Evolving Object-Oriented Applications with Refactorings

Lance Tokuda and Don Batory
Department of Computer Science
University of Texas at Austin
Austin, TX 78712-1188

{uni cron,

ABSTRACT!?

Refactorings are behavior-preserving program taans-
tions that automate design level changes in olgeetited
applications. Many schema transformations, desaitems,
and hot-spot meta-patterns are automatable. Theseims
possible to develop practical tools that could igantly
simplify the evolution of object-oriented applicats by
automating common, yet tedious and error-pron&stas

Our research evaluates whether refactoring techygotan
be transferred to the mainstream by restructuromytnivial
C++ applications. The applications that we examiree
evolved manually by software engineers. We show dina
equivalent evolution could be reproduced signifiafaster

bat ory} @s. ut exas. edu

Just as GUI editors revolutionized GUI design, vedidve
that class diagram editors (where changes to alicappn’s
diagram automatically trigger corresponding changegs
underlying source code) will revolutionize the exain of
software design. The technology to power such & i®o
refactorings — behavior-preserving program transforma-

tions that automa@emany design Ievélchanges. Automa-
tion significantly reduces, if not eliminates, tharden of
identifying and modifying source code to affect igas
changes. Modifications are done correctly, thenaaucing
costly and tedious debugging and testing that watiher-
wise have to be performed. And it facilitates ekpenta-
tion: if some design changes are deemed inapptepiias a
substantially easier task to undo these changesapply

and cheaper by applying a handful of general-p@posanother sequence of refactorings that are moreopppte.

refactorings. In one application, over 14K linesofle were
transformed automatically that otherwise would haeen

coded by hand. Our experiments expose requirement§

limitations, and topics of further research befaactoring
technology can be delivered to a production envirent.

1 Introduction

Before the invention ofraphical user interface (GUIlgdi-
tors, the process of evolving a GUI was to desigile, test,
evaluate, and redesign again. With the introductibedi-
tors, GUI design has become an interactive proakssing
users to design, evaluate, and redesign an intediacscreen
and to output compilable source code that refldmslatest
design.

We believe that a similar change needs to occuediting

object-oriented class diagrams. Editing a clasgrdia can
be as simple as adding a line between classeptesent an
inheritance relationship or moving a variable frarsubclass
to a superclass. However, such changes must hn@aedoen-

panied by painstakingly identifying lines of affedtsource
code, manually updating the source, testing thagés, fix-

ing bugs, and retesting the application until tis& of new

errors is sufficiently low. Furthermore, designs caquire a
great deal of experimentation [Joh88]. Multipledtitons of
the design-implement-test cycle may be requireattoeve a
satisfactory final design.

1. We gratefully acknowledge the sponsorship ofcrivBoft
Research, the Defense Advanced Research ProjeetecpgCoop-
erative Agreement F30602-96-2-0226), and the Usityeof Texas
at Austin Applied Research Laboratories.

If such changes had to be done manually, theiicdiffy
might preclude attempts to make them.

his paper presents the results of applying refaas to
replicate the work of software engineers/desigoers. pair
of non-trivial C++ applications. Our experimentspesge
requirements, limitations, and topics of furthesaarch
before refactoring technology can be delivered pyaduc-
tion environment.

2 Refactorings

A refactoring is a parameterized behavior-preserving
program transformation that updates an applicaidesign
and underlying source code. A refactoring is tylbyca very
simple transformation that has a straightforwardt (bot
necessarily trivial) impact on application sourcAn
example isinherit[Base, Derived], which establishes a
superclass-subclass relationship between two caBase
and Derived, that were previously unrelated. From the
perspective of an object-oriented class diagramjrtherit
refactoring merely adds an inheritance relationgigween
the Base and Derived classes, but also it alters the
application’s source code to reflect this change.

A refactoring is more precisely defined by (a) apmse, (b)

2. The termautomaterefers to a refactoring’s programmed check
for enabling conditions and its execution of allus® code
changes. The choice of which design to implemernt which
refactorings need to be applied is always made Hoynaan.

3. We use a limited definition of the temwesignreferring to the
aspect of design reflected in the extended clasgrain notation
from Gamma [Gam95] (See Section 2).

arguments, (c) a description, (d) enabling cond#jqe) an
initial state, and (f) a target state. Such a dk&dim for
inherit[Base, Derived] is given in Figure 2.1. A summary of

Name:
Inherit[Base, Derived]

the class diagram notation used in this example and Purpose:

throughout this paper is presented in Figure 22 tffe most
part, aspects of a refactoring are self-explanafbing most
complicated aspect deals with a refactoring’s engbl
conditions.

2.1 Enabling Conditions

Programs are restructured by applying a series of

refactorings. Because individual refactorings eres
behavior, a series of refactorings also presdrebavior. To

preserve behavior, we adopt the method proposed by

Banerjee and Kim for database schema evolutionagBa
and employed by Opdyke for refactorings [Opd92keéh of
invariants is defined which, if preserved, guarastthat two
programs will run identically. When a refactoringns the
risk of violating an invariant, enabling conditioase added
to guarantee that the invariant is preserved.

Opdyke identified seven invariants that preseredihavior
of C++ and Smalltalk programs. For example, histfir
invariant is that each class must have a uniquerslgss and
its superclass must not also be one of its suteda3he first
enabling condition of thenherit refactoring (Figure 2.1)
preserves this invariant.

Refactorings have been found to be useful even when
predicated on conservative enabling conditions. For

example, thénherit transformation is conservatively limited
to single inheritance systems by Opdyke’s firstaimant.
While support for multiple inheritance systemsasgible, it

was not necessary for transforming the applications

described in this paper or for adding numerous giesi
patterns and hot-spot meta patterns [Tok99].

Most but not all enabling conditions can be vedfie
automatically. In theinherit example, the first three
conditions are verified automatically while thetlasabling
condition must be verified by the user to guarartes
behavior will be preserved (see discussion in Secti2).

2.2 Design Evolution and Refactorings

Three kinds of object-oriented design evolution achema
transformations, design pattern microarchitectuagesl hot-
spots. Schema transformationsre drawn from object-
oriented database schema transformations thatrpeddits
on a class diagram [Ban87]. Examples are renamitigss,
adding new instance variables, and moving a metimothe
class hierarchy.Design patternsare recurring sets of
relationships between classes, objects, methods, tleat
define preferred solutions to common object-oridrtesign
problems [Gam95].Hot-spotsare aspects of a program
which are likely to change from application to apation

[Pre95]. Designs using abstract classes and teenplat

methods are prescribed to keep these hot-spoibléex

Each example of design evolution mentioned abovebea
implemented by one or more refactorings. The liét o
refactorings used in our research is given in Tdbl&his

To establish a superclass-subclass relationsh
between two existing classes.

Arguments:

Base - superclass name
Derived - subclass name

Description:
Inherit[] makesBase a superclass dberived. vnt ()
represents the unimplemented virtual method
inherited byBase subclasses.

Enabling Conditions:
» Base must not be a subclassérived andDerived
must not have a superclass.

» Subclasses d@ase must support methodsrt () if
objects of that class are created. Otherwise, thike
be no implementations fomt () .

* Initializer lists must not be used to initialiPerived
objects. Initializer lists must initialize aggregatand
aggregates cannot have superclasses [EII90].

» Program behavior must not depend on the size of

Derived. Adding a superclass can affect its size. This
condition cannot be verified automatically.

Base Base

vm'() vm'()

|

|
|
|

(a) Initial State : (b) Target state

Figure 2.1: Inherit[Base, Derived] transformation

AbstractClass
<> owns ConcreteClassl

AbstractOperation() | __references

A ConcreteClass2

I

ConcreteSubclassl ‘ ConcreteSubclass2

InstanceVariable
Operation()

I npl erent ati on

Figure 2.2: Notation

table includes refactorings proposed by Banerjesk Kim They were chosen based on availability of sourcke euith a
for evolving object-oriented database schemas [BpaBd version history, size, and presence of design ammanghe
by Opdyke for restructuring object-oriented progsam following features make this study unique:

[Opd92]. We found that transforming actual C++ peogs
required additional refactorings. We enlarged tle¢ af
schema evolutions to include, for exampiderit (from the
example above) amglibstitute. Substitute changes a class’s
dependency on a clagg to a dependency on a superclass o
C1l [Tok95]. Other refactorings are language-specific
procedure to_method and structure to_class convert C
artifacts to their C++ equivalents. Yet another ®dt
refactorings supports the addition of design patter
microarchitectures in evolving programs [Tok95, 98k
Examples includeadd_factory_method, singleton, and
procedure_to_command. Add_factory_method creates a
method which returns a new objeshgleton ensures that a Our approach is consistent with a principled depeient
class will have only one instance, and style which performs improvements by first trangforg the
procedure_to_command converts a C procedure to a design while preserving program behavior, and then
singleton class with a method for executing thecedure. extending the better designed system [OSh86, Cas91]

The refactorings that we added to the lists of Bare Kim,
and Opdyke are italicized in Table 1.

Replication of design evolution. Designs were extracted
from two versions of the same application. The obtksign
became the initial state and the newer design bedam
1Iarget state. Our objective was to determine géguence of
refactorings could be applied to transform theiahitate to
‘the target state. By doing so, we would be autargati
changes that were performed manually by the origina
application designers. This correspondence makes
comparison of automation versus hand-coding vald a
provides us with a key indicator: how often refactgs
could be used.

Non-trivial Applications. Transforming large applications
tests refactoring scalability. Ideas that are éffecon small

Schema Refactorings pull_up_method applications of fewer than one thousand lines afecoay
add_variable move_method_across_ ultimately fail for real world applications whoséze can
create_variable_accessor ~ Object_boundary exceed one hundred thousand lines.
create_method_accessor ﬁ’gggﬁte—cg’f;;;;—mimﬁ Mainstream object-oriented language. C++ was chosen as
rename_variable structure_to_pointer the target language for experimentation. It is daythe most
remove_vanable_ - widespread object-oriented programming language for
push_down_variable Refactorings practical reasons such as backward compatibilitih @,
pull_up_variable portability, availability of third party compilerand tools,
move_variable_across_ procedure_to_method legacy system compatibility, and availability ofaitred

object_boundary structure_to_class personnel. It was expected that C++'s complexityghhi
create_class . introduce problems which would not appear for lesgular
rename_class Pattern Refactonngs object-oriented languages. A side benefit of thisice is
remove_class add_factory_method that most claims for C++ can also be made for the
inherit create_iterator increasingly popular Java programming language.
uninherit composite
substitute decorator 3.1 Evolving CIM Works
rename_method procedure_to_command . .
remove_method singleton Computer Integrated Manufacturing (CIMyamework is an
push_down_method industry-wide initiative to define a standardizedjext-

oriented framework for writing semiconductor
Table 1: Object-oriented refactorings manufacturing execution systems [Ste95]. CIM Wdksa

Windows application created to demonstrate and ttest
It is worth noting that there have been surprisinfgw SEMATECH CIM Framework specification [McG97].

implementations of refactorings. The first implerzions Major design changes in CIM Works occur betweersider
of Opdyke’s refactorings were by Tokuda [Tok95].0Rds 2 and Version 4. The Version 2 design shown in Figii1
[Rob97], and Schulz et. al. [Suc98]. To our knowledwe stores data and its graphical representation in sthme
were first to implement refactorings for design teais object. For exampleSEquipmentManager contains methods
[Tok95] and hot-spot meta patterns [Tok99]. for adding and removing pieces of equipment to heaged
Given that schema transformations, design pattangshot- @s Well as methods for building a GUI menu. Theshar 4
spot meta patterns are used frequently in evoldiesigns, design shown in Figure 3.2 separates data and igsaptto

ings, we expected to replicate some, but not akigh freedom to create different views of the same datavith

changes in our experiments. the model-view-controller paradigm [Kra88].
_ o Version 2 is approximately 11K lines of code. The
3 Evolving Applications transformation between designs is accomplished i@ n

We selected SEMATECH's CIM Works and CMU’s Andrew St€PS, each of which is realized by applying a eaqe of
User Interface System as examples of evolving egiitins, ~ Primitive refactorings:

. Rename the classes of the original hierarchy¢osplit are made abstract (Figure 3%2).
hierarchy usingrename class. (The original classes

retain the GUI aspects of objects, whereas thaireeo

sponding “split” classes — created in Steps 2 o+7

encapsulates object data).

. Create the concrete data classasory, Person, Equip-

These steps were executed by 81 refactorings tirggih a
total of 486 lines of CIM Works source being mosiifi

3.2 Evolving the Andrew User I nterface System

Manager, etc. usingereate _class (Figure 3.3a). The Andrew User Interface System (AUf8m CMU is an
Add ,b' r inst - bles to th e GUI integrated set of tools that allow users to creass, and
' m_obj ptr Instance variables 1o the concrete mail documents and applications containing

classes usingdd_variable. m obj ptr is of the corre-

sponding data class type (Figure 3.3b). [Mor85]. The two versions under study were Vers&s

. Move non-GUI instance variables and methods floen written in C and Version 8.0 converted to C++. \@ns6.3
GUI classes to the data classes using
move variable across object_boundary and move-) o _
method_across object_boundary. Data is accessed 4. In this step, the generalization is made tflaCécon objects
ﬁwough t_hem_obj_pt r instance variables (Figure 3.4). point to aResour ce object through then obj pt r instance variable.

This requires that casts to the appropriate dasscre made when-
. Create abstract data cI_asSEsource, CompManager, ever data object instance variables are refereticemigh GUI
M ovementResource, etc. usingreate class.

objects. For example:
. Establish inheritance relationships between th&ract
data classes and the concrete data classes iniegt
(Figure 3.3c).

Move common instance variables and method declar

Cl cPerson *p = new Cl cPerson;
p- >person_ptr->f _nane = "John";

és transformed to:

tions up the data class hierarchy ugindl_up_variable Cl cPerson p;
anddeclare virtual_method (Figure 3.5). ((Person *)p->m objptr)->f_nane =
. Change the type oh obj ptr from a structure to a John;
pointer usingstructure_to_pointer. It is unclear if this was the correct design dexissince the GUI

Flasses are specific to a single data class. Tepswas not auto-

Declare the reference between GUI objects and damated although it would be possible to do so.

objects in the abstract classes. References toothi@ats

Figure 3.1: Version 2 Design

|CComlegr| | CFactlory | |CMov119Re£| | CPIerson

|CEquipmentManager| |CPersnMgr| | CMachine |

Figure 3.2: Version 4 Design

b B
Resource
|CIcConI1ng| |CIcFaétory| |CIcM0\I/eRes| |CIcIPerson| |Compll\/lgr| | Factéry | | Movell?es | | Pérson |
| | | |) | F
ICIcEquipM| ICIcPersnMg| |CIcMachine| I EquipMgr | IPersonMgr | | Machine |
| | | 5 5 T
L

typographically-formatted text and embedded objects

CFWObject

Figure 3.3a: Original classesrenamed
and Data Classes created

[I I]
ICIcComngl IC\cFacturyl IC\CMoveResl ICIcPersonI

IC\cEquile IC\cPersnMgl ICIcMachinel |Equingr| |PersnnMgr| | Machine |

CFWObject

Figure 3.3b: Connect GUI and Data
Classes

I

[[[1
ICIcCumng| IC\cFacIury| IC\ cMuveRes| I ClcPerson |
?mﬁobj pt rl ?

"
|C\cEquipM| |CIcPersnM g| |C|CM achine| mLoPLpLT | EquipMgr | |PersnnMgr| | Machine |
Q % < l
m_obj ptr Imﬁobj pt r{ n
m obj ptr
|
Figure 3.3c: Create Abstract Data
Class Hierarchy
ICIcComngl IC\cFacmryl IC\ cMoveResl I ClcPerson I | CompMgr | | Factory | | MoveRes | | Person |
e e
bj [[[
IC\cEqulle ICIcPefsnM gl ICICM achmel mLobI Pt | EquipMgr | |PersonMgr | | Machine |
m_obj ptr Imﬁobj ptr Im_obj T
Cicperson : ,
Shift X ‘ ComponentMgr ! ;ZzzonemM g
dept : '
. ' IsStopped()
GetShift() ' 3 | b
GetDept() » s I—A—l » IsStarting()
‘ : =3 EquipmentMgr| [PersonMgr| L
: status status ' -
3) EquipmentMagr| | PersonM gr
S ! Person IsStopped() IsStopped() .+ | lt P " 9 ot z
2 ' shift IsStarting() IsStarting| | | 'SStopped() sStopped(
=t : dept . IsStarting() IsStarting()
; GetShift() '
' GetDept()
Figure 3.4: Instance variables and methods Figure 3.5: Instance variables and method declarations
moved to data classes moved to abstract classes

I
1
Observable Command
Execute()
[Path | [View | R S
PlayKbdM acroCm
- Execute(...) - -+
[nstance) |

Figure 3.6: Structures converted to classes

T
|
|
|
'
Instance() {
o return uni que_i nstance; }

1
Command I
Execute(ATK *s, ...) { I
Pl ayKbdMacro(s, ...); } -
Figure 3.8: Software Microar chitecture for
~ - - Im and Command classes
[Path | [View |
— T bind_Description . bind_Description
procName ! procName
. . . doc q doc
Figure 3.7: Class hierar chy created void (proc)(): : Command *proc:
stores actions as function pointers while VersighsBipports
and recommends creation of a separate subclassafdr
action (similar to the Command design paﬁﬁrrOver Figure 3.9: Convert procedure pointer to
ninety classes using almost 800 actions are affectae Command pointer

if ion i mplished in five steps. . . .
transformation s accomplishe P ods. Figure 3.9 displays the transformation of the

1. Convert Version 6.3 C structures to C++ classssgu bind_Description structure. Th@r oc instance variable is
structure_to_class (Figure 3.6). converted to &ommand pointer.

2. Create theATK and Command abstract classes using All steps were executed with a total of 800 refedotgs. This
create class. number is large but could be significantly redudsee

3. Establish the inheritance relationships betws®k and discussion on Granularity of Transformations in tiec
other classes usininherit (Figure 3.7). 4.4).

4. Derive command classes for each action usinghe conversion of AUIS to use the n@wmmand class for
procedure_to_command. Figure 3.8 displays the result its hundreds of actions requires approximately liaks of
of transformingPl ayKbdMacr o() into a Command code changes. It is interesting to note that aljhahe action
subclass. The newly createhyk bdMacroCmd contains class is supported and recommended for all newgsisato
an Execute() method which callsPl ayKbd- AUIS, the existing code base was never migratetisonew
Macro(). It also contains ahnstance() method mechanism. Thus, in Version 8 there are actuallp tw
which returns a unique instance of the class. Usinglifferent representations for actions: the origicatle used
I nstance() instead ofnew to create objects guaran- function pointers while all new additions to AUISseu
tees that a pointer to BlaykbdMacroCmd object is command classes. Our transformed version of AUIS
unique. converted all source to use action classes. Themelof

5. Convert procedure pointers to commands usinghanges might explain why Version 8.0 code was mievky
procedurei)tr_to_command_ In this step, the data converte_d to usg its newly defined action class.
types for structures using procedure pointers ame ¢ Concomitantly, this also suggests an advantage of
verted to us€ommand pointers, procedure calls are con- refactorings to perform large edits automaticaliyhich
verted to useExecute() methods, and procedure People might not undertake by hand.
assignments are converted to uisest ance() meth-

4 Introspection and L essons L earned

5. The Command design pattern objectifies an mclibe actionis Qur experiments provided a tremendous learning réequee
triggered by calling afexecut e() method implemented in each jn evaluating refactoring technologies. In the daling
derived class [Gam95]. sections, we present some of the more importasoiesthat

we learned on refactoring benefits and limitatiasyell as
on the requirements that must be satisfied andarelse
problems that must be solved for refactoring tetbmo to
succeed.

4.1 Refactoring Benefits

Automating Design Changes. The most important result of
our research is to establish that refactorings aatomate
significant design changes in real world appliaagioFor
CIM Works, the main class hierarchy was split im0

connected hierarchies in an automated way. For AUIS
procedure pointers were converted to use the comman

design pattern generating over 14K lines of codgegbs.

It is of interest to compare the effort requiredperform
these changes manually versus the effort when aijed

refactorings. We estimate that the CIM Works change

CircleDecorator

Figure4.1: Overenthusiastic use of design patterns

CircleFactory

: createCircle() DrawStrategy

: : draw()
Circle I v

| -
draw() » Cirde BoundsStrategy
bounds() : draw() bounds()
radius | bounds()

|

|

|

|

would take us two days to implement and debug hydha jngtead of over-designing, one can start with giraircle

versus two hours when aided by refactorings. Wenes

class and add the Factory Method, Strategy, Bridge]

that the AUIS changes would require two weeks tOongsorator design patterns [Gam95] as needed.

implement and debug by hand versus one day whexal &igl
refactorings. The number of refactorings and
subsequent cost could be reduced in both experamweitit
larger grain refactorings to provide a substantigjieater
benefit (see Granularity of Transformations, Secdadl).

Earlier we mentioned that many, but not all, degigtterns,
schema transformations, and hot-spot meta patteuld be
expressed as refactorings. In both experimentsyais

possible to automatd! design changes. This was fortuitous.

It does suggest, however, that a refactoring tooldservice
a variety of design changes.

Reduced Testing. In principle, refactorings can reduce

testing because they are behavior-preserving. allyiti
however, we would expect users to run a full sthtests on
refactored code. The reason is trust: today’s dlensparen’t
verified, yet we have learned to trust their outpug would
expect the same for a refactoring tool.

theirRefactorings are capable of extending designs ittiptes

ways. They encourage designers to create leanroefig
the task at hand and to extend those designs efilstorings
as new capabilities are needed.

Validation Assistance. The target designs achieved with
refactorings were known to be valid, however, thib not
be true for most evolving designs. Enabling coonditthecks
can help to establish that a new design is legahey can
point out conflicts between a code level implemtotaand

a desired design change. For example, a programmagr
decide to move an instance variable from a bases ¢l a
derived class without realizing that objects of base class
type access the instance variable being moved. llBgab
condition checks will detect this error. Refactgsnare
capable of detecting errors resulting from a lorges of
changes which would be costly to perform and undo
manually.

Simpler Designs. Refactorings reduce the need for overlygage of Exploration. Refactorings allow designers to

complex designs. Gamma et. al. note that a commesigil
pattern pitfall is over-enthusiasm: “Patterns has@sts
(indirection, complexity) therefore [one shouldkdm to be
as flexible as needed, not as flexible as possildesigns
which attempts to anticipate too many future extarsmay

also be more error prone with less static type kjhgﬁ.
Gamma'’s example of over-enthusiasm [Gam96] is disql
in Figure 4.1. Instead of creating a simglecle class, an
overenthusiastic designer adds Gircle factory with
strategies for each method, a bridge to Gircle
implementation, and @ircle decorator. The design is likely
to be more complex and inefficient than what isualty
required. The migration from a singl&rcle class to the
complex microarchitecture on the right hand sidé-igure
4.1 can be viewed as a transformation. This transition
is, in fact, automatable with refactorings [Tok99]hus,

6. Many design patterns use runtime compositiasusinherit-
ance as an extension mechanism [Gam95]. The dynaamice of
composition precludes static typechecking.

experiment with new designs. While schema evolgtiand
design patterns are manually coded into applicatioday, it
is clear that automating their introduction will loal
designers to more easily explore a design spackoutit
major commitments in coding and debugging time.
Ultimately, it may be the ability to evolve and éqg new
designs that will attract designers to this tecbggl

4.2 Refactoring Limitations

This section identifies limitations of refactorirgystems
operating in a mainstream environment. Experimevite

large applications revealed limitations which weo¢ issues
in previous work on small proof-of-concept prograivhile

admittedly we anticipated a number of points raisetbw,
we didn’t anticipate them all, nor did we realizewh
significant these points actually were. We disoniss most
important observations to alert future researcherghe
problems that they will face.

Preprocessor Directives. Our C++ program transformation

tool cannot deal with preprocessor directives bseau programs transformed in [Tok95, Rob97], howeveersiof

preprocessor directives are not part of the C+guage.
The programs in our experiments were preprocessfed

refactorings must be aware of this limitation.

being transformed and at that point, preprocessa4.3 Refactoring Requirements

information could no longer be recovered. In thasten we
examine the different types of preprocessor infdiwnaand
note workarounds when possible.

#include <filename> — Special comments are inserte

to mark the beginning and end of each includedddethe
files can be unincluded after all refactorings @vmpleted.

#define <constant> n
declarations can be replaced by a statement offdima
‘const <type> <constant> n’ or a list of#defi ne’s

can be replaced by an enumerated type. Otherwlise, t

preprocessor information cannot be maintained.

Source File Access. Enabling conditions are currently
written with the assumption that all source code #&
program is transformable. This may not be the cise.

d example, a user may attempt to move an instandablar

from a user-defined subclass to a superclass defimea
proprietary third party framework. This was notiague in
this research because the design changes beingated!

— in some cases these With refactorings were limited to developer coder Fa

transformation system targeting a mainstream deweémt
environment, checks must be made to determineyiffites
affected by a transformation are read-only.

Refactorings are currently unable to adequately deih
preprocessor information defined in read-only hediles.

#define macro(x) F(x) — this can sometimes be The constants defined in system, Microsoft WindoarsX

replaced by an inline function whose return typestrioe
known. For function-like macros which use theand ##
operators, it may not be possible to create anvafgrit

Windows header files cannot be converted to vesmlas
suggested in Section 4.2 because the header fitesead-
only. Replacing the constants with actual valuesaaorce

inline function and the original source code mu®t b code risks poor code readability and incompatipititith

changed.

#define FLAGand#ifdef — this information is difficult
to maintain. One possible way to retain code thadld be

future versions of the header files.

M akefiles. Refactorings intended for use in mainstream C++
development environments should accept a makedilara

removed by#i f def statements is to store it as a commen@rgument. Makefiles define the set of files for aaget
which is later uncommented after the source has beeapplication and specify what compilation flags avet.

refactored. This solution would allow a program ke
transformed correctly given one set of compilegdldut it
could not guarantee correctness for a differentogdlags.
This problem is related to the issue of transfogrpnogram
families discussed in Section 4.4.

We found that while much of the preprocessor infation
can be dealt with automatically, it is generally possible to

handle all cases that arise in large software egfitins’

Enabling Conditions. Most but not all enabling conditions

can be verified automatically. For tieherit refactoring in
Figure 2.1, the first three enabling conditions barchecked
automatically. For example, it is possible to exaenian
abstract syntax tree and verify thgase is not a subclass of
Derived (the first enabling condition). Opdyke identifiego
enabling conditions which cannot be verified auttoadly
[Opd92]:

« Program behavior must not be dependent on theodize

objects.

» Program behavior must not be dependent on theiqaiys
layout of objects.

Makefile compatibility minimizes the cost of integing
refactorings into a development environment.

Preserving Comments. A requirement for any source to
source transformation systems is that source conenents
must be preserved. In the Andrew example, comments
accounted for more than 20% of all non-blank linEke
Sage++ toolkit used in this research demonstréi@sit is
possible to preserve comments while refactoring C++
programs [Bod94]. Comments can also be automaticall
inserted to document changes resulting from refags.

One difficulty is determining which comments apjty a
body of source code. For example, at the beginoifrafile,

one might find comments describing the purposeheffile

followed by comments describing the implementatiéra

method followed by the source code for the methibthe

method is moved to another class located in andileer
there is no way to distinguish between the commehish

are specific to the method and those which desdtilee
entire file.

Code Placement. Issues may arise about where generated
code should be placed. Code placement is currelthe

The inherit refactoring requires that programs be automatically, however, it may be preferable toedive user

independent of object size since adding a superaias
change the size of an object. Size and layout wetéssues
with the two programs transformed in this paperotiver

7. Recent but unpublished work on Microsoft Resi®arnP project
(to our knowledge) embodies the most advancedlattadate on
this problem [Sim98].

options in a production system. For example, a uefa
behavior may be to create a new header and soilece f
whenever a new class is created but the user nedgrpo
define the class in the same file as some othetiegiclass.

In the Andrew example, we would have defined the
command subclasses in the file containing the Ractio
executed by the command. Adding a new file to ayEm
implies knowledge about the file structure and nfide

4.4 Future Research

Our work focused on the practicality of applyingnitive
refactorings to evolving object-oriented applicato
Beyond implementation of required functionality,
identify four issues which require further research

Granularity of Transformations. The refactorings
developed for this research were intended to beifive and
composable to perform more complex refactorings.dide
not attempt to minimize the number of refactoringguired.
In the CIM Works example, the number of refactosingas
large (81) although the conceptual number of tiemnsétion

environments support command-line access to saode.

Higher levels of integration are still possible. \&evision
integration with an object-oriented modeling tookls as

We Rational RosB" which would allow many refactorings to be

invoked as operations on a UML diagram. Integratidth a
source code control system could allow appropfiées to

be checked out, transformed, and checked back th wi
comments describing the refactorings. Attemptsangform
protected files would block the refactoring andifiyothe
user. Integration with an IDE such as Microsoft s
C++™ would allow transformed code and updated makefiles

steps was small (8). One way to reduce the number @0 be displayed immediately in open windows.

refactorings would be to provide larger grain rédaiogs. In
the CIM Works example, the number of refactoringsild
be significantly reduced if refactorings to move ltiple
variables and methods were available. Similarly floe
Andrew example, most of the 800 transformations takce
in Step 4 — converting action procedures Gommand
subclasses. A larger grain transformation whichveaied a
list of procedures t@ommand’s could execute Step 4 in a
single transformation. This would reduce the totahber of
transformations to fewer than twenty. It is impattto note
that the near term goal of our research has bedavelop a
basis set of primitive refactorings. Larger gra#factorings
up to the size of design patterns may be more goemtin
practice.

Large grain refactorings can also simplify the éhéar
enabling conditions. It is sometimes easier tofyemabling
conditions for a large grain refactoring insteadvefifying
enabling conditions for an equivalent series oimjtive
refactorings [Rob97].

Tool Support. There is a definite lack of tools for
manipulating application source that are integrapdth
standard development tools. Further, the performanoic
program transformations must be fast so the resflta
change can be seen immediately through the browser.
efficient representation for handling source-torseu
transformations is discussed in [Gri91]. Simonygants IP
as a general-purpose system for implementing pnogra
transformations [Sim95]. Roberts implements effitie
refactorings for Smalltalk [Rob97] and Baxter implents
transformations for Cobol [Bax97].

45 Implicationsfor Java

Java inherits all of C++'s refactoring benefits lghdvoiding
many of its limitations. First, it has no preproa@swhich
removes a major barrier to a successful C++ impigat®n.
Second, it does not use makefiles which simplifies
process of piecing together the source files to
transformed. Third, code placement is simplifiechcsi

be

Program Families. Parnas argued that software developergnethods are stored in a file belonging to the classa has

should design each program as a member of a faofily
programs [Par79]. Transformation systems must msizeg
that many files may be included by multiple progsakVhen
transforming a file used by more than one progranis
desirable for the transformations system to chewkblng
conditions for all programs which use that fileh@twise, a
file might be transformed safely for one programilevh
causing another program which uses the same fiteetak.

As a simple example, consider the case where tw

applicationsDri ver . C andRacer . C link with Vehi cl e. C
supporting clas€ar. Suppose we refactari ver. C and
Vehi cl e. Ctorename Car to Boat. Racer . Cwill no longer
compile because it depends on @z class which no longer
exists.

A refactoring supporting program families would de®
accept a list of makefile targets for which thensf@armation
must be valid. The situation is further complicated C++
by conditional compilation flags which imply thaiffdrent
preprocessed versions of a single file should bwsidered
when checking if a transformation can be perforisesfely.

no free-floating procedures as with hybrid objedéeated

languages such as C++. For these reasons couptledtsvi
growing popularity as an internet language, weevelithat
Java is the best vehicle for transferring refaotpri

technology to the mainstredinTools are now being
developed to aid in this process [Sim95, Bax9798ht

5 Related Work

%ur work distinguishes between specification-torsewand
source-to-source transformationsSpecification-to-source
transformations transform high level declarative
specifications to compilable source. Examples arapilers
or transformation systems for domain-specific laagps
[Rea86, Bax90, Bat94]. The ratio between lines of
specification to lines of code generated can betosien or
higher. In contrast, arce-to-source transformations
transform a program coded in a given language tihan
program in the same language. They are generathado
independent and the transformations can be written
support standard programming languages.

Integration with Other Tools. Refactorings packaged as Griswold developed source-to-source transformatitors

individual executables which take a makefile targetan
argument are not dependent on the presence oftotbisr In
this form, refactorings can be integrated
mainstream development

into mos
environments because mo

t8. When we began our work, tool support and aldiitg of large

%"{Na files were nonexistent. This is no longer taggay.

structured programs written in Scheme [Gri91]. Toal of
this system was to assist in the restructuringuatfionally
decomposed software. Software designs developed ts¢
classic structured software design methodology 7@jware
difficult to restructure because nodes of the stmecchart

which define the program pass both data and control

information. The presence of control informationkes it
difficult to relocate subtrees of the structure rthds a
result, most transformations are limited to theelesf a
function or a block of code.

Object-oriented software designs offer greater ipda®s
for restructuring. Bergstein defined a small setobfect-
preserving class transformations which can be e@plo
class diagrams [Ber91].
transformations in the Demeter object-oriented veamit
environment [Lie91]. Example transformations aréetieg
useless subclasses and moving instance varialtiesdre a
superclass and a subclass.

Opdyke coined the termefactoringto describe a behavior-
preserving program transformation for restructuratgect-
oriented software systems. Refactorings were iaddiy the
schema evolutions of Banerjee and Kim [Ban87],désign
principles of Johnson and Foote [Joh88] and thdgdes
history of the UIUC Choices operating system [May&h
example application of refactorings is the creatafnan
abstract superclass [Opd93]. Hursch and Seiterepted a
subset of Opdyke’s refactorings which operated uraie
alternative framework for preserving behavior [H&jr9

Refactorings are implemented for C++ [Tok95, Sch98,

Tok99] and for Smalltalk [Rob97]. Roberts offers <alk-
specific design criteria for a program transformiatitool
[Rob97]. One criteria which also applies to C++twafe is
that users should be allowed to name new entittesduced
through transformations.

Tokuda and Batory proposed additional refactorings

support design patterns as targets states for aadtw

restructuring efforts [Tok95, Tok99]. Refactorirgyge shown
to support the addition of design patterns to dbpeiented
software systems [Tok95, Rob97, Sch98, Tok99]. Wfins
used refactorings to make existing design pattenose
explicit [Win96]. Refactorings also support the #ideth of
Pree’s [Pre94] hot-spot meta patterns [Tok99].

A number of tools instantiate a design pattern isert it

into existing source code [Bud96, Kim96, Meig7]. [Ber9l] P.

Instantiations are not necessarily behavior-préisgyvso

Lieberherr implemented ghes’

tool that makes editing class diagrams as easgitisgeuser
interfaces with a GUI editor. This paper has takieree
important steps towards this goal:

* First, we implemented a set of refactorings tlaat auto-
mate a suite of schema transformations, desigenpatt
and hot-spot meta patterns. They can reduceroirglte
the need to identify lines of affected source, xecaite
changes manually, and to test those changes.

e Second, we showed that refactorings can scaleband

useful on large, real-world applications. We walpée to

automate thousands of lines of changes with a gkner

purpose set of refactorings.
Third, while our experiments clearly showed thedfés

that could result from a refactoring tool, they cals

revealed the requirements, limitiations, and redear

problems that remain to be addressed before refagto

technology can be transitioned beyond academimyprot

types.
Given the success of our experiments and the ditfidn
managing C++ preprocessor information, Java shioalthe
next target language, as we believe that it hdidsgreatest
promise for transferring refactoring technology toe
mainstream.

References

[Ban87] J.
Implementation of Schema Evolution
Oriented Databases.
SIGMOD Conferencel987.

[Bat94] D. Batory et.al. Scalable Software Librarn
Proceedings of ACM SIGSOFT, December 1993.
[Bat98] D. Batory et. al. JTS: Tools for Implemeni

Domain-Specific Languages. Irbth International

Conference on Software Reuséctoria, Canada, June

1998.

[Bax90] |. Baxter. Design Maintenance Systems.
Communications of the ACM 35(4), April, 1992.
[Bax97] |I.

Through Design Maintenance. IRroceedings of the

International Conference on Software Maintenancé ‘9

IEEE Press, 1997.
Berstein. Object-preserving
transformations. IfProceedings of OOPSLA '91991.

testing of changes may be required. Meijers checkf8od94] F. Bodin. Sage++: An Object-Oriented Tobkkind

invariants governing a pattern and repairs viotetiovhen
possible.
knowledge.

6 Conclusion

Evolution of an application’s design is inevitabled is done
manually at great effort and expense. Refactoriags
behavior-preserving program transformations thatvide a
powerful technology by which significant parts of appli-
cation’s design evolution can be automated.

The ultimate goal of our research is to provideanstream

10

Refactorings do not have this patterellev

Class Library for Building Fortran
Restructuring Tools. InProc. 2nd Object-Oriented
Numerics Confereng&unriver, Oregon 1994.

[Bud96] F. J. Budinsky et.al., Automatic code getien
from design patterns. IlBM Systems Journalolume
35, No. 2, 1996.

[Cas91] Eduardo Casaidanaging Evolution in Object-

Oriented Environments: An Algorithmic Approach

Ph.D. thesis, University of Geneva. 1991.
[Coad 92] P. Coad. Object-Oriented Patterns.

Communications of the ACMW35 N9, pages 152-159,

and C++

Banerjee and W. Kim. Semantics and
in Object-
IrProceedings of the ACM

In

Baxter. and C. Pidgeon. Software Change

class

In

September 1992. [McG97] P. McGuire. Lessons learned in the C++naxfee

[ElI90] M. Ellis and B. StroustrupThe Annotated C++ development of the SEMATECH computer-integrated
Reference Manual Addison-Wesley, Reading, manufacturing (CIM) applications framework. S8PIE
Massachusetts, 1990. ProceedingsVolume 2913, pages 326-344, 1997.

[Gam93] E. Gamma et. al. Design Patterns: Abstvacind [Mor85] J. H. Morris et.al. Andrew: A DistributedePsonal
Reuse of Object-Oriented Design. IRAroceedings, Computing EnvironmenCommunications of the ACM
ECOOP '93 pages 406-421, Springer-Verlag, 1993. March, 1986.

[Gam95] E. Gamma et.aDesign Patterns Elements of [Opd92] W. F. Opdyke. Refactoring Object-Oriented
Reusable Object-Oriented Softwaraddison-Wesley, Frameworks Ph.D. thesis, University of lllinois, 1992.
Reading, Massachusetts, 1995. [Opd93] W. F. Opdyke and R. E. Johnson. Creatirsjrabt

[Gri91] W. Griswold.Program Restructuring as an Aid to superclasses by refactoring. ACM 1993 Computer
Software Maintenance Ph.D. thesis. University of Science Conferencéebruary 1993.

Washington. August 1991. [OSh86] Tim O'Shea, Kent Beck, Dan Halbert, and tkur
[Hun95] H. Huni, R. Johnson and R. Engel. A Frameéwo Schmucker. Panel on: The learnability of object-
for Network Protocol Software. IProceedings of oriented programming systems. IRroceedings of

OOPSLA '951995. OOPSLA '86pages 502-504. November 1986.

[Hur96] W. Hursch and L. Seiter. Automating the Eximn [Par79] D. L. Parnas. Designing software for ease o
of Object-Oriented Systemsnternational Symposium extension and contractionlEEE Transactions on
on Object Technologies for Advanced Software Software Engineerindg(2):128-138, March 1979.
Springer-Verlag, March 1996. [Pre94] W. Pree. Meta Patterns — A Means for Céapdgur

[Joh88] R. Johnson and B. Foote. Designing Reusable the Essentials of Reusable Object-Oriented Dedign.
Classes. InJournal of Object-Oriented Programming Proceedings, ECOOP '94pringer-Verlag, 1994.
pages 22-35, June/July 1988. [Rea86] Reasoning Systems. REFINE User's Guide,

[Johnson 92] R. Johnson. Documenting Frameworkl wit ~ Reasoning Systems Inc., Palo Alto, 1986.
Patterns. In OOPSLA '92 ProceedingsSIGPLAN [Rob97] D. Roberts, J. Brant, R. Johnson. A Refautp
Notices, 27(10), pages 63-76, Vancouver BC, October Tool for Smalltalk. InTheory and Practice of Object
1992. SystemgsVol. 3 Number 4, 1997.

[Kim96] J. Kim and K. Benner. An Experience Using [Sch98] B. Schulz et. al. On the Computer Aided
Design Patterns: Lessons Learned and Tool Support, Introduction of Design Patterns into Object-Oriehte

Theory and Practice of Object Systerdslume 2, No. Systems. In Proceedings of the 27th TOOLS
1, pages 61-74, 1996. ConferencelEEE CS Press, 1998.

[Kra88] G. E. Krasner and S. T. Pope. A cookboakusing [Sim95] C. Simonyi, “The Death of Computer Langusge
the model-view-controller user interface paradigm i the Birth of Intentional Programming”, Microsoft
Smalltalk-80. In Journal of Object-Oriented Corporation, Sept 1995.

Programming pages 26-49, August 1988. [Tok95] L. Tokuda and D. Batory. Automated Software

[Lie91] K. Lieberherr, W. Hursch, and C. Xia@bject- Evolution via Design Pattern Transformations.Piroc.
extending class transformationsTechnical report, 3rd International Symposium on Applied Corporate

College of Computer Science, Northeastern Uniwgrsit Computing Monterrey, Mexico, October 1995.

360 Huntington Ave., Boston, Massachusetts, 1991. [Tok98] L. Tokuda and D. Batory. Automating Three
[Flo97] G. Florijn, M. Meijers, and P. van Winsefool Modes of Object-Oriented Software Evolution. To

Support for Object-Oriented Patterns. In ECOOP '97, appear irCOOTS '99

number 1241 in Lecture Notes in Computer SciencejWin96] Pieter van Winsen(Re)engineering with Object-

pages 472-495, Springer-Verlag, 1997. Oriented Design PatternsMaster's Thesis, Utrecht

[May89] P. Maydany et.al. A Class Hierarchy for Bling University, INF-SCR-96-43, November, 1996.
Stream-Oriented File Systems. IRroceedings of [You79] E. Yourdon and L. Constantirgtructured Design
ECOOP '89 Nottingham, UK, July 1989. Prentice Hall, 1979.

11

