
ABSTRACT1

Refactorings are behavior-preserving program transforma-
tions that automate design level changes in object-oriented
applications. Many schema transformations, design patterns,
and hot-spot meta-patterns are automatable. Thus, it seems
possible to develop practical tools that could significantly
simplify the evolution of object-oriented applications by
automating common, yet tedious and error-prone, tasks.

Our research evaluates whether refactoring technology can
be transferred to the mainstream by restructuring non-trivial
C++ applications. The applications that we examine were
evolved manually by software engineers. We show that an
equivalent evolution could be reproduced significantly faster
and cheaper by applying a handful of general-purpose
refactorings. In one application, over 14K lines of code were
transformed automatically that otherwise would have been
coded by hand. Our experiments expose requirements,
limitations, and topics of further research before refactoring
technology can be delivered to a production environment.

1  Introduction

Before the invention of graphical user interface (GUI) edi-
tors, the process of evolving a GUI was to design, code, test,
evaluate, and redesign again. With the introduction of edi-
tors, GUI design has become an interactive process allowing
users to design, evaluate, and redesign an interface on-screen
and to output compilable source code that reflects the latest
design.

We believe that a similar change needs to occur for editing
object-oriented class diagrams. Editing a class diagram can
be as simple as adding a line between classes to represent an
inheritance relationship or moving a variable from a subclass
to a superclass. However, such changes must now be accom-
panied by painstakingly identifying lines of affected source
code, manually updating the source, testing the changes, fix-
ing bugs, and retesting the application until the risk of new
errors is sufficiently low. Furthermore, designs can require a
great deal of experimentation [Joh88]. Multiple iterations of
the design-implement-test cycle may be required to achieve a
satisfactory final design. 

Just as GUI editors revolutionized GUI design, we believe
that class diagram editors (where changes to an application’s
diagram automatically trigger corresponding changes to its
underlying source code) will revolutionize the evolution of
software design. The technology to power such a tool is
refactorings — behavior-preserving program transforma-
tions that automate2 many design level3 changes. Automa-
tion significantly reduces, if not eliminates, the burden of
identifying and modifying source code to affect design
changes. Modifications are done correctly, thereby reducing
costly and tedious debugging and testing that would other-
wise have to be performed. And it facilitates experimenta-
tion: if some design changes are deemed inappropriate, it is a
substantially easier task to undo these changes and apply
another sequence of refactorings that are more appropriate.
If such changes had to be done manually, their difficulty
might preclude attempts to make them.

This paper presents the results of applying refactorings to
replicate the work of software engineers/designers on a pair
of non-trivial C++ applications. Our experiments expose
requirements, limitations, and topics of further research
before refactoring technology can be delivered to a produc-
tion environment.

2  Refactorings

A refactoring is a parameterized behavior-preserving
program transformation that updates an application’s design
and underlying source code. A refactoring is typically a very
simple transformation that has a straightforward (but not
necessarily trivial) impact on application source. An
example is inherit[Base, Derived], which establishes a
superclass-subclass relationship between two classes, Base
and Derived, that were previously unrelated. From the
perspective of an object-oriented class diagram, the inherit
refactoring merely adds an inheritance relationship between
the Base and Derived classes, but also it alters the
application’s source code to reflect this change.

A refactoring is more precisely defined by (a) a purpose, (b)
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2.  The term automate refers to a refactoring’s programmed check
for enabling conditions and its execution of all source code
changes. The choice of which design to implement and which
refactorings need to be applied is always made by a human.

3.  We use a limited definition of the term design referring to the
aspect of design reflected in the extended class diagram notation
from Gamma [Gam95] (See Section 2).
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arguments, (c) a description, (d) enabling conditions, (e) an
initial state, and (f) a target state. Such a definition for
inherit[Base, Derived] is given in Figure 2.1. A summary of
the class diagram notation used in this example and
throughout this paper is presented in Figure 2.2. For the most
part, aspects of a refactoring are self-explanatory. The most
complicated aspect deals with a refactoring’s enabling
conditions.

2.1  Enabling Conditions
Programs are restructured by applying a series of
refactorings.  Because individual refactorings preserve
behavior, a series of refactorings  also preserves behavior. To
preserve behavior, we adopt the method proposed by
Banerjee and Kim for database schema evolutions [Ban87]
and employed by Opdyke for refactorings [Opd92]. A set of
invariants is defined which, if preserved, guarantees that two
programs will run identically. When a refactoring runs the
risk of violating an invariant, enabling conditions are added
to guarantee that the invariant is preserved.

Opdyke identified seven invariants that preserve the behavior
of C++ and Smalltalk programs. For example, his first
invariant is that each class must have a unique superclass and
its superclass must not also be one of its subclasses. The first
enabling condition of the inherit refactoring (Figure 2.1)
preserves this invariant.

Refactorings have been found to be useful even when
predicated on conservative enabling conditions. For
example, the inherit transformation is conservatively limited
to single inheritance systems by Opdyke’s first invariant.
While support for multiple inheritance systems is possible, it
was not necessary for transforming the applications
described in this paper or for adding numerous design
patterns and hot-spot meta patterns [Tok99].

Most but not all enabling conditions can be verified
automatically. In the inherit example, the first three
conditions are verified automatically while the last enabling
condition must be verified by the user to guarantee that
behavior will be preserved (see discussion in Section 4.2).

2.2  Design Evolution and Refactorings
Three kinds of object-oriented design evolution are: schema
transformations, design pattern microarchitectures, and hot-
spots. Schema transformations are drawn from object-
oriented database schema transformations that perform edits
on a class diagram [Ban87]. Examples are renaming a class,
adding new instance variables, and moving a method up the
class hierarchy. Design patterns are recurring sets of
relationships between classes, objects, methods, etc. that
define preferred solutions to common object-oriented design
problems [Gam95]. Hot-spots are aspects of a program
which are likely to change from application to application
[Pre95]. Designs using abstract classes and template
methods are prescribed to keep these hot-spots flexible.

Each example of design evolution mentioned above can be
implemented by one or more refactorings. The list of
refactorings used in our research is given in Table 1. This

Figure 2.1: Inherit[Base, Derived] transformation
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table includes refactorings proposed by Banerjee and Kim
for evolving object-oriented database schemas [Ban87] and
by Opdyke for restructuring object-oriented programs
[Opd92]. We found that transforming actual C++ programs
required additional refactorings. We enlarged the set of
schema evolutions to include, for example, inherit (from the
example above) and substitute. Substitute changes a class’s
dependency on a class C1 to a dependency on a superclass of
C1 [Tok95]. Other refactorings are language-specific;
procedure_to_method and structure_to_class convert C
artifacts to their C++ equivalents. Yet another set of
refactorings supports the addition of design pattern
microarchitectures in evolving programs [Tok95, Tok99].
Examples include add_factory_method, singleton, and
procedure_to_command. Add_factory_method creates a
method which returns a new object, singleton ensures that a
class will have only one instance, and
procedure_to_command converts a C procedure to a
singleton class with a method for executing the procedure.
The refactorings that we added to the lists of Banerjee, Kim,
and Opdyke are italicized in Table 1.

It is worth noting that there have been surprisingly few
implementations of refactorings. The first implementations
of Opdyke’s refactorings were by Tokuda [Tok95], Roberts
[Rob97], and Schulz et. al. [Suc98]. To our knowledge, we
were first to implement refactorings for design patterns
[Tok95] and hot-spot meta patterns [Tok99]. 

Given that schema transformations, design patterns, and hot-
spot meta patterns are used frequently in evolving designs,
many of which are automatable as (one or more) refactor-
ings, we expected to replicate some, but not all, design
changes in our experiments.

3  Evolving Applications

We selected SEMATECH’s CIM Works and CMU’s Andrew
User Interface System as examples of evolving applications.

They were chosen based on availability of source code with a
version history, size, and presence of design changes. The
following features make this study unique:

Replication of design evolution. Designs were extracted
from two versions of the same application. The older design
became the initial state and the newer design became the
target state. Our objective was to determine if a sequence of
refactorings could be applied to transform the initial state to
the target state. By doing so, we would be automating
changes that were performed manually by the original
application designers. This correspondence makes
comparison of automation versus hand-coding valid and
provides us with a key indicator: how often refactorings
could be used.  

Our approach is consistent with a principled development
style which performs improvements by first transforming the
design while preserving program behavior, and then
extending the better designed system [OSh86, Cas91].

Non-trivial Applications. Transforming large applications
tests refactoring scalability. Ideas that are effective on small
applications of fewer than one thousand lines of code may
ultimately fail for real world applications whose size can
exceed one hundred thousand lines. 

Mainstream object-oriented language. C++ was chosen as
the target language for experimentation. It is by far the most
widespread object-oriented programming language for
practical reasons such as backward compatibility with C,
portability, availability of third party compilers and tools,
legacy system compatibility, and availability of trained
personnel. It was expected that C++’s complexity might
introduce problems which would not appear for less popular
object-oriented languages. A side benefit of this choice is
that most claims for C++ can also be made for the
increasingly popular Java programming language.

3.1  Evolving CIM Works
Computer Integrated Manufacturing (CIM) Framework is an
industry-wide initiative to define a standardized object-
oriented framework for writing semiconductor
manufacturing execution systems [Ste95]. CIM Works is a
Windows application created to demonstrate and test the
SEMATECH CIM Framework specification [McG97].

Major design changes in CIM Works occur between Version
2 and Version 4. The Version 2 design shown in Figure 3.1
stores data and its graphical representation in the same
object. For example, CEquipmentManager contains methods
for adding and removing pieces of equipment to be managed
as well as methods for building a GUI menu. The Version 4
design shown in Figure 3.2 separates data and graphics into
two class hierarchies. This separation gave Version 4 the
freedom to create different views of the same data as with
the model-view-controller paradigm [Kra88].

Version 2 is approximately 11K lines of code. The
transformation between designs is accomplished in nine
steps, each of which is realized by applying a sequence of
primitive refactorings:

Table 1: Object-oriented refactorings

Schema Refactorings

add_variable
create_variable_accessor
create_method_accessor
rename_variable
remove_variable
push_down_variable
pull_up_variable
move_variable_across_

object_boundary
create_class
rename_class
remove_class
inherit
uninherit
substitute
rename_method
remove_method
push_down_method

pull_up_method
move_method_across_

object_boundary
extract_code_as_method
declare_abstract_method
structure_to_pointer

C++ Refactorings

procedure_to_method
structure_to_class

Pattern Refactorings

add_factory_method
create_iterator
composite
decorator
procedure_to_command
singleton
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1. Rename the classes of the original hierarchy to the split
hierarchy using rename_class. (The original classes
retain the GUI aspects of objects, whereas their corre-
sponding “split” classes — created in Steps 2 or 7 —
encapsulates object data).

2. Create the concrete data classes Factory, Person, Equip-
Manager, etc. using create_class (Figure 3.3a).

3. Add m_objptr instance variables to the concrete GUI
classes using add_variable. m_objptr is of the corre-
sponding data class type (Figure 3.3b).

4. Move non-GUI instance variables and methods from the
GUI classes to the data classes using
move_variable_across_object_boundary and move-
_method_across_object_boundary. Data is accessed
through the m_objptr instance variables (Figure 3.4).

5. Create abstract data classes Resource, CompManager,
MovementResource, etc. using create_class.

6. Establish inheritance relationships between the abstract
data classes and the concrete data classes using inherit
(Figure 3.3c).

7. Move common instance variables and method declara-
tions up the data class hierarchy using pull_up_variable
and declare_virtual_method (Figure 3.5).

8. Change the type of m_objptr from a structure to a
pointer using structure_to_pointer.

9. Declare the reference between GUI objects and data
objects in the abstract classes. References to data objects

are made abstract (Figure 3.2).4 

These steps were executed by 81 refactorings, resulting in a
total of 486 lines of CIM Works source being modified.

3.2  Evolving the Andrew User Interface System
The Andrew User Interface System (AUIS) from CMU is an
integrated set of tools that allow users to create, use, and
mail documents and applications containing
typographically-formatted text and embedded objects
[Mor85]. The two versions under study were Version 6.3
written in C and Version 8.0 converted to C++. Version 6.3

4.  In this step, the generalization is made that all CIcon objects
point to a Resource object through the m_objptr instance variable.
This requires that casts to the appropriate data class are made when-
ever data object instance variables are referenced through GUI
objects. For example:

CIcPerson *p = new CIcPerson;
p->person_ptr->f_name = "John";

is transformed to:

CIcPerson p;
((Person *)p->m_objptr)->f_name =

"John";

It is unclear if this was the correct design decision since the GUI
classes are specific to a single data class. This step was not auto-
mated although it would be possible to do so.

CFWObject

CIcon

CIcResource

CIcCompMg CIcMoveResCIcFactory CIcPerson

CIcPersnMg CIcMachineCIcEquipM

NamedEnt

Resource

CompMgr MoveResFactory Person

PersonMgr MachineEquipMgr

Figure 3.2: Version 4 Design

m_objptr

CFWObject

CNamedEnt

CResource

CCompMgr CMoveResCFactory CPerson

CPersnMgr CMachineCEquipmentManager

Figure 3.1: Version 2 Design
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Figure 3.4: Instance variables and methods
moved to data classes
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stores actions as function pointers while Version 8.0 supports
and recommends creation of a separate subclass for each
action (similar to the Command design pattern5). Over
ninety classes using almost 800 actions are affected. The
transformation is accomplished in five steps.

1. Convert Version 6.3 C structures to C++ classes using
structure_to_class (Figure 3.6).

2. Create the ATK and Command abstract classes using
create_class.

3. Establish the inheritance relationships between ATK and
other classes using inherit (Figure 3.7).

4. Derive command classes for each action using
procedure_to_command. Figure 3.8 displays the result
of transforming PlayKbdMacro() into a Command
subclass. The newly created PlayKbdMacroCmd contains
an Execute() method which calls PlayKbd-
Macro(). It also contains an Instance() method
which returns a unique instance of the class. Using
Instance() instead of new to create objects guaran-
tees that a pointer to a PlayKbdMacroCmd object is
unique.

5. Convert procedure pointers to commands using
procedure_ptr_to_command. In this step, the data
types for structures using procedure pointers are con-
verted to use Command pointers, procedure calls are con-
verted to use Execute() methods, and procedure
assignments are converted to use Instance() meth-

ods. Figure 3.9 displays the transformation of the
bind_Description structure. The proc instance variable is
converted to a Command pointer.

All steps were executed with a total of 800 refactorings. This
number is large but could be significantly reduced (see
discussion on Granularity of Transformations in Section
4.4). 

The conversion of AUIS to use the new Command class for
its hundreds of actions requires approximately 14K lines of
code changes. It is interesting to note that although the action
class is supported and recommended for all new changes to
AUIS, the existing code base was never migrated to this new
mechanism. Thus, in Version 8 there are actually two
different representations for actions: the original code used
function pointers while all new additions to AUIS use
command classes. Our transformed version of AUIS
converted all source to use action classes. The volume of
changes might explain why Version 8.0 code was never fully
converted to use its newly defined action class.
Concomitantly, this also suggests an advantage of
refactorings to perform large edits automatically, which
people might not undertake by hand.

4  Introspection and Lessons Learned

Our experiments provided a tremendous learning experience
in evaluating refactoring technologies. In the following
sections, we present some of the more important lessons that

5.  The Command design pattern objectifies an action. The action is
triggered by calling an Execute() method implemented in each
derived class [Gam95].
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we learned on refactoring benefits and limitations, as well as
on the requirements that must be satisfied and research
problems that must be solved for refactoring technology to
succeed.

4.1  Refactoring Benefits
Automating Design Changes. The most important result of
our research is to establish that refactorings can automate
significant design changes in real world applications. For
CIM Works, the main class hierarchy was split into two
connected hierarchies in an automated way. For AUIS,
procedure pointers were converted to use the command
design pattern generating over 14K lines of code changes. 

It is of interest to compare the effort required to perform
these changes manually versus the effort when aided by
refactorings. We estimate that the CIM Works changes
would take us two days to implement and debug by hand
versus two hours when aided by refactorings. We estimate
that the AUIS changes would require two weeks to
implement and debug by hand versus one day when aided by
refactorings. The number of refactorings and their
subsequent cost could be reduced in both experiments with
larger grain refactorings to provide a substantially greater
benefit (see Granularity of Transformations, Section 4.4).

Earlier we mentioned that many, but not all, design patterns,
schema transformations, and hot-spot meta patterns could be
expressed as refactorings.  In both experiments, it was
possible to automate all design changes. This was fortuitous.
It does suggest, however, that a refactoring tool could service
a variety of design changes.

Reduced Testing. In principle, refactorings can reduce
testing because they are behavior-preserving. Initially,
however, we would expect users to run a full slate of tests  on
refactored code.  The reason is trust: today’s compilers aren’t
verified, yet we have learned to trust their output; we would
expect the same for a refactoring tool.

Simpler Designs. Refactorings reduce the need for overly
complex designs. Gamma et. al. note that a common design
pattern pitfall is over-enthusiasm: “Patterns have costs
(indirection, complexity) therefore [one should] design to be
as flexible as needed, not as flexible as possible”. Designs
which attempts to anticipate too many future extensions may
also be more error prone with less static type checking6.
Gamma’s example of over-enthusiasm [Gam96] is displayed
in Figure 4.1. Instead of creating a simple Circle class, an
overenthusiastic designer adds a Circle factory with
strategies for each method, a bridge to a Circle
implementation, and a Circle decorator. The design is likely
to be more complex and inefficient than what is actually
required. The migration from a single Circle class to the
complex microarchitecture on the right hand side of Figure
4.1 can be viewed as a transformation. This transformation
is, in fact, automatable with refactorings [Tok99]. Thus,

instead of over-designing, one can start with a simple Circle
class and add the Factory Method, Strategy, Bridge, and
Decorator design patterns [Gam95] as needed.

Refactorings are capable of extending designs in multiple
ways. They encourage designers to create lean designs for
the task at hand and to extend those designs with refactorings
as new capabilities are needed.

Validation Assistance. The target designs achieved with
refactorings were known to be valid, however, this will not
be true for most evolving designs. Enabling condition checks
can help to establish that a new design is legal or they can
point out conflicts between a code level implementation and
a desired design change. For example, a programmer may
decide to move an instance variable from a base class to a
derived class without realizing that objects of the base class
type access the instance variable being moved. Enabling
condition checks will detect this error. Refactorings are
capable of detecting errors resulting from a long series of
changes which would be costly to perform and undo
manually.

Ease of Exploration. Refactorings allow designers to
experiment with new designs. While schema evolutions and
design patterns are manually coded into applications today, it
is clear that automating their introduction will allow
designers to more easily explore a design space without
major commitments in coding and debugging time.
Ultimately, it may be the ability to evolve and explore new
designs that will attract designers to this technology.

4.2  Refactoring Limitations
This section identifies limitations of refactoring systems
operating in a mainstream environment. Experiments with
large applications revealed limitations which were not issues
in previous work on small proof-of-concept programs. While
admittedly we anticipated a number of points raised below,
we didn’t anticipate them all, nor did we realize how
significant these points actually were. We discuss our most
important observations to alert future researchers to the
problems that they will face.

Preprocessor Directives. Our C++ program transformation

6.  Many design patterns use runtime composition versus inherit-
ance as an extension mechanism [Gam95]. The dynamic nature of
composition precludes static typechecking.
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Figure 4.1: Overenthusiastic use of design patterns
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tool cannot deal with preprocessor directives because
preprocessor directives are not part of the C++ language.
The programs in our experiments were preprocessed before
being transformed and at that point, preprocessor
information could no longer be recovered. In this section we
examine the different types of preprocessor information and
note workarounds when possible.

#include <filename> − Special comments are inserted
to mark the beginning and end of each included file so the
files can be unincluded after all refactorings are completed.

#define <constant> n − in some cases these
declarations can be replaced by a statement of the form
‘const <type> <constant> n’ or a list of #define’s
can be replaced by an enumerated type. Otherwise, this
preprocessor information cannot be maintained.

#define macro(x) F(x) − this can sometimes be
replaced by an inline function whose return type must be
known. For function-like macros which use the # and ##
operators, it may not be possible to create an equivalent
inline function and the original source code must be
changed.

#define FLAG and #ifdef − this information is difficult
to maintain. One possible way to retain code that would be
removed by #ifdef statements is to store it as a comment
which is later uncommented after the source has been
refactored. This solution would allow a program to be
transformed correctly given one set of compiler flags but it
could not guarantee correctness for a different set of flags.
This problem is related to the issue of transforming program
families discussed in Section 4.4.

We found that while much of the preprocessor information
can be dealt with automatically, it is generally not possible to
handle all cases that arise in large software applications.7

Enabling Conditions. Most but not all enabling conditions
can be verified automatically. For the inherit refactoring in
Figure 2.1, the first three enabling conditions can be checked
automatically. For example, it is possible to examine an
abstract syntax tree and verify that Base is not a subclass of
Derived (the first enabling condition). Opdyke identifies two
enabling conditions which cannot be verified automatically
[Opd92]:

• Program behavior must not be dependent on the size of
objects.

• Program behavior must not be dependent on the physical
layout of objects.

The inherit refactoring requires that programs be
independent of object size since adding a superclass can
change the size of an object. Size and layout were not issues
with the two programs transformed in this paper or other

programs transformed in [Tok95, Rob97], however, users of
refactorings must be aware of this limitation.

4.3  Refactoring Requirements
Source File Access. Enabling conditions are currently
written with the assumption that all source code for a
program is transformable. This may not be the case. For
example, a user may attempt to move an instance variable
from a user-defined subclass to a superclass defined in a
proprietary third party framework. This was not an issue in
this research because the design changes being replicated
with refactorings were limited to developer code. For a
transformation system targeting a mainstream development
environment, checks must be made to determine if any files
affected by a transformation are read-only.

Refactorings are currently unable to adequately deal with
preprocessor information defined in read-only header files.
The constants defined in system, Microsoft Windows, or X
Windows header files cannot be converted to variables as
suggested in Section 4.2 because the header files are read-
only. Replacing the constants with actual values in source
code risks poor code readability and incompatibility with
future versions of the header files.

Makefiles. Refactorings intended for use in mainstream C++
development environments should accept a makefile as an
argument. Makefiles define the set of files for a target
application and specify what compilation flags are set.
Makefile compatibility minimizes the cost of integrating
refactorings into a development environment.

Preserving Comments. A requirement for any source to
source transformation systems is that source code comments
must be preserved. In the Andrew example, comments
accounted for more than 20% of all non-blank lines. The
Sage++ toolkit used in this research demonstrates that it is
possible to preserve comments while refactoring C++
programs [Bod94]. Comments can also be automatically
inserted to document changes resulting from refactorings.

One difficulty is determining which comments apply to a
body of source code. For example, at the beginning of a file,
one might find comments describing the purpose of the file
followed by comments describing the implementation of a
method followed by the source code for the method. If the
method is moved to another class located in another file,
there is no way to distinguish between the comments which
are specific to the method and those which describe the
entire file.

Code Placement. Issues may arise about where generated
code should be placed. Code placement is currently done
automatically, however, it may be preferable to give the user
options in a production system. For example, a default
behavior may be to create a new header and source file
whenever a new class is created but the user may prefer to
define the class in the same file as some other existing class.
In the Andrew example, we would have defined the
command subclasses in the file containing the action
executed by the command. Adding a new file to a program
implies knowledge about the file structure and makefiles.

7.  Recent but unpublished work on Microsoft Research’s IP project
(to our knowledge) embodies the most advanced attack to date on
this problem [Sim98].
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4.4  Future Research
Our work focused on the practicality of applying primitive
refactorings to evolving object-oriented applications.
Beyond implementation of required functionality, we
identify four issues which require further research. 

Granularity of Transformations. The refactorings
developed for this research were intended to be primitive and
composable to perform more complex refactorings. We did
not attempt to minimize the number of refactorings required.
In the CIM Works example, the number of refactorings was
large (81) although the conceptual number of transformation
steps was small (8). One way to reduce the number of
refactorings would be to provide larger grain refactorings. In
the CIM Works example, the number of refactorings would
be significantly reduced if refactorings to move multiple
variables and methods were available. Similarly for the
Andrew example, most of the 800 transformations take place
in Step 4 — converting action procedures to Command
subclasses. A larger grain transformation which converted a
list of procedures to Command’s could execute Step 4 in a
single transformation. This would reduce the total number of
transformations to fewer than twenty. It is important to note
that the near term goal of our research has been to develop a
basis set of primitive refactorings. Larger grain refactorings
up to the size of design patterns may be more convenient in
practice.

Large grain refactorings can also simplify the check for
enabling conditions. It is sometimes easier to verify enabling
conditions for a large grain refactoring instead of verifying
enabling conditions for an equivalent series of primitive
refactorings [Rob97].

Program Families. Parnas argued that software developers
should design each program as a member of a family of
programs [Par79]. Transformation systems must recognize
that many files may be included by multiple programs. When
transforming a file used by more than one program, it is
desirable for the transformations system to check enabling
conditions for all programs which use that file. Otherwise, a
file might be transformed safely for one program while
causing another program which uses the same file to break.
As a simple example, consider the case where two
applications Driver.C and Racer.C link with Vehicle.C
supporting class Car. Suppose we refactor Driver.C and
Vehicle.C to rename Car to Boat. Racer.C will no longer
compile because it depends on the Car class which no longer
exists.

A refactoring supporting program families would need to
accept a list of makefile targets for which the transformation
must be valid. The situation is further complicated for C++
by conditional compilation flags which imply that different
preprocessed versions of a single file should be considered
when checking if a transformation can be performed safely.

Integration with Other Tools. Refactorings packaged as
individual executables which take a makefile target as an
argument are not dependent on the presence of other tools. In
this form, refactorings can be integrated into most
mainstream development environments because most

environments support command-line access to source code.

Higher levels of integration are still possible. We envision
integration with an object-oriented modeling tool such as
Rational RoseTM which would allow many refactorings to be
invoked as operations on a UML diagram. Integration with a
source code control system could allow appropriate files to
be checked out, transformed, and checked back in with
comments describing the refactorings. Attempts to transform
protected files would block the refactoring and notify the
user. Integration with an IDE such as Microsoft Visual
C++TM would allow transformed code and updated makefiles
to be displayed immediately in open windows.

Tool Support. There is a definite lack of tools for
manipulating application source that are integrated with
standard development tools. Further, the performance of
program transformations must be fast so the results of a
change can be seen immediately through the browser. An
efficient representation for handling source-to-source
transformations is discussed in [Gri91]. Simonyi presents IP
as a general-purpose system for implementing program
transformations [Sim95]. Roberts implements efficient
refactorings for Smalltalk [Rob97] and Baxter implements
transformations for Cobol [Bax97].

4.5  Implications for Java
Java inherits all of C++’s refactoring benefits while avoiding
many of its limitations. First, it has no preprocessor which
removes a major barrier to a successful C++ implementation.
Second, it does not use makefiles which simplifies the
process of piecing together the source files to be
transformed. Third, code placement is simplified since
methods are stored in a file belonging to the class. Java has
no free-floating procedures as with hybrid object-oriented
languages such as C++. For these reasons coupled with its
growing popularity as an internet language, we believe that
Java is the best vehicle for transferring refactoring
technology to the mainstream.8 Tools are now being
developed to aid in this process [Sim95, Bax97, Bat98].

5  Related Work

Our work distinguishes between specification-to-source and
source-to-source transformations. Specification-to-source
transformations transform high level declarative
specifications to compilable source. Examples are compilers
or transformation systems for domain-specific languages
[Rea86, Bax90, Bat94]. The ratio between lines of
specification to lines of code generated can be one-to-ten or
higher. In contrast, source-to-source transformations
transform a program coded in a given language to another
program in the same language. They are generally domain-
independent and the transformations can be written to
support standard programming languages. 

Griswold developed source-to-source transformations for

8.  When we began our work, tool support and availability of large
Java files were nonexistent. This is no longer true today.
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structured programs written in Scheme [Gri91]. The goal of
this system was to assist in the restructuring of functionally
decomposed software. Software designs developed using the
classic structured software design methodology [You79] are
difficult to restructure because nodes of the structure chart
which define the program pass both data and control
information. The presence of control information makes it
difficult to relocate subtrees of the structure chart. As a
result, most transformations are limited to the level of a
function or a block of code.

Object-oriented software designs offer greater possibilities
for restructuring. Bergstein defined a small set of object-
preserving class transformations which can be applied to
class diagrams [Ber91]. Lieberherr implemented these
transformations in the Demeter object-oriented software
environment [Lie91]. Example transformations are deleting
useless subclasses and moving instance variables between a
superclass and a subclass. 

Opdyke coined the term refactoring to describe a behavior-
preserving program transformation for restructuring object-
oriented software systems. Refactorings were inspired by the
schema evolutions of Banerjee and Kim [Ban87], the design
principles of Johnson and Foote [Joh88] and the design
history of the UIUC Choices operating system [May89]. An
example application of refactorings is the creation of an
abstract superclass [Opd93]. Hursch and Seiter presented a
subset of Opdyke’s refactorings which operated under an
alternative framework for preserving behavior [Hur96].
Refactorings are implemented for C++ [Tok95, Sch98,
Tok99] and for Smalltalk [Rob97]. Roberts offers Smalltalk-
specific design criteria for a program transformation tool
[Rob97]. One criteria which also applies to C++ software is
that users should be allowed to name new entities introduced
through transformations.

Tokuda and Batory proposed additional refactorings to
support design patterns as targets states for software
restructuring efforts [Tok95, Tok99]. Refactorings are shown
to support the addition of design patterns to object-oriented
software systems [Tok95, Rob97, Sch98, Tok99]. Winsen
used refactorings to make existing design patterns more
explicit [Win96]. Refactorings also support the addition of
Pree’s [Pre94] hot-spot meta patterns [Tok99].

A number of tools instantiate a design pattern and insert it
into existing source code [Bud96, Kim96, Mei97].
Instantiations are not necessarily behavior-preserving, so
testing of changes may be required. Meijers checks
invariants governing a pattern and repairs violations when
possible. Refactorings do not have this pattern-level
knowledge.

6  Conclusion

Evolution of an application’s design is inevitable and is done
manually at great effort and expense.  Refactorings are
behavior-preserving program transformations that  provide a
powerful technology by which significant parts of an appli-
cation’s design evolution can be automated.

The ultimate goal of our research is to provide a mainstream

tool that makes editing class diagrams as easy as editing user
interfaces with a GUI editor. This paper has taken three
important steps towards this goal:

• First, we implemented a set of refactorings that can auto-
mate a suite of schema transformations, design patterns,
and hot-spot meta patterns.  They can reduce or eliminate
the need to identify lines of affected source, to execute
changes manually, and to test those changes. 

• Second, we showed that refactorings can scale and be
useful on large, real-world applications.  We were able to
automate thousands of lines of changes with a general-
purpose set of refactorings.

• Third, while our experiments clearly showed the benefits
that could result from a refactoring tool, they also
revealed the requirements, limitiations, and research
problems that remain to be addressed before refactoring
technology can be transitioned beyond academic proto-
types.

Given the success of our experiments and the difficulty in
managing C++ preprocessor information, Java should be the
next target language, as we believe that it holds the greatest
promise for transferring refactoring technology to the
mainstream.
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