be a well-founded bisimulation on
A w.r.t. a rank function «, that is an equivalence relation on S. The equivalence

class of a state s is denoted by [s]. Define A/B as the KS (S,~,A,Z, AP) where:
o S={[s]|sc S}
e The transition relation is given by : For C,D € §, C ~» D iff either

1. C#D,and (3s,t: s€ CANte€ D:s—t), or

2.C=D,and (Vs:s€C:(Jt:teC:s—t)).

The distinction between the two cases is made in order to prevent spurious

self-loops in the quotient, arising from stuttering steps in the original.

e The labelling function is given by A(C) = A(s), for some s in C. (states in an

equivalence class have the same label)
e The set of initial states, Z, equals {[s] | s € I'}.

137



Theorem 7.4 A is stuttering bisimilar to A/B.

Proof.

Form the disjoint union of the KS’s A and A/B. The bisimulation on this
structure relates states of A and A/B as follows : (a,b) € Riff [a] =bV [b] = a.

Let sw : § — S (read “state witness”) be a partial function, defined at C
only when C' ~ C does not hold. When defined, v = sw(C) is such that v € C,
but no successor of v w.r.t. — is in C. Such a v exists by the definition of ~».
Let ew : S? — S? (read “edge witness”) be a partial function, defined at (D, C) iff
C ~» D. When defined, (v,u) = ew(D,C) is such that u € C,v € D, and u—v.

Let rank be a function defined on W U {L} (L is a new element unrelated
to any elements of W) by : If u,s € S, and sw(C) is defined, then rank(u,s,C) =
a(u,s,sw(C)). If D,C € § and s € S, then rank(D,C,s) = a(ew(D,C),s), if
ew(D,C) is defined. Otherwise, rank(a,b,c) = L.

Let (a,b) € R. From the definition of R, a and b have the same label.

e a € S : For clarity, we rename (a, b) to (s,C). By the definition of R, C = [s].
Let s—u. If [s] ~ [u], then there is a successor D = [u] of C such that

(u, D) € R, and clause (2a) holds.

If the edge from [s] to [u] is absent, then [s] must equal [u|, and sw(C) is
defined. Let z = sw(C). As (s,z) € B, and (u,z) € B, but & has no
successors to match u, clause (2b) holds for B, i.e., a(u,u,z) < a(s, s, z). By

definition of rank, rank(u,u,C) < rank(s,s,C), so (2b) holds for R.

e a € §: For clarity, we rename (a,b) to (C,s). Let C ~ D. Let (y,z) =

ew(D,C). As x—y, and (x, s) € B, there are three cases to consider :

1. There is a successor u of s such that (y,u) € B. Then [y] = [u], so
(D,u) € R, and (2a) holds.
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2. (y,s) € B. Then [y] = [z],s0 C = D. As C~ D, and s € C, s has a

successor u such that u € C; hence (D, u) is in R and (2a) holds.

3. (y,s) € B and there exists u such that s—u, (z,u) € B, and a(y, z,u)
< a(y,z,s). Hence, (C,u) € R, and rank(D,C,u) < rank(D,C,s). So
clause (2c¢) holds.

7.5 Related Work and Conclusions

Other formulations of bisimulation under stuttering have been proposed; however,
they too involve reasoning about finite, but unbounded sequences of transitions.
Examples include branching bisimulation [GW 89], divergence sensitive stuttering
[dNV 90], and weak bisimulation [Milner 90]. We believe that it is possible to char-
acterize branching bisimulation in a manner similar to our characterization of stut-
tering bisimulation, given the close connection between the two that is pointed out
in [dNV 90]. An interesting question is whether a similar characterization can be
shown for weak bisimulation [Milner 90].

Many proof rules for temporal properties are based on well-foundedness ar-
guments, especially those for termination of programs under fairness constraints
(cf. [GFMdR 83, Francez 86, AO 92]). Vardi [Vardi 87], and Klarlund and Kozen
[KK 91] develop such proof rules for very general types of linear temporal proper-
ties. Our use of well-foundedness arguments for defining a bisimulation appears to
be new, and, we believe, of intrinsic mathematical interest. The motivation in each
of these instances is the same : to replace reasoning about unbounded or infinite
paths with reasoning about single transitions.

Earlier definitions of stuttering bisimulation are difficult to apply to large

problems essentially because of the difficulty of reasoning about unbounded stutter-
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ing paths. Our new characterization, which replaces such reasoning with reasoning
about single steps, makes proofs of equivalence under stuttering easier to demon-
strate and understand. In the example applications, it was quite straightforward to
determine an appropriate well-founded set and rank function. Indeed, rank func-
tions are implicit in proofs that use the earlier formulations. As the examples
demonstrate, using rank functions explicitly leads to proofs that are shorter and

which can be carried out with the assistance of a mechanical theorem prover.
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Chapter 8

Conclusions and Future Work

8.1 Summary

This dissertation has as its goal the identification of methods to ameliorate the effect
of state explosion in automated verification procedures. Common types of systems
that exhibit state explosion include those that are parameterized by the number
of component processes and those with a large data domain and a relatively small
control component which is largely independent of the data. This dissertation is
focussed on methods of verifying such types systems with a view to reducing state
explosion. The contributions of this dissertation are summarized below.

For two types of parameterized systems, token-rings with a synchronizing to-
ken and synchronous control-user systems, we show that the model-checking prob-
lem is decidable for interesting types of indexed specification formulas. We also
give tight bounds on the complexity of these algorithms, and delineate the border
between decidability and undecidability of the verification task. In both cases, the
decidability follows from abstractions that establishes an exact correspondence be-
tween every member of the infinite family of instances of the parameterized system

and a finite abstract graph. These algorithms have been applied to the verification
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of an industrial standard bus protocol, the SAE-J1850 protocol.

Reviewing this earlier work, it becomes apparent that there are many simi-
larities between the abstractions used here and those applied elsewhere for the au-
tomated verification of other types of infinite-state systems, such as Petri Nets. A
contribution of this dissertation is the development of a general framework for model-
checking infinite-state systems, which exposes these similarities. This framework has
been utilized in developing a semi-algorithmic procedure for model-checking param-
eterized broadcast protocols. This procedure terminates in the case of a simple
MESTI invalidation-based cache consistency protocol and produces a finite graph,
over which safety properties of the protocol are determined to hold for the entire
family of instances.

Systems with a large data domain, and a control component that is largely
independent of the data are quite commonplace. Examples include FIFO buffers,
instruction pipelines, and many cache coherency protocols. A common technique for
verifying such data-insensitive systems is to develop abstractions that partition the
data domain into large equivalence classes, such that the control component has the
same behavior for equivalent data items. To correctly preserve control properties
between the original and abstracted system, however, the abstraction has to be
shown to be a bisimulation. Often, the bisimulation is insensitive to the stuttering
(finite repetition) of state propositions. A contribution of this dissertation is a
simple, local proof method to show bisimulation under stuttering, which is proved
to be equivalent to known global proof methods. This method is used to prove a
bisimulation that reduces an infinite-state alternating bit protocol to a finite state

abstraction that preserves relevant properties of the protocol.
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8.2 Future Work

8.2.1 Verification of Parameterized Systems

The work presented in this dissertation provides some preliminary answers to the
difficult question of devising algorithms for the verification of parameterized sys-
tems. The systems presented here are all characterized syntactically. A topic for
future research is to develop algorithms for systems that are characterized seman-
tically. For such an algorithm to be usable, the conditions characterizing a class
must be kept simple, as they will have to be be checked by a hand proof or with
the assistance of a mechanical theorem prover. Invariants or other safety properties
on the communication patterns between processes may be the appropriate type of

condition to utilize.

8.2.2 Data Abstraction

A general technique for data abstraction is to show that a proposed abstraction is a
bisimulation on the state space. Applying this in practice, however, is a difficult task.
Some of the complexity comes from global definitions of bisimulation as opposed to
local ones; an issue that is addressed in this work. Another source of difficulty is
the question of coming up with a candidate relation. Some of this difficulty may
be alleviated by identifying a class of programs that can be suitably annotated so
that an automatic procedure can develop candidate abstractions. For instance, an
annotation that separates data components from control, and identifies the mathe-
matical operations performed on the data would be very useful. Automated theorem
provers such as PVS [HS 96] or Nqthm [BM 79] may be used to aid the proof of
correctness of proposed abstractions. This is one direction in which the differing
strengths of the Model Checking and automated theorem proving approaches may

be combined to good effect.
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8.2.3 Compositionality

Given that the problem of model-checking using succinct representations is PSPACE-
hard [GW 83], it is unlikely that these algorithms can handle the large state spaces
of most programs. Thus compositional methods for verification are of prime impor-
tance. Many of the compositional methods that have been proposed use assume-
guarantee rules, which are often quite complex in order to prevent circular reasoning.
It is thus desirable to search for simple compositional methods; perhaps, those that
use the communication structure of the composition to simplify proof obligations.
Dijkstra [Dijkstra 76] demonstrates effectively the manner in which rules for
verification may be turned into heuristics for guiding the design of programs that
are correct by construction. In a similar vein, the restrictions on systems that will
be needed in order to make the above approaches work effectively may in turn aid

the design of such systems.
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